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JAPAN

(Dated: 8 April 2023)

Charged particle velocity-space diffusion in a prescribed one-dimensional turbulent electric field is investigated through

numerical trajectories in phase-space (1D1V) and compared against quasi-linear theory (QL), including resonance

broadening (RB). A Gaussian spectrum electric field of variable amplitude E is studied in conjunction with two plasma

dispersion relations, namely the Langmuir and ion-acoustic dispersion. A first parameter scan shows that RB effects

become significant for a Kubo number K of a few percent. A Kubo number scan shows that diffusion increases as a

power law of D ∝ K3 ∝ E3/2 for large Kubo numbers. Moreover, at large Kubo numbers, transport processes include

significant diffusion measured at velocities much higher than the resonant region, where QL and RB predict negligible

diffusion. For times much larger than the trapped particle flight time τb and the autocorrelation time τ0, the velocity

distribution departs from a Gaussian. Nevertheless, measurements show that the variance increases linearly in time,

with a Hurst parameter of H ∼ 0.5, where the diffusion scales as K5/2 ∝ E5/4 and K3/2 ∝ E3/4 for small and large Kubo

number respectively.

I. INTRODUCTION

The full description of charged particle dynamics in an elec-

tric field including several waves is sometimes divided into

two categories: First, in the small amplitude limit, each par-

ticle interacts linearly with only one of the waves, and the

dynamics are regular. Second, as the amplitude of the waves

grows, particles interact with more than one wave leading to

chaotic dynamics. From the point of view of the waves, the

non-linear wave-particle interactions lead to energy cascades

from one wave towards many other waves1, leading to the

generation of lower and higher modes, here the modes refer

to the eigenfunction of the system. In fully developed tur-

bulence, the electric field modes can be in random phase be-

tween each other, and the dynamics become complex; par-

ticles can be trapped in a wave and again de-trapped due to

the interaction of a different mode. In a collision-less plasma,

turbulence is one of the leading causes of particle transport

and energy losses through plasma wave-particle resonances.

In addition, a significant impact of turbulence is in the heat-

ing of the plasma in the form of particle acceleration2. The

heating of particles has substantial consequences when en-

ergetic particles drive instabilities, in magnetic reconnection

in space plasmas3,4, stimulated Raman scattering5, or laser-

plasma interactions6.

In the early 60s, turbulence studies saw a surge with

the introduction of quasi-linear theory7–9, and resonance

broadening10,11. Quasi-linear theory first aimed to study the

problem of plasma dynamics outside equilibrium by neglect-

ing mode coupling, considering part of the non-linear terms,

and the evolution in time of particle distribution, in which it is

a)Author to whom any correspondence should be addressed:

alejandro.guillevic@univ-lorraine.fr

assumed that turbulence does not trap particles. Under these

conditions, it is possible to derive an expression for transport

as an expansion of the electric field amplitude. For moderate

amplitudes (or low dispersion), non-linear terms are no longer

negligible, which leads to a broadening of wave-particle res-

onances and mode coupling effects. Including the effect of

QL diffusion in the model of particle motion, known as re-

normalization, enables the account of this broadening12,13.

For prescribed electric fields with random phases, stud-

ies have shown a strong qualitative and quantitative agree-

ment with the quasi-linear theory14,15 at low electric field

amplitude. Here we investigate the effects of high ampli-

tude turbulence16–18. Regarding the self-consistent problem,

that is accounting for the modification of mean fields. It

has been experimentally19–21 and numerically22 demonstrated

that re-normalization is not necessary at low amplitude. Nev-

ertheless, recent numerical simulations for the self-consistent

bump-on-tail instability23 reveal that the quasi-linear theory

fails to predict plasma processes at low amplitude, enhanced

diffusivity, and phase-space restructuring.

Analytically, one of the parameters ruling the validity of

quasi-linear and resonance-broadening theories is measured

in terms of the Kubo number24. This quantity is defined as

the ratio between the time it takes the turbulent electric field

to change its shape, referred to as the autocorrelation time τ0,

and the time it takes a trapped particle to complete an orbit,

referred to as the flight time or bounce time τb. In other words,

the Kubo number is

K = τ0/τb (1)

Alternatively, by rewriting this expression as a function of

the electric field amplitude, we obtain the expression K ∝
E1/2, since τb ∝ E−1/2. Note that, for quasi-linear and res-

onance broadening theories to be applied, the Kubo number

should be much lower than unity K ≪ 19.
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The importance of the Kubo number is ubiquitous in the

literature related to turbulence. First, it allows the differ-

entiation of the type of trajectory performed. As a mental

representation, one may picture particles jumping between

arcs of trapped trajectories for K ≪ 1, and particles per-

forming multiple trapped orbits separated by small jumps (or

arcs) between two different trapped particle trajectories25,26

for K ≥ 1. Furthermore, the Kubo number emerges in multi-

ple plasma turbulence theories, such as quasi-linear and mean-

field theories27–29, the latter describing the relaxation trans-

port in plasmas.

