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Abstract

The autonomic nervous system (ANS) plays a critical role in neurocardiovascular con-

trol. The structure of the neural circuitry and intrinsic properties of autonomic neurons

are likely to play important roles in shaping the ANS control response to changes in blood

demand. In this dissertation, we explore how the M-current, cardiac feedback, and recurrent

neural connections shape the firing dynamics of autonomic cardiac ganglia. In chapter 2, a

data-informed, idealized cell-based mathematical model of the neural circuitry in the intrin-

sic cardiac nervous system (ICNS) is developed that captures the firing properties of ICNS

neurons. The model indicates that the M-current and cardiac-cycle dependent feedback

shape the firing dynamics of ICNS neurons. In chapter 3, we explain how the M-current

bestows ICNS neurons with band-pass filter and resonance properties. In chapter 4, we

reduce the cell-based ICNS network model to a firing rate model, which enables extensive

mathematical analysis. Analysis of the firing rate model is used to gain insight into how

bistability can arise in the cell-based ICNS network model through M-current dynamics and

recurrent excitation in the network. Predictions from the firing rate model are confirmed in

the cell-based model. Finally, in chapter 5, we extend our ICNS network models to include

the neural circuity of the sympathetic and parasympathetic autonomic tracts, the sino-atrial

node, the cardiovascular system, and the baroreflex to describe the full autonomic neurocar-

diovascular control system. Our preliminary results suggest that the detailed structure of

the autonomic neural circuitry (beyond just the baroreflex) could upregulate the magnitude

and speed of the hearts response to a sudden increase in blood demand.
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CHAPTER 1

Introduction

On a daily basis, the human body encounters a myriad of situations that require

adaptation. For example, during exercise, there is increased oxygen demand by muscle tissue,

and therefore heart rate and myocardial contractility are increased, blood flow is redistributed

to the muscles and away from visceral organs, and resistance of the peripheral vasculature

is increased [36, 64]. All of these adaptations must be highly coordinated. These complex

cardiovascular phenomena necessitate a control system that can adapt to the changes in

conditions or demand. The Autonomic Nervous System (ANS) provides the infrastructure

for the necessary adaptations in the form of neurocardiovascular control.

1.1. Structure of Autonomic Neural Control of Cardiovascular System

The ANS, also known as the involuntary nervous system, is a portion of the nervous

system that acts as a control system for the human internal environment. There are two

branches within the ANS: the sympathetic and the parasympathetic nervous systems. Ac-

tivity in the sympathetic branch typically increases during times of stress, anxiety, and

physical activity, and said to be linked to fight-or-flight behavior. The parasympathetic

branch typically has increased activity during sedentary activities, which are often referred

to as rest-and-digest behaviors [10]. The neural outputs of the sympathetic and parasympa-

thetic nervous systems target the visceral organs and regulate function. One subsystem of

the ANS is the neurocardiovascular control system [10,79]. The sympathetic and parasym-

pathetic nervous systems work in coordination with each other, both exerting influence on

the cardiovascular system in a manner that keeps the body in homeostasis.
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Figure 1.1 shows the structure of the Autonomic Neurocardiovascular Control System.

The sympathetic tract of the cardiovascular ANS (shown as blue in figure 1.1) originates in

the brainstem, with neuronal axons projecting from the medulla and synapsing onto neurons

in spinal cord [10, 79]. These neurons located in the spinal cord then project into the in-

trathoracic cavity and synapse onto intrathoracic extra-cardiac ganglia, i.e., the Intrathoracic

Nervous System (ITNS). The ITNS contains the somata of efferent sympathetic neurons, af-

ferent feedback axons, local circuit neurons, and interneurons, forming an interconnected

neural network [4,6,10]. Efferent neurons in the ITNS innervate neurons in ganglia located

on the surface of the heart, as well as blood vessels [4,6,10]. The collection of cardiac gan-

glia on the heart are referred to as the Intrinsic Cardiac Nervous System (ICNS). The ICNS

contains afferent feedback neurons, efferent neurons, local circuit neurons, and interneurons

similar to the ITNS, and form a complex neural circuit [4,6,9,24].

The parasympathetic tract of the cardiovascular ANS (shown as green in figure 1.1)

originates from the brainstem. The pre-ganglionic CNS neurons project to and synapse

onto neurons in ICNS ganglia [10]. Note that the ICNS contains both symapthetic and

parasympathetic gangia, with afferent sympathetic axons innervating ITNS neurons [4,6,9,

24]. The sympathetic and parasympathetic ICNS innervate the heart and exert influence

over cardiac activity [4,6].

Multiple sources of neural feedback to the ANS provide information about the states

of the heart and vasculature. Baro- and chemo-receptors transduce arterial blood pressure

and partial pressures of oxygen and carbon dioxide into neural signals that are sent through

afferent neural pathways to the brainstem via nodose and dorsal root ganglia. These neural

signals are processed in the brainstem, and a control signal is communicated via the efferent

neural circuitry of the ANS to the heart and vasculature. Also, cardiac sensory neurites

located in the in the heart transduce mechanical and chemical inputs from the heart (e.g.,

ventricular deformation) and send this information to the ICNS, ITNS, and CNS [4,6,9,10,

69,79]. Thus, the combined structure of the descending sympathetic and parasympathetic
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pathways and the multiple feedback loops results in a set of nested feedback loops in the

neurocardiovascular control system (shown in figure 1.1) that modulate bloood pressure,

heart rate, and heart contractility [3,10,41].

Figure 1.1. Structure of Autonomic Control of the Cardiovascular system.
Symapthetic nervous system in blue, Parasympathetic nervous system in
green, local feedback from sensory neurites in gray. The Nucleus Tractus Soli-
tarius (NTS) receives central drive information and afferent inputs from baro-
/chemo-receptors and cardiac sensory neurons, and relays commands for sym-
pathetic and parasympathetic activation to the ventrolateral medulla (VLM)
and the nucleus ambiguus (NA), respectively [10,27].
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1.2. Classical versus Hierarchical View of Neural Control of Cardiovasculature

Classically, the neural circuitry of the ITNS and ICNS between the heart and the brain-

stem was considered to simply relay the central control signal from the brainstem to reach the

target organs and vasculature with the only feedback coming from arterial baro- and chemo-

receptors. This ignored the information processing of the signal along the efferent fibers,

and the feedback from the heart directly to the ICNS and ITNS [4,6,9,24,37,63,69,79].

In fact, to my knowledge, the ICNS is typically not mentioned by name in textbooks on

medical physiology (e.g., [10,18,27]). These complex peripheral subsystems (i.e., ITNS &

ICNS) process information and therefore must provide additional qualities to the neurocar-

diovascular control system. However, the details of what these neural processing centers are

contributing to the model of neural control are unclear. This dissertation employs an ex-

ploratory modeling approach to begin to address potential contributions that the hierarchical

structure of the ANS has on the autonomic control of the cardiovascular system.

1.3. Exploring Roles of Afferent Cardiac Feedback Coupled with Intrinsic

Properties of ANS Neurons

Recently, it has been suggested that the local circuitry and cardiovascular feedback

pathways in the ICNS and ITNS play an important role in autonomic neurocardiovascular

control [5, 6, 9, 63, 69, 79]. Local circuit neurons project axons between ICNS ganglia, in-

terneurons synapse onto post-synaptic neurons in the same ganglia, efferent somata project

to neurons in the ITNS, and afferent cell bodies synapse onto the heart [4,9,24,63,69,79].

Post-synaptic ICNS neurons receive beat-to-beat information from pre-synaptic atrial pres-

sure receptors [4,69,78]. The transduced pressure indices are integrated with, and modulate,

the efferent central command signal, and they also allow the ICNS to function independently

of central command [5,6,7,69,78,79]. Becuase cardiac feedback though the local circuit is

prevalent in ICNS neurons, we seek to understand how the afferent local cardiac feedback
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can lead to specific information processing in the network (e.g., how does cardiac feedback

regulate the firing behavior of the ICNS network?)

The M-current is a non-inactivating voltage-gated K+ current that is prevalent in au-

tonomic cardiac ganglia, including the lumbar and superior cervical ganglia, the stellate

ganglia, and the ICNS. [14, 17, 21, 22, 51]. It is slow activating (∼100-200 msec) and it

activates below the threshold for firing an action potential [14, 17]. Thus the M-current is

thought to control the excitability of the neurons [14,17,22,30,45,54,84]. Specifically, the

M-current can increase the rheobase, i.e., the minimum stimulus required to reach action

potential threshold [22] and endow with spike frequency adaptation (i.e., as the cell fires

repeatedly, the M-current builds up and begins to inhibit the cell’s firing). Intrinsic proper-

ties of neurons can determine the behavior of the ICNS network. Because the M-current is

prevalent in ANS cardiac neurons and is known to have powerful impact on the firing of neu-

rons, we focus on this particular intrinsic property of ICNS neurons and seek to understand

how the slow activation (i.e., adaptation) leads to specific information processing properties

of the network.

The research that I present in this dissertation uses mathematical models and analysis

to explore the dynamics of the ICNS neural network and to gain insight into possible roles

of the ICNS. The initial focus is on the ICNS, and then the model will be incorporated into

a hierarchical model of the ANS. Specifically, I utilize high dimensional cell-based and low-

dimensional firing rate models and focus on key components such as network connectivity,

afferent cardiovascular feedback, and intrinsic properties of individual neurons, especially

the role of the M-current.

1.4. Chapter Summaries

In Chapter 2, I develop a mathematical model of the ICNS with afferent cardiac feed-

back. Note, however, that the structure of the model can be applied to the ITNS. The

model consists of a network of generalized integrate-and-fire (GIF) model neurons with mul-

tiple intrinsic ionic conductances, and excitatory & inhibitory synaptic inputs due to central
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drive, local pressure feedback, and intra-network connections. This extends previous mod-

eling approaches that employed intra-network connections, central drive, and cardiovascular

feedback but did not include conductance based neuron and synapses. I show that the neu-

ronal network model suggests mechanisms that endow model neurons with firing statistics

observed in ICNS neurons experimentally [9], and theorize that the M-current and leakage

current counteract the slowly varying afferent cardiac feedback but allowing the neuron to

respond primarily to faster input frequencies.

In Chapter 3, I focus on the subthreshold behavior of GIF model neurons taken from

the cell-based network model of the ICNS to assess how the M-current endows the GIF

neuron with the ability to filter out low-frequency variations in input. First, I show that

incorporation of the M-current changes the GIF model behavior from that of a low-pass filter

to that of a band-pass filter. I show that this band-pass filter and the resulting resonance

frequency depend on the strength of the M-current in the model. Next, I show that the band-

pass filter behavior and resonance frequencies depend on the subthreshold activation of the

steady-state activation curve of the M-current and conclude that the subthresold activation

of the M-current is responsible for the ability of the M-current to endow the model neuron

to act like a band-pass filter with a resonant frequency.

In Chapter 4, I use dimensionality reduction techniques to reduce the system of 7N

equations (where the network contains N neurons) of the cell-based network model of the

ICNS to a 2-dimensional firing rate model. This reduction provides two main advantages -

a drastic reduction in the time to simulate solutions of the model and allows for analytical

tools such as phase-plane analysis to provide insight into the behavior of the model. I show

through parameter exploration that the firing rate model indicates the M-current promotes

bistability in the cell-based network model. Next, I build a bistable cell-based network

model using the insights from the parameter exploration of the firing rate model and show

that changing the model of the M-current can eliminate the bistability. I conclude that the

M-current promotes bistability in the cell-based ICNS network model.
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In Chapter 5, I develop two models of the autonomic neurocardiovascular control sys-

tem. I implement a hierarchical model of the ANS with multiple nested feedback loops, a

phase-model of the sinoatrial node, a mechanical cardiovascular model [60,77], and a model

of the afferent dynamics of the baroreflex [49]. The hierarchical ANS model was implemented

in two different ways: each subnetwork composed of the cell-based network model developed

in Chapter 2, and each subnetwork composed of the firing rate model developed in Chapter

4. Next I showed that the ITNS and ICNS contribute to an increased (rate and magnitude

of) response in heart rate due to blood loss.
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CHAPTER 2

M-Current and Magnitude of Cardiovascular Feedback Regulate

Neuronal Firing Behavior in the Intrinsic Cardiac Nervous System

The Intrinsic Cardiac Nervous System (ICNS) is an interconnected set of neuronal

ganglia located on the surface of the heart. The network of nerve clusters receives efferent

central command signals, afferent local feedback from the heart, and contain local circuit

neurons & inter-neurons that are purported to process and propogate information throughout

the ICNS. [6, 7, 9, 69]. To gain insight into the role of the ICNS in the context of neural

control of the cardiovascular system, we develop an idealized mathematical model that is

based on several key biophysical details of the ICNS. The firing properties of ICNS neurons

observed experimentally [9, 63] arise naturally from this model, and thus imply possible

mechanisms for the firing behavior.

In Beaumont et al 2013 [9], the firing times of ICNS neurons located in the right

atrial ganglionated plexus of anaesthetized canines were recorded concurrently with the left

ventricular pressure (LVP) over one minute time intervals. The neuronal spike times for

each neuron were sorted into 10 bins based on the phase of the LVP at the time of the spike.

These bins were used to create probability mass functions (firing histograms) that indicate

the probability of a neuron firing an action potential at a particular phase of the cardiac

cycle. Figure 2.1 shows histograms for 49 ICNS neurons (reproduced from [9]).
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Figure 2.1. (A) Neuronal firing histograms with mean left ventricular pres-
sure profile reproduced from Beaumont et al. 2013 [9]. Neurons fired at least
10 spikes per minute over 10 minutes of recording.

It was reported that 88% of ICNS neurons displayed firing with activity clustered

around specific phases of cardiac cycle, i.e., LVP [9]. Many of the neurons that fired pref-

erentially during certain phases of the cardiac cycle can be grouped into two distinct types

of neuronal firing, which we will refer to as follower and phasic firing. Firing patterns that

are not clustered around any specific phase of the cardiac cycle will be referred to as tonic

firing. A canonical example of each of these three firing types is shown in figure 2.2. Follower

neurons (figure 2.2, left) tend to fire more during systole (i.e. elevated LVP). Phasic neurons
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fire predominantly during a specific phase of the cardiac cycle (e.g., during isovolumetric

contraction, as shown in the middle histogram in figure 2.2). Tonic neurons (figure 2.2,

right) fire at times that seem to have no correlation with the cardiac phase.

Figure 2.2. Three examples of the probability density of 3 example neuronal
firing times as a function of the phase of the average left ventricular pressure.
From left to right: follower, phasic, and tonic firing. Data reproduced from
Beaumont et al. 2013 [9], figure 4.

While figure 2.2 shows the three canonical firing types, note that there are many

neurons from figure 2.1 whose firing histograms do not fit cleanly into any of the three

definitions. Figure 2.3 plots examples of firing histograms from [9] that do not fit the profile

of any one of the three canonical firing types, but these three examples all share some aspects

with at least one canonical firing type. The first neuron fires in a biphasic pattern, one peak

of activity in diastole and the other in systole, rather than a singular phasic peak. The

second neuron appears to share the traits of a tonic neuron and a phasic neuron, firing

relatively throughout the cardiac cycle but also firing more often near peak systole. The

third neuron appears to be a follower but it fires during diastole rather than systole. Indeed,

clustering analysis shows that the ICNS neurons display a continuum of firing types rather

than neurons fitting in distinct canonical firing types. (Appendix 2.5.2).
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Figure 2.3. Firing histograms reproduced from Beaumont et al. 2013. which
do not fit clearly into the definition of follower, phasic, or tonic firing. These
neurons are inbetween the canonical firing types, sharing traits with multiple
types at once.

It is not immediately clear what mechanisms are shaping the firing dynamics of the

ICNS neurons, whether they behave like the canonical types or between. In this chapter, an

idealized mathematical model of the ICNS neuronal network is developed as an exploratory

tool to gain insight into the mechanisms underlying the canonical firing types of the ICNS

neurons, and also the firing behaviors of the neurons that do not fit cleanly into the canonical

types. (Note that while the idealized model is referred to as the ICNS network model, it can

also be used to model ITNS activity.) I describe how the M-current, neural circuitry, and

afferent cardiovascular feedback can induce the canonical firing types, and show that these

mechanisms can indeed elicit the canonical firing types in single-cell models. I then present

evidence of the mechanisms at work in the full ICNS network model. The combination of

these mechanisms is also shown to elicit the firing behaviors that do not fit cleanly into

a canonical firing type. I also observe that the M-current and the leakage current play a

role in counteracting the slow (∼ 1 Hz) afferent cardiovascular feedback (on average), while

allowing higher frequency input to drive spikes.

11



2.1. Model Description

2.1.1. ICNS Neuronal Dynamics. The ICNS network model contain 100 model neu-

rons. Individual neurons in the ICNS are described by a single-compartment conductance-

based generalized integrate-and-fire (GIF) model [35]. The subthreshold dynamics of the

neurons include a leakage current, a delayed-rectifier potassium current [79], an M-current

[45], an intra-network synaptic current, and an afferent cardiovascular feedback current. The

equations governing the subthreshold dynamics of the j-th neuron are

Cm
dvj
dt

= −gL(vj − EL)− gKn2
j(vj − EK)− gMwj(vj − EM)− Isyn,j − Icv,j(2.1)

τx
dxj
dt

= x∞(vj)− xj(2.2)

where t is time (in msec), vj is the transmembrane potential (in mV); xj = nj, wj are the ac-

tivation variables of the delayed-rectifier potassium current and the M-current, respectively

(delayed-rectifier and M-current are expressed by many autonomic cardiac neurons, and the

M-current is suspected to play a key role in shaping autonomic cardiac neurons firing dynam-

ics [1,30,54,84]); Isyn,j is the intra-network synaptic current into the j-th neuron induced

by pre-synaptic neurons; Icv,j is the synaptic afferent cardiovascular feedback current; Cm

is the membrane capacitance, and gL, gK , gM are the maximal conductances of the leak-

age, delayed-rectifier potassium and M-currents, respectively; EL, EK , EM are the reversal

potentials of the leakage and delayed-rectifier potassium and M-currents; τx = τn, τw are

the time-constants for the activation variables, and the function x∞(v) is the subthreshold

steady-state activation of the activation variable xj, given by the equation

w∞(v) = 1/

(
1 + exp

(
−v + 45

2.4

))
, and n∞ = 0.

When the transmembrane potential of a model neuron reaches a threshold potential (vT ), the

neuron fires an action potential and the transmembrane potential is reset. Note that in the

GIF model action potentials are not explicitly modeled. Each action potential can be thought

12



of as an instantaneous spike in membrane potential followed by a brief absolute refractory

period (tref). Following the absolute refractory period, the transmembrane potential is set to

a reset potential (vreset), and the subthreshold dynamics (as described above) are resumed.

To capture the effect of the action potential on the gating variables, n and w are updated

to include the increase that would occur during a stereotypical spike. Specifically, when

vj(t) = vT , the membrane potential and gating variables are updated to

vj(t+ tref) = vreset,

nj(t+ tref) = nj(t) + ∆n

wj(t+ tref) = wj(t) + ∆w.

To model the saturation of the gating variables (i.e. n and w must be between 0 and

1), the update values for the gating variables, ∆n and ∆w are scaled by (1− xj(t)):

∆x = (1− xj(t))(1− exp(−tref/τx)), x = n,w,

2.1.2. Synaptic Dynamics. The synaptic dynamics throughout the neural circuit are

modeled as alpha function synapses [26, 46]. It is assumed that each time a presynaptic

neuron fires there is a stereotypical increase and decrease in the synaptic conductance of the

post-synaptic neuron of the form

gsyns̃(t) =
gsyn

τr + τd

(
e−t/τd − e−t/τr

)
,

where gsyn sets the maximal conductance; τr is the rise time constant ,and τd is the decay

time constant. When the presynaptic neuron fires multiple times, the stereotypical increases

and deceases in the post-synaptic conductance add linearly. Note that s̃(t) is the solution to

the linear differential equation:

d2s̃

dt2
+ (τ−1

r + τ−1
d )

ds̃

dt
+ τ−1

r τ−1
d s̃ = 0,

ds̃

dt
(0) = 1.

