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Information processing typically occurs via the composition of modular units, such as the universal
logic gates found in discrete computation circuits. The benefit of modular information processing, in
contrast to globally integrated information processing, is that complex computations are more easily and
flexibly implemented via a series of simpler, localized information processing operations that only control
and change local degrees of freedom. We show that, despite these benefits, there are unavoidable
thermodynamic costs to modularity—costs that arise directly from the operation of localized processing
and that go beyond Landauer’s bound on the work required to erase information. Localized operations are
unable to leverage global correlations, which are a thermodynamic fuel. We quantify the minimum
irretrievable dissipation of modular computations in terms of the difference between the change in global
nonequilibrium free energy, which captures these global correlations, and the local (marginal) change in
nonequilibrium free energy, which bounds modular work production. This modularity dissipation is
proportional to the amount of additional work required to perform a computational task modularly,
measuring a structural energy cost. It determines the thermodynamic efficiency of different modular
implementations of the same computation, and so it has immediate consequences for the architecture of
physically embedded transducers, known as information ratchets. Constructively, we show how to circumvent
modularity dissipation by designing internal ratchet states that capture the information reservoir’s global
correlations and patterns. Thus, there are routes to thermodynamic efficiency that circumvent globally
integrated protocols and instead reduce modularity dissipation to optimize the architecture of computations
composed of a series of localized operations.

DOI: 10.1103/PhysRevX.8.031036 Subject Areas: Computational Physics,
Statistical Physics

I. INTRODUCTION

Physically embedded information processing operates
via thermodynamic transformations of the supporting
material substrate. The thermodynamics is best exemplified
by Landauer’s principle [1]: Erasing a single bit of stored
information at temperature T must be accompanied by the
expense of at least kBT ln 2 amount of heat released into the
substrate. While the Landauer cost is only time asymptotic
and not yet the most significant energy demand in everyday
computations—in our cell phones, tablets, laptops, and
cloud computing—there is a clear trend and desire to
increase thermodynamic efficiency. Digital technology is

expected, for example, to reach the vicinity of the Landauer
cost in the near future [2]. This seeming inevitability forces
us to ask if the Landauer bound can be achieved for more
complex information processing tasks than writing or
erasing a single bit of information.
In today’s massive computational tasks, in which vast

arrays of bits are processed in sequence and in parallel, a
task is often broken into modular components to add
flexibility and comprehensibility to hardware and software
design. This holds far beyond the arenas of today’s digital
computing. Rather than tailoring processors to do only the
task specified, there is great benefit in modularly deploying
elementary, but universal functional components—e.g.,
NAND, NOR, and perhaps Fredkin [3] logic gates, biological
neurons [4], or similar units appropriate to other domains
[5]—that can be linked together into circuits that perform
any functional operation. This leads naturally to hierarchi-
cal design, perhaps across many organizational levels. In
these ways, the principle of modularity reduces the chal-
lenges of designing, monitoring, and diagnosing efficient
processing considerably [6,7]. Designing each modular
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component of a complex computation to be efficient is
vastly simpler than designing and optimizing the whole.
Even biological evolution seems to have commandeered
prior innovations, remapping and reconnecting modular
functional units to form new organizations and new
organisms of increasing survivability [8].
There is, however, a potential thermodynamic cost to

modular information processing. For concreteness, recall
the stochastic computing paradigm in which an input
(a sequence of symbols) is sampled from a given proba-
bility distribution and the symbols are correlated to each
other. In this setting, a modularly designed computation
processes only the local component of the input, ignoring
the latter’s global structure. This inherent locality is a
physical control restriction and, thus, can lead to thermo-
dynamic inefficiency [9,10]. Local control in modular
systems necessarily leads to irretrievable loss of global
correlations during computing. Since such correlations are
a thermodynamic resource [11,12], their loss implies an
energy cost—a thermodynamic modularity dissipation.
Employing stochastic thermodynamics and information

theory, we show how modularity dissipation arises by
deriving an exact expression for dissipation in a generic
localized information processing operation. We emphasize
that this dissipation is above and beyond the Landauer
bound for losses in the operation of single logical gates.
The mechanism responsible for modularity dissipation
is distinct from that underlying Landauer’s principle—
state-space contraction due to mesoscopic control that
implements logically irreversible operations. It arises solely
from the modular state-space architecture of complex
computations. One immediate consequence is that the
additional dissipation requires investing additional work
to drive computation forward.
The additional work corresponds to the Universe’s

entropy production, much like the reduction in possible
entropy extraction for open-loop feedback control when
compared to closed-loop feedback [13,14]. In the special
case where all correlations between the local modular
component and the rest of the system are destroyed, the
reduction in entropy extraction for open-loop feedback is
the same as the additional work dissipated in modular
operations. However, open-loop and closed-loop feedback
specify different computations. This contrasts with our
focus on different structural implementations of the same
computation, meaning the same input-to-output channel.
For a particular computation, the stochastic thermodynam-
ics of control [15] provides tools to evaluate the energetic
efficiency of different types of Hamiltonian control: local
modular versus globally integrated.
In general, to minimize work invested in performing a

computation, we must leverage the global correlations in a
system’s environment. Globally integrated computations
can achieve the minimum dissipation by simultaneous
control of the whole system, manipulating the joint

system-environment Hamiltonian to follow the desired
joint distribution. Not only is this level of control difficult
to implement physically, but designing the required pro-
tocol poses a considerable computational challenge in
itself, with so many degrees of freedom and a potentially
complex state space. Genetic algorithm methods have been
proposed, though, for approximating the optimum [16].
Tellingly, they can find unusual solutions that break
conventional symmetries and take advantage of the corre-
lations between the many different components of the
entire system [17,18]. However, as we will show, it is
possible to rationally design local information processors
that, by accounting for these correlations, minimize mod-
ularity dissipation.
The following shows how to design optimal modular

computational schemes such that useful global correlations
are not lost, but stored in the structure of the computing
mechanism. Since the global correlations are not lost in
these optimal schemes, the net processing can be thermo-
dynamically reversible (dissipationless). Utilizing the tools
of information theory and computational mechanics—
Shannon information measures and optimal hidden
Markov generators—we identify the informational system
structures that can mitigate and even nullify the potential
thermodynamic cost of modular computation.
A brief tour of our main results will help orient the

reader. It can even serve as a complete, but approximate
description for the approach and technical details, should
this be sufficient for the reader’s interests.
Section II considers the thermodynamics of a composite

information reservoir [19], in which only a subsystem is
amenable to external control. Information reservoirs, which
do not change energy with state changes, are relatively new
thermodynamic constructs used for information storage and
manipulation [19]. The composite information reservoir
described in the following gives a basis for general
localized thermodynamic information processing. We
assume that the information reservoir is coupled to an
ideal heat bath, as a source of randomness and energy—
ideal in that it has infinite heat capacity and no memory of
past interactions with the information reservoir. Thus,
(i) external control of the information reservoir yields
random Markovian dynamics over its informational states,
as we call them, (ii) heat flows into the heat bath, and
(iii) work investment comes from the controller. Statistical
correlations may exist between the controlled and uncon-
trolled subsystems, either due to initial or boundary
conditions or due to an operation’s history.
To highlight the information-theoretic origin of the

dissipation and to minimize the energetic aspects, we
assume that the informational states have equal internal
(free) energies. Appealing to stochastic thermodynamics
and information theory, we then show that the minimum
irretrievable modularity dissipation over the duration of an
operation due to the locality of control is proportional to
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the reduction in mutual information between the controlled
and uncontrolled subsystems; see Eq. (8). We deliberately
refer to “operation” here instead of “computation,” since
the result holds whether the desired task is interpreted as
computation or not. The result holds so long as free-energy
uniformity is satisfied at all times, a condition natural in
computation and other information processing settings.
Section IV applies this analysis to information engines,

an active subfield within the thermodynamics of compu-
tation in which information effectively acts as the fuel
for driving physically embedded information processing
[20–24]. The particular implementations of interest—
information ratchets—process an input symbol string by
interacting with each symbol in order, sequentially trans-
forming it into an output symbol string, as shown in Fig. 3.
This kind of information transduction [21,25] is informa-
tion processing in a very general sense: With properly
designed dynamics over an infinite reservoir of internal
states, the devices can implement a universal Turing
machine [26]. Since information engines rely on localized
information processing, reading in and manipulating one
symbol at a time in their original design [20], the measure
of irretrievable dissipation applies directly. The exact
expression for their modularity dissipation is given
in Eq. (17).
Sections V and VI specialize information transducers

further to the cases of pattern extractors and pattern gen-
erators. Section V’s pattern extractors use structure in their
environment to produce work and pattern generators use
stored work to create structure from an unstructured envi-
ronment. The irreversible relaxation of correlations in
information transduction can then be curbed by intelligently
designing these computational processes. While there are not
yet general principles for designing implementations for
arbitrary computations, the measure of modularity dissipa-
tion that we develop shows how to construct energy-efficient
extractors and generators. For example, efficient extractors
consume complex patterns and turn them into sequences of
independent and identically distributed (IID) symbols.
We show that extractor transducers whose states are

predictive of their inputs are optimal, with zero minimal
modularity dissipation. This makes immediate intuitive
sense since, by design, such transducers can anticipate
the next input and adapt accordingly. This observation also
emphasizes the principle that thermodynamic agents should
requisitely match the structural complexity of their envi-
ronment to leverage those informational correlations as a
thermodynamic fuel [23]. We illustrate this result in the
case of the golden mean pattern in Fig. 4.
Conversely, Sec. VI shows that, when generating pat-

terns from unstructured IID inputs, transducers whose
states are retrodictive of their output are most efficient—
i.e., have minimal modularity dissipation. This is also
intuitively appealing in that pattern generation may be
viewed as the time reversal of pattern extraction. Since

predictive transducers are efficient for pattern extraction,
retrodictive transducers are expected to be efficient pattern
generators; see Fig. 6. This also allows one to appreciate
that pattern generators previously thought to be asymp-
totically efficient are actually quite dissipative [27]. Taken
altogether, these results provide guideposts for designing
efficient, modular, and complex information processors—
guideposts that go substantially beyond Landauer’s prin-
ciple for localized processing.

