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THE HYPERBOLIC YANG-MILLS EQUATION IN THE CALORIC
GAUGE. LOCAL WELL-POSEDNESS AND CONTROL OF ENERGY
DISPERSED SOLUTIONS

SUNG-JIN OH AND DANIEL TATARU

ABSTRACT. This is the second part in a four-paper sequence, which establishes the Thresh-
old Conjecture and the Soliton Bubbling vs. Scattering Dichotomy for the hyperbolic Yang—
Mills equation in the (4 + 1)-dimensional space-time. This paper provides the key gauge-
dependent analysis of the hyperbolic Yang—Mills equation.

We consider topologically trivial solutions in the caloric gauge, which was defined in the
first paper [18] using the Yang-Mills heat flow. In this gauge, we establish a strong form
of local well-posedness, where the time of existence is bounded from below by the energy
concentration scale. Moreover, we show that regularity and dispersive properties of the
solution persists as long as energy dispersion is small. We also observe that fixed-time
regularity (but not dispersive) properties in the caloric gauge may be transferred to the
temporal gauge without any loss, proving as a consequence small data global well-posedness
in the temporal gauge.

The results in this paper are used in the subsequent papers [19] [20] to prove the sharp
Threshold Theorem in caloric gauge in the trivial topological class, and the Dichotomy
Theorem in arbitrary topological classes.
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1. INTRODUCTION

In this paper, along with the companion papers [18], [19] and [20], we consider the hy-
perbolic Yang-Mills equation in the (4 4+ 1)-dimensional Minkowski space with a compact

semi-simple structure group.
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In [I8], we defined the notion of caloric gauge with the help of the Yang—Mills heat flow on
R*, and showed that every subthreshold connection admits a caloric gauge representative (see
Section [1.2] below for a review). The first main result of the present paper (Theorem is
a strong form of local well-posedness of the hyperbolic Yang—Mills equation in the manifold
of caloric gauge connections, where the time of existence is estimated from below by the scale
of energy concentration. The second main result (Theorem asserts that regularity and
dispersive behaviors persist as long as a certain quantity called energy dispersion, which
measures a certain type of non-dispersive concentration, remains small.

While the caloric gauge reveals the fine cancellation structure of the Yang—Mills equation,
and is thus suitable for dispersive analysis at low regularity, it has the drawback that causality
is lost. As a remedy, we also show that regularity (but not dispersive) properties in the
caloric gauge may be transferred to the temporal gauge. As a corollary, we also obtain small
data global well-posedness of the hyperbolic Yang—Mills equation in the temporal gauge
(Theorem [L.18)).

In the subsequent papers in the sequence [19], [20], we use the results proved in this paper
to establish the Threshold Theorem (i.e., global well-posedness and scattering for subthresh-
old data) in the caloric gauge, as well as the Soliton Bubbling vs. Scattering Dichotomy
Theorem for general finite energy solutions, formulated in more gauge-covariant fashion. An
overview of the entire series is provided in [21].

1.1. Hyperbolic Yang-Mills equation on R!**. Our set-up is as follows. Let G be
a compact noncommutative Lie group and g its associated Lie algebra. We denote by
Ad(O)X = OXO™! the adjoint (or conjugation) action of G on g and by ad(X)Y = [X,Y]
the Lie bracket on g. We use the notation (X,Y") for a bi-invariant inner product on g,

(X.Y].2)=(X.[v.2]), XY Zeg,
or equivalently
(X,Y) = (Ad(O)X, Ad(O)Y), X, Yeg, 0OcG.

If G is semisimple then one can take (X,Y) = —tr(ad(X)ad(Y)) i.e. negative of the Killing
form on g, which is then positive definite, However, a bi-invariant inner product on g exists
for any compact Lie group G.

Let R be the (4+1)-dimensional Minkowski space equipped with the Minkowski metric,
which takes the form diag(—1,+1,...,+1) in the rectangular coordinates (z° x!,... z%).
The coordinate z° serves the role of time, and we will often write 2° = t. Throughout this
paper, we will use the standard convention for raising or lowering indices using the Minkowski
metric, and summing up repeated upper and lower indices.

Our objects of study are connection 1-forms A on R'** taking values in the Lie algebra g.
They define covariant differentiation operators D, = DELA) = 0, + A, (in coordinates) acting
on sections of any vector bundle with structure group G. The commutator D, D, — D,D,,
yields the curvature 2-form F),, = F'[A],,, which is given in terms of A, by the formula

F.,=0,A, —0,A,+ A A
Given a G-valued function O on R'**, we introduce the notation

0., = 8,007
3



The pointwise action of O on the vector bundle induces a gauge transformation for A and
F', namely

A, OA,07" = 9,007 = Ad(O)A, — O,  F,, > OF,,07" = Ad(O)F,,,.

In view of this transformation property, F' may be viewed as a 2-form taking values in the
G-vector bundle with fiber g, where G acts on g by the adjoint action (geometrically, the
adjoint vector bundle). Thus the covariant derivative D, acts on F' by

D, Fus = (0 +ad(Ay)) Fap = 0uFap + [Ay, Fupl.

The hyperbolic Yang-Mills equation on R'** is the Euler-Lagrange equation associated
with the formal Lagrangian action functional

1

L(A) = 3 /R 1+4(Fa5,F°‘5) dxdt,

which takes the form
D“F,5 = 0. (1.1)

Clearly, (|1.1) is invariant under gauge transformations. This equation possesses a conserved
energy, given by

Eqpymi (A) = / S [Fusl? de. (1.2)
{t}XR4a<B

Furthermore, both the equation (|1.1)) and the energy ([1.2)) are invariant under the scaling
A(t, ) — AA(ME, Ax) (A >0).

Hence, the hyperbolic Yang-Mills equation is energy critical in dimension (441), which is
the reason why we focus on this dimension in the present series of papers.

We are interested in the initial value problem for . For this purpose, we first formulate
a gauge-covariant notion of an initial data set. We say that a pair (a, €) of a connection 1-form
a and a g-valued 1-form e on R? is an initial data set for a solution A to (1.1 if

(Aj7 FOj) [{t=01= (aj7 ej)-

Here and throughout this paper, roman letter indices stand for the spatial coordinates
x', ... 2% Note that (1.1)) with 8 = 0 imposes the condition that

D'e; = de; + [, ej] = 0. (1.3)

This equation is the Gauss (or the constraint) equation for (1.1).
It turns out that (1.3)) characterizes precisely those pairs (a, ) which can arise as an initial
data set. Thus we make the following definition:

Definition 1.1. (1) A regular initial data set for the hyperbolic Yang—Mills equation is a
pair (a,e) € HY x HN=1 (N > 2), which has finite energy (i.e., Fla] € L?) and satisfies

loc

the constraint equation ((1.3)).
(2) A finite energy initial data set is a pair (a,e) € H} . x L? which has finite energy (i.e.,

Fla] € L?) and satisfies the constraint equation (1.3)).
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In this paper, we make an additional assumption that a decays suitably at infinity:
ac H. (1.4)

This assumption turns out to be equivalent to the requirement that a is topologically trivial
[19]. As this property is conserved under any continuous evolution in time, this is the
natural setting for scattering and thus for the Threshold Conjecture for (1.1)), which is one
main subject of the final paper [20] of the series.

The hyperbolic Yang—Mills equation , when naively viewed as an evolution equation
for A, fails to be locally well-posed; to restore (at least formally) well-posedness, we need to
fix the gauge invariance.

There are several classical interesting gauge choices which can be made here, for instance
the Coulomb gauge 87 A; = 0, the temporal gauge Ay = 0 and the Lorenz gauge 9*A, = 0.
For a more detailed discussion and comparison of these gauges we refer the reader to our
first article [1§].

However, the main gauge choice we use in this paper is the so-called caloric gauge, which
was defined in the first paper of the series [I8] with the help of a parabolic analogue of ,
namely the Yang—Mills heat flow. This is the subject of our next discussion.

1.2. Yang—Mills heat flow and the caloric gauge. Let a be a connection 1-form on R*
(in short, a spatial connection). We say that a connection A = A(z,s) on R* x J (where J
is a subinterval of [0,00)) is a (covariant) Yang—Mills heat flow development of a if it solves

F,;=D'Fy, A(s=0)=a. (1.5)

This equation is invariant under gauge transformations on R* x .J. Under the local caloric
gauge condition

A, =0, (1.6)
the forward-in-s initial value problem for (1.5 is locally well-posed [I8, Theorem 2.7] in H.
We remark that the evolution under the gauge is precisely the gradient flow for
the (spatial) energy

&) =5 [ (el PHi)do = [ S0 |Flalfd,

The key controlling norm for the Yang-Mills heat flow in the local caloric gauge is
| F|| 3(;13), which is both scale- and gauge-invariant.

Theorem 1.2 ([I8]). Consider a Yang Mills heat flow A € Cy(J; H') in the local caloric
gauge satisfying

1l gy < Q < o0, (1.7)
When J = [0, sq) for so < 0o, A can be extended past sy as a (well-posed) Yang—Mills heat
flow. When J = [0,00), the solution has the property that the limit

Sli}nc}o A(s) = oo
exists in H'. The limiting connection is flat (Flas] = 0) and the map a — an is locally

Lipschitz in H', HN (N > 1) and H' 0 HY (N > 2). Denoting by O(a) a gauge trans-
formation satisfying O~10;0 = aw, the map a — O(a) is continuous from H' to H* up to
constant conjugations.
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In the case when the Yang—Mills heat flow with initial data a admits a global solution
with finite L? norm for the curvature as in ((1.7)), we define the caloric size Q(a) of a as

Q(a) = | Fllzse+ro) (1.8)
We note that this is a gauge invariant quantity.

Remark 1.3. Here we need to clarify the topology on the (nonlinear) space of gauge trans-
formations. We will say that a sequence O™ converges to O if there exists a sequence O™
of gauge transformations so that O™ (O™)~! are constant and so that we have
e Pointwise convergencd'}
dO™ . 0) =0  in L2
e Convergence of derivatives

o -0, inH

A simple but important case in which (1.7) holds with J = [0,00) is when the initial
energy &.(a) is sufficiently small. The same conclusion holds as long as &.(a) is below any
nontrivial connection a € H' satisfying the harmonic Yang—Mills equation

DF,; = 0. (1.9)

The above assertion is closely related to the topological class of connections. Relaxing the
requirement a € H' to a € H] . allows also topologically nontrivial initial data sets, in which
case the ground state energy

Egs = inf{€.(a) : a € H}, is nontrivial and solves (1.9)} (1.10)

is nonzero, and the minimum is attained for a special class of solutions called instantons.
However, within the trivial topological class we have

2Eqs < inf{&.(a) : a € H" is nontrivial and solves (T.9)}. (1.11)

We further remark that in order for a connection a to have Q(a) finite, it must be topologi-
cally trivial. Because of this, the present paper is limited to topologically trivial connections,
which are simply defined by the requirement that « € H' in a suitable gauge. For an ex-
tended discussion and further references we refer the reader to our next article in the series
[19].

In view of this discussion, the following result is natural:

Theorem 1.4 (Threshold theorem for the Yang—Mills heat flow on R* [I8]). Assume that a
15 topologically trivial and that

(C:e(CL> < 2Fqs.
Then the solution to ([1.5)) exists globally on [0,00). Moreover, there exists a non-decreasing
function Q(-) : [0,2Egs) — [0,00) such that

Qa) < Q(E(a)).

IThe functions O™ are uniformly bounded in BM O so this property essentially provides the additional
information that in some sense the local averages converge as well.
6



We now return to the discussion of an arbitrary (not necessarily subthreshold) spatial
connection a, whose Yang—Mills heat flow development satisfies with J = [0, 00). Since
the limiting connection a., is flat, it must be gauge equivalent to the zero connection. This
motivates the following definition of the caloric gauge:

Definition 1.5 (Caloric gauge). We say that a connection a; € H' is caloric if J = [0, 00)
and as in Theorem is equal to zero. We denote the set of all such connections by C.
More quantitatively, we denote by Cgo the set of all caloric connections whose Yang—Mills
heat flow development satisfies

Qa) < Q. (1.12)
Given a connection a € H' satisfying (I.7) with J = [0, 00), note that
Cal(a); = Ad(O(a))a; — O(a),

is its caloric representative, which is unique up to constant conjugations.

To solve the Yang—Mills equation in the caloric gauge, we need to view the family C of
the caloric gauge connections as an infinite dimensional manifold. Here the H! topology is
no longer sufficient, so we introduce the slightly stronger topology

H={acH" :|allu < oo}, where [lal|lu = [[a]l 7 + ) | P;(0 ar)]| sz
J
Here, {P;} refer to the standard Littlewood-Paley projections to dyadic frequency annuli on
R*. It turns out that every caloric connection belongs to H, which reflects the fact, to be
discussed in Section [3|in greater detail, that caloric connections satisfy a nonlinear form of
the Coulomb gauge condition. Moreover, the following theorem holds.

Theorem 1.6. (1) For a connection a € C with energy £ and caloric size Q we have
lallm Seo 1.
(2) Consider a connection a € H (not necessarily caloric) satisfying (1.12)). Then O(a)

in Theorem may be uniquely fized by imposing limy oo O(a) = I. Such a map
a+— O(a) is locally C* from H to H* N C°, and also from HY to H* N HNT! (N > 2).

Essentially as a corollary, we have:
Theorem 1.7. The set C is an infinite dimensional C' submanifold of H.

The spatial components of a finite energy Yang—Mills waves will be continuous functions of
time which take values into C. They are however not C'! in time; instead their time derivative
will merely belong to L?. Because of this, we need to take the closure of its tangent space
TC (which a-priori is a closed subspace of H) in L2. This is denoted by TF°C. It is also
convenient to have a direct way of characterizing this space; that is naturally done via the

linearization of (|1.5)):

Definition 1.8. For a caloric gauge connection a € C, we say that L? 3 b € TFC iff the
solution to the linearized local caloric gauge Yang—Mills heat flow equation

0sBj, = [Bj, Fij] + Dj(DjBk — Dy Bj), Bi(s = 0) = by, (1.13)

(where D = D@) satisfies
lim B(s) = 0.
S5—00
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We say that (a,b) € T Cq (resp. TY°C) if a € Cq (resp. C) and b € TE°C.

A key property of the tangent space T, aLQC is the following nonlinear div-curl type decom-
position:

Theorem 1.9. Let a € Cg with energy €. Then for each g-valued 1-form e € L? there exists
a unique decomposition

e=b—DWa,,  beTFC,  ageH, (1.14)
where b is a g-valued 1-form and ag s a g-valued function, with the corresponding bound
1Bll22 + llaoll 1 Se.o llellze- (1.15)

A hyperbolic Yang—Mill connection consists not only of spatial components (the sole sub-
ject of discussion so far), but also of a temporal component. As in the Coulomb gauge,
we will consider the spatial components of the connection as the dynamic variables, which
satisfy a system of wave equations. The temporal components, on the other hand, will be
viewed as an auxiliary variable determined from the spatial components. This point of view
motivates the following definition.

Definition 1.10 (Initial data in the caloric gauge). An initial data for the Yang-Mills
equation in the caloric gauge is a pair (a,b) where (a,b) € TV C.

The notion of covariant Yang-Mills initial data (Definition is connected to the pre-
ceding definition by the following result proved in [I8] (which motivates the notation in
Theorem [1.9):

Theorem 1.11. (1) Given any Yang Mills initial data pair (a,e) € H' x L? such that
the Yang—Mills heat flow development of a satisfies (|1.12] - there exists a caloric gauge
Yang Mills data (a,b) € T¥'C and ag € H', so that the initial data pair (a,€) is gauge
equivalent to (a,e), where

ék = bk - D](:L)OJO.
In addition, (a,b) and ag are unique up to constant conjugations, and depend continu-
ously on (a,e) in the corresponding quotient topology. Further, the map (a,e) — (a,b)
is locally C1 in the stronger topologgﬂ H x L? — H x L?, as well as in more reqular
spaces HY x HN=t — HN x HN=1 (N > 2).
(2) Given any caloric gauge data (a,b) € TLC, there exists an unique ag € H', with
Lipschitz dependence on (a,b) € H' x L2, so that

€ — bk — D](:)CLO

satisfies the constraint equation (1.3|). Further, the map (a,b) — ag is also Lipschitz
from HY x HN=! to HN for N > 3.

Remark 1.12. The caloric gauge just described is a global version of a local caloric gauge
previously introduced by the first author [I3] 14], and is based on an idea by Tao [26] in his
study of the energy critical wave maps into the hyperbolic space [27), 28] 29, [30} [31].

2Here we impose again the condition lim|;| o O(a) = I in order to fix the choice of O(a).



1.3. The main results. The first main result is a strong gauge-dependent local well-
posedness theorem for the Yang—Mills equation as an evolution in the manifold of caloric
connections. To state this result, we define the energy concentration scale r. of a Yang—Mills
initial data set (a,e) with threshold e, (or the e,-energy concentration scale) to be

r& = rz* [a) e] = sup{r > 0: 5BT(x)(a, 6) < 63 for all z € R4}

c

Theorem 1.13 (Local well-posedness in caloric gauge). There exists a non-increasing func-
tion €.(E,Q) > 0 and a non-decreasing function M,(E,Q) > 0 such that the Yang—Mills
equation in the caloric gauge is locally well-posed on the time interval of length r. = r&* (€, Q)
for initial data (a,e) with energy < € and a € Cq. More precisely, the following statements
hold.

(1) (Regular data) Let (a,e) be a smooth initial data set with energy < &, where a € Cg.
Then there exists a unique smooth solution A, to the Yang—Mills equation in caloric
gauge on I = [—r¢, 1] such that (A;, Fo;) [r=0y= (a;,€;).

(2) (Rough data) The data-to-solution map admits a continuous extension

CxL*> (a,e) — (A, 0,A,) € C(I, T¥C)

in the class of initial data with energy < &, a € Co and energy concentration scale > r..
(8) (A-priori bound) The solution defined as above obeys the a-priori bound

| Azllsiy < M.(E, Q).

(4) (Weak Lipschitz dependence) Let (a/,€") € C x L* be another initial data set with energy
concentration scale > r.. For o <1 close to 1, we have the global bound

Az = Allsein Sane.0.0 [1(a,e) = (@' €)oo

The a-priori bound (3) is highly gauge-dependent and has strong consequences. The S*-
norm, which is essentially the same as in [10] and is recalled in Section below, serves
the role of a controlling (or scattering) norm for the Yang-Mills equation in the caloric
gauge. As we will see in Section , finiteness of the S'-norm implies fine properties of the
solution itself, such as frequency envelope control, persistence of regularity, continuation
and scattering towards endpoints of I, and also for those nearby, such as weak Lipschitz
dependence and local-in-time continuous dependence.

Theorem [1.13] implies small energy global well-posedness in the caloric gauge, analogous
to the similar Coulomb gauge result in [11]:

Corollary 1.14. If the energy of the initial data set is smaller than €2 := min{1, €2(1, Q(1))},
then the corresponding solution A, in the caloric gauge exists globally and obeys

| Az || s1((=00,00)] < M(E).

Moreover, if the initial data set (a,e) has subthreshold energy, then by Theorem |1.4] we
have a € Cg with @ < Q(€&). Therefore, we immediately obtain:

Corollary 1.15. For initial data with subthreshold energy, the conclusions of Theorem |1.1
hold with €., M, and r. depending only on the energy .

The local well-posedness result (Theorem [1.13]) provides a basic framework for considering
dynamics of the Yang-Mills equation in the manifold of caloric connections C. The second
main result, which we now state, is a continuation/scattering criterion for this equation in

terms of smallness of a quantity called energy dispersion (denoted by ED[I] below).
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Theorem 1.16 (Regularity and scattering of energy dispersed YM solutions). There exists
a non-increasing function €(€, Q) > 0 and a non-decreasing function M(E, Q) such that if
A, , is a solution (in the sense of Theorem to the Yang—Mills equation in caloric gauge
on I with energy < & and with initial caloric size Q that obeys

| F e = sup 27| PF || Lo (rxrey < €(€, Q),
S

then it satisfies the a-priori bound
||A$||SI[I] < M(E, Q)a

as well as
sup Q(A(0)) < 1.
tel
By finiteness of the S'-norm, A;, may be continued as a solution to the Yang—Mills
equation in the caloric gauge past finite endpoints of I, and scatters in some sense towards

the infinite endpoints; see Remarks [5.2 and [5.3]

Remark 1.17. In contrast to Theorem [1.13] in Theorem the dependence on Q is very
mild. This feature is due to the fact that small energy dispersion, combined with the energy
bound, implies that Q must be either very large or very small; see Lemma below. In
particular if £ is subthreshold then the dependence on Q above can be omitted altogether.

While powerful conclusions about the solution (represented by the S'-norm bound) can
be made in the caloric gauge, it has the disadvantage that the causality (or the finite speed
of propagation) property is lost. To remedy this, we also establish small data well-posedness
result in the temporal gauge Ay = 0:

Theorem 1.18. If the energy of the initial data set is smaller than €2 (as in Corollary ,
then the corresponding solution (At ., 0tAr ) in the temporal gauge Ay = 0 exists globally in
Cy(R; H' x L?). The solution is unique among the local-in-time limits of smooth solutions,
and it depends continuously on data (a,e) € H' x L.

In fact, Theorem [1.18]is a consequence of Corollary [I.14] after the observation that the
gauge transformation from the caloric gauge to the temporal gauge obeys optimal regularity
bounds; see Theorem (10) below. We note that the strong dispersive S'-norm bound for
A is generally lost in the temporal gauge, as some part of the solution is merely transported
(instead of solving a wave equation).

Theorems is used in the third paper [19] of the sequence to establish the large data
local theory for the (4 + 1)-dimensional Yang-Mills equation in arbitrary topological classes.
Then in the fourth paper [20], this theory is put together with Theorems and to
establish global well-posedness and scattering in the caloric gauge for data with subthresh-
old energy (often called the threshold theorem in the literature), as well as a bubbling vs.
scattering dichotomy for arbitrary finite-energy solutions, formulated in a gauge covariant
sense.

Remark 1.19. Within the setup of this paper, one could in effect easily relax the hypothesis
of the above theorem, and show that temporal gauge solutions exist for as long as caloric
solutions exist. We do not pursue this, as our primary interest in terms of the temporal
gauge is to use it for solutions which are not necessarily caloric. These matters are further

discussed in our third and fourth papers [19, 20].
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The overall strategy for the proofs originated from the work of Sterbenz and the second
author on the energy critical wave maps [23], 24], and was adapted to the case of the energy
critical Maxwell-Klein—-Gordon (MKG) equation, which is a simpler model for Yang—Mills,
in the authors’ previous works [16], 17, [15]. We also note an alternative independent approach
for the energy critical wave maps [8] and MKG [7] based on the Kenig-Merle method [4], 3].
A more extensive historical perspective is provided in the fourth paper [20].

In [16] and [I7], the analogues of Theorems and (respectively) were proved using
distinct strategies. However, here we derive both main results (see Section [7| for details)
from the following single a-priori estimate concerning regular solutions, whose proof is the
central goal of this paper:

Theorem 1.20. There exist non-increasing functions e(€, Q),T(E, Q) > 0 as well as a non-
decreasing function M (E, Q) such that if A, , is a reqular solution to the Yang—Mills equation
in caloric gauge on I with energy < & such that A, € Co for allt € I, and moreover

sup 2_2k||PkF||Loo(IxR4) <e&,Q) and |I|<27™T(E,Q)

k>m
for some m € Z, then it satisfies the a-priori bound
[Azlls1ny < M(E, Q).

In words, for a regular solution with small energy dispersion only at certain frequency 2™
and above, an a-priori S!'-norm bound holds on time intervals of the corresponding scale
o@2=—™).

1.4. Overview of the paper.

e Section [2| In this section, we collect some notation and conventions used throughout
this paper for the reader’s convenience. Some basic concepts, such as disposability,
dyadic function spaces, frequency envelopes, etc, are also described.

After Section [2] the paper is organized into two tiers. The first tier consists of Sections
to[7], and its goal is to describe the large-scale proof of the main results, assuming the validity
of certain linear and multilinear estimates collected in Section [l

e Section 3] Here, we recall from [I8] further results concerning the Yang—Mills heat flow
and the caloric gauge. First, we state some quantitative bounds for the Yang—Mills heat
flow and its linearization in the caloric gauge, using the language of frequency envelopes
(Section [3.1)). Next, we derive the wave equation satisfied by A, and A,(s) (s > 0) in
the caloric gauge (Section . In this process we use the dynamic Yang—Mills heat flow
(3-5), which is the Yang-Mills heat flow augmented with a heat evolution (in s) for the
temporal component.

e Section 4. We first describe the fine function space framework for analyzing the hyper-
bolic Yang-Mills equation in the caloric gauge (Section . The main function spaces
are identical to those in [I0} 17, 1], which in turn have their roots in the works on
wave maps [32, 25]. We also explain the three main sources of smallness in our analysis:
divisibility, small energy dispersion and short time interval. Then we state the linear
and multilinear estimates needed for the proof of the main theorems (Sections and
; it is the goal of the second tier of the paper (described below) to prove them. The
primary estimates here are the bilinear null form estimates, which in the context of

our function spaces have their origin in [10, 17, IT]. The bilinear null structure of the
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Yang—Mills nonlinearities was first described in [5]; a secondary trilinear null structure,
which also play a role here, was discovered in [12] in the (MKG) context.

e Section [5 We prove a strong structure theorem for a solution to the hyperbolic Yang—
Mills equation in the caloric gauge with finite S*-norm (Section . In particular,
it reduces the tedious task of controlling various parts of a solution A;, to proving a
single S'-norm bound for the spatial components A,. We also consider the effect of small
inhomogeneous energy dispersion on a correspondingly short time interval (Section [5.2)).
The analysis is repeated for the dynamic Yang—Mills heat flow of a solution (Section|5.3)).

e Section [6] We prove the central result, Theorem [I.20] by an induction on energy
argument. The argument is similar to [I7], which in turn was based on the work [23],
with modifications to handle the low frequencies with possibly large energy dispersion
with the short length of the time interval (see, in particular, Scenario (1) in Section|[6.2)).

e Section[7] Here, we derive the main theorems stated in Section [I.3]from Theorem [I.20]
The key point in the derivation of Theorem [1.13]is the simple fact that energy dispersion
is small for frequencies above the inverse of the energy-concentration scale (Section .
Theorem follows essentially by scaling (Section .

The second tier consists of Sections [§] to [[I] Here, we provide proofs of the estimates
stated in Section [dl

e Section The goal of this section is to prove all multilinear estimates stated in
Sectiond The proofs proceed in two stages: In the first stage, we assume global-in-time
dyadic (in spatial frequency) estimates (Section [8.2)), and derive the interval-localized
frequency envelope bounds stated in Section [4| (Section . A key technical issue in
interval localization is to deal with modulation projections, which are non-local in time.
In the second stage, we establish the global-in-time dyadic estimates (Section. Much
is borrowed from the previous works [10, [17, [1T].

e Section [9 We begin this section by reducing the proof of the key linear estimates
in Section {4 to construction of a parametrix for the paradifferential d’Alembertian
04237, ad(Pep—nPoA)0* Py, (Section[9.1]). As in [11], the parametrix is constructed via
conjugation of the free wave propagator by a pseudodifferential renormalization opera-
tor. We define and state the key properties of the renormalization operator (Section ,
and establish the desired estimates for the parametrix assuming these properties (Sec-
tion [9.4)).

e Section [10. Here, we prove the mapping properties of the renormalization operator
claimed in Section[9] The key difference from [I1] lies in the source of smallness: Whereas
smallness of the S*-norm of A was used in [I1], in this paper we rely instead on largeness
of the frequency gap « in the paradifferential d’Alembertian. The idea of exploiting a
large frequency gap was used in [23] [17].

e Section Finally, we estimate the error for conjugation of the paradifferential
d’Alembertian by the renormalization operator claimed in Section [0} thereby complet-
ing our parametrix construction. One aspect of our proof that differs from the previous
works [23, [I7] is that, in addition to the large frequency gap , we need to use smallness
of a divisible norm (weaker than S') of A, which requires a careful interval localization

procedure (Sections and [11.4)).
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2. NOTATION, CONVENTIONS AND OTHER PRELIMINARIES

2.1. Notation and conventions. Here we collect some notation and conventions used in
this paper.

e The symbols <, 2, < and > are defined with their usual meanings, where the implicit

constants in these notations are allowed to vary from line to line.

e By A <g B and A <p B, we mean that A < CgB and A < cgB, respectively, where
Cp = Co(1 + E)°t and cp = C;' (1 + E)~“ for some constants Cy, C; > 0 that are
again allowed to vary from line to line.

e For u € g and O € G, define ad(u) = [u, -] and Ad(O) = O(-)O~, both of which are in
End(g). Recall the minus Killing form, which is invariant under Ad(O) and ad(X). On g,
define |- |4 on g by the minus Killing form. On End(g), use the induced metric |a|gna) =
SUP|y),<1 lauly. By Ad-invariance, |Ad(O)algnacg) = |aAd(O™1)|gnd(e) = |@|End()

e We use the notation B,(x) for the ball of radius r centered at x. We write |Z(&,n)| for
the angular distance ]% — %\, and |Z(C,C")| for infeee, peer | £(€, 1)

e We use the notation V = 9,,, D, = i~'9,. Also, for D and A we often suppress the
subscript z and write D = D, and A = A,.

e We say that a multilinear operator O(uy, ..., u,,) is disposable if its kernel is translation
invariant and has mass < 1. In particular, we have

[0(u, - um)lly S [Jurllx, - luml x.,
for any translation invariant spaces Xi,..., X,,,Y provided that a product estimate
[ur - - umlly S flwallx, - umllx,

holds for any functions u; € Xy,...,u,, € X,,.
e We often use the ‘duality’ pairing

// ugO (U, . . ., Up,) dzdt

so as to have symmetry among uy and the inputs. Indeed, we have

/ / Ot // OE",... . E™)ig(E)ir(E) -+ i (E™) d=dl
EO4El4..4Em=0

e We define O* as
1-th entry

//UOO*i(ul,...,ui,...,um)dtdx://ui(’)(ul,..., Uy ey Upy) dtdx

e By a bilinear operator (of g-valued functions) with symbol m(&,n) = m?P(&,n) (which
is a complex-valued 4 x 4-matrix), we mean an expression of the form

£(a,b) // bEm) aa(f),éb(n)]) i(&+n)-w éﬁﬂd)n



For a scalar-valued symbol m(&,n), we implicitly associate the corresponding multiple
of the identity m2P(¢,n) = m(&, n)d2P.

If £ were symmetric, then the symbol m(&,n) is anti-symmetric in &, 7, in the sense
that m2P(&,m) = —mP2(n, £); this is due to the antisymmetry of the Lie bracket.

2.2. Basic multipliers and function spaces. Here we provide the definitions of basic
multipliers and function spaces. For the more elaborate frequency projections and function
spaces for the hyperbolic Yang-Mills equation, see Section 4.1}

e Given a function space X (on either R? or R!*4), we define the space /*X by
lullfx = > I1Peully
k

(with the usual modification for p = c0), where Py (k € Z) are the usual Littlewood—
Paley projections to dyadic frequency annuli.

e For a spatial 1-form A, we define PA to be its Leray projection, i.e., the L?-projection
to divergence-free vector fields:

P,A=A;+ (—A)"19;0'A,.

We write PJLA = Aj — PJA
e For a space-time 1-form A,, we introduce the notation P,A = (PA), by defining

[ PjA, a=je{l,...,4},
PaA_{ Ao a = 0.

We also define PLA = (PLA), = A, — P, A.

e We denote by W% the homogeneous LP-Sobolev space with regularity o. In the case
p =2, we simply write H? = W72

e The mixed space-time norm L{W?" of functions on R+ is often abbreviated as LYW

2.3. Frequency envelopes. To provide more accurate versions of many of our estimates
and results we use the language of frequency envelopes.
Given a sequence ¢ (k € Z) of positive numbers and a translation invariant norm || - || x,

we introduce the shorthand
P,
Julx, = sup L2
k

Definition 2.1. Given a translation invariant space of functions X, we say that a sequence
¢ of positive numbers is a frequency envelope for a function u € X if

(i) The dyadic pieces of u satisfy

x. < 1, or equivalently, || Pyul|x < cx

[l

(ii) The sequence ¢y is slowly varying,

Ck

9—0(i—k) < < 90(i—k)

~Y Y

] >k
¢j
Here ¢ is a small positive universal constant. For some of the results we need to relax the
slowly varying property in a quantitative way. Fixing a universal small constant 0 < € < 1,

we set
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Definition 2.2. Let 01,05 > 0. A frequency envelope ¢ is called (—oy, 02)-admissible if
9—01(1=)(—k) < & < 9oa(1-e)(j—k) i> k.
~Y Cj ~ )

When o, = 05, we simply say that ¢, is o-admissible.

Another situation that will occur frequently is that where we have a reference frequency
envelope ¢, and then a secondary envelope dj describing properties which apply on a back-
ground controlled by ¢;. In this context the envelope d;. often cannot be chosen arbitrarily
but instead must be in a constrained range depending on ¢;. To address such matters we
set:

Definition 2.3. We say that the envelope dj is o-compatible with ¢, if we have
ey 200N < dy.
i<k
We will often replace envelopes d; which do not satisfy the above compatibility condition
by slightly larger envelopes that do:

Lemma 2.4 ([I8, Lemma 3.5]). Assume that ¢, and dy, are (—o1,S) envelopes, and also that
¢ is bounded. Then for & < o(1 —€) the envelope

e = di + ci Z 2701,
i<k
18 o-compatible with c,. The implicit constant in Definition s bounded above by 1 +
Co(i—)-sllclle=-
Finally we need the following additional frequency envelope notation:
(C . d)k = dek, agk = Zaj,
i<k
A = sup20=97U-ke (6> 0).
j<k

2.4. Global small constants. In this paper, we use a string of global small constants
01,...,06,07 with the following hierarchy:

0<5*:57<<56<<55<<64<<53<<52<<51<<60<<1~ (21)
These are fixed from right to left, so that

dit1 K 51»100.

The role of each constant is roughly as follows:

e &y: For definition of functions spaces, such as Str* and by, b1, po in Section

e 0;: For all bounds from other papers, such as [I8, [I1} [I7]; also for all dyadic gains
in explicit nonlinearities (Section [8)) and for energy dispersion gains in the Str' norm
(4.21])).

e 4y: For energy dispersion, frequency gap and off-diagonal gains in Sections []

e 03 For frequency envelope admissibility range in Sections [4]

e 0, For energy dispersion and frequency gap gains in Sections [o]

e 05 For frequency envelope admissibility range in Sections [5]
15



e Js: For energy dispersion and frequency gap gains in Sections [6]
e 4,: For frequency envelope admissibility range in Sections [6]

We use an additional set of small constants in our parametrix construction (Sections [9HL1]),
which are fixed after d; but before 9,.

3. YANG—MILLS HEAT FLOW AND THE CALORIC GAUGE

In this section, which is a continuation of Section [1.2] we recall the results from the first
paper [18] that are needed in the present paper.

In Section , we state quantitative bounds for the Yang—Mills heat flow (and its lin-
earization) in the caloric gauge, using the language of frequency envelopes. Section is
concerned with the task of interpreting the hyperbolic Yang-Mills equation in the caloric
gauge as a system of nonlinear wave equations for A,.

3.1. Frequency envelope bounds in the caloric gauge. We begin with frequency en-
velope bounds for the caloric gauge Yang—Mills heat flow and its linearization.

Proposition 3.1 ([I8, Proposition 7.27]). Let (a,b) € T Cq with £ = E.(a), and let (A, B)
be the solution to and with (a,b) as data. Let ¢i be a (—d1,.S)-frequency envelope
in H' x L? for (a,b), and let ¢]* be a (=01, S)-frequency envelope in WP x W1 for (a, b)
which is d1-compatible with c;. Define

A(s) = A(s) — e*?a, B(s) = B(s) — e**b. (3.1)
Then the following properties hold.
(1) We have
1PA ()| + [ PeB(s)]2 Seon (2777177 (2%s) Vg (3.2)
(2) For (o,p) and (o1,p1) satisfying
4 B 4 4
s, o< ——¢s5, 2+c, <p<g¢, 0<o<o—cy, ——o=2(-—0), (33)
p P1 p
we have
1P A () s 11 + [[PB(S) [y n Secon (2728571 701(2%) =N (7). (3.4)

A central object of the remainder of this section is the dynamic Yang—Mills heat flow
for space-time connections, which is an augmentation of ((1.5)) with an equation for the
temporal component. More precisely, we say that a pair (A, A) of a g-valued function A,
and a connection A on R* x .J (where J is a subinterval of [0, 00)) is the dynamic Yang-Mills
heat flow development of (ag,a) if

F,, = D'F,, (A, A)(s = 0) = (ag, a). (3.5)
This flow is well-defined as long as the spatial and s-components A are well-defined as a

solution to (|1.5). In particular, if a € C, then (A, A) exists on [0, 00), lims_,o, A9 = 0 in H*
and limg_, Fp; = 0 in L?. Moreover, the following proposition holds.

Proposition 3.2 ([I8, Propositions 7.7 and 8.9]). Let a € Cg and e € L? satisfy ||(f,e)]|3. <
E. Consider also ag € H' and b € TGLQC which obeys e = b — Dagy (cf. Theorem , and let
(Ao, A) be a caloric gauge solution to (3.5) with data (ag,a). Then the following properties

hold.
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(1) The spatial 1-form B;(s) = Fyj(s) —D;Ao(s) obeys the linearized Yang-Mills heat flow

in the caloric gauge with B;(0) = b;. Moreover,

[A) g + 1B (s)l|z2 Seo 1(f5 )] z2- (3.6)
(2) Let dy, be a 6,-frequency envelope for (f,e) in W2, Then
27H| PLA(s) e + 27| PB(s) e Seow (225) 7N (dy)7. (3.7)
(8) Let ¢, be a (=61, S)-frequency envelope for (a,b) in H* x L?. Then
1PA(S) g + 1 PB ()22 Seow (27577 (2%5) N (dy) 2 cy, (3.8)
1707 A ()| 2 + [ Ped? By(s)ll g+ Secowv (2727 7(2%5) N (dy) 2, (3.9)

where A, B are as in (3.1)).

3.2. Wave equation for A in caloric gauge. Here, and in the rest of this paper, we shift
the notation and denote by A;, = A;.(t, ), instead of (ag, @), the space-time connection on
I x R* (viewed as {s = 0}). For the spatial components, we omit the subscript = and write
Ay (t,z) = A(t,z). We write A;,s(s) = Aips(t, z, s) for the dynamic Yang-Mills heat flow
of A;.(t, ).

In this subsection, we recall from [I8] the interpretation of the hyperbolic Yang—Mills
equations for a space-time connection A, , in the caloric gauge as a hyperbolic evolution for
the spatial components A augmented with nonlinear expressions of 9°A,, Ay and JyAy in
terms of (A4, 9,A); see Theorem [3.5] An analogous hyperbolic equation holds for the dynamic
Yang-Mills heat flow development A, ,(s) of A;, in the caloric gauge, which may be thought
of as a gauge-covariant regularization of A; see Theorem [3.6]

We present explicit expressions for the quadratic nonlinearities, for which we need to reveal
the null structure in order to handle them, and state stronger bounds for the remaining higher
order nonlinearities. For economy of notation in the latter task, we introduce the following
definition:

Definition 3.3. Let X, Y be dyadic norms.

e Amap F: X — Y is said to be envelope-preserving of order > n (n € N with n > 2) if
the following property holds: Let ¢ be a (—d1, 5) frequency envelope for a in X. Then

IE @y, 511,01, Shallx 1

e Amap F : X — Y issaid to be Lipschitz envelope-preserving of order > n if, in addition
to being envelope preserving of order > n, the following additional property holds: Let
¢ be a common ¢;-frequency envelopes for a; and a, in X, and let d be a d;-frequency
envelope for a; — as in X that is d;-compatible with ¢. Then

1 Pe(F(a1) — F(a2))llv, Saslixslaslx b €rs

where e = di, + cx(c - d) <.

Remark 3.4. The modified envelope e appears since the maps F that arise below are de-
fined on a nonlinear manifold, namely, spatial connections a on a time interval I such that
(a,da)(t) € TY°C for each fixed time. We remark moreover that if the frequency envelopes
c and d are (*>-summable, which is usually the case in practice, then F(a) and F(a;) — F(as)

belong to /Y.
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We also need to introduce the non-sharp Strichartz spaces Str and Str', which scale like
L>*L? and L*H*, respectively. We define

27 50 S S - 607 +

Q leo

<3 —do}, (3.10)

=
N
N

lullsie = sup{ e = & + &

as well as
HUHStrl = HquStr- (311)

Conditions in (3.10)) insure that the (p,q,o)’s are Strichartz exponents, but away from the
sharp endpoints. These norms have two key properties:

e They are divisible in time, i.e. can be made small by subdividing the time interval.
e Saturating the associated Strichartz inequalities requires strong pointwise concentration
(i.e., small energy dispersion).

In [18], we have shown that the spatial components of the Yang-Mills equation D*F}, = 0
(7 € {1,2,3,4}) may be interpreted as a system of wave equation for the spatial components
A = A,, where the temporal component Ay is determined in terms of (A, 0, A), as follows:

Theorem 3.5 ([I8, Theorem 9.1]). Let A, = (Ag, A) € Cy(I; H' x Cq) with (9,Aq, 0,A) €
Cy(I; L* x Tj(i)CQ) be a solution to (1.1) with energy £. Then its spatial components A = A,
satisfy an equation of the form

Oad; = P;[A, 0, A] + 2A719,Q(0%A, 0, A) + R;(A), (3.12)
together with a compatibility condition
0'A; =DA(A) == Q(A, A) + DA?(A). (3.13)
Moreover, the temporal component Ay and its time derivative 0; Ay admit the expressions
Ag =Ao(A) := ATA, 0,A] +2A71Q(A, 5, A) + Al(A), (3.14)
Ay =DAg(A) := —2A7'Q(9A, 9, A) + DAJ(A). (3.15)
Here P is the Leray projector, and Q is a symmetri(ﬂ bilinear form with symbol
2 2
Q6.1) = 5iar (3.16)

Moreover, R;(t), DA(t), A3(t) and DA(t) are uniquely determined by (A, d,A)(t) € TFC,

and are Lipschitz envelope preserving maps of order > 3 on the following spaces:

R;(t): H' — H™Y, (3.17)
DA3(t) : H' — L?, (3.18)
Ad(t): H' — H, (3.19)
DA3(t) : H* — L2 (3.20)

30bserve here that the symbol of Q is odd, but this is combined with the antisymmetry of the Lie
brackets appearing in the bilinear form.
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Finally, on any interval I C R, R;, DA3, A3 and DA% are Lipschitz envelope preserving
maps of order > 3 (with bounds independent of I) on the following spaces:

R; : Str'[I] — L'L> N L*H =[], (3.21)
DA?®: Str'[I] — L'H' n L*H=[I], (3.22)
A3 Strll] » L'H? N L2H =), (3.23)
DA : Str'[l] — L'H' n L2Hz2[1]. (3.24)

All implicit constants depend on Q and &.

Next, we consider the dynamic Yang—Mills heat flow A; ,(s) of A;, in the caloric gauge. For
s > 0, we have D F,5(s) = w, # 0 in general. We expect the “heat-wave commutator” w,
(called the Yang—Mills tension field) to be concentrated primarily at frequency comparable

to s72. Indeed, the following theorem holds.

