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ABSTRACT: Obtaining accurate binding free energies from in silico screens has
been a long-standing goal for the computational chemistry community.
However, accuracy and computational cost are at odds with one another,
limiting the utility of methods that perform this type of calculation. Many
methods achieve massive scale by explicitly or implicitly assuming that the target
protein adopts a single structure, or undergoes limited fluctuations around that
structure, to minimize computational cost. Others simulate each protein−ligand
complex of interest, accepting lower throughput in exchange for better
predictions of binding affinities. Here, we present the PopShift framework for
accounting for the ensemble of structures a protein adopts and their relative
probabilities. Protein degrees of freedom are enumerated once, and then
arbitrarily many molecules can be screened against this ensemble. Specifically, we use Markov state models (MSMs) as a compressed
representation of a protein’s thermodynamic ensemble. We start with a ligand-free MSM and then calculate how addition of a ligand
shifts the populations of each protein conformational state based on the strength of the interaction between that protein
conformation and the ligand. In this work we use docking to estimate the affinity between a given protein structure and ligand, but
any estimator of binding affinities could be used in the PopShift framework. We test PopShift on the classic benchmark pocket T4
Lysozyme L99A. We find that PopShift is more accurate than common strategies, such as docking to a single structure and
traditional ensemble docking�producing results that compare favorably with alchemical binding free energy calculations in terms of
RMSE but not correlation�and may have a more favorable computational cost profile in some applications. In addition to
predicting binding free energies and ligand poses, PopShift also provides insight into how the probability of different protein
structures is shifted upon addition of various concentrations of ligand, providing a platform for predicting affinities and allosteric
effects of ligand binding. Therefore, we expect PopShift will be valuable for hit finding and for providing insight into phenomena like
allostery.

I. INTRODUCTION
Developing strategies to accelerate and simplify hit discovery in
drug development is one of the core foci of computational
chemistry. Because huge arcs of chemical space must be
subtended, methods that scale well per ligand predominate.1

Most of these methods are based on docking a set of compounds
to a single protein structure as rapidly as possible to maximize
the chemical space that can be considered. The scores predicted
by these methods correlate so poorly with true binding affinities
that they are typically judged by how much the high scoring
compounds are enriched for tight binders compared to
randomly selected compounds.2,3 Of course, a wide range of
methods have been developed to make different trade-offs
between speed and accuracy. Of these, alchemical free energy
calculations are some of themost physically rigorous and should,
in principle, be capable of quantitatively accurate predictions.4,5

However, routinely achieving quantitative predictions with any
method remains difficult.6

One striking feature of all of these methods is the extent to
which they assume proteins adopt a limited set of highly similar
structures. Many docking algorithms do not include any protein
conformational heterogeneity. The cross docking problem
highlights the limitations this assumption imposes (i.e., docking
a library of compounds against a protein structure obtained by
removing a ligand from a ligand-bound structure is more
predictive than docking against a structure obtained in the
absence of ligand).7 To address this, some docking algorithms
allow limited protein flexibility such as rotations of side-chains.
However, many do not find that incorporating conformational
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heterogeneity in this way is worth the additional computational
cost.8 In principle, alchemical free energy calculations should be
able to deal with protein conformational heterogeneity, as every
degree of freedom is allowed to move as dictated by the force
field. However, in practice, alchemical free energy simulations
are so short that the protein only undergoes limited fluctuations
around the starting structure.9 Phrased differently, ignoring
receptor conformational heterogeneity for the sake of computa-
tional performance is one of the key approximations of most
digital screening campaigns.
Ensemble docking has emerged as a strategy to address

protein conformational heterogeneity but still faces significant
limitations.10 In ensemble docking, one generates a set of
protein structures (often via molecular dynamics simulations)
and then docks a library of compounds against each of these
structures. Typically, one then ranks the compounds based on
their best score against any protein structure, though there are
other flavors of ensemble docking. While this ensemble docking
approach recognizes that there is uncertainty in which protein
structure is relevant, it still essentially assumes that a single
structure is relevant in the end. It also throws out
thermodynamic information from the simulations, instead
giving all of the protein structures equal weight. These methods
are still generally incapable of quantitative predictions and suffer
from some strange pathologies. For example, it has been

reported that ensemble docking against short simulations
outperforms docking to a single structure but that adding
more simulation data often hurts performance rather than
helping.10−13 Other efforts to include conformational hetero-
geneity into docking have included the existence of multiple
conformations using some assessment of their relative
abundance, but have done so in an ad-hoc fashion.14,15

Here, we propose a reweighting approach called PopShift,
schematically depicted in Figure 1, that uses Markov state
models (MSMs) of a ligand-free protein to account for the
populations of different protein structures and how they are
shifted upon binding to a ligand. PopShift builds on the
numerous successes of simulations of apo proteins in capturing
rare conformational changes. For example, we have predicted
and experimentally confirmed cryptic pockets formed by
motions ranging from side chain displacements to displacements
of entire secondary structural elements.14,16−18 MSMs can be
viewed as a compressed representation of the system’s
thermodynamic ensemble.19 Thus, MSMs representing the
ligand-free protein ensemble contain all the receptor informa-
tion needed to estimate ligand binding.20 In order to weight the
contribution of state populations in the apo context versus how
tightly they bind ligand, we estimate binding to representative
conformations from each state, obtaining a per-state binding free
energy by averaging them. We then combine these using an