Calculations based on mixing length theory assume that the

Kubo number is close to unity K ≃ 127,30, rather than K ≪ 1,

as required for the validity of the quasi-linear theory. How-

ever, mixing-length and quasi-linear theories are often used

simultaneously.

This study investigates the statistical diffusion coefficient of

test particles in a prescribed one-dimensional turbulent elec-

tric field. We compare results from numerical trajectories

against quasi-linear theory, including resonance broadening.

Diffusion is investigated for ion-acoustic and Langmuir dis-

persion relations to compare the effects of dispersivity, and

a Gaussian amplitude electric potential spectrum is adopted.

Different regimes of particle trapping14,15 are investigated,

K ≥ 1 in particular. We address the following questions: How

far quasi-linear theory works from the K ≪ 1 regime? Is there

a way to expand, correct, or replace quasi-linear theory to de-

scribe a plasma in the K > 1 regime? These questions are

deeply connected with standard map problem31–34. In this

work, we are concerned with many resonances.

In section II, quasi-linear and resonance-broadening theo-

ries are presented. We introduce the analytical description for

the prescribed electric field in section III in the case of plasma

waves. Numerical results are reported in sections III B and

III C for small and large Kubo number regimes, respectively.

Finally, a conclusion is provided in section IV.

II. TURBULENT AUTOCORRELATION TIME AND
QUASI-LINEAR THEORY

In this section, we introduce the quasi-linear theory9,35 and

resonance broadening correction10,12,36,37 to study homoge-

neous steady-state turbulence in a one-dimensional plasma.

A. Autocorrelation time

We focus on the Eulerian two-point autocorrelation func-

tion of the electric field E(x, t), defined as 〈E(0,0)E(x, t)〉,
where the brackets 〈·〉 stand for the statistical average over an

ensemble of particles, while t and x are the displacements over

time and space respectively.

From the point of view of a particle at a given velocity v,

the electric field evolves over a characteristic time scale called

autocorrelation time. This time defines the typical time over

which there is a noticeable change in the electric field shape.

Analytically, the Lagrangian autocorrelation time τ0(v)
24 is

defined as the integral of the two-point autocorrelation of the

electric field,

τ0(v) =
1

〈E(0,0)2〉

∫ +∞

0
dt

∫ +∞

−∞
dxδ (x− vt)〈E(0,0)E(x, t)〉

(2)

where δ (x− vt) is the Dirac delta function, and v the velocity

of particles in the electric field. By solving the space integral

equation (2) is simplified as

τ0(v) =
1

〈E(0,0)2〉

∫ +∞

0
dt〈E(0,0)E(vt, t)〉 (3)

Note that τ0 is often interpreted as the time it takes for the

electric field to change its shape. However, for our purposes, it

represents the time it takes particles to receive a velocity kick

from a low-amplitude turbulent electric field, in other words,

K ≪ 1.

B. Quasi-linear theory for low amplitude fields

To study the one-dimensional motion (xi(t),vi(t)) of a

charged particle, identified by an index i, in a turbulent electric

field E(x, t), we use Newton’s equation of motion

d2xi

dt2
=

q

m
E(xi, t) (4)

where q and m are the electric charge and mass of the particle,

respectively.

By integrating equation of motion (4) over time, the i-th

particle velocity variation ∆vi(t) = vi(t)− vi(0) at time t is

obtained as

∆vi(t) =
q

m

∫ t

0
dt ′E(x(t ′), t ′) (5)

Moreover, the statistical mean square variation σ2
v , or vari-

ance, of an ensemble of N particles is defined as

σ2
v =

1

N

N

∑
i=1

(∆vi(t))
2

(6)

In quasi-linear theory, the unperturbed motion xi(t) =
xi(0)+ vit is substituted into equations (5) and (6). Then, by

considering that the electric field evolves slowly in time, we

can simplify the double integral in the square term of (6) to a

single integral in time. For large enough times, it becomes

σ2
v = 2tD0(v) (7)

Reminiscent of Brownian motion, the velocity variance in-

creases linearly with time. Here, the rate of increase is given

by the quasi-linear diffusion coefficient

D0(v) =
q2

m2
〈E(0,0)2〉τ0(v) (8)

which is proportional to the autocorrelation time defined in

equation (2) and the intensity 〈E(0,0)2〉 of the turbulent field

for K ≪ 1, or by using expression (1), it becomes a function of

the Kubo number. Contrary to Brownian motion, where diffu-

sion occurs in the real space x, diffusion of charged particles

in a 1D turbulent electric field occurs in the velocity space v.
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C. Resonance broadening

The diffusion coefficient D0, as given in equation (8), de-

pends on two parameters: the amplitude of the electric field

and the velocity of the particle trajectories. As the amplitude

of the field increases, the assumption of an unperturbed mo-

tion is no longer valid. The number of modes able to inter-

act strongly with the particle increases, leading to more com-

plex dynamics. However, interactions between particles and

waves remain local, in the sense that only waves in a range

∆v = (D0(v)/k(v))1/3
about v induce chaotic diffusion, while

the other ones act perturbatively10,38. This locality can help to

understand intuitively that the diffusion picture remains valid

for moderate amplitude39. The widening of the resonant re-

gion is considered in resonance broadening theory10,15,37.

