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In this thesis, we propose a new class of inverse problems to recover Lagrangians in Mean

Field Games from boundary data. We present strategies to address these problems when

the Lagrangian we are searching for is assumed to be analytic. Our study can be viewed as

an extension of inverse problems from Riemannian manifolds to infinite-dimensional metric

spaces, such as the Wasserstein space, which possess differential structures. It can also be

regarded as an infinite-dimensional version of the travel time tomography problem. The

application of our inverse problem is to learn the rules governing people’s migration when

we have limited knowledge of their movements at the boundary.
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CHAPTER 1

Introduction

1.1 Some background of the Mean Field Games Theory

In this project, we propose a new class of inverse problems to recover Lagrangians in Mean

Field Games from boundary data. We present strategies to address these problems when

the Lagrangian we are searching for is assumed to be analytic.

Mean Field Games Theory is a theory of strategic decision-making in differential games

played by large populations with small interactions. In this theory, each player acts based

on his or her own optimization, like minimizing the cost or maximizing the benefits of

the game, taking into account the decisions of other players. The term “mean field” was

first introduced in statistical mechanics, where the number of particles tends to infinity to

approximate the original model with a simpler one after averaging over degrees of freedom.

Under this assumption, one have to consider many components interacting with each other.

The mean field models we are interested in involve searching for Nash equilibria when there

are infinitely many identical players. At a fixed time, the collection of players is represented

by a probability measure µ with a finite second moment, denoted as µ ∈ P2(Rd).

Mean Field Games Theory was first studied by Jean-Michel Lasry and Pierre-Louis Lions

[19], and independently by P.E. Caines, M. Huang, and R.P. Malhamé [7], [9]. Over the past

decades, it has become a popular field of research thanks to the contributions of many

mathematicians. For an introduction to recent developments in this field, we refer to [2].

Over the past years, Mean Field Games Theory has found numerous applications in
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diverse subjects such as economics (see [5], [1], [8]), machine learning (see [5], [25]), robotics

(see [22]), crowd motion (see [27]), large population dynamics (see [29], [20]), and public

health (see [21], [17]).

There are three mechanisms at work in MFG models, one of which is governed by a

Lagrangian function

L̄ : Rd × P2(Rd)× Rd → R.

Another mechanism is induced by the so-called individual noise operator, which ensures

that the measures representing the players are absolutely continuous with respect to the

Lebesgue measure. The common noise operator induces a third mechanism, transforming the

MFG system into a system of stochastic partial differential equations. In this dissertation,

we focus solely on the first mechanism, which presents a greater challenge as we have to

deal with potentially singular measures. Additionally, we make the simplification that our

Lagrangian L̄ is separable, meaning it can be expressed in the form

L̄(q, µ, v) = L(q, v) + F 0(q, µ),

where F 0 is the Fréchet derivative of a prescribed function F : P2(Rd) → R.

A typical example is when we are given an interaction potential Φ ∈ C2(Rd × Rd) and

L̄(q, µ, v) =
1

2
|v|2 +

∫
Ω

Φ(q, y)µ(dy).

In the general theory of MFG, the players (also referred to as agents) move within a domain

Ω contained in Rd over a prescribed time interval [0, T ]. The cost of each player is determined

not only by its own trajectory but also by the trajectories of all the other players. Once

the Lagrangian is fixed, the Hamiltonian H in the game is defined such that H(q, ·) is the

Legendre transform of L(q, ·) for each q. More precisely,

H(q, p) = max
ξ∈Rd

⟨p, ξ⟩ − L(q, ξ).
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The search for Nash equilibria involves studying the following classic system of partial

differential equations (PDEs), known as MFG systems. This system is close to our inverse

problem in the literature and it is stated as follows.

Given G : Rd × P2(Rd) → R and µ ∈ P2(Rd), we seek to find

u : [0, T ]× Rd → R and σ : t ∈ [0, T ] 7→ σt ∈ P2(Rd)

such that 
∂tu(t, q) +H

(
q,∇qu(t, q)

)
= F 0(q, σt) in (0, T )× Rd

∂tσ +∇q ·
(
σt∇pH

(
q,∇qu(t, q)

))
= 0 in (0, T )× Rd

σT = µ, u(0, q) = G(q, σ0) in Rd

(1.1.1)

The first equation in (1.1.1), known as the Hamilton-Jacobi equation, is formulated in

backward time, and u represents the value function. The second equation in (1.1.1) is a

forward-time continuity equation that ensures the conservation of total mass for σt over

time. In certain MFG models, Rd is replaced by a bounded domain, denoted as Ω, which is

an open connected set, or by the torus Td (see, for example, [18] and [6]).

1.2 Our inverse problem

In our case, we would like to study a type of inverse problem which involves making some

measurements of a group of people passing through the boundary of a given region. From

those measurements, we would like to predict people’s behavior inside the region. In other

words, we want to find the Lagrangian dictating the movement from boundary measurements.

Mathematically, we postulate that the Lagrangian of the system is L, where

L(q, µ, v) = L(q, v) + F (q, µ).

Our inverse problem is to determine L and F given partial knowledge on the boundary.
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In this thesis, we consider a bounded open convex set Ω ⊂ Rd that is of class C1,1. We

further focus on a class of Lagrangians induced by metrics. Let 0 < a < b < ∞ be fixed

real numbers, and denote by G(a, b) the set of g ∈ C2(Rd,Rd×d) such that gij = gji and the

eigenvalues of g(q) are greater than or equal to a but less than or equal to b for all q ∈ Ω.

For such g, we define the Lagrangian as

Lg(q, v) =
1

2

d∑
i,j=1

gij(q)v
ivj, ∀(q, v) ∈ Ω̄× Rd.

When Φ ∈ C2(Rd × Rd) is a symmetric function, we set

FΦ(µ) :=
1

2

∫
Ω

2
Φ(q1, q2)µ(dq1)µ(dq2), ∀µ ∈ P2(Rd).

The Fréchet derivative of FΦ is the function F 0
Φ given by

F 0
Φ(q1, µ) :=

1

2

∫
Ω

Φ(q1, q2)µ(dq2), ∀µ ∈ P2(Rd).

The set P2(Rd) can be replaced by P(Ω), the set of probability measures supported by Ω.

A prescribed data on the boundary ∂Ω is a piecewise narrowly continuous path of measures

t 7→ ψt such that

ψt(∂Ω) < 1, ∀t ∈ (0, T ) and ψ0(∂Ω) = ψT (∂Ω) = 1.

We define the cost for transporting ψ0 to ψT to be

CF
L (ψ0, ψT ) := inf

(σ,v)

{∫ T

0

(
F (σt) +

∫
Ω

Lg(q, vt(q))σt(dq)
)
dt

}
,

where the infimum is performed over the set of (σ, v) such that σ : [0, T ] → P(Ω̄) satisfies

some regularity properties which will be specified later. v is the velocity field driving σ. The

initial condition is given by σ0 = ψ0, the terminal condition by σT = ψT , and the constraint

σt ≥ ψt holds on ∂Ω. The constraint σt ≥ ψt distinguishes our study from previous works in

optimal transportation theory.

We have discovered that the dual problem to (3.0.1) involves maximizing a function

J (·, ·, ·|ψ) expressed in terms of dual functions (u, h, α) as given in (4.1.12). We require u
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to be continuous on [0, T ]× Ω̄, but we can only impose the condition that α and h are Borel

maps on [0, T ] × Ω̄, since we expect h to be non-negative and equal to zero outside ∂Ω.

Unlike the conventional conditions satisfied by dual functions in classical optimal transport

theory, the functions (u, h, α) are connected by a more intricate inequality.

u(t, γ(t))− u(s, γ(s)) ≤
∫ t

s

(
Lg(γ, γ̇)− h(τ, γ(τ)) + α(τ, γ(τ))

)
dτ

for all 0 ≤ s < t ≤ T and all γ ∈ W 1,∞(s, t; Ω̄). We demonstrate that CF
L (ψ0, ψT ) is equal to

the supremum of J (u, h, α|ψ) subject to the aforementioned constraints. However, unlike in

standard optimal transport problems, it is not expected that this supremum of J (u, h, α|ψ) is

attained except in special cases. This reality significantly increases the challenges we face in

our study and leads to a system of variational inequalities that is more complex than (1.1.1).

When (u, h, α) is a maximizer, the expression J (u, h, α|ψ) contains boundary information

that is accessible to us and is suitable for setting up an inverse problem. We establish that,

by appropriately selecting F and P0, PT ∈ ∂Ω, we can choose (ψϵ)ϵ>0 such that

2ϵJ
(
uψϵ , hψϵ|ψϵ

)
=

1

2
dist2g

(
P0, PT

)
+ o(ϵ). (1.2.1)

This identity is utilized to recover the metric g, leaving only Φ to be determined. We

have access to the values of the functional

Ig[Φ](P0, PT , Q0, QT ) =

∫ 1

0

Φ(γP (t), γQ(t))dt,

where γP and γQ are constant-speed geodesics joining P0 to PT and Q0 to QT , respectively.

Unfortunately, we can only recover Φ from Ig when Φ is real analytic. We lack a stability

result to extend the recovery to the case where Φ belongs only to the class Ck.

The remaining part of this thesis is organized and recapitulated as follows. Chapter 2

introduces the notations used throughout the project and states some preliminary results.

We prove that CF
L (ψ0, ψT ) is produced by a unique minimizer under appropriate convexity

conditions on FΦ and L. For educational purpose and dual problem settings, Chapter 3

5



focuses on the case with zero potential FΦ = 0. In Chapter 4, we prove the identity in

(1.2.1) and recover the metric g from it. Chapter 5 demonstrates that Φ can be recovered

when it is assumed to be real analytic. An appendix containing useful information can be

found in Chapter 6.

The first example appeared in the literature, an extensively studied finite dimensional

version of the inverse problem, is the travel time tomography problem. The travel time

tomography theory provides ways we can estimate the subsurface structure of the Earth

from the boundary measurements of travel time of seismic waves.

Our study can be viewed as an extension of inverse problems from Riemannian manifolds

to infinite-dimensional metric spaces, such as theWasserstein space, which possess differential

structures. It can also be regarded as an infinite dimensional version of the travel time

tomography problem. The application of our inverse problem is to learn the rules governing

people’s migration when we have limited knowledge of their movements on the boundary.

Other related inverse problems, although of a completely different nature, have been studied

in [24], and some numerical methods were developed in [10].

1.3 Notations and settings of our MFG problem

In this section, we introduce some basic notations and settings.

Our domain Ω is a bounded open subset of Rd with C1,1 boundary. It is also geodesic

convex, which means that for any two points in Ω, there exists a unique minimizing geodesic

within Ω that joins those two points.

We denote M+(Ω) as the set of finite Radon measures on Rd that are supported by Ω.

The set M+(∂Ω) is equipped with the narrow convergence topology.

For any subset E ⊂ Rd, we use M2(E) to denote the set of measures µ on E with finite

second moment, i.e.,
∫
E
|x|2dµ(x) <∞.
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Given µ, ν ∈ P(Ω̄), we denote Π(µ, ν) as the set of measures on Ω̄2 that have µ and ν as

the first and the second marginal respectively. We define the Wasserstein distance W2(µ, ν)

as

W2(µ, ν) = inf

{∫
Ω×Ω

|x− y|2dγ : γ : Π(µ, ν)

} 1
2

.

In the context of a metric space (S, dist) and a path σ : [0, T ] → S, we use σt to denote

σ(t). If there exists m ∈ L2(0, T ) such that

dist
(
σs, σt) ≤

∫ t

s

m(r)dr, ∀ 0 ≤ s < t ≤ T,

we say that σ is 2-absolutely continuous and we write σ ∈ AC2(0, T ;S).

For σ ∈ AC2(0, T ;S), we also define the limit

|σ′|(t) := lim
s→t

dist(σ(s), σ(t))

|s− t|
.