Figure 1. Examples of conformational heterogeneity in the T4 lysozyme and a schematic of how PopShift accounts for this heterogeneity. These
renders show the multiple conformations even the L99A pocket bound to toluene is capable of accessing under crystallographic study. The top section
shows the room temperature structure (PDB 7L39) and a cryogenic structure from the same study (PDB 7L3A). All residues with alternative locations
in the F-helix, and also toluene, are shown in sticks. Extensive alternative locations are present in both, even though this protein is reckoned to be rigid
and to bind simple, largely rigid, fragments. Note that the two alternative locations for the ligand are nearly identical at both temperatures. Nearly every
residue in the critical F-helix shows heterogeneity, centered on valine 111, which extends down toward the toluene. The lower panel shows a schematic
of the PopShift method, showing MSM populations from a ligand free ensemble being biased by varying degrees of ligand affinity to those states to
approximate the ligand-bound ensemble. The sea-blue pac-man represents the protein, with three states in equilibrium, green circle sizes indicating
abundance, and the shape cut out of the pac-man representing varying degrees of pocket accessibility to the ligand, which is schematically represented
by a star.
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“over parts” approach analogous to that used in Jayachandran,
Shirts, Park, and Pande21 to combine these per-state affinities
with weights from a ligand freeMSM. Thus, instead of taking the
best score against any structure, as in traditional ensemble
docking, we take a correctly weighted average over all structural
states. This is made tractable by the MSM, since it means we

only need one or, to be more confident, a handful of binding
estimates per MSM state. A related idea that treats affinity per
conformation using the same math, but does not leverage an
MSM to index conformational heterogeneity, is the Implicit
Ligand Theory.22,23

Figure 2. PopShift compares well to alternative predictors, such as docking to a single crystal structure, traditional “best score” ensemble docking, and
alchemical free energy calculations. The x values are the experimental binding free energies for 17 ligands as measured by ITC in Morton, Baase, and
Matthews.28 The y values are the binding free energy estimated by each in silicomethod given in the panel title. Correlation is the Pearson’s correlation
coefficient, rho is Spearman’s ranking coefficient, and RMSE is the root-mean-squared error in kcal/mol. The error bars on the top two panels are the
standard uncertainty in the mean across the three replica data sets. The error bars on the ABFE points are those provided by alchemlyb/pymbar. Black
and blue lines are visual guides and represent the 1−1 line and 2kBT deviated values, respectively.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00870
J. Chem. Theory Comput. 2024, 20, 1036−1050

1038

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00870?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00870?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00870?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00870?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00870?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


By capturing how ligands shift the relative probabilities of
different protein conformations, PopShift also provides an
opportunity to understand how ligands remodel their binding
sites or even allosterically impact distant sites. Population-shift
in response to ligand binding is, by definition, allostery. If the
ligand-free MSM is a compressed representation of the
perturbed model’s ensemble, then the reweighted MSM is a
compressed representation of the receptor’s liganded ensemble.
Thus, observables of interest can be estimated with the
reweighted state probabilities to understand the allosteric
mechanism. Because the expression for reweighted state
probabilities includes ligand concentration, the impact on
these averages can also be used to compute an EC50.
To test PopShift, we compare its performance to several other

candidates on a simple-yet-subtle benchmark for protein−ligand
binding, T4 Lysozyme L99A. Because this system has received
extensive study over the years the field has accepted it as a first-
pass benchmark for many computational protein−ligand
binding methods, despite certain drawbacks (notably the poor
dynamic range inherent in the ligands that have actually received
ITC affinity validation).23−25 Indeed the literature on this
receptor is deep, with quality work on the heterogeneity of the
receptor and the impact this has on binding reiterated especially
in the last 10 years by the Minh, Mobley, Fischer, and Shoichet
groups, among others.1,23,26,27

From a set of apo simulations we build an MSM. We then
sample conformations from each MSM state, and dock to them,
using the customary organic fragments fromMorton, Baase, and
Matthews.28 We use the docking score as a heuristic for the free
energy of binding to a particular conformation. We recognize
that docking has severe limitations, especially for ligands with
rotatable bonds. However, docking provides a simple and highly
relevant starting point given its widespread use in drug
discovery, and the fragments we consider here are not subject
to the known issues with rotatable bonds. In the future, it will be
interesting to try alternatives to docking in the PopShift
framework. In PopShift, the free energies of binding are then
incorporated into an affinity estimate and reweighted state
probabilities.We compare these strategies to best-score docking,
docking to holo crystal structures with the ligand removed, and
absolute binding free energy calculations performed in the
customary style with docked and hand-adjusted starting poses.
We also explore how the conformational preferences of the
protein are altered by the addition of ligand.

II. RESULTS AND DISCUSSION
II.A. PopShift Performs Well Compared to Alternative

in Silico Estimators of Binding Free Energies.We reasoned
that modern simulations are sufficiently predictive that both
structures from these simulations and their populations can
inform a successful hit finding strategy.29 In particular, MSMs
provide a powerful and quantitatively predictive map of a
protein’s conformational ensemble and therefore approximate
its partition function. Thus, we hypothesized that using the
populations from an MSM in an “over parts”21,30 approach�
with the MSM supplying the state populations�would allow
correct incorporation of docking scores from across this sample.
To test this hypothesis, we collected three replica simulation

data sets of L99A, made MSMs from them, and estimated
binding affinities using PopShift and other popular alternatives.
Each replica consisted of 10 simulations, 5 × 4 μs and 5 × 8 μs,
started from PDB 187L with the ligand (p-xylene) removed.
One MSM was made for each replica data set using TICA31 on