To account for this widening of resonance region and cor-

rect the diffusion coefficient, resonance broadening theory14

suggests computing the diffusion coefficient through an itera-

tive procedure. At step n, the diffusion coefficient calculated

in the previous step n− 1 is used to calculate a broadening

probability distribution

Pn−1(v,x, t) =
[

2πσ2
x,n−1

]−1/2
exp

[

− (x− vt)2

2σ2
x,n−1

]

(9)

which substitutes the Dirac distribution function in equation

(2). The position standard deviation σ2
x,n−1 at the n− 1 itera-

tion is defined by

σ2
x,n−1 =

2

3
t pDRB

n−1(v) (10)

where DRB
n−1 is the resonance-broadening diffusion coefficient

defined in equation (11), and p ∈]2,4[ is a real number that

gives the time-dependence of the position standard deviation.

The value of this parameter is discussed in section III B and

appendix B 1.

This procedure yields the resonance broadening diffusion

coefficient at step n from the point of view of particles initially

at v:

DRB
n (v) =

q2

m2

∫ +∞

0
dt

∫ +∞

−∞
dxPn−1(v,x, t)〈E(0,0)E(x, t)〉

(11)

At step n = 1, DRB
0 (v) = D0(v) is calculated in equation (8)

from linear orbits. This iterative method converges rapidly

(typically in a few iterations) towards a resonant broadening

diffusion coefficient DRB
∞ (v).

In resonance broadening, the characteristic time τRB
10,39,40

is defined as

τRB ∼
(

k2D0

6

)−1/3

∝ K−4/3 (12)

where D0 is the quasi-linear regime diffusion coefficient, and

k the resonant wave number.

Note that, if the autocorrelation function is given, one can

solve the quasi-linear diffusion (8), and resonance broaden-

ing diffusion (11). However, when the autocorrelation is not

analytical, one can solve these equations in Fourier space. In-

deed, since we study homogeneous steady-state turbulence,

and particle trajectories are well inside the chaotic domain,

then Boltzmann’s ergodic hypothesis41 tells us that ensemble

and space averaging are equal 〈·〉= 〈·〉x
42. Consequently, one

can solve this equation by transforming the autocorrelation to

a sum over the wavenumber k using a Fourier transformation

of the electric field E(x,v), and Parseval’s identity to solve the

space integral. Therefore, after a few calculations, equations

(8) and (11) become respectively,

D0(v) =
q2

m2

∫ +∞

0
dt ∑

k

Êk
2

2
cos [(kv−ω)t] (13)

DRB
n (v) =

q2

m2

∫ +∞

0
dt ∑

k

Êk
2

2
e−

σ2
x,n−1

k2

2 cos [(kv+ω)t] (14)

where the integrand in equation (13) corresponds to the auto-

correlation function of the electric field 〈E(0,0)E(x, t)〉, the

integrand in equation (3). First note that equation (13) and

equation (14) look similar except for a coefficient and sign

difference in the cosine term. Indeed, the coefficient corre-

sponds to the Fourier transform of the probability distribution

Pn−1 from equation (9), and the sign in front of ω appears as

the space integral is developed, and by assuming a symmetric

dispersion relation, one can show in the QL limit that eq. (14)

becomes eq. (13).

III. APPLICATION TO PLASMA WAVES

Generally, when studying plasmas, a kinetic approach is

preferred. In this case, the electric field and distribution

function are solved simultaneously through the self-consistent

Vlasov-Poisson system. However, this study focuses on the

effects of a prescribed turbulent electric field on particle dy-

namics. Therefore a test particle approach is preferred. Note

that this approach is simpler than the self-consistent problem

that led to the development of QL theory; nevertheless, quality

information can be gathered through this method.

A. Dispersion relation and amplitude electric field

For one-dimensional plasma, two ubiquitous waves are the

Langmuir plasma wave and ion-acoustic wave (IA). Their re-

spective dispersion relations are

ωL(k) =
√

ω2
p + 3v2

thk2 (15)

ω IA(k) =

√

c2
s k2

1+λ 2
Dk2

(16)

where ωp, λD, and cs are the electron plasma frequency, De-

bye length, and ion sound velocity, respectively. We choose to
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FIG. 1. Turbulent electric field characteristics: In solid line wave

number spectrum from equation (17), in blue dashed line the Lang-

muir wave dispersion relation, and in red dash-dotted the ion-

acoustic wave dispersion relation, with arbitrary amplitude a0 and

parameters λDk0 = 1, λDδk = 0.4.

study both Langmuir and ion-acoustic waves since they have

qualitatively distinct properties regarding the evolution of fre-

quency (constant for small k and linear for large k for Lang-

muir and opposite for ion-acoustic waves), resulting in a broad

vision of the phenomena present in a one-dimensional plasma.