13



(i.e., the over-damped harmonic oscillator). Therefore, because the synaptic responses are

assumed to add linearly, when the j-th neuron fires at times tspike,k, its synaptic output gsynsj

is given by

d2sj
dt2

+ (τ−1
r + τ−1

d )
dsj
dt

+ τ−1
r τ−1

d sj = 0

with update conditions

dsj
dt

(
t+spike

)
=
dsj
dt

(
t−spike

)
+ 1.

2.1.3. Network Connectivity & Inter-ICNS Synaptic Input. Within the ICNS

network, there are excitatory and inhibitory synaptic connections [69] between ICNS neu-

rons. Random recurrent connections from an excitatory presynaptic neuron j to a postsy-

naptic neuron k occur with probability pICNS,e and from an inhibitory presynaptic neuron j

to a postsynaptic neuron k with probability pICNS,i. Neurons are excitatory with probability

p and inhibitory with probability 1− p. The inter-ICNS synaptic input current to the j-th

neuron is

Isyn,j =
N∑
k=1

wkk,jgsyn,f(k)sk(vj − Esyn,f(k))

where wkk,j are synaptic weights, and Esyn,f(k)are the reversal potentials for the synaptic

currents between neurons. The function f(k) outputs e or i, depending on whether the k-th

cell is excitatory or inhibitory. The synaptic weights wk,j were equal to 1 if neuron k synapses

onto neuron j or equal to 0 if there was no connection. The maximal synaptic conductances

gsyn,e and gsyn,i were chosen to approximate values from previous models [45,72,81]

2.1.4. Afferent Cardiovascular Feedback. To model afferent feedback from the car-

diovascular system, each neuron in the ICNS receives independent periodically modulated

stochastic input. The input is described by a non-stationary Poisson process with arrival

function λ(t) that determines the probability of firing times of the presynaptic afferent car-

diovascular feedbck neurons that synapse onto the ICNS neurons. λ(t) is a function with

a period of 1000 msec (to approximate length of human cardiac cycle) with the qualitative

shape of the left ventricular pressure curve (shown in figure 2.4) taken from the output of
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a mechanical model of the heart (previous work from [60,77]) described in a later chapter.

The function is scaled to have a tonic value of At and an amplitude of Ap. This tonic input

can be said to be a result of central drive to the ICNS. Figure 2.4 plots a single period of

the periodic arrival function λ(t) used to generate the spike times of the presynaptic input

to a model GIF neuron.

Figure 2.4. Periodic arrival function λ as a function of the phase of the
cardiac cycle (with period T = 1000 msec) for the poisson process which
generates the presynaptic spike times for the input to a model neuron. a:
Diastole, b: Isovolumetric Contraction, c: Systole.

The afferent cardiovascular feedback synaptic input into the j-th neuron is described

by

Icv,j =
N∑
k=1

wcvk,jgsyn,esk(vj − Esyn,cv)

where wcvk,j are synaptic weights, and Esyn,cv is the reversal potentials for the synaptic currents

of the network input. The reversal potentials Esyn,e and Esyn,i were chosen to approximate

the values represented by nicotinic receptor and GABA receptor activation, respectively. As

noted eaerlier, all parameter values are shown in Table 2.1 in appendix.

The network model was implemented for 10.5-minutes of simulated time with 30 sec-

onds of recorded data omitted to account for transient dynamics. The level of tonic input is

set to a constant value At = 0.005, with rpt = Ap
At

drawn from a beta distribution β(a, b) with

parameters a = b = 0.75, and then scaled to have a maximum value of 1.5. The resulting
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arrival function is given by λ(t) = Apy(t) +At, and then Ap and At are adjusted so that the

average firing frequency of the presynaptic afferent cardiovascular feedback neuron is 5.75

Hz.

GIF model parameters where set to elicit similar firing properties of autonomic cardiac

neurons [72] (see figure 2.6) and are provided in Appendix Table 2.1. In all simulations

thoughout this thesis, except when mentioned otherwise, parameters for the neurons were

homogeneous; gM was chosen from a uniform distribution with minimum and maximum

values taken to approximate values from previous models [45]. The use of a GIF model

introduces the possibility for accumulation of error due to spikes between time-steps. The

use of linear interpolation to approximate firing times between time-steps is discussed in

Appendix 2.5.3.

2.2. Model Reproduces Firing Activity Observed in ICNS

2.2.1. Response of Isolated ICNS Neurons to Constant Input. In Springer et

al. 2015 [72], disassociated autonomic cardiac neurons were stimulated for 1000 msec with

various magnitudes of input. Figure 2.5 plots the response of the autonomic cardiac neurons,

displaying three types of firing: tonic, accommodating, and phasic. Tonic neurons fired

repetitively at frequencies related to strength of stimulus. Accommodating neurons adapted

and ceased firing at lower stimulus levels. Phasic neurons fired one to four spikes and ceased

firing. Figure 2.6 plots the membrane potential of isolated GIF neurons with various levels

of M-current in response to various magnitudes of constant current input Isyn,j = Istim,

Icv,j = 0, for 1000 msec. For a fixed input current magnitude Istim, the value of the maximal

M-current conductance gM dictated if the model GIF neuron displayed tonic, accomodating,

or phasic firing. These simulations imply that the M-current is a possible mechanism for

the tonic, accomodating, and phasic firing dynamics observed in autonomic cardiac neurons

(shown in figure 2.5).
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Figure 2.5. Disassociated autonomic cardiac neuron membrane potential
recorded in Springer et al. 2015 ( [72], figure 1) by using a 1000 msec stimulus
with various amplitudes of current Istim. Neurons displayed three types of
firing: tonic, accommodating, and phasic. Tonic neurons fired repetitively at
frequencies related to strength of stimulus. Accommodating neurons adapted
and ceased firing at lower stimulus levels. Phasic neurons fired one to four
spikes and ceased firing.
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Figure 2.6. Single-cell GIF model neurons recorded by using a 1000 msec
stimulus with various amplitudes of current Istim. Neurons displayed three
types of firing: tonic, accommodating, and phasic. Tonic neurons fired repeti-
tively at frequencies related to strength of stimulus. Accommodating neurons
adapted and ceased firing at lower stimulus levels. Phasic neurons fired one to
four spikes and ceased firing. Variations in maximal M-current conductance
(gM) elicited a change in firing dynamics and provide a possible mechanism to
explain the firing dynamics in Springer et al. 2015 [72] figure 1.
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2.2.2. Response of ICNS Neurons to Afferent Cardiovascular Feedback. Next,

the firing dynamics of neuronal network model neurons were subjected to periodic input that

modeled the afferent cardiovacular feedback from the cardiovascular system shown in figure

2.4. (Note that all neurons in the analysis below had a firing frequency of at least 0.1 Hz).

(Note also that all results of the ICNS network model in this chapter are taken from a single

simulation, but similar results were obtained in many independent simulations). The “base-

line frequency” of an ICNS neuron is defined as the average firing frequency of the neuron

without any experimental intervention [9,63], i.e., the average firing frequency of the neuron

without any stimulus application. The distribution of (baseline) firing frequencies of the

ICNS network model neurons in figure 2.7c reproduces the distribution of firing frequencies

of ICNS neurons observed experimentally. [9,63]

(a)

Experiment

(b)

Experiment

(c)

Model

Figure 2.7. Distribution of frequency of action potentials at steady-state
(baseline) from N neurons in the ICNS with a majority firing action potentials
at less than 1Hz. (a) Data extracted from Beaumont et al. 2013 [9] with
N = 92. (b) Data extracted from Rajendran et al. 2016 [63] with N = 118.
(c) Firing frequency of ICNS network model neurons with N = 100.

Firing histograms were computed to analyze the firing behavior of the model neurons.

To compute the firing histograms of a GIF neuron, the firing times (after the removal of the

first 30 sec of data to account for transience) of the neuron are sorted into 10 bins represent-

ing 100msec each based on the phase of the LVP at the time of the spike. Figure 2.8 plots

the firing histograms of 49 model GIF neurons from the ICNS network model similar to ex-

perimental data in figure 2.1. The overall firing dynamics of the GIF network model neurons
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were very similar to those seen experimentally [9]. Figure 2.9 plots three firing histograms

obtained from ICNS neuronal network model GIF neurons that express the three canonical

firing types. Similar to the experimental data, follower neurons preferentially fire during

systole with maximal probability near peak systole and phasic neurons fire predominantly

during isovolumetric contraction. The firing of tonic neurons have no correlation with the

phase of the cardiac cycle.

Figure 2.8. Neuronal firing histograms (probability density) with arrival
function λ modeling LVP input to network. Data extracted from 49 out of
100 network model neurons with firing frequency at least 0.1 Hz over 10 min-
utes of simulated time. Vertical axis is probability density.
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Figure 2.9. Probability density of 3 example model neurons (follower, pha-
sic, and tonic neurons with data taken from the ICNS network model simu-
lation) firing times as a function of the phase of the average left ventricular
pressure. Solid curves indicate the LVP.

Many neurons in the network model can be distinctly categorized as one of the three

canonical firing type,. however similar to the experimental data, there are also neurons

that do not cleanly fit into any of the canonical firing types. Figure 2.10 plots three firing

histograms from such neurons. The first neuron fires almost as a follower, but the firing

profile is shifted so that the peak of the firing histogram is not aligned with peak systole.

The second neuron fires as a mixture of a follower and a phasic neuron. The third neuron

appears to share firinig properties with follower and tonic neurons. Like the experimental

data, clustering analysis on the model data indicate a continuum of firing behavior rather

than a distinct set of canonical firing types. The canonical firing types naturally arise from

the GIF network model without any tuning of the network connectivity or a detailed model

for intrinisic neuronal dynamics, and therefore the mechanisms (e.g., M-current, network

connectivity, afferent cardiovascular feedback) included in the model are largely responsible

for shaping firing in the ICNS.
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Figure 2.10. Firing histograms of 3 example model GIF neurons firing times
as a function of the phase of the average left ventricular pressure that do not
fire clearly as phasic, follower, or tonic. Solid curves indicate the LVP function.

2.3. Mechanisms Underlying Firing Types of ICNS Neurons

Experimental data [9] and our network simulations suggest that there are three canon-

ical neuronal firing types in the ICNS. However, the mechanisms underlying these canonical

firing types are unclear. In this section, we suggest three mechanisms that can (individually

or combined) bestow ICNS neurons with the canonical firing dynamics: excitatory input to

ICNS neurons, the M-current in the neurons, and feed-forward inhibition. First, we show

that the follower and tonic firing dynamics can be induced in an isolated model neuron

by controlling the ratio of the amplitude of the periodic and tonic input that the neurons

receieve,, and that both the M-current and feed-forward synaptic inhibition can change a

model neuron’s firing behavior from follower to phasic. We then assess the presence of these

mechanisms in the ICNS network model.

2.3.1. The Influence of Periodic-to-Tonic Input Amplitude Ratio. The input

that a cell receives clearly influences its firing properties. In this subsection, we consider an

isolated GIF neuron without M-current that is subjected to tonic input and periodic afferent

feedback from the cardiovascular system (schematic shown in figure 2.11, top), and that the

ratio of the amplitude of a periodic portion of the arrival function Ap to the magnitude of the
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tonic portion of the arrival function At dictates if the firing dynamics of a neuron resemble

a tonic neuron, a follower neuron, or somewhere between.

Figure 2.11 (bottom) plots five firing histograms for values of rpt = Ap/At fromo 0 to

1.5, which are the simulatioin data of isolated model GIF neurons. When rpt = 0 (i.e., there

is no periodic input), the neuron fires in a manner independent of the cardiac cycle i.e. the

canonical tonic firing type. As the value of rpt is increased, the periodic portion of the input

increases and firing types go from tonic to follower in a smooth fashion, but it is not clear

when the model GIF neuron becomes a follower. Note that rpt = 1.5 is the maximum value

used in the network model.

Figure 2.11. (top) Motif of input received byiisolated GIF model neuron
with no M-current (gM = 0) that receive tonic and periodic input, according
to the functin in figure 2.4. (bottom) Firing histograms for five values of
rpt = Ap/At. The value of rpt dictates the firing type of the model neurons,
low rpt results in tonic firing and high rpt results in follower firing.
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Next, we check the network model neurons for tonic neurons, follower neurons, and

those somewhere between and look at the corresponding values of rpt to see if the input

is dictating the firing types. Figure 2.12 plots firing histograms of GIF neurons from the

network model simulation for various values of periodic-to-tonic amplitude ratio rpt and

maximal M-current conductance gM . As in the case of the isolated neuron, the firing type

of the neuron in the ICNS network model change from tonic to follower as the value of rpt

increases, with a continuum of firing types that display both tonic and follower-like behaviors.

This implies that the periodic-to-tonic input amplitude ratio rpt can induce tonic, follower,

or somewhere between firing behavior in ICNS neurons.

Figure 2.12. Firing histograms for neurons in the ICNS network model as a
function of the cardiac phase. Similar to the isolated model neuron, the value
of rpt controls the firing behavior of the cells and can induce both tonic and
follower-type firing.

2.3.2. The Influence of the M-Current. The M-current modulates the ability of

cells to fire action potentials by effectively increasing the firing threshold of the membrane.

The slow build-up of the M-current also leads to adaptation/accomodation, where the firing

frequency of the neuron is decreases over time and can even stop firing. Thus, it is likely

that the M-current plays a key role in the emergence of the canonical phasic firing type. We

extend the results of the previous section on the influence of the input on the firing types of

neurons and show that the M-current can change the firing type of a neuron from a follower

to a phasic firing neuron. In this subsection, we first show that an isolated GIF neuron can be
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changed from a follower to a phasic neuron when the M-current is included. We then check

the network and assess if the phasic model neurons have a high value of maximal M-current

conductance gM and periodic-to-tonic input amplitude ratio rpt, and if the follower neurons

have a low value of gM and a high value of rpt.

Figure 2.13 shows the firing statistics of an isolated GIF model neuron for various

values of periodic-to-tonic input amplitude ratio (rpt) and maximal M-current conductance

(gM). When the maximal M-conductance gM is small, the value of rpt dictates the firing

type of the neurons, as shown in figures 2.11 and 2.12. However, the firing behavior of

follower neurons change as the maximal M-current conductance gM is increased and begin

to fire predoominantly during the isovlumetric contraction phase of the cardiac cycle. Tonic

neurons behavior remains uncorrelated with the cardiac cycle as gM increases. (Note that

increasing the maximal conductance of the M-current gM enough will suppress the model

GIF neurons from firing at all.)
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Figure 2.13. Firing histograms for an iisolated GIF neuron as a function of
the phase of the cardiac cycle. The values of rpt and gM implemented are indi-
cated on the horizontal and vertical axes. The horizontal axis corresponds to
values of the ratio of periodic-to-tonic input amplitude magnitude rpt, and the
vertical axis corresponds to varying values of maximal M-current conductance
values gM . Solid curve indicates LVP.

Next, we check the ICNS network model neurons for tonic neurons, follower neurons,

and phasic neurons. We look at the corresponding values of rpt and gM to see if the input

and M-current are dictating the firing types. Figure 2.14 plots firing histograms of model

GIF neurons picked from the ICNS network model to fit the structure of figure 2.13. As in

the case of the isolated neuron, when the maximal M-current conductance gM is small, the
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value of rpt dictates the firing type of the neuron, as shown in figures 2.11 and 2.12. However,

the firing behavior of follower neurons changes to phasic firing as gM is increased, while tonic

neurons remain tonic. This implies that the combination of afferent cardiovascular feedback

and M-current can bestow ICNS neurons with tonic, follower, and phasic firing types, or

somewhere between.

Figure 2.14. Examples of firing histograms from GIF neurons in the full
ICNS network model, indicating firing times as a function of the phase of
the cardiac cycle. The values of rpt and gM are indicated above subfigures.
Firing histograms were picked to present a similar structure to the isolated
GIF neurons in figure 2.13.
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2.3.3. Role of Feed-Forward Inhibition. Intra-network connectivity can have a pro-

found effect on the firing behaviors of neurons. Feed-forward inhibition is a fundamental

motif in neural circuits [20], including in the autonomic nervous system [82]. Feed-forward

inhibition can sculpt follower firing activity into canonical phasic firing behavior. Figure

2.15a shows a schematic of feed-forward inhibition. Cell 1 and cell 2 receive excitatory in-

put with a high periodic-to-tonic amplitude ratio rpt, which alone would elicit follower type

behavior. However, after a delay, cell 2 supresses firing of cell 1 via inhibitory input, leading

to cell 1 only firing at the onset of systole, i.e. during isovolumetric contraction.

Figure 2.15b plots the firing histogram of neuron 1 in the feed-forward inhibitory circuit

(fir gM = 0, rpt = 1.5). We note that an increase in the maximal inhibitory conductance by

a factor of 30 (gsyn,i = 150 nS/cm2) was required to induce the change in firing behavior of

neuron 1 from a follower neuron to a phasic neuron, but a sufficiently increased number of

presynaptic neurons synapsing onto the post-synaptic target neuron will reproduce similar

results without altering the maximal conductance parameter gsyn,i. We conclude that feed-

forward synaptic inhibition is a possible mechanism for inducing a change in neuronal firing

behavior from a follower neuron into a phasic neuron.
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(a) (b)

Figure 2.15. (a) Motif of suggested network connectivity that leads to phasic
firing behavior. Both neurons 1 and 2 receive combined tonic and periodic exci-
tatory input. Presynaptic neuron 2 induces inhibitory current in post-synaptic
neuron 1. (b) Firing histogram of neuron 1 from 10-minutes of simulated time
showing phasic firing behavior in responds to periodic and tonic input with
inhibitory synaptic current from a follower neuron.

Examination of all phasic neurons in the ICNS network model indicates that feed-

forward synaptic inhibition is not responsible for the phasic firing. While feed-forward

synaptic inhibition is present, we see that on average, the magnitude of the inhibitory synap-

tic currents is not sufficiently large to induce phasic firing in a neuron. Note, however, that

two possible parameter changes that could lead to feed-forward synaptic inhibition induced

phasic firing: (1) increased maximal inhibitory synaptic conductance gsyn,i, and (2) increased

probability of inhibitory connections pICNS,i in the ICNS network.
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2.4. Leakage Current and M-Current Combine to Counteract Slowly Varying

Synaptic Currents on Average

We have demonstrated that the structure of the input and the presence of the M-

current can combine to induce the three canonical firing types (follower, phasic, and tonic)

in ICNS neurons. The structure of the input controls how much like a follower or a tonic

firing pattern a neuron has, while an increase in the maximal conductance of the M-current

gM of a cell can reshape the neuron from a follower to a phasic neuron. In the analysis of

these firing patterns, we observed an interesting phenomenon that is shown in figure 2.16.

The combination of the M-current and the leakage current appear to (on average) counteract

the slow variation in the input current related to the cardiac cycle, and therefore it is “faster”

fluctuations in the input that appear to drive ICNS neurons to fire action potentials.

Figure 2.16 shows the firing histograms, averaged currents over the cardiac cycle, and

total averaged currents over the cardiac cycle. Note that the combination of the M-current

and the leakage current appear to counteract the “very slow” changes of the input current,

but not the some of the higher frequency fluctuations, despite the difference in maximal

M-conductances gM . This implies that fluctuations of input over an intermediate range of

frequencies are driving the firing of ICNS neurons. This leads us to question what properties

the M-current bestow the model GIF neurons. This motivates our study in the next chap-

ter: How does the combination of the leakage current and the M-current counteract slow

variations in the synaptic current while allowing the fast varying components to drive the

neuron to fire?
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(a) (b) (c)

Figure 2.16. ICNS network model firing histograms, separated currents, and
total current as functions of phase of cardiac cycle showing that the M-current
and the leakage current combine to counteract the slowly varying synaptic in-
put currents but respond to fast fluctutations. Top row: Firing histograms of
(a) combined tonic/follower, (b) a follower, and (c) a phasic neuron, respec-
tively with firing frequency, periodic-to-tonic amplitude ratio, and maximal
M-current conductance labeled. Middle row: Average membrane currents over
the periods of the cardiac cycle the neuron fired an action potential, Bottom
row: Total membrane currents over the periods of the cardiac cycle the neuron
fired an action potential.
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2.5. Appendix

2.5.1. Parameters.

Parameter Value Parameter Value

C 0.77 µF/cm2 Esyn,C 0 mV
gL 0.1 nS/cm2 τn 75 ms
gK 100 nS/cm2 τw 165 ms

gM,max 12 nS/cm2 τr 2 ms
gM,min 4 nS/cm2 τd 4 ms
gsyn,e 5 nS/cm2 vreset −68 mV
gsyn,i 5 nS/cm2 vT −52 mV
EL −70 mV pICNS,e 4 log(100)/99
EK −90 mV pICNS,i 8 log(100)/99
Esyn,e 0 mV p 0.7
Esyn,i −90 mV tref 0.5 ms

Table 2.1. Table of parameter values used for cell-based ICNS network model.