II. GLOBAL VERSUS LOCALIZED PROCESSING

If a physical system, denote it Z, stores information as it
behaves, it acts as an information reservoir. Then, a wide
range of physically embedded computational processes
can be achieved by connecting Z to an ideal heat bath at
temperature T and externally controlling the system’s
physical parameters, its Hamiltonian. Coupling with the
heat bath allows for physical phase-space compression and
expansion, which are necessary for useful computations
and which account for the work investment and heat
dissipation dictated by Landauer’s bound. However, the
bound is only achievable when the external control is
precisely designed to harness the changes in phase space.
This may not be possible for modular computations. The
modularity here implies that control is localized and
potentially ignorant of global correlations in Z. This leads
to uncontrolled changes in phase space.
Most computational processes unfold via a sequence of

local operations that update only a portion of the system’s
informational state. A single step in such a process can be
conveniently described by breaking the whole informa-
tional system Z into two constituents: the informational
states Zint that are controlled and evolving and the informa-
tional states Zstat that are not part of the local operation on
Zint. We call Zint the “interacting” subsystem and Zstat the
“stationary” subsystem. As shown in Fig. 1, the dynamic
over the joint state space Z ¼ Zint ⊗ Zstat is the product of
the identity over the stationary subsystem and a Markov
channel over the interacting subsystem. We refer to the
latter as a “local Markov channel,” since it only updates the
local interacting degrees of freedom. The informational
states of the noninteracting stationary subsystem Zstat are
fixed over the immediate computational task, since this
information should be preserved for use in later computa-
tional steps.
Such classical computations are described by a global

Markov channel over the joint state space:

Mglobal
zit;z

s
t→zitþτ;z

s
tþτ
¼PrðZi

tþτ¼ zitþτ;Z
s
tþτ¼ zstþτjZi

t¼ zit;Zs
t ¼ zstÞ;

ð1Þ

where Zt ¼ Zi
t ⊗ Zs

t and Ztþτ ¼ Zi
tþτ ⊗ Zs

tþτ are the ran-
dom variables for the informational state of the joint system
before and after the computation, with the random variable
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Zi describing the Zint subspace and the random variable Zs

the Zstat subspace, respectively. From here on, we often
refer to the random variables Zi and Zs rather than their
state spaces Zint and Zstat when describing the system.
(Lowercase variables denote values their associated random
variables realize.) The right-hand side of Eq. (1) gives the
transition probability over the time interval ðt; tþ τÞ from
joint state ðzit; zstÞ to state ðzitþτ; z

s
tþτÞ. The fact that Zstat

is fixed means that the global dynamic can be expressed as
the product of a local Markov computation on Zint with the
identity over Zstat,

Mglobal
ðzit;zst Þ→ðzitþτ;z

s
tþτÞ ¼ Mlocal

zit→zitþτ
δzst ;zstþτ

; ð2Þ

where the local Markov computation is the conditional
marginal distribution:

Mlocal
zit→zitþτ

¼ PrðZi
tþτ ¼ zitþτjZi

t ¼ zitÞ: ð3Þ

When the processor is in contact with a heat bath at
temperature T, the average entropy production hΣt→tþτi
of the Universe over the time interval ðt; tþ τÞ can be
expressed in terms of the work done minus the change in
nonequilibrium free energy Fneq:

hΣt→tþτi ¼
hWt→tþτi − ðFneq

tþτ − Fneq
t Þ

T
:

In turn, the nonequilibrium free energy Fneq
t at any time t

can be expressed as the weighted average of the internal
(free) energy Uz of the joint informational states minus the
uncertainty in those states:

Fneq
t ¼

X
z

PrðZt ¼ zÞUz − ðkBT ln 2ÞH½Zt�: ð4Þ

Here, H½Z� is the Shannon information of the random
variable Z that realizes the state of the joint system Z
[15]. When the information-bearing degrees of freedom
support an information reservoir, we take all states z and
z0 to have the same internal energy Uz ¼ Uz0. This is the
situation we consider in the following. Under this
assumption, the first term on the right of Eq. (4) does
not change even when there is a change in the probability
distribution PrðZt ¼ zÞ. The entropy production of the
Universe hΣt→tþτi then reduces to the work minus a
change in Shannon information of the information-
bearing degrees of freedom [15,28]:

hΣt→tþτi ¼
hWt→tþτi

T
þ kB ln 2ðH½Ztþτ� −H½Zt�Þ: ð5Þ

Essentially, this is an expression of a generalized Landauer
principle: Increasing entropy of the Universe guarantees that
work production is bounded by the change in Shannon
entropy of the informational variables [1].
Appendix A describes an isothermal protocol that

implements a Markov channel, in this case either
Mglobal or Mlocal. By controlling the energy landscape,
we exactly specify the form of the computation from
input to output. Thus, if one is concerned with imple-
menting deterministic logical operations, we can expo-
nentially reduce any thermal randomness in the
computation by making linear changes in energies. Our
framing, however, is closer in spirit to modern random
computation [29–31], where the outcome of a computa-
tion is not a deterministic variable but a random one. In
the natural (e.g., biological or molecular) setting, infor-
mation processing in the presence of noise and stochas-
ticity is the rule, not the exception. Rarely are noise-free
discrete computation theory concepts applicable there.
In point of fact, a more general perspective on the current

setting would see it as a study of computation in thermo-
dynamic systems, much in the spirit of computational
mechanics itself—the mechanics of computation [32].
That is, our approach considers the generation, storage,
dissipation, and transmission of information as a thermo-
dynamic system evolves. This provides a broader perspec-
tive of which the thermodynamics of computation forms a
major component.
For the particular case of a globally integrated isothermal

operation, the energy landscape over the whole system
space Z is controlled simultaneously. This achieves zero
entropy production. Also, the globally integrated work
done on the system achieves the theoretical minimum:

hWglobal
t→tþτimin ¼ −kBT ln 2ðH½Ztþτ� −H½Zt�Þ:

FIG. 1. Local computations operate on only an interacting
subset Z int of the entire information reservoir Z ¼ Zint ⊗ Zstat

described by random variable Z ¼ Zi ⊗ Zs. The Markov
channel that describes the global dynamic is the product of a
local operation with the identity operation: Mglobal

ðzit ;zst Þ→ðzitþτ ;z
s
tþτÞ

¼
Mlocal

zit→zitþτ
δzst ;zstþτ

, such that the stationary noninteracting portion Zs

of the information reservoir remains invariant, but the interacting
portion Zi changes.
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The process is reversible since the change in system
Shannon entropy balances the change in the reservoir’s
physical entropy due to heat dissipation.
Note that we do not assume the initial and final micro-

state probabilities before and after a thermodynamic
operation obey equilibrium distributions. Indeed, for any
meaningful computation, the system must transition
between nonequilibrium distributions. This is because
equilibrium distributions are uniform distributions, since
we assume the internal energies of the information-bearing
degrees of freedom are uniform. Because of this, we
consider transitions between nonequilibrium, metastable
states with a decay time much longer than the experimental
timescale. This timescale separation is necessary if infor-
mation must be stored reliably over long periods of time.
We achieve reversibility between nonequilibrium meta-

stable states if the control timescale is much longer than
that of the metastable states’ internal dynamics, but much
shorter than the timescale of the global equilibration
dynamics. This is the regime we consider. Since the internal
energy is uniform, the system cannot store the work and
must dissipate it as heat to the surrounding environment.
This may not hold for a generic modular operation.
There are two consequences of the locality of control.

First, since Zs is kept fixed, meaning that Zs
t ¼ Zs

tþτ,
the change in uncertainty H½Zi

tþτ; Z
s
tþτ� −H½Zi

t; Zs
t � of

the joint information-bearing variables during the
operation—the second term in the left-hand side of
Eq. (5)—simplifies to

H½Ztþτ� −H½Zt� ¼ H½Zi
tþτ; Z

s
t � −H½Zi

t; Zs
t �: ð6Þ

Second, Appendix C shows that if the joint system Z is
an information reservoir with control limited to subsystem
Zi, then there is no energetic coupling between Zi and Zs.
The lack of energetic coupling to stationary subsystem
Zs implies that the interacting subsystem is effectively
isolated from the stationary subsystem. Thus, on its own,
the interacting subsystem matches the framework for an
open driven system described in Ref. [21], and so the
entropy production hΣii ¼ hWi − ΔFi estimated from the
interacting system alone must be non-negative. In this,

Fi
t ¼

X
z∈Zi

PrðZi
t ¼ zÞUz − ðkBT ln 2ÞH½Zi

t�

is the marginalized estimate of the nonequilibrium free
energy isolated to the interacting system [28]. As a result,
the work investment is bounded by the change in the
marginalized estimate of the nonequilibrium free energy.
This implies, in turn, a generalized Landauer principle
corresponding to the change in marginal distribution over
Zi, which is determined by the local Markov channel
shown in Eq. (2). In other words, absent control over the
noninteracting subsystem Zs, which remains stationary

over the local computation on Zi, the work done
hWt→tþτi on Zi is bounded below:

hWt→tþτi≥ hWlocal
t→tþτimin¼kBT ln2ðH½Zi

t�−H½Zi
tþτ�Þ: ð7Þ

This information-theoretic bound on the work is achiev-
able, as described in Appendix A, by an isothermal process
composed of slowmanipulations of the energy landscape of
the interacting subsystem, which evolves the entire system
between nonequilibrium metastable distributions.
Combining the last two relations with the expression

for entropy production in Eq. (5) gives the modularity
dissipation Σmod, which is the minimum irretrievable
dissipation of a modular computation that comes from
local interactions:

hΣmod
t→tþτimin

kB ln 2
¼ hWlocal

t→tþτimin

kBT ln 2
þH½Zi

tþτ; Z
s
t � −H½Zi

t; Zs
t �

¼ H½Zi
t� −H½Zi

tþτ� þH½Zi
tþτ; Z

s
t �

−H½Zi
t; Zs

t � þ ðH½Zs
t � −H½Zs

t �Þ
¼ I½Zi

t;Zs
t � − I½Zi

tþτ;Z
s
t �; ð8Þ

where I½X;Y� ¼ H½X� þH½Y� −H½X; Y� is the mutual
information between the random variables X and Y.
While this bound on dissipation was established assuming
that the energetically uncoupled and uncontrolled portion
Zs of the system is stationary, it also applies to modular
computations where the uncontrolled system evolves under
its own dynamics, independent of control. This follows
from the facts that the uncontrolled system’s evolution can
only lead it to dissipate nonequilibrium free energy, as there
is no work done on it, and the uncontrolled stationary
subsystem can only increase the Universe’s entropy pro-
duction, if allowed to change [28]. We require the uncon-
trolled system to be stationary Zs, as this puts the strictest
bound on dissipation, and since an efficient computation
holds elements fixed when they are not being actively
changed.
This is our central result: a thermodynamic cost for

modular operations above and beyond the Landauer bound
for logically irreversible operations. It is an additional cost
above the bound that arises from a distinct mechanism
beyond Landauer’s microscopic state-space contraction.
Differing from Landauer’s principle, it arises from a
computation’s implementation architecture. Specifically,
the minimum entropy production is proportional to the
minimum additional work that must be done to execute a
computation modularly:

hWlocal
t→tþτimin − hWglobal

t→tþτimin ¼ ThΣmod
t→tþτimin:

Appendix A describes how to achieve this minimum
dissipation through isothermal protocols. Because of the
bound set on the work by the local entropy change shown in
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Eq. (7), any alternative protocol, perhaps done in finite time
[33] or with unobserved coarse-grained variables [34],
would necessarily require more work to implement. The
following draws out the implications.
Using the fact that the local operation Mlocal ignores Zs,

we see that the joint distribution over all three variables Zi
t,

Zs
t , and Zi

tþτ can be simplified to

PrðZi
tþτ ¼ zitþτ; Z

i
t ¼ zit; Zs

t ¼ zstÞ
¼ PrðZi

tþτ ¼ zitþτjZi
t ¼ zitÞ PrðZi

t ¼ zit; Zs
t ¼ zstÞ:

Thus, Zi
t shields Zi

tþτ from Zs
t . A consequence is that the

mutual information between Zi
tþτ and Z

s
t conditioned on Zi

t

vanishes. This is shown in Fig. 2 via an information
diagram—a tool that lays out informational interdependen-
cies between random variables [35] and has been particularly
useful in analyzing temporal information processing [36,37].
Figure 2 also shows that the modularity dissipation, high-
lighted by a dashed red outline, can be reexpressed as the
mutual information between the noninteracting stationary
system Zs and the interacting system Zi before the compu-
tation that is not shared with Zi after the computation:

hΣmod
t→tþτimin ¼ kB ln 2ðI½Zi

t;Zs
t � − I½Zi

tþτ;Z
s
t �Þ

¼ kB ln 2ðI½Zi
t;Zs

t jZi
tþτ� þ I½Zi

t;Zs
t ;Zi

tþτ�
− I½Zi

tþτ;Z
s
t jZi

t� − I½Zi
t;Zs

t ;Zi
tþτ�Þ

¼ ðkB ln 2ÞI½Zi
t;Zs

t jZi
tþτ�; ð9Þ

where, in the second line, we used the expression for
three-variable mutual information I½X;Y;Z� ¼ I½X;Y� −
I½X;YjZ� and, to get to our final result, we appealed to the

shielding I½Zi
tþτ;Z

s
t jZi

t� ¼ 0. This is our second main result.
The conditional mutual information on the right bounds how
much entropy is produced when performing a local compu-
tation. It quantifies the irreversibility of modular information
processing.

III. PRIOR THERMODYNAMICS
OF CORRELATION

The thermodynamics of modularity lets us revisit prior
results in a new light. The cost in Eq. (9) was recognized in
the context of copying and measurement [38] and is
relevant to biological push-pull systems [39]. While, in
principle, the logical operations performed by biological
systems can be performed reversibly if done quasistatically,
Ref. [39] showed that these biological processes have
control restrictions that lead to thermodynamic inefficien-
cies. First of all, biochemical systems are often constrained
to hold chemical potentials constant. They perform logical
operations instead by removal of barriers and so dissipate
potential sources of work. This is particularly relevant to
decorrelating readouts from sensory receptors, which is a
source of thermodynamic dissipation in a biological imple-
mentation of Szilard’s engine. Treating the readout as the
interacting subsystem and the receptor as the stationary
subsystem, this inefficiency is predicted from modularity
dissipation. If the noninteracting stationary subsystem is
uniformly distributed, such that H½Zs

t � ¼ log2jZsj, and the
interacting subsystem is a perfect copy of that system,
then all structure in the information reservoir comes in the
form of correlations between the subsystems, such that
I½Zi

t;Zs
t � ¼ H½Zs

t �. If we perform a decorrelation operation,
mapping the interacting system to a uniform distribution and
decorrelating the two subsystems such that I½Zi

tþτ;Z
s
t � ¼ 0,

we potentially can recover ðkBT ln 2ÞH½Zs
t � of work from the

system with globally integrated control and energetic cou-
pling between subsystems. However, if the control is local,
all those correlations are dissipated in the decorrelation
operation, as reflected by the modularity dissipation:

hΣmod
t→tþτimin ¼ kB ln 2ðI½Zi

t;Zs
t � − I½Zi

tþτ;Z
s
t �Þ

¼ ðkB ln 2ÞH½Zs
t �;

since energetic coupling is impossible in modular compu-
tations. The modularity dissipation imposes an energetic
cost on thermodynamic systems when they decorrelate
with their environment. The cost applies to a wide variety
of information-processing physical agents, including
Maxwell’s demon.
Modularity dissipation can be tested experimentally with

implementations of Szilard’s engine—a two-bit Maxwell’s
demon. The authors of Ref. [40] showed that the Szilard
engine can be explicitly implemented by a two-dimensional
system, with one degree of freedom corresponding to its

FIG. 2. Information diagram for a local computation: Informa-
tion atoms of the noninteracting subsystem H½Zs

t � (red ellipse),
the interacting subsystem before the computation H½Zi

t� (green
ellipse), and the interacting subsystem after the computation
H½Zi

tþτ� (blue ellipse). The initial state of the interacting sub-
system shields the final state from the noninteracting subsystem;
graphically the blue and red ellipses only overlap within the green
ellipse. The modularity dissipation is proportional to the differ-
ence between information atoms I½Zi

t;Zs
t � and I½Zi

tþτ;Z
s
t �.

Because of statistical shielding, it simplifies to the information
atom I½Zi

t;Zs
t jZi

tþτ�, highlighted by a red dashed outline.
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environment (system under study) and the other corre-
sponding to the demon’s memory. The step of the engine’s
functioning where the demon extracts work, shown in
Fig. 1 of Ref. [40] as the “control” step, decorrelates the
demon with its environment. According to modularity
dissipation, then, the correlations must be dissipated if
the system under study is controlled modularly. Thus, the
only way for the demon to extract work from its environ-
ment is to go beyond modular control, dynamically
changing the energetic coupling between its memory and
environment. Controllable bistable thermodynamic sys-
tems, such as Bose-Einstein condensates [41], nanoelec-
tromechanical systems [42], flux qubits [43,44], and
feedback traps [45], can store information bistably and
so are candidates for experimentally implementing both the
demon and its environment in a Szilard engine.
We can probe modularity dissipation in experimental

implementations of information reservoirs by comparing
the work generated with local control to the work generated
with globally integrated control. For the feedback operation
that decorrelates the system under study (SUS) and the
demon in Szilard’s engine, the SUS is the interacting
subsystem Zi ¼ ZSUS, and the demon’s memory is fixed,
so that it is the stationary subsystem Zs ¼ Zdemon. For this
feedback step, modular control means that the externally
controlled Hamiltonian [9] is the SUS’s Hamiltonian:

HextðtÞ ¼ HSUSðtÞ: ð10Þ

On the one hand, the local version of Landauer’s bound
means that the work invested in the decorrelation step
should be bounded below by 0, since the marginal state
entropy does not change—H½ZSUS

t � ¼ H½ZSUS
tþτ �—despite

the global state changing. Thus, with modular control,
Szilard’s engine cannot function as it was designed by
extracting work during its decorrelation/feedback step. On
the other hand, if we use globally integrated control, where
HextðtÞ includes coupling terms between the SUS and the
demon, then there are protocols that can extract the free
energy stored in correlations:

ΔFneq ¼ ðkBT ln 2ÞI½ZSUS
t ;Zdemon

t �
¼ ðkBT ln 2ÞH½Zdemon

t �:

The modularity dissipation is the difference between this
work, extracted with globally integrated control, and that
extracted with optimal local control.
The form of modularity dissipation shown in Eq. (8)—a

difference of mutual information—has arisen before
in a different context and with different meaning
[46,47]. These works show that the unutilized change in
free energy corresponds to dissipated work. In the setting of
data representations, Eq. (8)’s bound is analogous to the
expression for the minimum work required for data
representation, with Zi

t being the work medium, Zi
tþτ the

work extraction device, and Zs
t the data representation

device [47].
Given this parallel, a study of the thermodynamics of

prediction in a system driven by an input signal [46] shows
that the irretrievable work dissipation,

βhWdiss½Xt → Xtþ1�i ¼ I½St;Xt� − I½St;Xtþ1�;

is proportional to the modularity dissipation, if the driving
signal Xt is treated as the interacting subsystem Zi

t and the
driven system St is treated as the stationary subsystem Zs

t .
While formally similar, the setup is importantly different
from the cost of local modular control of information
processing. Most practically, the frameworks lead to differ-
ent results. This is especially clear for signal transduction.
The next section draws out the implications of Eqs. (8)

and (9) for information transducers–information processing
architectures, in which the processor sequentially takes one
input symbol at a time and performs localized computation
on it, much as a Turing machine operates. To continue the
comparison, these devices respond to an input signal much
as the driven systems discussed in Ref. [46]. The irretriev-
able dissipation the latter derives for its driven systems can
be minimized by ensuring that the driven system not store
any unwarranted information about the input, beyond that
required to predict [46], meaning that the instantaneous
memory Imem ¼ I½St;Xt� and instantaneous predictive
power Ipred ¼ I½St;Xtþ1� are the same. This means that
thermodynamic efficiency can be achieved when the driven
system has no memory H½St� ¼ 0. In this case, the system
neither stores nor predicts any information about the input:
I½St;Xt� ¼ I½St;Xtþ1� ¼ 0. For structured inputs to an
information transducer, in contrast, we see distinctly differ-
ent thermodynamics. Section V not only demonstrates that
memoryless systems are thermodynamically inefficient, but
also proves that predictive memory states are necessary for
efficient extractors.
Moreover, the transducer framework allows one to move

beyond the task of prediction. We see results reminiscent
of Ref. [46] with pattern generators in Sec. VI, in that
generators are thermodynamically efficient when they store
as little unwarranted information as possible. However,
these devices are retrodicting rather than predicting—a
different task. In short, though the language and math-
ematics of the thermodynamics of modularity seem to
parallel that of driven systems, modularity dissipation more
directly speaks to the design of efficient controllers. By
analyzing transducers in Secs. IV–VI as a concrete and
flexible form of input-driven information processing, we
find results that circumvent Ref. [46]’s interpretation that
memoryless driven systems are optimal. More to the point,
the results specify the memoryful mechanism by which the
physical information processor predicts its input.
Various analyses of other information-driven processes

have been developed previously. For example, the authors
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of Ref. [48] considered a setting in which a system is subject
to an external force that depends on the system’s instanta-
neous position—the system obeys a modified second law of
thermodynamics [49]. The authors of Ref. [50] considered a
situation where a chemical force replaces the role of
information in driving the system out of equilibrium and
extracting work. The authors of Ref. [51] analyzed how the
mutual information between two spatial degrees of freedom
in a biochemical context acts as a thermodynamic resource.
Drawing out the current results’ implications for these
previous settings must be left for the future.
While we identified the inherent dissipation due to

modular computations, suggesting that globally integrated
control leads to more thermodynamically efficient compu-
tations, we see in the transducer context that there are
alternative paths to thermodynamic efficiency. For exam-
ple, modularity dissipation can be minimized by designing
a computation such that the modular components them-
selves store the relevant global correlations, preventing
dissipation. Locality and modularity are natural parts of
complex computations, so rather than rely on the ability to
simultaneously control the global energy landscape, we use
modularity dissipation as a structural guide to design
modular computational architectures that are thermody-
namically efficient.
Modular design is not the sole province of computation

in silico. Modularity appears in the structure and function
of biological organisms as well [52]. Our results can be
viewed as providing the information-theoretic and thermo-
dynamic backdrop with which to understand modular
biological functions such as memory [23], self-correction
[24], and pattern formation [53], among others.