In this paper we chose a simple Gaussian amplitude spec-

trum Êk
G
(k)14 defined as

Êk
G
(k) = ka0

√

2

δk
√

π
exp

[

−
(

k− k0

2δk

)2
]

(17)

where k0, δk2, and a0 are the mean wavenumber, variance,

and amplitude of the electric field spectrum, respectively.

Figure 1 shows the typical dispersion relation functions and

Gaussian spectrum of arbitrary amplitude, used in this paper

as a function of the wavenumber k.

B. Case of Gaussian spectrum, small Kubo number

The numerical study of test particle trajectories requires us

to prescribe a "turbulent" electric field. In other words, the

modes of the electric field have random phases. In this paper,

the electric field is chosen to be a sum of M sinusoidal modes

with random phases, defined as

E(x, t) =
M

∑
j=1

Êk
G

sin(ω jt − k jx+β j) (18)

where k j is the wave number distributed uniformly between

[−2.2,4.2], the standard deviation of the k distribution δk =
0.4, and the mean k0 = 1, all in units of λD. ω j is the frequency

FIG. 2. Correlation function of the electric field with Langmuir

dispersion and for a spectrum with parameters k0 = 1, δk = 0.4,

M = 201 and a0 = 8.0×10−4 . (a) Correlation as a function of time

and distance, dashed diagonal line for x = v0,maxt, where v0,max cor-

responds to the velocity where QL diffusion is maximal. And (b)

correlations functions at x = v0t for different velocities v0.

from equations (15) and (16), and β j the initial random phase

uniformly distributed between [0,2π [ of the j-th mode. Êk
G

is

the amplitude function of each mode, in our case defined by

equation (17) and plotted in figure 1. Since this electric field is

discrete in the reciprocal space (M modes), it possesses a peri-

odicity length of L = 2π/∆k, where ∆k = ki − ki−1 is the con-

stant interval of k discretization. In the following sections, tur-

bulence refers to a large number of overlapping modes, with

random phases, of the electric field.

Figure 2(a) shows, in the case of Langmuir dispersion, an

example of the autocorrelation function which corresponds to

the integrand term in equation (13), plotted as a function of

the displacement in time t and space x, for a discrete spec-

trum with M = 201 modes. The black dashed diagonal with

equation x = v0,maxt shown in figure 2(a); note that v0,max cor-
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responds to the velocity of maximum-diffusion, which will

be discussed later in this section, graphically it aligns with

the monotonous curve of origin (x = 0, t = 0). Figure 2(b)

shows different autocorrelation functions at different veloci-

ties as a function of time, in particular the maximum-diffusion

autocorrelation (black solid line). As observed in both fig-

ures, the autocorrelation function is a smooth, continuous, and

non-monotonic function (only for v0,max the function is mono-

tonic), which converges to zero for large values of the time.

These properties allow for simple numerical integration and,

therefore, calculation of diffusion coefficients, equation (13).

Since the electric field is periodic, the autocorrelation func-

tion also presents a periodicity in both space and time direc-

tions called echoes. In our case, we chose the number of

modes and spacing ∆k such that these echoes are located far

apart and do not interfere with the integration of the autocor-

relation function. Moreover, as shown in the previous sec-

tion II C, we calculate the diffusion coefficients by integrating

the autocorrelation function over time. Numerically, we trans-

form the indefinite integral to a definite integral with a finite

upper bound as long as the autocorrelation goes to zero after

a few ω−1
p , which is the case for Langmuir and ion-acoustic

dispersion relations (shown in figure 2(b) for Langmuir dis-

persion).

To compare against theory, we study the dynamics of test

particles in the prescribed turbulent electric field. We devel-

oped an algorithm that calculates N particle trajectories using

a fourth-order Runge-Kutta algorithm in the prescribed elec-

tric field. At t = 0, N test particles are initialized with ran-

dom velocities v0,i and positions x0,i. Notably, particle veloci-

ties are distributed in a narrow Gaussian probability around a

mean velocity v0. Particle positions are distributed uniformly

in one periodicity interval of the electric field [0;L[. Every

time step, trajectory diagnostics are computed, such as: parti-

cle distributions, statistical moments, and the maximum finite-

time Lyapunov exponents.

For each simulation, two quantities are computed: The

velocity-diffusion coefficient D by measuring the initial slope

of the velocity variance σ2
v , and the p parameter of equation

(10) by measuring the time dependence of the spatial variance

σ2
x . More details are given in appendix B.

First, we focus on the quasi-linear theory regime for Kubo

number K << 1. We select three different electric field am-

plitudes a0, corresponding to K = [1.3 · 10−2,7.3 · 10−2,1.3 ·
10−1], where τ0 = 12.9ω−1

p and τ0 = 13.1ω−1
p are the La-

grangian auto-correlation time of the electric field at v0,max

calculated from eq. (2), for the Langmuir and ion-acoustic dis-

persion, respectively. And the typical resonance broadening

time at v0,max for the three values of Kubo and the Langmuir

dispersion relation are τRBωp ∼ [551,56,26]. We perform a

series of simulations for each dispersion relation at different

particle mean velocities v0.