The study of AC2(0, T ; S) when S = P2(Rd) is discussed in [3]. It is shown that σ ∈

AC2(0, T ;P2(Rd)) if and only if there exists a Borel velocity field v : (0, T )×Rd → Rd such

that the continuity equation

∂tσ +∇ · (vσ) = 0 on D′((0, T )× Rd
)
.

is satisfied in the distribution sense. In this case, we say v is the velocity field driving σ.

We define the set of data S as follows:

S :=
{
f ∈ C

(
[0, T ];M+(∂Ω)

)
, ft ≥ 0,

∫
∂Ω

ft(dq) ≤ 1, f0(∂Ω) = fT (∂Ω) = 1
}
.

Given µ, ν ∈ P(Ω̄), we denote ΣT (µ, ν) as the set of pairs (σ, v) such that σ ∈ AC2(0, T ;P2(Rd))

and v : (0, T )× Ω → Rd is a Borel vector field satisfying

(i)

σ0 = µ, σT = ν, supp (σt) ⊂ Ω, ∀t ∈ [0, T ]. (1.3.1)

7



(ii)

∂tσ +∇ · (vσ) = 0 on D′((0, T )× Rd
)
. (1.3.2)

Given ψ ∈ S, we denote by ΣT (µ, ν|ψ) the set of (σ, v) ∈ ΣT (µ, ν) such that

σt|∂Ω ≥ ψt on [0, T ]× ∂Ω.

Notice that since ψ0 and ψT are probability measures on ∂Ω, (σ, v) ∈ ΣT (µ, ν|ψ) implies

that

σ0 = µ = ψ0, σT = ν = ψT .

Given a symmetric function Φ ∈ C2(Rd × Rd) we define

FΦ(µ) :=
1

2

∫
Ω

2
Φ(q1, q2)µ(dq1)µ(dq2).

We always assume that the functional FΦ is strictly convex on P(Ω).

For a given Lagrangian L : Ω× Rd → R and a function F : P(Ω) → R, we define

AF
L [σ, v] :=

∫ T

0

(
F (σt) +

∫
Ω

L(q, vt(q))σt(dq)

)
dt,

and refers to AF
L as an action functional. The minimizers (σ, v) of AF

L over ΣT (µ, ν|ψ) are

formally characterized by the following given system of partial differential equations, where

u, α ∈ C([0, T ]× Ω̄), h : [0, T ]× Ω̄ → [0,∞] are Borel maps.



∂tu(t, q) + h(t, q) +H
(
q,∇u(t, q)

)
= α, in (0, T )× Ω

∂tσ +∇ ·
(
σDpH(q,∇u(t, q))

)
= 0

αt = ∂σF (σt)

σt = ψt, ht − a.e.

(1.3.3)
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CHAPTER 2

Forward Problem

In this chapter, we study the forward problem by first working on the following optimization

problem.

Given ψ ∈ S, we define the cost for transporting ψ0 to ψT to be

CF
L (ψ0, ψT ) := inf

(σ,v)
AF
L [σ, v],

where the infimum is performed over the set of (σ, v) ∈ ΣT (ψ0, ψT |ψ).

We prove the existence and the uniqueness of the minimizer to the above problem.

2.1 Preliminaries

Throughout this chapter, we make the following assumptions about general L. Notice that

here L does not rely on any metric g. We would like to first establish some general lemmas

for our future application.

Assume

H,L ∈ C3(Rd × Rd), L ≥ 0, (2.1.1)

such that L(q, ·) and H(q, ·) are Legendre transforms of each other for any q ∈ Rd. We

assume there exist constants κ and κ0 such that

D2
vvL ≥ κId, D2

ppH > 0, (2.1.2)

and

DH, DL are κ0-Lipschitz. (2.1.3)
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Thus, for all (q1, q2), (q
′
1, q

′
2) ∈ Rd × Rd, we have

|DH(q1, q2)−DH(q′1, q
′
2)| ≤ κ0

√
(q1 − q′1)

2 + (q2 − q′2)
2.

We further assume that there exist λ1 > 0 and λ0 < 0 such that

λ1|ξ|2 + λ0 ≤ L(q, ξ) ≤ λ−1
1 |ξ|2 − λ0. (2.1.4)

By duality, we have

1

4
λ1|p|2 + λ0 ≤ H(q, p) ≤ 1

4
λ−1
1 |p|2 − λ0. (2.1.5)

In the case when L is given by a metric g as we mentioned in Chapter 1, the above

settings of L are easily satisfied.

We still assume that F comes from a symmetric function Φ ∈ C2(Rd × Rd) and set

F = FΦ(µ) :=
1

2

∫
Ω

2
Φ(q1, q2)µ(dq1)µ(dq2), ∀µ ∈ P(Rd).

Notice that Φ is bounded as Ω is compact. We assume F is convex on P(Rd).

2.2 Kinetic formulation

Recall in Chapter 1 that given ψ ∈ S, we denote by ΣT (σ0, σT |ψ) the set of (σ, v) satisfies

supp(σt) ⊂ Ω, ∀t ∈ [0, T ]. (2.2.1)

σ0 = ψ0, σT = ψT on ∂Ω (2.2.2)

σt|∂Ω ≥ ψt on [0, T ]× ∂Ω. (2.2.3)

∂tσ +∇ · (vσ) = 0 on D′((0, T )× Rd
)
. (2.2.4)

We will enlarge ΣT (σ0, σT |ψ) to a bigger set of f , which describes kinetic movement.

10



We denote that

C := [0, T ]× Ω× Rd.

Let M2(C) be the set of signed Borel measures f on R2d+1 which are supported by C.

Note that M2(C) is a topological vector space when endowed with the narrow convergence

topology. The set M+
2 (C) consists of non–negative elements f of M(C) such that∫

C

|ξ|2f(dt, dq, dξ) <∞.

The kinetic formulation provides us with a linearized problem for which it is easier for

us to identify the dual problem.

In kinetic formulation, the transport equation of the measure is given by∫
Rd

(
uT (q)σT (dq)− u0(q)σ0(dq)

)
=

∫
C

(
∂tu(t, q) + ⟨ξ,∇u(t, q)⟩

)
f(dt, dq, dξ) (2.2.5)

for any u ∈ C∞
c (Rd+1)

We denote by F(σ0, σT ) the set of measures f in M+
2 (C) satisfying (2.2.5).

A sufficient condition for (2.2.5) to hold is

∂tf +∇ · (vf) = 0 on D′(R2d+1).

Similarly, we define F(σ0, σT |ψ) by

F(σ0, σT |ψ) = {f ∈ F(σ0, σT ) : σ
f
t ≥ ψt, ∀t ∈ [0, T ]}.

Given ΣT (σ0, σT |ψ), by the Riesz representation theorem, we can construct a kinetic

measure fσ,v as∫
R2d+1

φ(t, q, ξ)fσ,v(dt, dq, dξ) =

∫ T

0

dt

∫
Rd

φ
(
t, q, vt(q)

)
σt(dq). (2.2.6)

In other words,

fσ,v = (id× v)#σ ∈ M+
2 (C).
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We denote the measure at the left hand-side of (2.2.6) as fσ,v. For any u ∈ C∞
c (Rd+1),

we have∫
Rd

(
uT (q)σT (dq)− u0(q)σ0(dq)

)
=

∫
C

(
∂tu(t, q) + ⟨ξ,∇u(t, q)⟩

)
f (σ,v)(dt, dq, dξ). (2.2.7)

Given f ∈ F(σ0, σT ), we use disintegration theory to build (σ, v).

Let f be marginal of f on [0, T ] × Ω ⊂ Rd+1. The theory of disintegration of measures

ensures the existence of Borel probability measures (t, q) 7→ f (t,q) such that∫
R2d+1

φf(dt, dq, dξ) =

∫
Rd+1

f(dt, dq)

∫
Rd

φ(t, q, ξ)f (t,q)(dξ), ∀φ ∈ C∞
c (R2d+1).

Let ηf be the projection of f on [0, T ]. Disintegrate further, we find a Borel probability

measure σft such that∫
R2d+1

φf(dt, dq, dξ) =

∫ T

0

η(dt)

∫
Rd

σft (dq)

∫
Rd

φ(t, q, ξ)f (t,q)(dξ), ∀φ ∈ C∞
c (R2d+1).

Proposition 2.2.1. Assume f is a finite Borel measure on Rd+1 that is supported on [0, T ]×

Ω. Assume v : Rd → Rd is a Borel vector field such that

∂tf +∇ · (vf) = 0 on D′((0, T )× Rd
)
.

That is, for any u ∈ C∞
c (Rd+1), we have∫

Rd

(
uT (q)σT (dq)− u0(q)σ0(dq)

)
=

∫
Rd+1

(
∂tu(t, q) + ⟨v,∇u(t, q)⟩

)
f(dt, dq). (2.2.8)

Let ηf be the projection of f on R so that we can disintegrate f to obtain∫
Rd+1

φ(t, q)f(dt, dq) =

∫
R
ηf (dt)

∫
Rd

φ(t, q)f
t
(dq), ∀φ ∈ C∞

c (Rd+1).

Then ηf is the Lebesgue meausre on [0, T ].

Proof. Indeed Choosing u ≡ u(t) in (2.2.8) and using the fact that σ0 and σT are probability

measures, we obtain∫ T

0

u̇(t)dt = u(T )− u(0) =

∫
R
u̇(t)ηf (dt), ∀u ∈ C∞

c (R).
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Thus, ηf is the Lebesgue measure on [0, T ].

Define Π0 : R× Rd × Rd → R such that (t, q, ξ) 7→ t.

Taking φ(t, q, ξ) = u(t), where u ∈ C∞
c (Rd+1). For all f ∈ F(σ0, σT ), by disintegration

theory, we can write for any Borel u(t)∫
C

u(t)f(dt, dq, dξ) =

∫ T

0

u(t)η(dt).

In case the conditions in Proposition 2.2.1 are satisfied, the ηf is Lebesgue measure

restricted to [0, T ]. That is

ηf := Π0
#f = L1|[0, T ].

In the sequel, we shall only consider f such that ηf = L1
[0,T ].

Then we can simplify our above disintegration∫
C

φ(t, q, ξ)f(dt, dq, dξ) =

∫ T

0

dt

∫
Ω×Rd

φ(t, q, ξ)f t(dq, dξ),

for some continuous map t 7→ f t ∈ P(Ω× Rd).

Moreover, ∫
Ω×Rd

φ(t, q, ξ)f t(dq, dξ) =

∫
Ω

σt(dq)

∫
Rd

φ(t, q, ξ)f (t,q)(dξ).

In other words, σft = Π1
#f

t a probability measure, where Π1 : Rd × Rd → Rd such that

(q, ξ) 7→ q.

Set

vft (q) :=

∫
Rd

ξf (t,q)(dξ).

Assume ∫
Ω×Rd

|ξ|2f t(dq, dξ) <∞.
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Since L is convex, by Jensen’s inequality, we have∫
Rd

L(q, ξ)f (t,q)(dξ) ≥ L

(
q,

∫
Rd

ξf (t,q)(dξ)

)
= L

(
q, vft (q)

)
,

and the inequality is strict unless f (t,q) = δξ(t,q).

As L is bounded from 2.1.4, we thus have∫ T

0

dt

∫
Rd

L
(
q, vft (q)

)
σft (dq) ≤

∫
C

L(q, ξ)f(dt, dq, dξ) <∞.

Notice that the inequality above is strict unless f (t,q) = δvf (t,q) f–almost everywhere.

From the construction, (σf , vf ) we constructed from f satisfies (2.2.4).

Lemma 2.2.2. Assume fn ⇀ f narrowly in F(σ0, σT ). Then σ
fn
t ⇀ σft narrowly in P(Ω).

Proof. We use proposition 3.3.1 (Arzela-Ascoli Theorem) in [4] to claim the lemma. In order

to do so, we simplify our notation by denoting vf as v and σf as σ and notice the following.

