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Abstract

We present a novel adaptation of active learning to graph-based semi-supervised learning
(SSL) under non-Gaussian Bayesian models. We present an approximation of non-Gaussian
distributions to adapt previously Gaussian-based acquisition functions to these more gen-
eral cases. We develop an efficient rank-one update for applying “look-ahead” based meth-
ods as well as model retraining. We also introduce a novel “model change” acquisition
function based on these approximations that further expands the available collection of
active learning acquisition functions for such methods.

Keywords: Active Learning, Graph-Based Semi-Supervised Learning, Machine Learning

1. Introduction

Active learning in semi-supervised learning (SSL) seeks to alleviate the issue of trying to
train machine learning classifiers with few labeled data but ubiquitous unlabeled data.
While there are a few different formulations of active learning, we focus on the pool-based
active learning paradigm as opposed to online or streaming-based active learning (Settles,
2012). That is, the active learner has access to a fixed “pool” of unlabeled data points from
which it can decide the next training point. We consider querying only a single point at
a time, as opposed to batch-mode active learning (Hoi et al., 2008). Let Z = {1, 2, . . . , N}
index a set of input feature vectors X = {xi}Ni=1 among which L ⊂ Z have known labels
{yj}j∈L. We assume the binary classification case, in which the labels reside in yj ∈ {±1}
(or {0, 1}). In pool-based active learning, most methods alternate between: (1) training a
model given the current labeled data L, {yj}j∈L and (2) choosing an active learning query
point k∗ in the unlabeled set U = Z − L according to an acquisition function. We can
classify most methods into a few categories: uncertainty (Settles, 2012; Houlsby et al.,
2011; Gal et al., 2017), margin (Tong and Koller, 2001; Balcan et al., 2006; Jiang and
Gupta, 2019), clustering (Dasgupta and Hsu, 2008; Maggioni and Murphy, 2019), and look-
ahead (Zhu et al., 2003b; Cai et al., 2013) acquisition functions. Active learning methods
have been proposed for graph-based SSL models which use a similarity graph to represent
the geometric relationships between points in the dataset, such as Gaussian Random Field
(GRF) models (Zhu et al., 2003a; Bertozzi and Flenner, 2016; Bertozzi et al., 2018). Active
learners implementing look-ahead expected risk (Zhu et al., 2003b; Jun and Nowak, 2016),

1



Workshop on Real World Experiment Design and Active Learning

model posterior covariance (Ji and Han, 2012; Ma et al., 2013), and other measures of
uncertainty (Kushnir and Venturi, 2020) have been produced for the GRF model of (Zhu
et al., 2003a). The conditional distribution of this foundational GRF model is a harmonic
function on the graph and hence is referred to as the Harmonic Functions (HF) model.

Our contributions are (1) provide a unifying framework for active learning in many
graph-based SSL models, (2) introduce an adaptation of non-Gaussian Bayesian models to
allow for efficient calculations previously done only on Gaussian models, and (3) introduce
a novel “model change” active learning acquisition function built around our adaptation.

2. Graph-Based SSL Models

Consider input data X with index set Z; we create a similarity graph G(Z,W ) with edge
weights Wij = κ(xi,xj) ≥ 0 calculated by a similarity kernel κ. In this paper we consider
both the unnormalized graph Laplacian matrix Lu = D−W or normalized graph Laplacian
matrix Ln = D−1/2(D −W )D−1/2, where D = diag(d1, d2, . . . , dN ), di =

∑
j 6=iWij is the

diagonal degree matrix. As L = Lu, Ln are both positive semi-definite, then with τ > 0,
Lτ = τ−2(L + τ2I) is positive definite and therefore N (0, L−1

τ ) is a well-defined Bayesian
prior distribution. Define a real-valued function on the nodes of the graph u : Z → R,
u ∈ RN whose values reflect the classification of the data points. In graph-based SSL, given
the current labeled set L, one seeks the solution to the optimization problem

u∗ = arg min
u∈RN

1

2
〈u, Lτu〉+

∑
j∈L

`(uj , yj) =: arg min
u∈RN

J`(u;y), (1)

where ` : R × R → [0,∞) is a chosen loss function and y ∈ R|L| is a vector of labels
yj . Common loss functions include `(x, y) = (x − y)2/2γ2 and `(x, y) = − log Ψγ(xy),

where Ψγ(t) =
∫ t
−∞ ψγ(s)ds is the cumulative distribution function (CDF) of a log-concave

probability density function (PDF) ψγ(s).
This variational perspective has a probabilistic counterpart, from which Bayesian sta-

tistical methods can provide useful ways for devising well-principled acquisition functions.
We can view the objective function in Eqn 1 as the negative log of an associated Bayesian
posterior distribution. In the case of `(x, y) = (x−y)2/2γ2, we model the likelihood of obser-
vations y|u by N (Pu, γ2I|L|) where P : RN → R|L| is the projection of u onto the labeled in-
dices L. This likelihood is Gaussian and therefore the posterior P(u|y) is Gaussian N(m, C)