Figure 3 shows the numerical p parameter against veloc-

ities for the Langmuir set of simulations. First, we observe

that this p parameter is not constant over particle velocities

for the three values of the Kubo number, and it takes values

varying around p = 3, which corresponds to the asymptotic

value of p for large enough times10,14. The dashed curves in

FIG. 3. The resonance broadening p parameter distribution as a func-

tion of particle velocity for three values of Kubo number, Gaussian

amplitude, and Langmuir dispersion relation.

figure 3 show the smoothed out distribution function of p used

to compute the analytical resonance broadening diffusion co-

efficients in equation (14).

The analytical quasi-linear and resonance broadening dif-

fusion is compared against diffusion from numerical simula-

tions in figures 4(a) and 4(b), for Langmuir and ion-acoustic

dispersion simulations, respectively. We find qualitative and

quantitative agreement between theory and numerical results

for the two dispersion relations and the three values of the

Kubo number.

Note that for K ≤ 1.3 · 10−2, the numerical and resonance

broadening diffusion coefficients converge to the quasi-linear

diffusion coefficient. On the other hand, resonance broad-

ening effects become significant for Kubo of a few percent

(K ≃ 7.3 · 10−2, which corresponds to a0 ≃ 10−3 in terms of

electric field amplitude). These effects correspond to a flat-

tening of the diffusion curves, an increase in the maximum-

diffusion velocity, and an enlargement of the velocity interval

where particles diffuse, as explained in section II C. For these

Kubo numbers, particles are partially, or fully, trapped in the

electric field (see appendix A for more details), therefore, ex-

ploring a wider range of velocities around the initial velocity.

These variations result in an increase in the number of waves

interacting with the particle, but with a limited, relatively lo-

cal, range. This leads to an effective average operation on the

diffusion felt by particles.

Furthermore, the diffusion coefficients are bell-shaped for

the chosen dispersion relations. Indeed, the maximum diffu-

sion, located at v0,max, corresponds to the velocity of maxi-

mum resonance between waves and particles. This resonance

corresponds to the velocity shown as a diagonal in the auto-

correlation function in the figure 2(a).

From numerical simulations, we observe a broadening and
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6

decrease in amplitude of the particle diffusion as expected

from resonance broadening theory for Langmuir and ion-

acoustic dispersion relations. However, for the ion-acoustic

dispersion relation, figure 4(b), we observe a difference in dif-

fusion coefficients between resonance broadening theory and

numerical simulations. Simulation diffusion is greater than

predicted for values at the boundaries of the velocity inter-

val. This effect becomes more noticeable as the Kubo number

increases or for less-dispersive waves, such as ion-acoustic

waves. This effect is studied in detail in the next section for

Langmuir dispersion simulations and high Kubo numbers.

FIG. 4. Comparison of analytic (solid, dotted, and dashed lines) and

numerical (points, crosses, and stars) diffusion coefficients as a func-

tion of the initial velocity of particles v for three different initial elec-

tric field amplitudes. (a) simulations with Langmuir dispersion rela-

tion, and (b) with ion-acoustic dispersion relation.

C. Large Kubo number

FIG. 5. Comparison of analytic (solid, dotted, and dashed lines) and

numerical (points, crosses, and stars) diffusion coefficients as a func-

tion of the initial velocity of particles v for Kubo number of 1.8 and

4.0, with Langmuir dispersion relation.

For the second study, we have investigated the evolution of

the diffusion coefficient outside the validity range of the quasi-

linear theory regime. In other words, for Kubo numbers larger

than one (K ≥ 1) with Langmuir dispersion relation. First, we

chose two values of the electric field amplitude corresponding

to K ≃ 1.8 and K ≃ 4.0, respectively. The results are shown in

figure 5. We find that RB theory predicts the order of magni-

tude of diffusion for velocities around the resonance velocity

(v < 4vT ), but a significant discrepancy in the shape of the

diffusion coefficient is observed. Note that the ratio between

the analytical and numerical diffusion coefficients is not con-

stant and depends on simulation parameters. Furthermore, we

measure a significant diffusion from numerical simulations for

fast particles, while negligible diffusion is predicted by quasi-

linear theory and resonance broadening. Finally, we observe

that the diffusion coefficients converge regardless of the Kubo

number for particle velocities over v > 8vT and K > 1. In-

deed, as explained in subsection III B, the electric field is dis-

crete and distributed for the most part around the resonance

velocity region of v < 4vT , with a small number of modes

located at velocities outside this region. Therefore, a small

diffusion coefficient is measured for high enough particle ve-

locities where only two chains of islands overlap. Moreover,

as the electric field amplitude increases, the overlap of these

few modes increases, and particle stochasticity and diffusion

increase, pushing the boundaries of the plateau to higher ve-

locities.

Finally, we have studied the dependence of the diffusion

coefficient as a function of the Kubo number at fixed v0 in

two different time intervals. First, for times of the order of
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7

FIG. 6. Numerical diffusion coefficient in crosses as a function of

the Kubo number K, for v0 = 1.95. The power law fit dependence on

Kubo number of diffusion is in solid and dashed lines.

