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1 Introduction

Several semi-parametric metheds for index models have been developed. In a single
index model, the conditional expectation of a dependent variable y given a r x 1 vector
of explanatory variables z is

Ely | 2] = 7(2'6o). (1)

for an unknown vector of parameters 3y and an unknown univariate function 7(-}.
This model is implied by mary important limited dependent variable and regression
models, as discussed in Ruud (1986) and Stoker (1986). Consistent estimators for f,
up to an unknown scale factor, have been developed by Ruud (1986), Stoker (1986),
Powell, Stock, and Steker (1989), Ichimura (1893), and others.

In this paper. we return to a type of estimator developed by Ruud (1986). He pro-
posed an inverse-density-weighted quasi-maximum likelihood estimator. We consider
least squares estimation that is weighted by the ratio of an elliptically symmetric den-
sity with compact support to a kernei estimator of the true density. We give conditions
for /n-consistency and asymptotic normality of the estimator, and derive a consistent
estimator for the asymptotic variance. We also show that the first order conditions
for the scaled least squares coefficients has an analogous form to the efficient score for
an index model. This form is used to suggest ways to choose weights that have high
efficiency.

Among the semi-parametric index estimators, the inverse-density-weighted least
squares estimator is unique because it permits discontinuities in the transformation
7. Discontinuities in the conditional expectation of dependent variables arise in such
economic problems as optimization over nonlinear budget sets and production fron-
tiers. In labor supply for example, nonconvexities in the budget frontier caused by
welfare programs imply discontinuities in the desired hours of work. If the optimiza-
tion errors are small, then these discontinuities translate into discontinuities in the
conditional expectation of hours given socto-economic covariates that control for ob-
servable heterogeneity. The estimators that we consider in this paper accommodate
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such breaks when the index model 1s hinear. In contrast, the average derivative estima-
tors of Stoker (1686) and Powell, Stock. and Stoker (1989), and the kernel regression
estimators of Ichimura (1993) all require that 7 be differentiable. Thus. the results
of this paper provide a way of estimating index parameters in nonsmooth cases that
have previously been ruled out. '

2 The Estimator

Qur estimator 1s based on the idea of Ruud (1386). Suppose that the density has the
linear conditional expectation (LCE) property that the conditional expectation of z
given any linear combination of z is linear in that combination. Ruud {1986) showed
that in this case quasi-maximum likelihood estimation (QMLE) is consistent for Jy,
up to scale. He exploited this property by multiplving the quasi-likelihood function by
the ratio of a LCE density to a nonparametric estimator of the true density of z. The
resulting QMLE will be consistent for siope coefficients, because the “reweighting”
has the effect of making the limit be the same as if the regressor density was the LCE
density.

In this paper we focus on weighted least squares estimators. because they are
particularly simple to compute. To describe the estimator, let f(z.0) be an elliptically
symmetric pdf, that has compact support and is parameterized by a vector §. This
density will be appropriate for the numerator of the weight, because it is well known
that elliptically symmetric pdf’s have the LCE property (see also the appendix). Let
g denote an estimator of some value 8y of the parameter vector. For a kernel K (),
satisyfing properties to be specified below, and a bandwidth parameter A, let

hz) =) Kaz—z:), Ka(u)=X"T"K(u/)).
i=i

where r is the dimension of 2. This k(z) is a kernel density estimator. For X = (1, z'y,
an inverse density weighted least square estimator 15 obtained as
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where the data observations are indexed by i=1....,n.

The limit of this estimator will behave as if z had density f(z,6;). Thus, by
Ruud (1988), we know that the coefficients of z in ¥ are consistent for 3, up to a
common scale factor. The density f(z,6) is required to have compact support in order
to deal with the technical problem that A(z)~! could be large for outlying values of z.
Also, the parameter estimates § are present in order to allow for centering the location
and scale of the density. Furthermore, allowing for @ can be important for efficiency,
as discussed in Section 4.

The kernel X(u) will be assumed to satisfy [ K(u)du = 1, have a comnpact support,
and satisfy other regularity conditions given below. It will also be assumed that K(u)




is nonrandom although in practice one would often use a scale normalization. where

(w) = det(T)~1/2p(T s-1/2 u) for a pdf p(u), and ¥ equal to the sample variance of z;.