Theorem 3.6 ([I8, Theorem 9.3]). Let A, = (A, A) € Ci(I; H' x Co) with (9,Aq, 0,A) €
Cy(I; L* x ijt)CQ) be a solution to (L.1)) with energy €. Let A;.(s) = Ain(t,z,s) be the
dynamic Yang—Mills heat flow development of A, in the caloric gauge. Then the spatial
components A(s) = Ay(s) of Ar(s) satisfy an equation of the form

CaAs(s) =PS[A(s), 0, A(5)] + 28 ,Q(0° A(5), DaAls)) + Ry(A(s)
+ P;w2(0:A, 0: A, 8) + Rj.s(A)
together with the compatibility condition
0 Ay(s) = DA(A(s)). (3.26)
Moreover, the temporal component Ao(s) and its time derivative 0, Ao(s) admit the expansions
Ao(s) =Ao(A(s)) + Agis(A)

(3.25)

=Ag(A(s)) + A wi (A, A, s) + Ag;S(A)7 (3:27)
0:Ao(s) = DAG(A(s)) + DAy (A) (3.28)
Here P, Q, R;, DA, Ay and DA, are as before, and w2 are defined as
wi(A, B, s) = — 2W(9,A, AB, s), (3.29)
w3 (A, B, s) = — 2W (0,4, 0;0,B — 20,0,B;, s), (3.30)
where W (-, -, 8) is a bilinear form with symbol
W n,s)=— ﬁe‘sﬁ’ﬂ (1- 625(5'7’)) . (3.31)

Moreover, Rj(t), Aj. (t) and DAq(t) are uniquely determined by (A, 0,A)(t) € TEC for
each s > 0, and satisfy the following properties
o R, (t): H* — H™' is a Lipschitz map with output concentrated at frequency s~2. More

precisely, ‘ .
(1 = sAYNR. () - HY — 279k fr=1-01, (3.32)
o Aj(1): H' — H' is a Lipschitz map with output concentrated at frequency s~2, i.e.,
(1—sA)YNAS (t): HY — 270k =0 (3.33)
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e DA((1): H' — L2 is a Lipschitz map with output concentrated at frequency 3’%, i.€.,
(1 —sA)NDAg,(t) : H' — 270k =, (3.34)

Finally, on any time interval I C R (with bounds independent of I), R;.s, Ag;s and DA
satisfy the following properties:

1

e Rj, :Str'[I] - L'L* N L*H 2[]] is a Lipschitz map with output concentrated at fre-
quency s_%, 1.€.,

(1= sANR;,, : Str'[I] — 27O (LY L2201 (3.35)
o A}, :Str'[l] — L*H2NL2H?[I] is a Lipschitz map with output concentrated at frequency

s7z, i.e.,
(1 — sA)VAS, : Str'[1] — 278 (LL 20 0 L2301 (3.36)

e DAy, : Str'[l] — L2H%[I] is a Lipschitz map with output concentrated at frequency
s’%, 1.€.,
(1= sA)NDA, : Str'[I] — 2700 L2 =01 (3.37)
All implicit constants depend on Q and &.

Remark 3.7. Some notable features of Theorem [3.6] are as follows.

e Compared with the prior result, here we have additional contributions Ry, Aq.s and
DAy as well as the w terms. These have the downside that they depend on A and
0y A at s = 0 rather than A(s) and 0;A(s). The redeeming feature is that these terms
will not only be small due to the energy dispersion, but also, critically, concentrated at
frequency sz,

e The other change here is due to the inhomogeneous terms w?; these are matched in the
Ai(s) and the Ay(s) equations, and will interact in the trilinear analysis (see Proposi-
tion below).

e For the new error terms here we do not need to worry about difference bounds; see
Section [6] below.

4. SUMMARY OF FUNCTION SPACES AND ESTIMATES

In this section, we summarize the properties of the function spaces and the estimates

needed to analyze the hyperbolic Yang-Mills equation in the caloric gauge, as given by
Theorems .5 and B.61

4.1. Function spaces. The aim of this subsection is to give precise definitions of the fine
functions spaces used to analyze caloric Yang—Mills waves.

4.1.1. Frequency projections. We start with a brief discussion of various frequency projec-
tions. Let mg : R — R be a smooth non-negative even bump function supported on
{x € R : |z| € (271,22)} such that {my = mg(-/2%)}rez is a partition of unity on R.
For k € Z, recall that P, was defined as the multiplier on R* with symbol Py (&) = my(|¢]).
Given j € Z and a sign 4, we introduce the modulation projections jS and @);, which are
multipliers on R'** with symbols

QF (1,€) = my(r F ),  Qy(1,€) = my(Ir| - [€]).
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We also define Q<J, Qij, Q<j, @>; etc. in the obvious manner. To connect Q;-*L with Q;, we
introduce the sharp time-frequency cutoffs Qi which are multipliers on R'** with symbols

QF(7,€) = X(0,00) (£7)-
Note that P,Q*Q; = PkQ;-t for 7 < k.
For ¢ € —N, consider a collection of directions w € S* C R*, which are maximally separated

with distance ~ 2¢. To each such an w, we associate a smooth cutoff function m¢ supported
on a cap of radius ~ 2¢ centered at w, with the property that Y. m, = 1. Let Py be the

multiplier on R* with symbol
w w 5
Pr(&) =m; (E :

Given k' € Z and ¢’ € —N, consider rectangular boxes Cj (¢') of dimensions 2 x (2F+¢)3
(where the 2¥-side lies along the radial direction), which cover R*\ {|z| < 2*'} and have
finite overlap with each other. Let m¢,, () b a partition of unity adapted to {Ci/(¢')}, and
we define the multiplier Pe, sy on R* with symbol

Fe, (&) = me,, (&)
For convenience, when k' = k, we choose the covering and the partition of unity so that
PPy = PiFe, ).
We now discuss the boundedness properties of the frequency projections. For any k € Z,
let Py/<1 denote one of the dyadic frequency projections { Py, P-;}. Let QD ; denote one

of the modulation projections Qj[, 2j» Q5 or Q<;. Let w be an angular sector of size ~ 2¢
(¢ € —N), and C a rectangular box of the form Cy/(¢') (k' € Z, ¢’ € —N). Then the following
statements hold:

e The multipliers Py <, Py <xP;’ and Fr are disposable.

e The multiplier Pk/<kQJD/ -; is disposable if j > k 4+ O(1); see [25, Lemma 3]. For gen-
eral j,k € 7Z, it is straightforward to check that Pk/<kQJD/ -, has a kernel with mass
O<24(’€—j)+)'

e The multiplier P, /<kQJD/ -; is bounded on LPL? for any 1 < p < oo; see [25, Lemma 4].

e The multiplier Pk/<kPg"QjD/<j is disposable if j > k + 2 + O(1); see [25, Lemma 6.

4.1.2. Function spaces on the whole space-time. Here, we define the global-in-time function
spaces used in this work. Unless otherwise stated, all spaces below are defined for functions
on R We remark that all of them are translation-invariant.

We first define the space X2°, equipped with the norm

2

g = Z?””“(Z @ |1AQuular2) )

when 1 < r < oo. As usual, we replace the W—sum by the supremum in j when r = co. The
spaces Xil; are defined similarly, with @); replaced by Q;E.

We are now ready to introduce the function spaces in earnest, which are all defined in
terms of (semi-)norms.

Core nonlinearity norm N. We define

-

N=L'L*+Xx, "
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This norm scales like L'L?. We also define Ny = L'L* + Xi’;i. Note that N = N, N N_.
Moreover, we have the embeddings

0—1 0—1 0—1 0.—1
Xy PCNC X 2, X[PCNCX/ 2.

The inclusions on the left are obvious, whereas the inclusions on the right follow from Bern-
stein in time. We omit the proofs.

Core solution norm S. We define

lulls = Z | Peulls,, Sk =S N X% N SN S,

where S;? is related to square function bounds,

o = 2708 lu]| 1
LE’L2

and S and S are essentially as in [I0, Eqgs. (6)—(8)]:

ulls

lullsgr = sup 277570 uf oo,

(Pa):s+5-<%

HuH?ggg :Seglojz HPZJQ<1¢+2£UH?§;(@)7

lull S0 =lullgper + 27 [Jullfyg + 27 Z Q% ull Bz o)
+ o oswp (HPckf(e’W! spr + 27 Pe, eyl
W<k £<0

k+20<k 40/ <k+£

+ 27 R Pyl B + 27 ST QF Pyl )
+

Here, the NE and PW T (¢) are the null frame spaces [32), 25], defined by

_ ! /
||U||ij(z) = 1}1fw /w <2t [|u” ||L2M,Lz>jiw,)L dw’,
Jullve =sup | Wt 2,

where the L7 norm is with respect to the variable tZ = ¢+ w -z, the L” | norm is defined on
each {tX = const}, and ¥,, denotes the tangential derivatives to {tX = const}.

In the last two lines of the definition of S{(¢), the restrictions &' < k, ¢/ < 0 and k' + ¢’ <
k + ¢ ensure that rectangular boxes of the form Cp/(¢') fit in the frequency support of Py’
The restriction k+2¢ < k' + /¢ is imposed by the main parametrix estimate (see Section m
or [10, Section 11]), to ensure square-summability in Cy (¢').

The null frame spaces in S{(¢) allow one to exploit transversality in frequency space, and
play an important role in the proof of the trilinear null form estimate; see [10, Eqs. (136)—
(138)] and Proposition below. On the other hand, the L*L*-norm for P, yu allows
us to gain the dimensions of Cy/ (¢').

Remark 4.1. For the reader who is familiar with the function space framework in [10], we

point out that our SY(¢) is slightly stronger compared to that in [I0]. More precisely,
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instead of 2737273 || P, (pryul| r2 1 as in our definition, it is 275 ~2%|| Pe,, oryul 2z in [10].
However, we note that the extra factor 2727 is actually present in the main parametrix
estimate in [10, Subsection 11.3].

Remark 4.2. The square function norm S;? is new here in the structure of the S norm. It
plays no role in the study of the solutions for the hyperbolic Yang—Mills equation in the
caloric gauge, i.e. in Theorems and [1.16] Instead, it is only needed in order to justify
the transition to the temporal gauge in Theorem [1.18

This norm scales like L>L?2. Moreover, it obeys the embeddings

1
0,5

1
PX? C S, Sk C X7,

Indeed, the latter embedding is trivial. The former embedding has essentially been proved
in [32, 25] ; we sketch its proof as follows. It suffices to show that any u = P,Q;u satisfies

ulls, < 27 ||ullr2z2. We claim that

~

~Y

| P ulls, <S 2%HPZJUHL2L2 for £ = 255 + O(1) and 2‘-separated w’s on S*.
1
Recalling that Sy = Si" N X322 N Sp N SR, the desired conclusion would follow from the
claim after square-summing in w.
Note that PyP.Q; with the above value of ¢ is multiplication on the Fourier side by a

bump function adapted to a parallelepiped of dimensions 27 x 2% x (2¥+¢)3 where the 2/-
and 2*-sides lie along the 7- and the radial (in &) directions, respectively. The claim is

1
straightforward for S N X22 N Sy? by appropriate versions of Bernstein’s inequality. For
Sp™ | by orthogonality, we need to show that

| Py Pe,, eryul

Sztr + 2_k||PfPCk,(g/)U||NE

sl g W _3 (k0 w z w
+ 27Kk P P oyl o + 272N B Py yull prg ) S 221 P8 Py eyl 22

for each Cy(¢') arising in S{(¢). We remark that the parts of S;" that do not involve Cy (¢')
are handled in a similar but simpler manner. The S§", NE and L*L* norms are handled
via Bernstein’s inequality as before, where we note that Fe,, () Pr@Q; is multiplication on the
Fourier side by a bump function adapted to a parallelepiped of dimensions 27 x 28 x (2¥+¢)3
with the same orientation as before. For the PWF(¢) norm, we decompose Q= Py P, (yu =
S u™ dw' with

ut = (27?)_5/ emt/ F(PyPe,,yu)(A+a, A )erE= 2\ X da.
la|=0(29) 0

Indeed, this decomposition is nothing but the Fourier inversion formula written in polar

coordinates. Note that, thanks to the projections Py’ and Fe,,(¢), u*’ is zero for W' outside
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either {w’ : |’ — w| < 2'} or an angular sector of radius O(2¥+“~*). Therefore, by Cauchy—
Schwarz and the Fourier inversion formula (in A and in 7, ), we have

1Py Fey (eyull pw o)

S/H/ ei“t/ F (P Pe,,nu)(A +a, A )eME DN ddal| e dw'
la|=0(27 0 Fool ¥ () L

S 2503 | / F (P Peyeyw) (A + a, Ao )TN AN 2 -0)dadr

S 22 (kurg/ 2 H.F(Pwpck,(g/ )()\ + a, )\w )HLQ (A3drdadw') = 2%(k/+el)2%HPEMPCIC/(ZI)U”LZLZ’
as desired.
For k, k' € Z satistying k' < k and ¢ < —5, we define

_5 Y
ullZic, ey =2 3* lullF2pe + 2727 727 |ul| 2

+ s ([Qeulfiere + 27 Qesulks
Jili—(k'+2¢")|<5

273+ ZZHPW B —}

where the w-summation runs over the 0(2%)—separated subset of S* associated with the
projections PY .. We note that Si[Ci/(¢)] depends only on the parameters k, &', ¢ (in partic-
2

ular, no particular choice of a rectangular box is involved), and the notation Cy (¢') is meant
to suggest that it will be measured for Peu with C a rectangular box of the form Cy/ (¢'). The
virtue of this norm is that it is square-summable in boxes of the form Cy (¢'):

Lemma 4.3. For any k, k', ¢’ such that ¥’ <k and ¢’ <0, we have

> IPeulleuen S llullf, (4.1)
cefcu ()

Proof. The desired square-summability estimate for the L>°L?, NE and PW.F components
follow immediately from the definition of S;"? O Sj. For the L?*L® and L?L* components,
we split
U= Qcproot + Qspriont.
For the former we use S;"?, and for the latter we simply note that, by Bernstein,
_5 W lha_Lp
F|Qspryoe Pe eyl zrs + 275722728 | Qs prpor Pe ey ull 12 < HPC,C/(K’)UHX&%a

which is clearly square-summable. [l

Sharp solution norm S*. We define
lullgs =27 (I Vuull g2 + [ Bullw),
lull st =llullzere + [[(De F |Dull vy

both of which scale like L*L?. These norms are used in the parametrix construction in

Section
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Remark 4.4. Again for the reader familiar with [10], we note that our definition of S? differs
from that in [I0] by a factor of 2 (in [10], S! scales like L H").

Scattering (or controlling) norm S!. Given any o € R, we define S° = (257 i.e.,

lullze =D NIPeullyy,  lullsg =27 (HVuHs + IIDUHLQH%) : (4.2)
k

This norm scales like L H?. The norm S* will be the main scattering (or controlling) norm,
in the sense that finiteness of this norm for a caloric Yang—Mills wave would imply finer
properties of the solution itself and those nearby (see Theorem below).

Xo¥P-type norms. To close the estimates for caloric Yang-Mills waves, we need norms
which give additional Contro]ﬁ off the characteristic cone (i.e., “high” modulation regime).
We use an LPLP generalization of the usual L2L?*-based X?’-norm, defined as follows: For
o,beR, 1 <p,r<oo,let

1
I\T T
Hu||(Xg,b,p),€—2”'f(Z(2bﬂ > IAQ;P: kuuw)?)) , (4.3)
p

where p' = ] is the dual Lebesgue exponent of p. The cases p = oo or r = 0o are defined

in the obvious manner. We also define the dyadic norm (Xi’ )k by replacing @; by jS in
the above definition.
When p = 2, by orthogonality we have

1

k; b y T T
[ (Z (2| PeQjull 212 ) .
J
Analogous identities hold for Xib ?. To be consistent with the usual notation, we will often
omit the exponents p and r when they are equal to 2, i.e., X9 = X702 X = X;“,
X720 = X720 and X7* = X757
Before we introduce the specific norms we use, for logical clarity, we first fix the parameters

that will be used. We introduce by, by and py, Wthh are smaller than but close to 3 T % and
00, respectively. More precisely, we fix

1 1 1
bO 4 50 ) bl 2 050 ) o 560 )
so that
1 1 1 1 1
0< - —b —. 2(==b 1—— < — 4.4
<7 <5 <4 o)< TS (4.4)
1 1 1
- <b<=-—=(1-——]. 4.5
4 ' 2 ( po) ( )

4In particular, with ¢*-summability in dyadic frequencies.
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We define
||f||E|Z,i :HQ<k+Cf||X1—%—bO,—%+bO,17

lullzy =1Bulloz; = 1@<krcul gt 14n1

Note that the Z}-norm scales like L>®H'. As in [I0, I1], this norm is used as an aux-
iliary device to control the bulk of nonlinearities (i.e., the part where the secondary null
structure is not necessary) when re-iterating the Yang-Mills equations; see the proofs of

Propositions [£.23H4.29] in Section [§

Remark 4.5. The Z'-norm used in [I0] corresponds to the case by = 0. Therefore, our
Z'-norm is weaker than the Z'-norm in [10]. This modification is made to handle the
contribution of O7'P[A%, §,A] in the re-iteration procedure; see Proposition [4.22]

Next, we also define

||fH DZ1 = ||Q<k+Cf|| % pi +(+-b0)00,— L — (L —b0)00.10
where 6y = 2(1}0 — ), as well as the intermediate norm

HfH(I:lzl - HQ<k+CfH gfpi 1 -60)00,— % —(§—b0)0p0 *
1

These norms scale like L' L?. Clearly, (OZ) )r € (DZ;O) - Given any caloric Yang-Mills wave

A with a finite S*-norm, we will put JP A in EIDZ;O and OPA € ('00Z) ; see Proposition .
Note that the following embeddings hold:

P.Q;L'L? C27U-MOz), (4.6)
_1 .
X 2 n0ZE C(OZL), € (OZ)s. (4.7)
Estimate (4.6) follows from Bernstein, whereas the first embedding in (4.7) follows by a
simple interpolation argument. We omit the straightforward proofs.
Finally, as in [11], we also need to use the function space

1 7l+b1,7b1
X3 ,

which also scales like L'L?. Given any caloric Yang—Mills wave A with a finite S*-norm,
we will be able to place OPA in *X ~3 01,01 This bound, in turn, is used crucially in the
parametrix construction.

High modulation norms X' and X! for 1-forms. In our analysis below, we need
to use different high modulation norms for the Leray projection PA than for the general
components of a caloric Yang—Mills wave. Hence it is convenient to define norms for 1-forms
with this distinction built in.

Let A and G be spatial 1-forms on R'**. We define

1Glloxy = G2 -3 + G g -8 + IPCllozy),-

L2H~
For any o € R, we define

IGloxs =2 Y¥Gllaxy,  [|Allxy = IDAlloxg.
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Similarly, we define

1Gllogy = NGl 2p-3 TG g -8 + IPGllaz ),

L

as well as [IX 7 and X 7. Given any caloric Yang—Mills wave A with a finite S'-norm, we

will place A successively in ('O0X' and A € ('0X"; see Proposition [5.4]
We have the embeddings

P(L'L2 N L2H~2) C (OXY), € (OXY),.
Since L'L? C N, it follows that

Gl vrox: S 1G] (4.8)

. 1.
LL2NL2H™ 2

Strengthened solution norm S'. Putting together S' and X', for a 1-form A on R!'*,
we define

[Allsg = [[Allse + [[DA[loxg -
Core elliptic norm Y. We return to functions u on R!**. We define

L2H§ ; + “ HLPOW p30 o’
where py was fixed in (4.4) above. This norm scales like L>L2.

Main elliptic norm Y!. For o € R, we define

ol = 32 WPl lullve =27 (Ifull, + 270l 1) -

lellvi, = [l

This norm scales like L H°. We will put the elliptic components Ay and P-4 = A~19,0° 4,
of a caloric Yang-Mills wave in Y.

4.1.3. Interval localization and extension. So far, the function spaces have been defined over
the whole space-time R'**. In our analysis, we also need to consider localization of these
spaces on finite time intervals. We use the same set-up as [17, [11].

For most of our function spaces (with the important exceptions of Z;o’ Z;O, X! and X; see
below), we take a simple route and define the interval-localized counterparts by restriction.
In particular, given a time interval I C R, we define

fullses =, gnf  Nilse. olsin = jnf s, fllvin = _int 1w, (49)

An important technical question then is that of finding a common extension procedure
outside I which preserve these norms. The following proposition provides an answer.

Proposition 4.6. Let I be a time interval.
(1) Let x; be the characteristic function of I. Then we have the bounds

Ixrulls Sllulls, e flly S 1 - (4.10)

For a fized function f on R, the norms ||xrf||n and || f||ni are also continuous as
a function of the endpoints of I. We also have the linear estimates

IVullspy SIVu(0)lz2 + 1Bull i, (4.11)

lullstn SIVuO)zz +118ull o -3y (4.12)
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(2) Consider any partition I = Ugly. Then the N and L2H~: are interval square divisible,

1.€.,
2
5o S W BRa S0y S W i (4.13)
and the S and S* are interval square summable, i.e.,
el S Meldmgs  NullZan S lelg,- (4.14)
k k

For a proof, we refer to [I7, Proposition 3.3].

Remark 4.7. As a consequence of part (1), up to equivalent norms, we can replace the
arbitrary extension in (4.9) by the zero extension in the case of S and N, and by the
homogeneous waves with (¢, 9;¢) at each endpoint as data outside I in the case of S?.

The elliptic norms Y and Y! only involve spatial multipliers and norms of the form LPL4,
so their interval-localization Y[I] and Y'[I] are obviously defined (either by restriction, or
using the LPL4[I]-norm; both are equivalent). In particular, in the case of Y, observe that

lullvin = lIxrully < flully,

so the zero extension can be used.
On the other hand, given a function u on I, we directly define the ||u||(Z;O)k[I] [resp.

ext

lull(z,, 1] to be [ ||z, )e1n) [resp- ||uext\|(2p0)}ﬂm, where u** is the extension of u outside

I by homogeneous waves. Equivalently, for (JZ} ), and (OZ )k, we define

@z = IXifll@ziye: 1oz = Ixifllaz,)
Accordingly, we define

1Glloxin = G +IGI g + IXxPGllazy)e 1Alxmn = 10Alox i,

L2H31] L3E-3(1

and similarly for OX'[I] and X'[1].

The advantage of this definition is clear: We may thus use a common extension procedure
(namely, by homogeneous waves) for S' and X'. The price we pay is that in estimating the
DZ;O— and the DZ;,O—norms, we need to carefully absorb the sharp time cutoff x;.

4.1.4. Sources of smallness: Divisibility, energy dispersion and short time interval. In this
work, we rely on several sources of smallness for analysis of caloric Yang—Mills waves.

One important source of smallness is divisibility, which refers to the property of a norm
on an interval that it can be made arbitrarily small by splitting the interval into a controlled
number of pieces. Unfortunately, our main function space S*[I] is far from satisfying such
a property (see, however, Theorem [5.1} (6) below), which causes considerable difficulty. Our
workaround, as in [17], is to utilize a weaker yet divisible norm

lullpsin = 10178 Vallpzrom + [ Vellsyorn + Dl (4.15)

L2H-

Another important source of smallness is energy dispersion:
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Definition 4.8. Given any m € Z, we define the energy dispersion below scale 2™ (or above
frequency 2™) of u of order 0 and 1 to be, respectively,

[l 10 2= $0p 27540274 P e, (4.10
€
and
lullzpy, i = sup 9702(M=k)+ 9287 Pou| oo oo 1)- (4.17)
The quantity || - [|£p,,,i1) (vesp. ||+ |epy (7)) is used at the level of the curvature F' (resp.

the connection A). As we work mostly at the level of the connection, unless stated otherwise,
by energy dispersion we usually refer to the order 1 case.

Clearly, EDY, [I] fails to be useful at frequencies below O(2™). In this regime, we exploit
instead the length |I | of the time interval as a source of smallness. Due to the scaling
property of [J, we must require 2" || to be sufficiently small. To conveniently pack together
the previous two concepts, we introduce the notion of an (e, M)-energy dispersed function
on an interval.

Definition 4.9 ((¢, M )-energy dispersed function on an interval). Let I be a time interval,
and let u € S'[I]. For ¢ > 0 and M > 0, we will say that the pair (u,I) is (¢, M)-energy
dispersed if there exists some m € Z such that the following properties hold:

e (S'-norm bound)

[ullsin < M; (4.18)

e (small energy dispersion)
lullepy, (i < eM; (4.19)

e (high modulation bound)
Dl -1y < <M (4.20)

e (short time interval) |I| < e27™.
Observe (by interpolation) that if (u, I) is (¢, M)-energy dispersed, then
sup || Peul|ser g < Ce™ M. (4.21)
k

Finally, we state a proposition showing how the norms DS'[I] and EDY  [I] behave under
the extension procedure described above. Given an interval I, we denote by x4 a generalized
cutoff function adapted to the scale 27

i(t) = (14 2kdist(¢, 1))V, (4.22)
where N is a sufficiently large number. Let us recall [I7, Proposition 3.4]ﬁ
Proposition 4.10. Let k € Z, k > 0 and I be a time interval such that |I| > 27F7*.

Consider a function ur on I localized at frequency 2%, and denote by uS** its extension
outside I as homogeneous waves. Then we have

1_1_4
)

2_k||X];VU?zt||Lqu SN QCK <||UI||L‘1LT[I} + 2(5_3_7 |DUI||L2L2[I}> , (423)

27%HXIICVU?M||L°°L°° SN 27%HVU1||L00L00[I], (4.24)

°To be pedantic, [I7, Proposition 3.4] only corresponds to the case k = 0. However, the required modifi-
cation of the proof is straightforward.
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where (q,r) is any pair of admissible Strichartz exponents on R4,

Remark 4.11. Since 27%[x* V] = 27%(Vx¥) is simply multiplication by another generalized
cutoff function adapted to the frequency scale 2%, the conclusions of Proposition also
hold with x*27%Vu$* replaced by 275V (x*u$*") on the LHSs.

4.2. Estimates for quadratic nonlinearities. Here we state estimates for the quadratic
nonlinearities in Theorems and [3.6] All estimates stated here are proved in Section [8.3]

Throughout this and the next subsections, we will denote by A a g-valued spatial 1-form
A = A;jdr? on I x R* for some time interval I. To denote a g-valued space-time 1-form,
we use the notation A;, = A, dz*. We will use B [resp. Bi,| to denoteﬁ another g-valued
spatial [resp. space-time| 1-form on I x R*. Unless otherwise stated, all frequency envelopes
will be assumed to be d;-admissible.

We begin with the quadratic nonlinearities in the equations for Ay, 9,4 and 9‘A,. We
introduce the notation

MG (A, B) = [A, 0,B'], (4.25)
DM;(A, B) = — 2Q(0;A, 0, B). (4.26)

These are the main quadratic nonlinearities in the AAy and Ad; Ay equations, respectively.
The estimates that we need for these nonlinearities are as follows.

Proposition 4.12. We have the fixed-time bounds

DI ME(A, B) ()2, S 1AW 1 [10:B()]] 2. (4.27)
I DI7*DMG(A, B) ()22, S N0:A®) 22 [|0:B(#)]] 2 (4.28)
and the space-time bounds
DI MG(A, B)lly.uny S I Allsen 1Bl sy (4.29)
IDPMAA B+ IDPMEAB S IAlsongn 1Bl (430

Moreover, for any k > 0, the nonlinearity MZ(A, B) admits the splitting
MG(A, B) = My (A B) + Mg, (A, B)

0,small 0,large

where the small part obeys the improved bound

D17 M2 (A B)llveain S 272 I All s | Bllsy (4.31)

0,small

and the large part is bounded by divisible norms of A and B:
D1 Mg arge (A Bllvoatn) S 29" All psain | Bl sy - (4.32)

0,large

Finally, if either
|Allsin <1 and (B, 1) is (¢, M)-energy dispersed, or
|Bllsin <1 and (A, 1) is (e, M)-energy dispersed,
SNote that this convention is different from [18] and Section [3] where B was reserved for caloric gauge

linearized Yang—Mills heat flows.
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then we have
|||D|_1M8(A’ B)”YC[I] § 652M7 (433)
||D|*DM3(A, B) < e”2M. (4.34)

||L2H%
& 1]

The remaining quadratic nonlinearities in the equations for A, and 9*A, involve Q, and
they obey simpler estimates.

Proposition 4.13. For o =0 or 1, we have the fized-time bound

D177 Q(A, ) B) ()l 2, S N A®) | g2 107 B 1o (4.35)
and the space-time bounds
101 QAT 1, S Al |Blswyn.— (436)

IIDI77Q(A, 07 B)lly,uim + I1D1™" 7 Q(A, 87 B) | regin S 1Allpsan 1 Bllpsyn- (4.37)
Finally, if either
|Allsin <1 and (B, 1) is (¢, M)-energy dispersed, or
|Bllsin <1 and (A, 1) is (e, M)-energy dispersed,
then

11D Q(A, 7 B) | S ™M, (4.38)

Also for the quadratic part AZ of Ay, given by
AZ(AA) = AT([A, 0,A] + 2Q(A, 8, A)
we have the following additional property, which will be used in the proof of Theorem [T1.18}
Proposition 4.14. For the quadratic form A2 we have
IIDEAZ(A, B2 1ayain S IV Allszo [V Bl (4.39)
For the quadratic nonlinearity in the [J4A; equation, we introduce the notation
P,M?*(A, B) = P,[Ay, 0, BY],
P M?(A, B) = 2A710;Q(9"A, 9, 4),
so that becomes
OuA; =P, M(AA) + PjM(A, A)+ R;(A, 0A).
Proposition 4.15. We have the fized time bounds

IPM (A, B)Y )l g < A 1B 3. (4.40)
[P M (A, B) () =2 S IVA@) 221 VB ()] 13- (4.41)
and space-time bounds
IPM*(A, B) | vooxtyain S AlsynllBllsyims (4.42)
||PLM2(A> B)H(Nmmgl)cd[l] S 1A S;[1]||B||S}l[1]~ (4.43)
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In particular, the L2H~2-norms are bounded by the Str'-norms of A and B:
2
IPAA B, 30 S Il 1Bl (4.44)

[P M?(A, B)| S I Allsee il Bllsesn- (4.45)

L2Hj 1
Moreover, for any k > 0, the terms P;M?*(A, B) and P-L./\/IQ(A7 B) admit the splittings
PjM2<A7 ) Msmall(A B) + P; Mlarge<A7 B)?
Pj_M2<A7 B) PJ_Msmall( ) PJ_Mlarge (A7 B)?
so that the N-norm of the small parts obey the improved bounds
PME 0 (A B[ vegin) S 27 1l Bllsyin, (4.46)
P M (A, B) i S 1l Bllsyin, (4.47)

and that of the large parts are bounded by divisible norms of A and B:
IPAME2, (A, Bl S 2 [ Allosyin | Bllpsyn (1.43)
[PEME (A, Bl S 27 I Allpszin| Bll pssin: (4.49)
Finally, if either

[Allgiy <1 and (B, 1) is (¢, M)-energy dispersed, or
|Bllsrp <1 and (A1) is (e, M)-energy dispersed,

then
|IPM?(A, B
Pt M?(A, B

<&M, (4.50)
< e2M. (4.51)

)H(NmL2H*§) [~
)H(NmL?H*if) [ ~

We end this subsection with bilinear estimates for wg and w2, which arise in the equation
for a dynamic Yang—Mills heat flow of a caloric Yang—Mills wave.

Proposition 4.16. For any s > 0, we have the fized-time bound
I1D]™ Pewg (A, B, s)(8) ]| r2 S (2%) 71272 s7h) "2y | 9, A()

By, (452
and the space-time bounds
DI Bewi (A, B sl oyt S (2%58) 71027 ™) 2 0di| Allsun 1 Bllseys— (4.53)
L2HZ (1) ~ d
I1D]™ Pewi (A, B, s)llvin < (2%5) 7102727 "2y || Allspn | Bll sy - (4.54)
Moreover, if (B, 1) is (e, M)-enerqy dispersed, then
IIDI™ Pewi (A, B, s)lyn S €2 (2%s) 71027 s 1) ™02 ¢y | Al 2 M- (4.55)
Proposition 4.17. For any s > 0, we have the fized-time bound

1PPW(A, B, s) ()]l 51 S (2%s) 71027 s ™) "2 ardil [ VA 2 I VBBl 3. (4.56)
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and the space-time bounds

|PPw3(A, B, s)|

L2H_§ [] (4 57)
< (24) 72T R adi (VA VP A o,y g 1 Bllsugin
| PePwW2(A, B, s)|| noox' (4.58)
S (2%) 71027 T T2 e[| (A, PHA) (s evan | Bll sy
Moreover, if (B, 1) is (e, M)-energy dispersed, then
P Pw; (A, B, S)”Nmmf‘r%m (4.59)
S @) 2T e | Allsyn + IIVPHANL, M |

4.3. Estimates for the covariant wave operator. We now state estimates concerning
the covariant wave operator [J4. All estimates stated here without proofs are proved in
Section [8.3] with the exceptions of Theorem and Proposition which are proved in
Section [9

We begin by expanding (14 B to

OaB =0B + 2[A,,0%B| + [0 A, B] + [A%, [A,, B]].
We have the following simple fixed-time estimates for L1, — L.

Proposition 4.18. For any o, 8,7 € {0,1,...,4}, we have the fized-time bounds

I[Aa, *BI(#) ]| 71 < 1| (Ao, A)(E) Q1) (4.60)
10 A, BI(t) ]l 7 < (IA(®) Aol )1 BE)]| 1. (4.61)
AL, [A®, Bl )]l 5 S 1A, AD) @) 1A, A2 O B (4.62)
and the space-time bounds
¢
46 0B,y 3, S 1Al 1Bl (4.6
140, 0Bl 5 S 1940l 3 1 Bl (4.64)
10°40, Bl 3, S VA TREA Ly 1Bl (4.65)
cd c
D, LA BN,y < ITAS, VADYOl s goorn

L2 Hcde [

x (VA VA®) (1) | Bllstrtin- (4.66)

HL?H% xStrd[I] |
In order to proceed, we recall the notation P,A = (PA), for a space-time 1-form A;,:

_JPA, a=j€e{l,... 4},
PQA o { AO a = 0.
We also write PLA = (P+A), = A, — P,A.
Given a parameter k € N, we furthermore decompose 2[A,, 0% B] so that

OuB = OB + 2[A,, 9*B] + Rem® B

= 0B + Diff§ , B + Diffy. , B + Rem’y” B + Rem? B,
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wherd]

Diffp 4y =Y 2[Pet_xPoA, 0" P, B], (4.68)
k

Diffg. , =Y 2[PePrA,0°PB], (4.69)
k

Rem’;? _22 [Psy_nAq, 0°P,B], (4.70)

Rem®, B :[8“Aa, B| + [A%, [A., B]]. (4.71)

We now turn to the bounds for each part of the decomposition (4.67)). For a fixed B € S*[[],
we introduce the nonlinear maps

Rem®(A)B = — [DAy(A), B] + [DA(A), B]
— [Ao(4), [Ao(A), B]] + [A", [A, B]],
Rem?(A)B = —[DAg,(A), B] - [Ags(A), [Aes(A), B]), (4.73)

(4.72)

defined for spatial connections A on I such that (A, d,A)(t) € T*C for each fixed time t € I.
In view of Theorems [3.5 and [3.6] for a caloric Yang-Mills wave A we have

Rem? B =Rem*(A)B,
RemA B =Rem?®(A(s))B + Rem?(A)B.
The nonlinear maps Rem*(A)B and Rem?(A)B are well-behaved:

Proposition 4.19. Suppose that A(t) € Cq for every t € I. Then the following properties
hold with bounds depending on Q, but otherwise independent of I:

e Let c and d be (—8y, S)-frequency envelopes for A and B in Str'[I], respectively. Then

[
| Px(Rem?(A)B) Selalgny ()2 + el dy (4.74)

||L1L2mL2H 2(1]

e For a fized A € Str'[I], Rem® ( )B is linear in B. On the other hand, for a fived B with
IBlsiiy < 1, Rem?(-)B : Str'[I] — L'L? N L2H~2[1] is Lipschitz envelope-preserving.

e For a firted A € Str'[I], Rem?(A)B is linear in B. On the other hand, for a fived
B e SI with || Bllgyn < 1, Rem?(A)B is a Lipschitz map

Rem?(A)B : Str'[l] — L'L* N L2H 2[]] (4.75)

1

with output concentrated at frequency s~ 2,
(1= sA)NRem?(A)B : Str'[]] — 272K LIH %2 0 [2H2-%[]]. (4.76)

Next, we consider the term 2[A,,d*B] = Diffg,B + Diffi,, ,B + Rem;*B. We begin
with Rem’y” B, which obeys analogous bounds as PM?(A, B) and PM?(A, B) (cf. Propo-

sition [4.15]).

"Although the definition depends on the whole space-time connection A o, we deviate from our conven-

tion and simply write Diff 4, Diff55. 4, Rem’y” etc. to avoid cluttered notation.
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Proposition 4.20. For any x > 0, the term Rem'y B obeys the bound
IRem’s? Bl (nroxtyam S 2% (I|Alsyn + [(PA, Ao)llvan) 1B s1111- (4.77)
In particular, its L2H~2-norm is bounded by:

|Remy* B < (IAllsuarn + 1OVP=A VA oy ) Bllswgn: (478)

L?H, 2[1
Furthermore, Rem'y ’B admits the splitting
Rem'XQB = Remi’imauB + Remflar B
so that the N-norm of the small part obeys the improved bound
Rem’y o Blln.ain S 27 Allsain | Bll s, (4.79)
and that of the large part is bounded by a divisible norm of (Ao, A):
IRem, e Bllvin < 27 (I Allpsin + (VP4 VA0 oy V1Bl (480)
Finally, if (B,I) is (e, M )-energy dispersed, then
[Rem’y”B| < (27 + 297 | Al gy M
+ 2% |(VP+A, VA M.

(L2H3),[1]

(NNL2H™%),][I]

(4.81)

It remains to consider the paradifferential terms. The term Diffy, ;B can be handled
using the following estimate, in combination with (3.22) and Proposition [1.12}

Proposition 4.21. For any xk > 0, we have

IDiffp. , Bl S IPHAllvanl Bllsyn- (4.82)

1
(X_j-H)l’_blmD&l)cd[I]

Moreover, we have
IDifEp 4Bl 210 < 1P~ Alls a1 Bllsy (4.83)

where fi = (Yo o) x-

The only remaining term is the paradifferential term Diff ,B. We first state the high
modulation bounds.

Proposition 4.22. For any x > 0, consider the splitting Diffp , = Dift}y + Diffg_,, where
Diffy B = =Y 2[Pej_nAo,0,P:B],  Diffy 4B => 2[Pey_,PA0'P.B.
k k

For Diff 4, B, we have the bound

DI Bl 00 gy S NAollvainll Bllsgin: (4.84)

On the other hand, for Diffp_4B, we have the bounds
IDiffp 4 Bll(ox1y,u SIAlsin 1 Bllsyn (4.85)
IDiffp, 4 Bllox 1o SIA N s1050). 01 Bllsym (4.86)

IDifEp, 4Bl 3010,y SHAz 510001 Bllsiin- (4.87)
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Next, we consider the N N L2H 3 norm of Diffp4B. The contribution of each Littlewood-
Paley projection Py, ,PA is perturbative, as the following proposition states:

Proposition 4.23. Let A,, be a caloric Yang-Mills wave on an interval I obeying
|Alls1n < M. (4.88)
Then for any k > 0 and ko € Z, we have

IDiffp, pABl| | Su [ Bllsyn- (4.89)

. 1
(NNL2H ™3 )4[I

However, we cannot sum up in ky. The proper way to handle Diffg 4 is not to regard it as
a perturbative nonlinearity, but rather as a part of the underlying linear operator. Indeed,
for the operator U + Diffg 4, we have the following well-posedness result:

Theorem 4.24. Let A, be a caloric Yang-Mills wave on an interval I obeying (4.88]).
Consider the following initial value problem on I x R*:
{DB + Diff%, , B =G,
(B, 9:B)(to) =(Bo, B1),
for some g-valued spatial 1-form G € NN L2H =[], (By, B;) € H* x L* and t, € I.
Then for k > k1 (M), where k1 (M) > 1 is some function independent of Ay ., there exists

a unique solution B € S| to (4.90). Moreover, for any admissible frequency envelope c,
the solution obeys the bound

1Bllsar Sar ll(Bos Bl xey, + 1G],

(4.90)

(4.91)

. 1 .
NNL2H™2)[I]

As a quick corollary of Propositions 4.19H4.20| and Theorem 4.24] we obtain well-posedness
of the initial value problem associated to [ls; see Theorem [5.1](1) below.

Theorem [4.24] is proved in Sections [9] [10] and The main ingredient for the proof is
construction of a parametrix for 0 4 Diffp 4 by renormalization with a pseudodifferential
gauge transformation; for a more detailed discussion, see Section [J]

The paradifferential wave equation leads to the following weak divisibility property
of the S norm, which will later play an important role in the energy induction argument.

Proposition 4.25. Let A; , be a caloric Yang—Mills wave on an interval I which obeys (4.88
for some M > 0. Let B € SI] be a solution to the paradifferential wave equation (4.90

with the source G € N N L2H~2[I], which obeys the bound

sup (B, 9,B) (1) 2 < (4.92)
for some E > 0. Then there exists a partition I = U;czl; such that
|Bls1p,) Sk 1 foriel (4.93)
where
#I 5E,M,||B||Slm,||G’||NOL2H7%m 1.

The proof of this proposition also involves the parametrix construction (cf. Sections |§|,
and [L1]), as well as Proposition [4.23
We now state additional estimates satisfied by Diffp 4, which are needed to analyze the

difference of two solutions (or even approximate solutions). For this purpose, it is necessary
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to exploit the so-called secondary null structure of the Yang—Mills equation, which becomes
available after reiterating the equations for P A.

We begin with simple bilinear estimates, which allows us to peel off the non-essential parts
(in particular, the contribution of the cubic and higher order nonlinearities) of Ay and P A.

Proposition 4.26. We have
[Dift5, Bl
IDiff5, B

(4.94)
S (4.95)

NAL2H~2) (1] SHAOH(LlengH%)a[I]HBHS;[I]a
o SUP ARz, + IOPAlLs )| B

fk::< Z ak/>ek.

k'<k—kr

Sl
NNL2H™ 2)¢

where

The contribution of the quadratic nonlinearities M3 and M? in the equations for A,
and A,, respectively, cannot be treated separately. This is precisely where we exploit the
secondary null structure, which only manifests itself after combining the contribution of these
nonlinearities in Diffp 4.

Proposition 4.27. Let

A4, =[BY* 9,B), (4.96)
OPA=P[BY 9,B”),  PA[ty] =0. (4.97)

where BY, B® € SYI|. Then we have
HDiH?’ABH(NmLsz%)f[I] Sir 1BV syl B Nlsyn | Bllsa (4.98)

where

Ir =< Z Ck’dk’>6k-

k'<k—k

Next, we turn to the contribution of terms of the form [A,, 9*A] in the equation for P, A.
The frequency envelope bound for this term is slightly involved, because it does not obey a
good N-norm estimate.

Proposition 4.28. Let Ay =0 and

N
OPA; = Z P[Bg(l)’ aaBJr}@)L PA[ty] =0, (4.99)

n=1

where N
IB" g1, 1 + 1(Bg ™, PEB" D) lya iy <1, [1B"@ gy, < 1. (4.100)

Assume furthermore that
PAl[syn <1, 1B

sip < 1 (4.101)
Then we have

D5, 1B (4.102)

<
NmL?H*%)f[I] SRS
where

h=( X ((Zk/—i-icz/dn/))ek.

k'<k—k
37



Next, we state a trilinear estimate for Diff , in the presence of wa, which is analogous to
Proposition This is needed for analyzing the dynamic Yang—Mills heat flow of a caloric
Yang—Mills wave.

Proposition 4.29. Let
AAy =w3(BWY, B ), (4.103)
OPA =Pw?(BY B@,s), PA[t] =0, (4.104)
where BY € SYI], PABW € Y1[I] and B® € S'[I]. Then we have

IR ABH a3, St B s + IPABY hai) 1B syon | Bllsan— (4.105)

where

fk _ ( Z <822k,>_10<S_12_2k/>_526k/dk/>6k.

k' <k—kr

Finally, we end this subsection with auxiliary estimates for Diffg 4, which are needed to
justify approximate linear energy conservation for the paradifferential wave equation.

