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Abstract

Topics in Dynamic Portfolio Choice Problems

by

Poomyos Wimonkittiwat

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Associate Professor Andrew E.B. Lim, Chair

We study two important generalizations of dynamic portfolio choice problems: a portfolio
choice problem with market impact costs and a portfolio choice problem under the Hidden
Markov Model.

In the first problem, we allow the presence of market impact and illiquidity. Illiquidity
and market impact refer to the situation where it may be costly or difficult to trade a desired
quantity of assets over a desire period of time. In this work, we formulate a simple model
of dynamic portfolio choice that incorporates liquidity effects. The resulting problem is a
stochastic linear quadratic control problem where liquidity costs are modeled as a quadratic
penalty on the trading rate. Though easily computable via Riccati equations, we also derive
a multiple time scale asymptotic expansion of the value function and optimal trading rate
in the regime of vanishing market impact costs. This expansion reveals an interesting but
intuitive relationship between the optimal trading rate for the illiquid problem and the
classical Merton model for dynamic portfolio selection in perfectly liquid markets. It also
gives rise to the notion of a “liquidity time scale”. Furthermore, the solution to our illiquid
portfolio problem shows promising performance and robustness properties.

In the second problem, we study dynamic portfolio choice problems under regime switch-
ing market. We assume the market follows the Hidden Markov Model with unknown tran-
sition probabilities and unknown observation statistics. The main difficulty of this dynamic
programming problem is its high-dimensional state variables. The joint probability density
function of the hidden regimes and the unknown quantities is part of the state variables, and
this makes the problem suffer from the curse of dimensionality. Though the problem cannot
be solved by any standard fashions, we propose approximate methods that tractably solve
the problem. The key is to approximate the value function by that of a simpler problem
where the regime is not hidden and the parameters are observable (the C-problem). This
approximation allows the optimal portfolio to be computed in a semi-explicit way. The
approximate solution shares the same structure with the solution of C-problem, but at the
same time it provides clear insight into the unobservable extension. In addition, the perfor-
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mance of the proposed methods is reasonably close to the upper-bound obtained from the
information relaxation problem.
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Chapter 1

Introduction

The dynamic portfolio choice problem has been mentioned countless of times by both re-
searchers and practitioners. It is considerably one of the most important problems in in-
vestment science. This is a problem of dynamically allocating assets among sources of risks
and returns; an investor may re-balance his/her portfolio based on the current situation and
the knowledge of the market to maximize his/her utility and/or consumption. The problem
was first studied by Robert C. Merton in the 1960s [49, 50], we refer to this problem as
the Merton problem. The Merton problem can be explicitly solved in many cases due to the
help of a few simplifying assumptions; these assumptions include short positions are allowed,
there is no bid-ask spread, no transaction costs, the market is perfectly liquid, all variables
and parameters are observable, and risky asset prices are driven by the Wiener processes.
However, these assumptions are unrealistic, the solution to the Merton problem is optimal
only in an ideal market. But the problem still provides good understanding to dynamic
portfolio choice problem and is used as a first step to unfold more complicated problems.
There are a huge number of efforts those try to generalize the Merton problem. These efforts
do so by relaxing the simplifying assumptions, and this dissertation is one of them.

Some examples of the works on extending the Merton problem are as follows. First,
investors may have constraints on asset holdings that limit the amount of short-sale or limit
the maximum amount of assets being held. The works on dynamic portfolio choice problems
those allow these position constraints are such as Cvitanic and Karatzas [22], Tepla [59] and
Li et al. [42]. Second, in the real markets, investors buy and sell at different prices, buy at
the ask price and sell at the bid price. This situation is also referred to as an existence of
proportional transaction costs. The literature that studies relaxation of the bid-ask spread
assumption is such as Constantinides [20], Davis and Norman [23], Shreve and Soner [58]
and Liu [44].

Under perfectly liquid market assumption, investors may trade any amount of assets at
any time and these decisions do not affect the prices. But this is not true in reality, markets
are illiquid. Illiquidity and market impact refer to a situation where investor decisions can
affect price processes. This is due to many reasons: demand and supply of securities are
limited, there are feedback effects on prices as investors’ decisions are dependent. The main
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difficulties in dealing with illiquidity and market impact in portfolio problems are twofold:
first, market impact is very complicated as it is a result of complex market structure and all
investors participating. The market impact model is controversial, there are various models
of market impact in the literature (Dufour and Engle [24], Almgren and Chriss [3], Cetin et al.
[18], Bouchaud [12], Cont et al. [21], Alfonsi et al. [2]). Second, incorporating market impact
into the portfolio choice problem leads to much harder problem and sometimes impossible
to solve. The works those study market impact in the context of portfolio optimization
include Longstaff [46], Grinold [33], Ma et al. [48], Rogers and Singh [55, 54], Garleanu and
Pedersen [29] and this dissertation. It is worth noting that illiquidity and market impact are
also important in a closely related problem, an execution problem. The papers on this issue
are e.g. Bertsimas and Lo [10], Almgren and Chriss [3] and Alfonsi et al. [1].

Another important development in dynamic portfolio selection problems is how to deal
with hidden variables and parameters uncertainty. It is assumed in the classical Merton
problem that all the model parameters, such as expected asset returns and volatilities, are
fixed and known to the investors. In reality, however, it is unclear how investors may acquire
information on these parameters. Besides, the studies by Hamilton [36], Ang and Bekaert
[5], Tu [60], Carvalho et al. [17] agree that these quantities may change over time and ignoring
this fact is costly. There are many approaches to model unknown parameters: Gennotte [31]
and Brennan [14] assumes that the parameters are fixed but unknown. Brendle [13] assumes
linear Gaussian processes for the unobservable parameters. Honda [38], Rieder and Bauerle
[53], Sass and Haussmann [56] and this dissertation assume the unknown parameters are
driven by unobservable Markov switching process.

Finally, the assumption that risky assets are driven by the Wiener processes may not
be suffice as abrupt changes or shocks appear occasionally in real markets. These sudden
changes are a result of market crash, beginning of financial crisis, company default, natural
disaster etc. To capture these events, Liu et al. [45], Bauerle and Rieder [8], Capponi and
Figueroa-Lopez [16] and Lim and Watewai [43] modify the asset price processes by allowing
jumps in assets prices as well as sudden changes in price processes. The second part of this
dissertation can be considered in this category too as we assume that the market is driven a
Markovian regime switching process.

This dissertation studies two important generalizations in dynamic portfolio choice prob-
lem as mentioned above. We dedicate the first part of this dissertation to study dynamic
portfolio choice problems with the presence of market impact costs, and dedicate the sec-
ond part to study dynamic portfolio choice problems under unobservable regime switching
market.

The first part focuses on solving portfolio optimization problem when there exists market
impact. There are two main approaches in research community to model market impact. The
first approach models market impact as impact of trades on security prices (Bertsimas and
Lo [10], Almgren and Chriss [3], He and Mamaysky [37], Ly Vath et al. [47], Rogers and Singh
[55], Alfonsi et al. [2]). Although this is a natural and intuitive way to model market impact,
the problem suffers from intractability issue. Associating impact of investor decisions into
price dynamics substantially increases complexity of the problem. An alternative approach
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which we prefer is to model market impact as costs on fast trading and incorporate these
costs into investor objective. Grinold [33] and Garleanu and Pedersen [29] use this approach
in the context of active asset management while this dissertation is the first to use this in
the context of the Merton problem. The main advantage of incorporating costs into the
objective is the problem becomes tractable, and therefore insightful findings are obtained.

We present a detailed motivation and more complete literature review as well as a brief
review of the classical Merton problem [50] in Chapter 2. Then we formulate two equivalent
problems to solve the portfolio selection problem with market impact costs and derive their
relationship in Chapter 3. The first formulation is an extension to the classical Merton
problem with costs on fast trading. The second one is very intuitive in the sense that,
with presence of market impact, it is also optimal to track the Merton problem solution at
minimal costs. We analyze the solution of these two formulation in Chapter 4. This analysis
reveals an intuitive relationship between the optimal trading strategies with and without
presence of market impact. We demonstrate the performance and robustness properties of
the portfolio obtained using our approach on the temporary price impact model of Almgren
et al. [4] in Chapter 5. The proofs which are not provided right after the assertions can be
found in Chapter 6.

The second part of this dissertation focuses on solving the dynamic portfolio choice
problem under regime switching market. We relax the Merton problem assumptions that
variables and parameters are observable by adopting the Hidden Markov Model (HMM) to
model the market; the market regime which is unobservable follows a Markov chain, and
this regime affects the price processes through the asset expected returns and volatilities.
Although there are a few previous works those study the dynamic portfolio choice problem
and model the market in this particular way [38, 56, 53, 34, 35, 11, 26], we make the most
practical assumption, namely the market regime is hidden, the regime transition probabilities
and the regime-dependent parameters are also unknown to the investors. In this problem,
investors only observe the output generated from the market which includes asset prices,
analyst recommendation, news etc. We describe the problem setting in detail in Chapter
7. We then formulate the investor problem in Chapter 8. This dynamic portfolio choice
problem suffers from the curse of dimensionality and is considered unsolvable because the
investor’s knowledge on the hidden process and unknown parameters is represented by a
highly complicated joint probability density function of all unknown quantities, and solving
the problem requires doing backward recursion on this density function. Instead of using the
standard method like the backward recursion to solve the problem, we propose approximate
methods which allow us to tractably compute the solution without directly dealing with the
complex joint probability distribution. We present the methods as well as the main result
from the approximation in Chapter 9. Also in Chapter 9, we compare the performance of
the approximate methods with the existing approaches under both real data from US equity
market and simulated data. We summarize the Markov Chain Monte Carlo method which we
used in problem approximation in Chapter 10. Moreover, we provide a mean to evaluate the
proposed methods by comparing its performance to the upper-bound of the exact problem.
The upper-bound is obtained from the dual problem via a technique called the information
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relaxation technique. The material on performance evaluation is explained in Chapter 11.
And the proofs in the second part of this dissertation can be found in Chapter 12. Finally,
we conclude the work done in this dissertation in Chapter 13
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Part I

Dynamic Portfolio Choice Problems
with Market Impact Costs
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Chapter 2

Motivation

Illiquidity and market impact refer to the situation where it may be costly or difficult to
trade a desired quantity of assets over a desire period of time. Much of the recent effort in
modeling illiquidity and incorporating it in hedging, portfolio choice, and execution problems
is motivated by the recognition that ignoring it is both risky and costly (e.g. Bertsimas
and Lo [10], Almgren and Chriss [3], Grinold [33] and Garleanu and Pedersen [28], He
and Mamaysky [37], Ly Vath et al. [47], Moallemi and Saglam [51], Rogers and Singh
[55], Schied et al. [57]). While much of this literature accounts for illiquidity by explicitly
modeling the impact of trades on asset prices ([28, 33, 51] are exceptions, though these
papers focus on active portfolio choice problems), this approach is challenging for a number of
reasons. Firstly, the mechanism by which trades impact prices is complex and not completely
understood, so model mis-specification is a serious concern. Secondly, even simple models
for the price impact of trades lead to substantially harder optimization problems. For this
reason, much of the literature has been restricted to simple single-asset models, and is difficult
to extend to multiple assets and to models in which stochastic factors impact liquidity.

In this work, we adopt a different approach in which liquidity-related costs are incorpo-
rated through a penalty in the objective that makes it costly to trade large quantities at
a fast rate rather than an explicit model of how trading affects prices. While ignoring the
impact of trading on prices is perhaps controversial, though the same can be said about
the decision to ignore the impact of trading rate on alphas in [28, 33, 51], one argument in
support is that optimal trading rates, by virtue of our objective, will be slow so price impact
(even if it were to be included) will be minimal, “justifying” to some degree our decision
to ignore them. More generally, we adopt the view that an optimization model is simply
a way of generating plausibly good solutions by making the appropriate tradeoffs - in this
case, between investment performance and market impact costs - and that an explicit model
of the price impact mechanism may be unnecessary so long as the appropriate tradeoffs are
being captured in the simpler model. One advantage of our approach is that it is tractable.
Specifically, our formulation naturally handles multiple assets which is not the case for many
of the models that directly model the price impact mechanism. Though we focus on constant
liquidity costs, our results extend to problems with stochastic liquidity regimes, jumps in
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prices, regime-switching etc., with no essential difficulties. That said, we agree that it is
important to assess the performance of solutions generated by our model on more complex
systems under different models of the impact mechanism. This is the focus of our numerical
study which shows favorable performance and robustness properties when applied to the
price impact model of Almgren et al. [4].

Several highlights of our work are as follows. Firstly, we show that our generalization
of the Merton problem is equivalent to another “illiquid problem” where the objective is to
track the optimal holding of the perfectly liquid Merton problem with minimal error and
market impact cost. This gives an intuitively appealing relationship between two approaches
for accounting for illiquidity. Secondly, we also derive a multiple time scale asymptotic
expansion of the value function and optimal trading rate for our problem which provides
interesting insights into the structure of the optimal strategy. The asymptotic expansion
shows that when the market impact costs are small (i) the investor trades in a direction
that decreases the gap between his/her current position and optimal holding for the Merton
problem, and (ii) that the trading rate is increasing in the volatility of the risky asset, the
risk-aversion of the investor, the market depth, and the remaining trading time. It also leads
to the introduction of a “liquidity time scale”, an intuitive notion we have not seen in other
contexts.

We first give a brief review to the classical Merton problem. The Merton problem will
be served as the base model in the following chapters.

2.1 Portfolio Problem in Liquid Market

We recall the classical Merton problem [50] for frictionless markets.

Asset Dynamics

We model uncertainty using an n-dimension standard Brownian motion living on a filtered
probability space (Ω, F , P, {F t}) over a finite time horizon [0, T ]. There are n risky assets
with prices s(t) = [s1(t), · · · , sn(t)] follow geometric Brownian motion

ds(t) = diag(µ)s(t)dt+
n∑
j=1

diag(σ·j)s(t)dwj(t), (2.1)

with expected returns µ ∈ Rn, diffusion matrix σ = [σ·1 σ·2 ... σ·n] ∈ Rn×n, and diag(x) is a
diagonal matrix with vector x as its main diagonal. The risk-free asset price s0(t) satisfies

ds0(t) = rs0(t)dt, (2.2)

with risk-free rate of return r.
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The Merton Problem

Let n(t) = [n1(t), · · · , nn(t)] be an adapted process denoting the number of shares in each
of the risky assets at time t. The wealth x(t) of a self-financing investor satisfies

dx(t) =
{
rx(t) + (µ− r)′ diag(n(t))s(t)

}
dt+

n∑
j=1

diag(σ·j) diag(n(t))s(t) dwj(t)

We rewrite the wealth dynamics in terms of the dollar value π(t) , diag(n(t))s(t) of the
risky asset holdings

dx(t) =
{
rx(t) + (µ− r)′π(t)

}
dt+

n∑
j=1

σ′·jπ(t)dwj(t). (2.3)

The classical Merton problem maximizes expected utility of terminal wealth

sup
π(·)

E{Φ(x(T ))}

subject to:

dx(t) =
{
rx(t) + (µ− r)′π(t)

}
dt+

n∑
j=1

σ′·jπ(t)dwj(t)

x(0) = x0.

(2.4)

The value function V (t, x) for (2.4) is the solution of the dynamic programming equations
Vt + sup

π

{
xrVx + (µ− r)′πVx +

1

2
π′σσ′πVxx

}
= 0

V (T, x) = Φ(x(T )).

(2.5)

Explicit solutions for the Merton problem and the associated dynamic programming equation
can be found when the utility function is of power, exponential, logarithmic and quadratic
type. In the case of quadratic utility we have the following result.