2.5.2. Clustering Analysis of ICNS Neurons. To rigorouosly determine if the firing

types of ICNS neurons can be cleanly separated into different categories, we perform clus-

tering analysis. Because the firing histograms are 2π−periodic, it is necessary to implement

directional statistics [61]. The first moment of a firing histogram is a vector representing

the mean firing behavior of the neuron, with respect to the phase of the cardiac cycle. The

angle of the first moment θ1 is the average phase of the cardiac cycle a neuron fires at, and

the magnitude of the first moment R1 provides a measure of the “spread” of a neurons firing

- R1 = 0 indicates a perfectly uniform tonic neuron and R1 = 1 indicates a neuron that only

fires at a single phase of the cardiac cycle, i.e., a perfectly phasic neuron.

The angle θ1 and magnitude R1 of the first moment for each of the ICNS neuronal firing

histograms from figure 2.1, and for the firing histograms computed from the network model

from figure 2.8 were computed. Figures 2.17a and 2.17b aree scatter plots of the magnitude

of the first moment versus the angle of the first moment of the experimental firing-histograms

and the model firing histograms, respectively. The distribution of the angle and magnitude

of first moments does not have obvious clusters that correlate to the three canonical firing

types.
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To quantitatively confirm that no clusters exist, two types of clustering algorithms

(k-means with k = 3, 4, 5 & hierarchical) were used on (1) the (θ1, R1) dataset computed

from the firing-histograms in figure 2.1 and (2) the (θ1, R1) dataset computed from the

firing-histograms of the ICNS network model in figure 2.8. Indeed, the results from the

clustering analysis did not show any distinction between the firing-histograms. However, we

note that even when we restricted our dataset to only those firing histograms that we thought

clearly display phasic, follower, or tonic firing patterns, our clusteriing failed to produce a

quantifiable way of sorting the firing histograms. k-means (with k = 3, 4, 5) and hierarchical

clustering methods were repeated using the angle and magnitudes of the first N moments for

N = 1, 2, 3, 4 but results did not indicate a clear grouping. This implies that the clustering

methods were not good enough, and future work is needed to improve the analysis.

The sparse distribution of the (θ1, R1) data and lack of quantifiable differences between

canonical firing types implies that there is a continuum of firing behaviors among the exper-

imental recordings and the ICNS network model neurons. Note that the scatter plot of the

model firing-histograms shown in figure 2.17b over-represents the high magnitude R1 neu-

rons concentrated near θ1 = π, compared to the experimental data. This over-representation

could be changed with an alteration of the distribution of periodic-to-tonic amplitude ratio

rpt values of the model neurons.
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(a)

Experiment

(b)

Model

Figure 2.17. Scatter plot of magnitude of first moment R1 versus angle of
first moment θ1 of neurons. (a) Experiment: Directional statistics computed
from the firing-histograms recorded and presented in Beaumont et al. 2013 [9]
figure 8. (b) Model: Directional statistics computed from the firing-histograms
of the cell-based network model.

2.5.3. Numerical Methods. The reset dynamics in the integrate-and-fire model used

in the mathematical model of the ICNS allow for numerical errors each time a spike occurs

between time-steps. To account for this, we adapt a spike time approximation method

introduced by Shelley, M and Tao, L [68]. The method is a modified Runge-Kutta 2 method

that uses the standard RK2 method until a neuron fires, and then uses linear interpolation

to approximate the firing time between steps.

The following description details the standard RK2 method implemented between

spikes. With several assumptions, we are able to exploit the structure of our system (i.e., the

linear equations) and analytically solve for ni, si, and ui at each time step, which simplifies

the numerical method used. (Note here that we are using a superscript to denote the i-th

neuron for the sake of notational ease.) First, we define n∞ = 0, and thus for any initial

condition ni(t0) = ni0,

(2.3) ni(t) = ni0e
− t−t0
τni , t ≥ t0
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To explicity solve for si and ui, let

xi =

si
ui


Then we can write the coupled differential equations for si and ui as

d

dt
xi = Lxi, xi(t0) = xi0.

where

L =

 0 1

−αβ −(α + β)


is a diagonalizable matrix such that P−1LP = Λ, where P = [ p1 | p2 ] is a matrix of the

eigenvectors of L and Λ is a diagonal matrix of eigenvalues of L.

Let yi = P−1xi, and note that by substitution,

d

dt
yi = P−1 d

dt
xi = P−1Lxi = P−1LPyi = Λyi.

Since Λ is diagonal, the solution to this system of ODEs is givem by

y = eΛtyi0,

and by substituting back in,

(2.4) xi(t) = PeΛtP−1xi0, t ≥ t0
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Consider an initial time t = t0. Then, the standard RK2 method (with exact solutions

for n, s, and u) gives the (m+ 1)th state variable time step, i.e., tm = t0 + (m+ 1)∆t as

(2.5)

vim+1 = vim +
∆t

2
(kiv,1 + kiv,2)

nim+1 = e
− ∆t
τni nim

xim+1 = PeΛ∆tP−1xim

wim+1 = wim +
∆t

2
(kiw,1 + kiw,2).

Let dvi

dt
= f(vi, ni, si, wi), and dwi

dt
= g(vi, wi). We define kiv,1, kiv,2 and kiw,1, kiw,2 be such that

(2.6)

kiv,1 = f(vim, n
i
m, s

j
m)

kiv,2 = f(vim + kiv,1∆t, nim+1, s
j
m+1, w

i
m + kiw,1∆t)

kiw,1 = g(vim, w
i)

kiw,2 = g(vim + ki1∆t, wim + kiw,1∆t).

Next, we describe the method used to approximate the spike time between time steps

and how this is incoporated into the RK2 method .Consider an integer m and a neuron i

such that vim < vthreshold ≤ vim+1. We first approximate the time t = ts such that

vi(ts) = vthreshold.

To do this, we set up a linear interpolation between vim and vim+1:

v(t) =

(
vim+1 − vim

∆t

)
t+ (1 +m)vim −mvim+1,

where v(tm) = vim and v(tm+1) = vim+1. Then ts must satisfy

vthreshold =

(
vim+1 − vim

∆t

)
ts + (1 +m)vim −mvim+1.
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Now that we know our spike time, let dt1 = ts −m∆t and dt2 = (m + 1)∆t − ts. We can

calculate the values of our variables at the time of the spike (including the reset dynamics)

by simulating the evolution of the exact equations and then adding our reset dynamics, and

exploiting the fact that our method forces vi to reset:

vi(ts) = vreset

ni(ts) = e
− dt1
τni nim + dni

xi(ts) = PeΛdt1P−1xim +

0

1


wi(ts) = wim +

dt1
2

(kiw,1 + kiw,2) + ∆wim

where ∆wim is a saturation factor ∆w = (w − 1)(e−
1
τw − 1) to account for the M-current

activation occuring up until the spike. To find the values at t = tm, we use an classic RK2

step from t = ts to t = tm+1 = (m+ 1)∆t for vi by recalculating kiv,1, kiv,2 and kiw,1, kiw,2 and

changing our initial conditions for the variables we have explicit solutions for,

vim+1 = vreset +
dt2
2

(ki1 + ki2)

nim+1 = ni(ts) + e
− dt2
τni dni

xim+1 = xi(ts) + PeΛdt2P−1

0

1


wim+1 = wi(ts) +

dt2
2

(kiw,1 + kiw,2) + ∆wi(ts)

After this calculation, we continue our RK2 method until another spike occurs.
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CHAPTER 3

M-Current Induces Band-Pass Filter Behavior In ICNS Neurons

Neurons response to input changes with different frequency components [19,23]. This

property is called low-pass, high-pass, or band-pass filtering, depending on the frequency

components that provoke the largest response from the neuron. The filtering properties of a

neuron provides a mechanism for information processing at the single neuron level [16].

In the previous chapter, we observed that, on average, the combination of the leakage

current and the M-current appear to counteract the“slow” (∼ 1 Hz) variations in input

current related to the cardiac cycle, while “fast” fluctuations in the input current drive

the model neurons to fire. This behavior seems different than the canonical neuron, which

acts as a low-pass filter [19, 23, 48, 50, 56], i.e. the“response” of the neuron is largest to

low-frequency inputs. In this chapter, we analyze the effect that the M-current has on

the response of the model neuron to fluctuations in synaptic current, and show that the

addition of the M-current endows the GIF model neuron with band-pass filter properties

and a resonant frequency.

This chapter is outlined as follows. First, we introduce a non-dimensional model of a

single GIF model neuron. We then show, through simulation results, that the GIF model

neuron (with M-current) acts as a band-pass filter with a resonant frequency. For context,

the input-output gain of a Leaky Integrate-and-Fire (LIF) neuron (i.e. without M-current)

as a function of the frequency of oscillatory input is shown to be monotonically decreasing.

Next, we exploit time-scale differences in GIF model neurons with M-current to asymptoti-

cally approximate the input-output gain as a function of the frequency of oscillatory input.

Analysis of the eigenvalues of the equilibria of GIF model neurons indicates that the resonant
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properties of the GIF model neuron is not caused by the standard mechanism for linear oscil-

lators, i.e. the natural frequencies of the model neuron do not interact with oscillatory input

to induce resonant behavior. To understand how the activation properties of the M-current

induces the band-pass filter and resonant properties of the GIF model neuron, perturbations

are made to the steady-state activation function of the M-current. (All numerical simulations

were computed using MATLAB R2022b.)

3.1. Filtering Properties of GIF Model Neuron with M-Current

We study the filtering properties of the GIF model neuron in the subthreshold regime.

We need to include the M-current because, unlike the DR-current, it is substantially activated

at subthreshold potentials [14,17]. Therefore, this allows us to remove the spike and reset

conditions of the GIF model neuron as well as the DR-current. Thus, we only need to

consider a reduced neuronal membrane model

(3.1)
C
dv

dt
= −gL(v − EL)− gMM(v − EK) + Iinp(t)

τM
dM

dt
= M∞(v)−M,

Despite the non-linearity in the model due to the M-current we want to understand how the

neuron responds to different frequencies, slow and fast. To model this, synaptic input of the

form

Iinp(t) = A0(1 + sin(2πωt))

is implemented, where ω is the frequency of the input, and A0 is the amplitude of the

oscillations of the input current and also the mean of the input current.

We nondimensionalize the system by setting v = (EL−EK)ṽ+EL, t = τ t̃ = C
gL
t̃ where

τ = C/gL is the membrane time constant, and M̃∞(ṽ) = M∞(v). Note that M is the fraction
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of open M-channels and thus is already nondimensional. The nondimensional system is

(3.2)

dṽ

dt̃
= −ṽ − g̃MM(ṽ − ẼK) + Ã0(1 + sin(2πΩ̃t̃))

dM

dt̃
= ε(M̃∞(ṽ)−M)

where g̃M = gM/gL, Ã0 = A0/[gL(EL − EK)], Ω̃ = ωτ , ẼK = −1, and ε = τ/τM . The

parameter values gL, EL, EK , C, and τM are set to the values provided in the appendix

of chapter 2. The value Ã0 = 0.45 was chosen so that the membrane potential of the

nondimensional LIF neuron (i.e g̃M = 0) approached close to but did not surpass the firing

threshold ṽT = 0.9.

The analysis in this chapter is based on the set value Ã0 = 0.45. The effect of the

M-current on the GIF model neuron is decreased if Ã0 is decreased. If Ã0 is increased, the

membrane potential surpassed the firing threshold ṽT and superthreshold dynamics had to

be reintroduced.

The form Ĩinp = Ã0(1 + sin(2πΩ̃t̃)) of input was chosen so that only excitatory input

to the model GIF neuron was included. Figure 3.1 provides an example of the membrane

potential of the GIF model neuron (ṽ) and the activation of the M-current (M) in response

to the oscillatory input current Ĩinp with frequency Ω̃ = 0.007727 (1 Hz).
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Figure 3.1. Basic response of GIF model neuron to input current Ĩinp, with

amplitude Ã0 = 0.45, input frequency Ω̃ = 0.007727, and magnitude of M-
current g̃M = 10. Oscillations in input current induce oscillations in both
membrane potential (ṽ) and activation of M-current (M) at the same fre-
quency. The average membrane potential is ṽavg = 0.3873. Ã is the amplitude

of the oscillations in ṽ. The gain of the neuron is defined to be G̃ = Ã/Ã0.

To study the response of the model neuron to varying input, Ã is defined in figure 3.1

as the amplitude of the oscillations of the membrane potential of the model neuron ṽ

Ã =
ṽmax − ṽmin

2

where ṽmax and ṽmin are the maximum and minimum values, respectively, of the nondimen-

sional membrane potential ṽ periodic response. The gain G̃ of the system in response to

the input Ĩinp is defined in figure 3.1 as the ratio of the amplitude of the oscillations of the
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membrane potential Ã to the amplitude of the oscillations of the synaptic input Ã0

G̃ =
Ã

Ã0

.

Figure 3.2. Gain G̃ = Ã/Ã0 of the GIF model neuron with various magni-
tude of M-current values g̃M as a function of the frequency Ω̃ of the periodic
input with amplitude Ã0. The nondimensionalization of the input frequency
is given by Ω̃ = ωτ ≈ 7.727ω where ω has the units kHz. Note the“resonance
frequency” occurs at Ω̃ ≈ 0.03 − 0.05, or about 4 − 7 Hz. The frequency
associated with the M-current is 1000/τM ∼ 6 Hz.

Figure 3.2 plots the gain G̃ of the GIF neuron as a function of the input frequency Ω̃

for various values of the magnitude of the M-current g̃M . Increasing the M-current (g̃M > 0)

decreases the gain at low frequencies, altering the response from a low-pass filter (at g̃M = 0)

to a band-pass filter. The decrease of the gain G̃ at low input frequencies Ω̃ increases as a

function of the magnitude of the M-current g̃M . Furthermore, the resonance peak (maximized

value of gain curve G̃) emerges at a resonance frequency of Ω̃ ≈ 0.03− 0.05, corresponding

to 4− 7 Hz. The frequency associated with the M-current is 1000/τM ∼ 6 Hz, implying that

the resonance peak is due to the M-current.
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The input related to the cardiac cycle discussed in the previous chapter oscillates at

1Hz (Ω̃ ≈ 0.007727). The gain curves plotted in figure 3.2 suggest that the M-current reduces

the response of the GIF model neuron to input oscillating at this frequency, while frequencies

between 4− 7 Hz result in a larger response from the GIF model.

In the next section, we show that the LIF neuron (g̃M = 0) acts as a low-pass filter to

provide context for the analysis of the influence the M-current has on the gain of the GIF

model as a function of the input frequency.

3.2. Leaky Integrate-and-Fire Neuron Acts as a Low-Pass Filter

The Leaky Integrate-and-Fire (LIF) model, which is often used to model neuronal ac-

tivity [25,48,50,56], is known to act as a low-pass filter [47,73]. The LIF model corresponds

to the GIF model without M-current (g̃M = 0). Therefore, to provide context, we review

the filtering properties of the LIF neuron, and then show how the addition of the M-current

endows the GIF neuron with band-pass filter properties.

The voltage response of the nondimensional GIF model with no M-current (g̃M = 0,

LIF model) to periodic input Ã0(1 + sin(2πΩ̃t̃) is given by

ṽ(t̃) =
Ã0√

1 + 4π2Ω̃2
sin
(

2πΩ̃t̃+ tan−1
(
−2πΩ̃

))
+ Ã0,

where a transient exponential decay term has been omitted. The amplitude of the oscillations

in voltage is Ã = Ã0√
1+4π2Ω̃2

, and thus the gain of the model in response to the fluctuating

synaptic input is given by

(3.3) G̃(Ω̃) =
1√

1 + 4π2Ω̃2
.

Note that the gain is monotonically decreasing in Ω̃, confirming that the LIF model is a low-

pass filter. The maximum gain of 1 obtained with constant input, and the “cutoff frequency”

(where the gain G̃ reaches ∼ 0.707 its maximum value [85]) is Ω̃c = 0.1592, corresponding
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to ∼ 20 Hz. Figure 3.3 plots the gain curve of the LIF model as a function of the input

frequency Ω̃.

Figure 3.3. Gain G̃ = Ã/Ã0 of the LIF model neuron, i.e. the GIF model
neuron with no M-current (g̃M = 0) as a function of the frequency Ω̃ of the
oscillatory input with an amplitude and mean of Ã0. LIF model neuron acts
as a low-pass filter with cutoff frequency of Ω̃ ≈ 0.16, i.e., approximately 20
Hz.

3.3. The M-Current Induces Band-Pass Filter Properties: Asymptotic

Approximations of Gain as a Function of Input Frequency

In this section, we exploit the difference in time-scales of the membrane τ , the M-

current τM , and the synaptic input 1/Ω̃ in the GIF neuron and use perturbation theory to

show that: (1) For sufficiently low input frequency Ω̃ = O(ε2), the gain G̃ is larger than

the limit of the gain G̃ as Ω̃ → 0+. (2) For sufficiently high input frequency Ω̃ = O(1), the

M-current does not have a substantial effect on the gain, i.e., the gain behaves similarily

to the LIF model gain. Figure 3.4 shows a schematic of this method - the increase of the

gain at Ω̃ ∼ ε2 and decrease of the gain at Ω̃ ∼ 1 (similar to the decrease of the LIF gain)

implies that the resonance peak must occur at Ω̃ ∼ ε, confirming what the simulation results

in section 3.1 suggest: The M-current induces band-pass filter behavior in the GIF neuron

with a resonance frequency at order ε.
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Figure 3.4. Schematic of approach to show that the M-current induces band-
pass filter behavior with a resonance frequency at Ω̃ ∼ ε using asymptotic
approximation of gain of GIF model (in red) as function of input frequency.
Gain is increased at Ω̃ = O(ε2) from constant input. Gain is decreasing at
Ω̃ = O(1). Thus, resonance peak occurs at Ω̃ = O(ε).

To exploit the time-scales of the membrane τ , the M-current τM , and the input current

1/Ω̃ we consider the frequencies of the input that lead to the dynamics of the model occuring

at different time scales. The first regime we consider is when the frequency of the oscillations

of the input current is much faster than the time-scale of the M-current, i.e. 1/Ω̃ << τM .

We consider the time-scales of the input and the membrane to find the solutions for the

membrane potential ṽ and utilize averaging to find the solutions for the M-current activation

M . The second regime we consider is when the frequency of the oscillations of the input

current is much slower than the time-scales of both the M-current and the membrane, i.e.

1/Ω̃ >> τM , τ . This allows for the assumption that the membrane potential ṽ and the M-

current activation M are at steady-state to find their solutions. In both instances, we utilize

perturbation theory to expand the solutions in a small dimensionless parameter (ε = τ/τM)

and approximate the gain as a function of the input frequency. [32]. We remark that an

asymptotic approximation of the gain for the input frequencies where the maximum gain G̃

occurs (Ω̃ ∼ ε) is quite complex and left for future work.
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3.3.1. Asymptotic Approximation for Gain of GIF Model Neuron with High

Frequency Oscillatory Input: Multiple Scales. We consider a regime in which the

oscillations of the synaptic input current are much faster than the M-current, that is 1
Ω̃
<<

τM . Therefore, we utilize multiple scale expansion [32], or “two-timing,” which involves

separating the fast Ĩinp- and v-dynamics and slow M -dynamics into two different temporal

variables, expanding our solutions in the small dimensionless parameter ε = τ/τM , and

simultaneously solving on both time scales. Note that Ω̃ = O(1).