Let v be the velocity field driving σ. Notice we have∫ T

0

dt

∫
Rd

|vt|2σt(dq) <∞.

By Theorem 8.3.1 in [4], we have that

|σ′|2 ≤
∫
Rd

|vt|2σt(dq).

Also by Theorem 1.1.12 in [4], we have that

Wp(σt, σs) ≤
∫ t

s

|σ′|dτ.

Thus

Wp(σt, σs) ≤
∫ t

s

|σ′|dτ ≤ (

∫ t

s

|σ′|2dτ)
1
2 (

∫ t

s

1dτ)
1
2

≤
( ∫ t

s

dτ

∫
Rd

|vt|2σt(dq)
) 1

2 (t− s)
1
2 ≤

( ∫ T

0

dτ

∫
Rd

|vt|2σt(dq)
) 1

2 (t− s)
1
2

Therefore, Wp(σt, σs) is bounded, where 0 ≤ s < t ≤ T .
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Based on our assumption, the following lemmas are standard (see [4]).

Lemma 2.2.3. Assume µn ⇀ µ narrowly in P(Ω). Then

lim
n→∞

F (µn) → F (µn).

Lemma 2.2.4. If fn ⇀ f narrowly in F(σ0, σT ) and φ : Ω×Rd → [0,∞] is continuous and

bounded from below, then

lim inf

∫
C

φ(q, ξ)fn(dt, dq, dξ) ≥
∫
C

φ(q, ξ)f(dt, dq, dξ).

Recall the action functional we try to minimize over ΣT (σ0, σT |ψ).

AF
L [σ, v] :=

∫ T

0

(
F (σt) +

∫
Ω

L(q, vt(q))σt(dq)

)
dt.

Notice the action functional has exactly the same minimizers as the functional

AF
L+λ[σ, v] :=

∫ T

0

(
F (σt) +

∫
Ω

(
L(q, vt(q)) + λ

)
σt(dq)

)
dt = AL[σ, v] + λT.

Therefore, without lost of generality, we may assume that F ≥ 0.

We define

AF

L [f ] :=

∫
C

L(q, ξ)f(dt, dq, dξ) +

∫ T

0

F (σft )dt. (2.2.9)

Then we have

AF

L [f
σ,v] = AF

L [σ, v].

Proposition 2.2.5.

inf
f∈F(σ0,σT |ψ)

AF

L [f ] admits a minimizer.

Proof. By Remark 5.1.5 in [4], we know that

{fn}∞n=1 is narrowly compact if and only if there exists G on Rd such that the set {G ≤ c}

is compact for any real number c and

sup
n

∫
Rd

Gfn <∞.
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We take a minimizing sequence {fn}∞n=1 such that∫
C

L(q, ξ)fn(dt, dq, dξ) +

∫ T

0

F (σfnt )dt

decreases to the infimum.

To use the narrowly compact property above, take G = L.

Notice that ∫
C

L(q, ξ)fn(dt, dq, dξ) +

∫ T

0

F (σfnt )dt

≤
∫
C

L(q, ξ)f1(dt, dq, dξ) +

∫ T

0

F (σf1t )dt := A.

As F is bounded from below, we may write F ≤M for some real number M .

Thus ∫
C

L(q, ξ)fn(dt, dq, dξ) ≤ A−MT, ∀ n ≥ 1.

Then {fn} is narrowly compact and we can find a subsequence fnk
which converges

narrowly to f for some f ∈ F(σ0, σT |ψ). We can check easily that such f is a minimizer.

We then have that

inf
f∈F(σ0,σT |ψ)

AF

L [f ] = inf
(σ,v)∈F(σ0,σT |ψ)

AF
L [σ, v].

Therefore, we can conclude the following proposition.

Proposition 2.2.6.

inf
(σ,v)∈F(σ0,σT |ψ)

AF
L [σ, v]

admits a minimizer. If L(q, ·) is convex and F is strictly convex, then the minimizer (σ, v)

is unique.
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Proof. It is sufficient to check the uniqueness.

Let (σ1, v
1) and (σ2, v

2) be minimizers of AF
L [σ, v]. We have f1 = f (σ1,v1) and f2 = f (σ2,v2),

which are minimizers of AF

L [f ].

Let f = 1
2
(f1 + f2). Then σ

f
t = 1

2
σf1t + 1

2
σf2t .

Then

AF

L [f ] ≥
1

2
AF

L [f1] +
1

2
AF

L [f1].

By linearity of A in f , we get∫ T

0

F (σft )dt ≥
1

2

∫ T

0

F (σf1t )dt+
1

2

∫ T

0

F (σf2t )dt.

As F is strictly convex, we have F (σft ) <
1
2
F (σf1t ) + 1

2
F (σf2t ).

Thus ∫ T

0

F (σft )dt ≤
1

2

∫ T

0

F (σf1t )dt+
1

2

∫ T

0

F (σf2t )dt.

Therefore, we have σf1t = σf2t and σ1 = σ2.

Assume v1t (q) ̸= v2t (q) for some t ∈ [0, T ], q ∈ Rd.

Then 1
2
δv1t (q) +

1
2
δv2t (q) is not a Dirac mass.

By the convexity of L(q, ·) and Jensen’s inequality, we have∫
Rd

L(q, ξ)(
1

2
δv1t (q) +

1

2
δv2t (q))dξ > L(q, ξ

∫
Rd

(
1

2
δv1t (q) +

1

2
δv2t (q))dq) = L(q,

v1t (q) + v2t (q)

2
).

Thus
1

2
L(q, v1t (q)) +

1

2
L(q, v2t (q)) > L(q,

v1t (q) + v2t (q)

2
),

contradicting to the minimality of (σ1, v
1) and (σ2, v

2).

Therefore, v1 = v2 and the minimizer is unique.
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2.3 Duality

Notice that σft ≥ ψt is equivalent to∫
C

h(t, q)f(dt, dq, dξ) ≥
∫
[0,T ]×Ω

h(t, q)ψ(dt, dq),

for all non-negative h ∈ C1
0(Rd+1).

We define Uα
∗,T to be the set of pairs (u, h) such that u ∈ C([0, T ]× Ω̄), h : [0, T ]× Ω̄ →

[0,∞] is Borel and non–negative and

u(t, γ(t))− u(s, γ(s)) ≤
∫ t

s

(
L(γ, γ̇) + α(τ, γ)− h(τ, γ)

)
dτ,

for all 0 ≤ s < t ≤ T .

On Uα
∗,T , the following functional is well–defined.

We also define

J(u, h) :=

∫
Ω

(
uT (q)σT (dq)− u0(q)σ0(dq)

)
+

∫ T

0

dt

∫
Ω

ht(q)ψt(dq). (2.3.1)

Set

L̂(f, u, h) := J(u, h)+

∫ T

0

F (σft )+

∫
C

(
L(q, ξ)−∂tu(t, q)−∇qu(t, q) ·ξ−h(t, q)

)
f(dt, dq, dξ).

Proposition 2.3.1. If we set

U := C1
o

(
Rd+1

)
× C1

o

(
Rd+1

)+
,

then

sup
(u,h)∈U

L̂(f, u, h) =


AF

L [f ] if f ∈ F̃(σ0, σT |ψ)

∞ if otherwise

Notice that h is non-negative here.
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Proof. Let’s define

L̃(f, u, h) = L̂(f, u, h)−AF

L [f ]

That is,

L̃(f, u, h) =

∫
Ω

(uTσT − u0σ0)−
∫
C

(∂tu+∇qu · ξ)f +

∫ T

0

∫
Ω

ht(q)ψt(dq)−
∫
C

hf(dt, dq, dξ)

We will prove that

sup
(u,h)∈U

L̃(f, u, h) =


0 if f ∈ F̃(σ0, σT |ψ)

∞ if otherwise.

Indeed, if f ∈ F̃(σ0, σT |ψ), then L̃(f, u, h) ≤ 0 by definition of F̃(σ0, σT |ψ). Notice that

here we have

L̃(f, u, h) ≤ 0 = L̃(f, 0, 0).

Thus L(f, 0, 0) is the maximum.

Moreover, if f /∈ F̃(σ0, σT |ψ), then either f /∈ F(σ0, σT ) or σ
f
t < ψt on a set A ⊂ [0, 1] of

positive measure.

Let hAλ = λχA, where λ ≥ 0. Then∫
(ψt − σft )h

A
λ = λ

∫
AxΩ

(ψt − σft )(dq)(dt) ≥ 0

As λ→ ∞, L̃(f, u, hAλ ) → ∞.

Therefore sup(u,h)∈U L̃(f, u, h) = ∞.

Proposition 2.3.2. Show that

inf
f∈P1(C)

sup
(u,h)∈U

L̂(f, u, h) = sup
(u,h)∈U

inf
f∈P1(C)

L̂(f, u, h).

and the infimum on the left hand side is in fact a minimum. Here,

P1(C) = {f ∈ P(C) : ηf = 1}.
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Proof. We will use Sion’s Theorem 1.6 in [23].

Notice first that we can equip C1
o

(
Rd+1

)
with the C1 norm. i.e.

||u||C1 = ||u||L∞ + ||∇u||L∞ ,∀u ∈ C1
o

(
Rd+1

)
.

Then (C1
o

(
Rd+1

)
, || · ||C1) is a topological vector space and {u|L̂(f, u, h) ≥ c} is closed

and convex for any constant c.

Indeed, take {un} ⊂ {u|L̂ ≥ c} such that un → u in (C1
o

(
Rd+1

)
, || · ||C1). Let’s show that

u ∈ {u|L̂ ≥ c}.

It suffices to show that |L̂(f, un, h)− L̂(f, u, h)| → 0.

L̂(f, un, h)− L̂(f, u, h)

Notice that

=

∫
Ω

((un)T−uT )(q)σT (dq)−
∫
Ω

((un)0−u0)(q)σ0(dq)−
∫
C

(∂t(un−u)+∇(un−u)·ξ)f(dt, dq, dξ).

By Cauchy-Schwarz inequality,

|L̂(f, un, h)−L̂(f, u, h)| ≤ 2||un−u||L∞+ ||∇(un−u)||L∞+ ||∇(un−u)||L∞

∫
C

|ξ|f(dt, dq, dξ).

By Jensen’s inequality,

(

∫
C

|ξ|f(dt, dq, dξ))2 ≤
∫
C

|ξ|2f(dt, dq, dξ) <∞.

Therefore

|L̂(f, un, h)− L̂(f, u, h)| → 0 as n→ ∞.

Moreover, since L̂(f, un, h) is linear in u, {u|L̂(f, u, h) ≥ c} is convex.

Notice next that we can equip P 2(C) with narrow convergence topology and P 2(C) ↪→

M(C), where M(C) is also equipped with the narrow convergence topology. Then P 2(C)

equipped with narrow convergence topology is compact.
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We know that P 2(C) with narrow convergence topology is a convex subset of M(C).

Indeed, it suffices to check that [0, T ] × P 2(C) × P 2(C) → P 2(C) via (λ, µ, ν) 7−→

(1− λ)µ+ λν is continuous. Thus if λn → λ, µn ⇀ µ, νn ⇀ ν, and given any ϕ ∈ Cb(C), we

want to show that ∫
C

ϕ
(
(1− λn)µn + λnνn

)
→
∫
C

ϕ
(
(1− λ)µ+ λν

)
.

This follows from

(1− λn)

∫
C

ϕµn → (1− λ)

∫
C

ϕµ

and

λn

∫
C

ϕνn → λ

∫
C

ϕν.

Now let’s check that {f : L̂(f, un, h) ≤ c} is convex and closed in P 2(C) for any given

(u, h) ∈ U .

Since L̂(f, un, h) is linear in f , {f : L̂(f, un, h) ≤ c} is convex.