Proposition 1. The value function of the Merton problem (2.4) with quadratic utility

Φ(x(T )) = x(T )− η

2
x(T )2 is

VM(t, x) = −η
2
aM(t)x2 + bM(t)x+ cM(t) (2.6)

where

aM(t) = e

(
2r−θ

)
(T−t)

bM(t) = e

(
r−θ
)

(T−t)

cM(t) =
1

2η

(
1− e−θ(T−t)

)
.
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Note that θ = (µ− r)′Σ−1(µ− r) and Σ = σσ′. And the optimal risky asset holdings are

π∗M(t, x) = Σ−1(µ− r)(1

η

bM(t)

aM(t)
− x)

= Σ−1(µ− r)(1

η
e−r(T−t) − x). (2.7)

(Note that the subscript M is added for later reference.)

Proof. It can be shown directly that (2.6) is the solution of the dynamic programming
equations (2.5) and that π∗M(t, x) is the associated maximizer.
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Chapter 3

Illiquid Portfolio Choice Problem
Formulation

We propose two formulations of the illiquid portfolio choice problem. First formulation, we
extend the Merton problem (2.4) to account for illiquidity using the trading costs. Second
formulation, we track the Merton optimal portfolio with minimum trading cost. Then we
show that these two formulations are equivalent.

3.1 Illiquid Portfolio Problem: Model 1

In this section, we account for liquidity effects by formulating a modification of the Merton
problem in which fast trading is expensive. In this model, trading rates are the control
variables while the wealth and the risky asset positions are the state variables.

Trading rate

Let n(t) = [n1(t), · · · , nn(t)] denote the number of shares in each of the risky assets and
ρ(t) = [ρ1(t), · · · , ρn(t)] denote the rates at which shares in each of the risky asset are being
purchased at time t, which is controlled by the investor. The risky asset holdings satisfy

dn(t) = ρ(t)dt. (3.1)

As in the Merton problem (2.4) let π(t) , diag(n(t))s(t) denote the dollar value of the risky
asset holdings. In contrast to the Merton problem, where π(t) are the control variables, we
now assume that our asset holdings can only be controlled through the trading rates ρ(t) so
π(t) needs to be included as part of the state. Ito’s formula together with (2.1) and (3.1)
imply that

dπ(t) = { diag(µ)π(t) + diag(ρ(t))s(t)}dt+
n∑
j=1

diag(σ·j)π(t)dwj(t).
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Defining ρ̄(t) , diag(ρ(t))s(t), it follows that

dπ(t) = { diag(µ)π(t) + ρ̄(t)}dt+
n∑
j=1

diag(σ·j)π(t)dwj(t). (3.2)

In this equation, ρ̄(t) can be interpreted as a vector of trading rates, in dollars per unit time,
of the risky assets. Equation (3.2) tells us that the change in the dollar value of the risky asset
holdings is the sum of the change due to trade, which occurs at rate ρ̄(t) = diag(ρ(t))s(t),
and the change diag(µ)π(t)dt+

∑n
j=1 diag(σ·j)π(t)dwj(t) due to fluctuations in the value of

assets already being held. The self-financing condition implies that the wealth process x(t)
remains unchanged from the Merton problem and is given by (2.3).

Liquidity costs & Model I

To incorporate the idea that it is costly to trade large quantities of assets in small periods
of time, we consider the problem

sup
ρ̄(·)

E
{
−
∫ T

0

λ

2
ρ̄(t)′R ρ̄(t) dt+ Φ(x(T ))

}
subject to:[
dx(t)
dπ(t)

]
=

{
Ã

[
x(t)
π(t)

]
+ B̃ ρ̄(t)

}
dt+

n∑
j=1

C̃j

[
x(t)
π(t)

]
dwj

ρ̄(·) ∈ A, x(0) = x0, π(0) = π0

(3.3)

where

Ã =

[
r (µ− r)′
0 diag(µ)

]
, B̃ =

[
0′

In

]
, C̃j =

[
0 σ′·j
0 diag(σ·j)

]
,

0 denotes an n-dimensional vector of zeros, In is an n×n identity matrix, and A is the class
of admissible controls defined as

A =
{
ρ̄ : [0, T ]× Ω→ Rn

∣∣∣ such that ρ̄(·) is {Ft}-adapted and E
∫ T

0

‖ ρ̄(t) ‖2 dt <∞
}
.

Aside from the dynamics, which we have already discussed, a key modification relative to
the Merton problem (2.4) is the introduction of the quadratic penalty on the trading rates

E
∫ T

0

λ

2
ρ̄(t)′R ρ̄(t) dt (3.4)
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in the objective. Optimizing (3.3) involves a trade-off between maximizing expected utility
E[Φ(x(T ))] and minimizing the cost of trading. Assuming R is positive definite, the quadratic
ρ̄′R ρ̄ in (3.4) means that marginal cost of trading increases in the trading rate. The illiquidity
coefficient λ > 0 is large when illiquidity frictions are large. Similar models for liquidity
costs have been proposed for dynamic models of active portfolio investment (Garleanu and
Pedersen [29], Grinold [33]). To our knowledge, this work is the first in which such a model
is used in the context of a Merton-type problem.

When the utility function is quadratic, the value function and the optimal trading rates
can be characterized as follows.

Proposition 2. Suppose that the illiquidity coefficient λ is positive, the matrix R is positive
definite and the utility function is quadratic with risk-aversion parameter η > 0:

Φ(x(T )) = x(T )− η

2
x(T )2. (3.5)

Then the value function is

V (t, x, π) = −1

2

[
x(t)
π(t)

]′
a(t)

[
x(t)
π(t)

]
+ b(t)′

[
x(t)
π(t)

]
+ c(t), (3.6)

and the optimal trading rates satisfy

ρ̄∗(t, x, π) =
1

λ
R−1B̃′

(
b(t)− a(t)

[
x(t)
π(t)

])
(3.7)

The functions a : [0, T ] → R(n+1)×(n+1), b : [0, T ] → Rn+1 and c : [0, T ] → R are
solutions of the differential equations

0 = ȧ(t) + a(t)Ã+ Ã′a(t) +
n∑
j=1

C̃ ′ja(t)C̃j −
1

λ
a(t)′B̃R−1B̃′a(t)

a(T ) =

[
η 0′

0 0

]
(3.8)


0 = ḃ(t) + Ã′b(t)− 1

λ
a(t)′B̃R−1B̃′b(t)

b(T ) =

[
1
0

]
(3.9)

 0 = ċ(t)− 1

2λ
b(t)′B̃R−1B̃′b(t)

c(T ) = 0
(3.10)

where 0 is an n× n matrix of zeros.
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Proof. This result follows from standard analysis of linear-quadratic control problem.

While Proposition 2 characterizes the value function and optimal trading rate for (3.3)
which are numerically easy to compute when the utility function Φ(x) is quadratic, the
expressions (3.6)-(3.10) are not particularly insightful. For instance, it is unclear how the
presence of market impact penalty in (3.3) modifies the value function and optimal policy
relative to the solution of the Merton problem. To clarify these issues we begin by introducing
an alternative formulation of the market impact problem which provides us a simple and
intuitive relationship between the market impact problem and the Merton problem.

3.2 Illiquid Portfolio Problem: Model 2

In this section, we introduce another formulation of the market impact problem. Though
interesting in its own right, this model allows us to relate the market impact model (3.3) to
the Merton problem.

Tracking Problem

Let q(t) be an n× n deterministic positive definite matrix for all t ∈ [0, T ], ξ(t) denote the
trading rate, x(t) the investor’s wealth, and π(t) his position in the risky assets. Consider
the problem

inf
ξ(·)

E
{∫ T

0

λ

2
ξ(t)′Rξ(t) +

1

2
(π∗M(t, x(t))− π(t))′q(t)(π∗M(t, x(t))− π(t))dt

}
subject to:[
dx(t)
dπ(t)

]
=

{
Ã

[
x(t)
π(t)

]
+ B̃ ξ(t)

}
dt+

n∑
j=1

C̃j

[
x(t)
π(t)

]
dwj

ξ(·) ∈ A, x(0) = x0, π(0) = π0

(3.11)

In this problem, the goal is to track the solution

π∗M(t, x(t)) = Σ−1(µ− r)
{1

η

bM(t)

aM(t)
− x
}

of the Merton problem (2.4) at minimal cost. Observe that the dynamics of this problem
are identical to those of the illiquid problem (3.3).
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Model II

First we define new state variables
y(t) ,

1

η

bM(t)

aM(t)
− x(t)

z(t) , π∗M(t, x(t))− π(t).
(3.12)

Then rewrite the tracking problem (3.11) in terms of the new variables y(t) and z(t) with
q(t) = η aM(t)Σ.



inf
ξ(·)

E
{∫ T

0

λ

2
ξ(t)′Rξ(t) +

ηaM(t)

2

[
y(t)
z(t)

]′
Q

[
y(t)
z(t)

]
dt

}
subject to:[
dy(t)
dz(t)

]
=

{
A

[
y(t)
z(t)

]
+Bξ(t)

}
dt+

n∑
j=1

Cj

[
y(t)
z(t)

]
dwj

ξ(·) ∈ A, y(0) =
bM(0)

ηaM(0)
− x0, z(0) = π∗M(t, x0)− π0.

(3.13)

where

Q =

[
0 0′

0 Σ

]
, B =

[
0′

−In

]
,

A =

[
r − θ (µ− r)′
A21 A22

]
A21 = {(r − θ)In − diag(µ)}Σ−1(µ− r)

A22 = Σ−1(µ− r)(µ− r)′ + diag(µ)

,


Cj =

[
−σ′·jΣ−1(µ− r) σ′·j

Cj
21 Cj

22

]
Cj

21 = −{Σ−1(µ− r)σ′·j + diag(σ·j)}Σ−1(µ− r)

Cj
22 = Σ−1(µ− r)σ′·j + diag(σ·j)

Note that the dynamics in (3.13) can be obtained directly by substituting the definition (3.12)
into the dynamics in (3.11). The solution of (3.13) is stated in the following Proposition.

Proposition 3. Suppose that the illiquidity coefficient λ and the investor risk-aversion pa-
rameter η are positive, and the matrix R and Σ are positive definite. The value function of
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(3.13) is

W (t, y, z) =
1

2

[
y
z

]′
α(t)

[
y
z

]
, (3.14)

and the optimal trading rates are

ξ∗(t, y, z) = −1

λ
R−1B′α(t)

[
y
z

]
. (3.15)

The coefficient α(t) is the solution to the Riccati equation:
0 = α̇(t) + α(t)A+ A′α(t) +

n∑
j=1

C ′jα(t)Cj −
1

λ
α(t)′BR−1B′α(t) + ηaM(t)Q

α(T ) = 0

(3.16)

Proof. This result follows from standard analysis of linear-quadratic control problem.

3.3 Relationship between Model I, Model II and the

Merton problem

We summarize the relationship between the two formulations (3.3) and (3.13) of portfolio
selection problems with market impact costs and the Merton problem (2.4) in the following
Theorem.

Theorem 4. Let V (t, x, π) and W (t, y, z) denote the value functions for the market impact
problems (3.3) and (3.13), where the relationship between (x, π) and (y, z) is stated in (3.12).
VM(t, x) denotes the value function for the Merton problem (2.4). Then

V (t, x, π) = VM(t, x)−W
(
t,

1

η

bM(t)

aM(t)
− x, π∗M(t, x)− π

)
(3.17)

Moreover, both problems (3.3) and (3.13) have identical optimal trading policies

ρ̄(t, x, π) = ξ
(
t,

1

η

bM(t)

aM(t)
− x, π∗M(t, x)− π

)
= −1

λ
R−1B′α(t)

[
1
η
bM (t)
aM (t)

− x
π∗M(t, x)− π

]
. (3.18)

Proof. See Chapter 6.
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Chapter 4

Solution Approximation

4.1 Asymptotic Expansions

Although Theorem 4 establishes an interesting relationship between the Merton problem and
two seemingly different formulations of portfolio selection problems that account for market
impact costs, the relationship between the optimal trading rates (3.18) and the solution of
the fully liquid Merton problem is not particularly clear. In this section, we utilize multiple
time scale perturbation methods to derive an approximation of the Riccati equation (3.16)
and the optimal trading rates (3.15) when the illiquidity coefficient λ is small. This analysis
establishes an intuitive connection between the optimal trading rate and the value function
of the illiquid problem and the frictionless Merton problem.

Intuitively, we expect that the value function W (t, y, z) of the problem (3.13) will go to
zero as the trading cost λ becomes small. This motivates us to derive asymptotic expansions
of W (t, y, z) in terms of λ. As a first step, we have the following result on the limiting
behavior of α(t). We adopt the definition from Kokotovic et al. [40] that a real function
f(t, ε) is O(ε) over an interval [t1, t2] if there exist positive constants k and ε∗ such that

|f(t, ε)| ≤ kε ∀ε ∈ [0, ε∗], ∀t ∈ [t1, t2]

and that f(t, ε) is o(ε) as ε approaches ε0 if lim
ε→ε0

|f(t, ε)|
ε

= 0. For brevity, we denote that a

matrix/vector is O(ε) or o(ε) if every entry in the matrix/vector is O(ε) or o(ε) respectively.

Lemma 5. The matrix α(t) in (3.16) is O(
√
λ) over the interval [0, T ].

Proof. See Chapter 6.

When λ is small, this result allows us to expand α(t) of the form

α(t) =
√
λα0(t) + o(

√
λ), (4.1)

where α0(t) is O(1) for all t ∈ [0, T ].
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Proposition 6. α0(t) in (4.1) is

α0(t) =

[
0 0′

0
√
ηaM(t)F (w(t))

]
(4.2)

where

w(t) ,
T − t√

λ

√
ηaM(t), (4.3)

and F : [0, ∞)→ Rn×n is positive semi-definite and is the solution of the Riccati equation
dF

dw
(w) = −F (w)′R−1F (w) + Σ

F (0) = 0
(4.4)

Proof. First we assume that α(t) depends on the two different time scales which are defined
by

u = T − t and v =
T − t√

λ
, (4.5)

and write (4.1) as

α(u, v) =
√
λα0(u, v) + o(

√
λ).

Under this re-parameterization, the time derivative becomes

d

dt
(·) = − ∂

∂u
(·)− 1√

λ

∂

∂v
(·).

and the differential equation (3.16) is transformed into a partial differential equation

√
λ
∂

∂u
α0(u, v) +

∂

∂v
α0(u, v)

=
√
λ
{
α0(u, v)A+ A′α0(u, v) +

n∑
j=1

Cjα
0(u, v)Cj

}
− α0(u, v)′BR−1B′α0(u, v)

+ ηaM(t)Q+ o(
√
λ)

Consider O(1) terms, the equation reduces to
∂

∂v
α0(u, v) = −α0(u, v)′BR−1B′α0(u, v) + ηaM(u)Q

α0(0, 0) = 0
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Observe that BR−1B′ and Q contain 0’s in the first row and column,

BR−1B′ =

[
0 0′

0 R−1

]
, Q =

[
0 0′

0 Σ

]
Hence starting at the initial condition α0(0, 0) = 0, the first row and first column of α0(u, v)
remain zero for all positive u and v. α0(u, v) can be written by

α0(u, v) =

[
0 0′

0 β0(u, v)

]
.

where β0(u, v) satisfies the following equation
∂

∂v
β0(u, v) = −β0(u, v)′R−1β0(u, v) + ηaM(u)Σ

β0(0, 0) = 0
(4.6)

We can see that

β0(u, v) =
√
ηaM(u)F

(
v
√
ηaM(u)

)
is the solution of (4.6) where F (v

√
ηaM(u)) is the solution of the Riccati equation (4.4).

Observe that F (w) is positive semi-definite due to the fact that it is a Riccati equation and
can be associated with the value function of a minimum cost optimal control problem.