We set a fast time-scale t1 = t̃, and a slow time-scale t2 = εt̃, where ṽ = ṽ(t1, t2)

and M = M(t1, t2). The implementation of two time scales results in a time derivative of

d
dt̃

= ∂
∂t1

+ ε ∂
∂t2

, and when substituted into the model equation (3.2) results in a system of

PDEs

(3.4)

∂ṽ

∂t1
+ ε

∂ṽ

∂t2
= −ṽ − g̃MM(ṽ − ẼK) + Ã0(1 + sin(2πΩ̃t1))

∂M

∂t1
+ ε

∂M

∂t2
= M̃∞(ṽ)−M

To oobtaini a 1st order approximate solution to this PDE, we expand ṽ and M in powers of

ε, i.e. ṽ = ṽ0 + εṽ1 + · · · , and M = M0 + εM1 + · · · , and expand the steady-state activation

function as M̃∞(ṽ) = M̃∞(ṽ0 + εṽ1 + · · · ) ≈ M̃∞(ṽ0) + εM̃ ′
∞(ṽ0)ṽ1 + · · · . Substituting these

expansions into system (3.4), the leading order system in ε (i.e. O(1)) is

(3.5)

∂ṽ0

∂t1
= −ṽ0 − g̃MM0(ṽ0 − ẼK) + Ã0(1 + sin(2πΩ̃t1))

∂M0

∂t1
= 0.
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Thus, M0 is independent of the fast time-scale t1, i.e., M0(t1, t2) = M0(t2) and the solution

for the leading order equation of ṽ0 is:

ṽ0(t1, t2) =
Ã0√

(1 + g̃MM0(t2))2 + 4π2Ω̃2

sin

(
2πΩ̃t1 + tan−1

(
−2πΩ̃

1 + g̃MM0(t2)

))

· · ·+ Ã0 + g̃MM0(t2)ẼK
1 + g̃MM0(t2)

= a(M0) sin(2πΩ̃t1 + φ(M0)) + b(M0)

with a transient exponential decay term omitted. To find M0(t2), i.e., how the M-current

behaves on the slow time scale, we consider the order ε system of system (3.4)

∂ṽ1

∂t1
+
∂ṽ0

∂t2
= −ṽ1 − g̃M(M0ṽ1 + ṽ0M1 −M1)

∂M1

∂t1
+
∂M0

∂t2
= M̃∞(ṽ0)−M0.

We define Xn = [ṽn Mn]T for n = 0, 1, ..., and rewrite the system into the form

(3.6) L ~X1 =
∂

∂t1
~X1 + A ~X1 = F ( ~X0),

where

A =

1 + g̃MM0 g̃M(ṽ0 − ẼK)

0 0

 , F ( ~X0) =

 −∂ṽ0

∂t2

M̃∞(ṽ0)−M0 − ∂M0

∂t2

 .
Note that L is the linear differential operator Dt1 + A. The adjoint of L is given by L∗ =

−Dt1 + AT . For a solution ~X1 to exist, F ( ~X0) must be orthogonal to the nullspace of the

adjoint L∗, that is, for every Ω̃−1-periodic C1 function f in the nullspace of L∗, the inner

product of f with F ( ~X0) must be equal to 0 (with respect to the standard L2 inner-product
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for periodic functions), and therefore

df1

dt1
= (1 + g̃MM0)f1

df2

dt1
= g̃M(ṽ0 − ẼK)f1

From the first equation (note that g̃MM0 ≥ 0), it is clear that the only Ω̃−1–periodic solution

for f1 is f1 = 0, and thus f2 is constant in t1. Therefore ,the inner-product 〈f, F ( ~X0)〉 = 0

reduces to

1

Ω̃−1

∫ Ω̃−1

0

(
M̃∞(v̂0(t1,M0))−M0 −

∂M0

∂t2

)
dt1 = 0

where we write v̂0(t1,M0) = ṽ0(t1, t2) for convenience. Noting that M0 is independent of t1,

we rewrite this equation into the form

∂M0

∂t2
= 〈M̃∞(v̂0)〉∞ −M0

provides a differential equation for M0 where

〈M̃∞(v̂0)〉∞ =
1

Ω̃−1

∫ Ω̃−1

0

M̃∞(v̂0(t1,M0)dt1.

We are interested in the “long-term” behavior of M0 on the slow time-scale, so we set ∂M0

∂t2
= 0

and the resulting equation for M0 is

M0 = 〈M̃∞(v̂0)〉∞,

where 〈M̃∞(v̂0)〉∞ is the average value of the steady-state activation function M̃∞ over one

period of v̂0(t1,M0). Therefore, the first-order approximation to the “long-term” solution of

system (3.5) (the leading order system in ε) is given by a system of coupled equations

ṽ0(t̃) =
Ã0√

(1 + g̃MM0)2 + 4π2Ω̃2

sin

(
2πΩ̃t̃+ tan−1

(
−2πΩ̃

1 + g̃MM0

))
+
Ã0 + g̃MM0ẼK

1 + g̃MM0

,
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with M0 given by the solution of

M0 − 〈M̃∞(v̂0)〉∞ = 0.

where v̂0(t1,M0) = ṽ0(t1, t2) = ṽ0(t̃).

The above analysis implies that the gain of the GIF model neuron for sufficiently low

frequency input current (Ω̃−1 << τM) is

G̃ =
1√

(1 + g̃MM0)2 + 4π2Ω̃2

,

where M0 is the solution to the equation

M0 = 〈M̃∞(v̂0)〉∞ = Ω̃

∫ Ω̃−1

0

M̃∞(v̂0(t1,M0))dt1

where v̂0(t1,M0) = ṽ0(t1, t2) = ṽ0(t̃), i.e. the value of M0 is the average level of M-current

activation over one period. Note that the gain with no M-current (g̃M = 0) is equal to the

gain of the LIF neuron computed in section 3.2. Furthermore, the gain can be bounded from

above and below

1√
(1 + g̃M)2 + 4π2Ω̃2

≤ G̃ ≤ 1√
1 + 4π2Ω̃2

,

i.e., the gain of the GIF model neuron is bounded from above by the gain of the LIF model

neuron.

Figure 3.5 plots the gain G̃ of the GIF model neuron for various values of g̃M obtained

from numerical simulations of the system 3.2 from section 3.1, and the asymptotic approxi-

mation of the gain computed by numerically solving for ṽ0 and M0 from the equations above.

For input frequencies above the cutoff frequency Ω̃c ≈ 0.01592 of the LIF neuron, the M-

current does not have a substantial effect on the gain of model GIF neuron and the gain

resembles that of the LIF neuron.
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Figure 3.5. Amplitude gain G̃ = Ã/Ã0 of the solution of a single cell-based
nondimensional neuronal GIF model given by equation 3.2 with different max-
imal M-current conductance valuees g̃M as a function of the frequency Ω̃ of
the periodic input with amplitude Ã0. Solid curves reflect data computed
from solutions of the model, dotted curves indicate corresponding approxi-
mations. The approximation of the gain is good above the cutoff frequency
Ω̃c ≈ 0.01592. The nondimensionalization of the input frequency is given by
Ω̃ = ω C

gL
≈ 7.727ω where ω has the units kHz.

3.3.2. Asymptotic Approximation for Gain of GIF Model Neuron with Low

Frequency Oscillatory Input. Now we consider the case in which the period of the oscil-

latory input is much larger than the time constants of both the M-current and the voltage

dynamics. Specifically, we will assume that Ω̃ = O(ε2) and write Ω̃ = ε2Ω̃0, where Ω̃0 = O(1).

We show that the amplitude of the voltage ṽ increases above the amplitude of the leading

order term, i.e., the limit of the amplitude as Ω̃0 → 0+. For this analysis, we will assume a

general M-current activation function m̃∞ that is strictly monotonic, i.e., M̃ ′
∞(ṽ) > 0, and

satisfies 0 ≤ M̃∞(ṽ) ≤ 1.
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Rescaling time from the nondimensional GIF model (3.2) so that s = ε2t̃ gives

(3.7)
ε2
dṽ

ds
= −ṽ − g̃MM(ṽ − ẼK) + Ã0(1 + sin(2πΩ̃0s)),

ε
dM

ds
= M̃∞(ṽ)−M

We expand ṽ(s) = ṽ0 + εṽ1 + · · · , M(s) = M0 + εM1 + · · · i ε, and M̃∞(ṽ) = M̃∞(ṽ0 +

εṽ1 + · · · ) ≈ M̃∞(ṽ0) + εM̃ ′
∞(ṽ0)ṽ1. The resulting leading order (O(1)) system is the set of

algebraic equations

(3.8)
0 = −ṽ0 − g̃MM0(ṽ0 − ẼK) + Ã0(1 + sin(2πΩ̃0s))

0 = M̃∞(ṽ0)−M0

which implies that ṽ0 track the input, and M0 = M̃∞(ṽ0), i.e.,

(3.9) ṽ0 + g̃MM̃∞(ṽ0)(ṽ0 − ẼK) = Ã0(1 + sin(2πΩ̃0s)).

For general M̃∞, this equation cannot be solved explicitly for ṽ0(s). (An explicit example

is shown in the appendix where a piece-wise linear description of M̃∞ is implemented.)

Howeever, we will show that, for monotonically increasing M̃∞, the amplitude of oscillations

for ṽ(s) increases with frequency Ω̃.

The O(ε) equations of system (3.7) are

(3.10)

0 = −ṽ1 − g̃M(M0ṽ1 +M1(ṽ0 − ẼK))

dM0

ds
= M̃ ′

∞(ṽ0)ṽ1 −M1.

Note that dM0

ds
= M̃ ′

∞(ṽ0)dṽ0

ds
. Implicit differention of equation (3.9) yields the derivative of

ṽ0

dṽ0

ds
=

2πΩ̃0Ã0 cos(2πΩ̃0s)

1 + g̃MM̃∞(ṽ0) + g̃MM̃ ′
∞(ṽ0)(ṽ0 − ẼK)

,
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thus the order ε solution is

(3.11) ṽ1(s) = Ω̃02πÃ0g̃M
M̃ ′
∞(ṽ0)(ṽ0 − ẼK) cos(2πΩ̃0s)

(1 + g̃MM̃∞(ṽ0) + g̃MM̃ ′
∞(ṽ0)(ṽ0 − ẼK))2.

We rewrite the order ε solution as ṽ1(s) = Ω̃0v̂1(s) where

v̂1(s) = 2πÃ0g̃M
M̃ ′
∞(ṽ0)(ṽ0 − ẼK) cos(2πΩ̃0s)

(1 + g̃MM̃∞(ṽ0) + g̃MM̃ ′
∞(ṽ0)(ṽ0 − ẼK))2

.

Thus, to second-order approximation,

ṽ(s) = ṽ0(s) + εΩ̃0v̂1(s).

We now show that the amplitude of the second-order approximation to the solution ṽ is

larger than the amplitude of the first-order approximation to the solution ṽ0. Note that

dṽ0

ds
= 0 at s = 1

4Ω̃0
and 3

4Ω̃0
, and the second derivative of the first-order approximation at

these points are

d2ṽ0

ds2

(
1

4Ω̃0

)
=

−4π2Ω̃2
0Ã0

1 + g̃MM̃∞

(
ṽ0

(
1

4Ω̃0

))
+ g̃MM̃ ′

∞

(
ṽ0

(
1

4Ω̃0

))(
ṽ0

(
1

4Ω̃0

)
− ẼK

) < 0,

d2ṽ0

ds2

(
3

4Ω̃0

)
=

4π2Ω̃2
0Ã0

1 + g̃MM̃∞

(
ṽ0

(
3

4Ω̃0

))
+ g̃MM̃ ′

∞

(
ṽ0

(
3

4Ω̃0

))(
ṽ0

(
3

4Ω̃0

)
− ẼK

) > 0.

This implies that the maximum ṽmax
0 and minimum ṽmin

0 values of ṽ0(s) occur at smax
0 =

1/(4Ω̃0) and smin
0 = 3/(4Ω̃0), respectively. Furthermore, note that the first derivatives of v̂1

at smax
0 and smin

0 are

dv̂1

ds
(smax

0 ) = −4π2Ω̃0Ã0g̃M
M̃ ′
∞(ṽmax

0 )(ṽmax
0 − ẼK)

(1 + g̃MM̃∞(ṽmax
0 ) + M̃ ′

∞(ṽmax
0 )(ṽmax

0 − ẼK))2
< 0

dv̂1

ds
(smin

0 ) = 4π2Ω̃0Ã0g̃M
M̃ ′
∞(ṽmin

0 )(ṽmin
0 − ẼK)

(1 + g̃MM̃∞(ṽmin
0 ) + M̃ ′

∞(ṽmin
0 )(ṽmin

0 − ẼK))2
> 0.
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Because v̂1(smax
0 ) = v̂1(smin

0 ) = 0, the value of the second-order approximation is equal to the

value of the first order approximation at smax
0 and smin

0 , i.e.,

ṽ(smax
0 ) = ṽ0(smax

0 ) + εΩ̃0v̂1(smax
0 ) = ṽ0(smax

0 )

and

ṽ(smin
0 ) = ṽ0(smni

0 ) + εΩ̃0v̂1(smin
0 ) = ṽ0(smin

0 ).

The derivative of the second-order approximation to the solution at at smax
0 and smin

0 is

dṽ

ds
(smax

0 ) =
dṽ0

ds
(smax

0 ) + εΩ̃0
dv̂1

ds
(smax

0 ) = εΩ̃0
dv̂1

ds
(smax

0 ) < 0

and

dṽ

ds
(smin

0 ) =
dṽ0

ds
(smin

0 ) + εΩ̃0
dv̂1

ds
(smin

0 ) = εΩ̃0
dv̂1

ds
(smin

0 ) > 0.

This implies that there exists some smax < smax
0 and smin < smin

0 such that ṽ(smax) > ṽ0(smax
0 )

and ṽ(smin) < ṽ0(smin
0 ).

Figure 3.6. Schematic showing how the maximum value of how, to second
order approximation, the amplitude of ṽ(s) is larger than the amplitude of
ṽ0(s).
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We expand smax = smax
0 −εsmax

1 +· · · and smin = smin
0 +εsmin

1 +· · · in ε where smax
1 , smin

1 >

0 and smax
1 , smin

1 = O(1). Then expanding ṽ(smax) and ṽ(smin),

ṽ(smax) = ṽ(smax
0 − εsmax

1 ) = ṽ(smax
0 )− εsmax

1

dṽ

ds
(smax

0 ) = ṽ0(smax
0 )− ε2Ω̃0s

max
1

dv̂1

ds
(smax

0 ),

ṽ(smin) = ṽ(smin
0 + εsmin

1 ) = ṽ(smin
0 ) + εsmin

1

dṽ

ds
(smin

0 ) = ṽ0(smin
0 ) + ε2Ω̃0s

min
1

dv̂1

ds
(smin

0 ).

The amplitude of the system to second order is

Ã =
ṽ(smax)− ṽ(smin)

2

=
ṽ0(smax

0 )− ṽ0(smin
0 )

2
+ ε2Ω̃0

−smax
1

dv̂1

ds
(smax

0 ) + smin
1

dv̂1

ds
(smin

0 )

2
.

Note that
−smax

1
dv̂1
ds

(smax
0 )+smin

1
dv̂1
ds

(smin
0 )

2
> 0 and is O(1). Hence we write the amplitude of the

system to second order as

Ã =
ṽ0(smax

0 )− ṽ0(smin
0 )

2
+ Ω̃F (smax

1 , smin
1 , vmax

0 , vmin
0 , g̃M)

where F > 0 and F = O(1). Therefore the amplitude Ã (and thus the gain G̃) of system

(3.7) grows with input frequency Ω̃ for Ω̃ = O(ε2). As shown in section 3.3.1, the gain

decreases for Ω̃ = O(1), and therefore the GIF model neuron acts as a band-pass filter with

a resonance frequency that must be at O(ε) - this matches the simulation results in section

3.1. However, this provokes the question: what is/are the mechanisms responsible for the

M-current endowing the model GIF neuron with band-pass filter and resonance properties?

In the following sections we identify and explore mechanisms of the model neuron and the

M-current that can provide insight into this question- specifically, analysis of M̃∞(ṽ) can

provide insight into how the gain of the model GIF neuron in response to oscillatory input

depends on the M-current.
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3.4. Natural Frequencies of GIF Model Neuron Do Not Induce Resonant

Behavior

In the previous section, we showed that the GIF neuron with M-current acts as a

band-pass filter with a resonance peak/frequency. Usually, the mechanism responsible for

resonant behavior is forcing of the system at a “natural” frequency that is intrinsic to the

model. To investigate if a natural frequency is interacting with the oscillatory input to the

GIF model, we examine the eigenvalues of the GIF neuron. If the eigenvalues are complex,

then the natural frequency of the system is given by the imaginary part of the eigenvalues. If

this natural frequency occurs around the resonce frequency Ω̃ ∼ 0.05, the resonant behavior

in the system is due to the interaction of the frequency of the oscillatory input with the

natural frequency of the GIF neuron.

We examine the steady-state of the GIF neuronal model with constant input Ã0 because

of the form of the input. It was chosen to be always positive with an average value of Ã0 -

this defines the point at which the GIF model neuron oscillates around. This steady-state is

(3.12)

ṽ∗ =
Ã0 + g̃MM

∗ẼK
1 + g̃MM∗

M∗ = M̃∞

(
Ã0 + g̃MM

∗ẼK
1 + g̃MM∗

)

Because ẼK = −1, −1 < ṽ∗ ≤ Ã0, and 0 ≤ M∗ ≤ 1 follows from the range of the steady-

state activation function M̃∞. The Jacobian of the GIF neuronal model evaluated at the

steady-state (ṽ∗,M∗) is

J(ṽ∗,M∗) =

−(1 + g̃MM
∗) −g̃M(ṽ∗ − ẼK)

εM̃ ′
∞(ṽ∗) −ε

 ,
and the eigenvalues of J(ṽ∗,M∗) are

λ = −κ±
√

∆,
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where

κ =
ε+ 1 + g̃MM

∗

2
> 0, η = 1 + g̃MM

∗ + g̃MM̃
′
∞(ṽ∗)(ṽ∗ − ẼK) > 0,

and

∆ = κ2 − εη.

Re(λ) = −κ < 0 implies that the steady-state is always stable. If ∆ < 0, the eigenvalues

are complex, so the equilibrium is a stable spiral with natural frequency f =
√
−∆/2π. If

∆ > 0, the eigenvalues are real, so the equilibrium is a stable node.

Figure 3.7 plots the ∆ = 0 curve in (ε, g̃M) parameter space, separating the space into

two regions: one region in which the steady-state is a stable node and another region where

it is a stable spiral. Note that in the GIF model ε = τ/τM ≈ 0.047, which is located in

the stable node region of the space, i.e., an order of magnitude in ε below the boundary.

Therefore, local stability analysis indicates that there is no natural frequency in the model

that could interact with oscillatory input to induce resonance in the system, and the usual

mechanism for resonance is not responsible for inducing the band-pass filtering and resonance

properties in the GIF model with M-current.

∆ = 0

ε = τ/τM

Stable Node

Stable Spiral

Stable Node

Figure 3.7. (ε, g̃M) parameter space separated into regions corresponding to
the stability of the equilibrium point (ṽ∗,M∗) of the GIF model with constant
input Ã0. The ∆ = 0 curve indicates where the equilibrium changes stability
between stable spirals and stable nodes. The blue dashed line indicates the
parameter value ε = τ/τM ≈ 0.047 used in the GIF model. Note that ε is on
a log scale.

56



3.5. Subthreshold Activation of M-Current Modulates Resonant Behavior of

Model GIF Neuron

Our analysis of the equilibrium points of the GIF model neuron reveals no natural fre-

quencies in the model that could interact with oscillatory input to induce resonant behavior

and therefore the standard mechanism for resonance dooes not underlie the band-pass filter

and resonance properties of the GIF model. In this section, we show that the magnitude

and subthreshold activation of the M-current modulates the maximal response of the neuron,

where the maxmimal response occurs in the frequency domain, and how large the “band” of

the band-pass filter is in the frequency domain.