For closeness, notice that if fn ⇀ f narrowly, it suffices to show that

lim inf L̂(fn, u, h) ≥ lim inf L̂(f, un, h).

By Lemma 2.2.2 and Lemma 2.2.3, it suffices to prove that

lim inf

∫
C

[L(q, ξ)− (∂tu+∇qu(t, q) · ξ)− h]fn ≥
∫
C

[L(q, ξ)− (∂tu+∇qu(t, q) · ξ)− h]f.

Then by Lemma 2.2.4, we just need to check that

L(q, ξ)− (∂tu+∇qu(t, q) · ξ)− h is bounded from below.

Indeed, we may assume that ∂tu(t, q),∇qu(t, q), and h are bounded by a, b, c from below

respectively. Then

L(q, ξ)− (∂tu+∇qu(t, q) · ξ)− h ≥ λ1|ξ|2 + λ0 − a− b|ξ| − c.
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λ1|ξ|2 − b|ξ| has minimum value λ since λ1 ≥ 0. Then

L(q, ξ)− (∂tu+∇qu(t, q) · ξ)− h ≥ λ+ λ0 − a− c as wanted.

Finally since P 2(C) is narrowly compact, the infimum on the left hand side is actually a

minimum.

We thus obtained the following proposition.

Proposition 2.3.3. For any (u, h) ∈ U , we have

inf
f∈P1(C)

L̂(f, u, h)

= J(u, h)−
∫ T

0

F ∗
(
∂tu(t, q) + h(t, q) +H

(
q,∇u(t, q)

))
dt.

Here F ∗ is the Legendre transform of F , which is defined as

F ∗(α) = sup
µ∈M+(Ω)

{∫
Ω

α(q)µ(dq)− F (µ)
}
.

If we denote

Ĵ(u, h) := J(u, h)−
∫ T

0

F ∗
Φ

(
∂tu(t, ·) + h(t, ·) +H

(
·,∇u(t, ·)

))
dt,

as a corollary, we get

Corollary 2.3.4.

CF
L (ψ0, ψT ) = sup

(u,h)∈U
Ĵ(u, h)

When α ∈ C
(
[0, T ]× Ω̄

)
Borel, we define

Aα
L[σ, v] :=

∫ T

0

dt

∫
Ω

(
L(q, vt(q)) + α(t, q)

)
σt(dq),

where (σ, v) ∈ ΣT (ψ0, ψT |ψ).
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We fix p > d and define

Uα
T ≡ Uα

T,p = Uα
∗,T ∩

(
W 2,p ×W 1,p

)
.

We set

ΓT = C([0, T ];Rd)

We consider (σ, v) ∈ ΣT (ψ0, ψT |ψ) such that

Aα
L[σ, v] <∞.

Using ησ as the probabilistic representation of (σ, v), for almost every (q, γ) ∈ Ω̄ × ΓT

with respect to ησ, we have that γ ∈ AC2(0, T ; Ω̄).

Now, let u ∈ C1([0, T ]× Ω̄) and h : ([0, T ]× Ω̄) → [0,∞) be a Borel function. Based on

the fact that σt ≥ ψt almost everywhere, we can make the following observation:

J(u, h) ≤
∫ T

0

dt

∫
Ω̄

(
∂tu+ ⟨∇u, v⟩+ h

)
σt(dq)

=

∫
Ω̄×ΓT

(∫ T

0

(
∂tu(t, γ) + ⟨∇u(t, γ, γ̇⟩+ h(t, γ)

)
dt

)
ησ(dq, dγ)

=

∫
Ω̄×ΓT

(
u(T, γ(T ))− u(0, γ(0)) +

∫ T

0

h(t, γ)dt

)
ησ(dq, dγ).

If we further assume that for ϵ > 0,

u(T, γ(T ))− u(0, γ(0)) ≤ 2ϵ+

∫ T

0

(
L(γ, γ̇) + α(τ, γ)− h(τ, γ)

)
dτ,

for all γ ∈ AC2(0, T ; Ω̄), then

J(u, h) ≤ 2ϵ+

∫
Ω̄×ΓT

(∫ T

0

(
L(γ, γ̇) + α(t, γ)

)
dt

)
ησ(dq, dγ).

Therefore we have

J(u, h) ≤ 2ϵ+Aα
L[σ, v]. (2.3.2)
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Lemma 2.3.5. If (u, h) ∈ Uα
∗,T and (σ, v) ∈ ΣT (ψ0, ψT |ψ), then

J(u, h) ≤
∫ T

0

(∫
Ω̄

(
L(q, vt) + α(t, q)

)
σt(dq)

)
dt.

Proof. Let (u, h) ∈ Uα
∗,T and (σ, v) ∈ ΣT (µ, ν|ψ). We can choose (uϵ)ϵ ⊂ C1([0, T ]× Ω̄) such

that |u− uϵ| ≤ ϵ. For any γ ∈ AC2(0, T ; Ω̄), we have

uϵ(T, γ(T ))− uϵ(0, γ(0)) ≤ 2ϵ+ u(T, γ(T ))− u(0, γ(0))

≤ 2ϵ+

∫ T

0

(
L(γ, γ̇) + α(τ, γ)− h(τ, γ)

)
dτ.

By (2.3.2), we have

J(uϵ, h) ≤ 2ϵ+

∫ T

0

(∫
Ω̄

(
L(q, vt) + α(t, q)

)
σt(dq)

)
dt.

Let ϵ tend to 0. We conclude the proof of the Lemma.

Corollary 2.3.6. For any set Uα such that Uα
T ⊂ Uα ⊂ Uα

∗,T , we have

sup
(u,h)∈Uα

T

J(u, h) = sup
(u,h)∈Uα

J(u, h) = sup
(u,h)∈Uα

∗,T

J(u, h) = min
(σ,v)∈ΣT (µ,ν|ψ)

Aα
L[σ, v].

Proof. By Lemma 2.3.5, we easily have

sup
(u,h)∈Uα

T

J(u, h) ≤ sup
(u,h)∈Uα

J(u, h) ≤ sup
(u,h)∈Uα

∗,T

J(u, h) ≤ min
(σ,v)∈ΣT (µ,ν|ψ)

Aα
L[σ, v].

By Proposition 2.3.1, Proposition 2.3.2, and Proposition 2.3.3, we have that

sup
(u,h)∈Uα

T

J(u, h) ≥ min
(σ,v)∈ΣT (µ,ν|ψ)

Aα
L[σ, v].

Hence the corollary holds.
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2.4 Some useful lemmas

Lemma 2.4.1. Let µ ∈ P(Ω̄) and α : Ω̄ → R be a bounded Borel function such that∫
Ω̄

α(q)f(q)µ(dq) = 0

for all f ∈ C(Ω̄) such that
∫
Ω̄
f(q)µ(dq) = 0. Then there exists a constant cα such that

α = cα µ–a.e.

Proof. Let f0 ∈ C(Ω̄). We set

f(q) := f0(q)−
∫
Ω̄

f0(q2)µ(dq2).

Then we have ∫
Ω̄

f(q)µ(dq) = 0.

Thus

0 =

∫
Ω̄

α(q)f0(q)µ(dq)−
∫
Ω̄

α(q)µ(dq)

∫
Ω̄

f0(q2)µ(dq2)

=

∫
Ω̄

f0(q2)

(
α(q2)−

∫
Ω̄

α(q)µ(dq)

)
µ(dq2).

Since f0 ∈ C(Ω̄) is arbitrary, this implies

α(q2) =

∫
Ω̄

α(q)µ(dq) µ− a.e.

Corollary 2.4.2. Let α : Ω̄ → R be a bounded Borel function. Assume µ maximizes

µ̄ 7→ I(µ̄) :=

∫
Ω̄

α(q)µ̄(dq)− FΦ(µ̄)

over P(Ω̄).

Then

q 7→ α(q)−
∫
Ω̄

Φ(q, q2)µ(dq2)

is constant µ–a.e.
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Proof. Take f ∈ C(Ω̄) such that ∫
Ω̄

f(q)µ(dq) = 0.

Set µϵ = µ(1 + ϵf). We have that µϵ ∈ P(Ω̄) and

I(µϵ) = I(µ) + ϵ

∫
Ω̄

(
α(q1)−

∫
Ω̄

Φ(q1, q2)µ(dq2)

)
f(q1)µ(dq1) + o(ϵ).

By the maximality property of µ0 = µ, we have that

0 =

∫
Ω̄

(
α(q1)−

∫
Ω̄

Φ(q1, q2)µ(dq2)

)
f(q1)µ(dq1).

Apply Lemma 2.4.1, we obtain the desired result.

For the rest of this section, let Φ ∈ C2(Rd × Rd). We define

α(t, q) :=

∫
Ω̄

Φ(q, q2)σt(dq2)

and set

L̄(t, q, v) = L(q, v) + α(t, q), H̄(t, q, p) = H(q, p)− α(t, q).

Given P0 ∈ Rd, we define

u(t, x) := inf
γ

{∫ t

0

L̄(τ, γ, γ̇)dτ : γ ∈ W 1,2(s, t; Ω̄), γ(0) = P0, γ(t) = x

}
. (2.4.1)

By the definition of u and the boundedness of L̄, we have the following lemma.

Lemma 2.4.3. For any 0 ≤ s < t ≤ T ,

u(t, γ(t))− u(s, γ(s)) ≤
∫ t

s

L̄(τ, γ, γ̇)dτ, ∀γ ∈ W 1,2(s, t; Ω̄). (2.4.2)

The function u defined in (2.4.1) is Lipschitz continuous.
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Lemma 2.4.4. (i) For any 0 ≤ s < t ≤ T , we have∫
Ω̄

u(t, q)σt(dq)−
∫
Ω̄

u(s, q)σs(dq) ≤
∫ t

s

dτ

∫
Ω̄

L(q, vτ (q))στ (dq).

(ii) Therefore, the function

t 7→ ω(t) :=

∫ t

0

dτ

∫
Ω̄

L(q, vτ (q))στ (dq)−
∫
Ω̄

u(t, q)σt(dq)

is monotone non-decreasing.

Proof. Note that since α(τ, ·) is of null στ average, we have∫
Ω̄

L̄(τ, (q, vτ (q))στ (dq) =

∫
Ω̄

L(q, vτ (q))στ (dq).

Thus, if ησ is the probabilistic representation of (σ, v), then∫
Ω̄

L(q, vτ (q))στ (dq) =

∫
Ω̄×ΓT

L̄(τ, γ(τ), γ̇(τ))ησ(dq, dγ). (2.4.3)

Since∫
Ω̄

u(t, q)σt(dq)−
∫
Ω̄

u(s, q)σs(dq) =

∫
Ω̄×ΓT

(
u(t, γ(t))− u(s, γ(s))

)
ησ(dq, dγ),

we use (2.4.2) to conclude that∫
Ω̄

u(t, q)σt(dq)−
∫
Ω̄

u(s, q)σs(dq) ≤
∫
Ω̄×ΓT

(∫ t

s

L̄(τ, γ(τ), γ̇(τ))dτ

)
ησ(dq, dγ).

Since L̄ is bounded from below, we can use Fubini’s theorem to obtain∫
Ω̄

u(t, q)σt(dq)−
∫
Ω̄

u(s, q)σs(dq) ≤
∫ t

s

(∫
Ω̄×ΓT

L̄(τ, γ(τ), γ̇(τ))ησ(dq, dγ)

)
dτ.

This, together with (2.4.3) implies that ω is monotone non–decreasing.
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We define

h̄(t, q) :=


L(Pt, Ṗt) + α(t, Pt)− d+

dt
u(t, Pt) if q = Pt

0 if q ̸= Pt

Here d+

dt
u(t, Pt) is the right derivative of u with respect to t.