Proposition 4.30. Let kK > 10. We have
DIV, Diffp ] Bll . S 27" (| PA,

cd ~v

sin T 11D Aol , 1 JlIBllsyin- (4.106)

L2HZ (1]
Moreover, consider the L*-adjoint of Diffy 4, which is given by

(Difff4)"B = > Pd*[PoAcy_p, Bl.
k

Then we have

|(Dift)° B = DiftpaBllxcin S 2~ (IPAullsyn + DAl 1y DllBllsy (4207

5. STRUCTURE OF CALORIC YANG—MILLS WAVES

In this section, we use the results stated in Section {4| to study properties of subthreshold
caloric Yang-Mills waves satisfying an a-priori S'-norm bound on an interval.

5.1. Structure of a caloric Yang—Mills wave with finite S'-norm. The following
theorem provides detailed properties of a caloric Yang-Mills wave with finite S'-norm. It
will be useful for the proof of the key regularity result (Theorem , as well as the main
results stated in Section [I.3

For a regular solution to the Yang—Mills equation in the caloric gauge, we have seen in
Theorem [3.5| that (3.12)), (3.13), (3.14) and are satisfied. More generally, we say that
a one-parameter family A(t) (¢ € I) of connections in C (which is quite rough in general)
solves the Yang—Mills equation in the caloric gauge, or in short that A is a caloric Yang—Mills

wave, if (A,9,A) € L>(I; T¥°C) and satisfies [3.12), (3.13), (3.14) and (3.15)).

Theorem 5.1. Let A be a caloric Yang—Mills wave on a time interval I with energy £
obeying
A(tyeCq forallt e,
[Allsin < M
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for some 0 < Q, M < oco. Let ¢ be a d5-frequency envelope for the initial data (A, d,A)(to)
(to € I) in H' x L?. Then the following properties hold:

(1) (Linear well-posedness for (4 ) The initial value problem for the linear equation

Oau = f (5.3)
18 well-posed. Moreover,
||U||s;[1] S0 ||(U>3tu)(t0)||(H1xL2)d + HfH(NmmH*%)d[I] (5.4)
for any 05-frequency envelope d.
(2) (Frequency envelope bound)
HA Sg[ﬂ + HDAAH(NOLQH*%)@U] §M7Q 1 (55)
(3) (Elliptic component bounds)
[Aolly,n + ||PLA||Y612[I] Smel, (5.6)
(4) (High modulation bounds)
0ot 0 + DA ooy, Saso 1 1)
(5) (Paradifferential formulation) For any x > 10,
HDA + Diﬂl;’AAH(NmIgH*%)CQ[I] SM,Q 201‘6' (58)

(6) (Weak divisibility) There exists a partition I = U;ezl; so that #Z Spyo 1 and
[Allsry Se 1. (5.9)

(7) (Persistence of reqularity) If (A, 9,A)(to) € HN x HN=' (N > 1), then A € SN N S'[I]
and Ag € YN NY[I]. Moreover,

[ Allsxasip + 1 Aolly~ayin Saan [1(A, OLA) o)l v s grv—1yngi xpey- (5.10)

For the subsequent properties, let A be another caloric Yang—-Mills wave on I obeying the

same conditions (5.1]) and (5.2).

(8) (Weak Lipschitz dependence on data) For o < 1 sufficiently close to 1, we have

|4 = Allsein Sane (A — A,0,(A — 0,4)) (o)l oo (5.11)
(9) (Elliptic component bound for the transport equation)
[ Aoll(pj-2221) 211 S 1. (5.12)
Moreover, if dy is a 0s-frequency envelope for A — A in S1[I], then
140 = Aollqp-222 00y Saze 1, (5.13)

where ey, = ¢ + cx(c- d)<k.

Remark 5.2. The frequency envelope bound implies a uniform-in-time positive lower
bound on the energy concentration scale r.; see Lemma below. As a consequence, once
Theorem is proved, finiteness of the S*-norm would imply that solution can be continued
past finite endpoints of I (We note, however, that Theorem will be used in the proof of

Theorem [1.13]).
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Remark 5.3. Combination of (1), (2) and divisibility of the norm NN L2>H "z [I] (cf. Proposi-
tion show that a finite S'-norm Yang-Mills wave on I exhibits some modified scattering
behavior, i.e., that each A; tends to a homogeneous solution to the equation Uyu = 0
towards infinite endpoints of I.

We start by establishing some weaker derived bounds.

Proposition 5.4. Let A be a caloric Yang—Mills wave on a time interval I, which obeys
A(t) € Cg for allt € I and ||Al|sip < M. Let ¢ be a Cds-frequency envelope for A in S'[I],
e, [|[Allsyn < 1.

(1) The following derived bounds for A, hold:
||A0||YC12[I] + ||PLA||Y612[1} Sael, (5.14)

04l + 1BAN 10 Sl (5.15)

(2) Let A be another caloric Yang-Mills wave on I that also obeys ||/Nl||51[1] < M. Letd be
a Os5-frequency envelope for the difference A — A in S'[I], i.e., |A — A”Sé[[} < 1. Then
we have

140 = Aollyz + [IPHA = P Allyap Sael, (5.16)

I0(A = Dlloxapn + 10A = DI 3100 Sarels (5.17)
X, 1

where e, = di, + ¢ (c - d)<y.

As a quick consequence of Proposition [5.4, we see that any caloric Yang-Mills wave A
with A(t) € Cg for all t € I and [|A||s1;) < M obeys

[Allsi Sme 1.

Remark 5.5. The reason why we state these weaker bounds as a separate proposition is for
logical clarity. As it will be evident, the proof of Proposition depends only on Proposi-
tions In fact, after these propositions are established in Section [§, Proposition
will be used in the proofs of Proposition [4.23, Theorem and Proposition in Sec-
tions [§ and [

Proof of Proposition[5.4 Since A is a caloric Yang-Mills wave, Theorem determines Ay,
Ay and Py A = A719;0°A, in terms of A. To derive the equation for §;P+A, we first
compute

Y4
8tPlA =0, aAa Ay = A_l(?maz(Foz + 0/Ap + [Ag, AO])

=AT'0,(D Fyy + AAg + 0°[Ay, Ag) — [AY, Foy)).

By the constraint equation, we have D‘Fy, = 0. Expanding Fy, in terms of A, We arrive
at

OPTA = 0;A+ AT10;(0[Ar, Ao) — [AY, 0, A, + [A%, 0, Ag) — [A, [Ao, Ad]). (5.18)

The rest of the proof consists of combining Theorem [3.5] with Propositions - and

in the right order. We first sketch the proof of the non-difference bounds ((5.14] 5 15)).
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We begin by verifying that
11D] A
Indeed, by the mapping properties in Theorem and the embeddings
L'H N L*H: CY,

the contribution of A3 in Ay and DA® in P+ A are handled easily. For the quadratic nonlin-

earities, we apply (4.29) for Ay, ([.37) with ¢ = 0 for P+ A and o = 1 for A,.
Next, we show that

1 L 1 < :
0ol +IOPAL L Sascl
For 0, Ay, we use Theorem [3.5for DA3 and (4.30)) for the quadratic nonlinearity. For 9,P+A,
we estimate the RHS of (5.18), where we use the Y'[/]-norm bound for A, that was just
established.

We now consider [JA. We first prove the weaker bound
I8Al5x, 1 Swme 1. (5.19)
By the mapping properties in Theorem and the embeddings
LM2ANIAH 2 CcOX N X 2t c OX!

the contribution of R; is acceptable in both cases. For the quadratic nonlinearities PM? +
P+M?, and the contrlbutlon of DA DAA we apply 4 42), (4. 43 ), (4.74), (4.77), (4.84)
and (| -7 note that we need to use D in both (4.84

We are ready to prove . The desu“ed estlmate for the DX norm follows by
repeating the preceding argument with (4.85]) replaced by (4.86]), and usmg . On the
other hand, for the (X 2tt1—b1[] ]—norm, we replace (|4.85]) by (|4.87D instead, and use the
OX*[I]-norm bound that we have just proved.

Finally, the proof of the difference bounds (5.16)-(5.17) proceeds similarly, taking the
difference of each of the equations ([3.12))—(3.15). We leave the details to the reader. O

We now prove Theorem using the estimates stated in Section [
Proof of Theorem[5.1 Throughout this proof, we omit the dependence of constants on Q.

Proof of (1). We begin with a (04 decomposition which will be repeatedly used in the
sequel. Given k > 10, we write

O4 =0+ Diffg, — RY
where, using the decomposition in , the remainder R is given by
R = Diffg. , — Rem’y” — Rem'y”
Lemma 5.6. Let J C I. Let d be a 05-frequency envelope for u in S*[J]. Then we have
IRAU o= 0 SM (27" All g2y + 29°C (A, ) [l g1 (5.20)
with
C(A,J) = ||PLA||Y1[J} + HPLAHélLlLOO[J] + ||A||Str1[J] + ||<VPLA, VAl
41

(5.21)

-1
L2H?2[J)



Proof. We successively bound the three terms in R’ as follows. For the first of them we have
IDiffp Sar (P Ay + [[PHAl| o o) [l s

using the bounds (4.82)) and (4.83)), and noting that the second norm of A is estimated using
(4.37) for the quadratic part and (3.22) by

[PAllpr 1 poors) S 1
For the second term in R% in ((5.22) we have

K,2 —d2K K
Remy™ull oty o Sar @7 Allsipn +27°C(A, ) ull sy,

as a consequence of (4.78)), (4.79)) and (4.80).

Finally, for the third term in R’ we have

catll a4y,

K,3
[Rem'5ul it o0 1Al sy

due to (4.74). O
To prove (1) we rewrite the equation ([5.3)) in the form
(04 Diffp 4, )u = f — Rju (5.22)

The important fact is that all the A norms in C'(A,J) except for S* are divisible norms,
and also controlled by M. On the other hand the S norm of A has the redeeming 27%%
factor. To proceed we choose x large enough,

K <<M,Q 1

Then we can subdivide the interval I = UjecsJi so that #J Su 1, and so that in each
interval J; we have smallness,

||RZU||( < [lullsipy) (5.23)

NmL?H*%)d[Jj}
A second consequence of our choice for x is that Theorem applies. Then we can
successively apply Theorem in each interval Ji, treating R% perturbatively.

Proof of (2). The argument here is similar to the previous one. For any interval J C [
and any (—d5, N) frequency envelope d for A in S'[J] we can use the bounds (4.44)-(4.49)
and (3.21)) to estimate

IEa Al Sar (27 Allsrpg + 297 All s i) 11Allsy (5.24)

. 1
NNL2H™2)4[J]

As before we use the divisibility of the DS' norm to partition the interval I into finitely
many subintervals Ji, whose number depends only on M, and so that in each subinterval we
have

27| All g1y + 2| All psiy < € <o 1.
We now specialize the choice of d, choosing it to be a minimal d5-frequency envelope for
A in the first interval J;. Applying the result in part (1) in J; we conclude that
d Swmoc+ed
which by the smallness of € implies that d Spr.o ¢. Then we reiterate.

Proofs of (3) and (4). These follow from (5.5)) and Proposition [5.4]
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Proof of (5). This is obtained by combining the bound (5.20) for J = I and u = A with
the bound ([5.24])).

Proof of (6). In view of (5), this is a direct consequence of Proposition m

Proof of (7). We use frequency envelopes. It suffices to show that if ¢, is a (—d5,.5)-
frequency envelope for the initial data in the energy space then C(M)c is a frequency
envelope for A in S* and Ay in Y'. We begin with a version of Lemma

Lemma 5.7. Let J C I. Let d = d(J) be a (—0s,S)-frequency envelope for A in S*[J].
Then we have

[RAAl Sar (27| All sy + 29°C(A, D) (1Al sy (5.25)

NALZH™3) 0] ~

Proof. The same argument as in the proof of (5.8) applies for the first term in R%, as there
the output frequency and the u input frequency are the same. On the other hand for the two
remaining terms, the frequency envelope d is inherited from the highest frequency input, see

Propositions [4.19] [4.20 O

Combining the bound in the lemma with (5.24]) we obtain the estimate
|DA + Diff A S (25 A s +2°°C(A, ) Al (5.26)

(NNL2H ™2 ) 4[J]

Now we can conclude as in the proof of (2). We first choose k large enough so that
Theorem applies, and also so that

2_625||A||51m < 1.

Then we divide the interval I into finitely many subintervals (again, depending only on M
and Q) so that for each subinterval J we have

QCNHAHDSl[J] <y 1.
Thus, for each subinterval J we have insured that

I0A + Diffp 4 Al <t [[All sy

. 1
NNL2H™2)4[J]

Let ¢ be a (—ds,5)-frequency envelope for the initial data in the energy space, Then
applying Theorem [4.24] in the first interval J; we conclude that

1 PeAlls1ny Sare e + edi, € <Ly L (5.27)

for any (—ds,.9) frequency envelope dj for A in S'[J;]. In particular if dj, is a minimal
(—05,9) frequency envelope for A in S'[J;] then we obtain

dk K'SM Ck —+ Edk,
which leads to
dr. Saro C,s

i.e., the desired bound in J;. We now reiterate this bound in successive intervals J;. Finally,
the Y bound follows as in (3).

Proof of (8). Assume 0 < 1 — o < d5. We write the equation for 64 = A — A in the form

(O+ Diff;é)éA = ",



where

Fr* =Difff, piA+ (RGA— REA) + (O4A — O4A4). (5.28)
We claim that we can estimate the terms in F* as follows:
IDIES s AlL o s pazoiody Sr 2 (Al + 1 ANs)I0Asr, (5:29)

IRGA — REA| Sar 2°(C (A, ) + C(A, T)6Allse 1, (5.30)

No—1nL2Ho"1=5 ] ~
044 = Oadlly, ooy St (CLA) + CA I 0Aso (531)

We first show how to conclude the proof of (8) using , and . As in the
proofs of (1),(2) and (7), we first choose & large enough, k >, 1. Then we use divisibility
for the expressions C'(A,J) and C (A, J) in order to divide the interval I into subintervals J;
so that on each subinterval F'* is perturbative, i.e.

||FH HN‘T_lﬁLQHU_I_% [J]] <<M’K: ||5A||So_[']]}

Finally, we apply Theorem [4.24] successively on the intervals J;; then (8) follows

It remains to prove the bounds (5.29), (5.30) and ( . The bounds and -
are the difference counterparts of ([5.25)), respectlvely (5.24)), and are proved in a very similar
fashion. Details are omitted. We only remark that the requirement o < 1 is not needed
here, and that these bounds hold for any ds-admissible frequency envelope ¢ for §A in S?.

We now turn our attention to the novel part of the argument, which is the bound for
Diff§ , p;A. It is here that the condition o < 1 pays a critical role. This is done in the
next lemma. For later use we state the result in a more general fashion. This will be needed
again in the proof of Proposition A variation of the same argument will also be needed

in Proposition [6.3]

Lemma 5.8. Let J C I. Let ¢y, di, by be frequency envelopes for A, A, respectively A and
B in S'[J]. Then the expression Diff% B can be estimated as follows

PA-PA

”lef;A PAB||(NQL2H 2)[J] NMQ 2" COR||5AHSU[J]||B”SI[J]> (532)

where fi is given by

= ( Y dw +Ckf(0'd)3k:'> Oy (5.33)

K <k—k

Before proving the lemma we show that it implies (5.29). To measure JA in S7 we
can choose the frequency envelope dj, with the property that 2=V%d, is a (—§,1 — o + 9)
admissible envelope with § < %(1 —0), § < J5, and so that

16A[F0 1 = Y (20D,
2
Then we have
Tr Su dk—rcr S 27 2(1-o)rg,

and ((5.29) follows. We return to the proof of the lemma:
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Proof of Lemma[5.8. We first recall the equations for PA, and Ay. Following Theorem [3.5]
these have the form:

DPAx = P[Aea afo] - QP[Ab ae”Ax] + P(R<A> + [A@’ [A£> Ax]])v

(5.34)
AAy = [AY 0, A + Q(A, 0 A) + AA3.
Based on this equations we consider the following decomposition of PA = (PA,, Ay):
PA = (A7"", A7™™) + (A7, 0) + (43, 43),
where the three components are determined by the following three sets of equations:
QA = PLAL0,A), AT0] =0,
AATem — [AY 9, A,
respectively A2 = 0 and
0A2 = —2P[A,,0°A,]  A%[0] =0,
and finally
04 = P(R(A) + PlAw [4 Al), 4300 = PAT, -

AA2 = Q(A, 9pA) + AAS.

We also use the same set of equations and the same decomposition for PA, and take the
differences  A™", § A% respectively §A%. We are now ready to estimate the three contribu-
tions.

The contribution of § A", For this we use the estimates in Proposition [4.27, which yield
[Diff; B S 2776 Al g1 Bll sy (5.36)

PAmain,PAmain (NOLQH—%[J])JC

where
fk = ( Z Ck/dk'> bk-
k'<k—k

which suffices. For later use, we also record the following consequence of Proposition [4.15]
which provides a bound for ||[O§ A7 ||

o A

21
NNL2H?2

st S N0Alls3pn (1A

The contribution of dA3. This is more easily dealt with using instead Proposition |4.26 We
start with A3— A3, which is estimated using the bounds ([4.36)) and (4.37)) in Proposition (4.13)
for the first term, respectively (3.23)) for the second, by

145 — A3l Su [[0A]|sypn (1A

st + ||f~1

sin + [ Allsan)- (5.38)

Similarly, for A3 — fli we can apply the difference bound associated to (3.21)) for R, and
Strichartz estimates for the remaining cubic term to obtain

IO(A3 — A2) St 116Al sy (1Al sz + 1 Allsa ) (5.39)

.3
(LILoNL2HS) ] J)

. 1
H(LlLQOLQH_?)cd[J]
As a consequence this also gives

142 — A2ls1 1) Sar 16 Al ss (1Al + [1Allsz)- (5.40)
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Using ([5.38) and (5.40) in Proposition yields the desired bound
IDiff5 45 B| Saro 184l 1Bl sy (IAllsan + 14
with the same f; as in the previous case.

The contribution of A%. Here we will use Proposition m For this we need to verify its
hypotheses. We begin with (4.101]), for which we combine ((5.37)) and ([5.40|) to conclude that

vz sit) (5.41)

16AZ 510y Sar 10 A 30, (5.42)
Next we consider (4.100f). Using the second part of Proposition we obtain
16 AN 5007 + 11640, P64 Iy Sar [16A] 531, (5.43)

with
er, = di + e d) <.
The last two bounds allow us to use Proposition [4.28. This yields

IDHES a2 Bl vy 4 gy S 1ALyl Bllsan (1Al sy + [Allsen) (5.44)
where
fk — ( Z dk’ + ek’dk’> bk
k' <k—k
The proof of the lemma is now concluded. OJ

Proof of (9). This is a direct consequence of the bounds (4.39)) and (3.23|) for the quadratic
part A2 of Ay, respectively its cubic and higher part Aj. O

5.2. Caloric Yang—Mills waves with small energy dispersion on a short interval.
Next, we consider the effect of small inhomogeneous energy dispersion on a time interval
with compatible scale.

Theorem 5.9. Let A be a caloric Yang—Mills wave on a time interval I with energy &,
obeying (5.1)), (5.2)) as well as the smallness relations

| Fll£Dsoin) < €, |I| <. (5.45)
Let ¢ be a d5-frequency envelope for A in S*[I]. Then for sufficiently small € > 0 depending
on M and Q, the following properties hold:
(1) (Small energy dispersion below scale 1 for A)

1Al D1y Se.o € (5.46)
(2) (Elliptic component bounds)
||A0 Y1) + ||PJ'A Y2A[1] SM,Q €. (547)
(8) (High modulation bounds)
HDA“LQH:%[I] §M7Q 662 (548)

(4) (Paradifferential formulation)

IDA + Diff , Al 0aQCr (5.49)

. <
NAL2E %) 1) ~MQ €
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(5) (Approzimate linear enerqy conservation) For any ti,ty € I,

VA B — [IVA@) ] Suro e (5.50)
(6) (Approzimate conservation of Q) For any tq,ts € I,
|Q(A(t) — Q(A(t2))] Se,o € (5.51)

Proof. Again, we omit the dependence of constants on Q. The property that will be used
here repeatedly is (4.21)), which asserts that all non-sharp Strichartz norms are small. We
recall it here for convenience:

Sup || PeFllser Sar e < e, (5.52)

Proof of (1). This is a consequence of the caloric bound (3.7 applied with dj, = e.

Proof of (2). We repeat the arguments in the proof of Propos&hon (1) The bounds
for the cubic and higher terms in Theorem ﬂ use only the Strichartz Str norms, so the
contributions of Ag in A, DA3 in PLA and DAD in 0;Ap are easily estimated. For the

quadratic terms we replace (4.29) with in the case of Ay, and then (£.37)) with ([4.38)

in the case of P+ A and 8tA0, again the Smallness comes from Str'.

Proof of (3). We consider the terms in the A, equation in Theorem The cubic terms
R, and [A,, [A?, A]] are estimated only in terms of ||A||g,1. For the quadratic terms we use
instead the bounds (4.30]), (4.36)), (4.63)) and (4.65)); all smallness come from Str'.

Proof of (4). We first establish the similar bound for (D4 A, which is given by the equation
(3.12). For the quadratic terms we use (4.50) and (4.51)). For the cubic term we use (3.21)).
Hence it remains to estimate the difference

~ A = Diffy. ;A — Rem’;” A — Rem*A.

For the first term we use (4.83)), where the € smallness comes from the L'L> norm of P+ A
due to the bounds (4.38)), respectively (3.22)) for the quadratic, respectively the cubic part
of AL,

For the second term we use the bound (4.81]). The second term on the right is small due

to ((5.47)), so we obtain
IRem’* Al

(NNL2H™2), S (277 27 | All ;.

Now we observe that on the right we can replace k with any x’ > x without any change in
the proof. Then it suffices to optimize with respect to x’.

For the third term we use directly (4.74).
Proof of (5). This statement is a corollary of (5.49). For the proof, we introduce the linear

enerqy
4
1
Epin(A)(t) = 5/ > 10, A()[? da.
S
Given any interval I’ = (t1,t5) C I, we consider

7= X (O + Difffs ) A, 9, A) dtdz.
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Integrating by parts, we may rewrite
1 =Eiin(A)(t1) — Eiin(A)(t2)

1 1
+5 / (Diftp A, A) (t2) da — 5 / (Diff} , A, A)(t;) da

1
1 / ([0, Difffs | A, A) dtda
2 RxR4
1
41 / o {(Difts , — (Diffs \)*) A, ,A) dtdr.
2 RxR4

By Proposition and the straightforward bound
[ (DI 4, 4)(0) S 21 AN s [VAD I Sar 2

we see that

|Z — (Eiin(A)(t1) — Eiin(A) (t2))] Snr 27 (5.53)
On the other hand, by duality, we may put xp (O + Diffp,)A and xp0;A in N and N*,
respectively. Then by Proposition 4.6, (5.2)) and (5.49), we have

1Z| <pr 426" (5.54)

Optimizing the choice of «, ((5.50|) follows.
Proof of (6). We will use the caloric flow in order to compare Q(A(t;)) and Q(A(ts)).
Denote by A(t, s) the caloric flow of A. We will split the difference in three as
Q(A(t1))—Q(A(t2)) = Q(A(t1, 1) = Q(A(t2, 1)+Q(A(t1)) — Q(A(t1, 1)) — Q(A(ts)) + Q(A(ta, 1))
For the first difference we estimate at parabolic time s = 1 as follows:

1Q(A(t1,1)) — Q(A(ta, 1)) 5[244%\F(3,t,x)|3dxdt

1

~

< / \F(1Lt,2)PIOF (L, 2, 6)| dedt
t1 R4

to
5/ / |F(s,t,2)|*|0,F|dxdt
t1 R4

SS,Q |t1 - t2|02137

where at the last step we have simply used the fixed time L? bounds given by Proposi-
tion [3.1(1) and Bernstein’s inequality. Now we gain smallness from the time interval.

For the remaining two differences we only need fixed time estimates, which for reference
we state in the following

Lemma 5.10. Let a € C be a caloric connection with energy £ and Q(A) = Q, and A its
caloric Yang—Mills flow.
a) Assume that a is energy dispersed at high frequencies,

Ifleps,, <€ (5.55)
Then for its caloric Yang—Mills heat flow A(s) we have
Q(a) — Q(A(27™)) Seo €. (5.56)
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b) If a is fully energy dispersed,
1fllep <, (5.57)
then we have

Q(a) Sg,g €“. (558)

Proof. a) By scaling we can set m = 0. Denote by ¢ a frequency envelope for f in L? and

by di a frequency envelope for f in W2, By the energy dispersion bound we have dy < ¢
for k > 0. By Proposition [3.2] we have the L? bound

|PF e Seo en(2%s)~Y,
respectively the L* bound
1
1P|l Seo 2°Mdi (2%5) 7.

We use these bounds to estimate the difference
1
O(a) — Q(A(1)) = / F(s,t,2)Pdeds
0 JR4

1
< ¥ //|Pk1F(s,t,:c)||Pk2F(s,t,x)HPk3F(s,t,x)|da:ds
0 R4

k1<ka<ks

1 1
2k1 g2
Seo g o MR cpy
k1<ko<ks

where at the next to last step we have used both the low frequency decay and the off-diagonal
decay for the summation in k; and ks.
b) This follows by letting m — —oo in part (a). The proof of the Lemma is concluded. [

The proof of (5.51)) is also concluded. O

5.3. The dynamic Yang—Mills heat flow of a caloric Yang—Mills wave. Here we
investigate the structure of the dynamic Yang—Mills heat flow of a caloric Yang—Mills wave
A with finite S’-norm. As before, we consider two cases: (1) when A only obeys a finite
S'-norm bound; and (2) when A has small inhomogeneous energy dispersion on a short time
interval of compatible scale.

In the general case, we have the following structure theorem.

Theorem 5.11. Let A be a caloric Yang—Mills wave with energy £ on a time interval I,
obeying (5.1) and (5.2)). Let A;,(s) be the dynamic Yang-Mills heat flow of A;, at heat-time

s > 0 in the caloric gauge. Then the following properties hold:
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(1) (Fized-time bounds) For any t € I, let ¢9)(t) be a d5-frequency envelope for VA(t) in
L?. Then

IPU(VA(s) — Vet A) (1|12 Seo(2 s 0% (2%s) 71060 ()2, (5.59)
1PL0 Ag(t, )12 Se.o(2s)™0c (1), (5.60)
1PV Ao(t, 5)[| 2 Se.o(2s)™ 0 (1)2, (5.61)
IPOAR, 8| -1 Se0(25) 710 ()2 (5.62)

(2) (Frequency envelope bounds) Let ¢ be a 0s-frequency envelope for A in S'[I]. Then

IPL(A(s) — €2 D)l gy Sarof2 ™) (2% s)~10c2, (5.63)
1Pedo(s)llvi1n Saro(2s) ¢}, (5.64)
|PPA(S) o0 Sar.of2%s) 06 (5.65)

(8) (Derived difference bounds) Let A be a caloric Yang-Mills wave on I obeying ||Al|g: i <
M, and let d be a 85 frequency envelope for the difference A(s) — A in S*[I]. Then
1Pe(Ao(s) = Ao) i + || Pe(PA(s) = PEA) [y
Sorito € +min{l, (s72[1][)01} (27257170 (9% 5) 71002 (5.66)

1PO(A(s) = Allox i + [1BO(A(s) — A)

[T
Sariro e +min{l, (3—% 1))} (2 21y 01 (9% ) ~10.2, (5.67)
where ey, = dj, + ci(c - d)<y.
Remark 5.12. Combining with the obvious bound for e** A, we get the simple bound
1PeAG) g1 Saro(2s) e, (5.68)

Next, we consider the effect of small inhomogeneous energy dispersion on a time interval
of compatible scale.

Theorem 5.13. Let A be a caloric Yang—Mills wave with energy € on a time interval I,

obeying (5.1), (5.2) and (5.45), and A, .(s) be the dynamic Yang-Mills heat flow of A, at
heat-time s > 0 in the caloric gauge. Let ¢ be a d5-frequency envelope for A in S'[I]. Then
the following properties hold:

(1) (Fized-time smallness bound)
IVPe(A(s) = e A) (1) 12 Se.@ 270" e (272571) 704 (2%%) 107 (1), (5.69)
PO A, 5) 12 Se.0 251 R8s (95100 1) (5.70)
(2) (Small energy dispersion below scale 1 for A(s))

1A | poyy Seo €. (5.71)
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(8) (Frequency envelope bounds)
1Pe(A(s) = e A) | g1y Saree’™ (272571 701(2%5) ey, (5
1P Ao(s)llviin Sare™(2%5) ey, (5.73)
HPkPJ_A(S)Hylm SM,Q€64<22168>710€]€. (5
4) (Derwed difference bounds) Let A be a caloric Yang—Mills wave on I with Allgin < M,
1]
and let d be a d5-frequency envelope for the difference A(s) — A in S [I]. Then
1Pe(Ao(5) = Ao)lly1pn + || Pe(PHA(s ) - PLA)HY;[I}

SM,M,Q ex +€64<2—2k8—1>—64<22k > (575)
H&DM@%wﬂhgm+H&DM@) M\TMbW]
SJM,M,Q en +€64<2—2k8—1>—64<22k > 10 (576)

where ey, = dj, + ci(c - d)<y.
We now turn to the proof of each theorem.

Proof of Theorem [5.11. In the proof, we omit the dependence of constants on M and Q. We
introduce the notation

A(t,s) = A(t,s) — e A(t).
Proof of (1). By (3.2) in Proposition (note that 0;A here corresponds to B in the the

proposition) we get

IV PAE )2 S <2%-%5wf%rm@9f. (5.77)
Now the second bound follows from (3.18)) for DA? and Proposition 4.13| for Q(A, A).
Proof of (2). We proceed in several substeps.
Step (2).1. Our first (and main) goal is to prove

1PeA(s) |52 S (2727170 (2%5) 710 (5.78)

We begin by invoking (3.4) with (o,p) = (3,4) and (o1,p1) = (3,2). Since S*I] C
Str![I] C LAW t4[I], we also obtain (after taking L2[I])

IV PAG gy S (22 (225) 10 (5.79)

: 1
In view of the embedding P,L2Hz2[I] C Pka’2 [I] € 27%8,[1], we have

[VPAGs) s, S (22s)~0 (2210, (550
To complete the proof of (5.78)), it only remains to establish (recall (4.2)))

|0PA < (27%) 7% (2%) 102, (5.81)

We argue differently depending on s22* > 1 or 522 < 1. In the former case, we consider
e’ A and A(s) separately. In view of (5.7)), note that
51



so it suffices to prove

|OP.A(s) < (2% 710¢2.

HHH*%[I} ~
For this, we need to use the wave equation for A(s) (cf. Theorem [3.6):

OA(s) =(8 — Oag))A(s) + M?(A(s), A(s)) + R;(A(s))
+Pw2(A, A, 5) + R;.s(A)

As in the proof of Proposition , we note that O — O contains the terms Ag(s), 9°A(s)
and 9yAp(s) that are in turn determined by A, A(s) (cf. Theorem [3.6). By and an
obvious bound for e** A, we see that (22%s)~1%¢, is a frequency envelope for A(s) in Str'[I].
The desired estimate is proved by applying the L?L*-type estimates in Section |4 (observe
that they only involve the Str'-norm of A!) and Theorem .

In the case s2%¢ < 1, we begin by writing A(s) = (A(s) — A) + (1 —e**)A. For the second
term, again by , we have

IOPL(1 — ) A

(5.82)

< —2k _—1\—61 2
LQH*%[I] N<2 S > Ck"

Thus, for s22% < 1, it suffices to establish

0P (A(s) — A) < (272 2 (5.83)

Hmfr%[f] ~
Here, we use the equation (J(A(s) — A) obtained by taking the difference of the equations in
Theorems B.5 and B.6}
O(A(s) — A) =(0 — Oa))A(s) — (O —-04)A

+ MQ(A(S>? A(S)) - MZ(Aa A)

+ Ri(A(s)) — R;(A)

—I— P]Wi(A, A, S) + Rj;s(A).
We note that (O—DOus))A(s) — (O—0a)A contains the differences Ag(s) — Ao, 9 A(s) — 9 A,
and dyAg(s) — dpAg, for which similar difference equations may be derived from Theorems
and 3.6

As before, ¢y, is a d5-frequency envelope for A and A(s) in Str'[I], whereas dj, = (272Fs71) =%,
is a d3-frequency envelope for A(s) — A in Str'[I] by (5.80) and an obvious bound for
(1 — e*2)A. Hence the difference envelope e, in Theorem obeys the bound

ep = dk: + Ck(C- d)gk 5 <2_2k8_1>_0530k-

The desired estimate (5.83)) is proved by applying the L?L*-type estimates in Section
(again, they only involve the Str'-norm of VA, VA(s) and V(A(s) — A)) and Theorem [3.6|

Step (2).2. To complete the proof, it remains to show that (5.78)) implies (5.63))—(5.65)). This
p.-4(1)

is proved in a completely analogous way as Proposition , replacing Theorem by
Theorem [3.6| (where we use Propositions [4.16] for wy and w,, respectively).

Proof of (3). This is analogous to the proof of Proposition [5.4}(1). The only difference in
the analysis arises from the extra terms
(1) Pjw2(9,A, 0 A, s) + Rjs(A) in Oags)A(s),
(i) Ags = AT'WH(A, A, s) + AJ(A) in Ay(s),
(i) DAgs(A) in 0;Ap(s).

(5.84)
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For the first term in ([5.75]) we need to estimate
I1D1™ w5 (A, A, s)lly + [ DIAG(Ally + [DAg(A)]ly

The last two terms are estimated directly using (3.36)) and (3.37)) and Bernstein’s inequality.
The first term is estimated via (4.54)).

For the extra gain when s3> |I| we rebalance by using Holder in time ¢ and Bernstein in
x. Because of this, in that range it suffices to use L>°L? bounds instead of Y, and thus rely
instead on (3.33) and (3.34)), respectively (4.52).

For the second term in we follow the computation for 9,P+A(s) in the proof of
Proposition [5.4, The extra contributions there are

ATI0;(0[Au(5), Agis] + [A°(5), OeAois] + [A”, [Ar, Aoy]]).

For these it suffices to use (4.53)) and ([3.36)) for long intervals I, respectively (4.52) and (4.52))
and ((3.33)) for short intervals.
Finally, for the two terms in ([5.76|) we need to bound

IPjwi(0:A, 0 A, 5)| + [ Rjs (Al

Dglmx—%“ﬂrla—bl DX%X—%H&L—M

For this it suffices to use the bounds (4.58) and (3.35) in the range || > sz, respectively
(.50) and (3.32) in the range |I] < s2. O

Proof of Theorem[5.13. As before, we omit the dependence of constants on M and Q.

Proof of (1) and (2). The three bounds follow directly from Proposition [3.2] precisely in

order from the estimates (3.8), (3.9)) and (3.7)).

Proof of (3). We repeat the arguments in the proof of Theorem [5.11.(2). The bound (/5.79))

for P,A(s) goes through the Str' norm so by the same proof we also obtain for k > 0
IVPA(S)] s g S (275770 (2%5) ey (5.85)

On the other hand for £ < 0 we can use (5.69) and Holder’s inequality in time to gain

smallness.
Similarly, the bound (5.81]) also uses only Str' norms so it can be replaced by

IOPA(s)| < (92 gly—cba g2k —10ba (5.86)

. 1
L2H™ 2] ~

for k > 0. Again for k£ < 0 we can use a simpler L*°H ! bound and then Holder’s inequality
in time. Together, the bounds (5.85)) and (5.86) imply (5.72).

Finally, it remains to establi and (5.74]). Here the same considerations as in the
proof of apply, but using Theorem [3.6| instead of Theorem as well as Proposi-
tion

Proof of (4). This repeats the proof of Theorem (3), but taking advantage of the Str'
norm in estimating Ag;s and DA, and using (4.55) instead of (4.54]). As before, the € gain

is due to energy dispersion if £ > 0 and to the interval size otherwise. 0]
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6. ENERGY DISPERSED CALORIC YANG—MILLS WAVES

The goal of this section is to prove the following key theorem for energy dispersed sub-
threshold caloric Yang-Mills waves, which is essentially a restatement of Theorem [1.20] in
terms of the linear energy:

Theorem 6.1. There ezist a non-decreasing positive functions M(E, Q) and non-increasing
positive functions e(E, Q) and T'(E, Q) so that the following holds. Let A be a reqular caloric
Yang—Mills wave on a time interval I satisfying

inf IVA®#)|3. < E, A(t)€Cq foralltel. (6.1)
€
If A moreover obeys the smallness bounds
HF“EDZ,,L[I] S €(E7 Q)7 |]| S 2_mT(E7 Q)v (62)
then we have
[Allsn < M(E, Q). (6.3)

We next show that Theorem [1.16| immediately follows. Indeed, for caloric waves we have
(see Theorem [1.6)

VA2 Seo'l
as well as
€ Syval,. 1

Thus the linear and nonlinear energy are interchangeable in the statement of the theorem.
The (minor) difference is that the nonlinear energy is exactly conserved, whereas the linear
energy is only approximately conserved for energy dispersed Yang—Mills waves, see Theo-

rem [5.91(5).

For the remainder of this section, we fix Q. We omit any dependence of constants on Q
and write e(E) = €(F,Q), T(FE)=T(E,Q), M = M(FE, Q) etc.

Theorem is proved by an induction on energy argument of similar structure to [23]
and [I7]. For the initial step, we show that it holds for small E (Proposition [6.2)). For
the induction step, we assume that the result holds for all solutions with inf; Fj;,(A) < E,
and we seek to show that it holds up to inf; Ej;,(A) < E + ¢(F) for some small ¢(E) > 0.
Notably, in order to continue the induction argument, we do not want ¢(E) to depend on
F(FE) or €(E).

6.1. Induction on energy argument. As remarked earlier, the initial step of the proof of
Theorem is essentially small energy global regularity for the Yang—Mills equation in the
caloric gauge, which is a quick consequence of Theorem [5.1]

Proposition 6.2. There exists a small universal constant E, > 0 (in particular, independent
of 1) such that if a classical caloric Yang—Mills connection satisfies

: 2
inf [|VAQ@)[|z. < £, (6.4)

then we have

[Alls1n S V Ex. (6.5)
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Proof. We will follow a standard continuity argument, similar to the one used in the Coulomb
gauge in [11]. Start from a near minimum ¢, for || VA(¢)||2,. Denote by ¢ a frequency envelope
for Aftg] in H' x L?. For a short time, there exists a classical solution, which satisfies

|Al[s1 S B

We now consider the maximal interval I containing ¢, and where the solution A exists as a
classical solution and satisfies

[Al[s1 <1 (6.6)
This in particular implies
Q(4) <1
Hence by Theorem [5.1](2) it follows that
[Al[s1ny S1
and in particular
|Alls1n S B (6.7)

Assume now by contradiction that I has a finite end T. The S! bound implies
that A is uniformly bounded near t = T and has a limit as a classical solution. Hence
it can be extended further as a classical solution (for a precise statement see in particular
Theorem [7.6)). However, in view of (6.7)), if E, is sufficiently small then by continuity we
can find a larger interval I C J where ([6.6) holds. This is a contradiction. It follows that

the solution A is global and satisfies (6.7)). OJ
For the induction step, consider a regular caloric Yang—Mills wave A on I such that
E<nf [VADI% < E+e(B),  |Floon<e  I<T. (6.5)

Our goal is to establish a uniform bound
[Al[s1y < M (6.9)

for appropriately chosen ¢(E) > 0 (depending only on E), €, T and M (which may depend
on E, ¢(E), T(E), M(F) and ¢(F)).

Once this goal is achieved, we may extend M(FE), ¢(E) and T(E) to [0, E + ¢(F)] so
that M(E + ¢(E)) = M, e(E + ¢(F)) = € and T(E + ¢(F)) = T, while keeping validity of
Theorem in this range of energy. Since ¢(F) is a positive number depending only on F,
this procedure can be continued until Theorem holds for all regular subthreshold caloric
Yang-Mills waves.

We now turn to the proof of . By translating and reversing ¢, we may assume without
any loss of generality that I = [0,7) for some T, > 0 and

E <|[VAO)|7: < E +2¢(E).
Since A is regular, it can be easily seen that || A||s1o7) is a continuous function of 1" satisfying

) 1
limsup ||Al|sijor) S |[VA®)|[22 S E>.
T—0+

Therefore, on a subinterval J = [0,7) C I, we may make the bootstrap assumption

[ Al g1 < 2M. (6.10)
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In order to improve to , we compare A with a caloric Yang—Mills wave A with
S I-norm < M(E) (eventually), which we construct as follows.

To begin with, we view the space-time connection A;, on I x R* as a caloric initial data
and solve the dynamic Yang—Mills heat flow in the local caloric gauge, i.e.,

0sA,(t,x,s) :Dkau(t, x,$),
A, (t,xz,0) =A,(t, x).
From the results in Section , we obtain a global-in-heat-time solution A;.(t,x,s) on I x
R* x [0,00). Note that ;A solves the linearized Yang—Mills heat flow in local caloric gauge,

and we have (A4, 9,A)(t,s) € T¥C for every (t,s) € I x [0, 00).

By the caloric gauge condition, the linear energy |[(A,d,A)(t, )%, . = [IVA(t,5)72

eventually tends to zero as s — oo. Thus there exists a heat-time s/, > 0 such that
2
104, 0:A)(0, 8) 77112 = E-

To eliminate ambiguity, we take s’ to be the minimum such heat-time. In order to choose
the cut-off heat-time s,, we distinguish two scenarios:

(1) If s, > 1, then we define s, = 1.
(2) If ¢, < 1, then we define s, = ¢..

With s, chosen as above, we define A to be the caloric Yang—Mills wave with initial data

(A,0,A)(0) = (A, 8,A)(0, s,).

In both scenarios, we aim to prove that A exists on J and is well-approximated by A(Sy).
Moreover, by the induction hypothesis, A should obey a nice S*-norm bound.

Proposition 6.3. Let A be defined as above. For sufficiently small €,T > 0 depending on
M, M(E), T(E), e(E) and c¢(F), the reqular caloric Yang—Mills wave A exists on the interval
J and obeys

Al < M(E) + CoVE, (6.11)
1A(s2) = Allgt, 1) Sar €, (6.12)
[ Ao(s.) = Aollyy 1y Sar €%, (6.13)
IPHA(s.) =P Allys ) Sar €, (6.14)
where Cy is a universal constant and c* is a frequency envelope defined as

o — =8 k—k(s:)| (6.15)

On the other hand, viewing A as a “high frequency perturbation” of A, we show below
that A stays close to A in the space S*.

Proposition 6.4. Let A be defined as above on the interval .J. Provided that ¢ = ¢(E) > 0 is
chosen small enough compared to E (but independent of M(E), T(E) or e(E)) and T,e >0
are also sufficiently small depending on M, M(E), T(E), e(F) and c¢(F), we have

|A— A”SI[J] Sme).Ee L. (6.16)
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Assuming the preceding two propositions, we may choose M sufficiently large compared
to M(E) and E, then choose € and T accordingly, so that the desired estimate follows

from (.11) and (5.10).
It remains to prove Propositions [6.3] and which are the subjects of Sections [6.2] and

[6.3] respectively.

6.2. Control of A — A(s,): Proof of Proposition We introduce the notation
SAPY = A — A(s,). (6.17)
We proceed differently depending on how s, was chosen.

Scenario (1): s, = 1(< s,). This scenario is simpler to handle, and we do not need to
invoke the induction hypothesis.

Step (1).1: S*-norm bound for A. We first prove the S'-norm bound . The idea is

to exploit smoothing property of the Yang—Mills heat flow, which implies control of higher

Sobolev norms of (A,9,A4)(0) = (A,9,4)(0,1) in terms of v/E, and use subcritical local

regularity of Yang—Mills in the caloric gauge, which works in a time interval of length Og(1).
Fix a large integer N (say N = 10). We claim that A exists on J and

HAHSNﬂSl[J] < VE, (6.18)

provided that T is sufficiently small depending only on E (so that |J| < 1).
By the smoothing property for the Yang—Mills heat flow and its linearization in the caloric
gauge (see Section , we have

(A, 0 A)O) | gy vy ey S VE.