In what follows, we define the normalized gain G to be the gain G̃ = Ã/Ã0 at an

arbitrary input frequency Ω̃ normalized by the limit of the gain for arbitary low input

frequency (Ω̃→ 0+). We also define Gmax to be the maximum normalized gain that occurs

at the resonance frequency Ω̃res and resonance length Ω̃len as the range of frequencies that

have a normalized gain greater than 1. Normalized gain curves for various magnitudes of M-

current (g̃M) are shown in Figure 3.8a. Figure 3.8b plots the maximal normalized gain Gmax,

figure 3.8c resonance frequency Ω̃res, and figure 3.8d resonance length Ω̃len all as functions of

g̃M . The colored dots in figures 3.8b-3.8d correspond to the colored normalized gain curves

in figure 3.8a. The black curve in figure 3.8a corresponds to the model neurons response

with no M-current (as discussed in section 3.2).
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(a) (b)

(c) (d)

Figure 3.8. Resonance induced by the M-current in GIF model neuron. (a)
Normalized gain G as a function of Ω̃ for g̃M = 0, 4, 100, 250, 500 as black,
blue, yellow, purple, and green curves, respectively. Corresponding values
of peak resonance, resonant frequency, and resonance lengths represented in
figures 3.8b-3.8d in corresponding color dots. (b) Peak resonance. (c) Resonant
frequency. (d) Resonance length.

As the magnitude of the M-current g̃M increases, the maximum gain Gmax, resonance

frequency Ω̃res, and resonance length Ω̃len all increase monotonically with g̃M . Most of

the resonance frequencies occur around Ω̃res ∼ 0.03 − 0.05, correlated with the frequency

associated with the M-current, i.e., 1000/τM ∼ 6 Hz. The increase in normalized maximum

gain Gmax and resonance length Ω̃res occurs because the gain G̃ at Ω̃ = 0 decreases as the

magnitude of the M-current is increased (shown in figure 3.2). This is due to the fact that
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the M-current does not have a substantial effect on the gain of the GIF model to input at

sufficiently high frequences (section 3.3.1).

To elucidate the mechanisms that control resonance of the GIF model neurons, we

examine how properties of the M-current activation function M̃∞(ṽ) affect the normalized

gain G, recall that

M̃∞(ṽ) =
1

1 + exp(− ṽ−ṽH
s̃

)

where ṽH = (vH − EL)/(EL − EK) determines the half-maximum of the curve, i.e., it sets

the activation threshold of the M-current, and s̃ = s/(EL − EK) determines the steepness

of the activation curve. To test how the steepness s̃ and half-maximum ṽH parameters

modulate the resonance properties of the GIF model neuron, the steepness s̃ and half-

maximum ṽH = ṽT + s̃ log(1/M̃max
∞ − 1) are simultaneously increased so that (a) the steady-

state activation at the firing threshold M̃∞(ṽT ) of the GIF neuron is fixed at M̃max
∞ = 0.05134

(the value at the firing threshold with unperturbed parameters s̃ and ṽH), and (2) the level

of activation of the M-current at subthreshold membrane potentials varies from only active

immediately below ṽT to active for all subthreshold potentials, as shown in Figure 3.9. That

is, as s̃ and ṽH are increased together, the system limits to a case in which the M-current

remains activated and therefore simply acts like a leakage current; and when s̃ and ṽH are

decreased, the subthreshold activation of the M-current decreases, so that it is only non-zero

close to threshold.
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Figure 3.9. The steady-state activation curve M̃∞(ṽ) for various values of
slope parameter s̃ specified in the legend and the corresponding half-maximum
parameter ṽH = ṽT + s̃ log(1/M̃max

∞ −1). The black curves indicate the default
parameter values s = 2.4, vH = −45. Variations in s̃ and ṽH induce a change in
the subthreshold activation of the M-current while maintaining the maximum
activation level M̃(ṽT ) = M̃max

∞ . Note the firing threshold of the model GIF
neuron is ṽT = 0.9.

Figure 3.10 plots a bar chart of the (normalized) peak resonance Gmax of the model

GIF neuron against the magnitude of subthreshold activation of the M-current, and the

corresponding normalized gain curves below. Note that the color of the bar and normalized

gain curve corresponds to the parameter values of the M-current activation curve in figure 3.9.

The bar chart and corresponding normalized gain curves are plotted for various magnitudes

of the M-current g̃M . At lower magnitudes of the M-current g̃M the peak resonance values

do not vary significantly as the subthreshold activation is changed.

As the magnitude of the M-current g̃M increases, the maximum value of the peak

resonance bar plots becomes significantly greater than the surrounding values. This implies

that (at sufficiently large magnitude of M-current g̃M) the subthreshold activation level of

the M-current modulates the resonant behavior of the model, and also provides a mechanism

for maximizing the response of the model GIF neuron to oscillatory input.
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Figure 3.10. Effects of changing subthreshold activation level of M-current
activation function on normalized gain of GIF neuron. Subthreshold activation
correlates to colors in figure 3.9. The default subthreshold activation level
corresponds to the black curves and bars. TOP: normalized peak resonance
Gmax of GIF model neuron against magnitude of subthreshold activtion various
values of magnitude of M-current g̃M . BOTTOM: Normalized gain curves G
of GIF model neuron change with various subthreshold activation levels for
various values of magnitude of M-current g̃M . Colors of bars and normalized
gain curves correspond to parameter values of M-current activation curves in
figure 3.9.

3.6. Summary

In the previous chapter we observed how, together, the leakage current and the M-

current counteract the slowly fluctuating synaptic currents due to the input but not faster

fluctuations that occur. In this chapter we considered single cell model GIF neurons with only

sub-threshold dynamics and showed that the leakage current induces low-pass filter behavior

in the model neuron. We showed that the M-current endows the GIF model neuron with

band-pass filter and resonance properties while not substationally altering the gain at very

high frequencies. Furthermore, the resonance frequency occurs near the frqeuency associated

wiith the M-current.

We studied the effects of changing the subthreshold activation of the M-current and

showed that it regulates the resonance behavior of the model GIF neuron and our analysis
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implies that if the subthreshold activation of the M-current is at a critical value, then the

(normalized) peak resonance of the model GIF neuron is maximized.

The analysis in this chapter provides insight into the phenomenon in the previous

chapter where the leakage current and M-current appeared to counteract the slow (≈ 1Hz)

oscillations but allow faster transient fluctuations in input current to induce an spike in the

ICNS neurons. We showed that the normalized peak resonance as well as the resonancee

frequency of the ICNS network model neurons from chapter 2 depend on the magnitude of

the M-current gM in individual cells. This implies that the ICNS model neurons respond

preferentially to specific frequencies and the response of the cells in the network can be tuned

by altering the strength of the M-current in the model.

3.7. Appendix

3.7.1. Asymptotic Approximation for Gain of GIF Model Neuron with Low

Frequency Oscillatory Input: Piece-Wise Linear Approximation of Steady-State

Activation Function M̃∞. We approximate the steady-state function M̃∞ as a piece-wise

linear function

M̃∞(ṽ) ≈ f(ṽ) =


ã(ṽ − vmin) if ṽ ≥ vmin

0 else

where we assume vmin > 0. We validate this assumption and discuss how the parameters of

the piece-wise linear approximation are chosen to minimize the error below. We now show

that the gain for sufficiently low frequency Ω̃ = ε2Ω̃0 is larger than the limit of the amplitude

gain as Ω̃0 → 0.

The assumption of a piece-wise linear approximation of M̃∞ means that the solution

ṽ will consist of two different solutions stitched together: one for ṽ0 ≥ vmin and one for

ṽ0 < vmin. The M-current is not activated for ṽ0 < vmin (i.e. M0 = 0) and the M-current and

membrane potential are much faster than the input (the solution is enslaved to the input)
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thus the solution for ṽ0 is

(3.13) ṽ0(s) = Ã0(1 + sin(2πΩ̃0s))

when Ã0(1 + sin(2πΩ̃0s)) < vmin. When the M-current is activated (i.e. ṽ0 ≥ vmin) we have

M0 = ã(ṽ0 − vmin) and the solution for ṽ0 is

(3.14) ṽ0(s) = α +

√
β + γ sin(2πΩ̃0s)

where

(3.15)

α = ẼK + vmin −
1

ãg̃M

β = α2 − 4

ãg̃M
(vminẼK − Ã0)

γ =
4

ãg̃M
Ã0

Note that β − γ > 0 so the solution ṽ0(s) is always real.

We consider two cases: the first in which the M-current is activated over the entire

period of the solution, and the second where the M-current becomes non-activated over some

portion of the period of the solution. The case where the M-current is non-activated over

the entire period reduces to the LIF analysis shown in section 3.2.

Suppose the M-current is activated over the entire period of the solution, i.e. ṽ0(s) ≥

vmin for all s ∈ [0, 1]. The second-order approximation to the solution is given by

ṽ(s) = ṽ0(s) + εΩ̃0v̂1(s)

with ṽ0 and ṽ1 = Ω̃0v̂1 are from 3.14 and 3.11. We note that the first order approximation ṽ0

has a minimum and a maximum at s0
min = 3/(4Ω̃0) and s0

max = 1/(4Ω̃0), respectively, where

dṽ0

ds
(s0

max) =
dṽ0

ds
(s0

min) = 0.
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Substituting the last equality into 3.11 implies

ṽ1(s0
max) = ṽ1(s0

min) = 0,

Hence v̂1(s0
max) = v̂1(s0

min) = 0. Following from the previous equality,

ṽ(s0
max) = ṽ0(s0

max),

and Recall that ṽ1 = Ω̃0v̂1. Thus it suffices to show that dṽ1

ds
(s0

max) < 0. We rewrite the order

ε approximation as

ṽ1 =
M̃ ′
∞(ṽ0)(ṽ0 − ẼK)

1
g̃M

+ M̃∞(ṽ0) + M̃ ′
∞(ṽ0)(ṽ0 − ẼK)

.

Assuming the use of the piece-wise linear approximation of M̃∞ and that ṽ0 ≥ vmin > 0

simplifies the expression for the order ε approximation to

ṽ1 =
(ṽ0 − ẼK)dṽo

ds
1

ãg̃M
+ 2ṽ0 − vmin − ẼK

.

The derivative of the order ε approximation is

dṽ1

ds
=

(
1

ãg̃M
+ 2ṽ0 − vmin − ẼK

)(
dṽ0

ds

2
+ (ṽ0 − ẼK)d

2ṽ0

ds2

)
− 2(ṽ0 − ẼK)dṽ0

ds

2(
1

ãg̃M
+ 2ṽ0 − vmin − ẼK

) .

Therefore

dṽ1

ds
(s0

max) =
(ṽ0(s0

max)− ẼK)
1

ãg̃M
+ 2ṽ0(s0

max)− vmin − ẼK
· d

2ṽ0

ds2
(s0

max).

It suffices to show that d2ṽ0

ds2
(s0

max) < 0. The second derivative of the order 1 approximation

is

d2ṽ0

ds2
=
−πΩ̃0γ(ṽ0 − α) sin(2πΩ̃0s)− cos(2πΩ̃0s)

dṽ0

ds

(ṽ0 − α)2

and thus

d2ṽ0

ds2
(s0

max) =
−πΩ̃0γ

ṽ0(s0
max)− α

< 0
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follows from ṽ0 > α. A similar computation shows that dv̂1

ds
(s0

min) > 0. Thus

dṽ

ds
(s0

max) = εΩ̃0
dv̂1

ds
(s0

max) < 0.

Therefore there exists some smax < s0
max such that

ṽ(smax) = ṽ0(smax) + εΩ̃0v̂1(smax) > ṽ0(s0
max).

A similar argument can be made that there exists some smin < s0
min such that

ṽ(smin) = ṽ0(smin) + εΩ̃0v̂1(smin) < ṽ0(s0
min).

We expand smax = smax
0 − εsmax

1 + · · · and smin = smin
0 + εsmin

1 + · · · in ε where smax
1 , smin

1 > 0

and smax
1 , smin

1 = O(1). Then expanding ṽ(smax) and ṽ(smin),

ṽ(smax) = ṽ(smax
0 − εsmax

1 ) = ṽ(smax
0 )− εsmax

1

dṽ

ds
(smax

0 ) = ṽ0(smax
0 )− ε2Ω̃0s

max
1

dv̂1

ds
(smax

0 ),

ṽ(smin) = ṽ(smin
0 + εsmin

1 ) = ṽ(smin
0 ) + εsmin

1

dṽ

ds
(smin

0 ) = ṽ0(smin
0 ) + ε2Ω̃0s

min
1

dv̂1

ds
(smin

0 ).

The amplitude of the system to second order is

Ã =
ṽ(smax)− ṽ(smin)

2

=
ṽ0(smax

0 )− ṽ0(smin
0 )

2
+ ε2Ω̃0

−smax
1

dv̂1

ds
(smax

0 ) + smin
1

dv̂1

ds
(smin

0 )

2

=

√
β + γ −

√
β − γ

2

· · ·+ ε2Ω̃0

(
smax

1 π2Ω̃0

√
β + γ(α +

√
β + γ − ẼK)

(αg̃M)−1 + 2α + 2
√
β + γ − vmin − ẼK

· · · − smin
1 π2Ω̃0

√
β − γ(α +

√
β − γ − ẼK)

(αg̃M)−1 + 2α + 2
√
β − γ − vmin − ẼK

)
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Note that
−smax

1
dv̂1
ds

(smax
0 )+smin

1
dv̂1
ds

(smin
0 )

2
> 0 and is O(1). Hence we write the amplitude of the

system to second order as

Ã =

√
β + γ −

√
β − γ

2
+ Ω̃F (smax

1 , smin
1 , α, β, γ, g̃M)

where F > 0 and F = O(1). Therefore the amplitude Ã (and thus the gain G̃) of system

(3.7) grows with input frequency Ω̃ for Ω̃ = O(ε2).

When the M-current becomes non-activated for some portion of the solution, i.e.

ṽ0(s) < vmin for some portion of the period, the minimum value of that solution is inde-

pendent of the M-current (eq. 3.13) and ṽ(smin) = 0. Following the same reasoning from the

previous case,

Ã =
ṽ(smax)

2

=

√
β + γ

2
+ ε2Ω̃0

(
smax

1 2π2Ω̃0

√
β + γ(α +

√
β + γ − ẼK)

(αg̃M)−1 + 2α + 2
√
β + γ − vmin − ẼK

)

=
α +
√
β + γ

2
+ Ω̃

(
smax

1 π2Ω̃0

√
β + γ(α +

√
β + γ − ẼK)

(αg̃M)−1 + 2α + 2
√
β + γ − vmin − ẼK

)

and we reach the same conclusion, i.e., the amplitude gain Ã/A grows in Ω̃ for Ω̃ = O(ε2).
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3.7.2. Validation of Piece-Wise Linear Approximation of M̃∞ In Asymptotic

Approximation for Gain of Model GIF Neuron with Low Frequency Input. In this

section, we validate our assumption of a piece-wise linear approximation of the steady-state

M-current activation function in our analysis of the resonant behavior of the model GIF

neuron. We consider two different cases: (1) Fix f(ṽT ) = M̃∞(ṽT ) and vary the activation

threshold value vmin. The equation for this approximation is given by

f(v; vmin) =


M̃∞(ṽT )
ṽT−vmin

(ṽ − vmin) if ṽ ≥ vmin

0 if ṽ < vmin

,

and (2) Fix the activation threshold value vmin and vary a parameter Mmax that deter-

mines the maximum value of f in the operating regime of the model. The equation for this

approximation is given by

f(ṽ;Mmax) =


Mmax

ṽT−vmin
(ṽ − vmin) if ṽ ≥ vmin

0 if ṽ < vmin

Figure 3.11 shows the two types of approximations for various parameter values Mmax and

vmin along with the normalized gain curves for magnitude of M-current g̃M = 10, 100. The

approximation where vmin is fixed appears to result in a more accurate approximation of the

gain curve G̃, especially when the limit of the gain G̃ is taken as Ω̃ → 0. We compute the

maximum gain, resonant frequency, and resonance length curves for each type of approxi-

mation to learn how these approximations change the response of the model GIF neuron to

oscillatory input.

Figure 3.12 shows the maximum gain Gmax, resonant frequency Ω̃res, and resonance

length Ω̃len of the two different approximations for various parameter values Mmax and vmin.

The second approximation scheme where Mmax is varied and the activation threshold vmin is

fixed results in more qualitatively accurate resonant behavior with respect to the full model

and thus appears to be the more appropriate scheme to implement.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11. (a)-(b) Examples of different approximations for the steady-
state activation curve f(ṽ) ≈ M̃∞(ṽ). (c) - (f) Normalized gain for several
approximation parameters. (a),(c),(e): Fix the maximum value of the ac-
tivation curve at f(ṽT ) = M̃∞(ṽT ) and vary the activation threshold vmin.
(b,)(d),(f): Fixing the activation threshold and varying the maximum value of
the approximated steady-state curve.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Figure 3.12. Effects on maximum gain, resonant frequency, and resonance
length of different approximation schemes for the function f(ṽ) ≈ M̃∞(ṽ) com-
pared with those from full model with M̃∞ as functions of the nondimensional
maximal M-current conductance parameter g̃M . Left column: approximation
scheme (1) where vmin is the varied parameter. right column: approxima-
tion scheme (2) where Mmax is the varied parameter. (a)-(b) Limit of gain
of model GIF neuron in response to oscillatory input G̃ as frequency of input
approaches 0. (c)-(d) Maximum gain Gmax (e)-(f) Resonant frequency Ω̃res.
(g)-(h) Resonance length Ω̃len.
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CHAPTER 4

M-Current Promotes Bistability in ICNS Network: Insights from

Firing Rate Model

The details included in the cell-based ICNS network model provide the ability to link

firing dynamics to biophysical parameters. However, the complexity of the cell-based net-

work model makes it difficult identify the dynamical mechanisms that influence the network

behaviour and to characterize behavior over a large portion of parameter space. Math-

ematical reduction of the cell-based ICNS network model to a firing rate model yields a

low-dimensional model that lends itself to mathematical analysis while preserving network-

level activity. Such a low-dimensional model can include the effects of the M-current as an

adaptation variable. Thus, a firing rate model can be used to identify dynamical mechanisms

of network behavior and to predict further activity of the cell-based ICNS network model

that is induced by the M-current.

In this chapter, we derive a firing rate model from data generated by the cell-based

ICNS network model described in chapter 2. The firing rate model is two-dimensional with a

mean firing rate (r(t)) of the network and an adaptation variable (w(t)) to model the mean

activation of the M-current across cells in the network. We show that bistable and excitable

dynamics emerge in the firing rate model, and utilize phase-plane and bifurcation analysis

to gain an understanding of how certain parameters promote or inhibit the bistability or

excitability. The analysis of the firing rate model indicates that the cell-based ICNS network

model with default parameters is not bistable or excitable, but it predicts cell-based network

model parameters that do yield bistability. We confirm firing rate model predictions and

show bistability and excitability in the cell-based ICNS network model.
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4.1. Reduction of ICNS Network Model to Firing Rate Model

Firing rate models are often implemented as a simplified version of a more complex

and biophysically detailed model. They have been used to model the firing activity of a

single neuron [43], a population of neurons [8, 15, 52, 57, 58, 66], and multiple interacting

populations of neurons [15,57,58,66]. While rigorous analytical techniques exist for reducing

cell-based network models to firing rate models, they are difficult to implement on models

that include intra-network connections, adaptation, or non-constant input. Instead, we use

a model fitting approach, where the steady-state firing rate and M-current activation of the

cell-based ICNS network model neurons are averaged over the population and used to fit the

parameters of the steady-state firing rate and adaptation functions that govern the dynamics

of the firing rate model.