Lemma 2.4.5. The function h̄ is non–negative and for 0 ≤ s < t ≤ T , the u defined in

(2.4.1) satisfies

u(t, γ(t))− u(s, γ(s)) +

∫ t

s

h(τ, γ(τ))dτ ≤
∫ t

s

L̄(τ, γ, γ̇)dτ, ∀γ ∈ W 1,∞(s, t; Ω̄).

Proof. The fact that h̄ ≥ 0 is a direct consequence of (2.4.2) when we use γ(t) = Pt.

Fix 0 ≤ s < t ≤ T and let γ̄ : [s, t] → Ω̄ be a Lipschitz curve and set

S0 =
{
τ ∈ (s, t) : Pτ = γ̄(τ)

}
, S1 =

{
τ ∈ (s, t) : Ṗτ = ˙̄γ(τ),

d

dτ
u(τ, γ̄(τ)) =

d

dτ
u(τ, Pτ )

}
.

Recall that the set S0 \ S1 is of null Lebesgue measure (see Lemma 6.3.1).

Let τ be a point of differentiability of u(·, γ̄). On the one hand if τ ∈ S0 ∩ S1 then

d+

dτ
u(τ, γ̄τ ) + h(τ, γ̄τ )− L(γ̄τ , ˙̄γτ ) =

d+

dτ
u(τ, Pτ ) + h(τ, Pτ )− L(Pτ , Ṗτ ) = 0.

On the other hand, if γ̄τ ̸= Pτ , then there exists δ > 0 such that γ̄l ̸= Pl for all l ∈

[τ − δ, τ + δ]. We use (2.4.2) to obtain that

d+

dτ
u(τ, γ̄τ ) + h(τ, γ̄τ )− L(γ̄τ , ˙̄γτ ) =

d+

dτ
u(τ, γ̄τ )− L(γ̄τ , ˙̄γτ ) ≤ 0.

In conclusion,
d+

dt
u(t, γ̄t) + h(t, γ̄t)− L(γ̄t, ˙̄γt) ≤ 0 L1 a.e.

Integrating, we obtain the desired inequality.
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Let ϵ0 be a positive real number and let λ : [0, T ] → [ϵ0, 1] be a piecewise continuous

function which is continuous at 0 and 1, such that λ(0) = λ(1) = 1. We assume

ψt = λtδPt , ∀t ∈ [0, T ].

We define h : {(t, Pt) : t ∈ [0, T ]} → [0,∞] by

h(t, Pt) =
1

λt
lim sup
δ→0+

H(t+ δ)−H(t)

δ
.

Note that ∫ T

0

λth(t, Pt)dt =

∫ T

0

H ′(t)dt = H(T )−H(0).

In other words,∫
Ω̄

(
uT (q)σT (dq)− u0(q)σ0(dq)

)
+

∫ T

0

dt

∫
∂Ω

h(t, q)ψt(dq) =

∫ T

0

dτ

∫
Ω̄

L(q, vτ (q))στ (dq).

Since F ∗
Φ(αt) + FΦ(σt) = 0, we conclude that

J(u, h)−
∫ T

0

F ∗
Φ(αt)dt = AF

L [σ, v]. (2.4.4)

Recall that if γ is a minimizer in (2.4.1), then setting p(s) = DvL̄(s, γ(s), γ̇(s)), we have

γ̇ = DpH̄L(s, γ, p), q ṗ = −DqH̄L(s, γ, p).

Thus

d

dt
H̄(t, γ, p) = ∂tH̄(t, γ, p) + ⟨DqH̄(t, γ, p), γ̇⟩+ ⟨DqH̄(t, γ, p), ṗ⟩ = ∂tH̄(t, γ, p).

Thus,

H̄(s, γ(s), p(s)) = H̄(t, x, p(t))−
∫ s

t

∂tα(τ, γ)dτ.

From this, we get a uniform bound on the L∞-norm of p. Thus, there is a bound on the

L∞-norm of γ̇.
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CHAPTER 3

Zero Potential and Duality

In this chapter, we first derive a useful result by assuming the linear potential given by

F (µ) = FΦ(µ) :=

∫
Ω

Φ(q)µ(dq),

for some strict convex Φ ∈ C2(Rd). Then we assume Φ = 0 for the remaining part of the

chapter. Although most results can be easily extended to linear or general potentials, we

keep it zero in this chapter to make our argument clear.

Our goal is to study the following minimization problem via duality

inf
(σ,v)

{
AF
L [σ, v] : (σ, v) ∈ F (σ0, σT |ψ)

}
, (3.0.1)

where

AF
L [σ, v] =

∫ T

0

∫
Ω

L(q, vt(q))σt(dq)dt.

We assume t→ Pt ∈ ∂Ω is of class C2.

We define U0 to be the set of pair (u, h) such that

u ∈ C([0, T ]× Ω̄), h : [0, T ]× ∂Ω → [0,+∞) Borel

and

u(t, γ(t))− u(s, γ(s)) ≤
∫ t

s

(
L(γ, γ̇)− h(τ, γ(τ))

)
dτ,

for all 0 ≤ s < t ≤ T and all γ ∈ W 1,∞(s, t; Ω̄).
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3.1 Minimizer of the cost function

For s, t ∈ [0, T ] and γ ∈ W 1,2(s, t;Rd), we define

Ats(γ) :=

∫ t

s

L(γ, γ̇) + Φ(γ)dτ.

Since L is convex and Φ is strict convex, we have

(q, ξ) 7→ L(q, ξ) + Φ(q) is strictly convex.

Therefore, for all s, t ∈ [0, T ] and x, y ∈ Rd, we have

γ 7→ Ats(γ) is strictly convex on {γ ∈ W 1,2(s, t;Rd), γ(s) = x, γ(t) = y}. (3.1.1)

For s, t ∈ [0, T ] and x, y ∈ Rd we define

cts(x, y) := min
γ

{
Ats(γ) : γ ∈ W 1,2(s, t;Rd), γ(s) = x, γ(t) = y

}
. (3.1.2)

Since Φ is continuous on compact subset Ω, Φ|Ω is bounded. Write K1 ≤ Φ(q) ≤ K2 for

any q ∈ Ω.

By (2.1.4)

λ1
|y − x|2

t− s
+ λ0(t− s) +K1 ≤ cts(x, y) ≤ λ−1

1

|y − x|2

t− s
− λ0(t− s) +K2. (3.1.3)

First let’s prove that (3.1.2) indeed admits a minimizer, so it is well-defined.

Lemma 3.1.1. (3.1.2) admits a minimizer. By (3.1.1), this minimizer is unique and will be

denoted by γt,ys,x.

Proof. For simplicity in notation, we denote Aba[γ] as A[γ] and work with γ ∈ W 1,2(a, b,Rd).

Fix x and y in Ω, let γ ∈ W 1,2(a, b,Rd) such that γ(a) = x and γ(b) = y.

Set γ(t) = (1− t−a
b−a)x+

t−a
b−ay. Then γ̇(t) =

y−x
b−a .

Let {γn} be a minimizing sequence in W 1,2.
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Since A[γn] ≤ A[γ] for larger enough n, for simplicity, we assume A[γn] ≤ A[γ].

Notice that∫ b

a

λ0 + |γ̇n|2λ1 + Φ(γn)dt ≤ A[γn] ≤ A[γ] =

∫ b

a

L(γ,
y − x

b− a
) + Φ(γ)dt =:M.

Then ∫ b

a

|γ̇n|2dt ≤
M − (K1 + λ0)(b− a)

λ1
=:M1.

Thus

|γn(t)− x| = |γn(t)− γn(a)| = |
∫ t

a

γ̇n(τ)dτ | ≤

√∫ t

a

|γ̇n(τ)2|dτ
√
t− a ≤

√
b− a

√
M1.

Then (γn)n is bounded in W 1,2 ∩ L∞(a, b). Indeed,

||γn||L∞ ≤ |x|+
√
b− aM1 ≤ λΩ +

√
b− aM1,

where λΩ := sup
v∈Ω

|v|.

By Banach-Alaoglu Theorem, there is a subsequence of {γn}, still denoted as {γn} for

simplicity, that converges weakly to some γ ∈ W 1,2. That is, γn → γ in L2 and γ̇n ⇀ γ̇ in

L2.

Notice that

L(q, v) + Φ(q) ≥ λ0 + λ1|v|2 + inf
Ω

Φ ≥ λ0 +K1 =: λ2.

Then

L(q, v) + Φ(q)− λ2 ≥ 0.

Observe that ∫ b

a

(L(γ, γ̇) + Φ(γ) + C)dt = A[γ] + (b− a)C,

where C is any fixed constant.

Without loss of generality, we may assume that L+ Φ ≥ 0.
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Set

Tr := { t ∈ (a, b) : |γ̇(t)| ≤ r }.

Notice that L(q, v) is convex and Φ is convex, we have∫ b

a

L(γn, γ̇n) + Φ(γn)dt−
∫ b

a

L(γ, γ̇) + Φ(γ)dt

=

∫ b

a

Φ(γn)− Φ(γ)dt+

∫ b

a

L(γn, γ̇n)− L(γn, γ̇)dt+

∫ b

a

L(γn, γ̇)− L(γ, γ̇)dt

≥
∫ b

a

⟨∇Φ(γ), γn − γ⟩dt+
∫ b

a

⟨DvL(γ, γ̇), γ̇n − γ̇⟩dt+
∫ b

a

L(γn, γ̇)− L(γ, γ̇)dt.

Therefore, we get∫ b

a

L(γn, γ̇n) + Φ(γn)dt ≥
∫ b

a

χTr(L(γ, γ̇) + Φ(γ))dt+

∫ b

a

χTr⟨DvL(γ, γ̇), γ̇n − γ̇⟩dt

+

∫ b

a

χTr⟨∇Φ(γ), γn − γ⟩dt+
∫ b

a

χTr(L(γn, γ̇)− L(γ, γ̇))dt

Notice that

χTr |L(γn, γ̇)− L(γ, γ̇)| ≤ |γn(t)− γ(t)|eδ(r),

where

eδ(r) := sup
|v|≤r,|x|≤δ

DqL(q, v).

Hence∫ b

a

χTr |L(γn, γ̇)− L(γ, γ̇)|dt ≤ eδ(r)

∫ b

a

|γn(t)− γ(t)|dt ≤ eδ(r)
√
b− a||γn − γ||L2(a,b).

Since χTrDvL(γ, γ̇) ∈ L2, as n→ ∞, we get that∫ b

a

χTr⟨DvL(γ, γ̇), γ̇n− γ̇⟩dt+
∫ b

a

χTr⟨∇Φ(γ), γn − γ⟩dt+
∫ b

a

χTr(L(γn, γ̇)−L(γ, γ̇))dt→ 0.

Let r → ∞, we get

lim inf
n→∞

∫ b

a

L(γn, γ̇n) + Φ(γn)dt = lim inf
n→∞

A[γn] ≥ A[γ].
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Thus γ is the minimizer we want.

Let ϕ ∈ C∞
c (a, b). Set γϵ = γ + ϵϕ. Since

lim
ϵ→0

A[γϵ]− A[γ]

ϵ
= 0,

we have the Euler-Lagrange equation

d

dt
(DvL(γ, γ̇)) = DqL(γ, γ̇) ∈ L∞.

Also DvL(γ, γ̇) ∈ W 1,2(a, b) since DvL(γ, γ̇) ∈ L2. Therefore

p(t) := DvL(γ, γ̇) ∈ W 1,∞.

Then γ̇ = DpH(γ, p) ∈ W 1,∞. Therefore γ ∈ W 2,∞.

Now we show that γ̇ ∈ L∞. Indeed, let A ∈ C∞
c (a, b) and define Sϵ(t) = t+ ϵA(t).

If |ϵ| ≪ 1, we may assume that Ṡϵ(t) ≥ 1
2
.

Then by the inverse function theorem, Sϵ : [a, b] → [a, b] is a bijection with a differentiable

inverse Tϵ.