IV. INFORMATION TRANSDUCERS:
LOCALIZED PROCESSORS

Information ratchets [21,54] are thermodynamic imple-
mentations of information transducers [25] that sequen-
tially transform an input symbol string into an output string.
As generalized input-output machines, these devices have
been used as autonomous information engines or erasers
[20,21], refrigerators [55], pattern generators [27,53],
random number generators [31], and self-correcting corre-
lation-powered engines [24]. They have an incredibly
wide variety of functionality in turning an input into an
output. The ratchet traverses the input symbol string
(random variables Y0∶∞ ¼ Y0Y1Y2…:) unidirectionally,
processing each symbol in turn to yield the output
sequence (random variables Y0∶∞

0 ¼ Y 0
0Y

0
1Y

0
2…). (Here,

Ya∶b denotes the string of random variables from a to b,
YaYaþ1…Yb−2Yb−1, including a but excluding b.)
As shown in Fig. 3, at time t ¼ Nτ, the information

reservoir is described by the joint distribution over the
ratchet state XN and the symbol string YN ¼ Y 0

0∶NYN∶∞,
the concatenation of the first N symbols of the output string
and the remaining symbols of the input string. (This differs

slightly from previous treatments [24], in which only the
symbol string is the information reservoir. The information
processing and energetics are the same, however.)
Including the ratchet state in the present definition of the
information reservoir allows us to directly determine the
modularity dissipation of information transduction.
Operations from time t ¼ Nτ to tþ τ ¼ ðN þ 1Þτ pre-

serve the state of the current output history Y 0
0∶N and the

input future, excluding the Nth symbol YNþ1∶∞, while
changing the Nth input symbol YN to the Nth output
symbol Y 0

N and the ratchet from its current state XN to its
next XNþ1. In terms of the previous section, this means the
noninteracting stationary subsystem Zstat is the entire semi-
infinite symbol string without the Nth symbol:

Zs
t ¼ ðYNþ1∶∞; Y 0

0∶NÞ: ð11Þ

The ratchet and the Nth symbol constitute the interacting
subsystemZint so that, over the time interval ðt; tþ τÞ, only
two variables change:

Zi
t ¼ ðXN; YNÞ ð12Þ

and

Zi
tþτ ¼ ðXNþ1; Y 0

NÞ: ð13Þ

Despite the fact that only a small portion of the system
changes on each time step, the physical device is able to
perform a wide variety of physical and logical operations.
Ignoring the probabilistic processing aspects, Turing
showed that a properly designed finite-state transducer

FIG. 3. Information ratchet consists of three interacting
reservoirs—work, heat, and information. The work reservoir is
depicted as gravitational mass suspended by a pulley. The thermal
reservoir keeps the entire system thermalized to temperature T.
At time Nτ, the information reservoir consists of (i) a string of
symbols YN ¼ Y 0

0Y
0
1…Y 0

N−1YNYNþ1…, each cell storing an
element from the same alphabet Y, and (ii) the ratchet’s internal
state XN . The ratchet moves unidirectionally along the string,
exchanging energy between the heat and the work reservoirs. The
ratchet reads the value of a single cell (highlighted in yellow) at a
given time from the input string (green, right); interacts with it;
and writes a symbol to the cell in the output string (blue, left) of
the information reservoir. Overall, the ratchet transduces the input
string Y0∶∞ ¼ Y0Y1… into an output string Y 0

0∶∞ ¼ Y 0
0Y

0
1….

(Reprinted from Ref. [21] with permission.)
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can compute any input-output mapping [56,57]. Such
machines, even those with as few as two internal states
and a sufficiently large symbol alphabet [58] or with as few
as a dozen states but operating on a binary-symbol strings,
are universal in that sense [59].
Information ratchets—physically embedded, probabilis-

tic Turing machines—are able to facilitate energy transfer
between a thermal reservoir at temperature T and a work
reservoir by processing information in symbol strings. In
particular, they can function as an eraser by using work to
create structure in the output string [20,21] or act as an
engine by using the structure in the input to turn thermal
energy into useful work energy [21]. They are also capable
of much more, including detecting, adapting to, and
synchronizing to environment correlations [23,53] and
correcting errors [24].
Information transducers are a novel form of information

processor from a different perspective, that of communi-
cation theory’s channels [25]. They are memoryful chan-
nels that map input stochastic processes to output processes
using internal states that allow them to store information
about the past of both the input and the output. With
sufficient hidden states, as just noted from the view of
computation theory, information transducers are Turing
complete and so able to perform any computation on the
information reservoir [60]. Similarly, the physical steps that
implement a transducer as an information ratchet involve a
series of modular local computations.
The ratchet operates by interacting with one symbol at a

time in sequence, as shown in Fig. 3. The Nth symbol,
highlighted in yellow to indicate that it is the interacting
symbol, is changed from the input YN to output Y 0

N over
time interval ½Nτ; ðN þ 1Þτ�. The ratchet and interaction
symbol change together according to the local Markov
channel over the ratchet-symbol state space:

Mlocal
ðx;yÞ→ðx0;y0Þ ¼ PrðXNþ1 ¼ x0; Y 0

N ¼ y0jXN ¼ x; YN ¼ yÞ:

This determines how the ratchet transduces inputs to
outputs [21].
Each of these localized operations keeps the remaining

noninteracting symbols in the information reservoir fixed.
If the ratchet only has energetic control of the degrees of
freedom it manipulates, then, as discussed in the previous
section and Appendix A, the ratchet’s work production in
the Nth time step is bounded by the change in uncertainty
of the ratchet state and interaction symbol:

hWlocal
N imin ¼ kBT ln 2ðH½XN; YN � −H½XNþ1; Y 0

N �Þ: ð14Þ

This bound has appeared in previous investigations of
information ratchets [20,61]. Here, we make a key, but
important and compatible observation: If we relax the
condition of local control of energies to allow for global

control of all symbols simultaneously, then it is possible to
extract more work.
That is, foregoing localized operations—abandoning

modularity—allows for (and acknowledges the possibility
of) globally integrated interactions. Then, we can account
for the change in Shannon information of the information
reservoir—the ratchet and the entire symbol string. This
yields a looser upper bound on work production that holds
for both modular and globally integrated information
processing. Assuming that all information reservoir con-
figurations have the same free energies, the change in the
nonequilibrium free energy during one step of a ratchet’s
computation is proportional to the global change in
Shannon entropy:

ΔFneq
Nτ→ðNþtÞτ ¼ kBT ln 2ðH½XN;YN � −H½XNþ1;YNþ1�Þ:

Recalling the definition of entropy production hΣi ¼
ðhWi − ΔFneqÞ=T reminds us that, for entropy to increase,
the minimum work investment must match the change in
free energy:

hWglobal
N imin ¼ kBT ln 2ðH½XN;YN � −H½XNþ1;YNþ1�Þ:

ð15Þ

This is the work production that can be achieved through
globally integrated isothermal information processing.
Also, in turn, it can be used to bound the asymptotic work
production in terms of the entropy rates of the input and
output processes [21]:

lim
N→∞

hWNi ≥ kBT ln 2ðhμ − h0μÞ; ð16Þ

where the entropy rate hμ is the uncertainty per input and h0μ
is the uncertainty per output [62]. This is known as the
“information processing second law” (IPSL) [21].
The authors of Ref. [23] already showed that this bound is

not necessarily achievable by information ratchets. This is
due to ratchets operating locally. The local bound on work
production of modular implementations in Eq. (14) is less
than or equal to the global bound on integrated implemen-
tations in Eq. (15), since the local bound ignores correlations
between the interacting system Zint and noninteracting
elements of the symbol string in Zstat. Critically, though,
if we design the ratchet such that its states store the relevant
correlations in the symbol string, then we can achieve the
global bounds. This was hinted at in the fact that the gap
between the work done by a ratchet and the global bound
can be closed by designing a ratchet that matches the input
process’s structure [24]—the Principle of Requisite
Complexity [23]. However, comparing the two bounds now
allows us to be more precise.
The difference between the two bounds represents the

amount of additional work that could have been performed
by a ratchet, if it was not modular and limited to local
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interactions. If the computational device is globally inte-
grated, with full access to all correlations between the
information-bearing degrees of freedom, then all of the
nonequilibrium free energy can be converted to work,
zeroing out the entropy production. Thus, the minimum
entropy production for a modular transducer (or informa-
tion ratchet) at the Nth time step can be expressed in terms
of the difference between Eq. (14) and the entropic bounds
in Eq. (15):

hΣmod
N imin

kB ln 2
¼

hWlocal
N imin − ΔFneq

Nτ→ðNþ1Þτ
kBT ln 2

¼ I½YNþ1∶∞; Y 0
0∶N ;XN; YN �

− I½YNþ1∶∞; Y 0
0∶N ;XNþ1; Y 0

N �
¼ I½YNþ1∶∞; Y 0

0∶N ;XN; YN jXNþ1; Y 0
N �: ð17Þ

This can also be derived directly by substituting our
interacting variables ðXN; YNÞ ¼ Zi

t and ðXNþ1; Y 0
NÞ ¼

Zi
tþτ and stationary variables ðYNþ1∶∞; Y 0

0∶NÞ ¼ Zs into
the expression for the modularity dissipation in Eqs. (8) and
(9) in Sec. II. Even if the energy levels are controlled so
slowly that entropic bounds are reached, Eq. (17) quantifies
the amount of lost correlations that cannot be recovered.
Also, this leads to the entropy production and irreversibility
of the transducing ratchet. This has immediate conse-
quences that limit the most thermodynamically efficient
information processors.
While previous bounds, such as the IPSL, demonstrated

that information in the symbol string can be used as a
thermodynamic fuel [20,21]—leveraging structure in the
inputs symbols to turn thermal energy into useful work—
they largely ignore the structure of information ratchet
states XN . The transducer’s hidden states, which can
naturally store information about the past, are critical to
taking advantage of structured inputs. Until now, we only
used informational bounds to predict transient costs to
information processing [27,53]. With the expression for the
modularity dissipation of information ratchets in Eq. (17),
however, we now have bounds that apply to the ratchet’s
asymptotic functioning. In short, this provides the key tool
for designing thermodynamically efficient transducers.
We will now show that it has immediate implications for
pattern generation and pattern extraction.