For T sufficiently small (depending only on E), the following local-in-time a-priori esti-
mates at subcritical regularity hold:

Stlel? ||(1‘~1; at[l)(t)‘|(HN><HN*1)Q(H1><L2) + |‘]|||DAHL°°(HN*10L2)[J] 5@7

Sup ||(A07 a151210)@)||(HN><1‘iﬂ\’*1)r1(l'{1><L2) SJ\/E

teJ
The proof is via Theorem and, as usual, the Sobolev embedding into L°°; we omit the

details.

As a consequence of the preceding a-priori bounds, we obtain (/6.18)) as desired. Moreover,
by Theorem [3.5] and the fixed-time bounds in Section [, we have

DA e fragg St 1. (6.19)

Step (1).2: S*-norm bound for A(s,) — A. As a preparation for the proof of (6.12), we claim
that

1A(s2) = Allsp, 1) Sar € (6.20)

In the present case, 2¥(>) = 1. For frequencies higher than 1, we simply use (6.18) with
smoothing estimates for A(s,) in S'. For frequencies lower than 1, we control CJ(A — A(s.))
in L>°H~! and integrate in time.
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By Theorem [5.11] we have

|PeA(s.) i Sae2 ™%, (6.21)
| PeOA(t, 8)|| o1 Sar2 20k, (6.22)

Let ko > k(s.) be a parameter to be fixed below. By (6.20)) and (6.21)), we have
| PLo A" || g1 < ||Pkf~l||51[J] + | PrA(se) sty S 270c, for k > ko, (6.23)

where 0 < ¢ <« 1 is a universal constant. Since
Po(L®H'[J]) < |J|2*N N (|22 L2H 2,

for k < kg it follows from (6.19) and (6.22)) that

[PCo A" |POA +[[BBA]

NALZH~%)[J] <| NAL2ZH~%)[J] NNL2ZH™%)[J]

S (112702 + (| J]2%0) + ¢)cs..
Since §AP*[0] = 0, we arrive at

|POA™ g1y Sar (112902 + (J12%) + )i, for k < ro. (6.24)

Step (1).3: Completion of proof. Finally, the bounds (6.12))—(6.14]) follow from (6.20)) and
Theorem [5.11](3) with dj = ¢} provided that |J| < T is sufficiently small. Here, note that

* * *
€ = Cg + Ck(C' C )Sk SM Cp.-

Scenario (2): s, = s, > 1. In the second scenario, we analyze the equation satisfied by
the difference A" = A(s,) — A to prove , then make use of the induction hypothesis
to derive . By another continuous induction in time, we may make the following extra
bootstrap assumptions:
1 Alls110) < 2(M(E) + CoVE), (6.25)
as well as
|84 g 1y < €. (6.26)

Here we use a smaller power of €, so this last bound will only serve to insure some a-priori
smallness of A" in SL.
By Theorem [5.13] we have

HPkA(S*)Hsl[J] Sm Ck<22k5*>710, (6.27)
’|A(S*)HED120[J] Sk €, (6.28)
DA oyt Sar € (6.29)

Therefore, (A(s,), J) is (¢, M,)-energy dispersed for M, <), 1 and & < €%,

Step (2).1: Bounds for §A"". Here we establish (6.12]). We write an equation for A% of
the form

O;0A = F §A“[0] =0
We claim that in each subinterval J; of J and for each x > 10 we have the bound

L P T (27| All g1 4+ 297C (A, I)ISA |51, 10, + €%, (6.30)
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where C/(A, J;) contains only divisible norms of A, see (5.21)).
We first verify that the bound (6.30]) implies (6.12). Using the well-posedness for the [J;
equation, given by Theorem in the time interval J; = [t1, t5], we obtain the bound

184 g1y < CODISA 1]l + (25| All st ) + 2°°C (A FIISA 51 1) + €.

For this to be useful we need to insure that the coefficient of ||0 A¥|| s.1] on the right is
small. To achieve that we first choose k large enough, k >,, 1, depending only on M, so
that

C(M)2= || Al g1 < 1
Then we divide the interval J into subintervals J; so that

C(M)29"C(A, J;) < 1

The number of such intervals depends only on M. On each subinterval J; = [t;_1,t;] we
have the bound

1A g1 g+ 64 1] llrg,e < COD WAty + ).

Reiterating this we obtain ((6.12)).
If remains to prove the bound ([6.30). We relabel J; by J for simplicity. As a preliminary
step, we observe that, by Theorem and the bootstrap assumption (|6.26)), we have

l0A™* |51, 1y + ||5Al°“’\|y1 1] SMHM"’“’Hsl ) (6.31)

In particular, this proves the bounds ) and - once is known.
The expression for F' is obtained from Theorems 3.5 and [3.6 -

Fi=030A"" = O3A = Oae A(s.) + (Oagsn) — D2)Als.),
where we further expand the two terms as
O34 — OagaA(se) =M (A, A) = MP(A(s.), A(s.)) + R(A) — R(A(s.))
+Pw?(9,A,0;A, s) + Rj.4(A),

respectively
(D) — O7)A(5.) = — Diffps pi0w A(52) — Difff 5 4100 A(5.) — Rem/ 7, A(s,)

5 Alow
+ (Rem?®(A(s,)) — Rem?(A))A(s.) + Rem? (A)A(s,).
We successively estimate the terms above as in ([6.30)).

(a) For M?(A, A) — M?(A(s,), A(s,)) we use the estimate (4.50). We inherit the envelope
¢, from JA" but we also gain an additional power of € from the energy dispersion of
A(sy).

(b) For R(A) — R(A(s,)) we use the difference version of the bound (3.21)), with a similar
gain.

(c) For Pw?(0,A, 0;A, s) we use ([4.59)), taking advantage of the energy dispersion for A.

(d) For R;.,(A) we use (3.35), gaining a power of ¢ from the Str' norm.

(e) For DifprMlowA(s*) we use (4.82) combined with (6.31)) for the high modulations, re-
spectively (4.83)) combined with (4.37) and (3.22)) for low modulations.

(f) For RemgjlowA(s ) we use (4.81)).

(2) For (Rem®(A(s,)) — Rem?(A))A(s,) we use (&.74).
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(h) For Rem? (A)A(s,) we use (L.76).

This leaves us with the most difficult term Diffh; 4100 A(s4), for which we claim that

D5 atow Al - 1) M 27| 5AYY | g11- (6.32)

For PJA" we consider the same type of decomposition as in the proof of Lemma
PdAlow — PéAlow,main + PdAlow,main,Q + P(SAlow,rem,Z 4 P(SAlow,rem,S

where
5Aéow,main — A*l ([A’ﬁtg] — [A(S*)aatA(S*)]> .
5Af)0w,main,2 — A_IWO(Av A7 S)’
5Aéow,rem,2 — 9A! <Q(A, 315/21) — Q(A(S*)a atA(s*))) ’
AT — 434 9, A) — AY(A(s.), DiA(s.)) + A3 (A, B, A)
respectively

5Alxow,main — D—l (PM2(A, /1) — PMQ(A(S*)a A(S*>)>

6Alxow,main,2 — DflPWm(A, A7 5)7

5A§cow,rem,2 — |:|*1P ([Aav aaA] — [Aa(s*)a aaA<8*>]> )

§Alowrem3 _ -1p (R(A) ~ R(A(s,)) — Rem®(A)A + Rem?’(A(s*))A(s*))
+ 0P (Ry(A) — Rem?(A)A(s.)) .

where (07! is the wave parametrix with zero Cauchy data at t = 0.
As a preliminary observation we note that

H(SAiow,mainuscl* + ||5Alxow,main,2||si* + ||5Alrow,rem,2|

s+ |S A3 g < |6AY g1, + €
(6.33)

This is a consequence of (4.42)) for the first term, (4.59) and ([5.47) for the second, respectively
(3.21), (3.35), (4.74) and (4.76)) for the last term. The bound for the third term follows
indirectly since they all add up to 6 A Y.

Now we consider the contributions of each of these terms to Diffp; 410w A(S4).

a) The contributions of AWM gpd § A" These are considered together, and esti-
mated using Proposition [£.27] This yields the frequency envelope

Je = ( Z CZka'<22k,3*>_N> Ck<22k,3*>_NH5Alostg* ) Sm TC&MCZWAZWHQ* (]

k'<k—kr

as needed.

b) The contributions of §Alwmain2 gnd §AL™* ™2 These are also considered together,

but now we want to use Proposition [4.29] As they involve no § A" differences, we need to
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estimate these contributions by €%. Unfortunately Proposition [4.29] provides no source for
an energy dispersion gain, so we use a subterfuge, decomposing

Diﬁ‘gAlow,main,QA(s*) — Diﬁ‘g;low,mainﬂA(S*) + Diﬁ‘g‘z’l’:}u’maingA(S*)

where k' > k is a secondary parameter to be chosen shortly. For the first term we apply
Proposition [4.29, which yields

||Diﬂ:‘§:4low,main,2A(s*) §M 2_06*){/

H(NmL?H—%)C* [J]

For the second term, on the other hand, we use instead the bounds (4.55)) and (4.59)), which
capture both the ¢* decay and the energy dispersion. The price to pay is that this way we
only have access to the S! norm of A2 5o we are only allowed to use (4.77). This
yields

. / )
HDIHEZ},:LW&WZA(S*)H(NmL?H‘%)c* ] SM 09990

We now add the last two bounds and then optimize in " to obtain the desired estimate

||DiﬁgAlow,main,2A(S*) “(NIAILZHi%)c* [J] S_/M eéh .

c¢) The contribution of § Awrem2 The JAYwTe™2 part is estimated using Proposition m,
with (6.33]) serving to verify the hypothesis. For the output this yields the frequency envelope

fe = ( Z c’,;,> ck<22k/3*>’N <m 2’05*"‘02.

k' <k—kr

Aéow,rem,Q

A simpler analysis applies for the contribution of § where we can use Proposi-

tion 4. 13|

d) The contribution of § A ™3 For the contribution of §AF"" "™ we use (3.23) respec-
tively (3.36)), while for the contribution of  Awre™3 where we use (3.21), (3.35)), (4.74]) and
(4.76)), all combined with Proposition m

Step (2).2: S'-norm bound for A via induction hypothesis.
Taking € sufficiently small and using the bootstrap assumption (6.26)), we may ensure that

1E D01 < €(B). (6.34)
By the induction hypothesis, we may thus assume that
[Allsr) < M(E). (6.35)

6.3. Control of A — A: Proof of Proposition . Here, we seek to bound
JAMI = A — A,
We begin by observing that

||A||ED£(1)[J] + ||DA|| %.

<
.1 €
2z ~M

Therefore, both (A,.J) and (A, J) are (g, M)-dispersed, where & <,; €%.

Step 1: Consequence of approximate linear energy conservation. We claim that
sup ||(6 A", 8,55/1}”9’1)(75)||§-1,1xL2 < ¢(E) + Cye®. (6.36)
ted
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Note that

SAMI — (1 — M)A+ 2 A — A(s,) + A(s,) — A
We begin with the inequality
IVA@®)I[72 > V(1 = e*2)A@)I72 + [le™ 2 A2,

which follows from Plancherel and non-negativity of the symbol of (1 — e**2)e*2. On the
one hand, by Theorem [5.13](1) and (6.12)), we have

Ve 2 A(t)|22 =[|[VA®)]|2: + Crre®, (6.37)

IV(L = e ) A7 = V(A — A)(®)]Z2 + Care™. (6.38)

Hence, by Theorem [5.9}(5), we have
IV(A = A)O)7 <IVA@DIZ2 — IVA®)|72 + Core™
<[[VAO)[|7: = [VA(0)|[72 + Chre™
SC(E) + CME(SG.
Step 2: Weak divisibility and reinitialization. By Theorem [5.1](7) there exists a
partition J = UK | J;, such that K Swme) 1 and
IAllsi 1 SE 1, (6.39)

so that the number of such intervals is also controlled K Spyg) 1. Using the uniform control
of the energy of §A™9" in Step 1, it suffices to estimate §A"9" in S' separately in each of
these intervals.

We will make a bootstrap assumption

[6A"" | 110,y < 2. (6.40)
Then our goal is to improve (6.40)) to
|6 A" || 115,y < 1. (6.41)

by taking ¢ <g 1, e <y 1 and T <y 1.

In view of and , in all the estimates below within a single interval J, all
implicit constants will depend on E rather than M (E). To simplify the notations we drop
the subscript and replace J; by J in what follows.

Step 3: Frequency envelope bounds. Let ¢; be a frequency envelope for A in S1[.J]. Then
by Propositio, the initial data in .J; for A(s) has the frequency envelope 2~ (+=F)+¢,.
5.1

By Theorem [5.1, we have a similar envelope in S*,
1PA(s) 5110 S 27 e, (6.42)
On the other hand, by the estimate ((6.12)) we have, under the assumption € <g 1, the bound
| Py(A — A(s)) s SE 90 k=k"l (6.43)

Hence for the high frequency difference A" we have the bound

| Ped AP g1y S 270K )=y (6.44)
62



Step 4: Control of nonlinearity. By Theorem (4) applied separately to A and A we
have

(0 + Diffp ) SA™" + Dif g man All oy S 207, (6.45)

where the parameter x > 10 is arbitrary for now, to be chosen later. We claim that the
second term can be estimated separately as

IDiff s grian All Sp 27 (6.46)

NAL2H™ 3% [J]

This is a consequence of Lemma . To see that we use the bounds and - to
compute the frequency envelope f; in Lemma [5.8f We have

fr §E < Z 2—06*(k/_k*)7ck/ +2_(k/—k*)+ck/(c20*)<k/) 2_(k_k*)+ck SJE 2_85*|k_k*|Ck,

k'<k—kr

and thus ) follows. Combining (6.45)) with - yields

1O+ D1HPA)5A’”9"H B 27 4 200, (6.47)

NmL?H‘?[J}
Hence by Theorem [5.1](1) we conclude that
||5Ahigh||51[jk] <E c+ 2—c6*n + 20H65466.

Hence by taking k >p 1, c <p 1, e g, 1 and T' <g, 1 the desired conclusion (6.41])
follows.

7. PROOF OF THE MAIN RESULTS

The purpose of this short section is to deduce Theorems and from Theo-
rem [6.T1

7.1. Higher regularity local well-posedness. In this subsection, we sketch the proof of
higher regularity local well-posedness of the hyperbolic Yang-Mills equation. We first use
the temporal gauge, which works for general connections, and then turn to the caloric gauge,

which works for data satisfying (1.12)).

7.1.1. Temporal gauge. Here we write the Yang—Mills equations in the temporal gauge,

Ao =0 (7.1)
They take the form
O4A; = D*9; A4 (7.2)
with the additional constraint equation
D/9yA; =0 (7.3)

This can be viewed as a semilinear system of wave equations for the curl of A, coupled with
a second order transport equation for the divergence of A.
We consider the Cauchy problem with initial data

A[0] = (A4;(0), 9, A4;(0)).

The initial data is uniquely determined by the Yang—Mills initial data and the gauge condi-
tion ([7.1)).

63



The system ([7.2]) together with the constraint equation (7.3) is well-posed in regular
Sobolev spaces. Precisely, we have

Theorem 7.1. The system (7.2)) is locally well-posed in HY x HN=! for N > 2, with
Lipschitz dependence on the initial data.

We further remark that the temporal gauge fully describes all classical solutions to the
Yang-Mills system:

Theorem 7.2. Let A be a solution to the Yang—Mills system which has local in time regularity
(A,0:A) € C([0,T]; HY x HY"') for N > 3. Then A has a temporal gauge equivalent A
with the same regqularity (A, 9;,A) € C([0,T]; HN x HN1).

To see this, it suffices to solve an equation for the gauge transformation O, namely
0_1800 = Ao, O(O,ZL’) = ],

which is an ODE on the Lie group G. If A € C(H") then this yields a unique solution
O € C(HY). This in turn yields a temporal gauge equivalent solution

(A,0,A) € C([0,T); HN' x HN7?).

This argument loses one derivative. However, the initial data is in HY x HN~! which by
the well-posedness result yields a C([0, T]; HY x H¥~1) solution. But by the HY~! x HN=2
well-posedness the two must agree, so we obtain a unique representation in the temporal
gauge with the same data and without loss of derivatives.

Remark 7.3. Analogues of Theorems and hold for the space HY x HY~! instead of

loc loc
HN »x HN=' where HJ, is equipped with the norm sup,cpa || - |5 (5, (2))-

7.1.2. Caloric gauge. In view of Theorem[1.11|we can fully describe caloric Yang—Mills waves
as continuous functions

I3t — (A1), 004.(t) e TH C

For higher regularity Yang—Mills waves we have the following:

Theorem 7.4. Let A be a solution to the Yang—Mills system which has local in time reqularity
(A,0,A) € C([0,T); HN x HN=Y) for N > 2. Assume in addition that the bound is
uniformly satisfied by its caloric extension, globally in parabolic time. Then A has a caloric
gauge equivalent A with the same regularity (A, 8,A) € C([0,T]; HN x HN-1).

This result is a direct consequence of Theorem [1.11], with one minor exception. Precisely,
Theorem does not directly yield the C;L? regularity for dyAg. For that we instead need

to refer to the expression (3.15) and the bounds (3.18)) respectively (4.28)) for the two terms
in (3.15).

Remark 7.5. The same result will easily hold for (4,0,4) € C([0,T];H x L?). However, if
we only assume that A,9;A) € C([0,T]; H' x L?) then one would also need to resolve the

remaining gauge freedom. For that it suffices to observe tat if two A’s have a small difference
in L2, then the two O’s can be chosen in tandem so that they agree at infinity.

In particular this says that a caloric gauge solution exists for as long as a regular solution

exists and the L? bound in (1.12)) remains finite. This will allow us to bootstrap the existence
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time for as long as we have good bounds in the caloric gauge. Precisely, forﬁ N > 3 suppose
that an H” solution exists in the caloric gauge up to time 7. If this solution has uniform
HY" bounds up to time T, then its temporal gauge representation has uniform H” bounds
up to time 7. Thus it can be extended further in the temporal gauge, hence also in the
caloric gauge. This shows that a maximal caloric gauge solution must either explode in H¥
at the (finite) end if its lifespan, or the L3 norm in (1.12]) must explode. The latter cannot
happen for subthreshold solutions. Thus we have

Theorem 7.6. The Yang Mills system in the caloric gauge is locally well-posed in HN x
HN=Y for N > 2. Further, the solution extends for as long as the HY x HN=' norm remains
bounded and the L? norm in (1.12) remains bounded.

For regular data, this result reduces the problem of global well-posedness to that of ob-
taining uniform bounds for caloric solutions.

7.2. Local well-posedness in the caloric manifold C: Proof of Theorem [1.13| For
e, > 0, recall that the energy concentration scale r&* was defined as

réla, €] =sup{r > 0: Ep,()(a,e) < € for all x € R*}

1
=sup{r >0z sup 5 3 || foslltacs, o) < €2
rER4 a<p

where fj; is the curvature form corresponding to a;, fo; = —fjo = ¢; and foo = 0. Since the
definition only involves f,p, we will slightly abuse the notation and simply write ¢ [f] for
rela, e].

Lemma 7.7. Let A be a reqular caloric Yang—Mills wave on I = (=Ty,Ty). For any € > 0,
if €. 1s sufficiently small compared to € and

To < r&la,el,
then we have

1Fllens,,m <€ with 2™ = e(rifa,e]) ™!

Proof. By our notation, f,s = Fas(0). After rescaling, we may set r5(F(0)) = 1. We begin
with the observation that

1P (1) e S 27272 sup [|F(8)]| 25y (0. (7.4)

zeR4

which follows from the properties of the convolution kernel of Py; in particular, it is rapidly
decaying on the scale 27* and its L?-norm is bounded by 272¢. Then, by the localized energy
estimate for the hyperbolic Yang—Mills equation, i.e.,

g{t}XBR—m(F) < g{O}XBR(F) (0 <t| < R), (7.5)

the lemma follows. O

8The requirement N > 3 is so that there is no loss of regularity in the transition to the temporal gauge.
Precisely, we want to insure that Ag € C(H' N HN*1),
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Proof of Theorem[1.15 We prove the theorem in several steps:

1. Regular solutions. Let A be a regular caloric Yang—Mills wave with energy £ and initial
caloric size Q. For €, small enough, to be chosen later, let r. := r&* be the corresponding
energy concentration scale for the initial data.

Our goal is to prove that if €, is small enough, depending only on £ and Q, then the
solution A persists as a regular caloric solution up to time r.. Precisely, we will to apply
Theorem to the solution A in order to show that the solution A exists in [—r.,r.] and
satisfies the bound

Al ) < M(E,30). (7.6)

We use a continuity argument. Let 75 < r. be a maximal time with the property that

the solution A given by Theorem exists as a classical caloric solution in (=7, Tp), and
further satisfies the bound

sup  Q(A(t)) < 309. (7.7)

tG[—To,To}
For 0 < T < Ty we seek to apply Theorem to Ain I = [-T,T]. To verify the hypothesis
of Theorem [6.1] we need to insure that for a suitable choice of m we have

| F||zps,, < €(€,3Q), [I| <27™T(&,3Q).
For this it suffices to apply Lemma [7.7] with
e =min{e(£,309),T(€,3Q)}.

which yields the appropriate choice of ¢,.
Now by Theorem [6.1] we obtain the uniform bound

||AH51[7T,T] < M(5,3Q), 0<T < TO-

By the Structure Theorem it follows that higher regularity bounds are also uniformly
propagated,
sup  ||(A, 0,A)(t)]| v < oc.
te(—To,To)
Thus by the local result for regular solutions in Theorem we can continue the regular
caloric Yang—Mills connection A beyond the time interval [T, Tp).
Finally, we consider the bounds for Q(A). These we can propagate using Theorem ,
which implies that
sup  Q(A(1) — Q Soe €.
te[—To,To]
Readjusting e if needed, it follows that
sup  Q(A(t)) <29 (7.8)
te[—To,To]
This implies that the bound also can be propagated beyond +7j. This contradicts
the maximality of Ty unless Ty = r.. Hence the classical caloric Yang—Mills wave exists in

[—TC,TC] and " holds.

2. Rough solutions. Given any caloric initial data (a,b) with finite energy £ and caloric
size Q, we consider the corresponding regularized data (a(s), b(s)) obtained using the Yang—
Mills heat flow. We have the uniform bounds

E(a(s),b(s)) < E(a,b),  Qlals),b(s)) < Q(a,b).
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In particular, we have (f(s),e(s)) — (f,e) in H' x L?. This implies that the energy con-
centration scales for (a(s),e(s)) converge to those for (a,e). Thus, by the analysis in the
smooth case above, for small enough s the corresponding solutions A(s) exist as smooth
caloric Yang-Mills waves in I = [—r, r.] and satisfy the uniform S* bound (7.6).

Now we use the Structure Theorem to consider the limit as s — 0. If ¢ is a frequency
envelope for (a,e), then by Proposition it follows that

(i) For (a(s),b(s)) we have the frequency envelope in H' x L2
cr(s) = cp (2% 5) %5,
(ii) For the difference (a,b) — (a(s),b(s)) we have the envelope in H' x L?
Scp(s) = cp (272 s™1) s,

(iif) For the difference (a(s), b(s)) — (a(2s), b(2s)) we have the envelope in H' x L2

C(8) = cpey2 IO,

By Theorem [5.1}(2), it follows that ¢4(s) is a frequency envelope for A(s) in S;. Combining
this with Theorem [5.1](8), it follows that cj(s) is a frequency envelope for A(s) — A(2s).
Summing up such differences, we obtain the general difference bound

[A(s1) — A(s2) |51 Se,Q Cli(sn) b(s))- (7.9)
This implies that the limit
A= lir% A(s)
S—>

exists in s. We define A to be the caloric Yang-Mills wave associated to the (a,b) data. We
remark that by (7.9) we have the difference bound

A — A(s)][s1 Se.0 Coh(s)- (7.10)

3. Difference bound. The difference bound in part (4) of the theorem is a direct conse-
quence of the difference bound in Theorem [5.1}(8).

4. Continuous dependence. We consider a convergent sequence of caloric initial data
(a™,b™) = (a,b) in H' x L. (7.11)

Let A™(s), respectively A(s) be the corresponding solutions with regularized data.
Denote by ¢} a corresponding sequence of frequency envelopes for the initial data (a™, ™)
in H' x L?. By Theorem (2), these are also frequency envelopes for the solutions A (s).
By Theorem [7.4] we know that for each s we have

A™(s5) = A(s) in S
and in effect in stronger topologies. Then we estimate

limsup [|[A™ — Al|g1 < lim limsup ||A®™ (s) — A(s)||s + Cr(s) T C2k(s)
S5—00 - -

n—00 n—00
< lim li ¢
S Jim Tmsup iy
But the last limit is zero in view of the convergence in (7.11)). The continuous dependence

follows. O
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We end this subsection with a lemma that bounds the energy concentration scale from
below by an L2-frequency envelope for F', which proves Remark .

Lemma 7.8. Let ¢ be a frequency envelope for Fop in L? for all o, 8 € {0,1,...,4}. Suppose
that ||clle =< C~ e, for some m € Z and a sufficiently large universal constant C > 0. Then

re(F) >27m,
Proof. Tt suffices to establish the bound

||F||L2(B(x,2—k) S ok
To see this we use Bernstein’s inequality to estimate

1Pl r2se— S 1Fsrllre + > 27| Fy
i<k
S ek + Z 2% & Cop. O
j<k

7.3. Regularity of energy-dispersed solutions: Proof of Theorem Consider a
time ¢y where Q(A(t)) is nearly minimal. From Lemma we have the estimate

Q(A(to)) Se €.
If € is small enough this allows us to conclude first that @ < 1, and then that
Q <g €.
Now a straightforward continuity argument shows that
Q(A(t)) <1, tel,
which again by Lemma yields
Q(A(t)) Se €, tel.

Then we can apply directly the result in Theorem for any m € Z. This eliminates any
restriction on the size of the interval .

7.4. Gauge transformation into temporal gauge: Proof of Theorem [1.18| To pro-
duce a temporal gauge solution to (1.1 from the caloric gauge solution we use a gauge
transformation O defined as the solution to the following ODE:

07'9,0 =4,  0(0)=1. (7.12)
Here for Ay we have the regularity given by Theorem (9), namely
Ao € |D|2LAL. (7.13)

We use this to compute the regularity of O:
Lemma 7.9. a) Assume that Ay is as in (7.13)). Then the solution O to the ODE has the

following properties:
(i) O, € CL(HY).
(i) O is continuous in both x and t.

b) Consider two solutions O and O arising from Ay and Ay. Then we have
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(i) H' bound:
10710,0 — 07'9,0|| 11 < [ Ao — AOHEHD\—?L%LtL
(i1) Uniform bound:
(0, O)llz= < 140 = Aollypj-2r21s-
Proof. a) We first consider the ODE
O01'9,0=F,  0() =1, (7.14)

and observe that for smooth F' this is easily solvable.
Next we consider a smooth one parameter family of solutions O(h). For this we compute
d

7(079,0) = 0yF — [F,07'9,0),

which immediately leads to
¢
0-19,0(1)] < / 04F (s)|ds.
0

Comparing two solutions O and O generated by F and F using the straight line between
them, it follows that

t
40().00) < [ 1F(s) = Fs)ids (7.15)
0
This yields a Lipschitz property for the map

Li>F —0eC,

which is thus by density extended to all F' € L].

Next we turn our attention to Ay, which by Bernstein’s inequality satisfies

Ay € C,L;.

This implies the desired continuity of O.

Finally we consider the evolution of O~19,0,

d

%(OflamO) = 0,40 — [Ag, 0710,0].
Since 0, Ag € L1L}, this immediately gives

07'9,0 € L1C, c CL*.
A second differentiation yields as well
0.(071'0,0) € L2C, c CL*.

b) The uniform bound for the difference follows directly from (7.15)). For the difference of
the derivatives we compute

9,(0710;,0 — 0719,;0) + [Ap, 0710;0 — O719,0] = 9;Ag — 0;Ag — [Ag — Ay, 00;0].

As above, we can estimate this first in L* and then in H'. O
69



To conclude the proof of Theorem it remains to verify (i) that gauge transformations
O having the properties in the above lemma yield temporal connections Al € C (H ), and
(ii) these connections depend continuously on the initial data.

For the continuity in time we write

A =04 - 0719,0)07.

The second term above is in C,H* due to the previous lemma. For the first term we dif-
ferentiate, then use again the lemma combined with the continuity of O and dominated
convergence.

For the continuous dependence of the temporal solutions with caloric data the same argu-
ment as above applies. However, we also need to consider general finite energy initial data
sets. Here the construction of the temporal gauge solutions starting from a general initial
data (a, ) goes as follows:

(1) Given the initial position a € H', we consider the gauge transformation O = O(a)
which turns a into (@, €), its caloric gauge counterpart.

(2) Given the caloric data (@, ¢é) we have as above an unique temporal solution A.

(3) To return to the data (a,e) we apply to A the inverse gauge transformation O~! to
obtain the temporal solution A.

The regularity of the gauge transformation O is O~'9,0 € H', which suffices in order
for it to map C'(H') connections into C'(H') connections. It remains to prove the contin-
uous dependence. Consider a convergent sequence of data (a™,e™) — (a,e) in H' x L2
Without any restriction in generality we can assume that (a,e) is caloric. Denote by O™
the corresponding gauge transformations, which, we recall, are only unique up to constant
gauge transformations. Then we need to show that for a well chosen (sub)sequence of rep-
resentatives O™ we have the following properties:

(1) (0™)~19,0" — 0 in H.

(2) O™ (x) = I ae. in z.

But this is a consequence of Theorem [I.2] see also Remark (recall also that O, =
Ad(0)(0710,0)).

8. MULTILINEAR ESTIMATES

The purpose of this section is to prove most of the results stated without proof in Section [4]
The exceptions are Theorem and Proposition [£.25] which involve construction of a
parametrix for O + Diff§ 4; their proofs are given in the next section.

8.1. Disposable operators and null forms. In this subsection we collect preliminary
materials that are needed for analysis of the multilinear operators in the nonlinearity of the
Yang—Mills equation in the caloric gauge.

8.1.1. Disposable operators. Boundedness properties of the multilinear operators arising in
caloric gauge (see Section [3) can be conveniently phrased in terms of disposability (after
multiplication with appropriate weights) of these operators.
We begin by considering the multilinear operator Q with the symbol
€2 —n>  _ (E+n)-(€—n)




which arose in the wave equation for A, (most notably through the expression for 9*4,) in
the caloric gauge.

Lemma 8.1. For any k, ki, ks € Z, the bilinear operator
2k BQ(Pyy (), Pry(+))

18 disposable.

Proof. To begin with, note the symbol bound

Qe < Lt

(1€2 + [n[?)z’
which implies that the symbol of 2F»==*P.Q(Py, (), Pr,(-)) is uniformly bounded. In the
case ky < k1 — 5 so that |kpa — k| < 3, it can also be checked that

2k ez |9 Q) (Py(€ + 1) QU m) Py (€) Pea ()] S 1

which proves the desired disposability property. By symmetry, the case k; < ko — 5 follows
as well. In the case |k1 — ka| <5 (so that |kmax — k1| < 10), making the change of variables
(£,¢) = (£,£ + 1), it can be seen that

2R (P(OQUEC — )P (€) P (€ = O] S 1
which implies disposability of 2k=x=* P Q(Py, (), Pr,(+)). O

Next, we consider the multilinear operator W (s) with the symbol

W(,n,s) = T2

which arose in the wave equation for the Yang—Mills heat flow development A, (s) of a caloric
Yang—Mills wave.

e*SIHnIQ(l — ),

Lemma 8.2. For any k, ki, ks € Z and s > 0, the bilinear operator
(527%)10(s7 127 2m) 92 W (P, (+), Py (+), 8) (8.1)
18 disposable.

Proof. Without loss of generality, we may assume that s = 1 by scaling. We distinguish two
scenarios:

Case 1: (High-Low or Low—High: k = max{k;, k2} + O(1)). To prove disposability of
(8.1)), it suffices to show that

<22k‘max > 112n1 k1 2n2k2

o) ( p —I£+nl21_—62§ﬂp P < 1
¢ n k(f + 77)6 5 n k1 (5) ko (77) ~N,M2

for any ni,ns € N. Since the derivatives of P(§ + 1) Py, (§)Px,(n) already obey desirable
bounds, it only remains to prove

<22kmax > 11 27’L1 k1 2n2k2

. 1 — 26
o gt (e—mzﬁ)‘ <ol (8.2)

for £, n in the support of the symbol (§8.1J).
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Since k = max{k;, ko} + O(1), we have 22kmax ~ |£]2 + |n|?> ~ |€ + n|2. On the one hand,
it is straightforward to verify

2n1k12n2k2|a§"1)87(]n2 \5+Tl\2| Soim 22n1k12n2k2(1+ €+ 1 )n1+n2 —[&+n[?

n +n
5n17n22(n1+n2) max<22kmax> 1 2 ‘5"1‘7]‘2 (83)
On the other hand, we also have
n n n n 1— % n n 1+ 2
g o o) (L0 ) | iU Jg )5 1+
an’n22(n1+n2)kmax (Q%hmax), mtn (14 e%m). (8.4)

The key point here is that when |£ - 5| < 1, the denominator & - ) cancels with the first term
in the Taylor expansion of the numerator 1 — ¢ - n; we omit the details. Combining (8.3]) and
(8.4]), it follows that

gl o) < e L= €7
3 7 €-n

Since e[ (1 4 ¢27) = e~ lE4l® o= (€PHIP) < o=CT12%max D) follows.

Case 2: (High—High: k£ < max{k, k2} — C). As usual, we make the change of variables
(£,¢) = (&,& +m). Tt suffices to prove
1 — (2669

aénl)agm) <Pk<<)€|g2mpkl (£)Pk2 (6 C)) ‘ ~ni,ng L.

Note that the derivatives of (225)10 P, (¢)e~ <" Py, (€) Py, (€ — () already obey desirable bounds.

Hence we are only left to show
— p26:(¢-9)
(m) yna) (L€ )
1 (g )| S &

2n1 k1 2TL2 ko

)| S fmyrsmscnicni(n g 60

<22k> 10 <22k‘max > 277,1 k1 2n2k

<22kmax > on1 k1 2n2k

for £, ¢ in the support of (8.1)).
Note that k; = kyax + O(1). In the case 2%Fmax < 1, . follows from

0800 (26 (¢ = )M (1= ) | Suymy 1,
which follows by Taylor expansion at € - (( — &) = 0. In the case 2%m=x > 1 we use
2n1k1 2n2k’a§nl)aé”2)(£ . (C _ é‘))*l‘ §2*2kmax,
2n1k12n2k|8é”1)aén2)(1 o 625'(C—§))| §17

both of which follow from simple computation, whose details we omit. O

8.1.2. Null forms. We now discuss the null forms that arise in caloric gauge, which occur
in conjunction with various (disposable) translation-invariant operators. To treat these in a
systematic fashion, it is useful to define null forms in terms of an appropriate decomposition
property of the symbol.

Definition 8.3 (Null forms). Let 7 be a translation-invariant bilinear operator on R and
let + € {+,—} be a sign. Given ki, ky € Z, {,{' € =N, w,w’ € S?, define

0. = max{|Z(w, £u"),2,2"}.
72



(1) We say that T is a null form of type N+ and write
T(o) =Na(,),
if for every ki, ke € Z, 0,/ € =N and w,w’ € S?, T admits a decomposition of the form
T((7,€), (0,0)(Pe, PE)(E)(Pry P ) () = 0:287520((7,€), (0,m)) Y i, (§)biy (),
i1,i2€N
where the Fourier multipliers
(L + fin) ™ as, (1 + [i2]) 0, (8.6)

are disposable, and the translation invariant bilinear operator with symbol

O((7,€), (a,m))
is disposable as well.
(2) We say that T is a null form of type N if T(-,-) = Ni(-,-) and T(-,-) = N_(-,-).
(3) We say that T is a null form of type Ny and write
’7'(.’ ) = -/VEJ,:I:(‘; .)7
if for every ki,ky € Z, ¢,/ € —N and w,w’ € S, T admits a decomposition of the form

T(&n) (P P)(€) (PP ) (n) = 6229720((7,€), (n,0)) Y ai(€)bix (),

11,i2€N
where the Fourier multipliers
(L+ fin) ™ as, (1 + Ji2]) ™, (8.7)

are disposable, and also the translation-invariant bilinear operator which has symbol

O((1,€), (o,m)) is disposable as well.

In particular, O, a;, and b;, may depend on ky, ko, ¢, ¢, w,w’, but the disposability bounds
stated above do not.

Remark 8.4 (Null form gain). To exploit the null form, it is convenient to make the following
observation: As a immediate consequence of the definition, we may write

Ni(Py, Peu, Py, P8 v) = C.257R2O( P, PPu, Py, PS'v)

for a universal constant C' > 0 and some disposable . Analogous statements hold for A
and N 4.

Remark 8.5 (Behavior under symbol multiplication). The properties in Definition seem
complicated at first, but its usefulness comes from the fact that it is well-behaved under
symbol-multiplication with a disposable multilinear operator. More precisely, if O(-,-) is a
disposable translation-invariant bilinear operator and 7 (-,-) is a null form in the sense of
Definition [8.3] then the translation-invariant bilinear operator with symbol O(&,n)T (&, n) is
clearly also a null form of the same type.

We now verify that the standard null forms are indeed null forms according to Defini-
tion[8.3] We have the following separation-of-variables result for the symbols of the standard

null forms.
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Lemma 8.6 (Standard null forms). Consider the symbols

Ni;i(&,n) =&n; —&mi, Nox(&,n) ==x[E]n] —&-n.

These symbols admit the decompositions

1617 |~ NG (€, m) (P, PP (E) (P, P ) () =min{0,,6_} > a;, (§)biy (), (8.8)
i1,i€N
€] |~ No+ (&, 1) (Pe, PE)Y(E) (Pro P ) (n) =03 > al ()b}, (), (8.9)
i1,i€N
where
(T [ [)Pas,, (U4 i) ®ag,, (1 + [ia]) sy, (1 + Jig])' 8, (8.10)

are disposable.

As a corollary, it follows that N;; is a null form of type A, whereas Ny 4 are null forms
of type Nx.
As before, a;,, a;j , by, and b;, depend on ki, ky, ¢, ¢',w,w’, but the disposability bounds

stated in (8.10) do not.

This lemma can be proved by performing separation of variables using Fourier series on an
appropriate rectangular box containing the support of Py, P¥(€) Py, PY (£'). For the details
in the case of |£|7|n|7'INy;(&, 1), we refer to [2, Proof of Proposition 7.8]. For Ny 1, observe

that No (€, 7) = €] n "No (¢, 1) obeys
Nos(&m)| S 0%, 10:Nox(&m)] $27560,  [0,Nox(&,n)] <2764,
OO ING (€, m)| S 27270 (ny + 1y > 2).
for £, 7 in the support of Py, P¥(€) Py, P (n). Using these symbol bounds, the case of Ny 4
can be handled by essentially the same proof as in [2, Proof of Proposition 7.8]. See also [,
Section 8§].

We now present algebraic lemmas, which are used to identify null forms in the Yang—Mills
equation in the caloric gauge. The following lemma identifies all bilinear null forms.

Lemma 8.7. Let O be a disposable bilinear operator on R'**. Let A be a spatial 1-form and
let u,v be functions in the Schwartz class on R'**. Then we have

O(P'A,0u) =Y N(ID["A;j,u), (8.11)

P.O(u,d,v) =|D|"'N (u,v). (8.12)
Moreover, we also have
O(9%u, 0av) =No+(Q " u, Q") + No 1 (Q 7 u, Q7 v) (8.13)
+No—(Q7u, Q7v) + No-(Q7u, Q) + Ro(u, )

where
Ro(u',v") =O((D; — |D))Q v + (Dy + |D)Q u, D)

+O(ID|(Q@" = Q™u'), (D = [DNQ™v + (D + [ D)@ v').
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Remark 8.8. As it is evident from the proof below, Lemma [8.7] readily generalizes to a
disposable multilinear operator O that has one of the above structures with respect to two
inputs. We omit the precise statement, as the notation gets unnecessarily involved. However,
we point out that this is all we need in order to handle the trilinear secondary null structure.

Remark 8.9. An alternative way to make use of the null form O(0%u, d,v) is to rely on the
simple algebraic identity

20(0%, Dyv) = 0O0(u,v) — O(Ou,v) — O(u, Ov). (8.13()
We have elected to use the decomposition (8.13]) to unify the treatment of null forms.

Proof. We begin with (8.11)) and (8.12). By Remark it suffices to consider the case when
O(u,v) is the product uv. Then it is a well-known fact (going back to [5l 6]) that P¢Ad,u
and P;(u0,v) are standard null forms, i.e.,

P Adpu = Nyj((—A) O A7 u), (8.15)
P;(ud,v) = (—A) 'O Ny (u,v). (8.16)

We omit the simple symbol computation. Hence and follow.

Next, we prove , which is essentially the well-known fact that 0*ud,v = —D*uD v
is a null form. To verify (8.13), we first decompose u = QTu + Q w and v = Qv + Q~,
then we substitute

DQ*u = £|D|Q*u+ (D, ¥ |D|)Q*u, D,Q*v==+'|D|Q*v+ (D, ¥ |D|)Q*v.
When O(u,v) = uv, the contribution of the first terms give

> (+ + IDIQ*ulDIQ* v — D'Q*uDQ* v) = 3~ Noswr (Q¥u, Q*'v).

+,4 +,4
By Remark , the same contribution constitutes the first four terms in (8.13) in general.
Note moreover that the remainder makes up Ro(u, v), which proves (8.13]). 0]

Next, we present an algebraic computation, which will be used to reveal the trilinear
secondary null form of the caloric Yang—Mills wave equation.

Lemma 8.10. Let O, O’ be disposable bilinear operators on RY**. Then we have
O'(ATTOWWY, 9pu?), 3°u®) + O/ (O 'P;0(uV, 9,u?), o'u®)
= O0'(O7'0WW, 0,u®),0°u®) — OO 'A719,0,0(uV, 9°u?), 9,u®)
— OO0 'A719,0,0uW, 0u®), 9°u®),
provided that A~*O, 0710 and O 1A7YO are well-defined in the sense that their kernels

have finite masses.

Of course, the requirement that the kernels of A~tO, O7'O and O'A~'O have finite
masses is excessively strong for the validity of the lemma, but it will be verified in the
applications below.

Proof. The proof of this lemma is the same as in [10, Appendix|. Using the identities

AT -0 =0"'A(=0}), P;B=B—A"'0:0'B;, " =—-0,=—0,
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and adding and subtracting O'(07'A719,0/O(uV, 9pu?), 9,u'®), we may write
O' (A0, 9pu?), 8°u®) + 0/(O7'P; 0wV, 9,u?), §u®)
= O0' (O 'O, 9pu®), %) + 0O O, 9u®), 0'u'®)
— OO 'A19,0°0wW, 9yu?), 0,u®) — O (O ATL90/0 (Y, du?), 9'u®)
— OO 'A9,0/0(wY, 9u?), 9,u®) — O'(OTAT9,0'O(uV, 9u?), 3%u®)
= 0(O7r0WY, 0,u?),0°u®) — O (O AT19,0,0(u?, 0*u?), 9,u®)
— O'(O0'AT19,0,0(uM, 0u?), 9°u®).

In the last equality, we paired the first and the second, the third and the fifth, and the fourth
and the sixth terms, respectively, from the preceding lines. 0

8.2. Summary of global-in-time dyadic estimates. In what follows, we denote by O a
disposable translation-invariant bilinear operator on R!**, and by A/ a bilinear null form as in
Definition [8.3|(2). Let u and v be test functions on R'**. For convenience, we also introduce
test functions v’ and ¢’, which stands for inputs of the form Vu and Vv, respectively, in the
applications.