Notice that γϵ(a) = γ(Sϵ(a)) = γ(a) = x and γϵ(b) = γ(Sϵ(b)) = γ(b) = y.

Moreover,
d

dt
γ(Sϵ) = γ̇(Sϵ)Ṡϵ ∈ L∞.

By the fact that γ is a minimizer, we have A[γ(Sϵ)] ≥ A[γ].

Denote L = L+ Φ. Notice that

A[γ(Sϵ)] =

∫ b

a

L(γ(Sϵ(t)), γ̇(Sϵ(t))Ṡϵ(t)))dt =

∫ b

a

L(γ(Sϵ(t)), γ̇(Sϵ(t))
1

Ṫϵ(Sϵ(t))
)dt.

Denote τ = Sϵ(t). Notice that Ṡϵ(t) = 1 + ϵȦ(t). Then Ṫϵ(τ) = 1− ϵȦ(τ) + o(ϵ).

Then

A[γ(Sϵ)] =

∫ b

a

L(γ(τ), γ̇(τ)
1

Ṫϵ(τ)
)Ṫϵ(τ)dτ
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=

∫ b

a

L(γ(τ), γ̇(τ) + ϵȦγ̇(τ) + o(ϵ))(1− ϵȦ(τ) + o(ϵ))dτ

=

∫ b

a

L(γ(τ), γ̇(τ)) + ϵȦ(⟨DvL(γ, γ̇), γ̇⟩ − L(γ, γ̇)) + o(ϵ)dτ.

Recall that DvL(γ, γ̇) = DvL(γ, γ̇) = p and ⟨ p, γ̇⟩ = L+H.

We thus get

0 = lim
ϵ→0

A[γ(Sϵ)]− A[γ]

ϵ(t)
=

∫ b

a

Ȧ(⟨DvL(γ, γ̇), γ̇⟩dτ =

∫ b

a

ȦH(γ, p)dτ.

Hence we get the conservation of the Hamiltonian, i.e. H(γ, p) is a constant.

By (2.1.5), there exist constants 1
4
λ1 > 0 and λ0 < 0, such that

λ1|p|2 + λ0 ≤ H(γ(τ), p(τ)) = H(γ(0), p(0)).

Then p ∈ L∞ since

|p|2 ≤ H(γ(0), p(0))− λ0
1
4
λ1

.

Since γ̇ = DpH(γ, p) ∈ W 1,∞, we conclude that γ̇ ∈ L∞ as wanted.

We assume Φ = 0 for the rest part of this chapter.

We make appropriate additional assumptions on Ω so that

γt,ys,x

(
(s, t)

)
⊂ Ω ∀0 ≤ s < t < l ≤ T. (3.1.4)

This means

cts(x, y) := min
γ

{
Ats(γ) : γ ∈ W 1,2(s, t; Ω̄), γ(s) = x, γ(t) = y

}
. (3.1.5)

We set

pt,ys,x(τ) = DqL
(
γt,ys,x(τ), γ̇

t,y
s,x(τ)

)
.
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From the definition above, it is easy to see that we have standard property

cts(x, y) + clt(y, z) ≥ cls(x, z), ∀0 ≤ s < t < l ≤ T. (3.1.6)

If γ is a minimizer in cls(x, z), then we have the following so-called semi–group property.

cts
(
x, γ(t)

)
+ clt

(
γ(t), z

)
= cls(x, z), ∀0 ≤ s < t < l ≤ T. (3.1.7)

The following properties are standard ([12] [14]).

Proposition 3.1.2. Assume 0 ≤ s < t ≤ T.

(i) γt,ys,x ∈ C2([s, t]) and

γ̇t,ys,x = DpH
(
γt,ys,x, p

t,y
s,x

)
, ṗt,ys,x = −DqH

(
γt,ys,x, p

t,y
s,x

)
(ii) There exists a monotone function λΩ : [0, T ] → [0,∞) such that limτ→0+ λΩ(τ) = +∞

and for all x, y ∈ Ω̄, cts(·, y) and cts(x, ·) are λΩ(t− s)–concave in a neighborhood of Ω̄.

(iii) For all x, y ∈ Ω̄, cts(·, y) and cts(x, ·) are λΩ–concave in a neighborhood of Ω̄ and

−pt,ys,x(s) ∈ ∂·cts(·, y)(x) and pt,ys,x(t) ∈ ∂·cts(x, ·)(y). (3.1.8)

(iv) Increasing the value of λΩ if necessary, we may assume that

cts(·, y), cts(x, ·) are λΩ(t− s) -Lipschitz ∀x, y ∈ Ω̄.

Furthermore, for every τ ∈ (s, t) and z := γt,ys,x(τ).

(v) There is a monotone function λ̄Ω : [0, T ] → [0,∞) such that limτ→0+ λ̄Ω(τ) = +∞ and∣∣∣DL(γt,ys,x, γ̇t,ys,x)∣∣∣ ≤ λ̄Ω∀ x, y ∈ Ω̄.

Remark 3.1.3. Continuing with the notation of Proposition 3.1.2, for every τ ∈ (s, t) and

z := γt,ys,x(τ)

cτs(·, z), ctτ (z, ·) are λΩ(t− s) -Lipschitz ∀x, y ∈ Ω̄.

which means the Lipschitz constant is better than λΩ(τ − s) or λΩ(t− τ).
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We define E ts to be the set of pairs (u, v) ∈ C(Ω̄)× C(Ω̄) such that

u(x) + v(y) ≤ cts(x, y), ∀x, y ∈ Ω̄

and we denote above inequality as u⊕ v ≤ cts.

Definition 3.1.4 (c-transform). Let u, v : Ω → R ∪ {−∞} and set c := cts. The first c-

transform of u, uc : Ω̄ → R ∪ {−∞}, and the second c-transform of v, vc : Ω̄ → R ∪ {−∞},

are defined by

uc(y) := inf
x∈Ω̄

{
c(x, y)− u(x)

}
, vc(x) := inf

y∈Ω̄

{
c(x, y)− v(y)}. (3.1.9)

Lemma 3.1.5. Let λΩ be the function in Proposition 3.1.2 and set c := cts. If u ∈ C(Ω̄),

then

(i) Then (uc)
c ≥ u, (uc)c ≥ u,

(
(uc)

c
)
c
= uc, and

(
(uc)c

)c
= uc.

(ii) If u = vc for some v : Ω̄ → R ∪ {−∞} and v ̸≡ −∞, then:

(a) u is λΩ(t− s)-Lipschitz and λΩ(t− s)-semiconcave.

(b) If x̄ ∈ Ω̄ is a point of differentiability of u, ȳ ∈ Ω̄, and u(x̄)+v(ȳ) = c(x̄, ȳ), then x̄

is a point of differentiability of c(·, ȳ) and∇u(x̄) = ∇xc(x̄, ȳ) = DvL
(
γyx(0), γ̇

y
x(0)

)
.

Furthermore ȳ is uniquely determined.

(iii) If v = uc, then the symmetric analogue of above holds.

(iv) As a consequence of (i-iii), if K ⊂ R is bounded, the set

{vc : v : Ω̄ → R is bounded from above, vc(Ω̄) ∩K ̸= ∅}

is compact in C(Ω̄), and weak∗ compact in W 1,∞(Ω). The uniform norm as well as

the W 1,∞ norm of any element of {vc : v ∈ C(Ω̄), vc(Ω̄) ∩ K ̸= ∅} depends only on

λΩ(t− s) and K. In particular, we can take K = {0}.
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Proof. (i–iii) of the Lemma 3.1.5 can be found in [4]. We prove (iv) here.

Let x1, x2 ∈ Ω̄ and assume without loss of generality that vc(x2)− vc(x1) ≥ 0. For ϵ > 0

arbitrary, choose y ∈ Ω̄ such that vc(x1) ≥ c(x1, y)− v(y)− ϵ.

We conclude that

|vc(x2)−vc(x1)| = vc(x2)−vc(x1) ≤ c(x2, y)−v(y)−c(x1, y)+v(y)+ϵ = c(x2, y)−c(x1, y)+ϵ.

Thus

|vc(x2)− vc(x1)| ≤ Lip(c)|x2 − x1|+ ϵ.

Since ϵ is arbitrary, we conclude that Lip(vc) ≤ Lip(c). Let B be a ball centered at the

origin and containing K. Choose x0 ∈ Ω such that vc(x0) ∈ K. We have |vc(x0)| ≤ R.

Thus

|vc(x)− vc(x0)| ≤ R + Lip(c)diam(Ω).

This proves (iv).

For µ, ν ∈ P2(Rd), we denote by Γ(µ, ν) the set of Borel measures on R2d which have µ0

as the first marginal and µ1 as the second marginal. For 0 ≤ s < t ≤ T , we define

Ct
s(µ, ν) := min

π∈Γ(µ,ν)

∫
R2d

cts(x, y)π(dx, dy).

Remark 3.1.6. By the standard theory of optimal transportation (see [15]) and by the

compactness property provided in Lemma 3.1.5, we have that

Ct1
t0 (δPt0

, δPt1
) = max

u

{
u(t1, Pt1)− u(t0, Pt0)

}
. (3.1.10)

Here B is any bounded set containing Ω̄. The maximum is performed over the set of

u ∈ C
(
[t0, t1]×B

)
such that

u(t, y)− u(s, x) ≤ cts(x, y), (3.1.11)

for all (x, y) ∈ B2 and (s, t) ⊂ [t0, t1]. The maximizer exists and is denoted as u∗.
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Given a path γ : [0, T ] → Ω̄ and a function u : [0, T ]× Ω̄ → Rd, the following function is

pointwise well–defined although it may take the values ±∞ :

t 7→ d+

dt
u(t, γ(t)) =: lim sup

h↓0

u(t+ h, γ(t+ h))− u(t, γ(t))

h
.

When γ and u are Lipschitz then so is t 7→ u(t, γ(t)). Thus, the latter function is

differentiable almost everywhere, which coincides almost everywhere with the bounded Borel

function t 7→ d+

dt
u(t, γ(t)).

Lemma 3.1.7. Let u : [0, T ]× Ω̄ → R be a Lipschitz function. The following conditions are

equivalent:

(i) For every 0 ≤ s < t ≤ T and every x, y ∈ Ω̄,

u(t, y)− u(s, x) ≤ cts(x, y).

(ii) For every Lipschitz curve γ : [0, T ] → Ω̄

d+

dt
u(t, γ(t)) ≤ L(γ, γ̇) a.e. on (0, T ).

Proof. (i) implies (ii):

For any Lipschitz curve γ : [0, T ] → Ω

d+

dt
u(t, γ(t)) = lim sup

h↓0

u(t+ h, γ(t+ h))− u(t, γ(t))

h
≤ lim sup

h↓0

ct+ht (γ(t), γ(t+ h))

h
.

By the definition of ct+ht (γ(t), γ(t+ h)), we get

d+

dt
u(t, γ(t)) ≤ lim sup

h↓0

1

h

∫ t+h

t

L(γ(τ), γ̇(τ)) + Φ(γ(τ))dτ = L(γ(t), γ̇(t)) + Φ(γ(t)).

Notice that L(γ(τ), γ̇(τ)) + Φ(γ(τ)) is locally L1 integrable.

The last equality thus follows from the Lebesgue differentiation theorem.

(ii) implies (i):
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For every 0 ≤ s < t ≤ t and every x, y ∈ Ω, take any Lipschitz curve γ such that γ(s) = x

and γ(t) = y.

Let Γ : [0, T ] → R such that Γ(t) = u(t, γ(t)). Then since u and γ are Lipschitz, let a and

b be their Lipschitz constant respectively. It is easy to see that Γ is Lipschitz with Lipschitz

constant a(1 + b).

Indeed, we have that

|Γ(t+ h)− Γ(t)| = |u(t+ h, γ(t+ h))− u(t, γ(t))|

≤ a(|h|+ |γ(t+ h)− γ(t)| ≤ (a+ ab)|h|.