The estimator that will be consistent for 3y up to scale is the coefficients of ¢ that
appear In <. A convenient way to normalize the scale is to suppose that the first-
coefficient in Jy is 1 (which is just a normalization as long as it is nonzero). Partition
v = (7.8 and 4 = (‘}1,5’)’ conformably, where 7; is a scalar (coefficient of the
comstant) and & is a r x 1 vector (the coefficients of #). Also, partition 3 = (4, 3)
and & = (&;,8,) conformably. where 3 is a scalar, so that the dimension of 3 s
r — 1. The true value of 3; is 1. by our scale normalization. An estimator of .3 that
includes this scale normalization is then

30 = 8o /6. ' (3)

That is. 3» is the ratic of the coeficients in ¥ of all the regressors except the first one
to the first regressor coeflicient.

An important practical problem is the choice of bandwidth A. The regularity
conditions given below for 1/n-consistency will require that A be chosen to be smaller
than the value that would minimize the asymptotic mean square error of A. a feature
that is often referred to as "undersmoothing.” Thus, choosing the bandwidth from
cross-validation, or any other method that minimizes the asymptotic mean square
error is not appropriate. It is beyond the scope of this paper to say much more about
the theory of how to choose A. but a practical method might be to start at a value
obtained by cross-validation and decrease A until J» does not change much relative to
its estimated standard error.

3 Asvmptotic Variance Estimation

The estimator is a weighted least squares estimator with an estimated weight. In our
case, where the conditional expectation (1) is not linear, estimation of the weights will
affect the limiting distribution. complicating asvmptotic variance estimation. There
are two sources of variabliity in the weights, the nonparametric density estimator in
the denominator and the ¢ estimator in the numerator. Both sources will affect the
asymptotic variance of ¥, but the asymptotic variance of 3> will only be affected by
estimation of the denominator (the true density). This simplification follows from
Newey and McFadden {1993, Theorem 6.2}, which says that the asymptotic variance
of By is rot affected by estimation of 8 if the limit of § does not affect the limit of
3,. Here, 3, will be consistent no matter what the limit of & is. because of elliptical
symmetry of f(z,8) for all 6.

In most cases the parameters of interest are f,, so that estimation of 4 can be
ignored in the asymptotic variance. To avoid additional complication, we will focus
on this case, by giving a consistent estimator of the asymptotic variance of 3.

An estimator of the asymptotic variance of 82 can be constructed as follows. Let

wnEKa(z — zi)
Z hz)

i=!




be a kernel estimator of E[y | z]. Define

j = 51_1[07'—1,-—.52: Ir—l}

R 1 e .
Q = 'T—],leg.‘{,')&;

7

- 1 - r e 2
T o= - wy X X{{y — g(x:)]",
i=1

where 0,_; is a r— 1 dimensional cclumn vector of zeros and I~ is an r—1 dimensional
identity matrix. Then a consistent estimator of the asvmptotic variance of /7{ 3, —
Jag) will be
= JOTEG | )

This estimator can be interpreted zs being obtained by combining the delta-method
with an asymptotic variance estimator for . Here J is the Jacobian of the transfor-
mation from % to &, while @~*SQ~! is an estimator for the asymptotic variance of 5
that ignores estimation of #y. Consistency of this estimator of the asymptotic variance
will be shown in Section 3. -

The form of this estimator can be motivated by deriving the asymptotic variance
of %, assuming that = 8. Let w(z) = f(z,8)/ho(2), and v = Q' Efw(z).Xy] be
the limit of %. for @ = E[w(2)XX". Then for u =y — X'y,

Vai =)= %Q"lgﬁ‘im“f- (5)

Under appropriate regularity conditions, the first term will have limit @}, so the
asvmptotic variance of ¥ will he Q~'TQ~!, where ¥ is the asymptotic variance of
S wiXijui//n. We can derive T using the results of Newey (1993. Propostion

3). which gives a general asymptotic variance formuia when nonparametric density
estimators are present. Let
z]

8(1/h)

oh h=ho(z)
w(z)X{Ely | 2] - X'70}
hu(.’u") '

Then by E[D(z)ho(z)] = - Elw(z).Xu] = 0 and Newey {1993),

Diz) E [f{::,f?g))(u

% z_:l wiXju; = % Zl w(z) Xiu; +
% Z {D(xi)ht}(l'i) - E{D(Z)hg(z)}} + Op(l)

= \—j‘;z w(z;)Xi{y: — Elys | 2]} + 0p(1).
=1




This equation is given precise justification in Lemma 1 of Section 5. From this equation
and the central limit theorem, the asymptotic variance of the term Y1, . Xiui//%
will be £ = E[w(z}* X X'{y— (2'5)}%]. The estimator £ that appears in V" is simply
a sample analogue of I, where w(z) and E{y } z] have been replaced by estimators.