the pocket residue backbone and side chain torsions, and
VAMP-232 to validate the number of clusters for k-means as has
been done in Meller, Lotthammer, Smith, Novak, Lee, Kuhn,
Greenberg, Leinwand, Greenberg, and Bowman.18 We docked
ligands from the classic Morton, Baase, and Matthews28 set
against structures from each MSM state using the SMINA
docking algorithm.33 Macroscopic binding affinities were
estimated using the PopShift framework; see methods (Section
IV). For comparison to extant approaches, we used the
conventional ensemble docking approach of taking the best
score across a set of samples, and of docking compounds of
interest to a holo crystal structure with ligand removed. We also
performed absolute binding free energy simulations using a
vanishing ligand transformation from initial hand-selected
ligand poses.
We find that PopShift performs well compared to alternative

docking approaches and even showed some advantages
compared to alchemical free energy calculations (Figure 2).
Docking each ligand to a single holo structure (the n-
butylbenzene structure, PDB 186L) and then taking the
minimized score as an affinity estimate gives a poor correlation
to experimentally measured binding affinities and poor accuracy,
as measured by the root mean squared error (RMSE) from
experimental results. PopShift also outperforms simply taking
the best score, a traditional ensemble docking approach, most
notably for ranking. The best-score approach systematically
predicts affinities that are too favorable. Although using docking
to a ligand-removed crystal structure’s scores as affinity
estimates exhibited slightly better correlation with experiment
on this data set than the best-score approach, these scores
emanating from a lone structure exhibited a similar pattern of
overly favorable affinity estimates.
Absolute binding free energy estimates produced the

strongest correlation and ranking results but struggled with
accuracy. This is likely related to initial poses and receptor
conformations failing to relax fully in the course of the windowed
simulations. This interpretation is complicated by our use of the
docking energy function to make affinity estimates, which is very
different from the force field we used to obtain the MSM we
dock to. Because docking to many samples from anMSM allows
us to estimate affinity to many receptor conformations, it
sidesteps the issue of having to choose a “most relevant” one to
start from. This is especially important if there may be multiple
thermodynamically relevant poses for the ligand.27

The dynamic range of our reference data presented in Figure 2
is a concern. Given the lower RMSE for PopShift and the small
dynamic range of the experimental data, it is not surprising that
the RMSE when using the average PopShift prediction as an
estimate for each ligand is also low (1.12). However, the value of
Spearman-ρ for PopShift’s predictions suggests the method has
ranking power, whereas guessing a single value for each ligand
would give a ρ of zero, which is essentially what we see for the
best score and holo crystal docking approaches.
Making predictions for other ligands also confirms that

PopShift is not merely predicting a constant plus noise that
happens to be in the right ballpark for every ligand. If
experimentally measured affinities were available, we would
have added these ligands ITC data taken at a particular
temperature is limited for this ligand�the largest collection of
these coming from the data set presented in Figure 5, from
Morton, Baase, and Matthews.28 The change in melting
temperature induced by a broader array of ligands has been
collected from several other studies by Xie, Nguyen, andMinh.23
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While we cannot directly compare our predicted affinities to
these changes in melting temperature, we did predict affinities
for this set of ligands and obtained predictions ranging from
−5.45 to −1.15 kcal/mol. These results demonstrate that
PopShift does not merely predict the same result for every
ligand.
As a further test of whether PopShift is appropriately

averaging the per-state estimates of binding free energies, we
also tried two additional approaches: (1) the population
weighted average docking score (ΔG = ∑iπiΔGi, which we
have previously called Boltzmann docking14), and (2) using eq
2, but with every state given equal probability instead of using
the populations from our MSMs. The first reduction of the
docking scores results in absurd values with an RMSE of 6.8
kcal/mol. This is because most states yield a positive docking
score, reflecting the abundance of closed states in the apo
ensemble. If one fails to account for the fact that binding makes
these states exceedingly rare, then these rare complexes
unrealistically dominate the prediction. The second reduction
yields an RMSE of 1.40 kcal/mol and ablates the correlation to
0.29 with a p-value of 0.28, demonstrating that the equilibrium
probabilities from our MSM contribute to the predictive power
of PopShift.
Application of PopShift to estimate the affinity of an inhibitor

called blebbistatin to a set of different myosin motor domains
also supports our claim that the method is predictive.18 Our
estimates of the affinity of that ligand to isoforms of myosin was
between −6 and −9 kcal/mol, with an R2 of 0.82 to previous
experimental measurements. PopShift also successfully pre-
dicted the result of an experiment that we performed after
making our prediction. These results again show that PopShift is
capable of covering a larger dynamic range than for the small set
of lysozyme ligands we focus on in this work and has the
potential to match experiment well.
Based on reports of poorer performance of best score

aggregation on longer simulations, we were curious to know
how sensitive our method is to data set size. We reasoned that
larger data sets will typically include some incredibly rare
conformation that, when docked to, will give a higher score than
anything in a smaller data set. Without correctly accounting for
such a conformation’s rarity, this will trend toward worse results
with increasing sampling. Phrased differently, the best score
approach is an outlier detector that is only in the correct ballpark
when�by happenstance�no outlier conformations have been
sampled yet. In contrast, more data from longer initial
simulations should cause PopShift’s estimate to converge as
the simulations do. The aforementioned outlier conformations,
when correctly weighted by their rarity, will simply contribute to
the overall picture of the ensemble, instead of dominating the
prediction.
To test this notion, we truncated our data set as a series of

fractions (that is, we took the first X% of each trajectory, where X
corresponds to the fraction shown) and reran our analysis. Each
result based on truncated data was generated by reworking that
data set as though it were the full length data set, including
featurization and clustering. We then inspected Pearson and
Spearman correlations as a function of data set size (Figure 3).
As before, we selected 20 frames per state to generate these
truncated data sets. We also held cluster count fixed at 75, so that
the total number of structures to dock to was not changing: only
their diversity as the underlying feature trajectories became
more mature and the quality of the MSMs providing the
equilibrium population estimates.