Thus, Γ is differentiable almost everywhere and

u(t, y)− u(s, x) = Γ(t)− Γ(s) =

∫ t

s

Γ̇(τ)dτ =

∫ t

s

lim
h→0

Γ(τ + h)− Γ(τ)

h
d(τ)

=

∫ t

s

d+

dt
u(τ, γ(τ)) ≤

∫ t

s

L(γ(τ), γ̇(τ)) + Φ(γ(τ))dτ.

Take inf over all such γ’s, we get [u(t, y)− u(s, x) ≤ cts(x, y) as wanted.

3.2 Maximizers in [t0, t1]

Given t0 < t1 in [0, T ] and B any bounded set containing Ω̄, let u∗ ∈ C
(
[t0, t1], B

)
be a

maximizer in the problem at the right hand side of (3.1.10) and set

γ∗ := γ
Pt1
Pt0

so that

At1
t0(γ

∗) = Ct1
t0 (δPt0

, δPt1
) = u∗(t1, Pt1)− u∗(t0, Pt0). (3.2.1)

Remark 3.2.1. Let t ∈ (t0, t1).
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(i) We have

ct1t (γ
∗
t , Pt1) = u∗(t1, Pt1)−u∗(t, γ∗t ) and u∗(t, γ∗t ) = u∗(t0, Pt0)+ ctt0(Pt0 , γ

∗
t ). (3.2.2)

In fact, by a direct application of Lemma 3.1.5 (i), we can choose u∗ ∈ C
(
[t0, t1], Ω̄

)
such that

u∗(t, y) = min
x̄∈Ω̄

{
ctt0(x̄, y) + u∗(t0, x̄)

}
, ∀y ∈ Ω̄. (3.2.3)

Then

u∗(t0, x) = max
ȳ∈Ω̄

{
− ct1t0(x, ȳ) + u∗(t1, ȳ)

}
, ∀x ∈ Ω̄ (3.2.4)

and

u∗(t0, Pt0) = 0. (3.2.5)

(ii) By Lemma 3.1.5 (iv), (3.2.4) implies that u∗(t0, ·) is λΩ(t1−t0)-Lipschitz and λΩ(t1−t0)-

semiconvex.

We shall prove in the next lemma that ∇u∗(t, γ∗(t)) exists for any t ∈ (t0, t1). Since

u∗(t+ h, γ∗(t+ h))− u∗(t, γ∗(t)) =

∫ t+h

t

L(γ∗, γ̇∗)dτ,

it is obvious that u∗(·, γ∗) is differentiable at t. This means, we should expect from Lemma

3.2.2 that ∂tu
∗(t, γ∗(t)) exists, which means that u∗ is differentiable at (t, γ∗(t)).

Lemma 3.2.2. Let (u∗, γ∗) be as in Remark 3.2.1. Then for any t ∈ (t0, t1), we have

u∗(t, γ∗t ) = min
x∈Ω̄

{
ctt0(x, γ

∗
t ) + u∗(t0, x)

}
= max

y∈Ω̄

{
− ct1t (γ

∗
t , y) + u∗(t1, y)

}
.

Thus, u∗(t, ·) is continuously differentiable at γ∗t .

Proof. Set

α := min
x∈Ω̄

{
ctt0(x, γ

∗
t ) + u∗(t0, x)

}
, β := max

y∈Ω̄

{
− ct1t (γ

∗
t , y) + u∗(t1, y)

}
.

41



We use (3.1.11) to conclude that u∗(t, γ∗t ) ≤ α. Since α is an infimum, by the second identity

in (3.2.2), we have

α ≤ ctt0(Pt0 , γ
∗
t ) + u∗(t0, Pt0) = u∗(t, γ∗t ).

This proves that u∗(t, γ∗t ) = α.

The identity u∗(t, γ∗t ) = β is obtained similarly by first using (3.1.11) and second using

the first identity in (3.2.2).

Let z ∈ Ω̄. By (3.1.11) and the second identity in (3.2.2) we have

u∗(t, z) ≤ u∗(t0, Pt0) + ctt0(Pt0 , z), and u∗(t0, Pt0) = u(t, γ∗t )− ctt0(Pt0 , γ
∗
t ).

Thus,

u∗(t, z) ≤ u(t, γ∗t )− ctt0(Pt0 , γ
∗
t ) + ctt0(Pt0 , z).

We apply Lemma 3.1.5 (ii) to find δt ∈ Rd and a constant A depending on t0 such that

u∗(t, z) ≤ u(t, γ∗t ) + ⟨δt, z − γ∗t ⟩+ A|z − γt|2. (3.2.6)

Similarly, using (3.1.11) and the first identity in (3.2.2), increasing the value of A if

necessary, we find δ̄t ∈ Rd such that

u∗(t, z) ≥ u(t, γ∗t ) + ⟨δ̄t, z − γ∗t ⟩ − A|z − γt|2 (3.2.7)

This, together with (3.2.6), means that the sub differential and the super differential of

u∗(t, ·) at γ∗t is not empty. Thus, u∗(t, ·) is differentiable at γ∗t . Since u∗(t, ·) is a semi–concave

function, then it is continuously differentiable at γ∗t .

3.3 Maximizers on the whole interval [0, T ]

Assume (u∗, γ∗) is as in Remark 3.2.1 and satisfies (3.2.3).
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Set

u(t, a) := max
x∈Ω̄

{−ct0t (a, x) + u∗(t0, x)} if t ∈ [0, t0), (3.3.1)

u(t, a) := u∗(t, a) if t ∈ [t0, t1], (3.3.2)

and

u(t, a) := min
y∈Ω̄

{ctt1(y, a) + u∗(t1, y)} if t ∈ (t1, T ]. (3.3.3)

For t ∈ (t1, T ], we use (3.2.3) to conclude that

u(t, a) = min
x,y∈Ω̄

{ctt1(y, a) + ct1t0(x, y) + u∗(t0, x)}.

We combine (3.1.6) and (3.1.7) to conclude that

u(t, a) = min
x∈Ω̄

{ctt0(x, a) + u∗(t0, x)} ∀t ∈ (t1, T ].

By (3.2.3), this means

u(t, a) = min
x∈Ω̄

{ctt0(x, a) + u∗(t0, x)} ∀t ∈ [t0, T ]. (3.3.4)

Proposition 3.3.1. We have

u : [0, t0]× Ω̄ → R and u : [t0, T ]× Ω̄ → R are Lipschitz

Since u(t0, ·) is Lipschitz, we conclude that u is Lipschitz on [0, T ]× Ω̄.

Proof. By Remark 3.2.1 (ii), u(t0, ·) is Lipschitz. In light of Lemma 3.1.5 (iv), the formulation

used in (3.3.4) shows that for each t ∈ (t0, T ], u(t, ·) is λΩ(t − t0)-Lipschitz. Similarly, by

(3.3.1), we conclude that u(t, ·) is λΩ(t0 − t)-Lipschitz for t ∈ [0, t0).

Our goal is to improve these statements so that the Lipschitz constant of u(t, ·) is inde-

pendent of t. To achieve this goal, we first show that u is Lipschitz in [0, T ] × Ω. Since for

any t ∈ [0, T ], u(t, ·) is continuous on Ω̄, by a simple approximation argument, u is globally

Lipschitz.

43



Part 1. Lipschitz in space. Let t ∈ (t0, T ]. Recall that by Remark 3.2.1, u(t0, ·) is κ–

Lipschitz for some κ > 0. Let y1, y2 ∈ Ω. Interchanging the role of y1 and y2 if necessary, we

may assume that u(t, y2)− u(t, y1) ≥ 0. Take γ ∈ W 1,2(t0, t; Ω̄) such that

u(t, y1) = u(t0, γ(t0)) +

∫ t

t0

L(γ, γ̇)dτ, γ(t) = y1.

We first establish a control on γ̇. Indeed,

u(t0, γ(t0)) +

∫ t

t0

L(γ, γ̇)dτ ≤ u(t0, y1) +

∫ t

t0

L(y, 0)dτ ≤ ∥u(t0, ·)∥C(Ω̄) + T∥L(·, 0)∥C(Ω̄).

This implies ∫ t

t0

L(γ, γ̇)dτ ≤ 2∥u(t0, ·)∥C(Ω̄) + T∥L(·, 0)∥C(Ω̄).

We use (2.1.4) to conclude that∫ t

t0

|γ̇|2dτ ≤ 2λ−1
1 ∥u(t0, ·)∥C(Ω̄) + Tλ−1

1 ∥L(·, 0)∥C(Ω̄) − λ0. (3.3.5)

By Cauchy-Schwarz inequality,∫ t

t0

|γ̇|dτ ≤
√
T
√

2λ−1
1 ∥u(t0, ·)∥C(Ω̄) + Tλ−1

1 ∥L(·, 0)∥C(Ω̄) − λ0. (3.3.6)

Set

R(τ) := γ(τ) + y2 − y1, ∀τ ∈ [0, t].

Note that R ∈ W 1,2(t0, t;Rd) and R(t) = y2. Without loss of generality, assume that y1

and y2 are chosen so that the range of R is contained in Ω̄. We have

u(t, y2) ≤u(t0, R(t0)) +
∫ t

t0

L(R, Ṙ)dτ

=u(t, y1) + u(t0, R(t0))− u(t0, γ(t0)) +

∫ t

t0

(
L(R, Ṙ)− L(γ, γ̇)

)
dτ.

Thus

u(t, y2)− u(t, y1) ≤ Lip
(
u(t0, ·)

)
|y1 − y2|+

∫ t

t0

∫ 1

0

⟨DqL
(
γ + s(y2 − y1), γ̇

)
, y2 − y1⟩dsdτ.
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Since by (2.1.3), DL is κ0–Lipschitz, we have

u(t, y2)− u(t, y1) ≤ Lip
(
u(t0, ·)

)
|y1 − y2|+ κ0

∫ t

t0

∫ 1

0

(
|γ|+ |γ̇|+ |y2 − y1|

)
|y2 − y1|dsdτ.

Using (3.3.6) and the fact that the range of γ is contained in the bounded set Ω̄, there is

a constant K independent of t, y1 and y2 such that

|u(t, y2)− u(t, y1)| ≤ K|y1 − y2|.

Thus the Lipschitz constant of u(t, ·) on Ω̄ is independent of t ∈ [t0, T ]. We apply the

same reasoning to conclude that the Lipschitz constant of u(t, ·) on Ω̄ is independent of

t ∈ [0, t0].

Part 2. Lipschitz in time. Let y ∈ Ω and let t1 ≤ s1 < s2 ≤ T. By the semi–group

property in 3.1.7, choosing the trajectory γ(τ) ≡ y, we have

u(s2, y)− u(s1, y) ≤
∫ s2

s1

L(y, 0)dτ ≤ (s2 − s1)max
Ω̄

L(·, 0). (3.3.7)

Next, choose γ ∈ W 1,2(0, s2; Ω̄) such that

u(s2, y) = u(s1, γ(s1)) +

∫ s2

s1

L(γ, γ̇)dτ, γ(s2) = y.

Since u(s1, ·) is K–Lipschitz,

u(s1, γ(s1)) ≥ u(s1, y)−K|y − γ(s1)| = u(s1, y)−K|γ(s2)− γ(s1)|.

Thus

u(s1, γ(s1)) ≥ u(s1, y)−K

∫ s2

s1

|γ̇|dτ.

Using the definition of γ, we conclude that

u(s2, y) ≥ u(s1, y) +

∫ s2

s1

(
L(γ, γ̇)−K|γ̇|

)
dτ.

Thanks to (2.1.4), there is a constant K0 bigger than maxΩ̄ L(·, 0) such that

u(s2, y)− u(s1, y) ≥ −K0(s2 − s1).
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This, together with (3.3.7), implies u(·, y) is K0–Lipschitz on [t0, T ] for every y ∈ Ω.