It is interesting to note that estimation of the density has the effect of lowering
the asymptotic variance of the estimator. If the estimated density in the denominator
were replaced by the true density, then T in the asvmptotic variance would be replaced
by the variance of w(z)Xu. Because I is the variance of w(z)Xu— Eluw({z)Xu |z, it
is smaller in the positive semi-definite sense than the variance of w(z)\u.

4 Asymptotic Efficiency

The asymptotic efficiency of the estimator can be evaluated by comparing its asymp-
totic variance with the semiparametric variance bound for the index model of equa-
tion (1}). It follows from the analysis of Section 3 that the asymptotic variance of
V(30 = Fag) is V = J'Q-1EQ-1T for J = 870 10, —Bno, 1]. It is straightforward to
derive a more convenient expression, as in V = E[¢%], where v = 2'3,.

¢ = 6 {E, [Var, (22 | )]} w(2) [e2 = B (22 | )] [y - 7(v)] (8)

and E [] = E[w(z)(-)]: Details of this derivation are given in Lemma 6 in the Ap-
pendix. By way of comparison, the semiparametric variance bound for estimators of
Ba, as given by Newey and Stoker (1993), is V'™ = E[4"¢™], where

v = {E_[Var (7,72 | v)}}-I a(z)7 r{v) [22 - E_(z2]v)] [y - 7(v)] (7

and ¢*(z) = Var({y | 2),

El(})/o*(z)]

VLS E

and 7.(v) = dr(z)/dv (assuming differentiability holds). -

The formulas {6) and (7) are analogous but fundamentally different. First of ail, the
weight w(z) in E_ [] is replaced by 1/0°(z). The weighting by 1/0(z) in the variance
bound accounts for heteroskedasticity, while the weighting by w(z) is necessary for
consistency of the WLS estimator. In addition, the efficiency bound contains the
Jacobian term 7,(z'fy), which is not present in the WLS case, effectively replacing o
with 7,22, It is possible to extend this analysis to a nonlinear least squares framework
that would permit us to introduce analogous terms. A good choice of the nonlinear
regression function would be likely to improve the efficiency of the WLS estimator.

E[]=

5 Asymptotic Normality

This section presents regularity conditions for asymptotic normality and consistency
of the asymptotic variance estimator. We first derive a useful intermediate result, on
the asymptotic distribution of a sample average that is weighted by the inverse of




a kernel density estimator. This result justifies the asvmptotic vartance caleulation
given in Section 3.

To obtain results it is useful to impose certain conditions on the kernel, the density,
and the bandwidth.

Assumption 1 K(u) is Lipschitz, zero outside a bounded sei, f!C(u}du = 1, and

there is a posiiive integer s such that for all r-tuples of nonnegative integers (j1...., jr)
with ZE:{ Je < 8,
r
]K(u){Z{u;)j‘}du = 0.

f=1

The bounded support condition for the kernel is imposed here to keep the con-
ditions relatively simple. The last condition requires that the kernel be a higher
order (bias reducing} kernel of order s. It will be used here to guarantee that the
bias of the kernel estimator is small refative to variance. Thé next condition imposes
smoothness on the density ho(z).

Assumption 2 There is a nonnegative integerd > s and an extension of ho(z) to all
of R that 15 continuously differentiable to order d with bounded derivatives on R".

This condition is used in conjunction with Assumption 1 to make sure the bias of
the estimator s small. It rules out cases where the density of z and its derivatives are
nonzero on the boundary of the support by requiring smoothness everywhere. The
next condition lmposes some conditions on the bandwidth.

Assumption 3 A = A(n) suchk that /72" /In(n) — o< and /nA* — oc.

Note that this condition implies that s > r, so that the order of the kernel and the
degree of differentiability of the density must be larger than the dimension of z.
These three conditions imply the following result.