4.1.1. Mean Firing Rate r(t). We define the mean firing rate (or population firing

rate) r(t) of the ICNS network model as the ratio of the number of action potentials fired

per unit time to the number of neurons in the population, thus the units of firing rate are

spikes per neuron per second. In this chapter, for convenience, we drop the “mean” and refer

to r(t) simply as firing rate. More precisely, the firing rate of the cell-based ICNS network

model r(t) at time t (msec) is defined as the number of spikes in a sliding window around t

divided by the number of neurons N and window length ∆t

r(t) = 1000
|{tj ∈ S | tj ∈ [t− ∆t

2
, t+ ∆t

2
]}|

N∆t

where S = {t1, t2, ..., tK} are the spike times of all cells in the network. (For the edge cases

t < ∆t/2, or t > T−∆t/2 where T is total simulation time, we shrink the appropriate side of

the window and account for the change in ∆t.) We also define the mean adaptation level of

the network model w(t) as the level of M-current activation averaged across the population

w(t) =
1

N

N∑
j=1

wj(t),
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where wj(t) is the M-current activation variable of a neuron j in the network. Figure 4.1

shows examples of two raster plots of neurons from the cell-based ICNS network model, as

well as the corresponding firing rate r(t) and the adaptation w(t), in response to constant

input current and sinusoidal input current.

Note that changing the window length ∆t affects the smoothness of the resulting mean

firing rate, and thus we choose a value of the window length that reflects the expected time-

scale of changes in the firing rate of the network. In this chapter, we focus on the effects

of the M-current on the model (e.g., bistability) that occurs on a slow time-scale and hence

we choose a window length ∆t = 100 msec to ensure a clear representation of data while

preserving the response of the network.
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(a) (b)

Figure 4.1. Raster plot (top), firing rate r(t) (middle), and adaptation w(t)
(bottom) of cell-based ICNS network model simulations in response to two type
of input for 60 sec of simulated time with first 15 seconds omitted to acount for
transient dynamics. (a) sinusoidal input current, (b) constant input current.
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4.1.2. Firing Rate Model Description. The structure of our firing rate model (sche-

matic shown in figure 4.2) includes (1) Input I(t) = λ(t) where λ describes a random

process determining the spike times of the pre-synaptic input to the network, (2) the effect

of recurrent connections proportional to the firing rate of the network with strength α to

model intra-network synaptic inputs, and (3) an adaptation variable w that models the

mean level of M-current activation over cells in the the network model. These elements are

included to capture the mechanisms from the cell-based ICNS network model that have a

significant impact on the macro-level.

Figure 4.2. Schematic of firing rate model with input I and recurrent con-
nections. r is the firing rate, and w is the intrinsic adaptation variable w.

The firing rate model takes the form

τr
dr

dt
= −r + f(I + αr − βw)(4.1)

τw
dw

dt
= −w + w∞(r)(4.2)

where τr, τw are the time-constants of the firing rate and adaptation, respectively. f(Itot)

is the steady-state mean firing rate of the ICNS network model at constant total input Itot,

w∞(r) is the steady-state adaptation level of the ICNS network at firing rate r, α is the

strength of recurrent connections, and β is the strength of the adaptation.

The steady-state firing rate function is assumed to be a sigmoidal function (i.e., a Hill

or Naka-Rushton function [29])
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(4.3) f(I) = rmax
In

In + Inhalf

,

where rmax is the maximum mean firing rate of the network, Ihalf is the total input at which

the firing rate is half-maximum, and n determines the steepness of the sigmoidal function.

The steady-state adaptation function is assumed to take the form

(4.4) w∞(r) = a(e−br − e−cr) + d,

where a determines the maximal steady-state adaptation level, b and c determine the rate

of rise and decay of w∞(r), and d is the mean adaptation level when the network is inactive

(r = 0). The choice of the forms of f and w∞ was informed by the dynamics of the network

model and M-current (figure 4.3).

4.1.3. Fitting Firing Rate Model Parameters to Cell-Based ICNS Network

Model Data. Careful consideration must be taken during fitting the firing rate model to

cell-based network model data. Specifically, the mean firing rate data (figure 4.3) in the cell-

based network model arises from the combination of impact from external input, input from

recurrent connections, and effects of the M-current. Therefore, each of these components

must be included in the fitting and reduction process. When the firing rate of the network

is at steady-state with a constant input I, dr
dt

= 0, and dw
dt

= 0, and thus

(4.5)
r∗ = f(I + αr∗ − βw∗),

w∗ = w∞(r∗).

or

(4.6)
I = f−1(r∗)− αr∗ + βw∗

w∗ = w∞(r∗).

where r∗ and w∗ are the steady-state values of r and w.
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To obtain the data (r∗, w∗; I) for the parameter fitting of the firing rate model, simu-

lations of the cell-based ICNS network model were run with various values of constant input

I, (i.e. I = At and Ap = 0, where At and Ap are the magnitude of the tonic and periodic

portions of the input, respectively) for 315 sec with the first 15 seconds omitted to account

for transient dynamics. The values of I were chosen to allow the fit of the data to capture

the qualitative features of the steady-state firing function of the cell-based network model.

We then obtained the parameters of the steady-state firing rate model (α, β, Ihalf , rmax,

n, a, b, c, d) by applying the least-squares method to the (r∗, w∗; I) data from the cell-based

ICNS network model to the steady-state firing rate model functions in equation (4.6). The

data from the cell-based network model and the fit of the firing rate model is shown in figure

4.3, and parameters fit from this reduction process are listed in table 4.1.

(a) (b)

Figure 4.3. Steady-state data from the cell-based ICNS network model and
the fit of the firing rate model. Network simulation in red with N = 100
neurons. Data recorded from 315 sec simulated time with first 15 seconds
omitted to take into account transient firing. (a) Steady-state firing rate as
a function of the strength of input I. (b) Steady-state adaptation level of
network as a function of the steady-state firing rate. Parameters for the firing
rate model are shown in table 4.1.
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Fitting the time-constants τr and τw requires time series data from the cell-based ICNS

network model that provides information about the dynamics of the mean firing rate and

adaptation level of the network. To generate this data, simulations of the cell-based ICNS

network model were run constant input (At = I0, Ap = 0) until it reached steady-state firing

and adaptation level. Then, a step change in the input was made (At = I1, Ap = 0), and

exponentials were fit to the time-series data of the mean firing rate r(t) and adaptation level

w(t) of the cell-based ICNS network model. Figure 4.4 shows an example of this data for

I0 = 0.01 and I1 = 0.0065. This process was repeated for various values of I0 and I1 to

obtain a distribution of potential τr and τw values. This distribution was used to constrain

the fitting of τr and τw. The values obtained through the fitting process are shown in table

4.1.

(a) (b)

Figure 4.4. Response of cell-based ICNS network model to a step change in
input from I0 = 0.01 to I1 = 0.0065 at t = 5 sec. (a) Mean firing rate r(t), (b)
adaptation level w(t).
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Parameter Value

rmax 19.55308 Hz
Ihalf 0.009
n 5.7
α 0.000108 sec
β 0.05
a 0.00964
b 0.0435 Hz−1

c 1.584 Hz−1

d 0.00165
τr 100 msec−1

τw 165 msec−1

Table 4.1. Default parameter values of the firing rate model of the ICNS
network. Values obtained through fitting process described in text. Note that
the input parameter I is a control parameter.

4.2. Bistability & Excitability In Firing Rate Model of ICNS Network

4.2.1. Dynamics of Default Firing Rate Model of ICNS Network. The dynam-

ics of the default firing rate model are relatively simple. Figure 4.5 shows examples of these

simple dynamics. Figures 4.5a and 4.5b plot two firing rate solutions r(t) to the default

firing rate model for different initial conditions. The firing rate solutions r(t) asymptoti-

cally approaches steady-states for both values of input I. Figures 4.5c and 4.5d plot the

corresponding phase-planes of the default firing rate model with nullclines and solutions. In

each case, only one fixed point exists, which is a stable node in both cases. The solutions in

each figure asymptotically approach the stable fixed point (r∗, w∗) for both initial conditions

(r(0), w(0)). The steady-state firing rate r∗ increases with I, consistent with the behavior of

the cell-based ICNS network model.
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(a) (b)

(c) (d)

Figure 4.5. Default firing rate model dynamics for (a),(c) input value
I = 0.005 and (b),(d) input value I = 0.0375 with small differences in ini-
tial conditions (r(0), w(0)). (a)-(b) time series of firing rate solutions r(t).
(c)-(d) Phase-plane in (r, w) space with black curves to indicate nullclines,
red curves to indicate solutions, blue dots to indicate steady-states, and black
arrows to indicate qualitative dynamics of region.
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4.2.2. Bistability in Firing Rate Model. While the default firing rate model ex-

presses relatively simple dynamics, we find that changes in recurrent connection strength α

or adaptation strength β can lead to the emergence of bistable dynamics. Figure 4.6 plots

the time-series of the firing rate solution r(t) and the corresponding phase-plane of the firing

rate model with default parameters except for changes in α or β as indicated in the figure.

The initial conditions and input value I for the simulations with a change in α (figures 4.6a

& 4.6c) are the same as those in figure 4.5c, and the initial conditions and input value I for

the simulations with a change in β (figures 4.6b & 4.6d) are the same as those in figure 4.5c.

Both of the firing rate solutions r(t) in figures 4.6c increase initially. However, the

larger solution asymptotically approaches a larger steady-state, while the smaller solution

stops increasing and then decays to a smaller steady-state. Similar dynamics occur in figure

4.6c, but the smaller solution decays quickly and then oscillates for a short period of time

before settling around the steady-state. This implies that, in both altered parameter sets,

the firing rate model displays bistability. We can see these bistable dynamics in the phase-

plane of the firing rate model in figures 4.6b & 4.6d. The change in α and β bestowed the

system with three steady-states: two stable and one unstable.
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(a)

α = 0.000441

(b)

β = 4

(c)

α = 0.000441

(d)

β = 4

Figure 4.6. Changing the parameter values of α or β bestows the firing rate
model with bistable dynamics. (a)-(b) Firing rate solutions r(t) approaching
two different steady-states, (c)-(d) Phase-plane of firing rate model shows three
steady-states. black curves indicate nullclines, red curves indicate solutions,
black arrows indicate qualitative dynamics of the region. Parameters different
from default set indicated in figures. Input constant at I = 0.005 in (a),(c)
and I = 0.0375 in (b),(d).
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4.2.3. Excitability In Firing Rate Model. The bistable dynamics observed in the

previous subsection imply that excitable dynamics can emerge with further parameter chan

ges. In fact, implementing the same two parameter sets and set of initial conditions in the

firing rate model as in the previous subsection but decreasing the input value(s) I results in

the excitable dynamics shown in figure 4.7.

Figures 4.7a and 4.7b plot the firing rate solution r(t) of the firing rate model for

altered α and altered β, respectively. The solution with the smaller firing rates decay to

a low firing rate steady state value, but the larger solutions show excitation, increasing in

magnitude and remaining at the “active” state (high firing rate state) before decaying to the

low firing rate steady-state after a time period on the order of seconds. The corresponding

phase-planes in figures 4.7c and 4.7d show that the slight decrease in I results in a loss of

the larger two steady-states compared to figures 4.6c and 4.6d. The solution(s) that exhibit

excitation first approach where the larger stable fixed points were, and then eventually decay

back to the lone remaining fixed point.

Quantifying the parameter changes that promote bistability or excitability in the fir-

ing rate model can provide insight into parameter values that could endow the cell-based

network model with bistable dynamics. In the following section, we perform bifurcation

and parameter sensitivity analysis on the firing rate model to gain an understanding of how

bistability is detered or promoted.
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(a)

α = 0.000441

(b)

β = 4

(c)

α = 0.000441

(d)

β = 4

Figure 4.7. Changing the values of α or β and slightly decreasing the input
value I bestows the firing rate model with excitable dynamics. (a)-(b) Firing
rate solutions r(t) showing excitation before approaching a steady-state, (c)-
(d) Phase-plane of firing rate model shows a single steady-state. Black curves
indicate nullclines, red curves indicate solutions, black arrows indicate quali-
tative dynamics of the region. Parameters different from default set indicated
in figures. Input constant at I = 0.00499 in (a),(c) and I = 0.0365 in (b),(d).
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4.3. Bifurcation & Parameter Sensitivity Analysis of Firing Rate Model

In the previous section, we observed that bistable dynamics emerge when changes to

recurrent connection strength α and adaptatation strength β, i.e., the system gained two

new fixed points. The standard mechanism through which a system gains/loses two fixed

points is called a saddle-node bifurcation [74]. A saddle-node bifurcation occurs when,

as a parameter is (continuously) varied, two fixed points move together, collide, and are

subsequently destroyed [74]. The bifurcation point occurs at the parameter value that the

two fixed points collide. (Note that this can also happen in reverse, where a single fixed

point appears and then splits into two distinct fixed points).

In this section, phase-plane and bifurcation analysis are used to analyze the firing

rate model and explore the sensitivity of the bistable dynamics observed in section 4.2 to

parameter changes. First, the dynamics of the default firing rate model is examined through

variation of the input control parameter I. Next, the sensitivity of the default firing rate

model to changes in recurrent connection strength α and adaptation strength β is explored.

The saddle-node bifurcations that emerge as a result of the changes in α and β represent

a transition from monostable dynamics to bistable dynamics, providing a natural method

to map the regions in parameter spaces that correspond to bistable dynamics. Then, we

show that the non-monotonicity of the steady-state adaptation function w∞(r) promotes

bistability in the firing rate model.

Note that excitable dynamics can occur when the firing rate model is monostable but

parameter values are sufficiently close to a parameter set that corresponds to a saddle-

node bifurcation (e.g., figures 4.7c, 4.7d). (XPPAUTO software was used to generate the

bifurcation data presented in this chapter.)

4.3.1. Effects of Input Magnitude: I. The single fixed point of the default firing rate

model for various input values I shown in section 4.2 implied that the dynamics of the default

firing rate model are simple, i.e., no bifurcations emerge as a result of the variation of the

input control parameter I. Figure 4.8a plots the (r, w) phase-plane for various input values
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I. As I changes, the r-nullcline moves across the (r, w) plane, but for all valuees of I there

is only one intersect of the w-nullcline. Furthermore, no qualitative changes to the phase

plane occur as I is varied. Figure 4.8b plots a bifurcation diagram for the firing rate model

in (r, I) space. A single, stable fixed point exists for all values of the input control parameter

I, and no saddle-node bifurcations occur as I is varied. This implies that the default firing

rate model does not exhibit bistable dynamics, which is consistent with cell-based network

model simulations. However, the results in section 4.2 for the firing rate model suggest that

changes to the recurrent connection strength α and adaptation strength β parameters can

alter the qualitative dynamics of the firing rate model and induce saddle-node bifurcations,

i.e., promote bistability.

(a) (b)

Figure 4.8. Steady-states in the default parameter regime change a func-
tion of the constant input parameter I. (a) Phase-plane with w-nullcline
in solid black, and r-nullclines for various values of I (from left to right,
I = 0.005, 0.006, 0.007, 0.008, 0.009, 0.01). (b) Single-parameter bifurcation
diagram of the fixed points of the firing rate r = r∗ of the default firing rate
model as a function of the input parameter I. Note that this is the steady-state
f − I curve.
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4.3.2. Effects of Recurrent Connection Strength: α. In section 4.2, we observed

that an increase in recurrent connection strength α led to the emergence of bistable dynamics

in the firing rate model. Note that, α > 0 implies that recurrent coonnections in the network

have a net excitatory effect on the network, whereas if α < 0, then the recurrent connections

have a net inihibitory effect. The default recurrent connection strength α = 0.000108 > 0

implies that the firing rate model upregulates its own activity, and suggests that the recurrent

connections in the cell-based network model have a net excitatory effect on.

Figure 4.9a plots the (r, w) phase plane for the default firing rate model with input

value I = 0.005 and various r-nullclines that depend on the recurrent connection strength

parameter α. Two saddle-node bifurcations occur at two critical values of the recurrent

connection strength parameter (see the yellow and purple r-nullclines). When α is between

these two critical values, the firing rate model has three fixed points (bistable), otherwise a

single fixed point exists (monostable). Figure 4.9b plots a bifurcation diagram of the firing

rate model in the (α, r) parameter space with I = 0.005. The red curves indicate stable

fixed points, and the black curve indicates saddle points. Thus, bistability exists when the

system has 3 fixed points - two stable and one saddle.
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(a) (b)

I = 0.005

Figure 4.9. Steady-states of the default firing rate model with fixed input
I = 0.005 change as a function of the recurrent connection strength parame-
ter α. (a) Phase-plane with w-nullcline in solid black and various r-nullclines
in dashed colors. From left to right, α = 0.000108 (blue), 0.000440786 (yel-
low), 0.000525 (orange), 0.000606325 (purple), 0.00065 (green). (b) Single-
parameter bifurcation diagram of the fixed points of the firing rate r = r∗ of
the firing rate model as a function of the parameter α with constant input
I = 0.005 shows bistability. Red curves indicate stable fixed points, black
curve indicates saddle points.

The range of α values that result in bistability can change with the input I. Next, we

examine the relationship between α and I to determine the sensitivity of bistable dynamics

in the firing rate model to changes in the recurrent connection strength α. Figure 4.10 plots

a two parameter bifurcation diagram for the default firing rate model in (α, I) parameter

space. The red curve plots saddle-node bifurcations, separating (α, I) space into two regions

with distinct dynamics: monostable (single, stable fixed point) and bistable (two stable fixed

points and a saddle point). The blue, yellow, red, purple, and green dots correspond to the

parameter values of the nullclines in figure 4.9a. (The blue dot in the monostable region

represents the default firing rate model at I = 0.005). In figure 4.10, the robustness of the

bistable dynamics are maximized at a value αc = 0.0007912, i.e., bistability exists for the

largest range of input values I at this value of α = αc.
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The bifurcation analysis in this subsection implies that bistability does not exist in the

firing rate model if the recurrent connection strength is not sufficiently large, which suggests

that in the cell-based network model, the strength of the intra-network excitatory synapses

compared to the intra-network inhibitory synapses can determine if the network exhibits

bistability.

BistableMonostable

Monostable

Figure 4.10. Two parameter bifurcation diagram in (α, I) parameter space.
The red curve plots saddle-node bifurcations and separates the space into two
regions: monostable (single, stable fixed point) and bistable (two stable fixed
points, one saddle point). The colored dots correspond to the parameters of
the firing rate model in figure 4.9a. An extended version of this figure for
larger α values is shown in Appendix figure 4.21a.
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4.3.3. Effects of Adaptation Strength: β. Adaptation strength β is a measure of

how much influence the M-current exerts on the firing rate model. Note that we restrict

our analysis to β ≥ 0 as the M-current has an “inhibitory” effect. Figure 4.11a plots the

(r, w) phase-plane of the default firing rate model with r-nullclines for several values of the

adaptation strength β. Two saddle-node bifurcations occur at critical values of β. Bistable

dynamics occur when β is between the two critical values. Figure 4.12 plots a bifurcation

diagram in the (β, I) parameter space with fixed input I = 0.05, explicitly showing the range

of adaptation strength β values for which bistability occurs.

(a) (b)

I = 0.05

Figure 4.11. Steady-states of the default firing rate model with fixed input
I = 0.005 change as a function of the adaptation strength parameter β. (a)
Phase-plane with w-nullcline in solid black and various r-nullclines in dashed
colors. From left to right, β = 0.0.05 (blue), 3 (yellow), 4.377 (orange), 5.25
(purple), 6.125 (green), 8 (light blue). (b) Single-parameter bifurcation dia-
gram of the fixed points of the firing rate r = r∗ of the default firing rate
model as a function of the parameter β with constant input I = 0.05 shows
bistability. Red curves plots stable fixed points, black curve plots saddle points

The range of β values that result in bistable dynamics changes with the input I. Figure

4.12 plots a two parameter bifurcation diagram of the firing rate model in (β, I) parameter

space. The red bifurcation curve plots saddle-node bifurcations, and splits the (β, I) space

into distinct bistable and monostable regions. The range of input values I that lead to

bistable dynamics in the firing rate model increases as β increases, i.e., the robustness of the
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bistability increases with β. The bifurcation diagram also shows that bistability does not

exist in the default firing rate model below a critical value of β ∼ 0.015. This implies that

the M-current is necessary for the firing rate model (with default parameters), and thus the

cell-based network model (with default parameters), to show bistability.

Monostable

BistableMonostable

Figure 4.12. Two parameter bifurcation diagram in (β, I) parameter space.
The red curve plots saddle-node bifurcations and separates the space into two
regions: monostable (single, stable fixed point) and bistable (two stable fixed
points, one saddle point). The colored dots correspond to the parameters of
the firing rate model in figure 4.11a.