Given k, ki, ke € Z, we define kp.x = max{k,ky, ko} and kuy, = min{k, k1, ko}. We use
the shorthands uy, = Py, u, v, = Pr,v and vy, = B, v’

8.2.1. Bilinear estimates for elliptic components. We start with simple bilinear bounds which
do not involve any null forms.

Proposition 8.11. We have

1 PO (s, i),y S270Emes—bo) | Dy [yl 0k, oo, (8.17)
| PO (s, i)y -y S22 x| Dy g0, e (8.18)
12Otk 0 g2 S27B 7520 D [, . (8.19)

Furthermore, we have the following simpler variants of (8.17), (8.18) and (8.19):

1 POy, v )y, 5201 bo) g | o s, (8.20)

1 PO (ke i) g g 270 o)y [ o s, (8.21)
2 . 4 _1 5 1 _5

| PO gy, ) gz S235mn2 350801280 (288 g | oo ) (2802 ol o). (8:22)

8.2.2. Bilinear estimates concerning the N-norm. Next, we state the N-norm estimates
which will be used for the bilinear expressions arising from PM, P*M and Rem"™?.

Proposition 8.12. We have

| PN gy, gy )| v S27 01 Fmex=Fmin) 28 || Dy || 5[ Doy ||, (8.23)

| PeO(0% gy, Davg,)|| v S27 0 max=Fmin) 9hmax || Dy || || Doy, ||, (8.24)
_ _ . 1

PO (uj,, vg,) || 1z S27 0 Emen=hmind g || 0 (2652 |0y || 2o ). (8.25)
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Furthermore, for any k € N, we have the low modulation gain

1PLQ < =N (Q i =tk QiU ) | 2728 D, ||| D ||, (8.26)
HPkQ<k5mm7"iO(aaQ<kmmfﬁukl ? aaQ<km1n*’§'vk’2) HN S2761K2kmax HDukl HS Hka2 HS (827)

For the term Diff , B, we need to distinguish the case when the low frequency input A
has a dominant modulation. For this purpose, we borrow the bilinear operator H; (and its
“dual” Hy) from [10].

Given a bilinear translation-invariant operator O, we introduce the expression H; O [resp.
H; O], which essentially separates out the case when the modulation of the output [resp. the
first input| is dominant. More precisely, we define

H1.O(u,v) Z Q;0(Q<j—cu, Qcj_cv),

Jig<k+C

”H,k(’) Z Q<] CO(QJU Q<] Cv)

jii<k+C

for some universal constant C' such that C < Cy, where (Y is the constant in Lemma [8.21]
We also define

HO(u,v)= > PBHO(Pyu, Prv),
k.k1,k2:k<ke—C
H*O(U, U) = Z HzlpkO(ijua Pk21)>.

kb1 k2 iki <ka—C
We are now ready to state our estimates for the N-norm of the term Diffp4B.
Proposition 8.13. For ky < k — 10, we have
1P (1 = H N (ID[ g, v
1 Pe(1 = H, ) O (u, , vy,
| PeHE, N (1D g, v,
| PeHy, O(up,, vy,

v S| Dug, ||s|| Dok, ||s,
v Slluwl, g8 1Vk,ls,

|5 Slluw, |21 ][ Dur, || s,

~— ~— ~— “—

I Shawsll 30010 lls-
Furthermore, for ky < k —10 and any x € N, we have

1P HE, N (1D Qs =t vk )l 27 |tk || 22 [| D s, (8.32)

| P O(Qt et Vi) Iv 527 k|31 [0 s (8.33)

8.2.3. Bilinear estimates concerning X "P-type norms. We now state the Z'-, Z} - and Zl

norm bounds. We begin with the ones for the bilinear expressions arising from P./\/l2 Remﬁ
and M3.

Proposition 8.14. We have

1PN (g, vy )mizy, S2701Emex= ki) 28| D, | ]| Do |, (8.34)
| PN (tny, viy) oz S270F1 782028 Doy ||| Doy, |, (8.35)
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Furthermore, for k < ky — C, we have

1 Pe(1 — Hi )N (gy, vy ) 020 S27M 28| Dy, || s]| Doy ||, (8.36)
1P (1 = Hie) O uny vi) | (3 0y 50 S2700 0 Dug, || s|vh, [ (8.37)

The following bounds are for the null form arising from Diffp_, B; we remark that this is
the only place where we need to use the intermediate Z;O—norm.

Proposition 8.15. We have

||PkN(|D|_1uk1,%)Hmz*;o S27 0 thmaxhmin) ||y, | 61| Doy, |54 (

||PkN(|D’_1Uk1,ng)Huz;D 270 e —Hmi ”Uk1H51mzl [ D, | s, (

| PN (| D] iy, Oy ) azn S27 0 (e himin Huleslle | D, ||, (8.40
(

||PkN(|D|_1uk17vk2)H 52_61(19"‘% mm)Hukl ||SlmZ1§0 “kaa “S

X*%*’blv*bl

Finally, the following bounds are used to handle Diff’y B and Diffp. 4, B.

Proposition 8.16. We have

1 PO (u, , v, )0z, 270 bma i) || Dy [y [, s, (8.42)
1PeO (g v, ) oz S27 0B Rmind | D |y [0, s, (8.43)
1 PeO (ttgey, Ve, )|~ 3401, <20 Umax—Fmin) | Dagy ||y |0 |- (8.44)

8.2.4. Trilinear null form estimate. Let u™M u® 4B be test function on R, Given k; € Z,
we introduce the shorthand ux) = P,ut (i=1,2,3).

Proposition 8.17. Let O and O’ be disposable bilinear operators on R4, Let j < k — C
and k < min{kg, k1, ..., ks} — C. Consider the expression

Nl ) u?) =Q i cO'(A PQ;O(Qejctt), 00Q<j-cul)), 8° Qi)
+ Q<jchl(DflPijPeO(qucukl ; 39:Q<jfcuk2 ) 8ZQ<jfcu,§i))-
Then we have
cubic 2
IVEe () ) )| e S 2701 R =000 Dyl || g || Dul || s || Dl . (8.45)

In fact, for later use (in Section [L1)), it is convenient to also state a more atomic form of
(8.45). Given k; € Z and a rectangular box C, we use the shorthand ul y = PkiPCa)u(i)
(i=1,2).

kC<

Proposition 8.18. Let O and O be translation-invariant bilinear operators on R** such
that O(P¢-, Pg'-) and O'(Py-, P4'-) are disposable for every (,{' € —N and w,w’ € S®. Let
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j<k—C,k<min{ky, k... kst —C and CV,C? € {Cp(0)}, where { = £ We have

2
1Py Qej-cO' (07 PQiO(Qujoctily) ), BaQujmcil o)), 0° Qo)) a2
< 270016 Dy ) s oI Dy e siglenor | D s, (8.46)
1Phy Q- cO'(O7 AT PuQ;0,0.0(Qej—ctty) oy, 0°Qujctty ay), iQejcufy) ) 1122
< 2002 D Dyl s e 1D o s ol D s (8.47)
HPkoQ<j—C@'(D_1A_lPijafﬁaO(Q<j—C“i(cll),c<1> ; aeQ<J‘—C“1(32),c<2>>7 0" Qej-ctiy) e
S 27102 D) s tewonll Du o sy cnn | D s (8.48)

8.3. Proof of the interval-localized estimates. In this subsection, we prove all estimates
claimed in Section [4 except Theorem [£.24] and Proposition [£.25] which are proved in the next
section.

The key technical issue we address here is passage to interval-localized frequency envelope
bounds (as stated in Section 4] from the global-in-time dyadic estimates stated in Section .

In what follows, we denote by © and O disposable multilinear operators on R'** and R?,
respectively, which may vary from line to line. Similarly, ¥ indicates a generalized time
cutoff adapted to the scale 27%, which may vary from line to line.

8.3.1. Estimates that do not involve any null forms. Here we establish Propositions 4.12]
[4.13] [4.14] and [4.18] whose proofs do not involve any null forms.

Proofs of Propositions and[{.13. We introduce the shorthand A’ = 9,A and B’ = 0,B
Using (4.25) and Lemma [8.1] to write
|D|~" PoMG (P, A, P, B

)=
PQ(Pr, A, Py, B)
)
) =

27%P.O(P, A, P, B'), (8.49)
=29~ kmax B O (P, A, Py, B), (8.50)
|D|"'P.Q(Py, A, P, 0,B) =27% (8.51)
|D|?P,DMG (P, A, P, B (8.52)

dePkO(PklA PkQB/)
2 ko=hmax p O(Py, A, Pr, B).
Step 1: Fixed-time estimates. Applying Holder and Bernstein (to one of the inputs or
the output, whichever has the lowest frequency), we obtain

PO (P, v, Peyv')l[ 22 S 22’“m“‘l u/HLQHv’HLQ (8.53)

Recalling ([8.49 - the fixed-time estimates and - follow.

Step 2: Space-time estimates. Here, we prove the remaining estimates in Proposi-
tions and [4.13| In this step, we simply extend A, B, A’, B’ by zero outside I. Further-
more, we define

MO small(A B) Z PkM(2)<Pk1A7 Pk2B)7 (854)
|I‘v'nnxaux_kmin|2"‘€
Mot (A, B)= > PMJ(P, A P,B). (8.55)
|kmax_ min|<fi
so that MIS’2<A7 B) MO small(A B) + MO large(A7 B)
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Step 2.1: L2Hz-norm estimates. We first verify (£.29)-(%.34), [.36) and (£.38) with the
L2Hz-norm (instead of the Y-norm) on the LHS. All of these estimates follow from (8.17])

and (8.49)—(8.52)). The small factor in (4.31]) arises from the exponential gain in (8.17)) and

the frequency gap & in (8.54)), whereas the factor 2M in (4.33)), (4.34) and (4.38) arises
from (4.21)).

Step 2.2: L*L>®-norm estimates. By Holder’s inequality, we have

—0
1Bell o S IRl | Pra

where 0y = 2(1}0 — 1) € (0,1). Therefore, ([4.29), and follow by combining
R.19) with the L2H?-norm estimates from Step 2.1. On the other hand, for we use
8.22)) instead of , which allows us to use the DS'-norm on the RHS at the expense
of losing the exponential off-diagonal gain. Finally, for and , observe that by

(8-22), (8-50) and (8.51) we have
11D~ Q(Py A, Py BY) | prpee S 270 B bmi) | B Al pa ||| DI~ Py, B'|| pst
for o = 0, 1. Therefore, the L' L>*-norm bound in ([4.37) follows directly, whereas the Y -norm

bound in ([#.37) and (#.38) follow after interpolating with the L2H >-norm estimates from
Step 2.1. 0

(8.56)

0o
LW —1,00

10
Proofs of Proposition [/.14 For this proof we use the square function L; L? component of
the Sy norm, for which we have

s = 2708 Ju|

||u LTLQ‘
x Li

We recall that the symbol of AA3 is
¢
AA3E ) = o
’ 1§12+ nl?
Then we use Bernstein at the lowest frequency to estimate
HP]CAAg(Akl,atAkQ)HLle SJ 272(k27k1)+27%k1Q%kQQ%kmmcklckQ 5 27%(kmaszmi")cklck2.

Now the bound (4.39) immediately follows due to the off-diagonal decay.
O

Proof of Proposition [{.18. The bounds in this proposition are trivial consequences of Propo-
sition along with the observation that ||| Dlul|gyo < [[Vul[ , ;1. We omit the details. [
8.3.2. Estimates for PM?, P M? and Rem®". We now present the proofs of Proposi-
tions [4.15] and [4.20, which require the bilinear null form estimates in Propositions [8.12]
as well as the X**P-type norm estimates in Propositions [8.14] [8.15 and |8.16}

Proof of Proposition[4.15. Unless otherwise stated, we extend the inputs A, B by homoge-
neous waves outside . For k, kq, ko € Z, by Lemma [8.1], note that

P.PM?* (P, A, P, B) = P,LPO(P;, A, 0, Py, B), (8.57)

P.P*M? (P, A, P, B) = 27 P.O(0, Py, A, 0* Py, B), (8.58)
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for some disposable operator O on R*. Note also that, by Lemma the RHSs are null
forms.

Step 0: Proofs of (4.40), (4.40). In view of (8.57)) and (8.57]), both follow easily using the
standard Littlewood-Paley trichotomy and (8.53)).

Step 1: Proofs of (1.42)), (1.43), (£.44) and (4.45). The N-norm bounds in and
follow from the null form estimates (8.23)-(8.24). On the other hand, the OJX'-
norm bounds in and follow from (8.17), (8.18)) and (8.34); we remark that the
DZ;O-norm bound for P+ M is unnecessary, since PP+ M = 0. Estimates and
immediately follow from , where we may simply extend A, 0, A, B, 0; B by zero outside
I as in the proofs of Propositions and above.

Step 2: Proofs of (4.46), (4.47), (4.48) and (4.49). Since the case of PM? (i.e., estimates
(4.46]) and (4.48)) can be read off from [I7, Proof of Proposition 4.1], we will only provide a
detailed proof in the case of P*M? (i.e., estimates (4.47)), (4.49)).

Step 2.1: Off-diagonal dyadic frequencies. If max{|k — ki|, |k — k2|} > &, then by (8.24]) we
have

| PP MP (P A, Py, B) || v S 2701 maxhmin) | B Al g1 || Py, Bl 1

5 2—%51/{2—%51(kmax_kmin) |Pk;1A||Sl ||Pk§2B||Sl .

K,2

Hence the contribution in the case max{|k—ki|, |k—k2|} > & can always be put in P-M5* .

Step 2.2: Balanced dyadic frequencies, short time interval. Next, we consider the case when
|k — k1| < K, |k — ko] < K and |[I| < 27%CF Then by Hélder and (8.58)), we simply estimate
||PkPJ_M2(Pk1A7 Pk2B>||L1L2[I] 5 |I|%||Pk‘PJ_M2(Pk1A7 Pk2B>”L2L2[I]
< |I[227Fmx | O(8° Py A, 9o Py B) || 212
_3 _3
S 299DV Ay [l || D73V B, || g,

Therefore, when |I| < 27*C% the contribution in the case max{|k — ki|, |k — ko|} < K can
be put in P M2

large*

Step 2.3: Balanced dyadic frequencies, long time interval. Finally, we consider the case when
\k — k1| < K, |k — k| < & and |I| > 27%+C% We define PYM? by the relation

large
> PP M?(Py, A, P, B)
max{|k—k1|,|k—k2|}<r
- Z PkQ<kmin*'€PJ_M2(Pk1 Q<kmin*l€A7 B, Q<kmin7'€B) + PJ_MZ;zge(A7 B)

max{|k—k1|,|k—k2|} <k

By (8.27), the first term on the RHS gains a factor of 27%* and therefore can be put in
Pt M" Now it only remains to establish (&.49) for PLM/>* defined as above.

small* large

By definition, PXM{>? (A, B) is the sum over {(k, ki, ko) : max{|k — k1|, |k — ko|} < s}

large
of

PP M*(Py, A, P, B) — PiQop, .. P M?*(Py, Qe w4y PoyQa . B).
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Since we are allowed to lose an exponential factor in  in (4.49), it suffices to freeze k, ki, k2

and estimate the preceding expression. At this point, we divide into three subcases:

Step 2.3.a: Output has high modulation. When the output has modulation > 2Fmin=¢ we use
_1

the Xf " ?-component of the N-norm. Since the kernel of P,Q)>x decays rapidly in t on

the scale ~ 27%2¢% we have

min —K

||PkQkain_HPJ—M2(Pk1A7 szB)HXO’_%[I] f§ 20“2_%k||xllC PJ_MZ(PMAJ Pk2A)||L2L27

1

for some generalized cutoff function Y% adapted to the scale 27%. Then, by Proposition m,
2923 ||\ PEMP (P, A, Py A)r2ge S 277 I DIV Py Al sl 5| DI 4V Py Bl s
_3 _3
S 297DV Py Al papan | 1P| ™5V Py Bl a gy,
which is acceptable.

Step 2.3.b: A has high modulation. Next, we consider the case when the output has mod-
ulation < 2Pmin=* yet A has modulation > 2*min=*  The kernel of P,Q . _. again decays
rapidly in ¢ on the scale ~ 27%2¢%_ For any 2 < ¢ < oo, we have

HPk@<kmin,nPlM2(szminfnpklA, P, B) L1z
< 297X PEMP (Qs gy —n Py A, Py B) || 1112
< 20%|| D7 0P, All o 2 X5 |D*7 8V Py Bl| pap
< 29%|| D[0P, All o o 1D 4V Py B pagoein,

min

where we used Proposition on the last line. Taking q = 2, we see that the last line is

bounded by < QC“HDP,QAHLQH,%[I]HPkQBHDSlm, which is acceptable.

Step 2.3.c: B has high modulation. Finally, the only remaining case is when the output and
A have modulation < 2#m»=* but B has modulation > 2¥mn—=% Proceeding as in Step 2.3.b,

and using the fact that the kernel of Py, Q) decays rapidly in ¢ on the scale ~ 27¥2C*
we have

min —HK

1 Pe@Q <t P M (Q i nPits A Qi Prs B) | L1 211
S QCNH><IIC PJ_M2(Q<I€1*NP]€1A7 QZkQ*K/PkQB) HLlL2
3 1
S 29%(IX7 1PN 2V Q <k Py All 2 || D] 720 Py, B 122

" _3
S 2 NIDEV Py Al prein 0P Bl -y

which is acceptable.
Step 3: Proofs of (50) and ([@51). Since the L2H~z-norm bounds follow from (&.21)),
(4.44) and ([4.45)), it remains to only consider the N-norm. The case of PM? can be read

off from [I7, Proof of Proposition 4.1]. Finally, for P+ M?, we split into the small and large
parts as in Step 2. For the small part, we already have

[PAME2, (A, B)]

small

N S 27| Al i M.
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For the large part, we proceed as in Step 2, except we choose ¢ = % in Step 2.3.b. Then by
(#20), ([@.21) and the embedding Str'[I] C L*LA[I] N LT L>[1], it follows that

P MG (A B) v S 297 | All oy M.
Therefore, choosing 27% = ¢ with ¢ > 0 sufficiently small, (4.51]) follows. O

Remark 8.19. As a corollary of the preceding proof in the case of PM?, we obtain the
following statement: Let O be a disposable operator on R*, and let A, B be g-valued functions
(or 1-forms) on /. Then we have

"P’f(O(alp]ﬂA? a]PkQB) - O(8JPk1A> 8ZP/€QB))”N[”

e (8.59)
< 20 manbmin) 28| Py Al ps | Pro Bll s
Moreover, if (B, I) is (e, M )-energy dispersed, then
||P/€<O<81P/€1A’ aij2B) - O(ajpk1A7 6ipk2B))||N[I}
C(kmax—kmin) ok ~c6 (8.60)
5 2 ( max mln)2 €C 1HPk1A||§1[[]M
Proof of Proposition [£.20. We decompose Rem’;* B into
RemAzB Rem§2AB + RemPLAB + RemZOzB
where
Remp?,B= Y 2P[P,P, A 0P, B (8.61)
ko1 ik, > ko —k
Rem? ,B= > 2PJ[P,P{A0P,B (8.62)
k.k1,k2:k1>ka—K
K,2
Rem’;’B=— Y 2P[Py Ay, P,0,B] (8.63)

k.k1,ka:k1>ka—kK

By Littlewood—Paley trichotomy, note that the summands on the RHSs of f
vanish unless £k — ky <k + C.

Unless otherwise stated, we extend the in may not coincide with P+ of the extended A
outside [ in general.

Step 1: Proofs of (4.77) and . The N —norm bound in - 4.77)) follows from Lemma
and (8.23) for Remy”, B, and l) for RemP B, RemZQB On the other hand, for the

OX'-norm bound in -, we apply (8.17)), (8.18)), (8.34) to Rem 4B, and (8:20), (8-21)

and (8.42)) to RemP * 4B, Rem’y A ’B. Finally, (4.78 - follows from (8.17] and -

Step 2: Proofs of -, - and (4.8]] . The term RemA’O B can be put in RemﬁameB,
since for each triple (k, ky, ko) within the range k1 > ko — K, by (8.25)) we have

| Pr[Pr, Ao, Py 0, B]|| 211 = || PO (X1 Py Ao, X1 Py 0:B) || 1 12
< 27| P.O(x1|D| Pi, Ao, X1|D| 7 Pe,,B) | 1112
| Py Aol | P, Bllpst(n-

S 252_61 (kmax _kmin)

.3
L2HZ(I)

Similarly, the term RemP 1 4B can be put in Remy largeB Moreover, the contribution of

these two terms to are clearly acceptable, since they need not gain any small factor.
83



It remains to handle the term Rem;’j 4B. We proceed differently according to the length
of I. If |I] < 27*+C% we define

K,2 _ ¢
RemA,smallB - § 2Pk [PKPk1A7 0 PkgB]7
k‘,k‘1,k2:k‘12k‘2—f€,max{‘kl—k2|,‘k1—k|}200f€

and if |I| > 27%+C% we define

K,2
RemA,smallB

— > 2P, [P Py, A, 0Py, B
k,k1,k2:k1 >ko—k, max{|k1—k2|,|k1—k|}>Cok
+ > 2PsQ <ty —Con [Pt Pry Q kg~ Con Ay 0 Py Q <o Bl

k,k1,k2:max{|k1—ka|,|k1—k|}<Cor

In both cases, we put the remainder Rem?f 4B - RemZ’ima”B in Remiﬁar g B

Choosing Cy > 0 large enough (depending on d;), it follows from Lemma , and
that Rem'Xima”B obeys the desired bound ; this bound is also acceptable for
(4.81). On the other hand, the contribution of Rem;’f 4B — Remi’ima”B in and
can be handled by proceeding as in Steps 2.2-2.3 and 3 in Proof of Proposition [4.15} for the

details, we refer to [17, Proof of Proposition 4.6]. d

8.3.3. Estimates for Diffp. , B and high modulation estimates for Diffp 4 B. Next, we prove
Propositions [4.21| and which mainly concern the X ~2+t—t1 0 O X ' -norm of Diff%, ,B
and Diffp 4 B.

Proof of Proposition[{.2]. We extend B by homogeneous waves outside I, and P+ A by zero
outside I. Note that

IDP*Ally SIP* Ay, [1Bls: S I1Bllsii. (8.64)

To prove ([£.82), we need to estimate the X ~2+t00-0 nOX norm of y,Diff%, ,B. We may
write

XiDiffp. B =Y " 2[Po_ Py A x;0'P Al = Y 2°O(Py_ P A x P A).
k k

Then by (8.20)), (8.21)), (8.42) and (8.44)), as well as (8.64]), we obtain (4.82)). On the other
hand, (4.83) simply follows from Hoélder’s inequality L'L> x L®L? — L'L?. U

Proof of Proposition [f.23. We extend A, B by homogeneous waves outside I, and Ay by zero
outside /. In addition to ||Al[s1 < [[Alls1(, observe that we have

IDAolly S 1 Aollvips  [IPAllzy, S IPAllzg my  [PAllz S IPAlz 1 (8.65)
Moreover, by (4.10)), we have
Ix1VA[s S IVA[ls S Allsim,  IxiVBlls S [VBlls < [|Bllsin- (8.66)

We first prove (4.84]), for which we need to estimate the X —2th-bi A X ' norm of
xDift’y B. We may write

XiDiffy, B = = " 2[Pey Ao, xs0iPuB] = Y | O(Pe_Ag, X1 PO B).
k k
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Then by (8.20), (8.21), (8.42) and (8.44), as well as (8.65)(8.66)), we obtain (4.84)).
1-

For (4.85]), (4.86) and (4.87]), by Lemma we may write
x:Diffy B = — Z 2[Pey_nPeA, x10°P,B] = ZN(|D|—1P<k_KPA, Y1P.B).

By (8-38), (8.39) and (8.41]), combined with (8.17), (8.18) and the extension relations -—
(8.66)), we obtain the desired estimates.

8.3.4. Estimates for Diffp ,B. Here we prove Propositions [4.23] [4.26| [4.27] 4.28 and [4.30].
Note that, by the estimates proved so far in this subsection, we may now use Proposition
(see also Remark [5.5).

Before we embark on the proofs, we first establish some bilinear Z'-norm bounds that will
be used multiple times below.

Lemma 8.20. We have
| PsPM?(x1 Py A, Piy B) oz < 270 MRl By Allsin || Pe, Bllstins
| PeM (X1 Py A, P, B) || 110 S 27 R2 B A1y || Py Bl sty
| Pu[ P, P oA, X109 Pry Bl oz < 2701 B i) || B Al| 11| Py Bl 1711,
|| Pe[ Py G, X1V Py B ||z S 270 Bmax=kmin) || B Gl y11|| Pey Bl s -

8.67
8.68
8.69
8.70

P
— ~— ~— “——

Moreover, for k < k; — 10, we have

I(1 = Hp) PP M (X1 Pry A, Py B)|lngn S 270 Fmefowd | B Al i | P, Bl (8.71)
1(1 = Hp) PeMG (X1 Pry A, Pro B)|| S 27t kmekmin)|| B Al 11| Py Bllsr. (8:72)

A7D721 ~

These bounds follow from Lemma [8.7, (8.19), (8.36), (8-37), (8.40) and (8.43), where we
use (8.65)) and (8.66|) to absorb y; and return to interval-localized norms. We omit the
straightforward details.

Proof of Proposition[{.23. As in the proof of Proposition [4.22, we extend A, B by homoge-
neous waves outside I, and Ay by zero outside I. Furthermore, we extend P+ A by zero
outside I, and denote the extension by G (we emphasize that, in general, G does not co-

incide with P1A outside I). In addition to (8.65)) and ([8.66]), by Proposition (see also
Remark we have

1Allsr S 1, [[DAolley S 1, || DGy Sm 1. (8.73)

In the case of the L2H~2-norm on the LHS, - now follows easily from - and -
It remains to estimate the N-norm of Diff; o P 4B.

By our extension procedure, note that Py, Ay and Py, P,A obey the equations

APy, Ag =Py, (X1 A", 1Al 4 2Q(A, x18,A) + x1AA(A))
0Py, P, A =Py P (PM?(x1A, A) + 2[Ag, x10:A] — 2[Ge, x10°A] — 2[P,A, x10" A])
+ Py P (x1R(A) — x;Rem®(A)A) .
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For the cubic and higher order nonlinearities, by Theorem and Proposition 4.19] we have

HXIPkoAAg(A)HL1L2 SM 1, (874)
X1 P R(A) | 2122 Sar 1, (8.75)
||X1Pk0Rem3(A)AHL1L2 SM 1. (876)

For the quadratic nonlinearities, we use 1} for [XIAE 0;Ag] and Q(A, X 10/A); Lemma

and (8.35) for PM?[xA, A); Lemma for —[P,A, x10°A]; and for
[Ag, x10,A] and Gyx;0°A]. Combining these Wlth the cubic and higher order estlmates and

the embedding L'L2 C OZ' N A~202Z', we arrive at
HPkOAO"LlL"O—FL?H%mA’%D%Zl Sul, (8.77)
[ Pro P All 22 Sil. (8.78)

By Lemmal[8.7, (8:28), (8:29), (8-30), (8-31) and Hélder’s inequality L*L> x L®L? — L'L?,
it follows that

||PkD1ff;k0A0PkQB||N 5||PkOAO||L1L°°+L2H%QA7%D%Z1 ||DB||S7

| PeDifts, p, APk, Blln S|Pk PeAllsinz: [| DBs.

Thanks to the frequency gap « > 5, note furthermore that the LHSs vanish unless k =
k2 + O(1). This completes the proof of Proposition [£.23| O

Proof of Proposition [4.20, Estimate follows easily using Holder and Bernstein. To
prove (4.95)), we extend PA, B by homogeneous waves outside I, so that || Py, OPA| 12 <
| Pe, OPA| 1121 and || Py, Blls1 < || Py Bl|si- Moreover, by the embedding L'L* C N N
07!, we have ||Pk1PA||Slmzl < ||Pk1VPA(t0)||L2 + ||Pk1DPA||L1L2 Then (4.97)) follows by

Lemmam and - OJ

Proof of Proposition[{.27. Here, in addition to the bilinear null forms (Lemma/8.7), we need
to use the secondary null structure (Lemma |S.

Without loss of generality, we set t5 = 0. We extend B, B and B(Q) by homogeneous
waves outside I, then define Ay and PA by solving the equations (4.96)) and ( , respec-
tlvelyﬂ In Ag and PA, we separate out the (high x high — low) mteractlon terms by
defining

A= > AT'R[P,BY PLOBY),
k,k1,ko:k<ki—10
pA" = N O'RP[P,BY,0,P,BY).
k,k1,ko:k<ki—10
where (07! f refers to the solution to the inhomogeneous wave equation Cu = f with
(u, 0u)(0) = 0. We also introduce
HAY = Y AT'WB([P,BY, PLo, By,
k,k1,k2:k<k1—10
HPAM = >~ O'WyPP[P,BY,0,P,B"].

k,k1,ko:k<ki1—10

9We may put in y; on the RHSs of (4.96) and (4.97), but it is not necessary.
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Accordingly, we split
Diff§ , B = Z (2[Pepon(Ag — HALM), 0°PuB] + 2[Pej—n(PeA — HP,AM™), 0° P, B])  (8.79)

+Z [Poy_HAR", 0° Py B) + 2[Poy_ HP A" ' P, B)) . (8.80)

By Propos1t10ns [4.12] [4.15) and Lemma [8.20, we have
[ Aolly1, + [ Ao — AG" |1 os + | — HAG
IPA||gs, + [PA"™ = HPAY™ | 51 S[IBW|s:[| B? |55

Combining these bounds with Lemmal[8.7, (8.28), (8:29), (8-30), (8-31) and Holder’s inequal-
ity L'L> x L*L? — L'L?, it follows that

I [Par—w(Ao — HAG"), °PB] |, SIBY
k

BY| s B® 515

—§D2zl I\JH

@l

1D [Pern(PeA = HP,A™), 0 PBl|, S|I1BY
k
which handles the contribution of . On the other hand, unraveling the definitions, we
may rewrite as
=3 (Qi-cO'(A ' PQ;O(PL Qej o BY, dyPuQes 0 B®), 0°Q<;y o Pi, B)
+ QejcO' (O ' PQ;P1O(Pr, Qe BY, 0, P, Qj—c BY), 0 Q- cPkdB)>

for some disposable operators ©@ and (', where the summation is taken over the range
{(k, k1, ko, ks) : k < k1 — 10, k < ks — k + 5}. By (8.45)), it follows that

|Gz < 1B

which is acceptable. Finally, for the L2H~z-norm of Diff§ ,B, note that (8.17) and the
preceding bounds imply

@lsal

||Pk(DIH;AB) ”ngf% 5 Ck—/idk—neka
which is better than what we need. O

Proof of Proposition[{.28 As in the preceding proof, we extend B, BW and B® by homo-
geneous waves outside /. This time, however, we also extend PA by homogeneous waves
outside I. We moreover extend By and P+ B W by zero outside I, where the latter is denoted
by G, Note that P A solves the equation

OPA = P ([P:BY, 10 B + (B, i B + [G{", x10° B))
By Lemma and the frequency envelope bounds (4.100)—(4.101]), it follows that
1
IPA[z < (1B s+ (8§ )aG(l))”Yg[I])”B(Q)||s;[1] <1 (8.81)

On the other hand, recall that [|[PA[|s1 <1 by (4.101)). Therefore, by Lemma 7 (8.28)) and
(18.30)), we have

IDiffg, 4By, <1
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On the other hand, by (8.17)), we also have

| PLDIfER, AB) .y 4 S i

which is better than what we need. The desired estimate (4.102]) follows. U
Proof of Proposition [f.30. We move the problem to the entire real line using the free wave
extension for PA, and B, and the zero extension for A.

The expression |D|7'[V, Diff 4] B is a translation invariant bilinear expression in PA and
B, whose Littlewood-Paley pieces can be expressed in the form

D"V, Diff}, p ] kB = 2 *O(PyP A4, 0°PB), K <k—rk (8.82)

with O disposable. By (8.11)) the spatial part is a null form, so we can rewrite the above
expression as

2 *N(PyPA,, P.B) + 2 *O(Py Ay, P.0,B)

We consider separately the spatial part and the temporal part. For the spatial part we use
the bound (8.23)) to estimate

127N (PeP Ay, PiB) v S 27" 1| PP Allst || Blls»

which suffices after summation in &' < k — &.
For the temporal part we use instead the bound ({8.25)), which yields
’ — 51 lk—k'
12¥ O(Pi Ao, PuB)l| e < 27 WM D Al , 1 1Bl
which again suffices.
The expression Diff;, ,p s B—(Diff 5 ,p 4)* B is easily seen to have the same form as in (8.82),
so the same estimate follows. O

8.3.5. FEstimates involving W. Here we prove Propositions{4.16] [4.17|and [4.29, which involve
2 2
w§ and wy.

Proof of Proposition [4.16. By definition , we have
Powi(Pi, A, Py, B,s) = —2P,W (P, 0,A, P, AB, 5).
Applying Lemma to the expression on the RHS, we have
PyW (Py,,0,A, P, AB, s) = — (522710 (g7 197 2kmax\=19=2kmax92k2 p O (P, 0, A, Py, B), (8.83)

for some disposable operator O on R*. The rest of the proof follows that of Proposition m
First, by (8.53)), it follows that

11D~ Piws (P, A, Py B 5) 2
S <822k>—10<8—12—2kmax>—122(kmin—kmax)2k2—k||Pk1 atAHL? “szBHHl

From this dyadic bound, the frequency envelope bound (4.52) follows. Indeed, for any
0 < ¢ < 49 and any ¢’-admissible frequency envelopes ¢, d, we compute

<522k>710<571272kmax>7127§(kmaxfkmin)ckldk2 5 <822k>710<871272kmax>7127%5(kmaxfkmin)ckdk
< (s22K) 1012y 3l g (8.84)

which proves (4.52)). The estimate (4.53)) follows in a similar manner from (8.53)).
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Next, extending 0;A and B by zero outside I, then applying (8.17) and (8.19), it follows
that

Pk A,P]@B,S)H

11D Piwi (P, 23

S (527F) 10 (g7 2 Phmax) T 1O e min) 92U ~kmax) | Py Al )| Py Bll st 1)
1|D| 7> Pew(Pe, A, P, B, )|l 112

S (s2%F) 10 (s 2 Phmaxy T 12 k) | DAl 1| Py Bl s -

Using (4.21)) and (8.56|), these two bounds imply (4.54) and (4.55)), as in Proof of Proposi-
tion [4.12] Step 2. O

Proof of Proposition [4.17. We begin with algebraic observations. By , we have
PP;w?*(Py, A, Py, B, s) = — 2P,P;W (P, 0,A", 0, Py,,0, By, 5)
+4P,P;W (P, PO, A", 0,P,,0,B, s) (8.85)
+ 4P, P;W (P, P0,A",0,P,,0,B, s),

where, by Lemma 8.2 we may write
PP;W (P, 0, A", 0, Py, 0: By, 5)

= (52%k) 710 (g1 Zhmax ) ~lo=2kmax P P O ( Py, 0, A, 0, Pr, 0, By), (8.86)
P,P;W (P, 0;PA* 0,P.,0,B, 5)

= —2(s2%)710(g7 197 2hmax ) ~Lo=2kmax p O (P, Py, 0, A, 0 Py, 0, B), (8.87)
P.P;W (P, 0;P+ A", 0,P,,0,B, s)

= —2(522F) 710§ 7197 2kmax) =19 =2kmax P O( Py, 0, Py A, ' Pr,, 0, B), (8.88)

for some disposable operator O on R*. Note that (8.86]) and (8.87)) are null forms according

to Lemma and is favorable since 8;P A is controlled in the L2H2-norm.
Given the above formulas for w,, the proof of the estimates (4.56) and (4.57)) is almost
identical to the proof of (#.52) (4.53)), using the dyadic bounds (8.53)),(8.53]) and (8.84]).
We now prove (4.58)). We extend A, B by homogeneous waves outside /. By ({8.17), (8.18),

Lemma , (8.23)) and (8.34)), it follows that
| PP ;W (Py, 0, A, 0, Pr, 0,8, 5) || nooixt
< <S22k>710<871272kmax>712761(kmaxfkmin)2k1+k272kmax||Pk1A||S1HPk?BHSI
| PP;W (P, 0,PA, 0, Py, 0. B, 5)|| noox?
< <822k>—10<8—12—2kmax>—12—51(kmax_kmin)2k+k2—2kmax||Pk1A||Sl | Pe, B|| 1
| PP ;W (Py, 0,PA, 0, P, 0,B, 5)|| yrox:
< <S22k>—10<S—12—2kmax>—l2—61(kmax—kmin)22k2—2kmaxHpklatPJ_AH

[2E% “szBHsl'

Clearly, 2k+k2=2kmax  gk+hk2=2kmax and 22k2=2kmax are bounded, so they may be safely discarded.
By the same frequency envelope computation (8.84]) as before, we obtain (|4.58]).
In the energy dispersed case (4.59)), we proceed as in the proofs of Propositions and

4.20L The contribution of (8.88)) is already acceptable, since we need not gain any smallness
89



factor. Moreover, for the contribution of (8.86) and , the case of L2H~2 on the LHS
can be easily handled using and (4.21)); we omit the details.

It remains to consider only the N-norm of and . For a parameter x > 0 to be
chosen below, the preceding proof of (4.58]) imply that in the case kyax — kmin > K, we have

|(B:86) || + [|(BBT | < (522F) 10 (571 Hhmax) =19~ 30180~ 381 (hmnax—himin) || B A|| g1 | P, Bl |1

On the other hand, when k. — knin < K, we may apply Lemma (in particular, (8.15))
and (8.16)) and Remark [8.19, which implies

IBSO v + BB < (s27) 7 10(s7 27 2mx) T12 e || By Al g1 M.
Choosing 2% = ¢° for a sufficiently small ¢ > 0, and performing a similar frequency envelope

computation as in (8.84]), we arrive at (4.59). O

Proof of Proposition[{.29. We first note that both wq and w, depend on 0, By, for which we
control ||0;B1||s, and ||P+0;Bi|ly,. We may assume that

10:BM| .17, P9 BV |y, 111, ||B(2)||sd1[1],

= L

We can now extend d,B; by zero outside I, and B and B by free waves. Then the problem

is reduced to the similar problem on the real line. We begin with the simpler L2H ~2 bound.
For that we use (4.53) and (4.58]) to obtain

HkavoanH Pl ooy S (522) 70712 ) Rd (8.80)

and then conclude with (8.17)) respectively (8.20)).
It remains to prove the N bound. We define

I(k,’/,kﬁl,k’g,k’,s) :(—[A 1Pk/WO(Ple( ) P]€2 ) 8th ]
+ [0 P Pw2(P, BY, P, BY, s),0'P,B]),
Z(K', ki, ks, k) on I. Introducing the shorthands

so that Diffp 4B = > o o e

<k—k
kmax = max{k’, k1, k2 }, kmin = min{k’, k1, ko }
and
(k' ke, b, 8) = (5228)710 (19~ 2hmax) =198t (max—hinin)
we claim that
|Z(K', k1, ko, K, 8)||v S (K, K, ko, 8)ck, dyyer. (8.90)

This would conclude the proof of the proposition after summation with respect to k; and k.

We start with a simple observation, namely that we can easily dispense with the high mod-
ulations of 9,81 and B; using Lemma 8.2] combined with Holder and Bernstein’s inequalities
and also and . Thus from here on we assume that

P, 0,BY = P, Q,,0:BY,  P,0,B® = P,,Q4,0,B®
In view of (8.85)) and the identity

wa(A, B, s) = —2W(0,A, 02 B, s) — 2W(9,A,0B, s),
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we may expand

I(K ky, ko ki, 8) = 2[Pw A""W (P, 0,BM, 0P, B, 5), 8,1, B]
+4[D LPuPW (P, PO,BY™ 0, P,,0,B?, 5), 0" P, B
+ 407 Py P, W (P, P+9,BY™ 9, P,,0,B? . s), 0' P, B]
+ 2[A" Py W (P, 0,BW, 0, P,,0,B?, 5), 0, P, B]
—2[0°'P.P,W (P, 0,BY"™ 0,P,0,B?, 5),0"P.B.
=Za) + L) + L) + Ly + L)
The first term is easily estimated in L'L? using Lemma and Holder and Bernstein’s
inequality by
IZoylloree S 1PwAT "W (P, 0,BY, 0Py, B®), s)|| 1 1< |0 P B | 1+ 12

< (522) 710 (57 g Phmax) Lo 3 (hmnin~kmas) || 9, P BO| Ly | DP B, . 1 ex

L2H™2

which suffices.
To continue, we use ([8.25)), (8.35) and the embedding L'L? C (07!, we have

| Py P W (P, PO, BV, 0,P,0,B?, 5)||neo < ok Ky, ko, 8) ey diy
| PP W (P, PL0,BY, 0, P,0,B? ., )| naozr < a(k, ki, ks, 8)c, di,

This yields

|0~ PyPW (P, PO, BY 0, P;,,0,B?, 5)||snzr < alk, ky, ko, §)cr, dpy
|0 Py P W (P, PL0,BY, 0, P, 0,B?, 5)||snz S a(k', ky, ko, 5)cpy dy,
We use this directly for the next two terms Zs) and Z3), arguing in a bilinear fashion.
The desired N bound for both is obtained using both and with x = 0.
The final two terms are combined together in a trilinear null form,
Ty + L5 = Dift ;B
where
Ay =A"PyW(P,0,BW,0,P,,0,B?, s),
and
A, =0"'P,P,W(P,0,BY™ 0,P,0,B?, s)

At this point we have placed ourselves in the same setting as in the proof of Proposition [£.27]
Then the same argument applies, with the only difference that, due to Lemma[8.2] we obtain
an additional factor of

<822k’>710 <871272kmax>71 272kmaz 2k1+k2

as needed. Here the factors 25 and 2*2 come from one time derivative on B(M)| respectively

B® at low modulation. Thus the N bound for Z(4) + Z(5 follows. O
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8.3.6. Estimates for Rem®(A)B and Rem?(A)B. Finally, we sketch the proof of Proposi-
tion 4. 19

Proof of Proposition[{.19. By Holder’s inequality and Bernstein, it suffices to show that the
following nonlinear maps are Lipschitz and envelope preserving:

Str' 5 A — (DAg, DA) € L> Hzt N L* {2~
Str' 5 A — A, € L2H?

The same applies for the maps
Str' 5 A — DAg, € L> H2* N L* H>~

Str' 3 A — A, € L2H?
with the addition that now the output has to be also concentrated at frequency k(s).
The Ay property is a consequence of for the quadratic term, and (3.23) for the
cubic part A3. Similarly, the Ag.; property is a consequence of for the quadratic term,

and (3.36)) for the cubic part A,
The DA property follows from (a minor variation of) (4.36]) for the quadratic part, and

(3.18)) for the cubic part DA3.
Finally, the DA, property is a consequence of (a small variation of) (4.30)) for the quadratic
part and of ([3.24)) for the cubic part. Similarly, for DA we need (a small variation of) (4.53))

and of (3.37)). O

8.4. Proof of the global-in-time dyadic estimates. In this subsection, we prove the
global-in-time dyadic estimates stated in Section [8.2]

8.4.1. Preliminaries on orthogonality. Let O be a translation-invariant bilinear operator on
R!**. Consider the expression

// w0 u®) dtdz. (8.97)

Our general strategy for proving the dyadic estimates stated in Section [8.2] will be as
follows: (1) Decompose u' by frequency projection into various sets, (2) Estimate each such
piece, and (3) Exploit vanishing (or orthogonality) properties of (8.97)), which depend on the
relative configuration of the frequency supports of u(9’s, to sum up. Some simple examples
of orthogonality properties of that we will use are as follows:

e (Littlewood—Paley trichotomy) If u) = P, u then vanishes unless the
largest two numbers of ko, k1, ks are part by at most (say) 5. This property has already
been used freely.

e (Cube decomposition) If u¥ = P, Pesu™ with C* = C;_. (0) (i.e., is a cube of dimen-
sion 2kmin x ... 2kmin) gituated in {|£| ~ 2%}, then vanishes unless C°+C'+C? 3 0.