The following theorem gives asymptotic expansions of the value function V (t, x, π) and
W (t, y, z) as well as the optimal trading policies for the problems (3.3) and (3.13).

Theorem 7. With small λ, the value function of the market impact problem (3.3) satisfies

V (t, x, π) =VM(t, x)−
√
ληaM(t)

2
(π∗M(t, x)− π)′F

(T − t√
λ

√
ηaM(t)

)
(π∗M(t, x)− π)

+ o(
√
λ),

and the optimal trading policy is

ρ̄∗(t, x, π) =

√
ηaM(t)√
λ

R−1F
(T − t√

λ

√
ηaM(t)

)
(π∗M(t, x)− π) + o(1/

√
λ),

where F (w) solves (4.4).

Proof. The expressions above are directly obtained by substituting the approximation (4.1)-
(4.2) into (3.17)-(3.18).
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Theorem 7 establishes a close relationship between the portfolio selection problem in an
illiquid market and the Merton problem. Several properties of the value function and the
optimal trading rates are worth noting:

• F (w) is a Riccati equation, and it can be shown that F is uniformly bounded and
non-negative definite for every w ∈ [0, ∞). If follows that the term

F
(T − t√

λ

√
ηaM(t)

)
is also uniformly bounded for every λ > 0 and t < T .

• As the illiquidity coefficient λ decreases the value function V increases, and when λ
goes to zero, V converges to the value function of the Merton problem.

• As λ decreases, the optimal trading rate ρ̄∗ increases and becomes arbitrarily large as
λ goes to zero. Intuitively, the investor trades infinitely quickly when trading costs
vanish, which allows him/her to track the optimal Merton portfolio with vanishing
error.

• An investor trades to close the gap between his/her current positions π and the (ideal)
positions π∗M he/she would adopt if there were no liquidity costs.

• The value function V decreases in the distance (π∗M(t, x)− π)′F (w)(π∗M(t, x)− π).

Single Risky Asset Case

In case of single risky asset, an explicit solution for F (w) in (4.4) can be found. We summarize
the findings as follows.

Theorem 8. With small λ, the value function of the market impact problem (3.3) satisfies

V (t, x, π) = VM(t, x)−
√
λ
σ
√
ηaM(t)

2
tanh

(
σ
√
ηaM(t)

T − t√
λ

){
π∗M(t, x)− π

}2

+ o(
√
λ).

(4.7)

The optimal trading policy is

ρ̄∗(t, x, π) =
σ
√
ηaM(t)√
λ

tanh
(
σ
√
ηaM(t)

T − t√
λ

){
π∗M(t, x)− π

}
+ o(1/

√
λ). (4.8)

Let x(t) and π(t) be wealth and risky asset holding processes of an investor who adopts the
trading rate (4.8). The difference between the holding π(t) and that of the Merton investor
is

E

{∫ T

0

1

2

[
π∗M

(
t, x(t)

)
− π(t)

]2

dt

}
=
√
λ
K

2
(π∗M(0, x(0))− π(0))2 + o(

√
λ) (4.9)
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where the coefficient

K =
1

2σ
√
ηaM(0)

tanh(σ
√
ηaM(0)

T√
λ

).

Proof. See Chapter 6.

In the single risky asset case, Theorem 8 provides additional insight into the relationship
between the market impact problem and the Merton problem as follows.

• The liquidity time scale (T − t)/
√
λ affects the optimal trading rate ρ̄∗ and the value

function only when the remaining time is comparable to
√
λ, since the hyperbolic

tangent term will be significant if T − t/
√
λ is small. When the liquidity time is

small an investor will reduce his/her trading rate since market impact costs dominate
potential improvements in utility from rebalalancing. In contrast to the solution of the
classical Merton problem (Proposition 1) the investor needs to consider both the the
liquidity as well as the original time scale when there are market impact costs.

• A larger volatility σ makes the optimal trade rate ρ̄∗ increase. When the volatility is
large, an investor trades more aggressively to close the gap between his/her position
and the ideal position π∗M .

• A larger risk-aversion parameter causes an investor to trade faster.

4.2 Accuracy

In this section we compare the numerical solutions of the coefficient α(t) in (3.16) and its
approximation

√
λα0(t) in (4.1). To illustrate the solutions, we consider a market with one

risk-free asset and three risky assets. The risk-free return r is 2% per year, the risky asset
expected returns µ and diffusion matrix σ are

µ =

 0.06
0.08
0.06

 , σ =

 0.200 0 0
0.224 0.168 0
0.040 0.013 0.196

 . (4.10)

The investor risk aversion factor η is 6.67×10−8, chosen in according to $10M initial wealth.
The illiquidity coefficients λ are varied from is 1× 10−12 to 1× 10−8, and the cost matrix R
is I3. The time horizon of the problem is one year (250 trading days).

Figure 4.1 compares the entries in α(t), solid lines, and β(t) ,
√
λα0(t), dotted lines. We

can see that the approximation error decreases as the illiquidity coefficient decreases.
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Figure 4.1: This figure compares the numerical solutions of the coefficient α(t) calculated
from (3.16) and its approximation β(t) ,

√
λα0(t) from Proposition 6. The coefficients are

calculated at t = 150.
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Chapter 5

Examples

In this chapter, we test the performance of the optimal solution of (3.3) on a temporary
price impact model by Almgren et al. [4]. The price impact model by Almgren et al. is well-
known among both researchers and practitioners as being mentioned in many places such as
[2, 39, 30, 25]. Even though this price impact model is fairly straightforward, incorporating
this impact into dynamic portfolio choice problem causes the problem impossible to solve.
Instead of trying to solve the portfolio choice problem under the Almgren et al.’s price
impact, we take another approach by adopting the solution to the proposed problem (3.3).
Then we compare the performance of our approach to those of the cases where the market
is perfectly liquid and where the price impact is ignore. We begin the chapter by describing
the market impact model following by a description of the trading strategies which we will
be testing.

Financial market with market impact costs

Throughout this chapter, we assume that investors re-balance daily over the course of one
year (250 trading days). We denote re-balancing time and re-balancing interval by τ and
∆ (in years) respectively. The risk-free asset follows the dynamics (2.2) and we assume a
risk-free rate of r = 2% per year. For the risky assets, we assume a temporary impact model
that builds on the model in Almgren et al. [4]. Specifically, the price of risky asset i is
described using two components, an observed price si(τ) and an execution price sexeci (τ).
Observed price follows geometric Brownian motion

dsi(t) = µisi(t)dt+
n∑
j=1

σijsi(t)dwj(t),

while the execution price is given by

sexeci (τ) = si(τ)(1 + Ji(ρi(τ))),
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where the function

Ji(ρi(τ)) = ci sgn(ρi(τ))
(ρi(τ)∆

Vi

)0.6
(5.1)

is the relative price impact. Here, ci and Vi are constants representing market depth and
average daily volume of each asset, respectively. Observe that the sign of Ji(ρi(τ)) depends
on trading direction and its magnitude is proportional to the rate of trading to the power of
0.6 (which is the value fitted in [4] using data). Intuitively, sexeci (τ) is the average execution
price of an order of size ρi(τ)∆ submitted after observing a price of si(τ). Execution price
sexeci (τ) is larger than si(τ) when buying an asset and smaller when selling and can be viewed
as the cost of moving through the order book in order to execute a block trade.

Figure 5.1: This figure illustrates the price impact. The left plot shows how execution prices
deviate from the observed prices. The deviation is caused by the trades shown on the right
plot.

Investors

We consider four investor types:

• the Illiquid Investor, who solves (3.3) for the optimal solution ρ∗(t) (3.7). Conditional
on the time τ prices s(τ) the illiquid investor trades quantities ρ∗(τ)∆ at prices sexec(τ)
determined by the trading rates ρ∗(τ);

• the Merton Investor who at time τ , observes the prices s(τ) and chooses trading rates
ρM(τ) such that his holdings after the trade coincide with the optimal holdings for
(2.7) of the Merton problem: ρM(τ)∆ = π∗M(τ) − π∗M(τ−). The trade is executed at
the prices sexec(τ) determined by the trading rates ρM(τ);

• the Riskless Investor, who only holds the riskless asset, and
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• the Ideal Investor, who like the Merton investor, re-balances to the Merton optimal
holdings (2.7) each day, but unlike the Merton investor, is able to do so at the observed
prices s(τ).

5.1 Examples: Single Risky Asset

First we consider the case where there is only one risky asset in the market. We assume
the expected return and volatility of the risky asset to be µ = 6% and σ = 25% per year,
and the initial price to be one dollar. The average daily volume V is chosen such that the
Merton investor trades on average 10% of daily volume.

We now compare the performance and trading behavior of these investors, as well as the
sensitivity of the illiquid investor’s performance to the choice of illiquidity coefficient λ.

Performance comparison

The parameters in the price impact model are consistent with the empirical analysis in
Almgren et al. [4], namely the execution price for a trade as large as 10% of daily volume
deviates by 0.2% from the observed price. The value of illiquidity coefficient λ used by
illiquid investor is 10−10.

Figure 5.2 show the portfolio return mean-standard deviation frontiers for the illiquid,
Merton, and ideal investors, which are obtained by varying the risk aversion parameter η for
all investors. The ideal investor’s frontier can be regarded as a performance upper bound
for the investors trading under the price impact.

When the risk aversion parameter is large (low portfolio return and standard deviation),
the performance of all three investors’ are roughly the same due to small exposure to risky
asset, which leads to small amount of trade and hence small impact. On the other hand,
for decreasing risk aversion (higher portfolio return and standard deviation), trading and
the risky asset holding increase and the cost of price impact on P&L becomes substantial,
and the frontier of both the illiquid and Merton investors are pushed to the right. We can
clearly see, however, that the illiquid investor’s frontier always dominates that of the Merton
investor and that the deviation of the illiquid investor’s frontier from that of the idealized
investor is relatively small over all risk aversion levels.



25

Figure 5.2: Mean-standard deviation frontiers of the Merton investor, illiquid investor and
ideal investor. The illiquidity coefficient λ used by illiquid investor is 10−10, and the relative
price impact J is 0.2% if an investor trades 10% of the daily volume.

Figure 5.3 shows the histogram of the difference in final wealth of the Merton and illiquid
investors, xilliquid − xMerton when risk aversion η is 3.5 × 10−7, which clearly shows that
the illiquid investor outperforms the Merton investor on most occasions, and that the out
performance is more substantial than the under performance.

Figure 5.3: This figure shows the histogram of the different in final wealth of the Merton
and illiquid investors. The illiquidity coefficient λ used by illiquid investor is 10−10, and the
relative price impact J is 0.2% if an investor trades 10% of the daily volume.
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Trading Behavior

We now illustrate the major differences between the trading rate and risky asset holdings
of the Merton and illiquid investors. To show these differences, we plot the sample paths
of risky asset holdings, trading rates, risky asset price and the histogram of trading rate in
Figure 5.4. The relative price impact, the illiquidity coefficient λ and the risk aversion η
remain the same as in the previous example, namely J is 0.2% if an investor trades 10% of
the daily volume, λ equals to 10−10 and η equals to 3.5× 10−7.

Consistent with our asymptotic result (Theorem 4), Figure 5.4 shows that the holdings
of the illiquid investor tracks the holdings of the Merton investor. The third and fourth plots
shows that the optimal trading rate of the illiquid investor is substantially smaller than that
of the Merton investor.

Figure 5.4: This figure compares the sample paths of the Merton and illiquid investors. The
illiquidity coefficient λ used by illiquid investor is 10−10, and the relative price impact J is
0.2% if an investor trades 10% of the daily volume.

Robustness

In this section, we examine the sensitivity of the performance of our model to the illiquidity
coefficient λ and the price impact J . First, under a specific level of price impact, we show
that implementing different values of λ’s does not change the performance of the illiquid
investor portfolio much. Second, under different levels of price impact, we show that a single
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value of λ selected from a particular range can perform considerably well compared to the
Merton investor. Throughout this example, the risk aversion parameter η is set to 3.5×10−7.

We vary the illiquidity coefficient λ from 5× 10−12 to 5× 10−8 while keeping the relative
price impact J at 0.2%. Figure 5.5 plots the utilities of the illiquid, Merton, and riskless
investors. While the optimal utility for the illiquid investor is achieved at λ = 8 × 10−10, a
more important observation is that the utility curve is fairly flat around the optimal value.
This suggests that illiquid investor performs well for a relatively large range of values for the
illiquidity coefficient, and that one need not be concerned (at least for this example) that
small changes in λ will lead to a large drop in performance. Indeed, this example suggests
that being conservative and choosing a large value of λ will not hurt utility too much. From
the second plot in Figure 5.5 it is interesting to note that while the utility of the illiquid
investor does not change substantially over the range of λ being considered, his trading rate
does. Intuitively, the savings from reduced market impact compensate for the loss in utility
from slower trading.

Figure 5.5: This figure shows the utility and the trading rates of the illiquid investor with
different values of λ’s. The relative price impact J is 0.2% if an investor trades 10% of the
daily volume. The average utility of the Merton investor and riskless investor is added for
comparison. It is interesting to note that while utility does not change substantially over
the range of λ being considered, the trading rate changes significantly.

Next, we vary the relative price impact J between 0.02% to 1% at 10% of daily trading
(note that the empirical work by [4] suggests J is around 0.2%), and plot the average utility of
the illiquid, Merton and riskless investors. To demonstrate the effect of using different values
of illiquid coefficients, we consider four illiquid investors with λ’s equal to 5×10−11, 10−10, 5×
10−10 and 1× 10−9. From the plot in Figure 5.6, we can see that performance of the illiquid
investors (i.e. choices of λ) is comparable to that of the Merton investor when the impact
is small, is considerably better when the impact is moderate to high, and is less sensitive to
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changes in price impact. We note that an impact of 0.12%1 is approximately equal to paying
the spread, so the Merton investor only outperforms the illiquid investors in a highly liquid
market where buying and selling occur at almost the same price.

Figure 5.6: This figure compares the average utility of four illiquid investors with four
different λ’s under various illiquidity situations. The average utility of the Merton and
riskless investor is added for comparison.

5.2 Examples: Multiple Risky Assets

We provide similar examples as above except that now there are multiple risky assets. We
use the same expected returns and the diffusion matrix as shown in (4.10),

µ =

 0.06
0.08
0.06

 , σ =

 0.200 0 0
0.224 0.168 0
0.040 0.013 0.196

 . (5.2)

We choose the initial prices to be one dollar, choose Vi’s to be the same for all assets at 2M
shares per day, choose the matrix R to be identity matrix, and let initial wealth x0 be 10M
for every investor. For asset i, the parameter ci is chosen in consistent with the empirical
analysis in Almgren et al. [4], namely, that the execution price for a trade as large as 10%
of daily volume deviates by 0.2% from the observed price.

1The average spread of common stocks listed on the NYSE is 0.24%. For the stocks those are in the top
five percent of dollar trading volume, the average spread comes down to 0.075%. The data is collected from
2001 to 2005 by Kyle and Obizhaeva [41].
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Performance comparison

In this example, the illiquidity coefficient λ used by illiquid investor in his model (3.3) is
5× 10−11. Similar to Figure 5.2, Figure 5.7 shows the mean-standard deviation frontiers for
the illiquid, Merton, and ideal investors. We can see that as the number of assets grows, the
Merton investor becomes worse as he/she has more assets to re-balance and hence suffers
more from price impacts. On the other hand, the illiquid investor continues to perform well.
The mean-standard deviation frontier of the illiquid investor remains close to that of the
ideal investor over all risk aversion levels.

Figure 5.7: Mean-standard deviation frontiers of the Merton investor, illiquid investor and
ideal investor.