with covariance C =
(
L−1
τ + P TP/γ2

)−1
and mean m = CP Ty/γ2. We refer to this as

the Gaussian Regression (GR) model. The Gaussian structure of this posterior distribution
allows us to efficiently calculate the posterior mean and covariance, including look-ahead
calculations. Although the prior is Gaussian, the posterior distribution for general loss func-
tions ` is not necessarily Gaussian. The key idea behind our method is to approximate a
non-Gaussian distribution with a suitable Gaussian distribution to exploit the efficient cal-
culations of the look-ahead posterior mean and covariance. This more general formulation
allows us to use more realistic models for classification than just regression. An example of
such a non-Gaussian posterior occurs when the loss function is `(x, y) = − log Ψγ(xy). In
this case, the likelihood is derived from the model yj = Sign(uj + ηj), where ηj ∼ ψγ (Hoff-
mann et al., 2020). We refer to this as the Probit model.

Some common acquisition functions originally derived for Gaussian models are
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• MBR (Zhu et al., 2003b) kMBR = arg mink∈U Eyk|m

[∑N
i=1 Err(i,mk,yk)

]
• VOpt (Ji and Han, 2012) kV = arg maxk∈U

1
γ2+Ck,k

‖C:,k‖22

• ΣOpt (Ma et al., 2013) kΣ = arg maxk∈U
1

γ2+Ck,k
〈1, C:,k〉

where Err(i,mk,yk) is the estimated risk on the ith data point of the look-ahead mean mk,yk .
These acquisition functions are originally defined on the HF model (Zhu et al., 2003b), but
have been generalized here to fit the GR model. To recover the HF model’s acquisition
functions, let γ = 0, yj ∈ {0, 1}, and the posterior covariance C be defined only on the
unlabeled nodes per the conditional nature of the HF model.

2.1 Laplace Approximation of the Probit Model

Laplace approximation is a popular technique for approximating non-Gaussian distributions
with a Gaussian distribution (Rasmussen and Williams, 2006). We approximate the Probit
posterior with the Gaussian distribution:

P̂(u|y) = N (û, Ĉ), û = arg min
u∈RN

J`(u;y), Ĉ = (∇∇J`(u;y)|u=û)−1 . (2)

The mean of this Gaussian distribution û is the maximum a posteriori (MAP) estimator of
the true Probit posterior. This Gaussian distribution is in a form in which we can apply
adaptations of acquisition functions of GR and HF models, such as VOpt (Ji and Han,
2012), Σ-Opt (Ma et al., 2013), and MBR (Zhu et al., 2003b). The Laplace approximations
of the GR and HF models are indeed themselves, because the mean and MAP estimator (i.e.
mode) are the same for Gaussian distributions. Furthermore, this Laplace approximation of
non-Gaussian posterior distributions incorporates labeling information that is not contained
in the GR and HF models’ covariance matrices.

2.2 Look-Ahead Updates

Acquisition functions such as MBR need a look-ahead model with index k and label yk:

arg min
u∈RN

Jk(u;y, yk) := arg min
u∈RN

1

2
〈u, Lτu〉+

∑
j∈L

`(uj , yj) + `(uk, yk).

This is simply the updated graph-based SSL problem, having added the index k and asso-
ciated label yk to the labeled data. As mentioned previously, one convenience of Gaussian
models is that we can solve for the look-ahead posterior distribution’s parameters from the
current posterior distribution without expensive model retraining. This is a crucial property
for computing acquisition functions like MBR (Zhu et al., 2003b), that consider the effects
of adding an index k with label yk to the labeled data. There is no simple, closed-form so-
lution for computing the look-ahead MAP estimator ûk,yk from the current û in the Probit
model (Eqn 2) because of the loss function − ln Ψγ(xy). We approximate the look-ahead
update ũk,yk by computing a single step of Newton’s Method on the look-ahead objective
Jk(u;y, yk), starting with the current MAP estimator û:

ũk,yk = û−
(
∇∇Jk(û;y, yk)

)−1 (
∇Jk(û;y, yk)

)
= û− F (ûk, yk)

1 + Ĉk,kF ′(ûk, yk)
Ĉ:,k, (3)
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Figure 1: Checkerboard Dataset Results

where F, F ′ are the first and second derivatives of the loss function with respect to the first
argument. We call this single step of Newton’s method as a Newton Approximation (NA)
update. This is a simple rank-one update of the MAP estimator. The update requires storing
the posterior covariance matrix Ĉ; this is needed for all the aforementioned Gaussian-based
acquisition functions, in this context. Due to the second-order nature of Newton’s method,
this NA update ũk,yk empirically is a good approximation of the true look-ahead MAP
estimator ûk,yk . We also derive a NA posterior covariance update similar to the GR model:

Ĉk,yk =
(
∇∇Jk(ûk,yk ;y, yk)

)−1
≈ Ĉ −

F ′(ũk,ykk , yk)

1 + Ĉk,kF ′(ũ
k,yk
k , yk)

Ĉ:,kĈ
T
:,k =: C̃k,yk . (4)

With these simple NA updates, we can straightforwardly apply the Gaussian-based acqui-
sition functions to our approximation (Eqn 2) of the Probit model. Furthermore, model
retraining is approximated by using these NA updates of the MAP estimator and posterior
covariance, as we demonstrate in Sec. 3.