To obtain more useful statements, let C™*, C™*d and C™" denote the re-indexing of
the cubes C° C! and C?, which are situated at the annuli {|§| ~ 2kmax}  {|¢]| ~ 2kmea}
and {|¢] o~ 2kmin} | respectively. Then for every fixed C™™ and C™#* [resp. C™¢4], there
are only O(1)-many cubes C™ [resp. C™*] satisfying C™" 4 C™ed +C™2x 5 (). Moreover,
we have

yl(cmax’ _Cmed>’ 5 2kmaxfkmm'

Geometrically, such cubes C™* and C™¢ are “nearly antipodal.”
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We will also exploit the relationship between modulation localization and angular restric-
tion for (8.97)). In the proofs below, we will only need the following simple statement. For a
more complete discussion, see, e.g., [25].

Lemma 8.21 (Geometry of the cone). Consider integers kg, k1, ko, jo, j1,J2 € Z be such
that |kmed — kmax| < 5. Fori = 0,1,2, let w; C S* be an angular cap of radius r; < 27°,
+; € {+, -}, and u') € S(R'™™) have frequency support in the region {|&| ~ 2k, é—| €
wi, |7 — 4|€|| = 27}, Suppose that jumax < kumin, and define { = %min{jmax — Kmin, 0}.

Then the expression vanishes unless

£ (i, pwy)| S 2mmmmm Rk} 9f 4 manc{ry, i}
for every pairi, i € {0,1,2} (i #7).
Finally, we collect some often used estimates. For k' < k and ¢/ < —5, note that

_5 1 _ Ly
278 P, oyunllops + 275 7282720 | Py enyunll o poe S 1 Peyseryunll sty o),
where, by (4.1), we have

S Pl S Nuall, = fusl3
Ce{Cpr (¢}

Also note that, for any j < k + 2¢, we have

D P QesunllEoore S lunllf, = lluxllz,
w

by disposing @~; (using boundedness on L>L?) and using S;"¢ 2 Sj.

8.4.2. Bilinear estimates that do not involve any null forms. We first prove Proposition [8.11],
which does not involve any null forms.

Proof of Proposition [8.11] In this proof, we adopt the convention of writing LPL¢* for LPL?
with g7' = ¢! — &y. In particular, if (p, q) is a sharp Strichartz exponent with §; < p~! <
1§y, then 25 +a=27100kg4,0  ppat.

To prove (8.17)), we apply Holder and Bernstein (on the lowest frequency factor), where
we put ug, in LiLi* and Vg, 1D L¥L%+. The proof of is similar, except we put
U, in LOL%T. The proofs of (8.20) and (8.21)) are similar; for (8.20), we apply Hélder and
Bernstein with uy, in L2L> and vy, in LL2, and for (8.21]) we put vy, in L'8L instead.

It only remains to establish (8.19) and (8.22)). First, (8.22)) follows simply by applying
Holder and Bernstein (on the lowest frequency factor), where we put ug,, v, in L2LS. To

prove , we divide into two cases. When k > k; — 10, the desired bound follows by
Holder, where we put both wuy, and vy, in L?L>®. On the other hand, when k < k; — 10,
we have k = ki, and k1 = ko + O(1) by Littlewood—Paley trichotomy. We decompose the
inputs and the output by frequency projections to cubes of the form Cx(0), i.e.,

Pko(ulqu;@) = Z Pkpco(Pclukl, Pcﬂ);fz),
cclce?

where C,C!,C? € {C1,(0)}. The summand on the RHS vanishes except when —C+C'+C? 3 0.

For a pair C and C! [resp. C?|, there are only O(1)-many C? [resp. C'| such that the preceding
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condition holds. Moreover, there are only O(1)-many C in the annulus {|¢| ~ 2¥}. Therefore,
by Hélder and Cauchy—Schwarz (in C' and C?), we have

27| PeO (uy , v, ) 211

2
S27% (Z IIPcwklllizLoo) (Z ||PCQU;CQ||%2L°°>
c2

Cl
S 1 Du, [|sl[v, s,
which completes the proof. 0

8.4.3. Bilinear null form estimates for the N-norm. We now prove Proposition [8.12 We
start with a lemma quantifying the gain from the null form O(9%(-), d.(-)), which is a quick

consequence of Lemmas and [8.21]

Lemma 8.22. Let ka klv k27j7j17j2 Sat'l.Sfy kmax_kmed S 5; jajlvj? S kmin+00; jl = ]+O(1)
and jo = j + O(1). Define ¢ = min{I4mi2 0}, and let C,C*,C? be rectangular bozes of the
form Cy_. (£). Then we have

PeQ;PeO(0°Qj, Porug,, 0aQ <y Porvr,) = C2% PoO(N Peruy,, V Poavy, ) (8.98)

for some universal constant C and a disposable operator O.

-
[NIES

Proof. By disposability of P,Q;FPc, P, Q<j, Fer and Py, Q <, Pe2, we may harmlessly assume
that (say) 7,71, J2 < kmin — 5. Then we can decompose

PiQ < PeO(0%Q<j, Porug,, 0aQ<j, Pezvr,) = Z PQE. PO(0°QEL Poruk,, 0.Q22, Pervy,).
+ 4 4

By Lemma [8.21} the summand on the RHS vanishes (and thus (8.98)) holds trivially) unless
|£(£1C, +5C?)| < 2% In such a case, (8.98)) follows from the decompositions ([8.13) in
Lemma [8.7 and the schematic identities

NO,:‘:1:|:2 (Qi;l Pe Uk, sz Pczka) =k the 224@(PC1 Uk, PC2Uk2 )’
Ro (Q§;1 Pcl Uy Qi; PC2 U]Q) ICQJ‘Q* min{k1 ’kz}O(VPcl Uk, » VPCQ (U ),
which in turn follow from Definition (see also Remark and (8.14)), respectively. [

Proof of Proposition[8.13. Estimates (8.23)) and ({8.26]) were proved in [I7, Proposition 7.1].
Estimate (8.25) is a simple consequence of Holder and Bernstein for u;, , vg, or the output,

depending on which has the lowest frequency. In the remainder of the proof, we prove (8.24))
and (8.27) simultaneously.
Step 1: High modulation inputs/output. The goal of this step is to prove

Kkmin thkmax

[P O(0% U, s Oaky) = Pr@ <t Q0% Q<tin Uk s OaQ<homin Vi) [N S 272 ||V, [ s[|Von, ||
(8.99)
Note that this step is vacuous for (8.27)). Here we do not need the null form, and simply

view O(9%uy,, 0%vy,) as O(Vuy,, Vg, for some disposable O.
We begin by reducing (8.99) into an atomic form. For j, 71, jo > kmyin, wWe claim that

'/ijk@(Q<j1u;€17Q<j2U;€2>dtd'x S 27202022 | oy Nl ls vk, llzoez2. (8.100)
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Once we prove (8.100)), then by duality (recall that N* = L>®L? N ch’?) we would have
> IBQi00 uk,, 0w, | S22 Vg, || Vg | o

jzkmin
lp AL
Z HPkQ<kminO(aanuk17aavk2>HN 522kmm22k2‘|vukl‘|xo’%HVUIQHSJ
2kmin ~
> 1PQk O(0° Qs 00 Qv )| v S22500235 |V, | 5| Vs | O

J >km1n

from which (8.99)) would follow
To prove (8.100), we decompose u', v, w by frequency projection to cubes of the form
Ckmin<0) i.e.

/Q]wk(’) Q<jy Uy, Qjpy,) dtdr = Z /Q]Pcoka(Q<hPc1uk1,Q<j2Pcwk ) dtdz,

coclce?

where C,C!,C? € {Cy,,..(0)}.

Let C™x C™ed and C™" denote the re-indexing of the boxes C%, C', C?, which are situated
at the frequency annuli {|¢| o~ 2kmax} [|€] o~ 2Fmea} and {|¢] ~ 21“""1“} respectively. The
summand on the RHS vanishes unless C™® 4 Cmed - Cmin 5 (), For a fixed pair C™® and C™a*
[resp. C™d], this happens only for O(1)-many C™°? [resp. C™*]. Moreover, note that each C'
lies within an angular sector of size O(2*min=ki); hence, Qj, Pe: is disposable (i = 1,2). Thus,
by Hélder, Cauchy—Schwarz (in C™* and C™°) and the fact that there are only O(1)-many
cubes C™® situated in {|¢] ~ 2*min} (so any ¢"-sums over C™" are equivalent), we have

Z /Q]PCOMkO(Q<j1PC1Uk1, Q<j, Pe2vy,,) dtdx|
CO el e

<||Z||QJPcowk( )z2)2 ||L2||ZHPC1UI€1 i) HﬁHZH%z% o)l

< ||ijk||L2L2 > HPCluklHL2L°°>§HUk2“L°°L2
Cl

< 2 2]2kn111122k1||wk|| 0 1 ||uk1||S||/Uk2||LOOL2

as desired.
Step 2: Proofs of (8.24) and (8.27). For j < kuyin and ¢ = J*k%? we claim that

1PQ;0(0°Q gy, DaQ<jvny) ||y S27 20 Fmin) 2309 5kmin 381 | Gayy ||| Vg, |ls,  (8.101)
| PeQ<;O(0° Qi , DnQjvny )| v S27 20 Fmin) 23093 ming3k2| |7y [[5[| Vg, |5, (8.102)
| PeQ<; O(0°Q juny , BaQvny) ||y S27 20 Fmin)23003kmin 351 | Gayy || 6] V[l (8.103)

Assuming that these estimates hold, we first conclude the proofs of (8.24) and (8.27)). We

start with (8.24). By Step 1, it suffices to estimate PyQ -y, . O(0Q k... Uk, Q<kpin Vky)-
Decomposing the inputs and the output using Qx . = i<k Q;, and dividing cases

according to which has dominant modulation (corresponding to j in the above estimates),

(8.24) follows by summing (8.101)—(8.103]) over j. To prove (8.27)), observe simply that the
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modulation restrictions of the inputs and the output restricts the j-summation to j < kyin—+k
in the preceding argument.

It remains to establish (8.101])—(8.103]).

Step 2.1: Proof of . Here we provide a detailed proof of ; similar arguments
involving orthogonality and the null form gain will be used repeatedly in the remainder of
this subsection.

We expand

PQ;0(0°Qejury . 0aQejvr,) = > Y PQFPc0O(0°QE} Porug, , 0,Q% Peauy,),

=+o0,%1,42 C0,CL,C2

where C°,C!',C? € {Cy_..(()}. By duality, in order to estimate the summand on the RHS, it
suffices to bound

/ PyQ5° Poow O(0° Q% Perug,, 0a Q22 Pezvy,,) dtdr. (8.104)

Let C™ C™ed and C™" denote the re-indexing of the boxes —C,C',C?, which are situated
at the frequency annuli {|¢| o 2kmax} {|€] ~ 2Fmed} and {|¢| ~ 2Fmin} | respectively.

Note that (8.104)) vanishes unless C° + C' 4+ C? 5 0. Combined with the geometry of the
cone (Lemma [8.21)) we see that: For a fixed C™* [resp. C™], (8.104]) vanishes except for
O(1)-many C™" and C™*¢ [resp. C™**]. By Hélder, Cauchy—Schwarz (in C™** and C™°) and
Lemma [8.22] we obtain

>, Y. EIod)

+o0,%+1,%2 CO,CL,C2

1
S Z 22EII(X: 1@ Peow(t, )[172)2 [l 2
x || ZIIVPw% S PSE A ZHVPC?UIQ( o) 2l

S ZQMHPinOwHLW Z ||VPC'1UIC1||L2L°°) [V g, [ oo 2
+o0

< 2—512552’“""“25'“1||w||X0,% Vg, [| 5] Vor, | L2

By duality, (8.101)) follows.
Steps 1.2 € 1.3: Proofs of (8.102)) € (8.103). We now sketch the proofs of (8.102) and

(8.103)), which are very similar to Step 2.1. As before, we expand each modulation projection
to the f-parts, and decompose the output, u, v by frequency projection to —C° C!,C? €
{Ck,...(0)}, respectively.
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We proceed as in Step 1.1 but put the test function w in L>*L? and the input with the
dominant modulation in L?L?. Then we obtain

Y Y / / PQZ8Peo O(0° Q7 Peruy, , 0aQE2 Peauy,,)|

+o0,%1,%£2 C0,CL,C2

S 27223280230 w2 | Vg || o,y [ Voka s,
(oo}

Y Y / / PrQ=8 Peo O(0° Q= Peruy, , 0aQ7 Peauy,,)|

+o0,%1,%£2 C0,CL,C2

$ 27223280230 [ o 2 | Vg | [ Vora | o3
(oo}

By duality, (8.102]) and (8.103|) follow. 0J

8.4.4. Bilinear estimates for the X5%P-type norms. Next, we prove Propositions [8.13] [8.14]
R.15 and BI6l

Proof of Proposition[8.13. Estimates (8.28]) and were proved in [I0, Eqns. (132) and
(133)]; note that the slightly stronger S'-norm is used on the RHS in [10, Eqns. (132) and
(133)], but the proofs in fact lead to and (8.29). Estimates (8.30) and (8.31) follow
from slight modifications of the proofs of [10, Eqns. (134) and (140)] (the Z-norm in [10] is
stronger than ours), as we outline below.

For (8.30), we first recall the definition of H*. For each j < ki — C, we introduce ¢ =
+(j — k1) and decompose

PeQj—cN(ID| ™' Qjury, Qcjmcvi,) = > PaQej—cN(ID| 7' P Qjuky, PLQ<j—cvny).

By the geometry of the cone (Lemma [8.21)), the summand vanishes unless |/(w, )| < 2°
for some sign £. In this case, the null form N gains 2¥17%22¢ (cf. Definition [8.3)), and hence
we have

HPkQ<j—CN(|D’_1QjUk1> Q<j—cVry) | L2
S > 22| PEQjur, || 110 || P Qo || oo 2

w,w’ming |£(w,tw’)|<2¢

1
2
1_ 1 W /
S2k22(a =200t <§ (22 200)f)| P Qk+2éuk1||LlLoo)2> (E | Py Q<j—cvk2||%°°L2>

w

2

2
1 1 w
S2lam2)t (Z@(z*%”na cmuklnm)z) | Dvg || 5-

w

In the second inequality, we used Cauchy—Schwarz (or Schur’s test) with the fact that the
w,w’ is essentially diagonal (i.e., for a fixed w, there are only O(1) many w’’s such that the
sum is nonvanishing, and vice versa). Summing up in j < k; — C, then using the definition
of the Z'-norm, follows.

Next, is proved by essentially the same argument (with the same numerology) as

above. Here we do not gain 2¢ from the null form N, but rather from the extra factor A2z
97



in the norm A—202Z%. Finally, (8.32) and ({8.33]) follow from the preceding proofs, once
we observe that the modulation localization of ug, restricts the j-summation to 7 < k; — &,

which then leads to the small factor 2~ (3—2b0)% [l

Proof of Proposition[8.14 In view of the embedding N N0OZ' € OZ] , would follow
once is proved. Estimates (8.36) and (8.37) follow from (134) and (141) in [10],
respectively. Moreover, when k& > k; — C, (8.35)) follows from (134) and (135) in [10]. In
using the estimates from [10], we remind the reader that the Z-norm in [I0] (which is equal
to >, HPkQ<kuH 11,) is stronger the Z-norm in this work. Moreover, although (134),

(135) and (141) in [10] are stated with the S'-norm on the RHS, an inspection of the proof
reveals that only the S-norm is used.

It remains to establish in the case k < k; — C. By Littlewood—Paley trichotomy;,
note that the LHS vanishes unless k = ky, and k1 = ko + O(1). By , we are only left
to show that the JZ'-norm of

P HN (ug,, vg,) Z PLQiN(Qej—ctn,, Q<j—ck,) (8.105)
j<ktC

is bounded by < 2*|| Duy, [|s]| Dvg,||s-

Consider the summand of (8.105)). We decompose the inputs and the output by frequency
projections to rectangular boxes of the form Cr(¢), where ¢ = min{j%, 0}. Then we need to
consider the expression

PoQ;PeN(Q<j—cPerug,, Q< j—c Pe2vy,)

where C,C!,C? € {C(¢)}. This expression is nonvanishing only when —C +C! +C? 5 0. In
fact, combined with the geometry of the cone (Lemma , we see that for each fixed C!
[resp. C?], it is nonvanishing only for O(1)-many C and C? [resp. C!]. The null form gains
the factor 281+%22¢. By Hélder and Cauchy—Schwarz (in C! and C?), we have

HPijN(Q<ijuk1> Q<jfcvk2)HDZl
3 _ 1.
=272k 3| Z PrQ; PeN (Q<j—cPerug,, Q<j—c Pe2vg,) || 1 oo

c,cl.c?
1 1
Sko—Lioki+kaol 2 2 2 2
5 272 2 279 1+ 29 Z ||Q<j_0P51U]€1||L2Loo Z ||Q<j—CPC2Uk2||L2L°°
cl Cc2
Cl(p
< 2720 02F| Duy || s || Do, |-
Summing up in 57 < k+ C, the desired estimate follows. OJ

Proof of Proposition[8.15 For all the estimates, the most difficult case is when k < k —
10 (low-high interaction) and when uy, has the dominant modulation, i.e., the expression
PkHleuDrluknvkz)'

Step 1: Proof of (8.38)), (8.39) and ({8.40). We divide into three cases: (1) ky > k — 10;
(2) k1 < k—10 but either the output or vy, has the dominant modulation; or (3) k; < k— 10
and uy, has the dominant modulation.

Step 1.1: kv > k—10. In this case, all three bounds can be proved simultaneously. The idea
is to apply Propositions and [8.14] Indeed, by (8.35) and the fact that the LHS vanishes
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unless k1 = kmax + O(1) (Littlewood—Paley trichotomy), we see that
||PkN(|D|_1uk17vk2)||DZl 5 2k_k1||Pk|D|_1N(uk17 U’C2)||Dzl
< 27 rlhmnmin)|| Duy ||| Do, 5.
Combined with (8.23)), it follows that

| PN (| D] iy, 0y) | vemizn S 27 €0 maxhmin) || Doy || || Doy, || 5.

By the chain of embeddings N N 2! C DZ;O - DZ;O, the desired bounds follow.

Step 1.2: ky < k — 10, contribution of 1 —Hy, . Note that, by Littlewood—Paley trichotomy,
PN (|D| tuy, , vp,) vanishes unless ki = kyin and k = kpay + O(1). In Steps 1.2.a-1.2.c
below, we estimate the 0Z'-norm of Py(1 — Hj; )N (|D| 'uy,, vg,). Then in Step 1.2.d, we
conclude the proof by interpolating with .

Step 1.2.a: High modulation inputs/output. The goal of this step is to prove

- - 1k
1PN (D] iy, 01 ) = PrQai N (ID] ™ Qe ot s Qe via) Iz 2718 [ D ||| Dy 5.

(8.106)
Here there is no need for null structure, so we simply write N'(|D| " ug,, vg,) = O(ug,, Dvy,)-
We begin by proving

|1 PeQk, Olusy, Doy lloz S 270 | DI 2wy, [ 2o || Doy (8.107)

For 57 > ki, we decompose

PiQi PLuO(uy,, Dug,) = > PeQ;Pii O(ur,, DPE s vy,).
2 ] 2 2

Since J%k > ky — k, for each fixed w there are only O(1)-many w’ such that the summand on
the RHS is (possibly) non-vanishing, and vice versa. Therefore, by Hélder, Bernstein and
Cauchy-Schwarz, we have

2(_%+b0)(j_k)2_2k <Z HPkQJP;u;’CO(ukM DP%U@)H%le)
- 2 2

UJ,

1
2
<230 G=R)g= 3 k=) (9= 31 ||y, || 12700 (} :(QékZHPf—/kaHLQLG)Z)
2

S S [PT P

Summing up in j > ki, we obtain (8.107)).
Next, we prove

| Pe@ <oy Oty , DQgoy Uiy)lmzs < 270 0| | DI~ g || p2 oo || Dok, | - (8.108)
By ({.6) and (uniform-in-j) boundedness of Q; on L'L? we have
1PLQ iy flloz S 270 R £l o ge. (8.109)
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Therefore,

[ PQ<y Oy, DQjvy )z S27 ™| @k, Ok, , DQju,) || 1112
$27 200 E ) (728 fluy, | 21 ) | DQj k| o,

oo

1
2

22Uk bR DI =2y || oo | Do, | 5.
Then summing up in j > kq, (8.108]) follows.

To conclude the proof of (8.106)), note that ||| D]~ 2ug, || 1210 < || Dug, ||s. Moreover, observe
that

PrQ <1, O(Qjuk,, DQ <k, vry)

vanishes unless j < ki + 10.

Step 1.2.b: Output has dominant modulation. Here we prove
Z HPijN(‘D|_1Q<]'1uk17 Q<j20k2) ||DZ1 52_b0(k_k1) ”Dukl ||S||DU/€2 ”5'7 (8110)
j<ki

where ji, j» = j + O(1).

Let £ = 1(j — ki). After decomposing ug, = >, P uy, and vy, = >, P¥", vy, consider
2

the expression
PkQ]P;}%’CN(|D|_1Q<]1PEJ uk17Q<j2P;U%kvk2)-

Using the geometry of the cone (Lemma [8.21]), observe that for every fixed w [resp. w”], the

preceding expression vanishes except for O(1)-many w’ and w” [resp. w]. Moreover, for such

a triple w,w’,w”, the null form N gains a factor of 2¢. By Holder, Bernstein (for P¥, vy,)
2

and Cauchy—Schwarz (in w,w”), we have

| PQ;N (1D 7' Qe jytthy, Qjp Uiyl

2

S 20Uy (Z ||PijPfg’“N(|D|1Q<j1“k1,Q<j2Uk2)H%1Loc>

w

2
< 2003k glg—5(k—ky) (SUP TélequPf/uleme) (E (2ék2||Q<j2P7kUk2||L2L6)2)
’ 2

w

S, 9—bo(k1=j)9—bo(k—k1) ||Duk1 HSHkaz ”S

Summing up in j < kq, (8.110)) follows.

Step 1.2.c: v has dominant modulation. Next, we prove
Y IPQi N (1D Qejyuy, Qjvwy)lmzr 27| Du, ||| Do 5, (8.111)
J<ki

where jo, j1 = j + O(1). As before, let ¢ = &ZF. By ([@.6) and (uniform-in-j) boundedness

2
of Q; on L'L?, we have

1P.Q<jflloz S 270F D) fllige.
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Hence it suffices to estimate the L'L? norm of the output. This time, we decompose uy, =
S, Péuy, and vy, = >, P vg,. By the geometry of the cone, for a fixed w, the expression

PeQoiN (D71 Q oy, Pou, , Q5 PF vy,

vanishes except for O(1)-many w’ and vice versa. Moreover, the null form A gains a factor
of 2. By Hélder and Cauchy—Schwarz (in w,w’), we have

2_b0(k_j)||PkQ<joN<|D|_1Q<j1P€wuk1u Q]’PE&/UIQ)”UL2

1
2
N3 g lpr ol BRI » o
S 27 hokgstgakigTas (Z@ 2M272Qy B Uk1||L2L°°)2> (Z(2k2|\Qy‘Pz UmHXo,%)?)

[NIES

/

w w

S 2tk =bo k)| Dy 5| Dug, s
Summing up in j < ky, (8.111)) is proved.

Step 1.2.d: Interpolation with (8.28)). Combining (8.106)), (8.110) and (8.111]), we obtain
1Pe(1 = Hi DN (D] sy vg)loz S 27| Duy, ||| Doy ||

1
On the other hand, (8.28) and the embedding N C Xo 2 yields a similar bound for
1
the X *-norm without the exponential gain. Nevertheless, since we have ||f HDZ%O <

Hf||QDOZ1||f||;003% where 0y = 2(]%0 - 1) >0,

1Pe(1 = Hi N (D] uny, via) oz, S 27" Dug, ||| Do .

Then the desired estimate for DZ;O follows as well, thanks to the embedding DZ]}O - DZ;O.
Step 1.3: ky < k — 10, contribution of Hy, . This is the most difficult case. We consider

PyH;, N (| D[ gy, or,) = Z PiQ<j-cN(IDI7'Qjuy, Q<jcvi,)

j<ki+C

As before, by Littlewood—Paley trichotomy, this expression vanishes unless k; = ki, and
k= ke + O(1).

Recall that all three norms DZ;O, 0Z,, and OZ" are of the type X"P To ensure the
(*-summability in w in the definition (4.3)), we go through the LPL? norm. More precisely,

by Bernstein and L*-orthogonality of P¥,, note that
2

1PeQ; fll o S 2528524200262 | £ 1, .
Since b + %(% — 1) > 0 in all of these cases by (4£.4), we have
1PeQefll o S 2422672222262 £y o (8.112)

Hereafter, the proofs of the three bounds differ.

Step 1.3.a: Proof of (8.38)). We decompose the inputs and the output by frequency projec-
tions to rectangular boxes of the form Cy, (¢). Then we need to consider the expression

PiQ<j—cPeN(ID| ' QjPerug,, Q< j—cPezvy,)
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where C,C!,C? € {Cy,(¢)}. Note that the above expression is nonvanishing only when —C +
C! 4+ C? > 0. Moreover, by the geometry of the cone (Lemma [8.21), for each fixed C [resp.
C?], this expression is nonvanishing only for O(1)-many C! and C? [resp. C], and the null
form gains the factor 2F1+*22¢,

For exponents pi, pa, q1, 2 > 2 such that p; ' +p;' = p~tand ¢; ' +¢; ' = 27, proceeding
carefully to exploit spatial orthogonality in L?, we have

HPkQ<j—C'N(’D|_1quk1> Q<j—CUk2)HLpL2
= || Z PrQ<j—cPeN(ID| 7' Q; Porug,, Q<j—c Pervi, ) || o2

c,clcz?
SIOC D PiQejc PN (1D Qs Perun, ; Q< jmc Peavi, ) (8, )[172)2 |1y
c cle?

1
< 220 Sup [|Q Feru, (£, )l o[l s 1O 1Q<j—cPervna (8, )[F2)? 122
1 c2

1
< 22%|Qjuny || o1 s (ZHQqcPcwsz%szqz) : (8.113)
c2
We now apply (8.112)) and (8.113) with
5 3 1 11 20
b — (2 (5 b)) — — (= — b0)Bo, o, 2,2, — 20 o0,
(57 apap17Q17p27q2) (4 p0+<4 0> 0, 4 <4 0) 0, P05 4; ,2_p0,00)
where 6y = 2(pi0 — 3). We then obtain

||PkQ<j—cN(|D|_1Qj“kuQ<j—0“kz)||DZ;0

< 9715 kgko(= 5= (i =b0)00) (=R 9~ 3130 =9T (1=Rof | )y | r2re <Z ||PC2Q<j—CUk2H%p2L°°>
CQ

2
=341 (1= L)+ (L =b0)00) (k1—7) o (— L (1= ) 4+-(2 —b0)00) (k—k1) 2
S A T (Z|rDPcwk2\|sk2[cm<m> |
c2
On the last line, we used

3_ _ _ _1
||Q<j—C’Pc2Uk2||L1;>2LOO 5 9(5=00)L5(2=00) (k1 —k2)9(2—360) k2 ||PCQUk2||Sk2 (Coy (O]

which follows from interpolation. By (4.4]), the factors in front of (k; — j) and (k — k) are
both negative. Summing up in j < k; + C, we obtain (8.38]).

Step 1.3.b: Proof of (8.39). As in the proof of (8.111)) (Step 1.2.c), we decompose uy, =
S, Peug, and vy, = >, P¥ vy, where £ = % By the geometry of the cone (Lemma D
the null form gain, Holder, Cauchy—Schwarz (in w,w’) and Bernstein (for uy, ), we have

1PeQ ;N (1D Q; P uny s Quj o P viy) || Lo 12

1
2
_1yyy 1 § w o’
5 2(1+3(1 p)) 24(1 p)k12k2 ( ||Pz quk1||ipr’> (Z HPZ Q<j—CUk2||2L°°L2>
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Applying (8.112) and (8.114) with (s,b,p) = (3 — p% + (5 — bo)bo, —3 — (3 — bo)bo, po), where
0o = 2(p—0 — 1), we obtain

2
1PeQ<;N (DI Qs Puny , Qi P vy oz,
SJ 2*(1*%)/62(% (Z—bo)Go)(j )27%(1*%)(.7.*]@) ||PkQ<jN(|D‘_1Qngwuk17 Q<ngLU/Uk2)||LP0L2

1401 _p0)6 1—— k—Fk1)
< (i R 0 ) | Do, s

Z—%+(z—bo)90 (4—170)907170
By our choices of by and py, the overall factor in front of (k — k1) is negative. Summing up
in j < k1 + C, we obtain the desired conclusion.

Step 1.3.c: Proof of (8.40). We again decompose uy, = > PPug, and vy, = >, PP vy,
where ( = ]_2”“1. We use (8.112) with (s,b,p) = (=2 — by, —% + bp, 1). By the geometry of
the cone (Lemma [8.21)), the null form gain, Holder and Cauchy—Schwarz (in w,w’), we have

20| PQ N (D] QP s, Qs P )12

1
2
< 2hURgf gk (Z 1Q; Py k1||ip0Lpg> (Z 1Q<j—c Py Uk2“ip6Lq0>

N

1 ) —bo(k—k1) 31— =) (k—k

5 2(bo+(4 b0)0o) (k1 J)2 bo (k k1)2 ( )( 1)||Uk1|| 3(1,;) 14 —b0)00, 3~ (2500, p0||DUk2||S,
where ¢y ' =271 — (p))~! and 6, = 2(— —1). By our choices of py and by, the overall factors
in front of (k; — j) and (k — ky) are both negative. Summing up in j < ki, the proof is

complete.
Step 2: Proof of (8.41)). As in Step 1, we divide into three cases.

Step 2.1: ky > k —10. In view of the embedding N N L2H~2 C X 2ttt (for any
0 < by < 1), the desired bound follows from (8.17) and (8.23).

Step 2.2: ky < k — 10, contribution of 1 —Hj, . Consider the expression
Pk<1 - %Zl)N(|D|_1Uk1a Ukz)'

Interpolating the N-norm bound (8.28)) (recall that N C ngfﬁ) with an L2H~2-norm bound
(8-17)

(which is a minor modification of ), the desired estimate for this expression follows for
0<b <3

Step 2.3: ky < k — 10, contribution of Hy, . Finally, we estimate

PHN(ID| gy vry) = Y PuQuejeeN(ID] 7' Qjuny , Qe jmcrtny)-

j<ki+C
By (8.114)), we have

-1k _
FIPaQ<j-oN (DI Qjttky Qjcvi) o2
S2(%+%(1*%))(.7*’61)2(%*1)1924(1*%)kl2*3(1*%)]‘312(—% ($-b0)00) (i kl)HuleZl | Doy, || oo 2
—3(1—1)—(3-b0)00)(k1—j) o —(1— LX) (k—k
S 2y a3, Do s
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Summing up in j < k; + C and usmg the embedding 2075 PkQ WLPOL2 C X athn —h
which holds by Bernstein since b; < p—o — 2, the proof of - is complete. D

Proof of Proposition[8.16. As in Proposition [8.15] we divide the proof into two cases: ky >
k —10 and k1 < k — 10.

Step 1: k; > k—10. In this case, by (8.20)), (8.25) and the embeddings L'L? € 0Z) NOZ*
and L' L2 N L2H -2 C X~ 2t01.7%1 the three bounds follow simultaneously.

Step 2: k; < k—10. We begin with (8.42) and (§ . By Holder and Bernstein, we have

1- k—k1)
265 M| PeO (g, vy zmore S 2707700 g tall o2 i 2o 10ha oo 2

By (8.112 m with (s, b, p) (— — p—o %,po), (8.42) follows. Moreover, by the L2H%-norm

estimate and the embedding P,Q, L L* C X _%erl’_bl, (8.44) follows as well.

It remains to prove (8.43). Applying (8.107) (from Step 1.2.a of the proof of Proposi-
tion D with Dvg, = vy, and the embedding 2’%k1Ple C L?L*>®, we have

1Pe@5, O, v, |z S 27 %) Dug, [y [[vg, s
On the other hand, by (8.109) and Holder, we have
1PLQt, Ot )l S27F 5 PO (g ) 111
52—b0(k_k‘1)2 (1** ) (k— kl)“DuleY(Q(iiB k2||U;€2H

<otk B3 EED ) Dy [l s

Lp/O Lo )

where ¢g;' = 27! — (pj)~'. By our choice of py, the overall factor in front of (k — ki) is
negative; hence, (8.43)) follows. O

8.4.5. Trilinear null form estimates.

Proofs of Propositions[8.17 and[8.18 Estimate (8.45) would follow from Lemma and
the core estimates (8.46)), (8.47)) and (8.48)), combined with Lemma and (4.1)).

Estimates (8.46)), (8.47) and (8.48) can be established by repeating the proofs of (136),
(137) and (138) in [10] with the following modifications:

e Thanks to the frequency localization of the inputs and the output to rectangular boxes
of the type Cx(¢), the bilinear operators O and O’ can be safely disposed.

e Moreover, for any disposable multilinear operator M and rectangular boxes C,C’ of the
type Ci(€) situated in the annuli {|¢] ~ 2%} and {|£] ~ 2*2}, respectively, note that (by
Lemma [8.7))

M(aa <j— CPCU/kN 80(@1:;‘_CPC//U]€27 T )
= 2Ptk max{|Z(£C, +'C") |2, 27 mintkvke A M (Powy,, , Porvg,, - -+ )

for some disposable M, which suffices for the proofs in [I0].

We also note that although (136)-(138) in [I0] are stated with the factor 20(¢:—mintki}) on
the RHS, an inspection of the proofs reveals that the actual gain is 2°*=%)  as claimed in

(8.46)—(8.48). We omit the straightforward details. O
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9. THE PARADIFFERENTIAL WAVE EQUATION
Sections [9] [I0] and [I1] are devoted to the proofs of Theorem and Proposition [4.25]

In this section, we first reduce the task of proving these results to that of constructing
an appropriate parametrix (Section . Parametrix construction, in turn, is reduced to
constructing a renormalization operator that roughly conjugates O+ Diffg 4 to 0. Sections
and [11] are devoted proofs of the desired properties of the renormalization operator.

9.1. Reduction to parametrix construction. We start with a quick reduction of the
problem (4.90). After peeling off perturbative terms using commutator estimates (which
will be sketched in more detail below), we are led to consideration of the frequency localized
problem

{Duk + 2[P<k’—nPo¢A7 aauk] - fk’a (9 1)

(ug, Opug ) (0) = (uok, urk),
for each k € Z. By scaling, we may normalize k = 0.
Our goal is to construct a parametrix to . We summarize the main properties of
the parametrix in this case, as well as the precise hypotheses on A, that we need, in the
following theorem.

Theorem 9.1 (Parametrix construction). Let A, be a g-valued 1-form on I x R* such that

[Al[s2in + IOA] <M (9.2)

x5t =
for some M >0 and b; > %. Let ¢ > 0. Assume that k > k1(e, M) and
| Al psrpn + [|EA]| < Op(e, M, Ky), (9.3)

for some functions ki(e,M) > 1, 0 < 6,(e, M, k1) < 1 independent of A,. Moreover,
assume that there exists A, such that

AL2H~%

1Al g1 + (D Ag, DPHA) ||y < M, (9.4)
1Al psisy + II(Ao,PLA)IIngm < Op(e, M, K1), (9.5)
and
|AA, — O(AY, aOAg)HNMILMLQH_%)M < 62(e, M, ky), (9.6)
IOPA —PO(A",0,4,)) — PO'(A", 0, A)||, (enzi- by < 82(e, M, k1), (9.7)

where O(+,-) and O'(-,-) are disposable bilinear operators on R*. Then the following state-
ments hold.

(1) Given any (ug,uy) € H'x L? and f € NN L2H "2 such that ug,uy, f are all frequency-
localized in {C~ < |€] < C'}, there exists a g-valued function u(t) on I which obeys

lellsi Soell o, wn)llisze + 17 yogors- (9.5)
HDU’ + 2[P<_NP05A78(XU] - f”NmLZH*%[I] Se <”(u07u1)HH1XL2 + HfHNﬂL2H7%[1]> I (99)

0] = (0,0} sz < (I )iz + Wl paoag) - (910)

Moreover, u is frequency-localized in {(2C)~ < |¢] < 2C'}.
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(2) Assume furthermore that

[ Azl 51111 + [ Aol < 0o(M) (9.11)

(L2 3 (1]

for some §,(M) < 1 independent of A,. Then the approximate solution u constructed
above obeys with a universal constant, i.e.,

lellsin S Nuor wn)lansse + 10y et (9.12)

In the remainder of this subsection, we sketch the proofs of Theorem (4.24] and Proposi-
tion [4.25] assuming Theorem [9.1] Then in the rest of this section, as well as in Sections
and [T} our goal will be to establish Theorem [9.1]

Lemma 9.2. a) Let A;, and flm be g-valued 1-forms on I x R*, which satisfy (9.2)), (9.3),

(19.4), (9.5)), and (9.7). Then for ¢ > 0 sufficiently small (depending on M) and k
sufficiently large (depending on e, M), given any (ug,u;) € H' x L* and f € NN LQH*%[I],
there exists a unique solution u € S[I] to the IVP

O + Diffg )u = f,
(10 D 01
u[0] = (ug, uq).
which obeys
lullstin Sar oy w)ll e + 1y -4 (9.14)

b) If, in addition, || Al|ge g1y obeys (9.11)), then the solution u constructed above obeys (9.14)
with a universal constant, i.e.,

lullstin S Wl (o, w)ll e + 1l g o3y (9.15)

Proof. Let uy be the function given by (the rescaled) Theorem which is determined by
the initial data (Pyug, Pyuy, Prf). We set

Uagpp = E U .
k/

We claim that u is a good approximate solution to ((9.13) in the sense that in any subinterval
J C I we have

[appllsrin Sar 1o, w)ll gz + 117l gy -3y (9.16)
4app (O] = (w0, ur) | e S €l (o, wi)ll e + W Fll g -3 ) (9.17)

respectively

10+ Diffp ) ttapp — fHNnBH*%[J] S (6 +27% 20&("PAH€°°D51[1] + |‘A0H€(,OL2H%[J]>

(||(u0,u1)HH1xL2 + ||f||NﬂL2H_%[J]>
(9.18)

Assume that we have these bounds. Then the solution u to (9.13)) is obtained as follows:

(i) We choose  large enough so that 2792 <, 1.
(ii) We divide the interval I into subintervals .J; so that

297 |PAl| psup + | Aoll
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(iii) Within the interval .JJ; we now have small errors for the approximate solution u,,,; hence
we can obtain an exact solution by reiterating.

(iv) We successively repeat the previous step on each of the subintervals I;.

It remains to prove the bounds (9.16)), (9.17) and (9.18]). The first two follow directly from

and for uy after summation in k. We now consider (9.18)), where we write

(O + Diffg ) )u — f = Z (Oug + 2[Pep—P Ay, 0%ug| — Pof) + Z Ik
k k

where
gr = 2[Pep—,PA,, 0%uy) — Z[P—k’—nPAaa 0% Pyruy]
k/

The first sum is estimated directly via , so it remains to estimate g,. We split

gk = 9 + i
where
gi= Y. Pu[Py_PA, 0"Powy] — [Popy_ P Ay, 0" Poy
K'=k+O0(1)
and

o= > [Pw-ri-rPAa, 0P
k' =k+0(1)

Here g; has a commutator structure, so we can estimate it as in Proposition m, yielding
a 27%2% factor. For the expression g7, on the other hand, we can apply Proposition to
split it into a small part and a large part but which uses only divisible norms. Thus (9.18))
follows, and the proof of the Lemma is concluded.
b) The same iterative construction applies, but no we no longer need to subdivide the
interval as insures that the divisible norms in (9.18]) are actually small.
O

Proof of Theorem assuming Theorem[9.1. We prove the theorem by repeatedly apply-
ing the lemma in successive intervals. To achieve this, we begin by choosing € and x depending
only on M so that Lemma holds. It remains to insure that we can divide the interval /
into subintervals J; where the conditions , , , , and (9.7 hold.

We choose A = A. We carefully observe that we cannot use Theorem here, as The-
orem is used in the proof of Theorem [5.1 However, we can use the weaker result in
Proposition , which immediately gives. and from Theorem .

The remaining bounds are for divisible norms, so it suffices to establish them with a large
constant depending on M; then we gain smallness by subdividing. Indeed, for and
this still follows from Proposition .

For we choose O(A, 9yA) = [A, 0pA]. Then we can use (3.23) and (4.37). Finally for
(9.7) we choose in addition O(A,,0*A) = —2[A,, 0“A]. Then by Theorem [9.1| we have

OA4 — O(A,0,A) — O(A,,0%A) = R(A) + Rem®(A)A
and it suffices to use (3.21]) and (4.74)).

To conclude, we note that the second part of the lemma is proved as 0
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Proof of Proposition assuming Theorem [9.1 We divide
At,m — Ai);rt + Anonpert

t,x

where

pert
AT =N PA,
keK

with |K| = O(;O(M)—IM(].) and
HAnonperthoslm < 50(M)

By Proposition 4.23] it follows that the contribution of any finite number of dyadic pieces
of A, in Diffp , is perturbative. More precisely, for AP*"* we have

||Diﬁ‘f)ApertB||NmL2H_%[I] Sk || Bllstp- (9.19)

Thus B solves also
(D —'I— DiH;Anonpert)B - G

Y

where
”GHNmLZH*%[I] Sm ”GHNmmH*%[I] +1[Blls1

We now claim that Theorem and thus Lemma apply for AmemPert If that were true,
then the conclusion of the proposition is achieved by subdividing the interval I into finitely
many subintervals J;, depending only on M, so that

(i) Lemma [9.2) applies in J;

(ii) The size of the inhomogeneous term |G HNmL?H—%[I] is small in J;.

Indeed, to verify the hypothesis of Theorem with A replaced by A"t it suffices to
leave A = A, unchanged, but instead replace the operators O and O’ by (1 — %", . F:)O,
respectively (1 — 3", -, Px)O’, which are still disposable. O

9.2. Extension and spacetime Fourier projections. As in [I1], our parametrix will be
constructed by conjugating the usual Fourier representation formula for the +-half-wave
equations by a renormalization operator Op(Ad(O4)<o); see (0.50). The renormalization
operator is designed so that it cancels the most dangerous part of the paradifferential term
2[PA, <, 0*Pyu| (Theorem [9.9)), and furthermore enjoys nice mapping properties in func-
tions spaces we use (Theorem [9.6)).

9.2.1. Extension to a global-in-time wave. As in [I1], our parametrix construction for
involves fine spacetime Fourier localization of P A, which necessitates extension of P A outside
I. Here we specify the extension procedure, and collect some of its properties that will be
used later.