4.3.4. Recurrent Connection Strength α and Adaptation Strength β Can Pro-

mote Bistability. The behavior of the default firing rate model responds to changes in the

recurrent connection strength α and the adaptation strength β, i.e., the qualitative dynamics

of the default firing rate model can change from monostable to bistable through changes in

α or β. However, the analysis done so far relied on changing only one parameter (recall that

the input I is a control parameter).

Figure 4.13 plots a two parameter bifurcation diagram of the firing rate model in

(α, β) parameter space for various input values I, with the red curves indicating saddle-node
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bifurcations. The shape of the bistable region does not change with I and exists inside the

cone-like region contained by the saddle-node bifurcation curves. Both recurrent connection

strength α and adaptation strength β play an important role in the promotion of bistability.

If recurrent connection strength α and/or adaptation strength β are sufficiently small, e.g.

default firing rate parameters (blue dot in figure 4.13), no bistable dynamics emerge for any

input I. However, a region in (α, β) parameter space where α and β are relatively large

exists where bistable dynamics occur for all input values I. This region is labeled “Bistable”

in figure 4.13. This implies that the M-current and the intra-network synaptic connections

play a key role in the promotion of bistability in the cell-based network model.

Bistable

Figure 4.13. Two parameter bifurcation diagrams of firing rate model in
(α, β) parameter space for various input values I. Red curve(s) indicate saddle-
node bifurcations and separate the space into monostable and bistable regions.
Geometry of bistable region does not change with I. Monostable region exists
outside of cone-like region contained by bifurcation curvs, bistable region is
contained inside cone-like region bounded by saddle-node curve(s). Shared
region of bistability for all I values is labeled “Bistable”. Blue dot corresponds
to default values α = 0.000108, β = 0.05 and is in the monostable region for
all input I values.
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4.3.5. Firing Rate Model Not Sensitive to Remaining Parameters. Bifurcation

and sensitivity analysis of the default firing rate model revealed that only recurrent con-

nection strength α and adaptation strength β significantly affect the existence of bistability.

Changing any of the parameters n, Ihalf, rmax, a,b,c, or d do not result in saddle-node bifurca-

tions, and thus do not result in bistability. However, changes in the decay parameter b can,

when combined with changes in α and β, lead to insight into the role of the non-monotonicity

of the steady-state adaptation curve in promoting bistable dynamics. This is presented in

section 4.4 and Appendix 4.5.3.

4.4. M-Current Promotes Bistability in Firing Rate Model

Recall that the steady-state adaptation curve w∞(r) of the default firing rate model is

non-monotonic (figure 4.3b). The steady-state adaptation curve is

w∞(r) = a(e−br − e−dr) + d.

Figure 4.15a plots the steady-state adaptation curve for various values of the decay parameter

b, showing that the (non-)monotonicity of the steady-state adaptation curve can be controlled

with a single parameter (b) and can be classified into two parameter domains: non-monotonic

if b > 0, and monotonic with no limit if b < 0.

In this section, the non-monotonicity of the steady-state adaptation function w∞(r) is

shown to promote robust bistable dynamics in the firing rate model by altering the bistable

regions in the (α, I) and (β, I) parameter space, i.e., the non-monotonicity of the adaptation

function increases the range of recurrent connection strength α and adaptation strength β

parameter values that lead to bistability in the firing rate model.

Figure 4.14b plots two parameter bifurcation diagrams of the default firing rate model

in the (α, I) parameter space for various decay parameters b with the corresponding w∞(r)

functions plotted in figure 4.14a. The bifurcation curve shifts in the (α, I) space as the

decay parameter b changes. The minimum recurrent connection strength α required for the
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firing rate model to express bistable dynamics is smaller when the adaptation curve is non-

monotonic (b > 0) than the monotonic cases (b ≤ 0). We note that the shift of the bistable

region in (α, I) parameter space is relatively small, thus the sensitivity of bistability in the

firing rate model (with respect to recurrent connection strength α and input I) to changes

in the decay parameter b is low.

(a)
(b)

Bistable

Monostable
α

=
0.

00
01

08

Figure 4.14. (a) Three examples of steady-state adaptation curve w∞(r) for
various values of decay paramter b. (b) Two-parameter bifurcation diagram(s)
in (α, I) parameter space. Solid curves plot saddle-node bifurcations for vari-
ous decay parameters b of the steady-state adaptation curve w∞ and separate
the space into monostable and bistable regions. Default recurrent connection
strength parameter α = 0.000108 shown as dashed curve.
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Figure 4.15b plots two parameter bifurcation diagrams of the default firing rate model

in the (β, I) parameter space for various decay parameters b with the corresponding w∞(r)

functions plotted in figure 4.15a. The bifurcation curves enclosing the bistable region in the

(β, I) space form a cone: As the decay parameter b changes, the area of the cone changes, and

the cone shifts. An example of this change is shown in figure 4.15b - the area of the bistable

region decreases to 0 as the adaptation curve w∞(r) approaches monotonicity. The sensitivity

of the bistable region to changes in b is high, implying that both adaptation strength β and

the non-monotonicity of the adaptation curve b < 0 interact to promote bistability. Both

of these parameters stem from the M-current, suggesting that the M-current plays a pivotal

role in the promotion of bistability in the cell-based network model.

(a) (b)

Monostable

β
=

0.
05

Figure 4.15. (a) Adaptation curve w∞(r) for various decay parameters b. (b)
Two-parameter bifurcation diagrams in (β, I) parameter space. Solid curves
plot saddle-node bifurcations for various decay parameters b of the steady-state
adaptation curve w∞(r) and separate the space into monostable and bistable
regions. Bistable regions are contained inside the cone formed by the saddle-
node bifurcation curve, monostable regions are outside of the cone. Area
of bistable region decays to 0 as adaptation curve approaches monotonicity.
Default adaptation strength parameter β = 0.05 shown as dashed curve.
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4.5. Predictions from Firing Rate Model Verified in Cell-Based Network

Model: Identification of Mechanisms that Promote Bistability

Analysis of our firing rate model indicates that changing recurrent connection strength

α, adaptation strength β, and steady-state adaptation decay parameter b in a coordinated

manner can promote bistable dynamics in the firing rate model. This suggests that changing

corresponding parameters in the cell-based network model will also lead to bistable dynamics.

In order to test for bistability in the cell-based network model for various parameter

sets, we apply a 0.1 sec stimulus pulse with amplitude 0.1 (as described in chapter 2 section

1.4) when it is in a non-active state to bring the network into a high activity state. We then

determine if the network remains “indefinitely” in the high activity state after the stimulus

is turned off.

4.5.1. Increased Recurrent Connection Strength Promotes Bistability. The

recurrent connectiion strength α in the firing rate model relates to several parameters in

the cell-based network model. Specifiically, increasing the maximal synaptic conductances

gsyn,e/i, the probability of excitatory synaptic connections p, and the synaptic decay time-

constant τd could be interpreted as increasing the effect of the recurrent connection strength.

Therefore, we alter parameters in the cell-based model as follows: (1) Increase the maximal

synaptic conductances to gsyn,e/i = 5.7 nS/cm2, (2) Increase the probability of excitatory

synaptic connections to p = 0.8, and (3) Increase the synaptic decay time-constant to τd = 25

msec [70]. Furthermore, to increase the excitability of the model neurons, we (4) decrease

the average threshold potential vT , maximal leakage conductance gL, and maximal delayed

rectifier conductance gK of the cells. For each neuron, these parameters are drawn from the

uniform distribution U(0.95x, x), where x = vT , gL, gK are the values of parameters in our

“default” cell-based network model.

Figure 4.16a plots the mean firing rate (r) of the cell-based network model with in-

creased recurrent connection strength as a function of time. The network is in a non-active

state (r(t) = 0 Hz) before the input pulse. When the input is turned on, the mean firing
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rate of the network jumps to a highly active state (r(t) ≈ 15 Hz) and remains in this state

even after the input is turned off, and therefore the cell-based model displays bistable dy-

namics. Figure 4.16c plots the mean adaptation level (w) of the cell-based network model

as a function of time. Following the mean firing rate, the adaptation level increases to a

steady-state value when the input is turned on and remains there after the input is turned

off. Figure 4.16e plots the average firing ratee and adaptation level in the (r, w) phase-plane.

The solution trajectory (r(t), w(t)) is indicated by the black curves when the input is on

(I(t) = 0.1), and indicated by the red curve when the input is off (I(t) = 0). The green and

blue curves indicate putative r− and w−nullclines (for I(t) = 0), respectively. The putative

nullclines are based on insight from the analysis of the firing rate model. Note that, during

and after the input pulse, the solution trajectory hover around a (presumed) high activity

stable steady-state (i.e., the intersection of the nullcines).

We can destroy bistability in the system by decreasing other parameters related to

recurrent connection strength α. For example, figures 4.16b, 4.16d, and 4.16f plot the mean

firing rate, mean adaptation level, and (r, w) phase-plane, respectively, when the probability

of excitatory neurons is decreased to pICNS,e = 3.5 ln(100)/99. The mean firing rate and

adaptation level increase while the input is turned on, but then decay down to 0 after the

input is turned off. Note that, during the input pulse, the solution trajectory in the (r, w)

phase-plane in figure 4.16f remains near the (presumed) stable fixed point that existed before

reducing pICNS,e. However, when the input is turned off, the solution trajectories approach

the non-active steady-state. This suggests that the reduced recurrent connection strength

caused a saddle-node bifurcation that leads to the elimination of a stable fixed point and

saddle point.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16. Mean firing rate and M-current activation data for a bistable
(a),(c),(e) and excitable (b),(d),(f) network model in response to the pulse
input I(t). (a),(b) Mean firing rate r of the network model as a function of
time. (c),(d) Mean adaptation w as a function of time (e),(f) Phase plane of r
and w. Red curve indicates when input is off, black curve indicates input is on.
Putative r-nullcline in green, putative w-nullcline in blue. Putative nullclines
based on insight gained from analysis of the firing rate model, and indicate
putative nullclines when there is no input (I = 0).
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4.5.2. Decreased Adaptation Strength Promotes Bistability. Note that increas-

ing the recurrent connection strength in the cell-based model bestowed the system with

bistability for Iconst = 0. This implies that our new parameter set for which the cell-based

model displays bistability corresponds to the triangular region in figure 4.13 (for I = 0)

where the firing rate model is bistable. Figure 4.13 predicts that increasing the adaptation

strength β above a critical value will destroy bistability. This suggests that increasing the

net effect of the M-current will destroy bistability in the cell-based network model.

Figures 4.17a, 4.17c, and 4.17e plot the mean firing rate, adaptation, and the (r, w)

phase-plane of the cell-based network model from section 4.5.1 showing bistable dynamics.

Figures 4.17b, 4.17d, and 4.17f show that increasing the average gM value from 8 nS/cm2

to 11 nS/cm2 induces a loss of bistability. Specifically, increasing the average value of the

maximal M-current conductance increases the net effect of the M-current in the cell-based

network model and flattens the putative r−nullcline, inducing a saddle-node bifurcation and

eliminating the possibility of bistability. Thus, in this case, increased adaptation strength

deters bistable dynamics in the cell-based model.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17. Mean firing rate and M-current activation data for a bistable
(a),(c),(e) and excitable (b),(d),(f) network model in response to the pulse
input I(t). (a),(b) Mean firing rate r of the network model as a function of
time. (c),(d) Mean adaptation w as a function of time (e),(f) Phase plane of r
and w. Red curve indicates when input is off, black curve indicates input is on.
Putative r-nullcline in green, putative w-nullcline in blue. Putative nullclines
based on insight gained from analysis of the firing rate model, and indicate
putative nullclines when there is no input (I = 0).
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4.5.3. Non-Monotonicity of Steady-State Adaptation Curve Promotes Bista-

bility. The steady-state adaptation curve in the default cell-based network model and firing

rate model is non-monotonic (figure 4.3), i.e., as the firing rate increases the level of adap-

tation first increases and then decreases. The analysis of the firing rate model suggests that

this non-monotonicity of the steady-state adaptation curve can promote bistability. Note

that increased activation of the M-current during a spike can lead to a monotonic steady-

state adaptation curve. Indeed, figures 4.18a and 4.18b plot the steady-state mean firing

rate and adaptation level of the cell-based network model from section 4.5.1 with a 75%

increase of the saturation factor ∆w, respectively. Note that the steady-state adaptation

curve is monotonic. Therefore, we examine the effects of increasing the saturation factor of

the M-current (∆w) in the cell-based network model.

(a) (b)

Figure 4.18. Mean steady-state firing rate and adaptation level from cell-
based network model with an increased M-current saturation factor by 75%
(Note that this parameter change does not result in any of the activation
variables w elevating above the saturation value of 1). The mean steady-state
adaptation curve is strictly monotonic. (a) Mean steady-state firing rate of the
network r = r∞. (b) Mean steady-state adaptation of the network w = w∞
as function of the mean steady-state firing rate. The data was computed for
various constant input values I(t) from 315 seconds of simulated time with 15
seconds removed to account for transience.
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Figure 4.19 plots the mean firing rate, adaptation, and (r, w) phase-planes. Figures

4.19a, 4.19c, and 4.19e plot the mean firing rate, adaptation level, and phase plane of the

cell-based network model from section 4.5.1 showing bistable dynamics. Figures 4.19b, 4.19d,

and 4.19f plot the mean firing rate, adaptation level, and phase plane, respectively, when the

saturation factor is increased by 75%. Note that the putative r−nullcline remains unchanged,

but the putative w−nullcline does not decrease at high firing rate (r). Thus, there are no

fixed points at high activity and no bistability.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.19. Firing rate r and adaptation w for a bistable cell-based net-
work model (a)-(c) and (d)-(f) network model with increased superthreshold
M-current activation. Increased activation during firing of action potentials in-
hibits the bistable dynamics. (a),(d) Mean firing rate r of the network model
as a function of time. (b),(e) Mean adaptation w as function of time. (c),(f)
Mean firing rate and adaptation phase plane. Black curve indicates input is
on, red curve indicates input off. Putative r-nullcline in green, and putative w-
nullcline in blue based on insight from analysis of firing rate model dynamics,
and indicate putative nullclines when there is no input (I = 0).
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4.6. Appendix

4.6.1. Bistable Parameter Set Decreases Parameter Sensitivity. The default fir-

ing rate model does not display bistability, but altering the recurrent connection strength

and/or the adaptation strength parameters bestows the firing rate model with bistable dy-

namics. The sensitivity of the firing rate model to parameter alterations can change depend-

ing on the parameter set implemented before parameter changes. To show this, parameter

values α = 0.0015 and β = 2 are chosen so that the firing rate model displays bistable

dynamics. Figure 4.20 plots a bifurcation diagram of this bistable firing rate model in the

(I, r) parameter space.

Figure 4.20. Bifurcation diagram for firing rate model in a bistable parame-
ter set with (α, β) = 0.0015, 2), and I as the control parameter. The remaining
parameters are default parameters from table 4.1.
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Figure 4.21 plots two bifurcation diagrams in the (α, I) and (β, I) parameter space.

The saddle-node bifurcation curves for the default firing rate model are plotted as the solid

red curves, and the saddle-node bifurcation curves for the bistable firing rate model with

α = 0.0015 and β = 2 are plotted as the dotted red curves. The shape of the bistable region

does not change when the parameters are changed, but the bistable region in the parameter

spaces are much larger for the altered firing rate model with altered α, β parameter values.

This implies that the sensitivity of the firing rate model to changes in recurrent connection

strength and adaptation strength decreases when the original parameters implemented for

the firing rate model result in bistable dynamics.

(a)

Monostable

(b)

Monostable

Figure 4.21. Two-parameter bifurcation diagram(s) demonstrating how
changing a bistable firing rate model has reduce sensitivity of to parameter
perturbations. The red curves indicate saddle-node bifurcations with the en-
closed area representing bistability. The area outside of the red curves indicate
monostability. Remaining parameters not addressed in legend(s) taken from
table 4.1.

4.6.2. Non-Monotonicity of Steady-State Adaptation Curve Promotes Robust

Bistable Dynamics. In this subsection, analysis of the sensitivity of the bistable firing rate

model to changes in the (non-)monotonicity of the steady-state adaptation curve is presented.

Figure 4.22 plots a two parameter bifucation diagram in (b, I) parameter space, where the

decay parameter b controls the (non-)monotonicity of the adaptation function w∞(r) - i.e.
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if b > 0, then w∞(r) is non-monotonic, if b = 0, then w∞(r) is monotonic with asymptotic

limit, and if b > 0 then w∞(r) is monotonic without a limit. Clearly the bistable model

(default parameters from table 4.1 except α = 0.0015, β = 2) expresses bistable dynamics

even when the adaptation function w∞(r) is monotonic. However, the range of input values

I that induce bistable dynamics is reduced significantly when b ≤ 0. This implies that

the non-monotonicity of the adaptation curve/function promotes robust bistable dynamics,

i.e. the bistable dynamics are less sensitive to changes in input I when the steady-state

adaptation curve is non-monotonic.

Bistable

Monostable

Figure 4.22. Two parameter bifurcation diagram for the firing rate model
with default parameters except (α, β) = (0.0015, 2) implemented with b on
the horizontal axis controlling the monotonicity of the steady-state activation
curve and I on the vertical axis controlling the strength of input. The largest
range of input values which result in bistable dynamics occur when b > 0. A
decrease in the non-monotonicity of the activation curve is correlated with a
decrease in the robustness of bistability in the model with respect to input.
Eventually the monotonicity is increased enough that it eliminates any bistable
dynamics from the model.

106



CHAPTER 5

Autonomic Control of Cardiovascular System - Hierarchical

Structure of ANS Promotes Local Control

In the previous chapters, we modeled the ICNS only. (Note, however, that our ICNS

model is sufficiently general that it can be used to model a general ANS ganglion, including

the ITNS.) In this chapter, we incorporate the cell-based and firing rate models of the ANS

ganglia developed in chapters 2 and 4 into a holistic model of the autonomic neurocardiovas-

cular control system that includes a hierarchical neural circuit model of the ANS, a phase

model of the sinoatrial node (SAN), a mechanical model of the cardiovascular system, and

a model describing the baroreflex. In the future, we aim to implement this model to inves-

tigate the impact that the hierarchical structure of the ANS has on cardiovascular control,

i.e., address the question: What do the ICNS and ITNS contribute to the neurocardivascular

control system? This chapter primarily sets up future work, some preliminary results are

provided.

5.1. Hierarchical Models of Autonomic Nervous System for Cardiovascular

Control

The structure of our ANS network model is based on the anatomical hierarchical neural

circuit outlined by by Shivkumar et al. [24,69] and the corresponding computational models

of Kember et al. [37, 41] (see figure 5.1). The neural circuit consists of the sympathetic

pathway (SNS) and the parasympathetic pathway (PNS). The SNS comprises three layers

(subnetworks): the central nervous system (CNS), the intrathoracic nervous system (ITNS)

and the intrinsic cardiac nervous system (ICNS). Efferent pathways connect the CNS to the
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ITNS and the ITNS to a subpopulation of neurons in the sympathetic ICNS (i.e., the S-

ICNS). Afferent pathways connect the S-ICNS with the ITNS. The PNS comprises two layers

(subnetworks): the CNS and a subpopulation of neurons in the parasympathetic intrinsic

cardiac nervous system (i.e., the P-ICNS) with efferent connections from the CNS to the

P-ICNS. The S-ICNS and the P-ICNS are also interconnected. Note that there is no clear

delineation between a sympathetic ICNS and a parasympathetic ICNS, and the S-ICNS and

the P-ICNS in the model are extensively connected, effectively forming a single subnetwork.

Figure 5.1. Schematic showing the network connectivity and structure of
the hierarchical network model of the cardioascular autonomic nervous system.
Sympathetic nervous system is shown in blue, parasympathetic nervous system
is shown in green. The ICNS is not clearly delineated in the model but is shown
here to indicate that it is included in both the SNS and PNS models.