Trading Behavior

Figure 5.8 shows the plot of the sample paths of risky asset holdings, trading rates and
risky asset prices. The illiquidity coefficient λ and the risk aversion η equal to 5× 10−11 and
6.67×10−8 respectively. We can still see that the trading rates of the illiquid investor remain
substantially lower than those of the Merton investor. We can also see that the holdings of
the illiquid investor track those of the Merton investor when there multiple risky assets.
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Figure 5.8: This figure compares the sample paths of risky asset holdings and trading rates
of the Merton and illiquid investors. The illiquidity coefficient λ used by illiquid investor is
5× 10−11.

Robustness

The robustness of the proposed strategy (3.7) remains the same when there are multiple
risky assets. In Figure 5.9, we vary the illiquidity coefficient λ from 10−12 to 10−8 while
keeping the other parameters the same. The utility curve is fairly flat around the optimal
value which suggests that illiquid investor can perform well for a relatively large range of
values for the illiquidity coefficient.
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Figure 5.9: This figure shows the utility of illiquid investor using different values of λ’s. The
average utility of the Merton investor and riskless investor is added for comparison. It is
interesting to note that illiquid investor’s utility does not change substantially over the range
of λ being considered.
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Chapter 6

Proofs

6.1 Proof of Theorem 4

First we define the difference in value of the Merton problem (2.4) and the illiquid problem
(3.3)

W̃ (t, x, π) , VM(t, x)− V (t, x, π).

From the quadratic structure of VM(t, x) in (2.6) and V (t, x, π) in (3.6), W̃ (t, x, π) can be
written down by

W̃ (t, x, π) = −1

2

[
x(t)
π(t)

]′
α̃(t)

[
x(t)
π(t)

]
+ β̃(t)′

[
x(t)
π(t)

]
+ γ̃(t),

where α̃(t), β̃(t) and γ̃(t) satisfy the following differential equations.

0 = ˙̃α(t) + α̃(t)Ã+ Ã′α̃(t) +
n∑
j=1

C̃ ′jα̃(t)C̃j −
1

λ
α̃(t)′B̃R−1B̃′α̃(t)

+ηaM(t)

[
θ −(µ− r)′

−(µ− r) −Σ

]
α̃(T ) = 0

0 = ˙̃β(t) + Ã′β̃(t)− 1

λ
α̃(t)′B̃R−1B̃′β̃(t)− bM(t)

[
θ

µ− r

]
β̃(T ) = 0 0 = ˙̃γ(t)− 1

2λ
β̃(t)′B̃R−1B̃′β̃(t) +

θ

2

bM(t)2

ηaM(t)
γ̃(T ) = 0
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It can be shown that W̃ (t, x, π) is the value function of the linear-quadratic control problem

inf
ξ(·)

E
{∫ T

0

λ

2
ξ(t)′Rξ(t) +

ηaM(t)

2

[
x(t)
π(t)

]′ [
θ −(µ− r)′

−(µ− r) −Σ

] [
x(t)
π(t)

]
−bM(t)

[
θ

µ− r

]′ [
x(t)
π(t)

]
+
θ

2

bM(t)2

ηaM(t)

}
subject to:[
dx(t)
dπ(t)

]
=

{
Ã

[
x(t)
π(t)

]
+ B̃ ξ(t)

}
dt+

n∑
j=1

C̃j

[
x(t)
π(t)

]
dwj

ξ(·) ∈ A, x(0) = x0, π(0) = π0

(6.1)

Now it is straightforward to see that the control problem (6.1) is exactly the same as the
tracking problem (3.13) by the definition (3.12). Then the relationship (3.17) holds due to
the fact that that the value functions of (6.1) and (3.13) are equal,

W̃ (t, x, π) = W
(
t,

1

η

bM(t)

aM(t)
− x, π∗M(t, x)− π

)
= VM(t, x)− V (t, x, π).

The relationship between the optimal trading rates (3.7) and (3.18) follows by similar
analysis.

6.2 Proof of Lemma 5

To show that α(t) in (3.16) is O(
√
λ), we first construct an upper bound of the cost W (t, y, z)

of the tracking problem (3.13). The upper bound is the expected cost of a stochastic system
which is obtained by modifying (3.13) as follows

• replace aM(t) in the objective function by āM ≥ aM(t) ,

• adopt the suboptimal control policy

ξ̄(t, z, y) =
1√
λ
R−1

[
0 β̄

] [ y(t)
z(t)

]
(6.2)

where β̄ is an n× n full rank O(1) matrix.
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The stochastic system is given by

E
{∫ T

0

λ

2
ξ̄(t)′R ξ̄(t) +

ηāM
2

[
y(t)
z(t)

]′
Q

[
y(t)
z(t)

]
dt

}
subject to:[
dy(t)
dz(t)

]
=

{
A

[
y(t)
z(t)

]
+Bξ(t)

}
dt+

n∑
j=1

Cj

[
y(t)
z(t)

]
dwj

y(0) =
bM(0)

ηaM(0)
− x0, z(0) = π∗M(t, x0)− π0.

(6.3)

Denoting the expected cost of (6.3)

W̄ (t, y, z) , E
{∫ T

t

λ

2
ξ̄(s)′R ξ̄(s) +

ηāM
2

[
y(s)
z(s)

]′
Q

[
y(s)
z(s)

]
ds y(t) = y, z(t) = z

}
,

it follows from the outlined construction that

W̄ (t, y, z) ≥ W (t, y, z), ∀t ∈ [0, T ] and (y, z) ∈ Rn+1. (6.4)

The linear-quadratic structure of (6.3) implies that W̄ (t, y, z) is quadratic in (y, z)

W̄ (t, y, z) =
1

2

[
y
z

]′
M(t)

[
y
z

]
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and the symmetric matrix M(t) =

[
M11(t) M ′

21(t)
M21(t) M22(t)

]
satisfies the linear differential equa-

tions

−Ṁ11(t) = 2M11(t)A11 + 2M ′
21(t)A21

+
n∑
j=1

{
Cj

11M11(t)Cj
11 + 2Cj

11M
′
21(t)Cj

21 + Cj′

21M22(t)Cj
21

}
M11(T ) = 0

(6.5)



−
√
λṀ21(t) =

√
λ
[
A11M21(t) +M22(t)A21 + A12M11(t) + A′22M21(t)

+
n∑
j=1

{
Cj

12M11(t)Cj
11 + Cj′

22M21(t)Cj
11 + Cj

12M
′
21(t)Cj

21 + Cj′

22M22(t)Cj
21

} ]
−β̄′R−1M21(t)

M21(T ) = 0

(6.6)

−
√
λṀ22(t) =

√
λ
[
M21(t)A′12 +M22(t)A22 + A12M21(t)′ + A′22M22(t)

+β̄′R−1β̄ + ηāMΣ

+
n∑
j=1

{
Cj

12M11(t)Cj′

12 + Cj′

22M21(t)Cj′

12 + Cj
12M21(t)Cj

22 + Cj′

22M22(t)Cj
22

} ]
−M22(t) β̄′R−1 −R−1 β̄ M22(t)

M22(T ) = 0.

(6.7)

( We write an arbitrary (n + 1) × (n + 1) matrix using block notation X =

[
X11 X ′12

X21 X22

]
where X11 is the (1, 1) entry of X, X12 is a vector containing the second to the (n + 1)th

entries of the first row, X21 is a vector containing the second to the (n + 1)th entries of the
first column, and X22 is an n× n matrix containing the rest.)

Observe that the system (6.5) - (6.7) is a standard singular perturbation model with small
parameter

√
λ. We will show that M11(t),M21(t) and M22(t) are O(

√
λ) for t ∈ [0, T ] by

following standard analysis (e.g. [40]). First we introduce two time scales, the original (slow)

time scale u , T − t and the fast time scale v ,
T − t√

λ
. The slow responses, M̄11(u), M̄21(u)
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and M̄22(u), solve the reduced-order model (the small parameter is set to be zero):

∂

∂u
M̄11(u) = 2M̄11(u)A11 + 2M̄ ′

21(u)A21

+
n∑
j=1

{
Cj

11M̄11(u)Cj
11 + 2Cj

11M̄
′
21(u)Cj

21 + Cj′

21M̄22(u)Cj
21

}
M̄11(0) = 0

(6.8)

0 = −β̄′R−1M̄21(u) (6.9)

0 = −M̄22(t) β̄′R−1 −R−1 β̄ M̄22(t) (6.10)

The fast responses, M̂21(v) and M̂22(v), satisfy the boundary layer system:
− ∂

∂v
M̂21(v) = −β̄′R−1(M̄21(0) + M̂21(v))

M̂21(0) = −M̄21(0)
(6.11)

 −
∂

∂v
M̂22(v) = −(M̄22(0) + M̂22(v)) β̄′R−1 −R−1 β̄ (M̄22(0) + M̂22(v))

M̂22(0) = −M̄22(0).

(6.12)

Under an assumption that β̄ is full-rank, the solutions to the reduced-order and boundary
layer systems (6.8) - (6.12) are that every entry of M̄11(u), M̄21(u), M̄22(u), M̂21(v) and M̂22(v)
are zero. It follows from Theorem 3.1 of [40] that the solutions of (6.5) - (6.7) can be written
as

M11(t) = M̄11(u) +O(
√
λ) = O(

√
λ)

M11(t) = M̄21(u) + M̂21(v) +O(
√
λ) = O(

√
λ)

M11(t) = M̄22(u) + M̂22(v) +O(
√
λ) = O(

√
λ)

We now conclude that α(t) is O(
√
λ) by the property (6.4).

6.3 Proof of Theorem 8

In case of single risky asset, n = 1, the solution of F (w) in 4.4 is

F (w) = tanh(σ w).

Then the result in (4.7)-(4.8) is obtained by direct substitution.
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To obtain the result in (4.9), we consider the following expected cost problem

E

{∫ T

0

1

2

[
π∗M

(
t, x(t)

)
− π(t)

]2

dt

}
subject to:

dx(t) = {x(t)r + π(t)(µ− r)}dt+ π(t)σdw(t)

dπ(t) = {ρ̄∗(t, x(t), π(t)) + π(t)µ}dt+ π(t)σdw(t)

x(0) = x0, π(0) = π0

Substituting for ρ̄∗(t, x(t), π(t)) (see (4.8)), this can be rewritten as

E

{∫ T

0

1

2
X(t)′QX(t)dt

}
subject to:

dX(t) = {Φ + 1√
λ
Ψ(t)}X(t)dt+ ΩX(t)dW (t)

X(0) = X0

(6.13)

where

X(t) =

[
bM (t)
ηaM (t)

− x(t)

π(t)

]
, Q =

[ (
µ−r
σ2

)2 −µ−r
σ2

−µ−r
σ2 1

]
, Φ =

[
r −(µ− r)
0 µ

]
,

Ψ(t) =

[
0 0

µ−r
σ2 f(t) −f(t)

]
, Ω =

[
0 −σ
0 σ

]
,

f(t) = σ
√
ηaM(t) tanh

(
σ
√
ηaM(t)

T − t√
λ

)
.

The linear quadratic structure of (6.13) implies that the expected cost is quadratic in X(t)

E

{∫ T

t

1

2
X(s)′QX(s)ds

}
=

1

2
X(t)′P (t)X(t) (6.14)

where the coefficient matrix P (t) satisfies the Lyapunov equation{
Ṗ (t) +Q+ P (t)Φ + Φ′P (t) + 1√

λ
(P (t)Ψ(t) + Ψ(t)′P (t)) + Ω ′P (t) Ω = 0

P (T ) = 0
(6.15)

An approximation of P (t) can be found using a multiple time scale perturbation method.
Similar to Proposition 6, two different time scales are defined by

u , T − t and v ,
T − t√

λ
. (6.16)
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With these new time scales, we approximate P (t) by expanding it over the small parameter
λ

P (u, v) = P 0(u, v) +
√
λP 1(u, v) + o(

√
λ).

The Lyapunov equation (6.15) becomes

∂

∂u
P 0(u, v)+

∂

∂v
P 1(u, v) +

1√
λ

∂

∂v
P 0(u, v)

= Q+ P 0(u, v)Φ + Φ′P 0(u, v) + P 1(u, v)Ψ(u, v) + Ψ(u, v)′P 1(u, v)

+ Ω ′P 0(u, v) Ω +
1√
λ

{
P 0(u, v)Ψ(t) + Ψ(t)′P 0(u, v)

}
+ o(
√
λ).

with initial conditions P 0(0, 0) = 0 and P 1(0, 0) = 0. The equations obtained by collecting
the terms scaled by λ−1/2 and λ0 can be solved by

P 0(u, v) = 0

P 1(u, v) =
{v

2
sech 2(σ

√
ηaM(u)v) +

1

2σ
√
ηaM(u)

tanh(σ
√
ηaM(u)v)

}
Q.

Substituting for u and v, the expected cost (6.14) becomes

E

{∫ T

0

1

2

[
π∗M(t, x(t))− π(t)

]2

dt

}
=

T

2
sech 2(σ

√
ηaM(0)

T√
λ

)(π∗M(0, x(0))− π(0))2

+

√
λ

2σ
√
ηaM(0)

tanh(σ
√
ηaM(0)

T√
λ

)(π∗M(0, x(0))− π(0))2 + o(
√
λ).

The result in (4.9) follows from the observation that T
2
sech 2(σ

√
ηaM(0) T√

λ
) is o(

√
λ).
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Part II

Dynamic Portfolio Choice Problems
under the Hidden Markov Model
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Chapter 7

Motivation

Regime switching is a phenomenon in financial market which is important and costly to
ignore. Evidences of regime switching and benefits of modeling the markets in this par-
ticular way are presented in such as Hamilton [36], Ang and Bekaert [5, 6], Guidolin and
Timmermann [34, 35], Tu [60] and Ang and Timmermann [7]. In general, market regime,
or the market state, which is interpreted as an underlying factor that influences the asset
returns is unobservable. This makes the well-known Hidden Markov Model (HMM) a natu-
ral candidate to model regime switching market. Under the HMM, investors only make an
indirect observation of the market state through its noisy output such as asset prices, market
analyst reports, news etc. Though the HMM is well studied and being used in various fields
including financial economics (see such as Geweke et al. [32]), it is not yet fully incorporated
into the portfolio choice problems or other dynamic decision problems; the existing litera-
ture either makes unrealistic assumptions regarding the knowledge on model parameters or
ignores parameters uncertainties. In this work, we study dynamic portfolio choice problems
when the market follows the HMM. The key difference from the previous literature is we do
not make an impractical assumption that the transition probabilities of the hidden Markov
chain and the observation statistics are known to the investors.

In dynamic portfolio optimization, the HMM assumption adds complications into the
problem in many ways. First, an investor needs to learn about the hidden Markov chain and
the stochastic processes those generate the observations. Under the Bayesian framework,
this is done by updating the joint posterior distribution of the hidden states, the transition
probabilities and state-dependent parameters such as asset expected returns, asset volatilities
and other observation statistics. Besides, this learning process must be repeated when a new
observation arrives. Second, for the HMM, the posterior distribution does not belong to
any known distribution family and has no sensible ways to parameterize. Another difficulty
which is largely ignored in the past literature is solving the dynamic portfolio choice problem
knowing that there are uncertainties in the market states and the model parameters. This is
an extremely complicated issue as the posterior distribution has no structure, which causes
the dynamic optimization to be intractable and impossible to solve using any standard
methods. In this work, we propose methods that handle all of these complications and solve
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the dynamic portfolio choice problems in a tractable fashion.
One approach to solve portfolio choice problem under the HMM is to separately learn the

hidden state and model parameters then solve the portfolio choice problem. Guidolin and
Timmermann [34, 35] first utilize the Expectation-Maximization (EM) algorithm to calculate
the maximum likelihood estimate of the parameters, then solve the portfolio problem as if
the estimates are the truth. The main shortage of this approach is when the unknown
parameters are replaced by their point estimates the parameter uncertainties are ignored.
Also this approach relies on numerical optimization which does not scale well with the
problem size such as the number of hidden states or the number of assets.