τ0, figure 6 shows the normalized diffusion coefficient from

numerical simulations as a function of the Kubo number. We

observe three different regimes: For K ≪ 1, the normalized

diffusion is constant as predicted by quasi-linear theory. This

is followed by a transition regime where the Kubo number is

of the order of a few percent, here the diffusion coefficient

decreases non-linearly as observed in the previous subsection

III B and predicted by resonance broadening14,15. And for the

case of K > 0.5, the normalized diffusion evolves as a power

of the Kubo number K−1. Similar results are found for ion-

acoustic dispersion relation.

As of the writing of this article, there is no theory or method

to predict diffusion in the large Kubo regime accurately. Nev-

ertheless, we observed particle trajectories to resemble those

originating from a random walk of the centers of trapped-

particle trajectories in velocity space. Therefore we suppose

that the diffusion coefficient takes the form D = ∆vRW

2∆t
. Here

we define the elapsed time between jumps as ∆t = τb, the time

for a particle to perform one trapped orbit. We define the ve-

locity step to be the resonance broadening10 ∆vRW = ∆vTB =

(D/6k)1/3
, which corresponds to the range of velocities parti-

cles can interact with neighbor electrostatic modes. This ap-

proximation shows that for K ≫ 1 diffusion scales as a power

of the electric field: D = CE3/2, where C = k3/288, match-

ing the results of figure 6. Note that this expression predicts

the proper electric field scaling but may not predict the exact

value of diffusion. In our case, by denormalizing the diffusion

coefficient and using the second expression of the Kubo num-

ber, K ∝ E2, our results become: In the quasi-linear regime,

D is proportional to K4 ∝ E2, and for large Kubo numbers, D

is proportional to K3 ∝ E3/2.

Finally, we studied the second slope on σ2
v located at times

much larger than τb and τ0 (see appendix B 2). In this regime,

FIG. 7. Numerical S coefficient in crosses as a function of the Kubo

number K after a time much larger than τ0, for v0 = 1.95. The

power law fit dependence on Kubo number of diffusion is in solid

and dashed lines.

we measure the first four statistical moments and the maxi-

mum finite-time Lyapunov exponent (FTLE)42–44 to charac-

terize the second slope on σ2
v . First, in the FTLE diagnostic,

we observe that for times of the order of a couple τb (less

than 500ω−1
p ), the FTLE is positive, and it converges to a

plateau. For larger times, we observe that the FTLE starts to

decrease with time; this gives us an upper limit in simulation

time. Nonetheless, particle trajectories remain stochastic for

times larger than 500ω−1
p since the value of the FTLE remains

positive and, in particular, one-two orders of magnitude higher

than for the initial FTLE. Furthermore, by examining particle

statistics and distribution, we observe that the excess kurtosis

becomes important compared to the variance at larger times.

Moreover, the particle distribution becomes non-Gaussian af-

ter the time corresponding to the first slope (see figure 9(a)).

Thus, this indicates that for longer times, particles do not fol-

low what can be strictly defined as a diffusion despite mea-

suring a slope on σ2
v , or in other words, a Hurst parameter of

H ∼ 0.5. Therefore, we name this quantity the slope coeffi-

cient S.

In figure 7, we show the normalized slope coefficient as

a function of the Kubo number. First, we observe that S is

several orders of magnitude smaller than in the previous figure

6, and we observe two different regimes where S evolves as a

power of the Kubo number, a first at a relatively low Kubo

number, K < 0.5, where S ∝ K5/2 ∝ E5/4, and a second for a

larger Kubo number, K > 0.5, where S ∝ K3/2 ∝ E3/4.

IV. CONCLUSION

In summary, we investigated the diffusion of charged parti-

cles in a prescribed one-dimensional turbulent electric field by
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means of numerical simulations and quasi-linear theory. We

measured statistical diffusion coefficients at different Kubo

number values using a Gaussian amplitude spectrum and real-

istic plasma dispersion relations: Langmuir and ion-acoustic

dispersions. First, diffusion at a low Kubo number was in-

vestigated as a function of the initial particle velocity. The re-

sults from numerical simulations are in qualitative and quanti-

tative agreement with quasi-linear theory, including resonance

broadening as well as with previous papers14,15, which stud-

ied diffusion at low Kubo numbers and for non-physical dis-

persion relations. Secondly, an in-depth study of diffusion

coefficients outside the quasi-linear regime, large Kubo num-

bers, was performed as a function of the Kubo number, where

we measured diffusion to scale as a power law, K3 ∝ E3/2,

which we explain to be a random walk diffusion of the centers

of trapped-particle trajectories in the velocity direction. And

finally, for times much larger than τ0 and τb, we measure two

power laws for the evolution of the slope coefficient S in the

form of K5/2 ∝ E5/4 and K3/2 ∝ E3/4 for small and large Kubo

number respectively.