We extend PA by homogeneous waves outside I. By , this extension (still denoted
by PA) obeys the global-in-time bound

||P14||S1 + |||:|PA||E1Xf%+b1,*b1 SM (920)
By Proposition 4.10} for any p > 2 note that
;PP Al Lo ree SIPPA| Lrpoeps- (9.21)
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Moreover, by (9.3), we have

OL2HT2(])

S NPOPA| .y =IOPA|, oy < 6y (9.22)
k

Next, we specify the extension of Ag, and also of the relations and (9.7) outside I. We
first extend A by homogeneous wave outside I and Ay by zero outside I. These extensions
(still denoted by A and A, respectively) satisfy the global-in-time bound

1A]lg: + D Aolly S M. (9.23)
In addition, we introduce the extension G of PLA by zero outside I. It obeys

| DGy < M. (9.24)

We emphasize that, in general, P A does not coincide with G outside 1.
Define Ry and PR as

Ro(t) =AAy(t) — O(AYt), 0, A,(t)) fort eI,
PR(t) =00PA(t) — PO(A(t), 0, A4(t)) + PO’ (A,, 0%A)  fort €I,
and 0 for t ¢ I. By the hypotheses and , we have

||R0||gl ALlLWﬁL2H7%) <527 (925)

IPR| <82, (9.26)

LV L2NL2H D)

We extend Ag outside I by solving the equation

AAy = O(x A", 0, Ay) + X1 Ry. (9.27)

By (8.17), (8.19), (9.5)), (9.23) and (9.25)), it follows that
DAy S<M?, (9.28)
1AAoll,1 03 SO (9.29)

Moreover, observe that the extension P A obeys the equation

OPA =PO(y; A%, 0,4,) + PO'(P,A, x;0°A)

o . e N (9.30)
- PO (A07 X[atA) + PO (Gg, X[a A) + X]PR

9.2.2. Spacetime Fourier projections. Here we introduce the spacetime Fourier projections
needed for definition of the renormalization operator. We denote by (7,£) € R x R* the
Fourier variables for the input, and by (o,7) € R x R* the Fourier variables for the symbol,
which will be constructed from PA. We remind the reader that our sign convention is such

that the characteristic cone for a +-wave is {7 £ |{| = 0}.
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Consider the following (overlapping) decomposition of R which is symmetric and ho-
mogeneous with respect to the origin:

Der ={sgn(o)(c £ n-w) > En| " (InLl*+ o £n-w*)}
N{sgn(o)(c £ n-w) < tlo| " (In.]* +]o£n-w[*)},
Do ={lo£n w| < nl " (nL > + o 0w},

Dy ={sgn(o)(0 £ 1 w) < —gglnl = (ne* + o £0-wf’)}
U{sgn(o)(o £ -w) > Zlo|(InL* +|o £ n-wl*)}.

where nn;, =n — (n-w)w. See Figure [l below for a plot of these domains.

FIGURE 1. Caricature of D% D% and D27 in the hyperplane {s = 1}
with + = —. Note that the actual domains are defined to be slightly over-

lapping.

We construct a smooth partition of unity adapted to the decomposition D% U D;ﬁl U
D“E = R as follows. We begin with the preliminary definitions

out
ﬁwj:< ) (4 O-(O-:l:n'w) )
) g, =m —
in AT ZIA S e = (- w)) + o £ 7 - w]?

ok (o ) sgn(o)|n|(o £ 7 - w)
o) =men (82 e ey o)

9% (o 1) = [ — sgn(o)|nl(o + 1 - w)
Hou (1) >1< SQmQ—«n-wv>+hvin~wP>’

where m~;(2) : R — [0, 1] is a smooth cutoff to the region {z > 1} (i.e., equals 1 there), which
vanishes outside {z > 2}. Then we define the symbols I12F (o, 7)), 117 (0,n), 1125 (0, 7) as

cone out
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follows:

s (o) =107 (0, m) = 5 (0. ), (9.31)
Mo m) =1 = T2 (o) = I35 (o), (9.32)
Mou (0,n) =Toir (0,m) + 15 (o, ). (9.33)
Observe that 1 = 1% 4 1% + 1127, and supp [I¥* C D¥* for € {cone, null, out}.

Moreover, by symmetry, II“* preserves the real-valued property.
We also make use of a dyadic angular decomposition with respect to w. Given 6 > 0, we

define the symbol
w L(w, —sgn(o
I ’i(a, n) = ms1 <| ( en( )|77)>

>0 [
Furthermore, we define

w,+ w,t w,+ w,t w,+
Hg@ (Ua 77) =1- H>0 (07 77)a I, (Ua 77) = (H>9 - H>9/2)(Ua 77)'

Since these symbols are real-valued and odd, the corresponding multipliers (which we simply

denote by H“;’gt, H;’Qi and T, respectively) preserve the real-valued property.

The regularity of the symbols %% | T17 and 117 degenerate as |17, | — 0; however, they
are well-behaved when composed with H;J’iPh. The following lemma will play a basic role

for our construction.

Lemma 9.3. For any fized +, w € S3, n € N, h € 2% and x € {cone,null,out}, the
multiplieﬂ 9”@§n) (I« *115* P,) s disposable.

Proof. In this proof, we take h = 0 by scaling, and fix & = +. Let x € {cone, null}.

We begin with some elementary reductions. First, since 1 = 1<% + I1¥7, + 1127, and

9”8§n)ﬂg’iPo is disposable, it suffices to prove the lemma for just I1%% and 117, In this

cone

case, note that the symbol H‘;”iﬂg’imh(n) (where my, is the symbol of P,) is compactly
supported. Furthermore, the lemma is obvious if 2 1, since then the symbol is smooth in
&, 0,m on the unit scale. Therefore, we may assume that 6 < 1.

We now consider the case n = 0, when there is no ¢-differentiation. We fix w € S?. To
ease our computation, we introduce the null coordinate system (v, v, 7, ), where

v=0—nNw, v=0+n-w,
and 7, € R? are the coordinates for the constant v, v-spaces. Observe that
oc+n-w B v 1
DA UNCEST

on the support of I**115*mg. Moreover, o = o(v,v,7.) and || = |n|(v,v,7.) are compa-
rable to 1, and are also smooth on the unit scale on the support of Hjj’il_[;”imo. Recalling

the definition of I1¥*%, it can be computed from ([9.34) that
\afaﬁa’] HW,i| g 6*2\5|*|7| on supp Hf’iﬂg’imo.

v v T

. I =m0 =0, ]U|:92, lu] ~1 (9.34)

On the other hand,
050507 (T19%me)| <071 on supp T my,

Ot/

OWe quantize (o,7) — (Dy, D).
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so it follows that

050507 (IT*11=)| < 0~2P1=11, (9.35)
Furthermore, from ((9.34)) we have
|supp I#T15 mg| < 6°. (9.36)

From these bounds, we see that the multiplier Hf’iﬂg’iPo has a kernel with a universal
bound on the mass, and thus is disposable.
Finally, we sketch the proof in the case n > 1. We first claim that

|08 (T2 115 mo) | < 67 (9.37)

Clearly lﬁén)ﬂ‘(}”ﬂ <, 07", so it suffices to verify that \8;")Hf’i] <, 07" on the support of
1+ 115 *mg. Note that

o 0 |lal=1 R
|(()f (n-w)| ,§|a| { 1 IQI >9 on supp H*’iﬂg imo. (9.38)

Then recalling the definition of I1*** and using the chain rule, the claim ([9.37)) follows. We
remark that a differentiation in o + 1 - w loses 02, but we gain back a factor of # through

the chain rule and ({9.38]).
Next, we fix w € S* and start differentiating in (v, v, 7, ). Using the chain rule, (9.38)) and

(9.34), it can be proved that
|aaaﬂa’Y a(n (Hw :I:Hw :I:)| 5 9—2|B\—|'y\9—n‘ (939)

vInL
We omit the details. Combined with m, we see that Qnaén)ﬂf’iﬂg’iPo is disposable. [
As a corollary of the proof of Lemma (9.3, we obtain the following disposability statement.

Corollary 9.4. For any fired &, w € S3, h, k € 2% and * € {cone,null, out}, the translation-
invariant bilinear operator on R with symbol

TG S5 Py (0, m) PLPE (€)
15 disposable.

Clearly, the same corollary holds with any of the continuous Littlewood-Paley projections
Py, Py, replaced by the discrete analogue.

We also record a lemma which describes how the operator [] acts in the presence of
< 115% P,

cone

Lemma 9.5. For any fized &, w € S*, n € N and h € 2%, the multiplier
(272hg20)0" 0L (L1255 115+ ) (9.40)

cone

15 disposable.

Proof. We set h = 0 by scaling. The symbol of (1 is —o? + |n|?. For a fixed w, we introduce
the null coordinate system (v, v,n,) as before. Then observe that
105020); (—0® + [n*)| = 050707, (—vv + |i.|?)] S 626771

v Yo v Yo Y

on the support of 1% 115 *Py. The lemma follows by combining this bound with the proof

cone

of Lemma [0.3] O
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9.3. Pseudodifferential renormalization operator. In this subsection we define the
pseudodifferential renormalization operator, and describe its main properties.

9.3.1. Definition of the pseudodifferential renormalization operator. As mentioned before,
the aim for our renormalization operator is not to remove all of PA, but only the most
harmful (nonperturbative) part of it. This part is defined as

Amaind _[[0F [ p (P A (9.41)

3,<h >|n|® " "cone

Precisely, given a direction w, it selects the region which is both near the cone in a parabolic
fashion near the direction w, but also away from w, on an angular scale that is slowly
decreasing as the frequency n of A approaches 0. We emphasize that this decomposition
depends on w, which is what will make our renormalization operator a pseudodifferential
operator.

To account for the fact that our gauge group is noncommutative, and also to better take
advantage of previous work in this area, we divide the construction of the renormalization
operator in two steps. The first step is microlocal but linear, and mirrors the renormalization
construction in the (MKG) case, see [10] and also [17]. Precisely, we define the intermediate
symbol

Uy oy =— LEATATS S0, (9.42)

J,<h

Here the operator L‘;A;i is chosen as a good approximate inverse for LY, within the fre-

quency localization region for A;nzlhni In effect this frequency localization region is chosen
exactly so that this property holds within. This is based on the decomposition

—LYLE 4+ Ay =0,
which gives
LYLLA T =1-0A 1
Given A;nfhni and U _, as above, we define their Littlewood-Paley pieces as

main d main d
Ajn * = dhAj,<h F Uy, = %\Iji,<h-

Now we come to the second step in the construction of the renormalization operator. This
step is nonlinear but local, and is based on the construction of the renormalization operator
in [23] for the corresponding wave map problem. Precisely, we solve the ODE

d _
d_hO<h,Z|:O<}lz,i =Vy, (9.43)

hm ||ax0<h,:|:(t, SL’, £)||Loo - 0
h——o0
Thus our renormalization is achieved via the paradifferential operator
Ad(O4)<o

where the localization to small frequencies is so that this operator preserves the unit dyadic
frequency shell.

The parameter § > 0 is a universal constant, which is chosen below so that the parametrix
construction go through. In particular, we take 0 < § < —i-. Logically, it is fixed at the end

' 100"
of Section [10
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9.3.2. Properties of the pseudodifferential renormalization operator. Now we state the key
properties satisfied by the renormalization operator Ad(O4)¢ that we just defined; see The-
orems[0.6land 0.9 Proofs of these results are the subjects of Sections[I0]and [T} respectively.

Theorem 9.6 (Mapping properties of the pseudodifferential renormalization operator).
Let A be a Lie algebra-valued spatial 1-form on I x R* such that A = P-_,, A and

|[PA| g1 < M.

for some k, My > 0. Let Wy ., Wiy and O+ be defined on R'™ as above from the
homogeneous-wave extension of PA. Let Z be any of the spaces L2, N or N*.

(1) For k > 20, the following bounds hold:
e (Boundedness)

|0p(Ad(Ox)<0) (¢, , D) Poll 72 o 1, (9.44)
e (Dispersive estimates)
|0p(Ad(Ox) <o) (¢, 7, D) Poll gz, 5, Snao 1. (9.45)
(2) For anye > 0, there exist ko(e, Mo) > 1 (independent of A, ) such that if k > ro(e, My),
then
e (Derivative bounds)

1[0, Op(Ad(O+) <o) (t, z, D) ol -2 S &, (9.46)
o (Approximate unitarity)
1(0p(Ad(O+) <o) (¢, 2, D)OP(Ad(OL") <o) (D, 5,y) — ) Pollz2 S e, (9.47)

where the implicit constants are universal.
(3) There exists 0 < §,(My) < 1 (independent of A, ) such that if, in addition to the above
hypothesis,

HPAx”gooslm < 50(M0), (948)
then (9.44) and (9.45)) hold with universal constants. That is, for k > 20 we have

e (Boundedness with a universal constant)
10p(Ad(O+)<0)(t, , D) Ryl z—2 S 1, (9:44)
e (Dispersive estimates with a universal constant)

|0p(Ad(O) <0)(t, 7, D) Fol| gz, S 1- (9-45()

Here the frequency localization operator F, can easily be replaced by a more general
localization to {|§| =~ 1}.

Remark 9.7. As we will see in the proof below, ro(e, My) ~. log My and 6,(My) <, 1.

Remark 9.8. Note that the symbol of each of the above PDOs is independent of 7 = &y, and
thus it defines a PDO on R* for each fixed ¢. By the mapping property Z — Z with Z = L2,

we mean that the PDO maps L? — L2 for each fixed ¢, with a constant uniform in ¢.
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Theorem 9.9 (Renormalization error). Let A, be a g-valued 1-form on I x R* such that
Ay = P Ay and ||PA,||s1p < M for some k,M > 0. Let ¢ > 0. Assume that k >
k1(g, M) and (9.3)—(0.7) hold for some functions ki(e, M) > 1 and 0 < 6,(c, M, K1) < 1
independent of A, (to be specified below). Let Wy oy, Wy and Oy y be defined as above
from the homogeneous-wave extension of PA,. Then we have

|(O% 4Op(Ad(O+) <o) — Op(Ad(Oi)<o)D)P0HSg’i[IHNMU] <e. (9.49)
Remark 9.10. As we will see later, r;(e, M) >~ log M and 6,(e, M, k1) <prp; €-

9.4. Definition of the parametrix and proof of Theorem Our parametrix is given
by:

ult) = 3  S00(Ad(O2) a) (1.2, D)7 O AL 0)(D,0.9) w10 )
+ (9.50)

+ OplAd(O2) )t D) 5 KOp(Ad(O ) o) (D, s,wf)

where .
Kig(t):/ eF1=9IPlg (s ds.
0

With this definition, the proof of Theorem [9.1] starting from Theorems [0.6] [0.9]is essentially
identical to the corresponding proof in [I7], and is omitted.

10. MAPPING PROPERTIES OF THE RENORMALIZATION OPERATOR

10.1. Fixed-time pointwise bounds for the symbols ¥ and O. Here we state fixed-
time pointwise bounds for ¥ and O. We borrow these estimates from [I1], while carefully
noting dependence of constants on the frequency envelope of A = A, in S'. The bounds
below are stated using continuous Littlewood-Paley projections P,, but we note that the
same bounds hold for discrete Littlewood-Paley projections as well.

We begin with pointwise bounds for the g-valued symbol U, 4 (¢, z,&).

Lemma 10.1. The following bounds hold.

(1) Form >0 and 0 <n < 6~ ', we have
n) o(m— mhni—n
00D, (£ 2, €)| < 2703 Ay 1. (10.1)
When m = 0, we interpret the expression on the LHS as 5?1123),1.
(2) Let (t — s,z —y)> =1+ |t — s|* + |z — y|>. We have

(O (t,2,) = (s, 9, €)| S min{2"(t — 5,2 — y), 1}{| An|s1- (10.2)
(3) Finally, for 1 <n < 61 we have
08 (W (8, 7,€) = W (5,9, €)| Sminf2"(t — 5,2 — y), 1}27 0" 4, 50 (10.3)
For a proof, we refer to [I1], Section 7.3]. As a corollary of we have
VUL S 2" A5 (10.4)

Next, we consider the G-valued symbol O, 4.
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Lemma 10.2. Let ¢, be an admissible frequency envelope for A in S*. Then the following
bounds hold.

(1) For 0 <n < 6!, we have

10 (Oc )t (b2, €)] Spajy 2070ey, (10.5)
(2) We have

d(Ocp s (t,2,£)02, 1 (5,9, €), 1d) Sjay g log(1 + 2"t — 5,2 — y))en. (10.6)
(3) Finally, for 1 <n <40, we have

10 N (Ocpa(t, 2, )02 o (5,5,€)) e |

roh - 1 (10.7)
Sl min{2M(t — 5,2 — ), 1001 4 (¢ — 5,2 — y)) "D,

For a proof, we refer to [I1], Section 7.7].

10.2. Decomposability calculus. To handle symbol multiplications, we use the decom-
posability calculus introduced in [22] 9], which allows us to roughly regard these operations
as multiplication by a function in LPL9. In the present work, we need an interval-localized
version in order to exploit small divisible norms.

Given 6 € 27N consider a covering of the unit sphere S* = {w € R* : |£] = 1} by solid
angular caps of the form {w € S? : |¢ — w| < 0} with uniformly finite overlaps. We index
these caps by their centers ¢ € S3, and denote by {(mg)?(w)} the associated nonnegative
smooth partition of unity on S?.

Let I be an interval. Consider a End(g)-valued symbol ¢(t,z,§) on I, x Ry x R, which
is zero homogeneous in &, i.e., depends only on the angular variable w = % We say that

c(t,x, &) is decomposable in LIL"[I] if c = > ,c? 6 € 27N and

> N pyrarry < oo, (10.8)
6

where

1
e pyzonrin = I ZZsup mi @)0°0" e 12)°) lagin (109)

n=0 ¢

We define ||c|| praz-( to be the infimum of (10.8)) over all possible decompositions ¢ = Y, ¢
In what follows, we will use the convention of omitting [I] when I = R.
In the following lemma, we collect some basic properties of the symbol class DLIL"[I].

Lemma 10.3. (1) For any two intervals such that I C I', we have

lell Loz < llellpLasriy
(2) For any symbols ¢ € DL L™[I] and d € DL®L™[I], its product obeys the Holder-type
bound
ed|prapy 1] N ||C||DL‘11L7”1 inlldllpree L

_1 1,11
where 1 < a1,92,4,71, 72,7 = < 00, q1 + T g and - 7‘2 -
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(3) Let a(t,x,&) be a End(g)-valued smooth symbol on I x Ry x R¢ whose left quantization
Op(a) satisfies the fized-time bound

SU? ||Op((l)(t, z, D)||L2—>L2 < Ca-
te

Then for any symbol c € DLL", we have the spacetime bound
|Op(ac)(t, x, D)||za r2in—rerrmn S Callellprorr

L and %—l—% = L An analogous statement holds

wherelﬁqh%,q,mﬂ"fooril+%:q2 T2’

in the case of right quantization.

The proof is essentially the same as the global-in-time versions in [J, Chapter 10| and [10,
Lemma 7.1]; we omit the details.

10.3. Decomposability bounds for A, ¥ and O. Here we collect some decomposability
bounds for A, ¥ and O that we will use in our proof of Theorems and As before,
we state the bounds using continuous Littlewood-Paley projections P, but note that the
same bounds hold for discrete Littlewood-Paley projections as well. For simplicity of nota-
tion, we will usually write |G||prerr = ||ad(G)||prar- for a g-valued symbol G, respectively
|0l prarr = [|Ad(O)||prer- for a G-valued symbol O.

For any 6 > 0, h € R and * € {cone, null, out}, recall the definition

A} e = DI (PA),.

As before, we will often omit the subscript = for simplicity, and write Agi, 4= Afcezl* 4 ete.

These symbols obey the following global-in-time decomposability bounds:

Lemma 10.4. For g > 2 and x € {cone, null, out}, we have

|4 & - wllproz S279%03 70 | Ayl (10.10)
HA(()?I)L,*,:I:HDLQL” S 2(1_%)heg_%’|140,h”y1- (10.11)
Furthermore, for x = cone we have
I0AD, . o wllpra S 26790575 Ay |1, (10.12)
IAZOAY) s - wlippoz= S 20790370 Ay sr. (10.13)

Proof. The symbols (09,,)"(IT**115*) are smooth, homogeneous and uniformly bounded,
and the corresponding multipliers are disposable for fixed €2. Then the bounds (10.10) and
(10.11)) follow by Bernstein’s inequality using the Strichartz component of the S norm,
respectively the L2H? component of the VY norm.

For the bounds ((10.12)) and (10.13]) we need in addition to consider the size of the symbol of
[, respectively A;i within the support of PthO’feHz’i. This is #22%", respectively §—2272",
Precisely, we have the representations

OP,IE ™ = 0222 OTI%E T, AL RJII*I ™" = 02272 OT1% 2 I,
with O disposable, see e.g. Lemma[9.5] Then ([10.12) and (10.13)) immediately follow from
[010). 0
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Next, we consider the phase Wy, which was defined in (9.42)). Given § > 0 and h € R, let
U, = Pl 0,
We have the following global-in-time decomposability bounds.

Lemma 10.5. For q,r > 2 and 2 + < 5, we have

(2 hVW&)HDMU <27 Ay (10.14)
In addition, suppose that 0 < 2% for some a € —N. Then for q,r > 2, we also have
|Qnaa( WY, 27" VO, | prarr S 27270057 || Ay g1 (10.15)
Furthermore,
1093, prese < 02237 Aulse. (10.16)

Proof. Observing that within the support of PthofLEeHw * the symbol LJFA; has the form
27"9=20 with O disposable and depending smoothly on w on the @ scale, the first bound
(10.14)) is again a direct consequence of the Strichartz bounds in the S norm for A.

For (10.15)) it suffices to prove the case p = ¢ = 2 and then use Bernstein’s inequality. But

1
in this case it suffices to use the X;’f component of the S norm at fixed modulation.
For the last bound ([10.16]) it suffices to combine the L2L> case of (10.14)) with Lemma .
O

We now consider the G-valued symbol Oy, 1, which was defined in (9.43)). It obeys the
following global-in-time decomposability bounds.

Lemma 10.6. Let ¢, be an admissible frequency envelope for A in St. Then for any q > 4,
we have

_1
1(O<h 10y O<htt) | DLare S\\A\\Sl 2! q)hch- (10.17)
When q = 2, an analogous bound with a slight loss holds:
1 —
1(Och iz Ocnt) lpror Sjaje 220 en. (10.18)

Proof. These bounds are a consequence of the \1,29)i bounds in the previous lemma. The
proof is similar to the proof of the similar result in [I1, Lemma 7.9] and is omitted. We

note that the constraint ¢ > 4 in the first bound is to prevent losses in the § summation in
(110.14]). O

Finally, we consider interval-localized decomposability bounds, which will be needed to
exploit divisibility (i.e., the hypothesis (9.3)) to gain smallness.

Lemma 10.7. Let |I| > 2=h=r where h € R and k > 0. For ¢ > 2, we have
103 | prareen S29%07C27" | Ayl oz,

||Awl|:|( Ahlone :I:)”DL‘ILOO[I] 2CﬂeicHALh”L‘lLOO 1]

10.19
10.20
10.21
10.22

oo - A prareepn 297076 Al pareein-

o~ o~ o~ o~
~—_— ~— ~— ~—

”W ) A((ff)LHDLqLOO[I] NQCHQ CHAO hHLqLoom
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Proof. We will prove ((10.19)), and leave the similar cases of (10.20)), (10.21)), (10.22) to the
reader.
By scaling, we set h = 0. By the definition of the class DLIL*>°[I], we have

N =

1967 | pzorein <6 (Zzsupnma )0 O I Po(wo - PA) )

nOgbw

cone

40
¢y 1670 TSI, Po(w - PA)|| apeern

Fix n € [1,40] and w € S3. From the proof of Lemma we see that the projection

o 8 H“’H‘C"OMPO, when viewed as a Fourier multiplier in (o,7), has a symbol which is

supported in a spacetime cube of radius < 1, and its derivatives (up to 40, say) are bounded
by 0~¢ for some large universal constant C'. Moreover, we have lﬁn”ﬁén )w\ <.~ 1. Denoting
by XV a generalized cutoff adapted at the unit scale as in ([4.22)), we have

1070 ST Po(w - PA) | parern S 0 CIXIPyAl| or

cone

Recall that A is extended outside I by homogeneous waves. By Proposition [4.10] the last
expression is bounded by

< 20“9’C\|P0A|]Lqmom,

which proves ([10.19)). O

10.4. Collection of symbol bounds. Before we continue, we introduce the quantity M,,
which collects various symbol bounds that we have so far.

We fix large enough N and a small universal constant d, > 0. Then we let M, > 0 be the
minimal constant such that:

e The following pointwise bounds hold for all 0 <n < § ! and 0 <m < N:

Mo w) | <amhgrm M,
Ut 2,6) — Ui p(s,y,€)] <min{2"(t — s,z —y), 1}M,,
108 (W (t, 2, €) = W n(s,y,€))] Smin{2"(t — 5,2 — y), 1}27 "2,
08 (Ocnt) (b, 2, €)| <2070 MM,,,
d(Ocpx(t, x, S)Ozi,i(s, y,€),1d) <log(1+2"(t — s,z — y)) M,,
108" (Och (t,2,€)02) 2 (5,5, )| min{2"(t — 5,2 — y), 1} (720

X (1+(t—s,x— y})(”_%)‘SMU.
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e The following decomposability bounds hold for all * € {cone, null,out}, q,r > 2 and
243 <3,
g T r =2
”Aéal,i *wl|prare <20=0hg3=a 0,
1AY) | Nppare <20-D%033 0,
0A4;) wl|prape <2092 M,
h,cone,+
A_iDA(e) - wllprages SQU*%)hegngm
w h,cone,+
12 72_hv\11(6) DLaL™ §2_(%+%)h9%_%_%Ma’7
h,+ h,+
1Qns2a(B0,, 27"V | ppapr <2~ GHIRTR03E0,, (0520 S 1)
D\D(e) DI2[>© SQ%Q%}ZMO_’
h,t
_1
1O Oct i) Iprae <2072, (42 14+4,)
1
H (O<h,i;$7 O<h,i;t> HDL2L°° §2§(175)hM0__
By the preceding results, there exists a M, such that
My S || Allezest + [|Aolleseyr. (10.23)

In particular, note that all of the above symbol bounds are small if ||A||s~s1 and || Apl|g=yt
are.

10.5. Oscillatory integral bounds. Given a smooth function a, let
dg
(2m)*

Lemma 10.8. For a sufficiently small universal constant 6 > 0, the following bounds hold
for the kernel K2,(t,x;s,y).

(1) Assume that a is a smooth bump function on the unit scale. Then

K20<t7 z5s, y) = / Ad<o<h,:|:)<0 (ta xZ, g)a’(g)eii(t_S)‘ﬂei&(x_y)Ad(O;}L,i)<0(€7 Y, S)

<a (=) 2 (|t —s| — |z — y[) 10 (10.24)

~Y

[KZo(t, 755, 9)]

(2) Let a = ac be a smooth bump function on a radially oriented rectangular box C of size
2k x (28443 where k, ¢ < 0. Then

Kot ;5,9)| S, 28F2EH0 (¢ — ) 72 (25(|t — 5] — |2 — y])) ™. (10.25)

(8) Let a = ac be a smooth bump function on a radially oriented rectangular box C of size
1 x (293, where £ < 0. Let w € S3 be at angle ~ 2° from C. Then for t — s =
(z—y) w+0(1),

[K2o(t 3 5,9)] Saap 29(2%(8 — 5)) 712 (2" — )™ (10.26)
where ' =z — (- w)w and y =y — (y - w)w.

This lemma is proved as in [11, Section 8.1] by stationary phase, using the symbol bounds

in Lemmas [10.1] and 0.2
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10.6. Fixed-time L? bounds. The goal of this subsection is to prove ([9.44]), (9.4€)), (9.47)
and (9.44]) for Z = L?. The common key ingredient is the following fixed-time L? estimate:

Proposition 10.9. For § > 0 sufficiently small, there exists 6y > 0 such that the following
statement holds. the following statement holds. Let h + 10 < k < 0. Then for every fived t,
we have

1 (Op(Ad(O<h ) k), DYOP(AA(OZ; L) <i) (D, y) = 1) Poll 12z Sar, 200" + 271000,
(10.27)

Lemma 10.10. There exists ) > 0 such that the following statement holds. Let h < 0 and
a(&) be a smooth bump function adapted to {|| < 1}. Then for every fized t, we have

10p(Ad(O<h2))(, D)a(D)Op(Ad(OZ, )(D.y) — a(D)l2r2 S, 270" (10.28)

Proof. For simplicity of notation, we omit + in O, 4, O;i, . and ¥y ;. Following the
hypothesis, we fix t € R.

The idea is to derive a kernel estimate as in Lemma [10.8] but taking into account the
frequency gap. The kernel of the End(g)-valued operator in is given by

Kaala) = [ (AdO4(z.03.) = 1) al)e = o

We obtain two different estimates depending on whether |z —y| < 270" or |z —y| > 27°@",

(10.29)

Case 1: |z —y| < 27%0", In this case, we use the fundamental theorem of calculus and
simply bound
h
Kawl5 [ [

h
< sup /
€11 J oo

By the algebraic property
Olu,v]O™ = [OuO™,0007Y, O€G,u,veg

% (Ad(O<o(,€)02}(y,€))) | la(€)| de de

% (Ad<0<f<x75)0<é<y,£)))’ d

we have
ad(u)Ad(O) = Ad(0)ad(Ad(O 1)), Ad(O Had(u) = ad(Ad(O~1)u)Ad(O™1).
Therefore,
(A0, 0 (5. 6))
= ad(W,)Ad(O<)(x,€)Ad(0Z;)(y, ) — Ad(O<() (2, §) Ad(OZp)ad(¥e)(y, §)
= Ad(O<()(w,€)ad(Ad(OZ)We(x, &) — Ad(OZ;)We(y, €))Ad(0Z;)(y, ).

Then using the fact that the norm on End(g) is invariant under Ad(O) for any O € G, we
have

d

77 (Ad(0<(2,902(y,€)) | = [Ad(0Z) V(&) — Ad(OZ)Wel(y, )]
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By the symbol bounds (10.5) and (10.4), we have |0,(Ad(OZ;)¥,)| S, 2°. Thus, by the

mean value theorem,

% (Ad(0<é<l’,f)02l}(y’£))) SMJ 26275(0)]1.

Integrating in ¢, we arrive at

|Kon(2,y)] Sa, 207000, (10.30)

Case 2: | —y| 2 27%0", Here, the idea is to repeatedly integrate by parts in €. Since
D Ad(O<p (2, )02, (y, €)) = ad((O<n(, )02, (y,€)),¢) Ad(O<i(,£) 024 (y, €))
the symbol bound ([10.5)) implies
00 Ad(O <1, )O3y )] S, 2731

Therefore, integrating by parts in £ for N-times in ((10.29), we obtain

1
1-0)N+36

| Kon(x,y)| Son, for |z —y| 2 2’5<°)h, 0< N <& L

|z —y"
Finally, combining Cases 1 and 2, we obtain

sup / K cn(z, )] dy + sup / K on(z, )] do <o, 207500 < 290
x Yy

provided that () is small enough. Bound now follows. 0
Corollary 10.11. For any k € R we have

10p(Ad(Ocp2))(@, D) Foll 1212 S, 1, (10.31)

|0p(Ad(Ocnx) <) (@, D)ol L2512 S, 1 (10.32)

Proof. The first bound follows by a T7™-argument from Lemma [10.10 Next, note that
Ad(Ocp 1) <r(x,€) is simply a smooth average of translates of Ad(O«p +)(x,€) in z. There-
fore, the second bound follows from the first by translation invariance of L2 ([l

Next, we borrow a lemma from [I1], which handles Ad(O, 4 ), when k is large compared
to h.

Lemma 10.12. Lett € R, h <0 and k > h+ 10. Then we have

|Op(Ad(Ocp 1)) (t, 2, D) Poll 212 Sar, 2710F M (10.33)
Furthermore, for 1 <q<p<oo, h <0 and k > h+ 10, we have
1OP(A(O<h )i (t, &, D) Pollorasarz Saa, 20 9271000, (10.34)

Same estimates hold for the right quantization Op(Ad(O<p +)k(D, s,y).

Remark 10.13. The specific factor 10 in the gain 271°%~") is not of any significance, but it is
important to note that this number is much bigger than 1; see the proof of Proposition [10.14
below.

For the proof, we refer to [I1], Proof of Lemma 8.4] or [I7, Proof of Lemma 9.11].
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Proof of Proposition [10.9. Due to the frequency localization of the symbols in (10.27]), we can
harmlessly insert a multiplier a(D) whose symbol is a smooth bump function a(§) adapted

to {|¢] < 1}, and then discard Fy to replace (10.27)) by
10p(Ad(O<nz)<i) (2, D)a(D)OP(A(OZ, 1) <) (D, y) = a(D)l| a2 Sar, 270" 42710071,

Now it suffices to combine the last two Lemmas. O

Proof of (9.44)), (9.46), (9.47) and in the case Z = L?. By a T'T* argument, the bo-
unds (9.44)) and (9.44])) are immediate consequences of . Also from we obtain
the estimate (9.47) with a constant 279" which is less than € if & is chosen large enough
depending only on Mj.

Finally, for we compute

01(Ad(0)) <o = (ad(04) Ad(O)) <o

therefore it suffices to combine the decomposability bound ({10.17) for O,, with ¢ = oo with
(10.31)). The former bound yields a 27" factor which again yields € smallness if s is large
enough. 0

10.7. Spacetime L?L? bounds. Next, we establish (9.44), (9.46), (9.47) and (9.44]) when
Z = N or N*. As we will see below, (9.44), (9.46) and (9.44]) follow from the arguments in
[1T]. In the bulk of this subsection, we focus on the task of establishing ([9.47).

To state the key estimates, it is convenient to set up some notation. We introduce the
compound G-valued symbol

O<h,:l:(t7 x,s,Y, §> - O<h,:|: (ta x, g)oz}z,j:(87 Y, 6)
The quantization of Ad(O«j 4 ), which is a End(g)-valued compound symbol, takes the form

Op<Ad<O<h,:t))<t7 Z, D7 Y, 8) = Op<Ad(O<h,:t))<t7 Z, D>Op<Ad(O;}1z,:t))<D7 Y, S)'

Given a compound End(g)-valued symbol a(t,z,s,y,&), we define the double spacetime
frequency projection

(a)<<k’(t7 x,s,Y, 6) = Sizsilza'(t7 z,s,Y, 5)
Therefore, according to our conventions,

Ad(o<h,:|:)<<k(t7 x,s,Y, 6) = Ad(0<h,ﬂ:)<k(ta x, €>Ad(02llz,i)<k(sa Y, 6)

Proposition 10.14. For 6 > 0 sufficiently small, there exists d(1y such that the following
bounds hold for any h < —20:

1 (Op(Ad(Ochz)<0)(t, z, D, t,y) — 1) Ry Sag, 200, (10.35)

0,
N*— X

Nl

Before we begin the proof, we state a lemma for passing to a double spacetime frequency
localization of Ad(Oy 4 ), which is used several times in our argument below.

Lemma 10.15. For2 < g<oo and h+ 10 < k <0, we have

1 1

| (Op(Ad(Ops)w0) — Op(Ad(Ocpi)er)) Pollorzsrare Sar, 2%~ 2100k (10.36)

This lemma is a straightforward consequence of Lemma [10.12; we omit the proof.
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Proof of (10.35)). We follow [I7, Proof of Proposition 9.13]. For simplicity, we omit + in
O<px, Ocp + etc.

Step 1: High modulation input. For any j € Z and j' > j — 5, we claim that
1Q;(Op(Ad(O<h) <o) — 1) PoQy| 03 Su, 20023077, (10.37)

N*—Xoo

Step 2: Low modulation input, %h < j. Here, we take care of the easy case %h <.
Under this assumption, we claim that

1Q;(Op(Ad(O<n)<0) = 1) PoQ<jsll . <, 27" (10.38)

AX&%
Note that

Q;(Op(Ad(O<h)<j—s) — 1) PoQ<j—5 = 0.
Thus, using the L>®L? portion of N*, it suffices to prove

1Q;(Op(Ad(Ocn)«o — Ad(Ocp)«j—5)FoQ<;j—s|
Since @; and Q;_5 are disposable in L?*L? and L*L?, respectively, this estimate follows
from Lemma [10.15]

Step 3: Low modulation input, j < %h, main decomposition. The goal of Steps 3-6
is to establish

1Q;(Op(Ad(O<p)<o0) — Ad(O_;, 51,)<0) PoQ<j—5]

provided that j 4+ oh < h.
At the level of End(g)-valued compound symbols, we expand

Ad(Op) — Ad(O_; 5) = L+ Q+C,

24h

<
Neoxz ~Me

o0k St 2O (10.39)
*_) 0o

where

L

/ . £€,< j+0h de
Jj+0h<t<h

/
- Qﬁ,f’,<j+5h dede
jHah<<i<h

C= / C&gl,gnK@// ac" de' de
JHORSE U <E<h

and the integrands L, <k, Qo < and Cpp v <1, are defined recursively as

Lo<r(t,x,s,y,8) =ad(Ve)(t, z,§) Ad(O<k)(t, 7, 5,9, §)
— Ad(O)(t, 2, 8,y,8)ad(We)(s,y,8)
Que <kt . 8,y,&) =ad(Vo)(t,z,) Lo <k(t, @, 5,9, &)
— Ly <1(t,,5,y,8)ad(¥,)(s,y,§)
Coorer<i(t,x,8,y,§) =ad(Vo)(t, x,8) Qo on <i(t, . 8, Y, )
— Qoo <k(t,2,8,y,8)ad(Ve)(s,y,§)

Q
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The three terms L, <k, Qoo < and Cypp o < are successively considered in the next three
steps.

Step 4: Low modulation input, j < %h, contribution of £. Our goal here is to prove

1Q;LcoFoQ<j—5] 3 Su, 2000, (10.40)

0
N*—Xoo

We introduce

£€,<k,<<k’ :ad(\pZ)(t? Z, £)Ad<0<k)<<k’ (tv T,8,Y, f)
- Ad(o<k)<<k:’ (ta z,s,Y, f)ad(\lle)(s, Y, 5)
£6,<foo :ad(\I/D(t, T, 5) - ad(\I/e)(S, Y, é)

and decompose

L :/ ~ (£Z,<j+3h - ££,<j+5h,<<j75) dt
jHSh<t<h

+/ i Ly iisneisdl
j—108h<t<h

+/ - N (‘Cﬁ,<j+5h,<<j75 _»Cé,<—oo) 4
J+Oh<E<j—106h

+/ 5 ~ £e,<_oo dg
j4+8h<<j—106h

=Ly + L)+ L) + L.

Step 4.1: Low modulation input, j < %h, contribution of L. For this term we can
add a double frequency localization < C'on £, _; 5, and then harmlessly discard the double
< 0 localization in (10.40]). Then it suffices to prove that for £ > j + dm we have

_lrp_(5iad 145
1Qi0P (L4 < jiinwc — Locivineis) PoQcjsllorrmrz Sa, 27617 UTMIRU0F)0,

and then integrate with respect to £. But this is a consequence of the decomposability bound

(10.14)) with ¢ = 6 and r = 0o, together with the bound (|10.34]) with p = 6 and ¢ = 2.

Step 4.2: Low modulation input, j < %h, contribution of L. Here as well as in
the next two cases the < 0 localization in ¢ has no effect and is discarded. The two terms
in ng <jidh<j_p are€ similar; we restrict our attention to the first one. Consider now the
operator

Qi0p(ad(We) Ad(O_,,5,)<jm5)Qejos = 3 Q;0p(ad(¥")Ad(O_,, 5,)«jm5)Q<js
[}

The important observation here is that, because of the geometry of the cone, the frequency

localizations for both Ad(Ojitan)«j—5) and \1129) force a large angle 6 > 2209 or else the
above operator vanishes.

Given this bound for #, we can now use the decomposability bound ((10.14]) with ¢ = 2
and r = oo combined with ((10.34]) with p = oo and ¢ = oo to obtain

10p(ad(¥ ) Ad(O_ . 5)<j—5) Poll 1212 Sar, 272922079973
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which after § summation in the range 6 > 2300 yields
15,55
1Q,0p(L2) PoQ <5l oo r2srz S, 277722°0.
which suffices.

Step 4.3: Low modulation input, j < %h, contribution of L3). Here we have the
same angle constraint as above but this levels off for ¢ < j, namely 6 > 924+ However,
we can now replace ((10.32)) with ((10.27]) to obtain

|Op(ad( W) (Ad(O; 53)i—5 = D)Pollcramsr2 S, 272727200732 (200.040M) 491000
which after 0 and ¢ summation yields

1Qi0P(L &) PoQ<ssll oo rzsrz Saa, 2729 (20070 4 290,

This suffices provided that ¢ is small enough 6 < d(0)-
Step 4.4: Low modulation input, j < %h, contribution of L. Here we have the
same range j — 0h < ¢ < j 4 106h for £. We also have the same constraint on the angle
> 272(=9+ but this is no longer relevant in this case, as we will gain in frequency, and
this can override any angular losses.

This time we are able to take advantage of the difference structure for W. Precisely, it
suffices to show that for a localized at frequency 1 we have

10p(ad(T)) (¢, 2, D)a(D) — a(D)Op(ad(T ) (t, 2, D) || oo r2srare <o, 275°2¢07C (10.41)
But this was already proved in [I7], (9.40).

Step 5: Low modulation input, j < %h, contribution of Q. We proceed in the same
manner as in the case of £. Defining the symbols

Qu <<t =ad(Ve)(t, 2, ) Lo <t (T, 7, 5, Y, §)
— Loy << (b, 2, 8,y,§)ad(Ve) (s, y,§)
Qu <o =ad(Vy)(t,7,§) Lo < oo(t, 7, 5,9, &)
— Lo <ot z,8,y,§)ad(V,)(s,y,§)

we decompose Q as follows:

o ~ _ /
Q - - (Qf,f’,<j+(5h o Qﬁ,g’,<j+§h,<<j—10) de'de
JHSh<O<t<h

- 5 o gdldl

j—105h<t

/
"’/ ~ ~ (Qe,z',<j+5h,<<j—1o - QM’K—oo) dede
JHOh<'<t<j—105h

+f Qe wdldl
J+OR<O<0<j—106h

=:Q1) + Q) + L) + L

Then we consider each term separately.
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Step 5.1: Low modulation input, j < %h, contribution of Q). Proceeding as in Step
4.1, we have

_ _ _ _ /
Qc1 = / i (QZ,E’,<j+6h,<<C Q&e’,<j+5h,<<jf5)<<o dtde
j+Sh<er<t<h

and we can again harmlessly discard the outer < 0. Applying the decomposability bound
10.14)) with ¢ = 6 for ¥, and with ¢ = oo for ¥y and r = oo, together with the bound
10.34)) with p = co and ¢ = 3, we obtain

1 -5 1\%
) _ N —1[0—(j+6R)] 5(10+L)dR
||Qz,e/,<j+5h,<<c Qé,é’,<j+6h,<<j—5||L°°L2—>L2 S, 278 2 2

Summing up with respect to £ and ¢’ we obtain

10p(Qy) Poll oo 212 S, 2100h,
which suffices.

Step 5.2: Low modulation input, j < %h, contribution of Q). Here and also for
Q3) and Q(4) we can remove the outer frequency localization < 0 which does nothing. The
expression Q(9) contains four terms depending on whether ¥, and ¥y act on the left or on
the right. We consider one of them, for which we need to bound the operator

Q;0p(ad(V)Ad(O_5,)<j-50d(Ver)) Q< j—5Fo
We decompose with respect to angles into
>~ Q0p(ad(W{")Ad(O_, 5)<;-5ad (V) Q5 Po
0.0/

and consider the nontrivial scenarios. This is as in Step 5.2 but now we have two angles,
which must satisfy non-exclusively

either 0 > 2%(1*‘5)7 or > 95G—0)

We can now use the decomposability bound (10.14) with ¢ = 3 and r = oo for the largeE]
angle respectively ¢ = 6 and r = oo for the other angle combined with ((10.34]) with p = oo
and ¢ = oo to obtain either

10p(ad(¥{") Ad(O

or the same bound with the pairs ([,6) and (I, 0’) reversed. Summing with respect to ¢, ',
and also with respect to 6, 6’ subject to the constraints above, we obtain

155
1Q;0p(Q2)) PoQ<j—sllror2—r2 Swa, 2 2793,

<j+3h)<<j—5ad(qjé/9/)))P0 poorzszz Sar, 2739280095286 =O)g/s

which suffices.

Step 5.3: Low modulation input, j < %h, contribution of Q). We repeat the angle
localization analysis in the previous step, but as in Step 4.3, we again replace ((10.32) with
(10.27)). The outcome is similar to the one in Step 4.3; details are omitted.