Lemma 1 If Assumpiions I-8 are saissfied, a{z) = 0 excepl on a compact set X
where hg(z) is bounded away from zero, E [Ha 2 ] < oo, Ela(z) | 2] is bounded on
Y and continuous in  on a set of full Lebesgue measure, then

(z‘l _ a(-'t
Ly LS

la(z) | zi] a(z)
7 Z{ hoz) [hn(z)” *erlh)

For a(z) = f{z,89)Xu, the conclusion of this result implies equation (6). Also,
this result may be useful for other semiparametric estimators that depend on averages
which are weighted by an inverse kernel density. _

Some additional conditions are useful for showing asymptotic normality of the
estimator from Section 2. The next condition imposes some requirements on the
spherically symmetric density f(z ). Let C(#) denote the closure of {f(z,8) # 0}
and 6, the probability limit of 4.




Assumption 4 C(fy) is bounded. ho(z) > 0 for z & C(8y), C{8) is a continuous
correspondence for § in a neighborhood © of 8g, and f(z,8) is twice differentiable in
§ with derteatives continuous in [(z.9).

This assumption, which restricts the density ho(z) to be bounded away from zero
where the trimming function is positive (the set C(8y)), is extremely useful. It negates
the “denominator problem™ that would be present if the density of z were allowed to
approach zero. This type of fixed trimming is theoretically more convenient than
trimming that is relaxed as the sample size grows. Also, it may have the practical
advantage of reducing outlier problems that can be present with nonparametric density
estimarion. It is also useful to require that § be \/n-consistent.

Assumption 5 /7(d — §5) = O,(1).
The final condition imposes conditions on y and Ely | z].

Assumption 6 Efy'] < oc. Ely | 2} is continuous almost everywhere with respect to
Lebesgue measure and bounded on any bounded set, and @ = Elw{z)X X"} is nonsin-
gular.

These conditions lead to the following asymptotic representation for 4.

Theorem 2 If Assumptions [-6 are satisfied then

VRS =) = -\}-;Q“ Z w(e) Xi{y — El | 2]}

Au 6f(;,90)

holz) Gar ] \/5(5-99)—}-0;,(1},

+Q—1£{

The asymptotic distribution of 3, now follows in a straightforward way.

Theorem 3 If Assumptions -6 are satisfied, 81 # 0, and f(z.9) is a spherically
symmetric for all § in a neighborhood of 8y, then

V(32 = fao) ~ N(0, 7Q715Q 1)),

The last result that remains to be proved is the consistency of the asymptotic
variance estimator.

Theorem 4 If Assumptions 1-6 are satisfied and §g # O then

J'QT'EQV L rorivg-iy




6 Monte Carlo Experiments

Ruud (1936) performed a simple Monte Carlo experiment to illustrate the use of
density WLS. We repeat that experiment here 1o examine the success of the asymp-
totic approximations and to make a comparison of these estimators with the average
derivative estimnators of Powell. Stock and Stoker (1989). Both of these estimators
are marginal estirnators in the sense that they explolt marginal moment conditions,
rather than conditional (on z) moment conditions.

The data were generated as follows. Two explanatory variables were drawn from
a mixture of normal distributions:

B(z1.20) = 621 + 1/2)9(22/2) + d(22 — 1/2)6(21/2), (8)

where o 15 the standard normal pdf. In this way, positive z; tend to coincide with
small r» and negative z» tend to coincide with small z;. The dependent variable was
generated by

y=-exp(zi + 21+ u) (9)

where u had a uniform distribution on [-1/2, 1/2]). Because the expcnential function
is convex. the OLS estimator for the iinear regression of y on z,, 2, and a constant
will overstate the relative effect of z; compared to the effect of z5. The weights of
the feasible density WLS estimator were computed using a kernel estimator of the
density h and centering a normal pdf in the numerator on the sample mean and vsing
the sample covariance matrix for a dispersion matrix. This pdf was trimmed at a
standardized deviation from the mean of V6.

The joint pdf for z; and z- 1s pictured in Figure 1. Despite the mixture of two
normals. the joint density remains unimodal and does not appear to be strangely
idiosyncratic. The conditional expectation of za given z; + 25 is pictured in Figure 2.
This function has a slight convexity, but not a dramatic one. This convexity will cause
the OLS estimator to be inconsistent for the ratio of the slope parameters. Figure 3
gives a plot of the p.d.f. for 2’3 = z; + 7, and the bounds on y conditional on z8
from the data generating process. There is substantial heteroskedasticity, with the
varlance increasing in the most informative region of the 2’3 domain.