In conclusion, in the case of realistic plasma dispersion re-

lations and a prescribed turbulent electric field, quasi-linear

and resonance-broadening theories in the limit of small Kubo

numbers (K < 10%) accurately predict particle diffusion. Re-

markably, a simple random walk expression (D ∝ E3/2), gen-

erally employed in other conditions, predicts the evolution for

large Kubo numbers K ≫ 1. However, further work is re-

quired to improve the understanding of turbulence, transport,

and diffusion. This study is subject to two caveats: Firstly, the

incorporation of the Poisson equation to get a complete self-

consistent problem where particle distributions are allowed

to modify the electric field, and secondly, by considering the

evolution of phase-space structures30,45–50. Consequently, the

next step of this study is to consider phase-space structures

by prescribing a relationship between the initial phases of the

electric field modes, as observed in laboratory plasmas19–21,

and studying the self-consistent kinetic problem through the

Vlasov-Poisson code COBBLES50.
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Appendix A: Test particles in a prescribed turbulent electric
field

1. Single particle trajectories and trapped particle time

In a simple sinusoidal electric field, the movement of a

charged particle is known to be an oscillation in time and

space. This trajectory can be represented in phase space (x,v)

as either closed trajectories or oscillating open trajectories,

named Trapped particles and Passing particles, respectively.

Since trapped particle trajectories are closed in phase space,

one can define a characteristic time/frequency for which it

takes a particle to complete one orbit τb/ωb, named bouncing

time/frequency. A simple expression of the bouncing time for

deeply trapped particles is defined as a function of the wave

number and electric field amplitude (k and E) as

τb = 2π

√

m

|q|kE
(A1)

and the corresponding bouncing frequency ωb = 2π/τb. In the

case of this paper, the electric field is expressed as a sum of

sinusoidal waves; therefore, we chose a definition of bouncing

time/frequency where the product kE from equation (A1) is

replaced by < k2E(0,0)2 >1/2. Note that alternatively, one

can use k < E(0,0)2 >1/2 where k is either the average wave

number (k = k0) or the wave number from the resonant mode

(k = k j), however, for the values used in this paper, these only

give variations on the bouncing time of less than 15%.

Two examples of test particle trajectories in turbulent elec-

tric fields of low and high amplitude, respectively shown in

figures 8(a) and 8(b). As prescribed by quasi-linear theory,

trajectories in a low amplitude electric field (small Kubo num-

ber), figure 8(a), follow Brownian-like motion in phase-space.

On the other hand, in a large amplitude field (large Kubo num-

ber), figure 8(b), particles are trapped in potential wells and

follow closed orbits in phase-space, which get disrupted oc-

casionally when particles jump to a neighbor potential well,

reminiscing of random-walk motion of the centers of trapped-

particle trajectories. Nevertheless, on average, particle tra-

jectories are randomized after several bounce times τb due to

the turbulent field. This randomization allows us to calculate

statistics on particle trajectories such as statistical moments,

the maximum finite-time Lyapunov exponents (FTLE), and in

the case of our study, diffusion coefficients.

2. Statistics on particle trajectories

As stated in the previous subsection, during a simulation,

our code calculates different statistical quantities, particularly

the first four velocity moments (Mean difference, variance,

skewness, and kurtosis), the spatial and velocity distributions,

the FTLE, and the standard velocity deviation σ2
v of equation

(6). In particular, the first three quantities (moments, distribu-

tion, and FTLE) allow us to determine the regime of transport

particles follow in the turbulent electric field.
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9

FIG. 8. Example of particle trajectories in the wave reference

framexi−v0,it and vi, for a small K = 1.3 ·10−3 (a) and large K = 4.0
(b) Kubo number.

For the transport generated by the electric field to be con-

sidered to be diffusion, these quantities should respect some

rules:

- First, the FTLE can tell us if the transport is stochastic if,

in the limit of long times (t → +∞), the exponent is positive.

In this paper, we define the FTLE as43,

λ =
1

tn − t0

n

∑
i=1

ln

(

d(ti)

d0

)

(A2)

where d0 and d(ti) are the distance separating two trajectories

at t = 0 and t = ti respectively. Figure 9(a) shows the FTLE

as a function of time. For short and intermediary times, λPS

is positive and grows until it reaches a maximum where it re-

mains for a couple of τb. This is followed by a decrease in

the FTLE for large times, outside the time scales of any sim-

FIG. 9. Plots of the maximum finite-time Lyapunov exponent in (a),

and the first four statistical moments in (b), for an arbitrary simula-

tion with N = 480 000 test particles.

ulation performed in this paper. Consequently, we can con-

sider particle trajectories as stochastic in the initial time in-

terval, where the FTLE is finite and positive. However, after

tωp ∼ 500, λPS decreases and seems to converge to a negative

power of time; however, it remains one-two orders of magni-

tude larger than the initial FTLE. Therefore, we can consider

that particle trajectories remain stochastic for simulation times

larger than 500ω−1
p .