We found that PopShift is less sensitive to the extent of input
data than best-score ensemble docking. Because the number of
structures docked to is constant across this sweep, it highlights
how additional structural heterogeneity is not correctly indexed
by simply looking for the most favorable score. As we suspected,
the best score gets worse with more data because it detects
outliers. In other words, if an ensemble is scored by its most
favorable possible interaction with a ligand, the strain or
unfavorability of that conformation on the protein is neglected.
If one could create an ideal binding site for a ligand by moving
residues out of the way such that it has ideal contacts, it would
get very favorable docking scores when that conformation was
docked to, but in fact the affinity for this site would be quite low
because of how badly strained the protein would be by such
rearrangements. In contrast, PopShift benefits from having more
data, both in terms of the mean correlation with experiment and
the statistical certainty in the results. These results also
emphasize that at least for macroscopic binding constant
estimation, our results for PopShift are not particularly sensitive
to the length of input simulations. This is consistent with prior
results suggesting that thermodynamic properties of MSMs
converge quickly.34 Taken together, this implies that adding
conformational heterogeneity to a docking campaign is best
done by including a correctly weighted sample of receptor
conformations if the objective is ranked estimated affinity
prediction.
II.B. PopShift Retrodicts Ligand Poses and Their

Relative Abundance. Given the low RMSE between Pop-
Shift’s predicted binding free energies and experimental
measurements, we hypothesized that the approach also
accurately predicts the pose the ligand adopts. Specifically, we
reasoned that any ligand likely adopts a wide variety of different
poses in different protein conformations from the ligand-free
MSM. If PopShift works as intended, protein−ligand structures
where the ligand resembles ligand-bound crystal structures
should have significant increases in their equilibrium proba-
bilities compared to the same protein structure in the ligand-free

Figure 3. PopShift performs well as one varies the amount of simulation
data, whereas traditional “best score” ensemble docking gives worse
performance and has greater statistical variation as data is added. The
data set used for MSM construction was truncated by taking the
indicated fraction from the beginning of each trajectory. This can be
viewed as asking the question, “what would happen if simulations had
been stopped early?” The error bars arise from the standard uncertainty
in the mean across the three replica data sets.
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ensemble. In this case, the distribution of RMSDs from the
reweighted ensemble should be more favorable than the
distribution from the original ensemble (i.e., using the state
populations from the ligand-free MSM instead of updating the

populations based on the strength of the interaction between
protein and ligand).
To test our hypothesis, we compared the distribution of

RMSDs to the ligand-bound crystal structure before and after
reweighting the states based on the interaction with ligand

Figure 4. Population shift calculated by PopShift correctly favors ligand poses with a low RMSD to the crystal structure. The data histogrammed is the
symmetry corrected RMSD35 of the predicted pose to the holo crystal structure, where the structures are superimposed according to an alignment of
their pocket atoms but not any ligand atoms. The RMSD histogram here is across all of the heavy atoms after this alignment. For each main panel, the
three subpanel columns represent individual replica data sets. The top row provides the ligand-free equilibrium probabilities, and the lower row shows
how the population is redistributed in the presence of the ligand. Main panel A provides the data for benzene, while the second panel B provides the
data for toluene.
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(Figure 4). For each sample from each MSM bin, i, we weighted
its apo probability as being πi/n, where πi is the equilibrium
probability for that bin, and n is the number of samples drawn
from each bin. We used eq 5 to estimate each sample’s
probability in the presence of a saturating ligand based on the
docking score for that particular sample. We aligned based on
pocket residue heavy atoms (residues within 5 Å of p-xylene in
PDB 186L). RMSDs were then computed across all heavy atoms
in the ligands. We plot both histograms for each replica in Figure
4 to convey how reproducible the results are with different sets
of simulations.
Our results for benzene and toluene show that PopShift does

indeed favor low RMSD states compared with the broad
heterogeneity in pose RMSDs from the original ensemble
(Figure 4, panels for ligand-free populations.) Many states from
the ligand-free ensemble are not compatible with the
experimentally observed binding pose, resulting in RMSDs
between the best scoring pose and the ligand-bound crystal
structure over 4 Å. When pose RMSDs were reweighted using
pop-shifted equilibrium probabilities at saturating ligand
concentrations, the distribution collapses and poses become
holo-like. Interestingly, for some ligands, such as toluene (Figure
4, panel B), alternative conformations appear to be present.
Given the way crystal structures solved at cryogenic temper-
atures are known to favor low energy structures and under-
estimate structural heterogeneity, it is interesting to consider the
possibility that the heterogeneity in poses that PopShift predicts
for some ligands is real.
To test the generality of our results for the two ligands from

Figure 4, we devised a means to judge how closely our
predictions agree with experiments across multiple compounds.
Because experimental techniques have a hard time describing

conformational heterogeneity, it is possible that poses dissimilar
to experiment have relevance for the thermodynamic ensemble
of the complex. Thus, we chose to use three categories: one for
configurations similar to the crystal pose, one for conformations
that were dissimilar but likely still in the pocket, and one for
conformations with clashes or completely alternative ligand
placements. We reasoned this would be reasonably measured by
aligning the receptor pockets but transforming the ligands by
that alignment.
We binned our histograms into three categories�fraction of

samples that are similar to the crystal structure’s pose (RMSD <
2 Å), others that are in some alternative pose but probably still in
the binding site (2 ≤ RMSD < 4 Å), and ones that are likely in a
very different pose or outside the binding site altogether (RMSD
≥ 4 Å) in Figure 5. We aligned the α-carbons of the pocket
residues we used to build our MSMs, and then transformed our
predicted ligand poses by that alignment transform. Thus, high-
RMSD scores likely emerge from poses that have significant
displacements in center of mass�that is, poses that are not
properly in the binding pocket. We named the three categories
of poses “crystal-like”, “alternative”, and “miss”, as abbreviations
of this interpretation.
The pattern we demonstrated for benzene and toluene in