V. PREDICTIVE EXTRACTORS

A pattern extractor is a transducer that takes in a
structured process PrðY0∶∞Þ, with correlations among the
symbols, and maps it to a series of independent identically
distributed (IID), uncorrelated output symbols. An output
symbol can be distributed however we wish individually,
but each must be distributed with an identical distribution
and independently from all others. The result is that the

joint distribution of the output process symbols is the
product of the individual marginals:

PrðY 0
0∶∞Þ ¼

Y∞
i¼0

PrðY 0
iÞ: ð18Þ

If implemented efficiently, this device can use temporal
correlations in the input as a thermodynamic resource to
produce work. The modularity dissipation of an extractor
hΣext

N imin can be simplified by noting that the output
symbols are uncorrelated with any other variable and, thus,
the Y 0 terms fall out of the mutual information expression
for dissipation in Eq. (17), yielding

hΣext
N imin

kB ln 2
¼ I½YNþ1∶∞;XN; YN � − I½YNþ1∶∞;XNþ1�: ð19Þ

Minimizing this irreversibility, as shown in Appendix B,
leads directly to a fascinating conclusion that relates
thermodynamics to prediction: The states of maximally
thermodynamically efficient extractors are perfect predic-
tors of the input process. Other work anticipates the need
for predictive agents to leverage temporal correlations
[24,63] and even discusses memoryful agents that can
extract additional work from temporal correlations by
using predictive states of the input [24,63,64]. Our develop-
ment of modularity dissipation, however, provides the first
proof of the need for predictive states. Moreover, it can be
applied to any extractor to determine the dissipation of an
imperfect predictor.
To take full advantage of the temporal structure of an

input process, the ratchet’s states XN must be able to predict
the future of the input YN∶∞ from the input past Y0∶N . Thus,
the ratchet shields the input past from the output future such
that there is no information shared between the past and
future that is not captured by the ratchet’s states:

I½YN∶∞;Y0∶N jXN � ¼ 0: ð20Þ

Additionally, transducers cannot anticipate the future of
the inputs beyond their correlations with past inputs [25].
This means that there is no information shared between
the ratchet and the input future when conditioned on the
input past:

I½YN∶∞;XN jY0∶N � ¼ 0: ð21Þ

As shown in Appendix B, Eqs. (20) and (21), which
together are equivalent to the state XN being predictive, can
be used to prove that the modularity dissipation vanishes:
hΣext

N imin ¼ 0. Moreover, setting the modularity dissipation
to zero guarantees that the state shields the past input and
the future input from each other, as shown in Eq. (20).
Thus, since Eq. (21) is a given for transducers, this
establishes that the ratchet’s being predictive is equivalent
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to zero modularity dissipation and, thus, to perfect thermo-
dynamic efficiency. The efficiency of predictive ratchets
suggests that predictive generators, such as the ϵ-machine
[62], are useful in designing efficient information engines
that can leverage temporal structure in an environment.
Consider, for example, an input string that is structured

according to the golden mean process, which consists of
binary strings in which 1s always occur in isolation,
surrounded by 0s. Figure 4 gives two examples of ratchets,
described by different local Markov channels Mlocal

ðx;yÞ→ðx0;y0Þ,
that each map the golden mean process to a biased coin. The
input process’s ϵ-machine, shown in the left box, provides a
template for how to design a thermodynamically efficient
local Markov channel, since its states are predictive of the
process. The Markov channel is a transducer [21]:

Mðy0jyÞ
x→x0 ≡Mlocal

ðx;yÞ→ðx0;y0Þ: ð22Þ

By designing transducer states that stay synchronized to the
states of the input process’s ϵ-machine, we minimize the
modularity dissipation to zero. For example, the efficient

transducer shown in Fig. 4 has almost the same topology as
the golden mean ϵ-machine, with an added transition
between states C and A corresponding to a disallowed word
in the input. This transducer is able to harness all structure in
the input since it synchronizes to the input process and so is
able to optimally predict the next input.
The efficient ratchet shown in Fig. 4 (top row) comes

from a general method for constructing an optimal extractor
given the input’s ϵ-machine. The ϵ-machine is represented
by a Mealy hidden Markov model (HMM) [65] with the
symbol-labeled state-transition matrices:

TðyÞ
s→s0 ¼ PrðYN ¼ y; SNþ1 ¼ s0jSN ¼ sÞ; ð23Þ

where SN is the random variable for the hidden state
reading the Nth input YN . If we design the ratchet to have
the same state space as the input process’s hidden state
space (X ¼ S), and if we want the IID output to have bias
PrðYN ¼ 0Þ ¼ b, then we set the local Markov channel
over the ratchet and interaction symbol to be

FIG. 4. Multiple ways to transform the golden mean process input, whose ϵ-machine generator is shown in the far left box, into a
sequence of uncorrelated symbols. The ϵ-machine is a Mealy hidden Markov model that produces outputs along the edges, with y∶p
denoting that the edge emits symbol y and is taken with probability p. Top row: Ratchet whose internal states match the ϵ-machine
states and so it is able to minimize dissipation (hΣext

∞ imin ¼ 0) by making transitions such that the ratchet’s states are synchronized to
the ϵ-machine’s states. The transducer representation to the left shows how the states remain synchronized: Its edges are labeled
y0jy∶p, which means that, if the input is y, then the edge is taken with probability p and outputs y0. The joint Markov representation
on the right depicts the corresponding physical dynamic over the joint state space of the ratchet and the interaction symbol. The label
p along an edge from the state x ⊗ y to x0 ⊗ y0 specifies the probability of transitioning between those states according to the local
Markov channel Mlocal

ðx;yÞ→ðx0;y0Þ ¼ p. Bottom row: In contrast to the efficient predictive ratchet, the memoryless ratchet shown is
inefficient, since its memory cannot store the predictive information within the input ϵ-machine, much less synchronize to it.
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Mlocal
ðx;yÞ→ðx0;y0Þ ¼

�
b; if TðyÞ

x→x0 ≠ 0 and y0 ¼ 0

1 − b; if TðyÞ
x→x0 ≠ 0 and y0 ¼ 1:

This channel, combined with normalized transition
probabilities, does not uniquely specify Mlocal, since there
can be forbidden words in the input that, in turn, lead to
ϵ-machine causal states that always emit a single symbol.
This means that there are joint ratchet-symbol states ðx; yÞ
such thatMðx;yÞ→ðx0;y0Þ is unconstrained. For these states, we
may make any choice of transition probabilities from ðx; yÞ,
since this state will never be reached by the combined
dynamics of the input and ratchet. The end result is that,
with this design strategy, we construct a ratchet whose
memory stores all information in the input past that is
relevant to the future, since the ratchet remains synchron-
ized to the input’s causal states.
In this way, the ratchet leverages all temporal order in the

input. This is characteristic of any efficient extractor and
confirms the thermodynamic Principle of Requisite Variety
[23]. The fact that the ratchet states must synchronize to the
ϵ-machine’s causal states implies that the uncertainty in
the ratchet’s memory must at least match the uncertainty in
the causal states of the input,which is its statistical complexity:

H½XN � ≥ H½SN � ð24Þ

¼ Cμ: ð25Þ

Thus, this not only proves the thermodynamic Principle of
RequisiteVariety in general, but also refines it to a Principle of
Requisite Complexity—the structure of a thermodynamically
efficient ratchet must match that of the environment.
By way of contrast, consider a memoryless transducer,

such as that shown in Fig. 4 (bottom row). It has only a
single state and so cannot store any information about the
input past. As discussed in previous explorations, ratchets
without memory are insensitive to correlations [23,24].
This result for stationary input processes is subsumed by
the measure of modularity dissipation. Since there is no
uncertainty in XN , the asymptotic dissipation of memory-
less ratchets simplifies to

hΣext
∞ imin ¼ lim

N→∞
kB ln 2I½YNþ1∶∞;YN � ¼ kB ln 2ðH1 − hμÞ;

where in the second step we used input stationarity—every
symbol has the same marginal distribution—and so the
same single-symbol uncertainty H1 ¼ H½YN � ¼ H½YM�.
Thus, the modularity dissipation of a memoryless ratchet
is proportional to the length-1 redundancy H1 − hμ [62].
This is the amount of additional uncertainty that comes
from ignoring temporal correlations.
As Fig. 4 shows, this means that a memoryless extractor

driven by the golden mean process asymptotically dis-
sipates an average of hΣext

∞ imin ≈ 0.174kB per input symbol.

This is in stark contrast, for example, with the claim in
Ref. [46] that “unwarranted retention of past information is
fundamentally equivalent to energetic inefficiency,” since
such a memoryless ratchet minimizes the instantaneous
nonpredictive information—the measure of dissipation in a
driven system [46].
Moreover, we can split the states of the predictive model

shown in Fig. 4 to introduce duplicates that have the
same histories and same future distributions, such that the
states are still predictive of the input. This larger machine,
with duplicate states, is still predictive and maximally
efficient. This is a further conflict with Ref. [46]. Despite
the fact that both of these ratchets perform the same
computational process—converting the golden mean proc-
ess into a sequence of IID symbols—the simpler model
requires more energy investment to function, because of its
irreversibility.