- Second, since particles are initialized with a Gaussian ve-

locity distribution around v0, a pure, homogeneous diffusion

will only lead to an increase in particle distribution variance,

while the other moments should stay null. However, since dif-

fusion is a function of particle velocity (equations (13) and

(14)), one would expect the development of an asymmetry
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10

in the distribution of particles, increasing the amplitude of

moments other than the variance. Nevertheless, if these mo-

ments remain small with respect to the variance, and as long

as the standard deviation remains much smaller than the scale

of variation of D(v) then the transport generated by the elec-

tric field can be considered as a diffusion. Figure 9(b) shows

the evolution of the first four velocity moments as a function

of time for an arbitrary simulation with a small Kubo num-

ber (The same results are found for a large Kubo number).

We observe that at the start of the simulation, the variance re-

mains considerably larger than the other three moments, until

at tωp = 155, the kurtosis increases and becomes significant.

Hence, the transport generated by a turbulent electric field

of the form presented in section III A leads to the stochastic

diffusion of particles in a time interval of several τ0. For later

times we can not guarantee that the transport is diffusive.

3. Chirikov overlap criterion

FIG. 10. Velocity distribution of the local Chirikov overlap criterion

Λ, normalized to the Kubo number K.

The Chirikov parameter or Chirikov resonance-overlap

criterion51 measures the ratio of superposition of two neigh-

boring waves to characterize the chaotic motion in determin-

istic Hamiltonian systems. Mathematically it is defined as,

Λ =
∆1/2vi +∆1/2vi+1

∆v
φ
i,i+1

(A3)

where ∆1/2vi =
√

2qEi

mki
is half of the maximum width of the

separatrix along the velocity direction, here Ei and ki are the

i− th mode electric field amplitude and wave number. And

∆v
φ
i,i+1 is the difference between the i and i+ 1 modes phase

velocities.

For regular dynamics, the Chirikov criterion takes values

much lower than unity Λ ≪ 1, and for chaotic dynamics Λ ≥
1. For values closer to unity, Λ . 1, the width of the chaotic

domain in phase space is smaller compared to the case where

it is Λ & 1. For example, at Λ = 0.5, the chaotic region will

be narrow and localized near the separatrix, and for Λ > 1,

the chaotic region will become significant, encompassing the

whole domain.

Figure 10 shows the velocity distribution of the local

Chirikov overlap criterion normalized to the Kubo number.

We choose to normalize the Chirikov criterion by the Kubo

number since, for two arbitrary waves, the numerator is pro-

portional to the square amplitude of the electric field, in other

words, ∆1/2vi ∝
√

E which is the same dependence as the

Kubo number K ∝
√

E . Note that the Chirikov distribution is

comparable to the QL diffusion coefficient of the figure 4(a);

it is a bell-shape function with a maximum at v ∼ 1.9vT and a

tail that approaches zero as v/vT increases.

Appendix B: Measurement of diffusion coefficient and p

parameter

1. Resonance broadening p parameter

In resonance broadening theory, the p parameter describes

the evolution of the position standard deviation as the p

power function of time, defined in eq. (10). Analytically,

p is expected to converge to p = 3 when t → +∞. Indeed,

Dupree10 shows in equation (7.1) that for the self-consistent

kinetic problem, p = 3 is a solution. Moreover, Doveil and

Grésilion14 define the asymptotic p as such. However, a mea-

surement of their σ2
x from numerical simulations was not per-

formed.

In our simulations, we observed the p parameter to fluctu-

ate in the interval ]2,4[, and indeed for large enough times to

converge to p = 3. However, the diffusion regime of a simu-

lation is located in the time interval of several τ0, as shown in

appendix A 2. Therefore, we measured and characterized the

p parameter for different Kubo numbers and initial velocities.

The results are plotted in figure 3.

We smoothed out the numerical distribution of p (shown

in dashed lines) for the analytical resonance broadening dif-

fusion coefficient calculation. This methodology allows us to

use resonance broadening in the diffusion regime and compare

it against numerical results. Furthermore, as presented in sub-

section III B, we have a qualitative and quantitative agreement

between numerical results and theory for the Kubo number of

a few percent.

2. Diffusion estimation: σ2
v slope measurement

As written in equation (7), a diffusion coefficient is defined

as the slope of the velocity variance σ2
v . Therefore, we esti-

mate diffusion coefficients by measuring the linear slope of σ2
v

over a dozen of τ0. Figure 11, and figure 12 show the velocity
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FIG. 11. In solid lines, the velocity standard deviation as a function

of time for two arbitrary simulations with Langmuir dispersion, and

in red dashed line, the linear fit in the diffusion regime. In (a) with

Kubo number K = 1.3 ·10−2. And in (b) with Kubo number K = 1.3.

variance σ2
v for a small, medium and large Kubo number in a

solid black line, and the linear slope in red dashed line.

Three phases can be observed in the evolution of σ2
v : In the

first phase, where σ2
v evolves parabolically. After around one

τ0, a second phase of variable length starts where σ2
v grows

linearly. Here diffusion is estimated by the measurement of

the linear slope in this time interval. Finally, a third phase be-

gins when the first slope of σ2
v changes amplitude drastically.

However, due to previous arguments, this quantity statistically

can not be equated to a diffusion coefficient.
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