A more elaborate approach in solving the dynamic portfolio selection problems based
on the optimal filter theory. This approach gives us an explicit representation of optimal
portfolio. The works done by this approach are Honda [38], Sass and Haussmann [56],
Rieder and Bauerle [53], Bjork et al. [11] and Frey et al. [26]. However, the limitation of this
approach is it assumes that the state transition probabilities are known to the investors. Since
it is not clear how investors may acquire this set of information, the transition probabilities
are replaced by point estimates and hence the uncertainties of these estimates are ignored.
Moreover, due to limited tools in optimal filter framework, it cannot handle the case where
the asset volatilities are state-dependent.

Another approach which we use does not assume the transition probabilities are ob-
servable and takes all parameter uncertainties into account. This approach applies the
Bayesian framework to learn the hidden processes and utilizes the Markov Chain Monte
Carlo (MCMC) technique to help solve optimization problem. Tu [60] is the first that uses
this approach to the portfolio optimization problem under the HMM; however, the author
ignores inter-temporal hedging and solves the single period mean-variance problems which
greatly simplifies the optimization problem. The MCMC method enables Tu [60] to sample
necessary model parameters for the mean-variance optimization from the posterior distribu-
tion.

We also adopt the Bayesian framework to learn the hidden processes as in Tu [60], but we
are interested in a different case where an investor solves the dynamic utility-maximization
problem. The investor re-balances his/her portfolio as new observation is made. The main
roadblock to solve this problem is the joint posterior distribution which represents the in-
vestor knowledge on the hidden market regime, the unknown transition probabilities and the
the regime-dependent parameters is part of the state variables, and performing backward
recursion on this highly complicated posterior distribution is impossible. To avoid this, we
solve this problem by first approximating the value function of the portfolio choice problem
under the HMM (HMM-problem) by that of a complete information problem (C-problem).
This approximation enables us to explicitly calculate the portfolio holdings in term of the
weighted expected value of unknown parameters under the posterior distribution. We then
utilize the MCMC technique to numerically computed this expectation.

Contributions of this work are: first, we propose tractable methods to solve the dynamic
portfolio optimization problem when the market state is unobservable, and the transition
probabilities and the state-dependent parameters are unknown. The methods allow us to
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calculate the optimal portfolio in a semi-explicit way.
Second, we provide a mean to evaluate the performance of this approximation. We use the

information relaxation technique to construct a dual problem of the exact portfolio problem
under the HMM. Then the performance of the dual problem is compared to that the proposed
methods. The numerical experiments show that the performance of the approximate methods
is reasonably close that of the dual problem which in theory is an upper-bound to the exact
problem.

Finally, we are among the first to bring an advancement in MCMC to help solving the dy-
namic optimization problem with hidden processes. Although there are a lot of developments
in sampling techniques from the posterior distribution, but there is not much utilization of
these technique in solving optimization problems. In this work, we devise technique that
utilizes the MCMC methods to calculate the optimal solution to the dynamic portfolio prob-
lem. And the proposed method is not limited to the portfolio problem under the HMM, it
is ready to be applied to other contexts and other types of hidden processes.

7.1 Market Assumptions

We consider a financial market living on a filtered probability space (Ω, F , {F t}, P) over
a finite time horizon [0, T ]. We model market uncertainties using two independent {F t}-
adapted processes, a J-dimensional standard Brownian motion wt and a continuous-time
Markov chain st. We assume that investors are price-takers. Elements of our market are as
follows.

Asset price dynamics

The market can switch between S states/regimes. The market state at time t is denoted by
st ∈ {1, 2, ..., S}, which evolves according to a continuous time Markov chain with transition
rate matrix R. Specifically, state changes are characterized by

P(st+δ = k | st = j) =

{
δ Rjk + o(δ) if k 6= j
1 + δ Rjj + o(δ) if k = j,

(7.1)

where Rjk ≥ 0 for j 6= k and Rjj = −
∑

k 6=j Rjk. There is one risk-free asset and I risky

assets. The risk-free asset price p0
t grows continuously at rate r

dp0
t = p0

t r dt. (7.2)

The price of risky asset i is given by

dpit = pit
(
µi(st) + r

)
dt+ pit

J∑
j=1

σij(st) dw
j
t (7.3)
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where µi(st) and σi·(st) = [σi1(st), · · · , σiJ(st)] are the state dependent return and volatility
for asset i. We denote by

µ(s) = [µ1(s), µ2(s), ..., µI(s)]
′

the state dependent I × 1 vector of excess returns, and by

σ(s) =

 σ11(s) · · · σ1J(s)
...

. . .
...

σI1(s) · · · σIJ(s)


the state dependent I × J volatility matrix. We assume, as is standard, that σ(s)σ(s)′ ≥ cI,
where I is the I × I identity matrix, for some constant c > 0. We assume that the investor
observes prices at discrete time points. For brevity, we also let t ∈ {0, 1, ..., T} be a discrete
time index where the length between period t and t + 1 is some δ > 0 (e.g. δ = 1/252 for
observations at the close of each day). At time t, the price of asset i is

pit = pit−1 exp

{(
µi(st−1) + r − 1

2
Σii(st−1)

)
δ +

J∑
j=1

σij (wjt − w
j
t−1)

}
. (7.4)

We denote by pt = {p0, p1, p2, ..., pt} the history of prices up to time t.

Hidden Markov Model

In this work, we model the market regime as a continuous time Markov chain st. We are
interested in the case when neither the market regime st nor the transition rate R are known
by the investor, but need to be estimated using the history of asset prices and other noisy
signals yt = {y0, y1, · · · , yt} of the hidden market state. The signals yt could be subjective
views about the regime that are periodically announced by market experts, though signals
from other sources can be incorporated in a similar way.

There are various ways to model expert views. In this work, we assume for simplicity
that the announcement at time t is multivariate normal with state-dependent mean and
covariance

yt ∼ N(µy(st),Σy(st)), (7.5)

though other models are possible and can be handled using the methods we present in this
work1. Observe that this model allows for multiple analysts with biased and dependent
signals in that Σy(s) need not be diagonal nor µy(s) be the same for all experts. We do not
assume that the observation statistics (µy(·), Σy(·)) are known to the investor; these need to
be learned using the history of forecasts and returns.

1Specifically, we are able to handle the other models of analyst forecasts as long as we can sample the
model parameters from the joint posterior distribution ρt.
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Observations and learning

We have described dynamics of the market regime st, the observation process/analyst fore-
casts, and price process pit, and their parameters R, (µy(s), Σy(s)) and
(µi(s), σi1(s), · · · , σiJ(s)), respectively. We assume throughout that the investor has the
history of prices and forecasts

(pt, yt) =
{

(p0, y0), (p1, y1), · · · , (pt, yt)
}
,

and can use this data to estimate market regimes

st = {s0, s1, s2, ..., st},

transition rate matrix R, and the regime dependent parameters

ξ ≡
{
µ(s), σ(s), µy(s),Σy(s); s ∈ {1, 2, ..., S}

}
. (7.6)

We denote by {Ft} the history of prices pt and the analyst forecasts yt available at time t
to the investor

Ft = σ
{

(p0, y0), (p1, y1), · · · , (pt, yt)
}

(7.7)

so (st, R, ξ) need to be learned conditional on Ft. One of the challenges of this work is to
understand how these estimates should be used to make dynamic asset allocations.
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Chapter 8

Portfolio Choice Problems under the
Hidden Markov Model
(HMM-Problem)

We summarize the Bayesian approach to learning the hidden market regime st, transition
rates R, regime dependent price process parameters (µ(s), Σ(s)) and observation statistics
(µy(s), Σy(s)), and formulate the associated dynamic portfolio choice problem. The dynamic
programming equation for this problem is impossible to solve, due to the high dimensional
state (which includes the posterior over (st, R, ξ)), which motivates subsequent discussion
on approximations in the following chapter.

8.1 Bayesian Learning

With the Bayesian approach, the investor begins with prior views of the value of the hidden
state s0, the transition rate matrix R, and the state dependent return and observation
parameters ξ (7.6), represented by a joint probability distribution

ρ0(s0, R, ξ).

The analyst observes asset returns/prices and expert signals over time and updates his prior
using Bayes’ rule. The resulting posterior distribution at time t is

ρt(s
t, R, ξ) ∝ L(pt, yt; st, R, ξ) ρ0(s0, R, ξ), (8.1)

where L(·) is the likelihood function. Observe that the history of states st, and not just the
current state st, is also being learned. An estimate of the history of regimes is needed to
estimate the current regime as well as the parameters (R, ξ).

In general, the posterior distribution ρt does not belong to any known distribution fam-
ilies and cannot be parameterized with a lower dimensional sufficient statistic. In such
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a situation, we can integrate under the posterior distribution by sampling from ρt using
Markov Chain Monte Carlo (see Fruhwirth-Schnatter [27] and Chapter 10). Samples from
this posterior are needed in our solution of the portfolio choice problem. In this work, we
adopt a Dirichlet distribution for the prior on the transition probabilities, a normal-inverse-
Wishart distribution for the prior on the observation parameters, and assume that they are
independent. With this choice, the posterior can be sampled using Gibbs sampling.

8.2 Wealth dynamics and portfolio choice

The wealth process xt of a self-financing investor with portfolio π(t) = [π1(t), · · · , πI(t)]′
where πi(t) is the proportion of the investor’s wealth in asset i at time t. The wealth process
satisfies

dxt = xt
{
r + π(t)′µ(st)

}
dt+ xt

J∑
j=1

σ′·j(st)π(t)dwjt , (8.2)

where σ·j(s) is the jth column of σ(s). The portfolio strategy π(·) is restricted to the admis-
sible class

A =

{
π : [0, T ]× Ω→ RI

∣∣∣ π is {Ft}-adapted and E
[∫ T

0

∥∥xsπ(s)
∥∥2
ds <∞

]}
where {Ft} is the history of prices and forecasts (7.7). The investor maximizes expected
power utility of final wealth,

max
π(·)∈A

E
[
xγT
γ

]
, (8.3)

subject to wealth dynamics (8.2) and the dynamics of the posterior distribution (8.1). The
state variables of the HMM-problem are (xt, ρt(·)) and the value function

V (s, x, ρ(·)) = maxπ(·)∈A E
[
xγT
γ

]
,

,Subject to:

xt satisfies (8.2),

ρt(·) satisfies (8.1),

xs = x, ρs(·) = ρ(·),

which solves the dynamic programming recursion

V (t, xt, ρt) = max
πt

Eρt
[
V (t+ 1, xt+1, ρt+1)

∣∣∣xt] (8.4)
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The subscript of the expectation represents the random variables associated with that ex-
pectation. The expectation in the Bellman equation is calculated over the hidden states st,
the unknown parameters R and ξ, the wealth and the state of the next period xt+1 and st+1,
and the observations of the next period pt+1 and yt+1.

The state variable (xt, ρt(·)) of (8.3) is infinite dimensional since the posterior distribution
ρt(·) is a continuous probability distribution. It follows that unless ρt(·) can be represented in
terms of a finite dimensional sufficient statistic, which is not the case for the problem that we
are interested in solving, the dynamic programming recursion (8.4) can not be solved exactly
since it requires enumerating over all possible realizations of the posterior. (We encounter
a similar problem even if we replace the continuous posterior with a discrete approximation
since the dimension of the approximate state is still high). In the following chapter, we
propose an approximate approach for solving (8.3) for which semi-analytic expressions of an
approximately optimal dynamic policy can be written in terms of expectations under the
posterior, and show that this policy can be computed using Gibbs sampling.
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Chapter 9

Problem Approximation

In this chapter, we discuss an approximate method for solving (8.3). We begin by introducing
the idea behind the approximation which involves the value function of a simpler variant
of the HMM-problem in which the investor observes the market regime st and knows the
model parameters. We derive the value function of this simpler problem and show how it
can be used to construct an approximately optimal dynamic allocation policy that can be
computed using Gibbs’ sampling. We also illustrate this approximate method via examples
at the end of this chapter.

9.1 Value function approximation

As noted in (8.4), the optimal policy for the HMM problem (8.3) is characterized by the
solution of the optimization problem

π∗(t, xt, ρt) = arg max
πt

Eρt
[
Ext+1,st+1,pt+1,yt+1

{
V (t+ 1, xt+1, ρt+1)

∣∣∣ st, R, ξ}]. (9.1)

The challenge in solving this equation is not so much the optimization problem, but rather,
that the objective function on the right hand side depends on the value function V (t +
1, xt+1, ρt+1), which can only be computed by recursively solving (8.4) for every possible
wealth-posterior pair (xt, ρt) for every time t. Indeed, if we had an oracle that could (mag-
ically) produce the value function for every desired choice of (t, xt, ρt), finding the optimal
policy would be substantially easier. In particular, we would only need to solve (9.1) at
wealth-posterior pairs (xt, ρt) that are encountered going forwards in time, and the compu-
tationally overwhelming task of implementing backwards recursion is not needed.

Of course, such an oracle does not exist, but the perspective just described suggests
that backwards recursion can be avoided if an easily computable approximation to the value
function, which we denote by Ṽ , can be found. If this is possible, then then an easily
computable approximately optimal policy can be obtained by replacing V (t + 1, ·) with
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Ṽ (t+ 1, ·) in (9.1) and solving

π∗(t, xt, ρt) = arg max
π

Eρt [Ṽ (t+ 1, ·) |xt] (9.2)

at values of (xt, ρt) that are encountered going forwards in time. (See Bertsekas [9] and
Powell [52] for a description and applications of this approach in other applications).

While any approximation of V is (in principle) possible, the quality of the trading policy
obtained using the approximation (9.2) depends on its quality. In this regard, a natural

approximation Ṽ is the value function of a simpler but related problem to (8.3), which we
now describe.

9.2 Complete Information Problem (C-Problem)

The complete information problem (C-problem) is similar to the HMM-problem except that
an investor knows the transition rate R, can observe the market states st, and knows the
return parameters {µ(s), σ(s); s ∈ {1, 2, ..., S}} for each regime. (Under these assumptions,
the observations yt are irrelevant). For this problem, the investor’s goal is to maximize
expected utility of terminal wealth

max
π(t)∈A

E
[
xγT
γ

]
, (9.3)

subject to the state dynamics of the Markov chain (7.1) and the wealth dynamics (8.2).
His/her class of admissible trading policies is modified to reflect this additional information

A =

{
π : [0, T ]× Ω→ RI

∣∣∣ π is {FW, st }-adapted and E
[∫ T

0

∥∥xsπ(s)
∥∥2
ds <∞

]}
where {FW, st } is the filtration generated by the Brownian motion Wt and the Markov chain
st. The solution to this problem is presented in the following proposition and forms the basis
of the approximation to the HMM problem.

Proposition 9. The value function for the C-problem is

VC(t, xt, st) =
xγt
γ
gC(t, st) (9.4)

where gC(t, st) solves the system of differential equations 0 = ġC(t, s) +

{
γr +

1

2

γ

1− γ
θ(s)

}
gC(t, s) +

S∑
k=1

Rsk gC(t, k), s ∈ {1, 2, ..., S},

gC(T, s) = 1,

(9.5)

θ(s) ≡ µ′(s) Σ−1(s)µ(s) and Σ(s) ≡ σ(s)σ′(s). The optimal portfolio is

π∗C(t) =
1

1− γ
Σ−1(st)µ(st). (9.6)
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Proof. See Chapter 12.