VI. RETRODICTIVE GENERATORS

Pattern generators are rather like time-reversed pattern
extractors, in that they take in an uncorrelated input
process,

PrðY0∶∞Þ ¼
Y∞
i¼0

PrðYiÞ; ð26Þ

and turn it into a structured output process PrðY 0
0∶∞Þ that

has correlations among the symbols. The modularity
dissipation of a generator hΣgen

N imin can also be simplified
by removing the uncorrelated input symbols:

hΣgen
N imin

kB ln 2
¼ I½Y 0

0∶N ;XN � − I½Y 0
0∶N ;XNþ1Y 0

N �:

Paralleling extractors, Appendix B shows that retrodictive
ratchets minimize the modularity dissipation to zero.
Retrodictive generator states carry as little information

about the output past as possible. Since this ratchet
generates the output, it must carry all the information
shared between the output past and future. Thus, it shields
output past from output future just as a predictive extractor
does for the input process:

I½Y 0
N∶∞;Y

0
0∶N jXN � ¼ 0:

However, unlike the predictive states, the output future
shields the retrodictive ratchet state from the output past:

I½XN ;Y 0
0∶N jY 0

N∶∞� ¼ 0: ð27Þ

These two conditions mean that XN is retrodictive and
imply that the modularity dissipation vanishes. While we
have not established the equivalence of retrodictiveness and
efficiency for pattern generators, as we have for predictive
pattern extractors, there are easy-to-construct examples
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demonstrating that diverging from efficient retrodictive
implementations leads to modularity dissipation at every
step.
Consider once again the golden mean process. Figure 5

shows that there are alternate ways to generate such a
process from a hidden Markov model. The ϵ-machine,
shown on the left, is the minimal predictive model, as
discussed earlier. It is unifilar, which means that the current
hidden state SþN and current output Y 0

N uniquely determine
the next hidden state SþNþ1 and that, once synchronized to
the hidden states, one stays synchronized to them by
observing only output symbols. Thus, its states are a
function of past outputs. This is illustrated in Fig. 5 by
the fact that the information atomH½SþN � is contained by the
information atom for the output past H½Y 0

0∶N �.
The other hidden Markov model generator shown in

Fig. 5 (right) is the time reversal of the ϵ-machine that
generates the reverse process. This is much like the
ϵ-machine, except that it is retrodictive instead of predic-
tive. The recurrent states B and C are counifilar as opposed
to unifilar. This means that the next hidden state S−Nþ1 and
the current output Y 0

N uniquely determine the current state
S−N . The hidden states of this minimal retrodictive model are
a function of the semi-infinite future. Also, this can be seen
from the fact that the information atom for H½S−N � is
contained by the information atom for the future H½Y 0

N∶∞�.
These two different hidden Markov generators both

produce the golden mean process, and they provide a
template for constructing ratchets to generate that process.
For a hidden Markov model described by a symbol-labeled
transition matrix fTðyÞg, with hidden states in S as
described in Eq. (23), the analogous generative ratchet

has the same states X ¼ S and is described by the joint
Markov local interaction:

Mlocal
ðx;yÞ→ðx0;y0Þ ¼ Tðy0Þ

x→x0 :

Such a ratchet effectively ignores the IID input process and
obeys the same informational relationships between the
ratchet states and outputs as the hidden states of hidden
Markov model with its outputs.
Figure 6 shows both the transducer and joint Markov

representation of the minimal predictive generator and
minimal retrodictive generator. The retrodictive generator
is potentially perfectly efficient, since the process’s min-
imal modularity dissipation vanishes: hΣgen

N imin ¼ 0 for
all N.
However, despite being a standard tool for generating an

output, the predictive ϵ-machine is necessarily irreversible
and dissipative. The ϵ-machine-based ratchet, as shown in
Fig. 6 (bottom row), approaches an asymptotic dynamic
where the current state XN stores more than it needs to
about the output past Y 0

0∶N in order to generate the future
Y 0
N∶∞. As a result, it irretrievably dissipates:

hΣgen
∞ imin ¼ kB ln 2 lim

N→∞
ðI½Y 0

0∶N ;XN � − I½Y 0
0∶N ;XNþ1; Y 0

N �Þ

¼ 2

3
kB ln 2

≈ 0.462 kB:

This can be calculated with greater ease by noting that
XN and XNþ1 are predictive functions of their output
past. That is, all information in the current ratchet state
is shared with the past I½Y 0

0∶N ;XN � ¼ H½XN �, and all future
behavior that is predictable from the output past is also
predictable from the ratchet state; so, I½Y 0

0∶N ;XNþ1; Y 0
N � ¼

I½XN ;XNþ1; Y 0
N �. These latter can both be calculated

directly from the ϵ-machine symbol-labeled transition

matrices TðyNÞ
xN→xNþ1

¼ PrðYN ¼ yN;XNþ1 ¼ xNþ1jXN ¼ xNÞ,
which give

lim
N→∞

PrðYN ¼ 0; XNþ1 ¼ B;XN ¼ BÞ ¼ 1

3

lim
N→∞

PrðYN ¼ 1; XNþ1 ¼ C;XN ¼ BÞ ¼ 1

3

lim
N→∞

PrðYN ¼ 0; XNþ1 ¼ B;XN ¼ CÞ ¼ 1

3
;

and, consequently, we see that

lim
N→∞

ðH½XN � − I½XN ;XNþ1; Y 0
N �Þ

¼ lim
N→∞

H½XN jXNþ1; Y 0
N �

¼ 2=3:

FIG. 5. Alternate minimal generators of the golden mean
process: predictive and retrodictive. (Left) The ϵ-machine has
the minimal set of causal states Sþ required to predictively
generate the output process. As a result, the uncertainty H½SþN � is
contained by the uncertainty H½Y 0

0∶N � in the output past. (Right)
The time reversal of the reverse-time ϵ-machine has the minimal
set of states required to retrodictively generate the output. Its
states are a function of the output future. Thus, its uncertainty
H½S−N � is contained by the output future’s uncertainty H½Y 0

N∶∞�.
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Thus, with every time step, this predictive ratchet stores
information about its past, but it also erases information,
dissipating 2=3 of a bit worth of correlations without
leveraging them. Those correlations could have been used
to reverse the process if they had been turned into work.
They are used by the retrodictive ratchet, though, which
stores just enough information about its past to generate
the future.
It was previously shown that storing unnecessary infor-

mation about the past leads to additional transient dis-
sipation when generating a pattern [27,53]. This cost also
arises from implementation. However, our measure of
modularity dissipation shows that there are implementation
costs that persist through time. The two locally operating
generators of the golden mean process perform the same
computation, but have different bounds on their dissipation
per time step. Thus, the additional work investment
required to generate the process grows linearly with time
for the ϵ-machine implementation, but is zero for the
retrodictive implementation.
Moreover, we can consider generators that fall in

between these extremes using the parametrized HMM
shown in Fig. 7 (top). This HMM, parametrized by z,
produces the golden mean process at all z ∈ ½:5; 1�, but the
hidden states share less and less information with the output
past as z increases, as shown by Ref. [36]. The extreme at
z ¼ 0.5 corresponds to the minimal predictive generator,
the ϵ-machine. The other at z ¼ 1 corresponds to the

minimal retrodictive generator, the time reversal of the
reverse-time ϵ-machine. The graph there plots the modu-
larity dissipation as a function of z.
The modularity dissipation decreases with z, suggesting

that the unnecessary memory of the past leads to additional
dissipation. This echoes the claim that “unwarranted
retention of past information is fundamentally equivalent
to energetic inefficiency” in the particular context of pattern
generation [46]. So, while we have only proved that
retrodictive generators are maximally efficient, this dem-
onstrates that extending beyond that class can lead to
unnecessary dissipation and that there may be a direct
relationship between unnecessary memory and dissipation.
Taken altogether, we see that the thermodynamic con-

sequences of localized information processing lead to direct
principles for efficient information transduction. Analyzing
the most general case of transducing arbitrary structured
processes into other arbitrary structured processes remains
a challenge. That said, pattern generators and pattern
extractors have elegantly symmetric conditions for effi-
ciency that give insight into the range of possibilities.
Pattern generators are effectively the time reversal of
pattern extractors, which turn structured inputs into struc-
tureless outputs. As such, they are most efficient when
retrodictive, which is the time reversal of being predictive.
Figure 5 illustrates graphically how the predictive ϵ-machine
captures past correlations and stores the necessary informa-
tion about the past, while the retrodictive ratchet’s states are

FIG. 6. Alternative generators of the golden mean process. Right: The process’s ϵ-machine. Top row: Optimal generator designed
using the topology of the minimal retrodictive generator. It is efficient, since it stores as little information about the past as possible,
while still storing enough to generate the output. Bottom row: The predictive generator stores far more information about the past than
necessary, since it is based off the predictive ϵ-machine. As a result, it is far less efficient. It dissipates at least 2

3
kBT ln 2 extra heat per

symbol and requires that much more work energy per symbol emitted.
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analogous, but store information about the future instead.
This may seem unphysical—as if the ratchet is anticipating
the future. However, since the ratchet generates the output
future, this anticipation is entirely physical, because the
ratchet controls the future, as opposed to mysteriously
predicting it, as an oracle would.

VII. CONCLUSION

Modularity is a key design theme in physical information
processing, since it gives the flexibility to stitch together
many elementary logical operations to implement a much
larger computation. Any classical computation can be
composed from local operations on a subset of information
reservoir observables. Modularity is also key to biological
organization, its functioning, and our understanding of
these [5].
However, there is an irretrievable thermodynamic cost,

the modularity dissipation, to this localized computing,
which we quantified in terms of the global entropy
production. This modularity-induced entropy production
is proportional to the reduction of global correlations
between the local and interacting portion of the information
reservoir and the fixed, noninteracting portion. This mea-
sure forms the basis for designing thermodynamically
efficient information processing. It is proportional to the
additional work investment required by the modular form

of the computation, beyond the work required by a globally
integrated and reversible computation.
While our main result on modularity dissipation might

be viewed as a cousin of Landauer’s principle, it is very
different—an essential but complementary principle. To
close, we should remove any lingering confusion on this
score, by contrasting the microscopic mechanisms under-
lying each.
Recall that Landauer’s principle identifies an inescapable

dissipation that arises from the collapse of microscopic
state-space volume as the “information-bearing degrees of
freedom” implement erasing a bit of mesoscopically stored
information. This follows directly from Liouville’s theorem
that guarantees state-space volume conservation: If the
mesoscale operation collapses state space, then the sur-
rounding environment’s state space must expand, resulting
in a transfer of entropy and so dissipation.
The thermodynamic costs due to modularity, in contrast,

arise from state-space componentwise organization—
technically, the conditional-independence structure of the
microscopic state space—used to implement a given infor-
mation processing operation. Since modularity removes
systemwide correlations, one throws away a thermody-
namic resource.
Thus, there is indeed a parallel between Landauer’s

principle and modularity dissipation, as they together iden-
tify thermodynamic costs of information processing. The
similarity ends there, though. Modularity dissipation arises
from a completely different mechanism from Landauer’s—
one that is also dissipative and also leads to irreducible
entropy production. This is why modularity dissipation is a
distinct and essential mechanism in a full accounting of the
thermodynamic costs of information processing. One con-
cludes that Landauer’s principle is incomplete; the fuller
theory requires both it and modularity dissipation.
Turing-machine-like information ratchets provide a natu-

ral application for this new measure of efficient information
processing, since they process information in a symbol string
through a sequence of local operations. The modularity
dissipation allows us to determine which implementations
are able to achieve the asymptotic bound set by the IPSL,
which, substantially generalizing Landauer’s bound, says
that any type of structure in the input can be used as a
thermodynamic resource and any structure in the output has
a thermodynamic cost. There are many different ratchet
implementations that perform a given computation, in that
they map inputs to outputs in the same way. However, if we
want an implementation to be thermodynamically efficient,
the modularity dissipation, monitored by the global entropy
production, must be minimized. Conversely, we now appre-
ciate why there are many implementations that dissipate and
are thus irreversible. This establishes modularity dissipation
as a new thermodynamic cost, due purely to an implemen-
tation’s architecture, that complements Landauer’s bound on
isolated logical operations.