Step 5.4: Low modulation input, j < %h, contribution of Q. Again we apply the
same angle localization analysis as in the previous two steps. However, as in Step 4.4, we

1 e. which satisfies the bound on the previous line
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also need to exploit the difference between one of the two U’s and its adjoint. Consider one
such term, e.g.

ad (V") (t, x,€)[ad (V") (1, 2.€) — ad(V) (&, y. 5)]
For this it suffices to apply the disposability bound ((10.14]) for ‘Ifge) combined with ((10.41]).

The choice of the exponents is no longer important. We obtain

VI
HOP(Q(4))P0HL°°L2—>L2 ,SMU 9-279(1-C8)j

Step 6: Low modulation input, j < %h, contribution of C. This repeats the analysis
for £ and Q, but we no longer need to keep track of angular separation. Denoting

Coor o <k,ckr =ad(Vy)(t, 2,8) Qe o <hchr (L, T, 5,9, §)
— Qoo <kt (b, 8,,§)ad(We)(s,y,§)
Copr <o =ad(Ve)(t, 2, §) Qu i <o (t, 2, 8, Y, )
— Qu i <—oo(t, ,8,9,8)ad(Vr)(s,y, )

we decompose C as

C — (Cf,f’,f”,<5” — C£’€/’€//7<€//7<<_5) dg//dg/df
JHOh< <0 <t<h
—+ N C ’ pn 1" dglldgldg
j—F(ShSZ”SK'SKSh £7e 7€ »<€ ’<< 5

j—106h<¢

1/ !
+/ N N (Copr <7 <j—5 — Copr o <—o0) A" dl'dl
JHOh<L"<U<t<j—105h

+ / C@’gl,g//7<,oo de'de’ de
GHSh<O <0 <<j—105h

=€) + C) +Ca) + Cy
and consider each of the terms separately.

Step 6.1: Low modulation input, j < %h, contribution of C;). The same argument
as in Steps 4.1 and 5.1 yields the bound

10p(ad(¥e)ad(Ve)ad(Ver)(Ad((O<pr) = Ad((O<pr) «—5))<oll Lo r2— 12
<. 2—%]'2%(j+5h—£)2%(j+5h—€/)2%(j+5h—£/)210€”2%5h
as well as for any of the other choices of left /right quantizations for the ¥’s. Integration over
J+oh <" <l <<% is now harmless.

Step 6.2: Low modulation input, j < %h, contribution of C(. Applying the decom-
posability bound (|10.14)) with ¢ = 6 for each of the three W’s in the C; integrand, as well as
the L? bound for Op(Ad((Op)«_s5) yields the bound

1Op(ad(W,)ad(W)ad(Up) Ad((Ojy 50)) sl o212 S, 272726070260-1250-0)

which suffices after integration in ¢ > j — 106h and ¢, " > j + h.
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Step 6.3: Low modulation input, j < 1h, contribution of C). This is the same
argument as in the previous step, but using ((10.27)) instead of ((10.32]).

Step 6.4: Low modulation input, j < %h, contribution of C(4). Here we are concerned
with symbols of the form

ad(\Pg)(t, Z, {)ad(\llg/)(t, X, f)[ad(\lfgn (t, Z, g) — ad(\llg// (6, Yy, S)]

where one or both of ad(V,) and ad(V,) may be switched to the right and in the right
quantization. Here we use again the decomposability bound ((10.14)) with ¢ = 6 for ¥, and
ad(Wy, respectively (10.41)) for the Wy difference.

Step 7: Low modulation input, j < %h, low frequency O. To complete the proof of
the estimate (10.35)) it remains to show that

HQjOp(Ad(O<j+3h)<<0(ta z,D,y, 5) - 1)P0Q<j—5|

If j + 0h < h this is combined with the bound (10.39)), which is the main outcome of Steps

3-6. Else, this is used by itself, simply observing that we can harmlessly replace j +oh by h.
The above bound is identical to

|Qi0P(Ad(O_ ) <0 — Ad(O_y 51 s 5) (1., D,y ) PoQeysll oy S, 2007

<ag, 200h (10.42)

* 0’%
N*—Xoo

which in turn would follow from
10p(Ad(O_; 51)<0 — Ad(O_; 51)<j—5)(t, 2. Dy, 8)) Pollpoer2s22 S, 2 2iwh
But this is a direct consequence of the bound (|10.34)). U

Proof of (9.47)) in the case Z = N or N*. For the estimate (9.47)) with Z = N* we combine
the L L? bound given by (10.27) with (10.35]). If on the other hand Z = N, then the same
bound follows by duality. O

It remains to prove (9.44]), (9.46) and (9.44) when Z = N or N*. For this purpose, we
recall the following result from [11]:

Lemma 10.16. For { < k' £+ O(1), we have

1QeOP(Ad(Och )i )(t 2, D)Q<oBoll 03 S, (=K, (10.43)
||Q€Op(Ad(O;f1L,i)k’> (D,y,5)Q<0Fy HN*—)XO’% <u, 201 (E=K), (10.44)

¢S]

In particular, summing over all (¢,k") with ¢ < k and k < k' 4+ O(1), we have
|Q<k(Op(Ad(Ocpx)<0) — Op(Ad<O<h,i)<k70))<t7$aD)Q<OPOHN*_>X0,% S, 1, (10.45)
1Q<k(Op(Ad(OZ;, 1) <0) — OP(Ad(OZ;, 1) <k-c)) (D, y. 5)Q<o Pyl Sar 1. (10.46)

Proof. The proof of this lemma is similar to that of Proposition but simpler in the
sense the frequency gap need not be exploited. It can be proved with exactly the same
arguments as in [L1, Proof of Proposition 8.5] (there, M, < ¢€). Because of this, we will
merely indicate here how to modify the preceding proof of to obtain . We

leave the details, as well as the entire case of ((10.44]), to the reader.
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As before, we omit + in the symbols. Throughout the proof of ([10.35)), we replace
Ad(Op)<k(t,z,8,9,&) — 1 by Ad(O<p)<k(t,x,£). The main decomposition (Step 4) now
takes the form

Ad(Op)(t, 2,§) — Ad(0<j+8h) =L'+9 +( :/ ; £;,<j+5h de
+5h<t<h

+/ - QZ v,<j i+0h d€,d£
jHSh<r<i<h

/ i /
+/ ~ Cl o s g A dl
JHOR<E <t <L<h

where

1<k (t, 2, §) =ad(Ve) Ad(O<)(t, . §),
Ql£,<k(t’ Z, f) :a’d(\ljﬂ)‘c’%’,<k(t7 T, 5) = ad(qjé)ad<\1/€’>f4d(0<k)(t7 T, 5)7
Crek(t,x,8) =ad(Ve)Qp pn 1, (t,2,§) = ad(Ve)ad(Vy)ad(Ver) Ad(Ocp)(t, 2, §).

For the expansion of £, Q and C in Steps 5, 6 and 7, we replace Ly < <k, Lo,<—o0s Qo <k <k
Qv <00, Cor <<ty and Cypr gn <o Dy, Tespectively,

/32 <k < =ad(We) Ad(O<i) <p (L, @, §),
f<—oo =ad(W)(t,2,€),

QZ O <k,<K' =ad(¥,) é’,<k,<k'(t= r,§) = ad(Vy)ad(Vp)Ad(Ocr) <i (L, 2,§),
Qoo =ad(Ve) Ly oo (t, 2, &) = ad(V)ad(Vy)(t, z,§),

CM 0 <k, <K' :ad<\p€)Qlﬁ’,£”,<k,<k’ (t,z,8) = ad(Ve)ad(Ve)ad(Ve ) Ad(O<) <i (t, 7, ),

Cp L < —00 = ad(Ve) Qy L0 <—oo(t z f) = ad(V,)ad(Vy)ad(¥e)(t, z, §).

Accordingly, we replace the use of ( and ((10.36]) by (10.32) and espectively,
10.35)

which results in loss of the smallness factor 20m" in ((10.43)) compared to (10.35)). U

Proof of (9.44)), (9.46) and (9.44). in the case Z = N or N*| It suffices to consider the
Z = N*; then the case Z = N follows by duality. The L>L? bound follows from the Z = L?
case, so for ((9.44) and (9.44]) it remains to establish that

1Q;0p(Ad(O<p,z)<0) P
By Lemma this reduces to

|Q;0p(Ad(Ochpt)<j—s5)F

Now due to the frequency localization for Op(Ad(O<p 1 )<;j—5 we can insert a (slight enlarge-
ment of) @Q; on the right, in which case we can simply use again the Z = L? case.
Similarly, in the case of (9.44])) it suffices to show that

||Qj [ah Op(Ad(O<h,i)<0)]Q<jP0|

We split into two cases. If 7 < %h then we write

8tAd(O<h7i) = ad(o<h,i;t)Ad(O<h,i)<0)-
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and then we can easily combine the decomposability bound ((10.18) with the L? boundedness
of Op(Ad(O<p.+)<0). Else we have

Q;(0:, Op(Ad(Ocpx)<0)]Q<jPo = Q;[0:, Op(Ad(O<hp +)[j—5,0)] Q< Fo

Now we discard @);, Q<;—5 and 0, and use directly ((10.34]) with p = co and ¢ = 2.
O

10.8. Dispersive estimates. Finally, we sketch the proofs of (9.45)) and (9.45(). As in [I1],

we exactly follow the argument in [10, Section 11]. In the case of (9.45)), we replace the use

of the oscillatory integral estimates (108), (110) and (111) in [I0] by (10.24)), (10.25) and

(10.26)), respectively, the fixed-time L? bound (114) in [10] by (10.32)), (118) in [10] by (10.45)

etc. In case of (9.45]), observe that all the constants in these bounds are universal under

the smallness assumption (9.48) for a suitable choice of d,(M), as we may take M, < 1.
There is one exception to the above strategy, namely the square function bound

10p(Ad(Ox)<o(t, 2z, D)|| <wm, 1. (10.47)

10 M
Si—L3 12~

This is due to the fact that the square function norm was not part of the Sy norm in [10, [1T],
and was added only here. The same approach as in [I1] allows us, via a TT* type argument,
to reduce the problem to an estimate of the form

H/X_l(t — $)S(t, s)B(s)ds

< B
oy, S 1Bl

where

S(t7 8) = Op(Ad(O:t)<0<t7 z, D)eii(t_S)|D|Op(Ad(O:I:)<O(D7 S, y)

and the bump function y_; corresponds to the modulation scale 2! in 5’8. It is easily seen
that the bump function is disposable and can be harmlessly discarded. Hence in order to

prove (|10.47)) it remains to show that

II/S(t, s)B(s)dsl| s , Sa, (1B 3 (10.48)

x

To prove this we use Stein’s analytic interpolation theorem. We consider the analytic family
of operators

T.B(t) = ¢ /(t — 5)*S(t, s)B(s)ds
for z in the strip

-1 <Imz <

N W

Then it suffices to establish the uniform bounds
IT.\| 2202 Sm, 1, Rez=-—1 (10.49)
respectively

3
HTZHLQIDL,%—)L:%OLE Sw, 1 Rez = B (10.50)

For ((10.49) we can use the bound (10.31)) to discard the L? bounded operators

Op(Ad(O+) o(t, z, D)eF P!, eTPI0p(Ad(O1) (D, 5,y).
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Then we are left with the time convolutions with the kernels e**¢*. But these are easily seen
to be multipliers with uniformly bounded symbols.
For (10.50)), on the other hand, we consider the kernel K, (¢, x, s, y) of T,. This is given by

K.(t,x,5,y) = ¢ (t — s)"K%(t, 2, 5,y)

with @ a smooth bump function on the unit scale. Hence by ([10.24)) we have the kernel

bound 3
|K.(t,2,5,9)] Su, ([t—s]— |z —y)™'  Rez= 3

Fixing z and y we have the obvious bound
||K2(a €z, y)||L2—>L2 S/MO' L.
Then ((10.50) easily follows.

11. RENORMALIZATION ERROR BOUNDS

Without loss of generality, we fix the sign £ = +. In this section, unless we specify
otherwise, Op(-) denotes the left quantization. For the sake of simplicity, we also adopt the
convention of simply writing A, for P, A.

11.1. Preliminaries. We collect here some technical tools for proving the renormalization
error bound.

We begin with a tool that allows us to split Op(ab) into Op(a)Op(b). The idea of the proof
is based on the heuristic identity Op(ab) — Op(a)Op(b) ~ Op(—i0ea - 0,b) for left-quantized
pseudodifferential operators (cf. [10, Lemma 7.2] and [11, Lemma 7.2]).

Lemma 11.1 (Composition via pseudodifferential calculus). Let a(t,z,&) and b(t,x,§) be
End(g)-valued symbols on I; x R x Rg with bounded derivatives, such that a(t,z,§) is ho-
mogeneous of degree 0 in § and b(t,x,§) = P2, ,b(t,x,&) for some 0 <8 <1 and 2he = 0.
Then we have

1(Op(a)Op(b)—Op(ab)) Pyl Lar2in—rrr2in SI00cal pyrez oo | OO~ 0:0) Po|| Lar2n— e 1211,
(11.1)

t=pit e
Proof. For simplicity, in this proof we only present formal computation, which can be justified
using the qualitative assumptions on a and b.

Let us fix t € I. Thanks to the frequency localization condition b(z,§) = PZ, _b(x, &),
we may write

where r~

(Op(a)Op(b) — Op(ab)) Py =Y _ Op(ag)Op(by) — Op(aghy)
p

where

aj(w,€) = alw, ) (m{)*(Emi(),  b(w,€) = bla, i (€)mo(&).
Here ¢ runs over caps of radius ~ # on S? with uniformly finite overlaps, (mg)*(¢) =
(mg)2(€/|€]) are the associated smooth partition of unity on S* and mg(€) is the symbol
for Py. The functions (&) = m(£/|€]) and m2(€) are smooth cutoffs to the supports of

mg and my, respectively, which can be inserted thanks to the frequency localization condition

b(xv g) = chgflob(ﬁa 5)
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For each ¢, we claim that

20

10p(a)Op(b7) — Oplaghp) |22 S (D supmi(@)l|6"0{ a(-,w)l ) [Op(O7 Dub) 1212

(11.2)
Assuming the claim, the proof can be completed as follows. Let us restore the dependence
of the symbols on ¢. By the definition of Dy LIL", we have

20

n A(n 2\
1 (X supmp@)e o att, - w)lls<)”) N gein S 100eallpyiranoein

¢ n=1

n=1

On the other hand, by L2-almost orthogonality of mg’(g ) and Hoélder in ¢, we have
H(Z 10p(O 063, 2) *llpoiny S 0P 0ub) Pollans s o

where 7~ + py' = p;*. Therefore, by Cauchy-Schwarz in ¢ and Holder in ¢, (T1.1])) would
follow.

We now turn to the proof of (11.2]). For simplicity of notation, we use the shorthands
a = ay and b = b) for now. Then the kernel of Op(a)Op(b) — Op(ab) can be computed as
follows:

i(x—2)-€ Ji(z—y)- df dn
Klzy) = [ 050 a(a,6) - alo b deg e o
_ / / LN (¢ — ) (Dga) (x, 5E + (1= 5)n)b(=, ) dz(zdff <zd:>4 *

d§ dn
@2n)t 2yt

Expanding d:a(z, ) = [ e *VE(0ea)V(x,Z) d= and making the change of variables Z = z —
(1—39)=, we further compute

—z'/ /ei(m_z)”gei(z_y)'”(ﬁga)(x, s&+ (1 = s)n)(0.b)(z,n) dz

dg dn

ds
(2m)* (27)*
dg_dn
(2m)t (2m)t ©

1
wi [ttt = 0 0) (0, 2)0,0) ) a2 d
0

1
= / / =D (Gea) (2, Z) (0,0) (2 + (1~ 5)E, 1) dEd2
0

S /0 1 / (9ca)" (¢, E) ( / =D b) (@ — sZ, 1) (;g ) d= ds

On the last line, observe that the n-integral inside the parentheses is precisely the kernel of
Op(9.b)(xz — s=, D). By translation invariance, we have

07 [(0xb) (z — 52, D)l r2—sr2 = (071 0:b) (, D) Pol| 212

On the other hand, returning to the full notation aff = a and rotating the axes so that

¢ = (1,0,0,0), note that ag(x, -) is supported on a rectangle of dimension ~ 1 x 6 x 6 x 6,
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and smooth on the corresponding scale. Integrating by parts in ¢ to obtain rapid decay in

—=1 =2 =3 —4

Z (of the form (Z1)~N(0=")~N where Z' = (22,23, =1)), we may estimate

6 / 1(0eal)” (-, )|l pd < / || / = 00cal-, €) ()2 (€)m(€) %nm Iz

20
<070 / 16070 -, €) || Loy (€)1 (€) dE.
n=1

Passing to the polar coordinates £ = Aw (where A = [£]), integrating out A and using Holder
in w (which cancels the factor 73), we arrive at

20
0 / 1(0cag)V (-, D)l wd= <> supmi (W) [[670 al-, w)| =,
n=1 ¥

which proves ([11.2)). O

Remark 11.2. As it is evident from the proof, we in fact have the simpler bound

[L1})

In other words, control of the DyLP? L*°-norm already encodes the fact that a is smooth in
& on the scale 6.

[(Op(a)Op(b) — Op(ab)) Pol|Lar2in—rrrzm S ||a||D9LP2L°°[I]||Op(9_18a:b)P0||LqL2[I]—>LP1L2|1Ia

In practice, Lemma can be only be applied when we know that the symbol on the
right (b in Lemma is smooth in x on the scale 6~!. Fortunately, when b = Ad(O),
the remainder can be controlled using decomposability bounds for U. We therefore have the
following useful composition lemma.

Lemma 11.3 (Composition lemma). Let G = G(t,z,&) be a smooth g-valued symbol on
I x R* x R*, which is homogeneous of degree 0 in & and admits a decomposition of the form

G =3 gean GO, where
|G pyrereeqn < 6*B
for some B >0 and o > % + 9. Then for every { < 0 we have
|0p(ad(G) Ad(O<1)) Py — Op(ad(G))Op(Ad(O<) Pllx-own S B (11.3)

Proof. Let us assume that ¢ > hy — 20, as the alternative case is easier.

We decompose the expression on the LHS of (11.3) into »_,.o-n DO where
D = Op(ad(G?)Ad(O4)) Py — Op(ad(G?))Op(Ad(Or)) Py.

In order to reduce to the case when Lemma is applicable, we introduce hy = log, § and
further decompose D) as follows:

Y4
DO _ / Op(ad(G®)ad(¥,) Ad(O<1)) Py dh
h

9—20

l
- / Op(ad(G?))Op(ad(¥,) Ad(O.1)) Py dh
hg—20
+ Op(ad(G') Ad(O<py—20)>hy—10) Po — Op(ad(G?))Op(Ad(O<py—20)ny—10) Po
+ Op(ad(GYAd(O<p,—20) <y —10) Po — Op(ad(GD))Op(Ad(O<ny—20) <hy—10) Po-
134



We claim that
_1
||D(9)”L°°L2[]]—>L1L2[I] 5 Oa 2 B (114)

Assuming (11.4)), the proof can be completed by simply summing up in § € 27N, which is
possible since o > % + 9.

For the first term in the above splitting of D@, we have

¢
/ HOp(ad(G(e))ad<\ph)Ad(O<h))P0HLOOLQ[I]—>L1L2[I] dh
h

9 —20

Y/
< / 1GO 1 ¥nl 2o db
hg—20

Y4
< / go2-2hp <, g3,
he—20

The second term can be handled similarly. For the third term, we use the DL?L> bound for
G and apply Lemma [10.12/to Ad(O<p,_20)>h,—10), Which leads to the acceptable bounds

“Op(ad(G(e))Ad(0<hg—20)2h9—10)P0||L°°L2[I}—>L1L2[I] Sut?B,
“Op<ad<G(0)))Op(Ad(O<h9—20>2h9—10)P0|‘L°°L2[I}—>L1L2[I] Sut?B.
Finally, for the last term we use Lemma (in fact, (11.1{)). O

11.2. Decomposition of the error. Let
E=05"0p(Ad(0) <o) — Op(Ad(O) <o)
We may decompose
E=F+---+ Fs

where

E, = 2i0p <(ad(w Ap e+ Aoci + Lﬁ\I’)Ad(O))@) |D,|

B, = 2i0p ((ad(w - O + Oy = L5)Ad(0)) ) |D ),

By = 20p (ad(Aa,<—x) (ad(0*)Ad(0)) o) + Op ((ad(0,4)ad(0*)Ad(0)) ) ,
E; = Op ((ad(0*04)Ad(0))_,) ,

Bs = — 2i0p (ad(Ay <) Ad(0) o) (Ds + | Da]) = 20p ((ad(O ) Ad(0)) ) (Dy + D),
o= — 2i0p ([Sco,ad(w - Ay <+ Ay o )JAd(0)) | D],

In the remainder of this section, we estimate each error term in order.

11.3. Estimate for E;. Here, our goal is to prove

| B Poll iy < (11.5)

with x; large enough and ¢, sufficiently small.
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11.3.1. Preliminary reduction. For this term, we may simply work with I = R by extending
the input by homogeneous waves outside /. The desired smallness comes from s and bounds
for A, and AAg on I, which controls the size of the symbol of F; through our extension
of A, as in Section [9.2

We first dispose the symbol regularization (-).¢ by translation invariance, and also throw
away |D,| using P,. Using and the identity LY LYA! | = —AZIO+1, reduces
to showing

—K

| [ Op(ad(G)A(O)) Podhll g, <,

where S s
Gh=w-Agp—w- A(Zln\ ) + A;i‘:](w . AGI) )+ Ao .

x,h,cone x,h,cone

Note that each angular component GELO) = H;”J“Gh obeys
1 3
1G Iprozee < 22"02 (|| Awnllsr + [ Aonlly)-

Therefore, by Lemma [11.3] we have

1
—ZK
NN Sp 2728,

1/ 7 (Op(ad(Gh) Ad(O)) — Op(ad(Gr))Op(A(O))) Py dh]

which is acceptable. By Lemma [10.12| applied to Op(Ad(O)sg), we also have

H / Op(@d(Gh»Op(Ad(O)Zo)PO dh| N*—N SM/ Q%hHOp(Ad(O)Z())POHLooL2*>L2L2 dh

)
1

—ZK

§M2 27,

Thus it suffices to show that
I / Op(ad(Gy))Op(Ad(O) <o) Py dh”sg—w < €.

By (9.45)), we have Op(Ad(O)~o)F : Sg — Sp. Thus, in order to prove (11.5)), we are left to
establish

I / Op(ad(Gy)) Py dh||s,n < €. (11.6)

where we abuse the notation a bit and denote by F, a frequency projection to a slightly
enlarged region of the form {|¢| ~ 1}.

At this point it is convenient to observe that the contribution of Ry to Ag in ((9.27) is easy
to estimate in L'L* and can be harmlessly discarded. Thus from here on we assume that

Ry = 0. (11.7)
In order to proceed, we split
Gh = Gh,eone + Gh,null + Gh,outa
where
Gh,cone =w:- A(<|n|§) + A;ilj(w ' A(Z‘nla) ) + AO,h,cone7

x,h,cone x,h,cone
Gh,null =w:- Am,h,null + AO,h,nulla

Gh,out =Ww: Am,h,out + AO,h,out'
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11.3.2. Estimate for G cone. We claim that
|| / Op<ad(Gh,cone))P0 dh||N*—>N L eE. (118)

Let G¥ = Hg”ithne and consider the expression Op(ad(G(g) ))Fy. By the Fourier

h,cone h,cone
support property of Gglone (more precisely, the mismatch between its modulation < 262
and the angle ), it is impossible that both the input and the output have modulation
< 2"9%. Using the L?L? norm for the input or the output (whichever that has modulation
> 2M9?), we may estimate

Hop(Gh,cone)POHN*HN
_lp
5 Z 2 2h0 ' ||G§flone||DL2L°°

o<1
s lpa 1 _ipal
22" Agullsr + > 272"072 | Qunsaton, oD Al 2z + > 27202 || AAg | p2re
<1 0<1
We now treat each term separately.

Case 1: Contribution of small angle interaction. The term QthAm’hHSl is acceptable
since it is integrable in —oo < h < —k, and we gain a small factor 2755 as a result.

Case 2: Contribution of [JA,. For the second term, we split the #-summation into
0 < 27" and # > 27", In the former case, note that

”Q<h+2log2 9+CDAm HLQL2 5 02b1 HDAZIS,hHXf%erl,fbl .

Since b; > 1/4, we may estimate
ipod (21
Z 273" 2[|Q<ht2108, 0+cA | 1212 < 2 (201 2)H||DAoc7h||X*%+b1fb1-
<2+

The last line is acceptable, since it is integrable in —oo < h < —k, and it is small thanks to
2-(2-3)% In the case 6 > 275, we estimate

1 1 1
S 275075 | Qensston o+ cOA ] 2re S 25504
0>2—*

L2 3"

After integration in h, this is acceptable thanks to (9.22)).
Case 3: Contribution of Aj. In this case, we simply sum up in § < 1 and observe that

> 27305 | A Aol are S A Aol

0<1

After integration in h, this term is then acceptable by (9.29).

L2H-%

11.3.3. Estimate for Gp oue. We claim that

[ / Op(ad(G o)) Po dhl|x-sn < €. (11.9)

As in the case of G}, cone, the idea is again to make use of the mismatch between mod-

ulation of Gj o and the angle 6. Let foiut = H‘;’iGhmt, and consider the expression
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Op(ad(Gh out))PO' By definition, G;z ()mt has modulation > 2"02. Thus, we decompose
G}fﬁmt =D 0a>g QhﬁaG@mt. By the Fourier support property of the symbol QHQQG;?M
(more precisely, the mismatch between the angle 6 and the modulation 2°72%) it is impossi-
ble that both the input and the output have modulation < 2"*2?. Using the L?L? norm for

the input or the output, we have
10p(ad(Ghout)) Polln+—n
_1(ht2a
52 Z 2 2(h+? )||Qh+2aGl(10,())ut||DL2L°°

a f<min{C2,1}

SO>S (2020R | Quana A pllian + 27 HF20 Ag 12

a f<min{C2%,1}

<3 (28002 QDA

a- 27a27%h”AA0’hHL2L2> .

We split the a-summation into a < —x and a > —x. In the former case, the sum is bounded
by

2~ =38 0A, | + 2735 Adg |

1 . 1
Xb1—3:7b L2H™2°

which is integrable in h and small thanks to 2701~ 2)” therefore it is acceptable. When
a > —k, the sum is bounded by
Ly
22 ||DA$7h||L2H§ + ||AA0 h||L2H—%
After integrating in h, this term is therefore acceptable by (9.22) and (9.29)).

11.3.4. Estimate for Gppu. We claim that
|| / Op(ad(Grratt)) Py dh sy ox < <. (11.10)

Let G;fnu” = II, iGh nul- Note that G " has modulation ~ 2hg2. Hence if either the

input or the output have modulation > 2~ 02h02 the same argument as in the case of G}, cone
applies. Writing 6 = 2¢, it remains to prove

0
> / Qensoe-cOplad(w - AP+ AL VPoQeniae—c dhllsyon < e (11.11)

le—N

Our next simplification is to observe that we can harmlessly replace the symbols A® h nuy and

Aé?;;?nuu with the functions Qp420A; , respectively Qpio0A, . This is because the difference
of the two is localized still at modulation 2", but also at distance 2"*2¢ from the null plane
{0 4+ w-n = 0}. This would force either the input or the output modulation in (11.11)) to
be > 27922 and again the same argument as in the case of Gh cone applies. Thus with
7 = h + 2¢ we have reduced the problem to estimating

I3 [ Qucud Qa0 Qs chls,x < o (11.12)

j<h
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respectively

> / Qs cad(Q3Aon) (Do + D)) PoQejc dllson < e (11.13)

j<h

The second bound is straightforward since (Dg + |Dy|)PoQ<o : So — L? and Ay € L*H 3.

Thus it remains to consider @D From here on, we assume that A is determined by
the expressions (9.27) and (9.30)) in terms of A. By (11.7) we have already set Ry =0. It is
equally easy to see that we can set R, = 0. Indeed, by (]Z_—6D and m we have

1Q<;—cad(0 ' PRI PoQi—cllsyn S 22U"MO PRy < 229 PyRy| 1112,

where R = y;PR. Now the summability in j < h and the smallness is assured due to (9.26)).
Once we have dispensed with the error terms, we are left with A, , given by

Ay =A"10(x A% 6, A) (11.14)
A= D_IP(O(X[AE, 8$Ag) + O/(Pg/i, X[agzi) - O/(Ao, XjatA) + O,(ég7 X[agﬁ)) (1115)
We consider the contributions of each of these terms in ((11.12)).

1. The contribution of Ay = A~'0(x;A!,d,4,) and A, = O'"PO(y; A%, 0,4,). This is
the main component, which we have to treat in a trilinear fashion. In particular we have to
insure that we gain smallness. For this we use a trilinear Littlewood-Paley decomposition to
set

A= " Alkkiks) = > HA(k ki ka) + > (1 —H)A(k, by, ko)

k:,k:l ,k‘g k k‘l k?2
where

HA(]{, ]{?1, ]{?2) _ %PkPA(P]ﬂX[AE, P]Qat/ig)
(1 —H)A(k, k1, ko) := (1 — H) PP A(Py, x1 A, P, 0, Ar)

For the terms in the first sum we use the trilinear estimate (8.45)), which gives
1Q<j-cad(Q;H ALk, k1, k2)) 0" PoQuj-cllsyripe S 270t Fmar=Fminl 2000 || B Al|ga || P, A 51

For the A, terms in the second sum we first use and ( - - to obtain

10— H) Auk, ko, ko)l S 2*51"%@”%2”' 1P, Alls | Py Al

and then use (8.32) to conclude that
1Q<j—cad(Q;(1=H) Au(k, k1, k2))0 PoQ<j—c |5y S 270 Fmin=hmazlgh = ||1ch1A||51||P1c214||s1
Similarly, for the Ay terms in the second sum we use (8.37)) and then (8.33)) to obtain
1Q;-cad(Q;(1—H) Aok, ky, k2))* PoyQ;cllsy s S 202 rin sl g k>||Pk1A||31||Pk2A||31
Adding the last three bounds, we obtain

1Q<j-cad(Q; Aa(k, ki, k2)0* PoQejc |l syn S 271 e hminl 00| By Al g1 | Py Al 1.

This gives both summability in k, ki, ko and smallness provided we exclude the range of
indices j, k1, ko € [k — k', k + £'] with & > 1.
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On the other hand, in the range excluded above the operator P,@); is disposable while
both O and A are elliptic, i.e. of size 22*. Then we can estimate

1Q; Ak, kv, ko)l pizee S 29| Py All psi || Py All s
therefore we gain smallness from the divisible norm, see ((9.5)).

2. The contribution of A, = D_lPO’(ngl, le)efl). This is a milder contribution, which
we can deal with in a bilinear fashion. Decomposing again

Ae = Alk Ky, k)
k,k1,k2

we use (8.40)) to obtain
”Ax(ka kl, k2) Hzl 5 2_61|kmax_kmin\

Then by ({8.32) it follows that

1Q<j-cad(Q;H ALk, ki, k2))0* PoQejc sy iz S 270 Hhman=bminlgn U= Py A 51| Py, Al g2

(11.16)
Again this is suitable outside the range j, ki, ks € [k — K/, k + /] with &' > 1, whereas in
this range we can use divisible norms as in the previous step.

3. The contribution of PO’(Ay, x;9,A) + PO’(??’@, x10'A). These two terms are similar,
as we have the same bounds available for Ay and G;. We will discuss Ay. Setting

Ax = D_IPO/(Ao,X[atA), A[) = O,

| P, Al g1 || Py A 51

we decompose as before
Ap = Ag(k, by, ko)
We can estimate the terms in the sum using (8.43)) to get
1Aa (B, oy, ko)l 1 S 270 me=bminl|| By Aoy ]| Py Al s
Then (|11.16) follows again from (8.32)), and we conclude as in Step 2.

11.4. Estimate for E,. Our next goal is to estimate the error term FE5, which arises from

the multilinear error between O., and d,¥. For this purpose, we rely crucially on interval
localization of decomposable norms (Lemma [10.7)).

11.4.1. Ezpansion of O.,. We will prove that
| EaPo|| N+j—ni < € (11.17)

provided that s, is large enough, and 9, is sufficiently small.
As usual, we may dispose the symbol regularization (-)-o by translation invariance. Also
disposing | D,| using Fy, it suffices to prove

10p (ad(w - (O — 0,¥) + (O — 9, V))Ad(O)) P
Recall that 0,0<p.0 = Vpo + [Vn, Ochia). Therefore,

8h (ad(O<h;a)Ad(O<h)) = ad(@a\llh)Ad(O<h) + &d(\ph)Ad(O<h;Q)Ad(O<h).
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Repeatedly applying the fundamental theorem of calculus and this equation, we obtain the
expansion

ad(0.) Ad(O)
- /  ad(0a U, ) Ad(Op, ) dhy (11.19)
—K h1
+ / / ad( Uy, ad(D,,,) Ad(Op,) dhs dhy (11.20)

+ ...
—K h1 hs
+ / / cet / ad(\I/hl)ad(\I/hQ) s ad(@a\PhG)Ad(O<h6)dh6 cee dhg dhl (11.21)

On the other hand,
(9h (ad(@a\lf<h)Ad(O<h)) = ad(@a\lfh)Ad(O<h) -+ ad(&a\ll<h)ad(\lfh)Ad(O<h),

so we have
—K

ad(0, ) Ad(O) — / ad(0, T, ) Ad(O 1, ) dhy (11.22)

—0o0

—K h1
+ / / ad(9a U, )ad(Vp, ) Ad(Op, ) dhy dh. (11.23)

Observe that (11.19) and ([11.22)) coincide. Thus, we only need to consider the contribution
of (11.20)—(11.21)) and (11.23) in (11.18)).

11.4.2. Estimate for quadratic expressions. We begin with the contribution of the quadratic
terms in W, namely (11.20) and ([11.23|), which are most delicate. We claim that

—K h1
|| / / Op (ad(\I/hl)ad(L:i\Ifhz)Ad(O<h2)) PO dhg dh1||N*[I]~>N[I] SE, (1124)

—K h1
|| / / Op (ad(L2 Wy, )ad (W, ) Ad(O—py)) Po dha dis||y-s i) <. (11.25)

provided that k; is large enough and ¢, is sufficiently small. In what follows, we will focus
on establishing (|11.24]), as the proof for the other claim is analogous.
By (9.42) and the identity LY LY Al | = —A;iD—i— 1, (11.24)) would follow once we establish

—K h1 ]
H / / Op (ad(@hl)ad(w : Azzaln)Ad(O<h2)) Po dhz dh1’ N*[I]-N[I] <<€, (1126)

—K hi '
I / / Op (ad(W,,)ad(A 1 O(w - APe™)) Ad(O<p,)) Po dha dhy|

N*[I]—-N[I] Le. (1127)

In Lemma [10.4] and Lemma [10.7, note that w - A" (= w . Ag%mne#) and A O(w -

Azwim(é)) obey the same bounds. Therefore, (11.26) and (11.27) are proved in exactly the
[1.26]).

same way. In what follows, we only consider (|1
Our first task is to remove Ad(Oy,). For § € 27N, define

GO = ad(¥))ad(w - ALY + ad(WE)ad(w - Apt ).
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so that G := ad(Vy, )ad(w - A7@™) = 3", , -« G, Note that
||G(9)||DL2L°° <um 2%h12%(h2*h1)6)%’

by Lemma and Lemma [10.5] Applying Lemma [11.3] then integrating —oco < hy < hy <
—k, it follows that

N*[I]—N[I] S 272"

1] ] (Onad(©)Ad(0-4.) ~ Op(ad(G)OMAU(O 1)) Pydis ]

which is acceptable. On the other hand, using the DL?L*> bound for G and Lemma [10.12]
we have

—K h1
|| / / Op(ad(G))Op(Ad(O <)o) Po dhay di | -1

Swm / / 31123t =h) ) Op(Ad(O <y ) 50) Poll e 2111 122211 dha dha
so we may replace Op(Ad(O<p,)) by Op(Ad(O<p,))<o. Finally, by (9.44) we have
Op(Ad(O<py)<0) Py : N*[I] — N*[1],

so we are left to prove

0 ha
H / / Op (ad(\llhl)ad(w : Azzazn)) dh2 dhﬂ N*[I]=N[I] L e. (11.28)
—0o0 —00
In order to place ourselves in a context where we can apply Lemma [10.7, we begin by
dispensing with the case of short intervals

|I| S 2—h2—C’H

—Ck

For very short intervals |I| < 2717¢* we have the bound

hy
I / / Op (ad(Wp,)ad(w - A7) dhy dhy|| g 2012 Sar 22|11,

which is a consequence of fixed time decomposability bounds, namely ((10.10) with ¢ = oo
and with ¢ = oo and r = 0o, combined with Holder’s inequality in time. This suffices
for the integration with respect to h; and hs in this range.

For merely short intervals 27"1-C¢% < |I| < 27"27C% we are allowed to use spacetime
decomposabilty bounds but only for ¥, . In this case we apply with ¢ = oo and
(10.14)) with ¢ = 6 and r = oo, combined with Holder’s inequality in time, to obtain

h1
H/ Op (ad( T, )ad(w - Aps™)) dhy dhy || oo nire Sw 27 shgh| |3

This again suffices for the integration with respect to h; and hy in this range.
For large intervals, on the other hand, we will use Lemma [10.7] We begin by decomposing

0 : 0 . . _
=5 1) and Amein — S, AT %2) " Pirst. we consider the case 2M02 > 2-2r9h202,
01 h1 ha 92 ha ’ 1 2
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For fixed hq, hy and 0y, we use interval localized decomposability calculus to estimate

Z HOp (ad(\llgfll )(ld( Am:zzn (62) )> |’L°°L2[I}~>L1L2[I]
91227’*2%@2_}11)92
0 main, (6
S > I bl - AR pperein

0, >2-r23 (h2=h1)p,

<2524(h2 h1) 92||Ah1||51 (2 the 2 Hw mam (QQ)HDL?L"O[I}) '
Summing up in 6, < 272%, we see that

S>> 0w (edw)ad(w - A7) AdO ) IE]) e e e

O <22 9122—n2%(h2_h1)92

<2723 A4y | A, [

which is acceptable. On the other hand, in the large angle case 8, > 272¢, we use Lemma
to bound

2752, - A | ety S 29 Al s

When 2M6? < 27262202 we extend the input to R x R* by zero outside I and use
modulation localization. Here we do not apply Lemma but rather gain smallness from
—k. In this case, observe that it is impossible for the input, the output and \Ifgfll) to all have
modulation < 2202 =: j,. Therefore, we split into three cases:

Case 1. (High modulation input) We estimate

> X o (adwadle A7) Quell

—L1L2
02 01<2*H/22%(h2*h1)92
> > 2420510 o e [l - AT
02 01<2—H/22%(h2*h1)92
1op. 15
< > 2842 =hG5 08 || Ay [l | Ay 151

62 91<2—n/22%(h2*h1)92

S22t A, o | Aua |1,

which is acceptable.
Case 2. (High modulation output) When the output has modulation > 272~¢ then we have

exactly the same bound for L*L* — X, el (we use boundedness of Q-j,_¢ on
L>L?).
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Case 3. (High modulation for ¥}, ) By boundedness of Qj,_c on L>L? and L*L?, it suffices
to have the following estimate:

Z Z 10p (ad(szsz‘pgil))ad(w : AZZam’(GZ))) |reor2pire

02 91<2_,</22%(h2—h1)92

<> S Q55— O | pr2pee|w - A ™| ppa pee
62 91<27~/22%(h2—h1)92
1 1
<> > 0703 | Az, | 511 Az, || 51

62 91<2—n/22%(h2*h1)02

52,%H2§(h2—h1)|mz,hl | 51]| Az ps | 51-

Here, we have use ([10.15)) for > ... o Qj‘ll,(fll).

11.4.3. Estimate for higher order expressions. The contribution of the cubic, quartic and
quintic terms in ¥ in the expansion of O., are treated in a similar manner as in the quadratic
case; therefore, we omit the proof. The only remaining case is the contribution of .
For this term, we claim that

—Kk rhi hs
1] [ o ad(wn,) - ad(0,)od(O ) Ad(O <)) s

for k; large enough and ¢, in adequately small.

As in the case of the quadratic part, we start with very short intervals and move up the
line. If [I| < 27"~C% then we only apply fixed time decomposability estimates, namely
(10.14]) with ¢ = oo and r = 0o and also with ¢ = oo, together with Holder in time,
to obtain

N*[I]=N[I] S €,

10p (ad(y,) - - ad(Ph;)ad(Ochgia) Ad(Ocng)) | rasrize Sar 2%,

which suffices for the h integration.
If 27M=Cr < |I| < 27727CF then we switch to (10.14) with ¢ = 6 and 7 = oo for ¥, to
obtain

10p (ad(Vy,) - - - ad(Vp,)ad(Ocpyia) Ad(Ocy)) || poor2ospize Sar 2781206 |1]6,

which again suffices for the h integration.
Repeating this procedure for increasingly large [ we eventually arrive at the last case

|I| > 27"6=C%_ There by Lemma and boundedness of Ad(Oy,) on L?, we have
10p (ad(Wp,) - - - ad(Vp, )ad(Ochgia) Ad(Ocny)) || Lo r2i— 112201
SIWnllprsreern - - [[Wns | prs ool O<hgiall Do o[-
Using Lemma m for \Ifff) with 0 < 27" and Lemmam for the rest, we have
| Wnhllprsreern < 25" (27| A nllsrin + C29%|| Aunllpsrin) -

This bound provides us with the desired smallness. By the previous estimate and ((10.17)),
the h-integrals converge as well, which proves our claim.

11.5. Estimates for Ej3, ... FEg. We finally handle the error terms Ej, ..., Eg, for which

we gain smallness from the frequency gap k.
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11.5.1. The estimate for E3. It suffices to show that
1,
| E3Pol|poor2p1pz S 272

But this is a consequence of the L? boundedness for Op(Ad(O)), combined with the L?L>
decomposability estimates for A, and O,, in Lemmas

11.5.2. The estimate for E,. We expand with respect to h,
ad(0°0,,)Ad(O) = / 0%(ad(O<p.a)ad(Vy))Ad(O<p)ad(CV,)Ad(O~y) dh

For the first term we simply use two L?L> decomposability estimates as in the case of Ej.
For the second term, in view of the bound (10.16)), we can apply Lemma to discard the
Ad(O«p) factor. Then it suffices to show that

l / Op(ad(D0,)) Py dhsysw Sar 2"

After expanding ¥, in 6, we note that, due to the frequency localization of \IJEZG), either the
input or the output has modulation > 2"6%. We assume the former, as the other case is
similar. Then we only need to prove the bound

I / Op(ad(OW )Py dhl| 212 Sar 623"

which is an immediate consequence of the decomposability bound (|10.16) for D\I/g’?).

11.5.3. The estimate for E5. It suffices to show that

1
—ik

||E3P0||Sg_)L1L2 Sm 2

Since (D, + |D,|)Py : Si — L2, this follows from the L? boundedness for Op(Ad(O)),
combined with the L?L> decomposability estimates for A, in Lemma [10.4]

11.5.4. The estimate for Eg. In view of the L?L° decomposability estimates for A, in

Lemma and Lemma [11.3] we can discard the Ad(O) factor. In addition, as in Proposi-

tion [4.30, we can express the commutator [Sp, Az] in the form
[So, Al f = 2"O(Ay, f)

Then we have reduced our problem to proving

I / 2" Op(ad(w - V Ay 1)) Po dhl|s,n < €,

oo

|| / P Op(ad(Aop)) Py dhllsyon < .

But then these follow, with the 27%% gain, from (8.23) and (8.25), thanks to the extra

derivative (i.e. the 2" factor).
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