Figure 4 is consistent across all the ligands we tested (Figure 5) .
Poses we categorize as “miss” are quite common with apo
weights, but become rare after reweighting with PopShift. With
ligand saturated weights, we often observe alternative poses. It is
hard to know whether these conformations exist in solution, but
they are probable in the ligand biased ensemble, suggesting that
they contribute nontrivially to our estimates of affinity.
II.C. PopShift Predicts How Ligands Change the

Abundance of Protein Conformations. Because macro-

Figure 5. Summary of pose accuracy across all ligands studied. Each grouped bar represents the fraction of ligand poses that fall into the categories
“crystal-like”, for within 2 Å symmetry-corrected RMSD35 of the holo crystal structure, “alternative”, for between 2 and 4 Å RMSD from the holo
crystal, and “miss”, for poses above 4. As before, the top panel represents the poses with an “apo” ensemble weighting. The lower panel provides pop-
shifted reweights for the same data set.
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scopic affinities estimated with correctly weighted per-state
affinities seem accurate, we reasoned that reweighted state
probabilities might also be usefully accurate. We knew that
Valine 111’s dihedral angle is able to occupy several rotameric
states in apo simulations, but that the distribution is different
upon ligand binding.27,36 Thus, we hypothesized that the broad
distribution from our ligand-free MSM should collapse to the
binding-compatible one upon reweighting with ligand-saturated
populations.
We tested this hypothesis by histogramming valine 111 angles

from the receptor structures we sampled, weighted by both apo-
and ligand saturated state probabilities (Figure 6). As in Figure
4, we plot both histograms for each replica to convey the
reproducibility of our results.
We find that the ligand-free protein broadly populates several

different structures, but the ligand shifts the population to favor
the trans state, with some population of gauche+. This angle is
noted as having many different distributions in RT crystal
structures for liganded T4 lysozyme L99A protein.27 Trans is the
angle modeled into cryo-structures from previous efforts (PDB
ID 181L, 4W52).28,37 Our plots suggest that, like room-
temperature X-ray structures, the ligand-saturated ensemble is
heterogeneous but does prefer certain angles, the primary of
these being shared with the cryo X-ray structures. Thus, the
receptor population has shifted through conformational
selection to a binding-compatible ensemble.
To assay this another way, we also calculated receptor α-

carbon RMSD histograms to the cognate crystal structure for
pocket residues (see Figure 7). Because the F-helix is known to
occupy several different conformations, we reasoned that the
distance from the holo structure for a large and a small ligand
would be indicative of what conformations are enriched by

ligand. We did this for benzene and n-butylbenzene as examples
of smaller and larger ligands.We found that in both cases, as with
the valine torsion histograms, our broad sampling of pocket
conformations collapses to the holo-like structure in the
presence of a saturating ligand.
II.D. PopShift Can Estimate Ensemble Features as a

Function of Ligand Concentration. Because the histograms
from Figure 4 represent unliganded and saturated conforma-
tional preferences, respectively, we hypothesized that inspecting
the conformational preference as a function of ligand
concentration might help with analyzing binding preferences
and allosteric effects. We wanted to know at what ligand
concentrations certain histogram populations become more
prominent since structural features not directly corresponding
to ligand binding are often relevant for drug development�
particularly in the case of allosteric modulators. For example, we
previously identified both activators and inhibitors that bind a
cryptic pocket in the protein TEM β-lactamase.14 Looking at
what structures are stabilized/destabilized by a ligand could
provide a facile means to predict their effects on the structural
preferences of distant sites and, ultimately, on function. If a
structural feature were used as a heuristic for some mechanistic
action, that feature could be used to compute an EC50.
To display this transition, we computed ligand-rmsd histo-

grams at various ligand concentrations and stacked them by
descending ligand concentration as a dilution series. To do this,
we recomputed the histograms from Figure 4 using eq 5 with a
range of concentrations plugged in for x (see Figure 8). Each
histogram-bin’s probability was displayed using color, so that
each row in the heatmap corresponds to a particular RMSD
histogram at a particular ligand concentration. Bins, and
therefore the X axis match those from Figure 4. We covered

Figure 6. Three alternative conformations of the Val111 χ1 angle in the ligand-free MSM collapse to mostly trans population in the presence of the
ligand, in agreement with the dominant pose seen crystallographically. The top row of plots is histograms of the χ1 torsion across the frames sampled
from the MSM states, weighted using the ligand-free MSM equilibrium probabilities. The second row displays the same data, but weighted by the
benzene-saturated equilibrium probabilities. Each column represents the results from one fully independent replica.
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concentrations ranging from nM�essentially no ligand for
these relatively weak binders�to 0.1 M�completely saturating
for all the ligands we tried. Our predicted ligand dissociation
constants for each replica are marked by an orange line.
We found that the populations of conformers outside the

binding site were abundant until within an order of magnitude or

so of themolecule’sKD, where a shift happened to structures that
more closely resemble the ligand-bound structure. The poses
closer to the KD on the low concentration side contain a mixture
of boundlike and ligand-free-like structures. They are similar to
the ligand-free weighted distribution that we see in Figure 4.