FIG. 7. Top: A parametrized family of HMMs that generate
the golden mean process for z ∈ ½:5; 1�. Middle: As parameter z
increases, the information stored in the hidden states about the
output past decreases. At z ¼ 0.5, the HMM is the ϵ-machine,
whose states are a function of the past. At z ¼ 1.0, the HMM is
the time reversal of the reverse-time ϵ-machine, whose states are
a function of the future. The modularity dissipation decreases
monotonically as z increases and the hidden states’ memory of
the past decreases. Bottom: Information diagrams correspond-
ing to the end cases and a middle case. Labeling is the same as in
Fig. 5.
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We noted that there are not yet general principles for
designing devices that minimize modularity dissipation and
thus minimize work investment for arbitrary information
transduction. However, for the particular cases of pattern
generation and pattern extraction, we find that there are
prescribed classes of ratchets that are guaranteed to be
dissipationless, if operated isothermally. These devices’
ratchet states are able to store and leverage the global
correlations among the symbol strings. This means, in turn,
that it is possible to achieve the reversibility of globally
integrated information processing but with modular com-
putational design. Thus, while modular computation often
results in dissipating global correlations, this inefficiency
can be avoided when designing processors using the
computational-mechanics tools outlined here.
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APPENDIX A: ISOTHERMAL MARKOV
CHANNELS

To meet the information-theoretic bounds on work
dissipation, we describe an isothermal channel in which
we change system energies in slow steps to manipulate the
distribution over Z’s states. The challenge in this is to
evolve an input distribution PrðZt ¼ ztÞ over the time
interval ðt; tþ τÞ according to the Markov channel M,
so that the system’s conditional probability at time tþ τ is

PrðZtþτ ¼ ztþτjZt ¼ ztÞ ¼ Mzt→ztþτ
:

The Markov channel M specifies the form of the compu-
tation, as it probabilistically maps inputs to outputs. While
we need not know the input distribution PrðZt ¼ ztÞ to
implement a computation, this is necessary to design a
thermodynamically efficient computation. Making this as
efficient as possible in a thermal environment at temper-
ature T means ensuring that the work invested in the
evolution achieves the lower bound:

hWi ≥ kBT ln 2ðH½Zt� −H½Ztþτ�Þ:

This expresses the second law of thermodynamics for the
system in contact with a heat bath.
To ensure the appropriate conditional distribution, we

introduce an ancillary system Z0, which is a copy of Z,
as proposed in Ref. [27]. This is necessary since

continuous-time Markov chains—the probabilistic rate
equations underlying stochastic thermodynamics—have
restrictions on the logical functions they can implement.
Some logical functions, such as flipping a bit (0 → 1 and
1 → 0), must be implemented with ancillary or hidden
states [66]. Including an ancillary system that is a copy ofZ
allows implementing any probabilistic channel Mzt→ztþτ

and, thus, any logical operation on Z.
For efficiency, we take τ to be large with respect to

the system’s relaxation time scale and break the overall
process into three steps that occur over the time intervals
ðt; tþ τ0Þ; ðtþ τ0; tþ τ1Þ; and ðtþ τ1; tþ τÞ, where
0 < τ0 < τ1 < τ.
Our method of manipulating Z and Z0 is to control the

energy Eðt; z; z0Þ of the joint state z ⊗ z0 ∈ Z ⊗ Z0 at time
t. We also control whether or not probability is allowed to
flow in Z or Z0. This corresponds to raising or lowering
energy barriers between system states.
At the beginning of the control protocol, we chooseZ0 to

be in a uniform distribution uncorrelated with Z. This
means the joint distribution can be expressed as

PrðZt ¼ zt; Z0
t ¼ z0tÞ ¼

PrðZt ¼ ztÞ
jZ0j : ðA1Þ

Since we are manipulating an energetically mute informa-
tion reservoir, we also start with the system in a uniformly
zero-energy state over the joint states of Z and Z0:

Eðt; z; z0Þ ¼ 0: ðA2Þ

While this energy and the distribution change when
executing the protocol, we return Z0 to the independent
uniform distribution and the energy to zero at the end of the
protocol. This means that the starting and ending distri-
butions are typically out of equilibrium. However, since we
limit the flow between informational states, they are
metastable and do not relax to the uniform equilibrium
distribution. In this way, the information reservoir reliably
stores and processes many different nonequilibrium states.
The three evolution steps that isothermally implement

the Markov channel M are as follows:
(1) Over the time interval ðt; tþ τ0Þ, continuously

change the energy such that the energy at the end
of the interval Eðtþ τ0; z; z0Þ obeys the relation

e−ðEðtþτ0;z;z0Þ−Fðtþτ0ÞÞ=kBT ¼ PrðZt ¼ zÞMz→z0 ;

while allowing state space and probability to flow in
Z0, but not in Z. Since the protocol is done slowly,
Z0 follows the Boltzmann distribution and, at time
tþ τ0, the distribution over Z ⊗ Z0 is

PrðZtþτ0 ¼ z; Z0
tþτ0 ¼ z0Þ ¼ PrðZt ¼ zÞMz→z0 :
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This yields the conditional distribution of the current
ancillaryvariableZ0

tþτ on the initial systemvariableZt:

PrðZ0
tþτ0 ¼ z0jZt ¼ zÞ ¼ Mz→z0 ;

since the system variable Zt remains fixed over the
interval. This protocol effectively applies the Markov
channelM to evolve fromZ toZ0. However, we want
the Markov channel to apply strictly to Z.
Since the protocol is slow and isothermal, there is no

entropy production, and the work flow is simply the
change in nonequilibrium free energy:

hW1i ¼ ΔFneq ¼ ΔhEi − TΔS½Z; Z0�;

where S½X� ¼ −kB
P

x∈X PrðX ¼ xÞ ln PrðX ¼ xÞ is
the thermodynamic entropy, which is proportional
to the Shannon information S½X� ¼ kB ln 2H½X�.
Since the average initial energy is uniformly zero,
the change in average energy is the average energy at
time tþ τ0. So, we can express the work done:

hW1i ¼ hEðtþ τ0Þi − TΔS½Z; Z0�
¼ hEðtþ τ0Þi þ kBT ln 2ðH½Zt; Z0

t�
−H½Ztþτ0 ; Z

0
tþτ0 �Þ:

(2) Now, swap the states of Z and Z0 over the time
interval ðtþ τ0; tþ τ1Þ. This is logically reversible.
Thus, it can be done without any work investment
over the second time interval:

hW2i ¼ 0: ðA3Þ

The result is that the energies and probability
distributions are flipped with regard to exchange
of the system Z and ancillary system Z0:

Eðtþ τ1; z; z0Þ ¼Eðtþ τ0; z0; zÞ
PrðZtþτ1 ¼ z;Z0

tþτ1 ¼ z0Þ ¼ PrðZtþτ0 ¼ z0;Z0
tþτ0 ¼ zÞ:

Most importantly, however, this means that the
conditional probability of the current system varia-
ble is given by M:

PrðZtþτ1 ¼z0jZt¼zÞ¼PrðZ0
tþτ0 ¼z0jZt¼zÞ¼Mz→z0 :

The ancillary system must still be reset to a uniform
and uncorrelated state and the energies must be reset.

(3) Finally, we again hold Z’s state fixed while allowing
Z0 to change over the time interval ðtþ τ1; tþ τÞ as
we change the energy, ending at Eðtþ τ; z; z0Þ ¼ 0.
This isothermally brings the joint distribution to
one where the ancillary system is uniform and
independent of Z:

PrðZtþτ ¼ z; Z0
tþτ ¼ z0Þ ¼ PrðZtþτ ¼ zÞ

jZ0j : ðA4Þ

Again, the invested work is the change in average
energy plus the change in thermodynamic entropy of
the joint system:

hW3i ¼ hΔEi þ kBT ln 2ðH½Ztþτ1 ; Z
0
tþτ1 �

−H½Ztþτ; Z0
tþτ�Þ

¼ −hEðtþ τ1Þi þ kBT ln 2ðH½Ztþτ1 ; Z
0
tþτ1 �

−H½Ztþτ; Z0
tþτ�Þ:

This ends this three-step protocol.
Summing up the work terms gives the total dissipation:

hWtotali ¼ hWti þ hW2i þ hW3i
¼ kBT ln 2ðH½Zt; Z0

t� −H½Ztþτ0 ; Z
0
tþτ0 �Þ

þ kBTðH½Ztþτ1 ; Z
0
tþτ1 � −H½Ztþτ; Z0

tþτ�Þ
þ hEðtþ τ0Þi − hEðtþ τ1Þi:

Recall that the distributions PrðZtþτ1 ; Z
0
tþτ1Þ and

PrðZtþτ0 ; Z
0
tþτ0Þ, as well as Eðtþ τ0; z; z0Þ and Eðtþ τ1;

z; z0Þ, are identical under exchange of Z and Z0,
so H½Ztþτ1 ; Z

0
tþτ1 � ¼ H½Ztþτ0 ; Z

0
tþτ0 � and hEðtþ τ0Þi ¼

hEðtþ τ1Þi. Additionally, we know that both the starting
and ending distributions have a uniform and uncorrelated
ancillary system, so their entropies can be expressed:

H½Zt; Z0
t� ¼ H½Zt� þ log2jZ0j ðA5Þ

H½Ztþτ; Z0
tþτ� ¼ H½Ztþτ� þ log2jZ0j: ðA6Þ

Substituting this into the above expression for total invested
work, we find that we achieve the lower bound with this
protocol:

hWtotali ¼ kBT ln 2ðH½Zt� −H½Ztþτ�Þ: ðA7Þ

Thus, the protocol implements a Markov channel that
achieves the information-theoretic bounds. It is similar to
that described in Ref. [27].
The basic principle underlying the thermodynamic

efficiency of this protocol is that, when manipulating
system energies to change state space, we choose the
energies so that there is no instantaneous probability flow.
That is, if one interrupts the protocol and holds the energy
landscape fixed, the distribution will not continue to
change. If it did, this change would correspond to relax-
ation to equilibrium, dissipation of nonequilibrium free
energy, and thus, an increase in the Universe’s entropy. By
guiding the distribution via an energy landscape such that
the system remains stationary if the protocol is stopped, we
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are able to achieve the information-theoretic bounds set by
the second law of thermodynamics in Eq. (A7). However,
there are situations in which it is impossible to prevent
instantaneous flow, even when slowly manipulating the
energies, due to limits of control imposed by the system,
such as in the case of local control. Then, there are
necessarily inefficiencies that arise from the dissipation
of the distribution evolving out of equilibrium.