9.3 Approximate portfolio

With the value function approximation, Ṽ = VC , the approximate optimal policy (9.2)
becomes

π∗(t, xt, ρt) = arg max
π

Eρt
[
VC(t+ 1, xt+1, st+1)

∣∣∣xt]
= arg max

π
Eρt
[
E
{
VC(t+ 1, xt+1, st+1)

∣∣∣xt, st, R, ξ} ∣∣∣xt]. (9.7)

Although it was introduced as an approximation to the recursive equation (9.7), there is
another interpretation which we now describe. Specifically, suppose that at time t, {st, R, ξ}
are not known to the investor but he/she has a posterior distribution ρt(s

t, R, ξ) on the set
of possible values. The approximation (9.7) would be optimal for this investor if it was also
the case that the hidden state and the true parameters are revealed to him the instant after
his time t allocation has been decided (but before a state transition occurs), and the market
state is observable from then on. By revealing the true states and parameters and making
the state observable, the investor solves the C-problem instead of the HMM-problem from
time t+ 1 onwards. In other words, the posterior dynamics (8.1) are no longer relevant from
time t + 1 onwards and the value function from t + 1 onwards is VC . Given information at
time t, the probability that (st, R, ξ) is revealed to the investor after his time t decision is
dρt(s

t, R, ξ), and the dynamic programming equations associated with this setup gives (9.7).
By conditioning on st, R and ξ, the inner expectation is easy to calculate. Specifically,

conditioning on st, R, ξ, the next period wealth xt+1 and st+1 are independent. The expecta-
tion over st+1 can simply be calculated using the transition rate R (7.1), and the expectation
over xt+1 is calculated by applying Ito’s lemma. Specifically, we have

E
[
VC(t+ 1, xt+1, st+1)

∣∣xt, st, R, ξ ]
= E

[
E
{
VC(t+ 1, xt+1, st+1)

∣∣∣xt+1, s
t, R, ξ

} ∣∣∣xt, st, R, ξ ]
= E

[
VC(t+ 1, xt+1, st) + δ

S∑
k=1

Rst,kVC(t+ 1, xt+1, k) + o(δ)
∣∣∣ st, R, ξ ]

= E
[
VC(t, xt, st)

+ δ

{
∂

∂t
VC(t, xt, st) + xt

(
r + π′µ(st)

) ∂
∂x
VC(t, xt, st) +

1

2
x2
t π
′Σ(st)π

∂2

∂x2
VC(t, xt, st)

}
+ δ

S∑
k=1

Rst,kVC(t, xt, k)
]

+ o(δ)
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Substituting into (9.7) gives

π∗(t, xt, ρt) = arg max
π

Eρt
{
xtπ

′µ(st)
∂

∂x
VC(t, xt, st) +

1

2
x2
t π
′Σ(st) π

∂2

∂x2
VC(t, xt, st)

∣∣∣xt}
+O(δ)

where we have dropped terms that do not depend on π. Dropping higher order terms and
noting that VC depends on (st, R, ξ) it follows that

π∗(t, xt, ρt) = Eρt
[
xt Σ(s)

∂2

∂x2
VC(t, xt, st)

]−1

Eρt
[
µ(st)

∂

∂x
VC(t, xt, st)

]
=

1

1− γ
Eρt
[
Σ(s) gC(t, s;R, ξ)

]−1

Eρt
[
µ(s) gC(t, s;R, ξ)

]
(9.8)

where the second line follows from (9.4) and gC(t, s;R, ξ) solves the system of differential
equations (9.5). (We add R and ξ into the arguments of gC as a reminder that gC also
depends on these unknown parameters). Observe that the structure of the optimal portfolio
is very similar to that of the C-problem (9.6) except that the mean and covariance are
replaced by their expectations under the posterior, weighted by gC(t, s; R, ξ).

Computing the approximately optimal policy

The expectation over (s, R, ξ) in (9.8) is computed using Monte Carlo integration, with
samples of (s, R, ξ) under the posterior being generated by Gibbs’ sampling. This can be
summarized as follows.

1. Sample {stm, Rm, ξm}m=1,2,...,M from the posterior distribution ρt using the Gibbs sam-
pler1.

2. For each sample {stm, Rm, ξm}, solve the differential equation (9.5) for gC(t, stm;Rm, ξm).

3. Calculate the portfolio π∗(t) by

π∗(t) ≈ 1

1− γ

[
M∑
i=1

Σm(s) gC(t, stm;Rm, ξm)

]−1 [ M∑
i=1

µm(stm) gC(t, stm;Rm, ξm)

]
. (9.9)

9.4 Examples

In this section, we illustrate the use of the previously outlined approximation using the real
data from US equity market and simulated data. The US equity data used in the first
example is the Fama-French 2×3 Portfolios from 1980 to 2012. In the next two examples,
we simulate the regime-switching markets with market analysts who provide the investor the
noisy observations of the hidden market states.

1See details in Chapter 10
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Example : Fama-French 6 Portfolios

In this example, we investigate the value-weighted Fama-French 2×3 portfolios from 1980-
2012. The portfolios are denoted by SmLo, SmMed, SmHi, BigLo, BigMed and BigHi. We
model the market using the HMM with two regimes, bull and bear regimes. The bear regime
is characterized by the regime with lower expected returns and higher volatility. We denoted
the bull and bear regimes by s = 1 and s = 2 respectively. The investor observes weekly
returns of the six portfolios, and rebalances weekly. There are no experts/analysts in this
example. We first describe the prior distribution as follows.

Prior parameters

The prior parameters of this example are obtained from the older data set from 1960-1979.2

Since the observation is discrete, we assume that the hidden Markov chain is a discretization
of the chain defined in (7.1). The relationship between the rate matrix R of the continuous-
time MC and the transition matrix Q of the discrete-time MC is standard as shown in (10.1).
We assume the prior distribution of each row of the transition matrix Q is Dirichlet,

Qj· ∼ Dir(ej1, ej2).

The parameter ejk can be interpreted as the prior number of switching from regime j to
regime k. We set the ejk’s to equal the average number of transitions within τ weeks of a
Markov chain with rate matrix

Rprior =

[
−2.14 2.14

5.84 −5.84

]
.

τ reflects the investor confidence in this prior distribution. With τ = 104 weeks, the Dirichlet
distribution parameters are [

e11 e12

e21 e22

]
=

[
72.98 3.13
3.13 24.76

]
.

The prior of the annualized expected returns obtained from 1960-1879 data set are:

µprior(1) =


0.23
0.22
0.23
0.15
0.14
0.17

 , µprior(2) =


−0.24
−0.17
−0.13
−0.13
−0.07
−0.08

 .

2We setup the prior of parameters of this 1960-1979 data set by first manually identifying the bull and
bear regimes and estimating the parameters in each regime. Then with very flat prior distribution, we
update the model parameters using Bayesian approach. The posterior parameters of the 1960-1979 data set
is calculated and used as the prior parameters for the 1980-2012 data set.
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The prior covariance matrices Σprior(1) and Σprior(2) are calculated from the following stan-
dard deviation and correlation:

SD(1) =


0.13
0.10
0.10
0.11
0.09
0.11

 , Corr.(1) =


1 0.94 0.90 0.81 0.78 0.77
· 1 0.95 0.80 0.81 0.82
· · 1 0.76 0.79 0.83
· · · 1 0.87 0.82
· · · · 1 0.87
· · · · · 1

 ,

SD(2) =


0.28
0.23
0.23
0.24
0.20
0.21

 , Corr.(2) =


1 0.96 0.93 0.86 0.86 0.87
· 1 0.97 0.83 0.88 0.90
· · 1 0.79 0.86 0.90
· · · 1 0.88 0.87
· · · · 1 0.93
· · · · · 1

 .

From the price dynamics (7.4), the one-period asset returns

rett = [ret1t , ..., ret
I
t ]
′ ≡
[
ln(

p1
t+1

p1
t

), ..., ln(
pIt+1

pIt
)

]′
have a normal distribution,

rett ∼ N(µret(st),Σret(st)),

where µret(s) and Σret(s) are defined in (10.2)-(10.3). We assume normal-inverse-Wishart
(NIW) for the return parameters µret(s) and Σret(s),

Σret(s) ∼ IW
(

Λ0
ret(s), ν

0
ret(s)

)
and µret(s)

∣∣Σret(s) ∼ N
(
η0
ret(s),

Σret(s)

κ0
ret(s)

)
, (9.10)

where

κ0
ret(1) = κ0

ret(2) = 260, ν0
ret(1) = ν0

ret(2) = 20,

η0
ret(s) =

{
µprior(s)−

1

2
diag(Σprior(s))

}
δ,

Λ0
ret(s) = ν0

ret(s) Σprior(s) δ; s ∈ {1, 2}, δ = 1/52.

κ0
ret(s) and ν0

ret(s) reflect the confidence in the prior mean and the prior covariance respec-
tively. κ0

ret(s) can be interpreted as the number of prior observations with sample mean
η0
ret(s), while ν0

ret(s) can be interpreted as the number of prior observations with covariance
Σprior(s) δ. Note that, in this example, the only data available to the investor is the returns.
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Result

Figure 9.1 shows the Fama-French portfolios and the probability in bear regime. The bull
regime is characterized by the regime with higher expected returns (15%-25% per year) and
lower volatility (10%-15% per year) while the bear regime has lower expected returns (-30%-
10%) and higher volatility (25%-30%). The summary statistics of the prior and the posterior
distribution are show in Figure 9.2 and 9.3. From Figures 9.2 and 9.3, we can see that the
prior distribution is fairly flat. The range of parameters sampled from the prior distribution
is much wider compared to that of the posterior distribution. This flat prior is a result of
choosing small values of τ, κ0

ret(s) and ν0
ret(s).

Figure 9.1: The top plot shows the Fama-French portfolios from 1980 to 2012. The bottom
plot shows the probability of being in bear regime.



55

Figure 9.2: We plot the summary statistics of the prior distribution (denoted by t = 0) and
the posterior distribution (denoted by t = T ) of the transition matrix Q. The posterior
distribution is updated from observing the whole data set. For each vertical line, the cir-
cular marker represents the 50th percentile, the solid line connects the 25th and the 75th
percentiles, and the dotted lines are extended to the 5th and the 95th percentiles.

Figure 9.3: Similar to Figure 9.2, we plot the summary statistics of the annualized returns,
standard deviation and correlation. The regime 1 (bull) parameters are in the left column the
regime 2 (bear) parameters are in the right column. The number 1-6 represent the portfolio
SmLo, SmMed, SmHi, BigLo, BigMed and BigHi respectively.

To illustrate the use of our approximate method, we let an investor solves the HMM-
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problem where he/she can invest either in the Fama-French portfolios or in risk-free asset3.
The prior distribution of the model is described in the previous section. When the weekly
data is revealed to the investor, the investor updates his/her knowledge then adjusts the
asset holdings using the approximate method we proposed.

We show the investor portfolios and wealth in Figure 9.4-9.6. Figure 9.4 shows ten-year
investment from 1980-1989. We can see that the investor is able to identify the bad peri-
ods and responds by reducing the asset holdings, as a result, the investor wealth does not
affect much from the crash. Similarly, Figure 9.5 and 9.6 show the result from 1992-2001
and 2002-2012. We also show the hedging demand which is the difference in portfolio hold-
ings obtained from the proposed method and from solving the single-period mean-variance
problem. Specifically, the hedging demand ∆π is defined by

∆π(t) = π∗(t)− 1

1− γ
Σpred(t)

−1 µpred(t). (9.11)

The term Σpred(t)
−1µpred(t)/(1 − γ) is the optimal portfolio for the single period problem.

µpred(t) and Σpred(t) are the mean and covariance of the predictive density which can be
calculated using the MCMC method. We can see that the hedging demand is larger at the
beginning of the investment horizon as the intertemporal hedging is ignored in the single-
period problem.

3For simplicity, we let an investor lend and borrow at the same rate which is averaged over investment
horizon. And this risk-free rate is assumed to be known to the investor.
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Figure 9.4: This figure shows, from top to bottom, the Fama-French portfolios from 1980 to
1989, the probability in bear regime, the risky asset holdings selected by the approximate
method, the hedging demand, and the investor wealth. The investor initial wealth is $100,
and the risk aversion parameter γ is -8.
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Figure 9.5: Similar to Figure 9.4, this figure shows the result from 1992 to 2001
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Figure 9.6: Similar to Figure 9.4, this figure shows the result from 2002 to 2012

Next, we compare the performance of the using six different approaches to solve the
portfolio choice problem. The investor statistics are calculated by letting the investors solve
a series one-year-horizon problems during 1980-2012. The mean-standard deviation frontiers
and the certainty equivalence are plotted in Figure 9.7. Note that the investors are allowed
to adjust their holdings every week. These six approaches are:

1. An investor solves the HMM-problem using the proposed dynamic approximation.

2. An investor repeatedly solves the single-period (one-week) mean-variance problem but
still assumes that market follows the HMM with two regimes. In this case, the in-
vestor first computes the predictive mean and variance, then solves the mean-variance
problem.
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3. An investor repeatedly solves the single-period mean-variance problem without regime
switching. The prior parameters for the asset return are obtained from 1960-1979,

µprior =


0.11
0.13
0.16
0.077
0.095
0.13

 , SD =


0.18
0.15
0.15
0.15
0.13
0.14

 , Corr. =


1 0.96 0.93 0.85 0.83 0.83
· 1 0.97 0.82 0.86 0.87
· · 1 0.79 0.84 0.88
· · · 1 0.87 0.85
· · · · 1 0.90
· · · · · 1

 .

Similar to the HMM-problem, the prior distribution is assumed to be NIW with pa-
rameters

κ0
ret = 260, ν0

ret = 20, η0
ret =

{
µprior −

1

2
diag(Σprior)

}
δ, Λ0

ret = ν0
ret Σprior δ.

4. An investor repeatedly solves the single-period mean-variance problem without regime
switching and parameters uncertainty. The return parameters are the same as the
previous approach but they are assumed to be the truth.

5. An investor assigns equal weight for all assets.

6. An investor invests all in the risk-free asset.

We can see in Figure 9.7 that dynamic hedging, regime switching and parameter uncer-
tainty help improve the investor performance, and hence our approximate approach performs
the best measured by both the portfolio mean-standard deviation plot and the investor
utility. Though the improvement of the dynamic approximation is not substantial in the
mean-standard deviation plot, it shows significant improvement in terms of the certainty
equivalence as a result of its preferable higher-order risk.
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Figure 9.7: The left plot compares the mean-standard deviation frontiers obtained from six
different approaches. The right plot compares the certainty equivalence at different risk-
aversion levels. Note that the initial wealth is $100.

Example : Setting 1

In this example, we simulate a market with three regimes: bull, calm and bear regimes. The
regimes are named in according to the return characteristic in each regime. We denote the
bull, calm and bear regimes by numbers 1, 2 and 3 respectively. The observations on the
asset prices and the analyst forecasts are made daily. We first describe the true parameters
used in the simulation.

Data generating process

The generated hidden Markov chain is a discretization of the chain defined in defined in (7.1)
with rate matrix

R =

 −6.0 4.5 1.5
1.5 −3.0 1.5
3.0 3.0 −6.0

 per year.

The risky asset price processes defined in (7.3) has the excess return vectors µ(s) and the
covariance matrices Σ(s)

µ(1) =

[
0.20
0.15

]
, µ(2) =

[
0.05
0.03

]
, µ(3) =

[
−0.10
−0.09

]
,

Σ(1) =

[
0.0225 0.0090
0.0090 0.0144

]
, Σ(2) =

[
0.0225 0.0045
0.0045 0.0144

]
, Σ(3) =

[
0.0225 0.0135
0.0135 0.0144

]
.
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Apart from the differences in excess returns across regimes, we also assume different correla-
tion structures, specifically the correlations are 0.5, 0.25 and 0.75 respectively. Throughout
the example, we assume that this risk-free rate r is 0.