Figure 7. Population shift calculated by PopShift correctly favors pocket conformations with a low α carbon RMSD for the holo crystal structure. The
data histogrammed is the RMSD of the predicted pocket conformation to the holo crystal structure’s pocket, where the structures are superimposed
according to an alignment of their pocket atoms but not any ligand atoms. For eachmain panel, the three subpanel columns represent individual replica
data sets. The top row shows the ligand-free equilibrium RMSD distributions and the lower row shows how the population is redistributed in the
presence of ligand. Main panel A provides the data for benzene, while main panel B provides the data for n-butylbenzene.
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III. CONCLUSION
In this work, we have presented PopShift, a framework for
estimating binding free energies in a manner that correctly
weights the conformational heterogeneity present in the ligand
binding sites of proteins. PopShift’s estimated binding free
energies from docking scores perform well compared to other
common methods for the simple problem of lysozyme L99A
binding to small organic compounds. Our results demonstrate
that adding receptor fluctuations into docking is indeed a
significant improvement over making the simplifying assump-
tion that a single protein structure encodes all of the relevant
information. Further, our approach provides an approximation
of the receptor−ligand complex ensemble, which has utility in
mechanistic studies, such as those focused on tuning the
abundance of receptor conformations known to correlate with
function.
The future directions for this approach are many. PopShift of

docking scores for affinity estimation is still limited by the
performance of the docking scoring function. Thus, it is likely
that applying PopShift to more challenging problems, such as for
ligands with many rotatable bonds or charge, will require more
sophisticated estimates of per-state KD’s. Using per-state
estimates from Generalized-Born or Poisson−Boltzmann
rescoring, or absolute or relative binding free energy simulations,
is therefore an exciting and immediate future direction for this
work.38 More broadly, we see opportunities to apply this
framework to other perturbations to an MSM sampled from one
thermodynamic state, without having to redo the sampling in
those new states�such as gracefully integrating multiple
protonation states for either ligand or receptor and indexing
the relative free energy changes of mutations. Expansive and

expensive sampling, done once for some reference model, can
thus be reweighted to solve a host of important problems facing
modern Biophysics.

IV. METHODS
IV.A. Free Energy Formalism with MSMs. It has been

shown previously that one can break up a binding free energy
calculation across states discretized from simulations.21,30,39

From Gallicchio, Lapelosa, and Levy,30 (eq 22 in that work) we
have

K K
i

n

i i
1

=
= (1)

where K is the macroscopic binding constant, the index of the
sum i runs over the n states of the discretization of state space for
the receptor, πi is the equilibrium population of that state from
the ligand-free model, and Ki is the binding constant estimated
for the ligand binding just to state i. Therefore, the free energy of
binding becomes

G KRT log
i

i i=
(2)

Critically, those states need only be sampled in one ensemble;
for ease of sampling, because misestimation of both binding
compatible and incompatible state abundances would lead to
large errors, the apo ensemble is often preferred. This is also
helpful when several or possibly many binding modes may
contribute relevant amounts to the overall favorability of
binding.

Figure 8. Distribution of RMSDs to a ligand-bound reference structure as the concentration of the ligand is varied. Panels A and B represent the
titrations for benzene and toluene, respectively. The Y axis is ligand concentration, and the X axis is the pocket-aligned symmetry corrected35 Ligand
RMSD to holo crystal structure, histogrammed as before (Figure 4) . Each row in each heatmap is from the same raw data being histogrammed with
different weights, computed by plugging the Y-value matching that row into eq 5. The orange line on each replica plot shows the KD as calculated for
that replica using eq 1 for reference. The heat, or intensity, is in logscale to aid visualization. The top row in each heatmap is holo-like, because it is at
high ligand concentration, and the bottom row is apolike, because it is at low ligand concentration. Being able to titrate observables measurable from
conformations in this way could provide exciting opportunities to understand ligand efficacy in systems with allosteric behavior.
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Gallicchio, Lapelosa, and Levy30 also demonstrate that one
can write the probability of a state in the ligand bound ensemble
as the product of its original probability and the fractional
contribution it makes to the equilibrium constant defined in eq
1.

K
Ki i

i* =
(3)

where πi* is the population of state i in the ligand bound
ensemble and πi, Ki, and K are the equilibrium population from
the unbound ensemble, the affinity of the ligand to state i, and
the binding constant, respectively. We can use this to compute
the extent to which population shifts as a function of ligand
concentration, for example, [X], as the sum of the unbound and
bound population at that concentration.

w X K X( )i i i i* [ ] = + [ ] (4)

Here wi*, the expression for the weight of the state, is not
normalized; doing so gives

X
K X

K X
( )

(1 )
(1 )i

i i

i i i

* [ ] =
+ [ ]

+ [ ] (5)

Equation 5 is the expression for the reweighted (shifted)
population of each state as a function of the free ligand
concentration. In this work we are estimating Ki by docking to
each state, but other means of estimating that equilibrium
constant could be used.21 Note that this equation has the correct
limiting behavior. At high [X], the populations of the states are
dominated by the favorability of binding to each state because
the right-hand numerator term and the denominator both grow
with [X], but the left-hand term does not. For any realistically
measurable association constant (say, K > 1000) with high
ligand concentrations eq 5 becomes approximately equal to eq 3.
That is to say, the probability of a state in an increasingly ligand-
saturated ensemble approaches the probability of that state in
the ligand bound ensemble. Conversely, at very low [X] the state
probabilities are very nearly the apo ones, as the right-hand term
in both the numerator and denominator becomes small relative
to the left-hand term. (These same expressions can be obtained
from Wyman and Gill;40 see for example chapter 4, eqs 12 and
20 through 24.)
IV.B. Lysozyme MSM Simulations and Construction.