2.3 Model Change (MC) Acquisition Function

Calculating the approximate change in a model (i.e. classifier) from the addition of an index
k and associated label yk has been investigated previously (Cai et al., 2013; Karzand and
Nowak, 2020). Employing our NA update (Eqn 3), we propose a MC acquisition function
for our approximated Probit model in a max-min framework:

kMC−P = arg max
k∈U

min
yk∈{±1}

‖û− ûk,yk‖2 ≈ arg max
k∈U

min
yk∈{±1}

∥∥∥∥∥ F (ûk, yk)

1 + Ĉk,kF ′(ûk, yk)
Ĉ:,k

∥∥∥∥∥
2

.

3. Results

We present numerical results demonstrating our Gaussian approximations and subsequent
NA updates in the Probit model on a synthetic dataset (Checkerboard) and a real-world
dataset (MNIST). In each of the HF, GR, and Probit models, we show the performance
of the MC method of Sec. 2.3, VOpt (Ji and Han, 2012), MBR (Zhu et al., 2003b),
Uncertainty (Settles, 2012), and Random. We calculate the average accuracies over five
trials according to the underlying SSL classifier of the acquisition function. After comparing
accuracies across all methods with a common classifier (of the Probit model), we find that
each method’s query choices better improve the accuracy of its underlying classifier. In
Fig. 3, we demonstrate how closely the NA updates ũk,yk , C̃k,yk (Eqns 3, 4) approximate
the active learning choices from retraining the model (i.e. ûk,yk , Ĉk,yk).
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(a) HF-MBR (b) GR-MC (c) Probit-MC

(d) HF-Vopt (e) GR-VOpt (f) Probit-Uncertainty

Figure 2: Acquisition function choices on the Checkerboard dataset. Yellow stars show the
200 points chosen by each of the given acquisition functions.

3.1 Checkerboard Dataset

The Checkerboard dataset consists of 2, 000 points uniformly sampled on the unit square
[0, 1]2 ⊂ R2, and we divide into two classes based on a 4×4 checkerboard pattern. For each
of the five trials, we choose ten points uniformly at random to label initially (five from each
class), and then sequentially choose 200 query points via our list of acquisition functions.
Similar to (Kushnir and Venturi, 2020), we showcase this dataset because successful active
learning in this dataset requires properly “exploring” the many different clusters as well as
“exploiting” the learned decision boundaries efficiently. The best performing methods are
the MC methods in the GR and Probit models, as well as Probit-MBR. These methods
not only identify each of the clusters in the grid (Fig. 2b, 2c) but also explore the decision
boundaries between clusters. In the Probit-Uncertainty(Fig. 2f) and HF-MBR(Fig. 2a),
the methods have not explored the extent of the clustering structure and do not reach as
high of accuracy (Fig. 1). Conversely, the VOpt acquisition function in each model only
identifies points that are representative of each of the clusters. As seen in Figs. 2d and 2e,
these acquisition functions have not explored the boundaries between the clusters and so
do not achieve as high of accuracy.

3.2 MNIST

MNIST (Lecun et al., 1998) is a data set of 70,000 grayscale 28×28 pixel images of handwrit-
ten digits (0-9). Each image is represented by a 784-dimensional vector xi and we normalize
the pixel values to range from 0 to 1. We form a set of 4,000 data points by choosing uni-
formly at random 400 images from each digit. We construct a 15-nearest neighbor graph
among the data points with weights wij = exp(−‖xi − xj‖22/3802). We consider the binary
classification problem of classifying even digits versus odd digits. For each of the five trials,
we start with ten initial training points evenly distributed between the two classes (not
necessarily among the digits) and use the active learners to query 100 points. The average
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Figure 3: Accuracy comparison for query choices using the true posterior updates
ûk,yk , Ĉk,yk compared to the NA updates ũk,yk , C̃k,yk . NA update denoted with “NA”
in legend.
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Figure 4: MNIST Dataset Results

classification accuracies are presented in Fig. 4. Though the MBR methods perform the
best, they are more costly to compute than our competitive MC acquisition functions.

4. Conclusion and Future Directions

Under this unifying Bayesian perspective of active learning in graph-based SSL, we use
Laplace and Newton approximations to allow non-Gaussian models to employ acquisition
functions previously only used in Gaussian models. We introduce a novel MC acquisition
function that is both efficient to compute and provides competitive results. Future work
could extend these results to batch-mode active learning, multi-class classification, and
kernel methods other than graph-based SSL.
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