The extent of the inconsistency of OLS is shown in the first row of Table 1. For
100 observations, and 300 Monte Carlo replications, the average ratio of 3,/3; is
0.62. As expected, the relative importance of 2 is diminished by its assoclation with
small values of '3, The second line gives the feasible density WLS estimator and
the third line the same estimator with the estimated density replaced by the actual
density. The prediction of asymptotic approximations that the former would have
smaller dispersion holds, but there is some bias in the feasible estimator. The fourth
line of Table 1 lists a local version of the feasible estimator that divides the sample up
into four orthants using the sample medians of z; and z», pooling the four estimators
that can be computed for each orthant in a minimum chi-square estimator. This
estimator exhibits none of the bias of the simple feasible estimator and also has a
smaller variance than the exact density WLS estimator.

The remaining lines of the Monte Carlo results give the summary statistics for
various average derivative estimators. The first average derivative estimator uses the
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exact density; the other four estimators are the four estimators simulated in Powell,
Stock and Stoker (19892). The infeasible estimnator also has no bias, but the feasible
estimators exhibit strong bias relative to the density WLS estimators. The feasible
estimators also exhibit less variation than the infeasible one, but on a root mean-
squared error basis their performance is comparable.

At the bottom of Table 1. the efficiency bound and the asymptotic approximation
to the variance of the feasible WLS estimator are given. The asymptotic approxi-
mation works very well. But the efliciency bound is much smaller than the variance
of the feasible density WLS estimator. In further research, we plan to investigate
the possibility of attaining this bound using a technique ike the local feasible WLS
estimator just described.

The WLS estimators apply to discontinuous r functions, whereas the average
derivative estimators do not. We ran a second experiment to investigate the suc-
cess of WLS with such functions. Using the same explanatory variables as in the first
experiment, we changed (5} to

y:l{r1+:2>l}+u

where u ~ A(0,0.01). In words, the data generating process of ¥ is a mixture of
N(0.0.01) and A(1,0.01) distributions, with the mean determined discretely by z; +
z3. Using 500 Monte Carlo replications of data sets with 100 observations, the OLS
estimator {regressing y on a consant and the two z's} averaged 0.86 for the true ratio
32/3 = 1, with a standard deviation of 0.17. The feasible density WLS estimator
averaged 0.79 with a standard deviation of 0.32 and the (infeasible) exact density

19




WLS estimator averaged 1.02 with a standard deviation of 0.44. In finite sample. the
estimation of the density A clearly introduces some bias in the estimator that is not
present when the exact density is used.

7 Appendix

We first give the a resuit showing that the LCE property holds for a spherically
symmetric density.

Lemma 5 Let 2 ~ fl[(z — 8) A~z — 0)] be a random variable with an elliptically
symmetric {about 6} p.d.f. IfE{|lz]|] exists, then E(z | §'z) = ag + 1 §'z.

Proof. Let B =§(646)"'¢ and b = ¢'z. According to the orthogonal decomposi-
tion

Al =(I-BAYA-ABA)(I-AB)+ B
where (4 — ABA)” denotes a generalized inverse of 4 — ABA, we can write
(z=6)A Nz ~8) = (b— &Y (FAS Wb~ 88 + (2 — 7Y (A—- ABA) (z =)

where
v =0+ AS(§ A8 - ¢'9).

Therefore the conditional distribution of z given &z = b is symmetric around the
point § + A§(8A8)~1(b — 6'8). Under existence of E [J|z][], implying existence of the
conditional expectation, the result follows with ay = § — AB8 and oy = AB(E A8,
QED.

Lemma 6 The asympiotic variance V of 3 is (6).

Proof. Note that X'y = v + vy + 6198472, where v = '3y and 7 = (§ -
Fa0é1}/810. Let 7y be the coefficient of é1922 in the inverse density weighted least
squares regression of y on (1.v,819z5). By the usual least squares property, 7y =
(82— 32061 )/610. Noting that 7, is just a linearization of 35, the delta method implies
that the asymptotic variance of 35 is the same as . Let E_[] = E[w(z)()] denote
the expectation when the marginal distribution of z is f(z,85). Then by elliptical
symmetry of f(z,8;), the projection of &19z2 on (1,v) equals & Ew[zg | v]. Then
equation {8} follows by the the usual partial least squares formula. QED.