IV.B.1. Simulations. Simulations were run with Gromacs.41

Three sets of ten simulations were run starting from protein
coordinates taken from PDB ID 187L using the Amber03 force
field.42 Five of the trajectories in each set totaled 4 μs of
sampling, while the other five totaled 8 μs. The protein was
solvated with TIP3P explicit water in a dodecahedral box that
extended one nm beyond the protein in any dimension and eight
chloride ions were added to neutralize the charge.43,44 This
system was energy minimized with the steepest descent
algorithm until the maximum force fell below 10 kJ/(mole*nm)
using a step size of 0.01 nm and a cutoff distance of 1.2 nm for
the neighbor list, Coulomb interactions, and van der Waals
interactions.
The system was then equilibrated at 298 K in a 1 ns NVT

simulation followed by 1 ns NPT simulation with a position
restraint on all protein heavy atoms (spring constant 1,000 kJ
mol−1 nm−2). A long-range dispersion correction was employed
for both the energy and pressure. All bonds were constrained
with the LINCS algorithm.45 Cut-offs of 1.2, 0.9, and 0.9 nm
were used for the neighbor list, Coulomb interactions, and van

der Waals interactions, respectively. The Verlet cutoff scheme
was used for the neighbor list and particle mesh Ewald was
employed for the electrostatics (with a grid spacing of 0.12 nm,
PME order 4, and tolerance of 1 × 10−6).46 The v-rescale
thermostat (with a time constant of 0.1 ps) was used to hold the
temperature at 298 K and the Berendsen barostat was used to
bring the system to 1 bar pressure.47,48 For the production runs,
the position restraint was removed and the Parrinello−Rahman
barostat was employed.49 Snapshots were stored every 10 ps.
Structures were visualized with PyMOL, and trajectories with
both PyMOL and VMD.50,51

IV.B.2. MSM Construction. MSMs were constructed using
Deeptime independently for each set of 10 simulations.52

Clustering data was managed using the RaggedArray class
from enspara.53 Backbone and all χ dihedrals for any residues
with heavy atoms within 5 Å of p-xylene in PDB entry 187L were
selected as input features. This feature space was reduced using
TICA,31 with lag times of 1, 2, and 5 ns and with a kinetic
variance cutoff of 0.9 using commute mapping. Our final models
were built from the 5 ns lag TICA features. We used k-means to
cluster this reduced feature set, choosing our number of states
using the cross-validation approach taken by Meller, Lott-
hammer, Smith, Novak, Lee, Kuhn, Greenberg, Leinwand,
Greenberg, and Bowman.18 Briefly, the reduced features were
clustered by splitting features into 10 train-test pairs, where k-
means with a range of k was used to cluster only the training set.
Test set trajectories were then assigned to clusters using
euclidean distance to the k centroids resulting from the
“training” clustering. MSMs were fit to the train and test pairs
using the MLE method.54 The first 10 eigenmodes of both
models were then VAMP-2 scored32 using the train model, to
estimate how overfit the model was to cluster count.55,56 The
number of clusters chosen for final model fitting was the point at
which the VAMP-2 score of the test data starts to decline, which
was k = 75 in this case. The complete set of input features was
reclustered using k-means with 75 clusters, and then an MLE
model was fit with a lag time of 20 ns, after scrutinizing the
implied time scales of the data with various lag times.
IV.C. PopShift Workflow. The workflow used here to do

the PopShift postprocessing of our ensemble docking run is as
follows:

1. Obtain a satisfactory ligand-free MSM. (Note that for
thermodynamic observables all that is really needed for
step 1 is a discretized state space or clustering of input
features, and an associated collection of equilibrium
probabilities for each state. MSM construction, especially
with a collection of shorter trajectories as we have, is a
sensible path to obtaining this association, but others are
possible.)

2. Sample a number of receptor conformations from each
state of the MSM using the assignment trajectories from
clustering (Frame-picking).

3. Align these conformations so that they will fit neatly in a
docking box.

4. Dock to each sample, saving the ligand pose and docking
score.

5. Compile docking scores into free energies of binding
using eq 2 and the equilibrium probabilities from the
ligand-free MSM.

6. Compute reweighted state populations from apo weights,
ligand concentration of interest, and docking scores using
eq 5.
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IV.C.1. PopShift Implementation. To pick frames, the
assignment trajectories used for model selection were sorted
into lists of frames corresponding to each cluster center, and
then several of these (20 for the data in Figures 2 and 3) were
selected by picking indices at random. These frames were
extracted from the coordinate trajectories and iteratively
aligned57 by the α-carbons of their pocket residues (defined in
the same fashion as for MSM construction in Sec. IV.B.2), using
LOOS.58,59 Ligands and receptors were prepared using
prepare_ligand.py and prepare_receptor.py
from AutoDock tools.60 We parallelized the preparation process
by using GNU parallel.61 Docking was performed using a
box with 12-Å sides centered on the centroid of the average
structure of the aligned frames using SMINA.33 Each docking
run targeting each extracted conformation was performed as an
independent single CPU task using Jug.62 We used the SMINA
and Jug versions hosted on a conda forge. For SMINA the binary
we used returned the following version statement (from calling
smina --version): Smina Nov 9 2017. Based on
AutoDock Vina 1.1.2. For Jug the version statement
returned by the python module was 2.2.2. No modifications
were made to the docking energy model in this study. Analysis of
extracted receptor conformations and docked ligand poses was
performed using python scripts involving PyLOOS.59 Ligand
RMSDs were obtained via a symmetry corrected graph theoretic
algorithm implemented in the spyrmsd python package as
downloaded from conda forge (version 0.6.0).35 Docking scores
were extracted and collated into ligand-indexed JSON
associative arrays by using scripts provided in the PopShift
package. OpenBabel 3.0.1 was used for ligand preparation for
extended docking and to extract atomic numbers for spyrmsd.63