The investor observes two analyst forecasts on the market state on a daily basis. The
model of the forecasts is defined in (7.5) with parameters:

µy(1) =

[
1.0
1.0

]
, µy(2) =

[
2.0
2.0

]
, µy(3) =

[
3.0
3.0

]
,

Σy(s) = v2

[
1.0 0.5
0.5 1.0

]
; s ∈ {1, 2, 3}.

The standard deviation of the forecasts denoted by v will be varied from 1 to 5 to test the
performance of the investor. Next we describe the prior distribution of the parameters.

Prior parameters

We assume Dirichlet for the prior of the the transition matrix Q,

Qj· ∼ Dir(ej1, ej2, ej3)

We set the value of ejk’s by let them be the average number of transitions within τ days of
a Markov chain with rate matrix

R (1 + ∆R).

We use the parameter ∆R to characterize the precision of prior transition rate. In this
example, we let τ to be 63 days and choose ∆R from {−0.2, 0.0, 0.2 }. When ∆R = 0, for
example, the Dirichlet distribution parameters are e11 e12 e13

e21 e22 e23

e31 e32 e33

 =

 14.71 0.269 0.091
0.209 34.68 0.209
0.150 0.150 12.31

 .
Similar to the previous example, we assume NIW for the return parameters µret(s) and

Σret(s),

Σret(s) ∼ IW
(

Λ0
ret(s), ν

0
ret(s)

)
and µret(s)

∣∣Σret(s) ∼ N
(
η0
ret(s),

Σret(s)

κ0
ret(s)

)
(9.12)

where

ν0
ret(1) = κ0

ret(1) = 10000, ν0
ret(2) = κ0

ret(2) = 25000, ν0
ret(3) = κ0

ret(3) = 10000,

η0
ret(s) =

{
µ(s)(1 + ∆µ)− 1

2
diag(Σ(s))

}
δ, Λ0

ret(s) = ν0
ret(s) Σ(s) δ; s ∈ {1, 2, 3}.

The parameter ∆µ allows us to characterize how precise the prior distribution is; in this
example, we choose ∆µ between -0.2 and 0.2.
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We also assume NIW for the forecasts parameters µy(s) and Σy(s) defined in (7.5),

Σy(s) ∼ IW
(

Λ0
y(s), ν

0
y(s)

)
and µy(s)

∣∣Σy(s) ∼ N
(
η0
y(s),

Σy(s)

κ0
y(s)

)
(9.13)

where

ν0
y(1) = κ0

y(1) = 36, ν0
y(2) =κ0

y(2) = 36, ν0
y(3) =κ0

y(3) = 36.

ηy(1) =

[
1.0− 0.2v
1.0 + 0.2v

]
, ηy(2) =

[
2.0− 0.2v
2.0 + 0.2v

]
, ηy(3) =

[
3.0− 0.2v
3.0 + 0.2v

]
,

Λ0
y(s) = 1.22 ν0

y(s) Σy(s); s ∈ {1, 2, 3}.

We assume that the prior distribution on the expected forecasts is not quite accurate, an
investor underestimates the mean the first analyst and overestimates that of the second
analyst. And the prior variance is assumed to be 1.22 times the true variance. As a result
of this imprecise prior parameters, the investor assigns relatively small value for the prior
number of observations ν0

y(s) and κ0
y(s).

Result

Figure 9.8 shows the result of Bayesian learning on model parameters. We draw the tran-
sition matrix Q, return parameters µret(s) and forecasts parameters µy(s) from the prior
distribution, denoted by t = 0, and from the posterior distribution after 500 days of observa-
tions, denoted by t = T . The summary statistics of these parameters are shown in the plot.
Generally, we can see improvement at t = 500 days; the sampled parameters have smaller
biased and variance. Note that this is a result of a single sample path, hence we might not
be able to seen any improvement for some parameters.
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Figure 9.8: At forecast standard deviation v = 3, we plot the summary statistics of the tran-
sition matrix Q (first row), return parameters µret(s) (second row) and forecasts parameters
µy(s) (third row). For each vertical line, the circular marker represents the 50th percentile,
the solid line connects the 25th and the 75th percentiles, and the dotted lines are extended
to the 5th and the 95th percentiles. These parameters are drawn from the prior distribution
at t = 0 and the posterior at t = T = 500 days. The horizontal dashed lines which are the
true values of the parameters are added for comparison.

We plot the true market state, the inferred state probability as well as the portfolios ob-
tained from solving the HMM-problem and the C-problem in Figure 9.9. This also compares
the result from different market condition namely in the left column the analyst forecasts
noise v is 1 while v is 3 for the right one. We can see that smaller forecast noise provides a
more accurate state probability, and the difference between πC and πHMM depends on the
state probability. When the forecast noise is low, an investor can easily infer the hidden
states and the unknown parameters, and therefore πHMM is closer to πC .
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Figure 9.9: This figure compares the state probabilities and the portfolios from two market
conditions when the analyst forecast noises v are 1 (left column) and 3 (right column). The
plots in the first row show the true state. The plots in the second row show the probability
of being in each state. The plots in the last two rows compares the risky asset holdings
obtained from solving the HMM-problem (the dotted line) and from solving the C-problem
(the solid line). The risk aversion parameter γ used is -5.

Next we compare the performance of the investors who solve the C-problem, the HMM-
problem and the single-period mean-variance problem in Figure 9.10. For the single-period
mean-variance problem, an investor also assumes the market follows the HMM with three
states but instead of solving a dynamic problem, he/she repeatedly solves single-period
problems. We can see superiority of the approximate methods over the single-period mean-
variance approach in every set of parameters.
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Figure 9.10: This shows the mean-standard deviation frontier of the portfolio constructed by
solving the C-problem (dotted line with plus markers), the HMM-problem (solid line with
square markers) and solving the single-period mean-variance problem (dotted line with star
markers) under different sets of parameters. The investment horizon is 250 days.

Example : Setting 2

In this setting, we use the same parameters as the Setting 1 except the asset return param-
eters. The excess return vectors µ(s) and the covariance matrices Σ(s) are

µ(1) =

[
0.17
0.03

]
, µ(2) =

[
0.05
0.03

]
, µ(3) =

[
−0.05
0.03

]
,

Σ(1) =

[
0.0225 −0.0045
−0.0045 0.0144

]
, Σ(2) =

[
0.0225 0.0045
0.0045 0.0144

]
, Σ(3) =

[
0.0225 0.0169
0.0169 0.0225

]
.

The correlations in this setting are -0.25, 0.25 and 0.75 for regime 1, 2 and 3 respectively.
We maintain the same structure of the prior parameters as in the Setting 1.

Similar to the previous section, we compare the performance of the investors who solve
the C-problem, the HMM-problem and the single-period mean-variance problem in Figure
9.11. Again, the superiority of the approximate methods over the mean-variance approach
can be seen in all settings.
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Figure 9.11: This shows the mean-standard deviation frontier of the portfolio constructed by
solving the C-problem (dotted line with plus markers), the HMM-problem (solid line with
square markers) and solving the single period mean-variance problem (dotted line with star
markers) under different sets of parameters. The investment horizon is 250 days.
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Chapter 10

Sampling from Posterior Distribution

In this chapter, we present the Gibbs sampler which is used to sample the state sample path
st, the rate matrix R and the state-dependent parameters ξ from the posterior distribution
ρt. We begin by stating the assumptions on the parameters distribution then we summarize
the Gibbs sampler from Fruhwirth-Schnatter [27].

10.1 Prior Distribution

Transition matrix

We first discretize the Markov chain in (7.1) to make it compatible with discrete observations
by defining the regime transition probability matrix Q as follows.

Qjk =

{
Rjk δ if j 6= k
1 +Rjk δ otherwise

(10.1)

We assume Dirichlet as a prior distribution for each row of the transition matrix Q,

Qj· ∼ Dir(ej1, ej2, ..., ejS), j = 1, 2, ..., S.

The parameter ejk can be viewed as the prior number of switching from regime j to k.
Condition on knowing the state sample path st, the posterior distribution of Q is

Qj· ∼ Dir(ej1 +Nj1(st), ej2 +Nj2(st), ..., ejK +NjK(st)),

where Njk(s
t) is the number of transitions from state j to k along the sample path st.

Returns and forecasts

Condition on the hidden state and price parameters, asset returns which are defined by

retit ≡ ln(
pit+1

pit
), i = 1, 2, ..., I (10.2)
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are normally distributed,

rett = [ret1t , ..., ret
I
t ]
′ ∼ N(µret(st),Σret(st)).

The relationship between (µ(s),Σ(s)) and (µret(s),Σret(s)) are

µiret(s) =
(
µi(s) + r − 1

2
Σii(s)

)
δ and Σret(s) = Σ(s)δ. (10.3)

We also recall that the analyst forecast is normally distributed, yt ∼ N(µy(st),Σy(st)).
We assume normal-inverse-Wishart (NIW) as a prior distribution for both (µret,Σret) and

(µy,Σy). Since the returns and the forecasts have exactly the same distribution, we omit
writing down the distribution of the forecast parameters.

Σret(s) ∼ IW
(

Λ0
ret(s), ν

0
ret(s)

)
and µret(s)

∣∣Σret(s) ∼ N
(
η0
ret(s),

Σret(s)

κ0
ret(s)

)
for s ∈ {1, 2, ..., S}, and Λ0

ret, ν
0
ret, η

0
ret and κ0

ret are prior distribution parameters. ν0
ret(s)

and κ0
ret(s) can be interpreted as the number of prior observations which have sample mean

η0
ret(s) and sum of squared Λ0

ret(s).
Condition on knowing the state sample path st and the return realization

{ret1, ret2, ..., retn(s)}, where n(s) is the number of observations from state s, the posterior
distribution of (µret,Σret) is also NIW with parameters

Λn
ret(s) = Λ0

ret(s) +
κ0
ret(s)n(s)

κ0
ret(s) + n(s)

(
ret(s)− η0

ret(s)
)(
ret(s)− η0

ret(s)
)′

+

n(s)∑
j=1

(
retj − ret(s)

)(
retj − ret(s)

)′
(10.4)

νnret(s) = ν0
ret(s) + n(s) (10.5)

ηnret(s) =
κ0
ret(s) η

0
ret(s) + n(s) ret(s)

κ0
ret(s) + n(s)

(10.6)

κnret(s) = κ0
ret(s) + n(s), (10.7)

where ret(s) is a sample mean of the returns in state s.

10.2 Gibbs sampling

Gibbs sampling is a natural method to sample the hidden variables/parameters in the HMM
as it allows us to sample from the joint posterior distribution given that we can sample from
conditional distributions. The assumptions on the prior distributions in the previous section
provide us easy ways to conditionally sample Q, (µret,Σret) and (µy,Σy). Also the states
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st are straightforward to sample given the model parameters are know. We summarize the
Gibbs sampler for the HMM as follows.

Let m be an index of the sample. We start by generating a sample path st0. Then for
m ∈ {1, 2, ...,M},

• Given stm−1, sample the transition matrix Q from its posterior distribution

Qm
j· ∼ Dir(ej1 +Nj1(stm−1), ej2 +Nj2(stm−1), ..., ejK +NjK(stm−1)),

• Given stm−1, calculate the parameters of NIW posterior distribution using (10.4) -
(10.7). Then sample the return parameters from

Σm
ret(s) ∼ IW

(
Λn
ret(s), ν

n
ret(s)

)
µmret(s)

∣∣Σm
ret(s) ∼ N

(
ηnret(s),

Σret(s)

κnret(s)

)
for all state s ∈ {1, 2, ..., S}. And repeat this for the forecast parameters, µmy (s) and
Σm
y (s).

• Given Qm and
{
µmret(s),Σ

m
ret(s), µ

m
y (s),Σm

y (s); s = 1, 2, ..., S
}

, sample a sample path stm
using the multi-move sampling. First, we need to calculate filtered state probabilities
P(sτ

∣∣ retτ−1, yτ ) for all τ = 1, 2, .., t. This can be done recursively using the two
following equations:

P(sτ
∣∣ retτ−1, yτ ) =

P(yτ
∣∣ sτ ) P(sτ

∣∣ retτ−1, yτ−1)∑S
k=1 P(yτ

∣∣ sτ = k) P(sτ = k
∣∣ retτ−1, yτ−1)

, if τ = t

P(sτ
∣∣ retτ , yτ ) =

P(retτ , yτ
∣∣ sτ ) P(sτ

∣∣ retτ−1, yτ−1)∑S
k=1 P(retτ , yτ

∣∣ sτ = k) P(sτ = k
∣∣ retτ−1, yτ−1)

, if τ ≤ t

and

P(sτ
∣∣ retτ−1, yτ−1) =

S∑
k=1

P(sτ , sτ−1 = k
∣∣ retτ−1, yτ−1)

=
S∑
k=1

Qksτ P(sτ−1 = k
∣∣ retτ−1, yτ−1).

Next the sample path stm is sampled by first sample the state at time t, st,m, from the
filtered state probability

P(st
∣∣ rett−1, yt).

Then for τ = t− 1, t− 2, ..., 1, sample sτ,m from the conditional distribution

P(sτ
∣∣ sτ+1, ret

τ , yτ ) =
Qsτ ,sτ+1 P(sτ

∣∣ retτ , yτ )∑S
k=1Qk,sτ+1 P(sτ = k

∣∣ retτ , yτ ) .
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By following this procedure, the samples
{
stm, Q

m, µmret(s),Σ
m
ret(s), µ

m
y (s),Σm

y (s)
}
m=1,2,...,M

have distribution ρt.
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Chapter 11

Performance Evaluation

In this chapter, we discuss an approach to evaluate the performance of the approximate
methods in Chapter 9. First, we formulate a dual problem using the information relaxation
technique. (See Brown et al. [15] for details.) The dual problem value function will serve
us as an upper-bound to the HMM-problem. The key idea of the dual problem is two-
fold. First, we relax (allow investors to have a better filtration) the HMM-problem such
that the relaxation problem is easy to solve. Then we penalize the relaxation problem with
penalties those are tractable and reflect the differences between the original and dual problem
filtrations. As the HMM-problem suffers from the curse of dimensionality, we are interested
in the dual problem that does not. To achieve this, the posterior distribution dynamics (8.1)
must not be part of the dual problem dynamics. Then we show by numerical experiments
that the performance of the proposed approximate methods is reasonably close to the dual
upper-bound.

HMM-problem

Solely for evaluation purpose, we introduce a slightly different version of the HMM-problem,
we called it the HMM-problem. The reason that we raise the HMM-problem is we are not be
able to formulate a dual problem of the original HMM-problem which does not suffer from
the curse of dimensionality, i.e. the dual problem is as hard as the HMM-problem. However,
if we consider a mildly inefficient version of the HMM-problem, we will be able to find an
easy dual problem. Specifically, an investor that solves the HMM-problem only utilizes the
analyst forecasts to update the posterior distribution,

ρ
t
(st, R, ξ) ∝ L(yt; st, R, ξ) ρ0(s0, R, ξ). (11.1)

This is in contrast to the HMM-problem where an investor use both prices and forecasts
to update his/her belief. We shall now discuss the dual problem of the HMM-problem as
follows.
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11.1 Information Relaxation

Let F t denote a σ-algebra that describes information available at time t to an investor who
solves the HMM-problem. By setting, {F t} is generated only by observing yt. Next, we
introduce two sets of information relaxation of the HMM-problem:

• Gt describes information available at time t to an investor who observes {sT , pt, yT}
and the parameters {R, ξ}. This relaxation allows the investor to see the future sample
paths of the state sT and analyst forecast yT . The investor also knows the true rate
matrix R and the state-dependent parameters ξ.