Throughout the rest of the Appendix, C will denote a generic positive constant (not
depending on' V'), that may be different in different uses, and }~; = 3"I_,. The outline
of the Appendix is that some useful Lemmas will first be given. and then the results
in the body of the paper proven.

i1




Proof of Lemma 1: The proof proceeds by verifving the conditions of Lemmas 5.2
and 3.4 of Newey (1992). Let X denote a compact set where ho{z) is bounded away
from zero and a(z) = 0 for z not in &, and let {|All = sup,¢ ¢ [R(z}]. Also, let

m(z.h) = :E?}
z}h
D(=h) = é(z{}j),
A(z) = Ele(2) [ 2],
m(h) = E[D(z.h)]

Note that m(h) = [w(z}h(z)dr for v{z) = —~ Ela{z) | z]/ho(z). Note that v(z) is
continuous almost everywhere (with respect to Lebesgue measure), zero outside the
compact set . and bounded. Therefore. by Assumption 3, the conditions of Lemma
5.2 of Newey {1992) are satisfied, so by its conelusion,

Vafmih) = mikol} = = 3 (v(z:) = Bt} + op(1)
To check the hvpotheses of Lemma 3.4 of Newey (1993), let & = &) = As = 0, 50
that the norm |||, of that result is |||l = sup,¢ v |h{z}|. Note that
(1} D(z. h) is linear in & on the set where ||| < =¢;
(i1) for b{z) = }|a(s)i} and [}k — hol| < ¢ for small enough e,
im{z, k) — m(z. ho} — D{z. h — Rhq)]|

1 h{z) 1
= llatzl [h(m) RGN
=b(z) W-)i—h'—[ lfl.:; — 2h(z)ho(z) + h(2)2|

< Co(=) | ho(I) - h(z) I?
< Cb(z) |fho = AI|*;

(ii1) {|D(=. B)[ < € llal 2} {|A]] and Effla(=)[["] <
() or 70 = I/ 5 ¥, Vit < Cla(n)/ 7 ] & VAN — 0, and
+/nA" — 0 by r > 5. Then by the conclusion of Lemma 5.4 of Newey (1993),

= Y tm(,h) = (e )] = VAlm(B) = (o)} + (1),

The conclusion then follows by the triangle inequality. QED.
The following Lemma is useful for proving Theorem 2.

Lemma 7 Ifhg(z) is continuous and Assumption { is satisfied then there ise > 0 and
a compact set X such that ho(z) > 0 for allz ¢ X and f(2,6) =0, 8f(z.0)/68 = 0,
and §°f(z,0)/0608 =0 forallz ¢ X and ||§ — 6] < ¢.

i2




Proof. By continuity of C(#) and Ag(z)}, there is ¢ small enough that Ag(z) > 0 for
all 2 ¢ X where A is the closure of Uyg_g,<C(9). By continuity of C'(#). the set &' is
compact. Also, for any ¢ € X' f(z,6) = 0 for all # with ||§ — 95]] < ¢, so differentiating
this identity at any such # implies @f(z.6)/86 =0 and &° f(2.0)/60866' = 0. QED.

Proof of Theorem 2: For the compact set A" of Lemma 7.

sup |h(2) - hol(z)| — 0
=gX

by Lemma B.3 of Newey (1893). Then by hg(z) bounded away from zerc on &', A(z)
is bounded away from zero on X with probability approaching one. Also, for the ¢

of Lemma T. IIB - BOE < ¢ with probability approaching one, so that for all z ¢ X,

i am ~
He. 8y = 0. 8f(2.6)/98 = C. and &*f(z.6)/095¢", for any § on the line joining 4
and 9y (e.g., for § = §). It then follows that with probability approaching one, by X
bounded on A" and f{z,d) Lipschitz in 4.

|§Q—~Zwi}(,X{fn‘% < O i -wil/n
i i i i
] 1 1
< Caplifed) @-—m)}
1 -
+ sup [ho(x) |f(x,5}*f(r,9)”
2. 0.