PopShift is available as open-source software and can be found
on the Bowman Lab Github: https://github.com/bowman-lab/
PopShift
IV.D. Disappearing Ligand Absolute Binding Free

Energy Simulations. IV.D.1. Starting Pose Selection. The
binding modes of the ligand for free energy calculations were
selected using 5 methods, all based on the thermodynamic cycle
depicted in Figure 9. For ligands with a known crystal structure
bound to T4-Lysozyme, we selected the MSM pose with an

RMSD closest to that of the crystal structure. All poses had an
RMSD < 2 Å to the crystal pose and thus would be considered
the same binding mode.65 The exception to this was 1,2-
dichlorobenzene which did not have an MSM pose that closely
matched the known crystal structure. In the case of 1,2-
dichlorobenzene, we used the exact pose from the crystal
structure.
For ligands without a crystal structure, we took a known

crystal structure most similar to the ligand and posed our ligand
accordingly in several poses. Each pose for each ligand was
simulated for 2 ns, and an RMSD analysis of the ligand
throughout the trajectory as compared to the starting pose was
run. The pose with the smallest change in RMSD and the
smallest variance in RMSD was chosen as the most stable pose
and was the pose used for the remainder of calculations. We
overlaid 2-ethyltoluene with the crystal pose of o-xylene and
then flipped 2-ethyltoluene so the ethyl group and methyl group
would align first with the 1-methyl and 2-methyl of o-xylene as
pose 1, and the 2-methyl and 1-methyl as pose 2. We overlaid 3-
ethyltoluene with the crystal pose of o-xylene. We aligned the
ethyl group of 3-ethyltoluene with each methyl group of o-
xylene, resulting in 4 different poses. We also aligned the methyl
group of 3-ethyltoluene with each methyl group of o-xylene
resulting in 4 more different poses. We overlaid 4-ethyltoluene
with the crystal pose of p-xylene, and then flipped 4-ethyltoluene
so the ethyl group and methyl group would align first with the 1-
methyl and 4-methyl of o-xylene as pose 1, and the 4-methyl and
1-methyl as pose 2. We overlaid thianaphthene with the crystal
pose of indene as pose 1, and flipped the thianaphthene across its
length so the sulfur would be on the opposite side as pose 2.
Lastly, for m-xylene, we began with a process similar to that of

3-ethyltoluene. We overlaid m-xylene with the crystal pose of o-
xylene. We aligned the methyl groups of m-xylene with each
methyl group of o-xylene resulting in 4 different poses. Again, an
RMSD was used to choose the most stable pose to use for the
remainder of calculations. However, upon free running free
energy calculations, we observed m-xylene switching to a
different stable pose after 1.5 ns, impacting the free energy
calculation. For m-xylene, the stable pose found at 1.5 ns in the
free energy calculation was chosen.
IV.D.2. Ligand and Protein Parameterization. The ligands

were parametrized with Open Force Field version 2.0.0 and
charged with AM1-BCC charges.66 The protein (PDB 7l38) was
prepared using an OpenEye Spruce to add hydrogen atoms at
pH 7.0. The protonated protein was then parametrized using
AMBER ff14SB and the TIP3P water model was used for the
waters. GROMACS was used to solvate and add a salt
concentration of 150 mM to the ligand and protein−ligand
systems. Each ligand system was energy minimized and NVT
equilibrated, and then a 2 ns NPT production run was
performed. Each protein−ligand system was energy minimized
and NVT equilibrated, then a 2 ns NPT production run was
performed. The trajectory of the production run was used to
select the atoms and dihedrals for the Boresch restraints to
restrain the ligand to the binding site during simulation.64

IV.D.3. Running Absolute Binding Free Energy Calculations
in GROMACS. Simulations were run by using GROMACS
2021.2. For binding site simulations, we used 20 lambda
windows. In this protocol, we first restrained the ligand to the
binding site, turned off the Coulomb interactions, and then
turned off the vdW interactions. For unbound ligand
simulations, we performed absolute hydration free energies. In

Figure 9. This cartoon depicts the thermodynamic cycle and
transformation used for the absolute binding free energy calculations
from Figure 2. We take ΔGbind = ΔGsolv − ΔGsite − ΔGrestraints. In its
weakly and noninteracting state, the ligand is free to leave the binding
site. We use orientational Boresch-style restraints to reduce the phase
space that must be sampled.64
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this protocol, we first turned off the Coulomb interactions and
then turned off the vdW interactions.
Prior to running production simulations, every lambda

window was energy minimized for 5000 steps using the steepest
descent and equilibrated at constant volume for 10 ps at 298.15
K. Production simulations were run for 15 ns per lambda
window with an NPT ensemble. During production, replica
exchange was attempted every 200 steps. See Figure 10 for a
graphical representation of this schedule.
IV.D.4. Analysis of Absolute Binding Simulation Results.

We obtained the free energy difference using the alchemlyb/
pymbar packageMBAR estimator.67 The first nanosecond of the
15 ns of production simulations was discarded as equilibration.
Each ligand was inspected for symmetry and the trajectory of the
protein−ligand system in its unrestrained state was inspected to
determine whether all symmetries were equally sampled.68 The
free energy difference of ligands with at least one axis of
symmetry without adequate sampling of symmetries was
corrected using the equation:

G
k T

1
logsymmetry condition

B
L=

(6)

where kB is the Boltzmann constant,T is the temperature, and σL
is the ligand symmetry.
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