5.1.1. Cell-Based Network Model of ANS.

5.1.1.1. CNS Neuronal Dynamics. The sympathetic and parasympathetic CNS subnet-

works contain 100 model neurons each. Spike times for the individual neurons in the CNS

subnetworks are modelled as renewal processes. That is, the firing times of the j-th neu-

ron in the sympathetic and the parasympathetic branches of the CNS are given by Poisson

processes with firing rates λSNS and λPNS with a post-spike absolute refractory period of

tref [26].
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5.1.1.2. Network Connectivity. Synaptic dynamics and network connectivity within the

ITNS and ICNS subnetworks are as described in chapter 2 sections 2.1.2 and2.1.3, respec-

tively. The probability of connection between the S-ICNS and P-ICNS neurons is pSP = pPS.

In the PNS, efferent connections from CNS neurons to P-ICNS neurons occur randomly

with probability of connection pPNS. In the SNS, afferent connections from the S-ICNS to

the ITNS occur with probability pSNS,aff. In the SNS, neurons in the ITNS receive efferent

input from CNS neurons with probability pITNS,eff, and S-ICNS neurons receive efferent in-

put from ITNS neurons with probability pICNS,eff. Each neuron in the ITNS that receives

efferent input receives it from n+1 random presynaptic neurons in each preceding layer (with

n = 3), where the n connections are weak, and the 1 connection is strong. This n + 1 con-

vergent innervation is observed in both amphibian sympathetic ganglia [81] and mammalian

sympathetic ganglia [31, 34, 71]. The random connectivity in the neural circuit inherently

generates populations of afferent, efferent and local circuit neurons as described by Shivku-

mar and colleagues [24,69]. The model for afferent feedback from the cardiovascular system

is inlcuded as described in chapter 2 section 2.1.4 is included: The function describing the

times of the presynaptic spikes of input is a scaled version of the left ventricular pressure

(LVP). We also include local pressure feedback from atrial stretch receptors [78] (modeled

in the same way as LVP feedback) to the sympathetic and parasympathetic subnetworks

as λ(t) = max(0, Pla,mean − Pla) and λ(t) = max(0, Pla − Pla,mean), respectively, where Pla

is left atrial pressure and Pla,mean = 7.26 mmHg is the mean value of Pla during “resting”

conditions. These functions are scaled so the expected number of pre-synaptic input spikes

per cardiac cycle is equal to that of the LVP afferent feedback. Note that the two afferent

feedbacks add linearly.

5.1.2. Firing Rate Model of ANS. We also construct a neurocardiovascular control

model incoporating the firing rate model derived in chapter 4 for each subnetwork (ITNS and

ICNS) with the framework of the firing rate extended to include the connections between

the ITNS and ICNS subnetworks shown in figure 5.2.
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Figure 5.2. Schematic of the firing rate model of the ANS. The structure of
the model is the same as the structure of the cell-based network model of the
ANS, but each subnetwork is represented by a firing rate model..

The equations for the firing rate model of the ANS are

τr
dr3

dt
= −r3 + f(σ13I1 + αr3 − βw3 + σ43r4)

τw
dw3

dt
= −w3 + w∞(r3)

τr
dr4

dt
= −r4 + f(σ14I1 + αr4 − βw4 + σ34r3 + σ54r5)

τw
dw4

dt
= −w4 + w∞(r4)

τr
dr5

dt
= −r5 + f(σ25I2 + αr5 − βw5 + σ45r4)

τw
dw5

dt
= −w5 + w∞(r5)

where Ik is the activity of the sympathetic (k = 1) CNS and the parasympathetic (k = 2)

CNS. rj is the firing-rate of the j-th layer, wj is the adaptation due to the M-current in

the j-th layer, σjk is the connection strength of the input from layer j into layer k, α is the
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recurrent connection strengh of layer j, β is the adaptation strength of layer j for j = 3, 4, 5.

The parameters for f and w∞ are given in table 4.1 of chapter 4.

We assume that sympathetic and parasympathetic CNS activity is modeled by a single

renewal process, I1 and I2, respectively. To model the reduced central signals that the ICNS

subnetworks receive directly compared to those the ITNS subnetwork receive directly [37],

we set σ14 = σ25 = 3
4
σ13 = 3

4
. The connection strength parameters σ34, σ43, σ45 and σ54

were chosen to match some basic quantitative behaviors of the cell-based ANS model. The

homogenous construction of the parasympathetic and sympathetic ICNS along with the equal

probabilities of connections between the S-ICNS and P-ICNS (pSP ) implies that σ45 = σ54.

The connection strength parameters σ13, σ25 = 1 were chosen to reflect the input modeling

choices in chapter 2. The σjk, α, and β parameters are provided in Table 5.1.

Parameter Value

α 0.000108
β 0.05
σ13 1
σ14 0.75
σ25 1
σ34 0.00008
σ43 0.00005
σ45 0.000075
σ54 0.000075

Table 5.1. Parameters for firing rate model of ANS. Note that the parame-
ters σ13 and σ25 are equal to 1 to match with modeling choices of input from
chapter 2 and α, β values taken from chapter 4.

5.2. Phase Model of Sinoatrial Node with Neural Input

The SAN acts as a pacemaker for the heart, setting the heart rate. For simplicity,

a phase model is used to describe the phase of the SAN dynamics in a similar manner to

previous work [60,77,78], however we explicitly use a phase-response curve (PRC) to capture

the dependence of the timing of neural input on the phase of the SAN, that is, the dynamics
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are given by

dθ

dt
= ω + Z(θ)I(t),

where θ is the phase of the SAN between 0 and 1, ω = 1/833 msec−1 (72 bpm) is the intrinsic

frequency of the SAN [60, 77], Z(θ) = 1 − cos(2πθ) is the PRC that determines to what

extent the neural input speeds up or slows down the heart rate and depends on the phase of

the SAN, and I(t) describes the neural input to the SAN.

For this model, the neural input originates from the neurotransmitters released by

ANS neurons onto the SAN. The two main neurotransmitters are Acetylcholine (ACh) and

Norepinephrine (NE), released by parasympathetic and sympathetic neurons, respectively

[37,69,78]. NE binds to β-adrenergic receptors (βAR channels) on the SAN and induces a

slow (∼ 10 s) excitatory response, while ACh binds to muscarinic receptors (KACh channels)

on the SAN and induces a fast (beat-to-beat) inhibitory response, speeding up and slowing

down the rate of change of SAN activity, respectively. Therefore, the neural input to the

SAN is given by

I(t) = IβAR(t)− IKACh(t).

The current that is rapidly induced by activation of the KACh channels is

IKACh = GKACh
α(ACh)

α(ACh) + 9.96
,

where

α(ACh) =
12.32ACh

ACh+ 4.2 · 10−6

with GKACh representing the drive coefficient (as in [59]). The current induced by activation

of βAR channels is

IβAR = GβARβAR,

with

τβAR
dβAR
dt

= −βAR + βAR,max
NE2

K2
NE +NE2
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where GβAR is the drive coefficient, τβAR is the time constant of βAR activation, βAR,max is

the maximum βAR activation, and KNE produces the half maximum response (as in [55]).

Figure 5.3 plots an example of the voltage of the SAN v, the phase of the SAN θ,

and the value of the PRC as a function of the phase of the SAN Z(θ) with no neural input

(I(t) = 0). Figure 5.4 shows a surface plot of the combined effects of sympathetic activity

(NE) and parasympathetic activity (ACh) on heart rate set by the SAN model in steady-

state. Parameters of the SAN model are given in table 5.2.

Figure 5.3. Membrane potential v, phase θ, and phase response curve Z of
the phase model of the sinoatrial node with no neural input. The SAN model
evolves with an intrinsic frequency ω = 1/833 msec−1 that remains unchanged
without neural input from the ANS.
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Figure 5.4. Steady-state response of heart rate induced by constant ACh
and NE binding values input to SAN model illustrating how the KACh and
βAR induced drive combine to control SAN beat frqeuency.

Parameter Value

GKACh 10−3 msec−1

GβAR 10−3 msec−1

τβAR 104 msec
βAR,max 0.8
KNE 1500 M

Table 5.2. Table of parameter values used for phase model of sinoatrial node.
βAR parameters taken to approximate previous values [55].

5.3. Mechanical Model of Heart and Vasculature

The cardiovascular system is a combination of the heart and the vascular system’s vast

network of veins, arteries, and arterioles that extend throughout the body. The mechanical

portion of the neurocardiovascular control model describes the contractions of the heart

and the flow of blood through the cardiovascular system. To model the mechanical aspects

of the cardiovascular system, a modified version of the idealized Ursino et al. mechanical

model [60, 77] is implemented. Figure 5.5 shows a schematic of the cardiovascular model.

The model can be subdivided into a cardiac portion and a vascular portion, consisting of 4
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cardiac compartments (left and right, atrial and ventricular) and 8 vascular compartments for

the pulmonary and systemic arteries and veins. The state of each cardiac compartment x is

described by pressure Px and volume Vx, with compliance Cx and resistance Rx parameters,

and blood flow between compartments Fxy. The left and right ventricular compartments

also have an elastance state variable Emax,x. The state of each vascular compartment x is

described by pressure Px, with compliance Cx and resistance Rx parameters. The systemic

and pulmonary arterial compartments also have a state variable Fx describing the outward

blood flow.

Figure 5.5. Schematic of the mechanical portion of the cardiovascular model.
The four compartments of the heart, pulmonary arteries, peripheral systems,
pulmonary veins, systemic arteries, splanchnic and extrasplanchnic periphery
and veins. Figure from Ursino 1998 [77].
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5.3.1. Mechanical Vasculature model. The vasculature model is split into two parts

- the pulmonary and systemic. The pulmonary model describes the flow of oxygen depleted

blood being pumped into the lungs, oxygenating, and pumping back to the left atrium. The

systemic model describes the flow of oxygenated blood being pumped through the body,

and the deoxygenated blood returning to the right atrium. The vasculature model uses a

set of pressure, capacitance, inertance, and resistance relationships to model activity of each

compartment and the flow between them (schematic shown in figure 5.5). The pressure and

blood flow of the systemic and pulmonary arteries (of compartment x into compartment y)

are given by

Cx
dPx
dt

= Fin − Fx

Lx
dFx
dt

= Px − Py −RxFx

where Fin is the inward blood flow, Fx is the outward blood flow, Px is the pressure Rx is the

resistance, Cx is the capacitance, Lx is the inertance, and Py is the pressure of the following

compartment.

The structure of the pressure variables for the remaining vascular compartment(s) x is

given by

Cx
dPx
dt

= Fin,x − Fout,x

where Cx is the capacitance, Px is the pressure, Fin,x is the blood flow into the compartment,

and Fout,x is the blood flow out of the compartment. Blood flow has the form Fin/out,x =

P1−P2

R
.

5.3.2. Mechanical Cardiac Model. The cardiac model is comprised of 4 compart-

ments representing the left atrium, left ventricle, right atrium, and right ventricle. The

pressure gradient (Ppv − Pla) between the pulmonary veins and the left atrium drives blood

into the left atrium, where Ppv is pulmonary venous pressure and Pla is left atrial pressure.
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The blood flow from the left atrium into the left ventricle is given by

Fil =


0 if Pla ≤ Plv

Pla−Plv
Rla

if Pla > Plv

,

and eft atrial pressure is modeled by

Cla
dPla
dt

=
Ppv − Pla
Rpv

− Fil

where Cla is the compliance of the left atrium and Rpv is pulmonary venous resistance. Note

that left atrial volume Vla is directly determined by Pla.

The left ventricle receives blood flow from the left atrium (Fil), and pumps to induce

blood fow outwardly to the systemic arteries (Fol). The left ventricular volume Vlv, and

blood flow out of left ventricle Fol are given by

dVlv
dt

= Fil − Fol

Fol =


0 if Psa ≥ Pmax,lv

Pmax,lv−Psa
Rlv

if Psa < Pmax,lv

where systemic arterial pressure Psa, left ventricular isometric pressure Pmax,lv, and left

ventricular pressure Plv are given by

Csa
dPsa
dt

= Fol − Fsa

Pmax,lv = φ(t)Emax,lv(Vlv − Vu,lv) + (1− φ(t))P0,lv(exp(kE,lvVlv)− 1)

Plv = Pmax,lv −RlvFol

where

φ(t) =


sin2(πTθ/Tsys) if 0 ≤ θ ≤ Tsys/T

0 else
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models the contraction of the left ventricle, θ is the phase of the SAN, T is the heart period,

Tsys is the duration of systole, Vu,lv is the unstressed volume of the left ventricle, P0,lv and

kE,lv are constant parameters that describe the left ventricular pressure/volume relationship

at diastole, and Emax,lv is the left ventricular elastance at maximum contraction given by

Emax,lv = Emax,lv0 + GE,lvF (βAR), where GE,lv is gain, Emax,lv0 is left ventricular elastance

with no neural input, and F is a threshold-logarithmic function of the level of βAR activation.

The structure of the right atrium and ventricle model is similar to the left. Parameters

for mechanical model of cardiovascular system taken from [60, 77], however, total blood

volume is set to Vt = 4300 ml so output of cardiovascular model at “resting” conditions

shown in figure 5.6 matches Ursino 1998 figure 2 [77].
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(a)

(b)

(c)

Figure 5.6. Pressure, volume, and cardiac output of mechanical cardiovas-
cular model with no neural input. (a) Pressure-volume curve of left ventricle.
(b) Systemic arterial pressure in solid curve, left ventricular pressure in dashed
curve. (c) Cardiac output. Total blood volume Vt chosen so pressure-volume,
pressure, and cardiac output data matched with figure 2 in Ursino 1998 [77].
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5.4. Baroreceptor Model

As the heart pumps blood throughout the body, information about the blood pressure

in the arteries is relayed to the brainstem via the Baroreceptor Reflex (Baroreflex). Pressure

sensitive neurons (stretch receptors) located primarily in the carotid sinus and aortic arch

sense the changes in pressure on the arterial walls induced by blood flow. This information

about blood pressure is transduced into neural signals and carried via afferent neurons to

the brainstem. The brainstem processes these neural signals and relays commands through

the sympathetic and parasympathetic nervous systems in order to exert control of the heart

rate and contractility. The baroreflex closes the largest neurocardiovascular feedback loop,

allowing the ANS to accomodate changes in pressure and bring the cardiovascular system to

homeostasis.

5.4.1. Model Description. To describe the baroreceptor system, we adapt the Madhi

et al. 2013 baroreflex model [49], which is a three component model consisting of arterial

wall deformation, baroreceptor stimulation, and baroreceptor firing rate. The arterial walls

deform as the pressure within the carotid sinus and aortic arch change. The baroreceptor

neurons originating in these vessels transduce the wall deformation into an action potential

firing rate [49].

The arterial wall deformation model assumes that the pressure-area relationship of an

elastic vessel (arteries) is nonlinear, with input pressure p and output wall strain εw (which

is shown in figure 5.7)

εw = 1−

√
A0(αk + pksa)

A0αk + Ampksa
,

where A0 and Am (mm2) are the unstressed and maximal cross-sectional area, respectively, α

(mmHg) is the characteristic pressure at which the vessel begins to saturate, and k determines

the steepness of the sigmoidal pressure-area relationship given by

A(p) = (Am − A0)
pk

αk + pk
+ A0.
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Figure 5.7. Arterial wall strain εw as a function of systemic arterial pressure
psa. Parameters given in table 5.3.

The baroreceptor model assumes that the strain at the nerve endings is a direct result

of the arterial wall strain, and that this strain can be modeled by a series of Voigt bodies

(dampers and springs in parallel). Specifically, the mechanoreceptive strain model includes 2

Voigt bodies attached to a wall with a spring on the terminal side. The model of the arterial

wall strain is

dε1
dt

= −(α1 + α2 + β1)ε1 + (β1 − β2)ε2 + (α1 + α2)εw

dε2
dt

= −α2ε1 − β2ε2 + α2εw.

where ε1 and ε2 are the strains on the 1st and 2nd Voigt bodies, and αi and βi are spring

constants. The strain sensed by the baroreceptors εne is then given by

εne = εw − ε1(εw).

The steady-state strain sensed by the baroreceptors ε∞ne is shown in figure 5.8.
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Figure 5.8. Steady-state mechanoreceptor sensed strain ε∞ne as a function of
arterial wall strain
epsilonw. Parameters given in table 5.3.

The baroreceptor firing activity is given by the steady-state firing rate of a leaky

integrate-and-fire neuron given by

f = (T + τref )
−1 =


0 if Ine ≤ gLVthresh

1

− C
gL

log
(
Ine−gLVthresh

Ine

)
+τref

if Ine > gLVthresh.

where C is capacitance, gL is leakage conductance, Vthresh is the threshold for a spike, τref

is refractory period, and Ine = s1εne + s2 is the input current that depnds on the strain

sensed by the baroreceptor. Figure 5.9 plots the steady-state firing rate of the baroreceptors

as a function of the sensed strain. The parameters in Table 5.3 were chosen so that the

baroreceptor model output shown in figure 5.10 would qualitatively match Madhi et al.

figure 10 [49].
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Figure 5.9. Firing-rate of the baroreflex f as a function of the baroreceptor
sensed strain εne.
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Figure 5.10. Qualitative response of the baroreflex model (red) to sinusoidal,
ramp, step, and triangular pressure inputs (blue). Baroreflex model elicits sim-
ilar qualitative responses to Mahdi et al. 2013, figure 10 [49]. Pressure input
ranges altered to reflect the systemic arterial pressure ranges in cardiovascular
model shown in figure 5.6, and baroreflex parameters tuned to elicit similar
qualitative response.
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Parameter Value

A0 π mm2

Am 5π mm2

α 180 mmHg
k 5
α1 0.4 s−1

α2 0.5 s−1

β1 0.5 s−1

β2 2 s−1

s1 100 pA
s2 0 pA
gL 0.4 µS
C 3.75 nF

Vthresh 12.5 mV
tref 0.01 s

Table 5.3. Paramters used in the Baroreflex model. Original values from
Madhi et al. 2013 [49] adapted to use with current cardiovascular model
described in previous section.
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5.5. Preliminary Results: Effect of ITNS and ICNS on Heart Rate and Heart

Rate Variability

In this section, we present preliminary results for three different models of the ANS

in the autonomic neurocardiovascular control system: a cell-based hierarchical model of the

ANS, a firing rate hierarchical model of the ANS, and a classical model of the ANS, in which

the ITNS and ICNS are omitted from the model, i.e., the only neural signals to the heart

and vasculature are directly from the brainstem and spinal cord (CNS). In doing so, we show

how the ITNS and ICNS contribute to adaptation of the cardiovascular system to trauma.

In our simulation of the neurocardiovascular control model, a 5% loss of total blood volume

was induced at time t = 120 msec. Figure 5.11 plots the length of the cardiac cycle versus

the cycle number for each of the three models of cardiovascular control. The cell-based and

firing rate models of cardiovascular control exhibit ∼ 10% increase in heart rate whereas

the classical model of autonomic cardiovascular control produced an attenuated response of

∼ 2.5% increase in heart rate. The attenuated response of the classical model is likely due

to the lack of local pressure feedback driving the ITNS and ICNS to increase sympathetic

input to the heart while decreasing parasympathetic input. This implies that the structure

of the ANS, i.e., the ITNS and ICNS, contribute to control of heart rate . Note that the

cell-based model displays higher HRV both before and after the increased blood demand.

Furthermore, it appears that the hierarchical structure of the ANS possibly enables quicker

response by the heart to sudden blood loss.
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Figure 5.11. Length of cardiac cycle versus the cycle number. The ITNS
and ICNS regulate heart rate – cell-based and firing rate model of autonomic
cardiovascular control system increase heart rate response to traumatic blood
loss versus attenuated response of classical model of autonomic neurocardio-
vascular control. 5% loss of total blood volume induced at 120 seconds of
simulated time. The model was simulated for 240 seconds with the first 30
seconds removed to account for transience.

Extensive future work must be done to further our understanding of the effect of the

ITNS and ICNS on neurocardiovascular control. We aim to investigate the effect of the ITNS

and ICNS on HRV during “resting” conditions and in response to trauma such as sudden

blood loss. We also aim to investigate the role of the ITNS and ICNS in ANS response

to cardiac arrythmias, myocardial infarctions, and cardiovascular diseases. Furthermore,

stimulating peripheral activity to relieve conditions (SPARC) is a current research topic of

interest [83] - this model can potentially be used to predict the therapeutic uses of stimulating

various subnetworks of the ANS.
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