Also, by the law of large numbers, 3, w; Xi X]/n ~£- @, so by the triangle inequality,
Q-=q .
Next. by a mean value expansion, for @; = f(z:,00)/h(2;),

B B o . TR/ (CI) | B
\/}IZ i1 1—\,/E=Z 1X: ‘+[nziz(ri) 35, }'\/5(9 90)

t {

It follows similarly to the argument for € —— @ that the matrix in square brackets
converges in probability to E[Xu/ho(z) 8f(z,80)/8¢"]. 1t also follows by Lemma 1
that

1 . 1 1
ﬁ Z: tL'iX{U;' = % Z w,'X,-u,- -— —\7_—7—1 Z w,-X,-{E[y,- | x,-] - Xf‘fo} -+ op(]_)_
The conclusion then follows by the triangle inequality, QED.

Proof of Theorem 3: By the Theorem 2, the delta method, and the central limit
theorem it sufficies to show that J'Q™! E[Xu/ho(z) 0f(z,60)/00'] = 0. Let Q(f) =

i3




[ XX'f(z.0)dz and m(#) = [ X -Ely | z]f(z,0)dz. By boundedness of X, Efy | zJ,
and f(x,) on the set X' of the proof of Theorem 3, both Q(8) and m(f) are differen-
tiable. and 8m(0y)/ 30 = E[Xu/ho(z) 8f(z,8)/067. It follows by Q(f0) = Q nonsin-
gular that @(f) is nonsingular for # in a neighborhood of 65. On this neighborhood of
Q) let +(6) = (+(8).8(8YY = Q(8)"'m(f). Note that §(f) is continuous function
of 4 and &(8p) = &. Then by &;¢ # 0. there is an even smaller neighborhood where
8:(8) % 0.-Let Fo(8) = é:2(6)/6,(8). By spherical symmetry of f(z,8), it follows as in
Ruud (1986) that 34(f) = Gs. Differentiating this identity gives 0 = J'&v(f)/89.
Furthermore. differentiating the identity [ X{E[y | 2] — X'4(8)}f(2.8)dz = 0 with
respect to § gives 8+(85)/068 = Q- E[Xu/ho(z) 8 f{z.00)/86"). QED.

foilows as in the proof of Theorem 2. Therefore, by continuity of matrix inversion and
multiplication, it only remains to show that ¥ == . Let d(z) = 1o, Ka(z = 2:)w
and d(z) = ho(z) E{y | zi. By a change of variables, E{d(z)] = [ K(u)d(z + ul)du =
df{z). which is bounded on any bounded set by R{u) having bounded support and
d(z) bounded on any bounded set. Furthermore, at each z where d(z} is continuous,
diz+ud) — d{z) as A — 0, so by the domirated convergence thecrem, d(z} — d{z) at
each such z. Since the set of such z values has full Lebesgue measure, the dominated
convergence theorem implies that [, [d(z) — d(z)]*hy(z)dz — 0. By Lemma B.1 of

d(z) - d(z)| == 0. Let 1; = 1(z; ¢ X). Then 5, 1; | d(zi) —

d{z;) |* /n 2. 0 by the Markov inequality. Also, by h(z) bounded away from zero
uniformiy on X, with probability approaching one.

Proof of Theorem 4: J —— J follows by ¥ <&~ vy and &9 #0 Also Q = @

Newey (1993), SUPrgx

%Z L |g(zi) — gl < %Z 1 1&(1‘{) — d(zi) : + % Z: I |d(zi) — d(-’ﬂi)|2

2
1 1

h(z;)  holzi)

1
+= 3 L d(z))

d(z) - J(z)| + 0p(1) + sup
g X

h(z) - ha(z)| 2.9,

< Csup
g X

Let & = 5, w?Xi X![yi - g(z:)}/n. Then arguing as in the proof of Theorem 2, using
Lemma T, it follows by the Cauchy-Schwartz inequality that for 1; = 1(z; ¢ &),

[£- 2 < S35 ullate - o(e)l + a@i)? - a(e0?]

< % Z 1i[§(z:) — g(z:))?

. 1/2 . 172
+C {(; Z |y£|2) + (;Zig(m.—)iz) ]
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1/2

=3 i) gt

Y
It also follows similarly to the proof that @ -2~ @ that £ <~ %. The conclusion that
T 2 T then follows by the triangie inequality. QED.
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