• Gt describes information available at time t to an investor who observes only the
forecasts yT . This set of information allows the investor to see the future sample path
analyst forecast yT , and therefore he/she is able to construct the posterior distribution
ρ
T

(sT , R, ξ). The reason we introduced Gt this way is to avoid the dynamics of posterior
distribution, i.e.

ρ
0

= ρ
1

= ... = ρ
T
.

It is trivial to see that F t ⊆ Gt ⊆ Gt. Now the reader may see why we consider the
relaxation of the HMM-problem instead of the relaxation of the HMM-problem. This is to
prevent an investor to incorporate the future asset prices into the decision making process.

Now, we consider a dynamic portfolio choice problem where an investor maximizes the
expected power utility of the final wealth,

max
π(·)∈AG

E
[
xγT
γ

]
, (11.2)

subject to the wealth dynamics (8.2), and AG is a set of admissible portfolio strategies those
are adapted to { Gt}. This problem is a trivial upper-bound of the HMM-problem. The
value function of this problem will be used in the dual problem formulation.

Proposition 10. The value function of the relaxation problem (11.2), denoted by VR, is

VR(t, xt; sT , R, ξ) =
xγt
γ
gR(t; sT , R, ξ) (11.3)

where gR(t; sT , R, ξ) solves the following DE, 0 = ġR(t) +

{
γr +

1

2

γ

1− γ
θ(st)

}
gR(t)

gR(T ) = 1.
(11.4)

Recall that θ(s) = µ(s)′Σ−1(s)µ(s).

Proof. See Chapter 12.
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Penalties

To obtain a tight upper-bound to the HMM-problem, we introduce penalties on the extra-
information: the hidden states sT and the model parameters R and ξ. At period t, the
penalty is constructed as follows.

Z(t, xt, π) = E
[
VR(t+ 1, xt+1)− VR(t, xt)

∣∣∣ Gt ]− E
[
VR(t+ 1, xt+1)− VR(t, xt)

∣∣∣ Gt ]
(11.5)

Intuitively, the penalty reflects the difference in value between knowing Gt and Gt. The
first term on the RHS is easy to calculate by solving (11.4) since {sT , R, ξ} are known to
the investor. The second term can be calculated using the Monte Carlo integration. We
first sample {sTm, Rm, ξm}m=1,2,...,M from the posterior distribution ρ

t
then solve (11.4) for

gR(t; sTm, R
m, ξm) then calculate the expectation.

Lemma 11. The penalty Z(t, xt, π) in (11.5) is dual feasible.

Proof. This follows directly from Proposition 2.2 in Brown et al. [15].

11.2 Dual Problem

In the dual problem, an investor maximizes the utility of the final wealth subtracted by the
penalties on the extra-information,

max
π(·)∈AG

E

[
xγT
γ
−

T−1∑
t=0

Z(t, xt, π(t))

]
, (11.6)

subject to the wealth dynamics (8.2). We can see that the posterior distribution ρ
t

does not
change over time in the dual problem, and therefore it is no longer a state variable. This
allows us to solve the dual problem. The solution to the dual problem is summarized in the
following Proposition.

Proposition 12. The value function to the dual problem (11.6), denoted by VD, is

VD(t, xt) =
xγt
γ
h(t). (11.7)

where h(t) solves the following differential equation

0 = ḣ(t) + γrh(t) +
1

2

γ

1− γ

{
θ(st)gR(t)− θ̃(t)

}
+

1

2

γ

1− γ

{
µ(st)

(
h(t)− gR(t)

)
+ µ̃(t)

}′[
Σ(st)(h(t)− gR(t)) + Σ̃(t)

]−1

×
{
µ(st)

(
h(t)− gR(t)

)
+ µ̃(t)

}
h(T ) = 0,

(11.8)



75

and

θ̃(t) = Eρ
T
[θ(s)gR(t)], µ̃(t) = Eρ

T
[µ(st)gR(t)] and Σ̃(t) = Eρ

T
[Σ(s)gR(t)]. (11.9)

Proof. See Chapter 12.

The differential equation (11.8) can be solved in two steps:

1. Calculate {θ̃(t), µ̃(t), Σ̃(t)}t=0,1,...,T using the Monte Carlo integration. First, sam-
ple {sTm, Rm, ξm}m=1,2,...,M from the posterior distribution ρ

T
(sT , R, ξ) and calculate

gR(t; sTm, R
m, ξm) using (11.4) then compute the expectation .

2. Solve for h(t) using numerical method.

Now we summarize the relationship between the HMM-problem and the dual problem
(11.6) in the following Proposition.

Proposition 13. The value function VD is an upper-bound to that of the HMM-problem.

Proof. This follows from the fact that F t ⊆ Gt ⊆ Gt and Proposition 2.3 in Brown et al.
[15].

11.3 Examples

In this section, we illustrate the use of the dual bound in evaluating performance of the
approximate methods. We first simulate market with various conditions then adopt the
approximate methods in Chapter 9 to solve the HMM-problem. To evaluate the investor
performance, we compare the realization of the final wealth utility with three types of bounds.

1. Complete information bound
This is a naive upper-bound obtained by assuming that the information on market
state and the model parameters is available to the investor. Therefore the bound is
the value function of the C-problem (9.4),

C-bound = E[VC(t = 0, x0, s0)].

2. Dual bound
This is a tighter upper-bound obtained by solving the dual problem (11.6),

D-bound = E[VD(t = 0, x0)].

3. Risk-free bound
This a lower-bound obtained by investing all in the risk-free asset. The utility associ-
ated with this risk-free investment is 1

γ
xγ0e

γrT .
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Example : Setting 1

With the same true and prior parameters as in the Setting 1 in Section 9.4, Figure 11.1
compares the performance of the investor who solves the HMM-problem with the C-bound,
D-bound and risk-free bound under various analyst forecast noises, different errors in prior
return ∆µ and difference errors in prior transition rate ∆R. We can see that the performance
of the investor using the proposed approximate methods is fairly close to the dual upper-
bound. The investor begins with $100 in initial wealth and has 250 days of investment
horizon.

Figure 11.1: This compares the certainty equivalence of the investor who solves the HMM-
problem (square markers with error bars) with the C-bound (dotted line with circular mark-
ers), the D-bound (solid line) and the risk-free bound (dotted line with triangular markers).
The investment horizon is 250 days and the risk-aversion parameter is -5. The error bars
represent ± two standard deviations. The certainty equivalence is computed from 1000
simulations.

Example : Setting 2

In this example, we use the same true and prior parameters as in the Setting 2 in Section
9.4. We compare the the performance of the investor who solves the HMM-problem with
the C-bound, D-bound and risk-free bound under various settings in Figure 11.2.
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Figure 11.2: This compares the certainty equivalence of the investor who solves the HMM-
problem (square markers with error bars) with the C-bound (dotted line with circular mark-
ers), the D-bound (solid line) and the risk-free bound (dotted line with triangular markers).
The investment horizon is 250 days and the risk-aversion parameter is -5. The error bars
represent ± two standard deviations. The certainty equivalence is computed from 1000
simulations.

Example : Setting 3

We consider a three-regime market similarly to that in Setting 1 and 2 but with different
transition rate and return parameters. The transition rate of the Markov chain is

R =

 −24.0 16.8 7.2
3.0 −6.0 3.0

19.2 4.8 −24.0

 per year.

The excess return vectors µ(s) and the covariance matrices Σ(s) are

µ(1) =

[
0.12
0.16

]
, µ(2) =

[
0.04
0.05

]
, µ(3) =

[
−0.10
−0.14

]
,

Σ(1) =

[
0.0400 0.0200
0.0200 0.0625

]
, Σ(2) =

[
0.0256 0.0173
0.0173 0.0324

]
, Σ(3) =

[
0.0400 0.0375
0.0375 0.0625

]
.
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The correlations across assets are 0.4, 0.6 and 0.75 respectively.
The prior parameters for the transition matrix Q are e11 e12 e13

e21 e22 e23

e31 e32 e33

 =

 19.80 2.02 0.68
1.25 75.87 1.25
1.45 0.48 22.19

 .
This matrix is calculated from the average number of state transitions within 125 days of a
Markov chain with rate  −30.0 22.5 7.5

4.0 −8.0 4.0
15.0 5.0 −20.0

 per year. (11.10)

Observe that the rate matrix used to constructed the prior distribution is quite different
from the true one. In this example, we let the precision in prior asset return ∆µ to be 0
while we vary the forecast standard deviation v from 0.5 to 5.

Figure 11.3 compares the performance of the investor who solves the HMM-problem with
the C-bound, D-bound and risk-free bound. The investor starts with $100 and has 125 days
to invests in the market. We can see that the performance of the investor using the proposed
approximate methods is very close to the theoretical dual bound.

Figure 11.3: This compares the certainty equivalence of the investor who solves the HMM-
problem (square markers with error bars) with the C-bound (dotted line with circular mark-
ers), the D-bound (solid line) and the risk-free bound (dotted line with triangular markers).
The investment horizon is 125 days and the risk-aversion parameter is -5. The error bars
represent ± two standard deviations. The certainty equivalence of the investor is computed
from 3000 simulations.



79

Chapter 12

Proofs

12.1 Proof of Proposition 9

Let VC(t, x, s) be the value function of the C-problem. The Bellman equation writes

VC(t, xt, st)

= max
π

Ext+δ,st+δ
[
VC(t+ δ, xt+δ, st+δ)

]
= max

π
Ext+δ

[
Est+δ

[
VC(t+ δ, xt+δ, st+δ)

]]
= max

π
Ext+δ

[
VC(t+ δ, xt+δ, st) + δ

S∑
k=1

RstkVC(t+ δ, xt+δ, k) + o(δ)

]

= max
π

 VC(t, xt, st) + δ
∂

∂t
VC(t, xt, st) + δ xt

(
r + π′µ(st)

) ∂
∂x
VC(t, xt, st)

+δ
1

2
x2
t π
′Σ(st) π

∂2

∂x2
VC(t, xt, st) + δ

S∑
k=1

RstkVC(t, xt, k) + o(δ)

 (12.1)

Neglect the o(δ) term, the optimal portfolio is

π∗C(t) = −
[
xt Σ(st)

∂2

∂x2
VC(t, xt, st)

]−1

µ(st)
∂

∂x
VC(t, xt, st). (12.2)

Substitute π∗C(t) back into the Bellman equation (12.1). Then we can see that (12.1) is
solved by the value function VC defined in (9.4) - (9.5).
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12.2 Proof of Proposition 10

Let VR be the value function of this problem. The Bellman equation of this problem is

VR(t, xt) = max
π

Ext+1

[
VR(t+ 1, xt+1)

∣∣∣ GCt ]
= VR(t, xt) + δ

∂

∂t
VR(t, xt)

+ δ max
π

{
xt
(
r + π′µ(st)

) ∂
∂x
VR(t, xt) +

1

2
x2
t π
′Σ(st)π

∂2

∂x2
VR(t, xt)

}
+ o(δ).

(12.3)

The optimal π∗ is

π∗ = −
[
xtΣ(st)

∂2

∂x2
VR(t, xt)

]−1

µ(st)
∂

∂x
VR(t, xt). (12.4)

Substitute π∗ back into the Bellman equation (12.3). Then we can see that (12.3) is solved
by the value function VR defined in (11.3) - (11.4).

12.3 Proof of Proposition 12

Let VD be the value function of the dual problem. The Bellman equation of the dual problem
is

VD(t, xt) = max
π

{
−Z(t, xt, π) + E

[
VD(t+ 1, xt+1)

∣∣∣ GCt ]} (12.5)

Apart from the argument t and xt, the value function VD also depends on sT , R, ξ and ρ
T

;
however, there parameters do not change over time, hence we omit writing them.

We first consider the terms from Z(t, xt, π(t)),

Ext+1

[
VR(t+ 1, xt+1)− VR(t, xt)

∣∣∣ GCt ]
= δ gR(t)

xγt
γ

{
−1

2

γ

1− γ
θ(st) + γπ′ µ(st) +

1

2
γ(γ − 1)π′Σ(st) π

}
+ o(δ) (12.6)

EsT ,R,ξ,xt+1

[
VR(t+ 1, xt+1)− VR(t, xt)

∣∣∣ Gt ]
= Eρ

T

[
Ext+1

[
VR(t+ 1, xt+1)− VR(t, xt)

∣∣∣ sT , R, ξ ]]
= δ

xγt
γ

{
−1

2

γ

1− γ
θ̃(t) + γπ′ µ̃(t) +

1

2
γ(γ − 1)π′ Σ̃(t) π

}
+ o(δ), (12.7)
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and the value function at period t+ 1,

Ext+1

[
VD(t+ 1, xt+1)

∣∣∣ GCt ]
= VD(t, xt) + δ

{
∂

∂t
VD(t, xt) + xt

(
r + π′µ(st)

) ∂
∂x
VD(t, xt) +

1

2
x2
t π
′Σ(st) π

∂2

∂x2
VD(t, xt)

}
+ o(δ). (12.8)

Substitute (12.6)-(12.8) into the Bellman equation (12.5), and solve for the optimal portfolio,

π∗ =
1

1− γ

[
Σ(st)

(
h(t)− gR(t)

)
+ Σ̃(t)

]−1[
µ(st)

(
h(t)− gR(t)

)
+ µ̃(t)

]
. (12.9)

Then by straightforward substitution, the Bellman equation is solved by VD defined in (11.7)-
(11.8).
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Chapter 13

Conclusion

This dissertation studies two important topics of dynamic portfolio choice problems: a port-
folio choice problem with market impact costs and a portfolio choice problem under the
Hidden Markov Model.

In the first part, we study a portfolio selection problem with market impact by extending
the well-known Merton portfolio selection problem. The key idea of our model is we capture
market impact using the penalty term which is quadratic in the trading rate. In the case
of quadratic utility function, our problem becomes a linear-quadratic control problem which
is straightforward to solve. We formulate two illiquid portfolio problems; the first one, we
incorporate the penalty into the investor objective. The second one which is very intuitive
is to track the Merton solution with minimum trading costs. We show that these two
formulations deliver the same solution; when there is market impact, it is optimal to either
solve the Merton problem with market impact penalty or track the Merton solution with
minimum trading costs. Then we derive the approximation of the optimal trading policy in
term of the optimal solution of perfectly liquid market case. The result clearly shows the
intuitive relationship between our solution and the solution to the Merton problem, and how
the states variables and model parameters affect the optimal trading policy. Our analysis
also gives rise to the notion of a liquidity time scale. Numerical experiments show promising
performance and robustness properties. Though this work focuses on quadratic utility, we
also believe that non-quadratic utilities can be handled by applying similar ideas to the
associated dynamic programming equations. Other interesting extensions are also possible,
including models with stochastic market impact costs that jump whenever asset prices jump.

In the second part, we study a portfolio selection problem under the Hidden Markov
Model. The main difference from the previous literature is we assume that the market
regime, the transition probabilities and the regime-dependent parameters are unknown to
the investor. The difficulty in solving this problem is the investor knowledge on the un-
known state variables and parameters is represented by a high-dimensional joint probability
distribution with no way to parameterize. As a result, the problem cannot be solved due to
the curse of dimensionality. In this work, we propose approximate methods that allow us
to compute the optimal portfolio without doing backward recursion on the joint probability



83

distribution. The approximate methods rely on an approximation of value function by a
value function of the complete information problem, the C-problem. The optimal portfolio
share similar structure to that of the C-problem except that the unknown parameters are
replaced by their weighted expectations under the joint probability distribution. Under the
HMM, calculating this expectation can be done by the Gibbs sampling. The proposed meth-
ods show promising result as we compare it to the exact-problem upper-bound obtained
from the dual problem. Though the problem setting is the market under the HMM, the
idea of these approximate methods can be generalized to solve other dynamic optimization
problems when there are hidden processes.
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