APPENDIX B: TRANSDUCER DISSIPATION

1. Predictive extractors

For a pattern extractor, being reversible means that the
transducer is predictive of the input process. More pre-
cisely, an extracting transducer that produces zero entropy
is equivalent to it being a predictor of its input.
As shown earlier in Eq. (19), a reversible extractor

satisfies

I½YNþ1∶∞;XNþ1� ¼ I½YNþ1∶∞;XNYN �;

for all N, since it must be reversible at every step to be fully
reversible. The physical ratchet being predictive of the
input means two things. It means that XN shields the past
Y0∶N from the future YN∶∞. This is equivalent to the mutual
information between the past and future vanishing when
conditioned on the ratchet state:

I½Y0∶N ;YN∶∞jXN � ¼ 0:

Note that this also implies that any subset of the past or
future is independent of any other subset conditioned on the
ratchet state:

I½Ya∶b;Yc∶djXN � ¼ 0; where b ≤ N and c ≥ N:

The other feature of a predictive transducer is that the past
shields the ratchet state from the future:

I½XN ;YN∶∞jY0∶N � ¼ 0:

This is guaranteed by the fact that transducers are non-
anticipatory: They cannot predict future inputs outside of
their correlations with past inputs.
We start by showing that, if the ratchet is predictive, then

the entropy production vanishes. It is useful to note that for
transducers, which are nonanticipatory of their input, being
predictive is equivalent to storing as much information
about the future as is predictable from the past:

I½XN ;YN∶∞� ¼ I½Y0∶N ;YN∶∞�;

which can be seen by subtracting I½Y0∶N ;YN∶∞;XN � from
each side of the immediately preceding expression. Thus, it
is sufficient to show that the mutual information between
the partial input future YNþ1∶∞ and the joint distribution of

the predictive variable XN and next output YN is the same as
mutual information with the joint variable ðY0∶N; YNÞ ¼
Y0∶Nþ1 of the past inputs and the next input:

I½YNþ1∶∞;XN; YN � ¼ I½YNþ1∶∞;Y0∶N; YN �:

To show this for a predictive variable, we use Fig. 8, which
displays the information diagram for all four variables with
the information atoms of interest labeled.
Assuming that XN is predictive zeros out a number of

information atoms, as shown below:

I½XN ;YN; YNþ1∶∞jY0∶N � ¼ bþ cþ h ¼ 0

I½XN ;YN jY0∶N � ¼ bþ h ¼ 0

I½Y0∶N ;YN; YNþ1∶∞jXN � ¼ iþ f þ g ¼ 0

I½Y0∶N ;YN jXN � ¼ iþ f ¼ 0:

These four equations make it clear that g ¼ c ¼ 0. Thus,
substituting I½YNþ1∶∞;XN; YN � ¼ aþ bþ cþ dþ eþ f
and I½YNþ1∶∞;Y0∶N;YN �¼aþbþdþeþfþg, we find
that their difference vanishes:

I½YNþ1∶∞;XN; YN � − I½YNþ1∶∞;Y0∶N; YN � ¼ c − g ¼ 0:

There is zero dissipation, since XNþ1 is also predictive,
meaning I½YNþ1∶∞;Y0∶N; YN � ¼ I½YNþ1∶∞;XNþ1�, so

hΣext
N imin

kBT ln 2
¼ I½YNþ1∶∞;XN; YN � − I½YNþ1∶∞;XNþ1�

¼ I½YNþ1∶∞;XN; YN � − I½YNþ1∶∞;Y0∶Nþ1�
¼ 0:

Going the other direction, using zero entropy production
to prove that XN is predictive for all N is now simple.

FIG. 8. Information diagram for dependencies between the input
past Y0∶N , next input YN , current ratchet state XN , and input future
YNþ1∶∞, excluding the next input. We label certain information
atoms to help illustrate the algebraic steps in the associated proof.
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We already showed that I½YNþ1∶∞;XN; YN � ¼ I½YNþ1∶∞;
Y0∶N; YN � if XN is predictive. Combining with zero
entropy production (I½YNþ1∶∞;XNþ1�¼I½YNþ1∶∞;XN;YN �)
immediately implies that XNþ1 is predictive, since
I½YNþ1∶∞;XNþ1� ¼ I½YNþ1∶∞;Y0∶N; YN �; plus, the fact that
XNþ1 is nonanticipatory is equivalent to XNþ1 being
predictive.
With this recursive relation, all that is left to establish

is the base case, that X0 is predictive. Applying zero
entropy production again, we find the relation necessary
for prediction:

I½Y1∶∞;X1� ¼ I½Y1∶∞;X0; Y0� ¼ I½Y1∶∞;Y0�:

From this, we find the equivalence I½Y1∶∞;Y0� ¼ I½Y1∶∞;
X0; Y0�, since X0 is independent of all inputs, due to it being
nonanticipatory. Thus, zero entropy production is equiv-
alent to predictive ratchets for pattern extractors.

2. Retrodictive generators

An analogous argument can be made to show the
relationship between retrodiction and zero entropy produc-
tion for pattern generators, which are essentially time-
reversed extractors.
Efficient pattern generators must satisfy

I½Y 0
0∶N ;XN � ¼ I½Y 0

0∶N ;XNþ1Y 0
N �:

The ratchet being retrodictive means that the ratchet state
XN shields the past Y 0

0∶N from the future Y 0
N∶∞ and that the

future shields the ratchet from the past:

I½Y 0
0∶N ;Y

0
N∶∞jXN � ¼ 0

I½Y 0
0∶N ;XN jY 0

N∶∞� ¼ 0:

Note that generators necessarily shield past from future
I½Y 0

0∶N ;Y
0
N∶∞jXN � ¼ 0, since all temporal correlations must

be stored in the generator’s states. Thus, for a generator,
being retrodictive is equivalent to

I½Y 0
0∶N ;XN � ¼ I½Y 0

0∶N ;Y
0
N∶∞�:

This can be seen by subtracting I½Y 0
0∶N ;XN ;Y 0

N∶∞� from
both sides, much as was done with the extractor.
First, to show that being retrodictive implies zero

minimal entropy production, it is sufficient to show that

I½Y 0
0∶N ;XNþ1; Y 0

N � ¼ I½Y 0
0∶N ;Y

0
N∶∞�;

since we know that I½Y 0
0∶N ;XN � ¼ I½Y 0

0∶N ;Y
0
N∶∞�. To do

this, consider the information diagram in Fig. 9. There, we
see that the difference between the two mutual pieces of
information of interest reduces to the difference between
the two information atoms:

I½Y 0
0∶N ;XNþ1Y 0

N � − I½Y 0
0∶N ;Y

0
N∶∞� ¼ c − g:

The fact that the ratchet state XNþ1 shields the past Y 0
0∶Nþ1

from the future Y 0
Nþ1∶∞ and the future shields the ratchet

from the past gives us the following four relations:

I½Y 0
0∶NY

0
N ;Y

0
Nþ1∶∞jXNþ1� ¼ iþ f þ g ¼ 0

I½Y 0
N ;Y

0
Nþ1∶∞jXNþ1� ¼ iþ f ¼ 0

I½Y 0
0∶NY

0
N ;XNþ1jY 0

Nþ1∶∞� ¼ hþ bþ c ¼ 0

I½Y 0
N ;XNþ1jY 0

Nþ1∶∞� ¼ hþ b ¼ 0:

These equations show that that c ¼ g ¼ 0 and, thus,

hΣgen
N imin

kBT ln 2
¼ 0:

Going the other direction—zero entropy production
implies retrodiction—requires that we use I½Y 0

0∶N ;XN � ¼
I½Y 0

0∶N ;XNþ1; Y 0
N � to show I½Y 0

0∶N ;XN � ¼ I½Y 0
0∶N ;Y

0
N∶∞�. If

XNþ1 is retrodictive, then we can show that XN must be as
well. However, this makes the base case of the recursion
difficult, since there is not yet a reason to conclude that X∞
is retrodictive. While we conjecture the equivalence of
optimally retrodictive generators and efficient generators, at
this point, we can only conclusively say that retrodictive
generators are also efficient.

APPENDIX C: ZERO COUPLING IN
LOCAL CONTROL

The assumptions that control is limited to the interacting
subsystem Zi and that the whole system Z is an information
reservoir in its default states imply that there is zero
energetic coupling between the interacting subsystem Zi

and the stationary subsystem Zs. Since information reser-
voir states are energetically mute, the energy of all states is

FIG. 9. Information shared between the output past Y 0
0∶N , next

output Y 0
N , next ratchet state XNþ1, and output future Y 0

Nþ1∶∞,
excluding the next input. Key information atoms are labeled.
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the same Ez ¼ E, for all z ∈ Z. We establish this using
the quantum mechanical framework appearing elsewhere
on thermodynamics of control restrictions [9,10]. There, a
changing Hamiltonian HðtÞ is broken into the default
Hamiltonian H0 over Z and the externally controlled
Hamiltonian HextðtÞ, which only affects the local interact-
ing subsystem:

HðtÞ ¼ HextðtÞ þH0: ðC1Þ

Note that, while this operator formalism applies to quantum
systems, it applies readily to classical systems [67]. In the
present case, it is a particularly direct connection, as we
limit our discussion to the basis of states of the information
reservoir fjzi∶z ∈ Zg.
Local control means that our Hamiltonian control over

the joint system HextðtÞ is limited to the interacting
subsystem and, thus, commutes with the stationary sub-
system. However, since the joint system is an information
reservoir at the beginning (t ¼ t0Þ and end ðt ¼ t0 þ τÞ of
the computation, the result of the Hamiltonian is constant:

Hðt0Þjzi ¼ Ezjzi ðC2Þ

¼ Ejzi: ðC3Þ

Thus, the Hamiltonian can be expressed in terms of the
identity operator Î:

Hðt0Þ ¼ EÎ: ðC4Þ

Also, this means that the default Hamiltonian is given by

H0 ¼ EÎ −Hextðt0Þ: ðC5Þ

Both Î andHextðtÞ commute with the stationary subsystem,
so the default Hamiltonian H0 does as well. Then, by
extension, the full HamiltonianHðtÞ ¼ HextðtÞ þH0 com-
mutes with the stationary subsystem. Thus, there is no
energetic coupling between interacting subsystem and
stationary subsystem. One concludes that the interacting
system is effectively isolated from the stationary system,
allowing us to consider its behavior using only its marginal
distribution and local estimates of entropy production.
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