Increasing the value of K0 is necessary and using an analogous argument, we obtain that

u(·, y) is K0–Lipschitz on [0, t0] for every y ∈ Ω.

Lemma 3.3.2. We have

u(t, b)− u(s, a) ≤ cts(a, b), ∀0 ≤ s < t ≤ T.

Proof. By (3.3.4), u satisfied the semi–group property on [t0, T ]. It suffices to prove the

lemma only for s ∈ [0, t0). If s < t ≤ t0, we need to check that

u∗(t0, x) ≤ u(s, a) + cts(a, b) + ct0t (b, x).

This inequality holds since

u(s, a) ≥ −ct0s (a, x) + u∗(t0, x) and ct0s (a, x) ≤ cts(a, b) + ct0t (b, x).

Thus it remains to study the case when s ∈ [0, t0) and t ∈ [t0, T ], which are the conditions

we impose in the sequel that s ∈ [0, t0) and t ∈ [t0, T ]. Let a, b ∈ Ω̄. By (3.1.7), we can

choose γ : [s, t] → Ω̄ such that

cts(a, b) = ct0s
(
a, γ(t0)

)
+ ctt0

(
γ(t0), b

)
,

and

u(t, b) ≤ ctt0
(
γ(t0), b

)
+ u(t0, γ(t0)) = cts(a, b)− ct0s

(
a, γ(t0)

)
+ u(t0, γ(t0)).

We use (3.3.4) and the fact that s ≤ t0 to conclude that

u(t, b) ≤ cts(a, b) + u(s, a).

This concludes the proof.
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3.4 Duality property in our particular case

We are halfway towards establishing the duality property in our particular case.

We endow ΓT = C([0, T ];Rd) with the supremum norm. Let (σ, v) ∈ ΣT (σ0, σT |ψ) and

let

E :=
{
(q, γ) : q ∈ Rd, γ ∈ AC2(0, T,Rd), γ(0) = q, γ̇ = v(·, γ) L1-a.e.

}
By Theorem 8.2.1 [4], there exists a Borel probability measure η on Rd × ΓT which is

concentrated on the set E and such that∫
Rd

φ(q)σt(dq) =

∫
Rd×ΓT

φ(γ(t))η(dq, dγ), ∀φ ∈ Cb(Rd), t ∈ [0, T ]. (3.4.1)

Following [4], we shall use the notation

σ ≡ ση. (3.4.2)

Lemma 3.4.1. The identity (3.4.1) holds for every bounded Borel function φ : Rd → R.

This implies the identity holds for every non-negative Borel function φ : Rd → R.

Proof. It suffices to prove the lemma when φ = χA and A ⊂ Rd is a Borel set. Fix t ∈ [0, T ]

and fix a Borel set A ⊂ Rd. For each natural number n > 1, we can find a compact set

K0
n ⊂ A such that

σt(A \Kn) <
1

n
.

Since A × ΓT is a Borel subset and Rd × ΓT is a separable metric space, we can find a

compact set K̃ ⊂ A× ΓT (see section 5.1 [4]) such that

η
(
A× ΓT \ K̃

)
<

1

n
.

The projection P d
R : Rd×ΓT → Rd be a continuous map, we conclude that K1

n := P d
R(K̃)

is a compact subset of Rd contained in A. Note that the compact set

Kn := ∪nj=1

(
K0
n ∪K1

n

)
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is contained in A and satisfies

Kn−1 ⊂ Kn, σt(A \Kn) <
1

n
, η

(
A× ΓT \Kn × ΓT

)
<

1

n
.

As done above, we can find O0
n, O

1
n open sets containing A and such that

σt(O
0
n \ A) <

1

n
, η

(
O1
n × ΓT \ A× ΓT

)
<

1

n
.

Set

On = ∩nj=1

(
O0
n ∩O1

n

)
.

We have

On ⊂ On−1, σt(On \ A) <
1

n
, η

(
On × ΓT \ A× ΓT

)
<

1

n
.

By Urysohn’s lemma there exists a continuous function gn ∈ C(Rd, [0, 1]) such that

ḡn|Kn ≡ 1, ḡn|On ≡ 0.

Set

gn = max{ḡ1, · · · , ḡn}.

Note that

gn−1 ≤ gn, gn|Kn ≡ 1, gn|On ≡ 0

Therefore

g(x) := lim
n→∞

gn(x) ∈ [0, 1]

exists for every x ∈ Rd. The Borel sets

K := ∪∞
n=1Kn, O := ∩∞

n=1On

satisfy

g(x) = 1, ∀x ∈ K, and g(x) = 0, ∀x ∈ O.
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Moreover,

K ⊂ A ⊂ O, σt(K) = σt(A), η(K × ΓT ) = η(A× ΓT ).

Since∫
Rd×ΓT

χKn×ΓT
(γ(t))η(dq, dγ) ≤

∫
Rd×ΓT

gn(γ(t))η(dq, dγ) ≤
∫
Rd×ΓT

χOn×ΓT
(γ(t))η(dq, dγ),

we conclude that

η
(
O × ΓT

)
− 2

n
≤
∫
Rd×ΓT

gn(γ(t))η(dq, dγ) ≤ η
(
K × ΓT

)
+

2

n
.

Let n tend to ∞ and apply the dominated convergence theorem. We obtain∫
Rd×ΓT

χO×ΓT
(γ(t))η(dq, dγ) ≤

∫
Rd×ΓT

g(γ(t))η(dq, dγ) ≤
∫
Rd×ΓT

χK×ΓT
(γ(t))η(dq, dγ).

In light of the inclusions K ⊂ A ⊂ O, we conclude that

g(γ(t)) = χA(γ(t)), for (q, γ) η-a.e.. (3.4.3)

It is straightforward to obtain the identity

g = χA, σt-a.e. (3.4.4)

By (3.4.1), ∫
Rd

gn(q)σt(dq) =

∫
Rd×ΓT

gn(γ(t))η(dq, dγ).

We use the dominated convergence theorem to conclude that∫
Rd

g(q)σt(dq) =

∫
Rd×ΓT

g(γ(t))η(dq, dγ).

This, combined with (3.4.3) and (3.4.4), yields the desired result.
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Remark 3.4.2. Set A := supp(σt). Using the definition of E and Lemma 3.4.1, we have

1 = η
{
(q, γ) ∈ Rd × ΓT : γ(0) = q, γ(t) ∈ Ω̄

}
.

Since σ0 = δP0 and σT = δPT
, we conclude that

γ(0) = P0, γ(T ) = PT , and v(t, γ(t)) = γ̇(t) for L1a.e.(q, γ) ∈ supp(η).

Recall U0 given at the beginning of this chapter.

Proposition 3.4.3. For any (ū, h̄) ∈ U0, we have

J(ū, h̄) ≤ AF
L [σ, v] := J

Proof. For each M > 0, set

hM(t, q) = min{M, h̄(t, q)}

so that hM is bounded. Since h̄ ≥ hM , we have that (ū, hM) ∈ U0.

We use Lemma 3.4.1 and the fact that L is bounded from below (in fact non-negative)

and the definition of E to obtain that

AF
L [σ, v] =

∫ T

0

(∫
Rd×ΓT

L
(
γ(t), v(t, γ(t))

)
η(dq, dγ)

)
dt

=

∫ T

0

(∫
Rd×ΓT

L
(
γ(t), γ̇(t)

)
η(dq, dγ)

)
dt.

We apply Fubini’s theorem and then use the fact that (ū, h̄) ∈ U0 to conclude that

J ≥
∫
Rd×ΓT

(
ū(T, γ(T ))− ū(0, γ(0))+

∫ T

0

hM(τ, γ(τ)dτ

)
η(dq, dγ).

We use Remark 3.4.2 and apply Fubini’s theorem to conclude that

J ≥ū(T, PT ) − ū(0, P0)+

∫ T

0

(∫
Rd×ΓT

hM(τ, γ(τ))η(dq, dγ)

)
dτ

=ū(T, PT ) − ū(0, P0)+

∫ T

0

(∫
Rd

hM(τ, q)στ (dq)

)
dτ.
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As hM ≥ 0, we can apply Fatou’s lemma to conclude that

J ≥ ū(T, PT )− ū(0, P0)+

∫ T

0

(∫
Rd

h(τ, q)στ (dq)

)
dτ,

which is the desired result.

3.5 Duality and minimizers in a particular case

In this section, we show that our duality holds in a case with a special boundary measure ψ

given below.

Let’s consider the following special boundary data

ψt :=


δPt if t ∈ [0, T ] \ [t0, t1]

1
2
δPt if t ∈ [t0, t1]

and define

σt :=


δPt if t ∈ [0, T ] \ [t0, t1]

1
2
δPt +

1
2
δγ∗t if t ∈ [t0, t1]

We define

h(t, q) :=


L(Pt, Ṗt)− d+

dt
u(t, Pt) if q = Pt

0 if q ̸= Pt

We combine Lemma 3.1.7 and Lemma 3.3.2 to conclude that

h ≥ 0.

By Proposition 3.3.1

sup
[0,T ]×Ω̄

h < +∞.
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Lemma 3.5.1. Let u be as in (3.3.1 - 3.3.3) so that in particular Lemma 3.3.2 holds. Let

h be defined as before Lemma 2.4.3. We have

J(u, h) = AF
L [σ, v].

Here σ is defined as the σt above and (σ, v) ∈ ΣT (σ0, σT |ψ).

Proof. Since ut1(Pt1) = ut1(γt1) and ut0(Pt0) = ut0(γt0), we conclude that

uT (PT )− u0(P0) =uT (PT )− ut1(Pt1) +
1

2

(
ut1(Pt1)− ut0(Pt0)

)
+

1

2

(
ut1(γt1)− ut0(γt0)

)
+ut0(Pt0)− u0(P0).

We have

uT (PT )− u0(P0) =

∫ T

t1

(
− h(τ, Pτ ) + L(Pτ , Ṗτ )

)
dτ

+
1

2

∫ t1

t0

(
− h(τ, Pτ ) + L(Pτ , Ṗτ )

)
dτ

+
1

2

∫ t1

t0

(
− h(τ, γτ ) + L(γτ , γ̇τ )

)
dτ

+
1

2

∫ t0

0

(
− h(τ, Pτ ) + L(Pτ , Ṗτ )

)
dτ.

Then

uT (PT )− u0(P0) = AF
L [σ, v]−

∫
(0,t0)∪(t1,T )

h(τ, Pτ )dτ −
1

2

∫ t1

t0

h(τ, Pτ )dτ.

Thus

uT (PT )− u0(P0) = AF
L [σ, v]−

∫ T

0

ht(q)ψt(dq).

This concludes the proof.

Lemma 3.5.2. Let u be as in (3.3.1 - 3.3.3) so that in particular Lemma 3.3.2 holds. Let

h be defined as before Lemma 2.4.3. Then, we have

J(u, h) = sup
U0

J = AF
L [σ, v].
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Proof. By Proposition 3.4.3 we have

sup
U0

J ≤ AF
L [σ, v].

In light of Lemma 3.5.1, it suffices to show that (u, h) ∈ U0.

By Proposition 3.3.1, u is Lipschitz and h is bounded from above by a constant. We

combine Lemma 3.1.7 and Lemma 3.3.2 to conclude that h ≥ 0. As a limit of Borel functions,

d+

dt
u is also a Borel function. Thus, h is a Borel function.

It remains to show that for any Lipschitz curve γ̄ : [0, T ] → Ω̄, we have

u(t, γ̄t)− u(s, γ̄s) ≤
∫ t

s

(
L(γ̄τ , ˙̄γτ )− h(τ, γ̄τ )

)
dτ, ∀0 ≤ s < t ≤ T. (3.5.1)

Let γ̄ : [0, T ] → Ω̄ be a Lipschitz curve and set

S0 =
{
t ∈ (0, t0) : Pt = γ̄(t)

}
, S1 =

{
t ∈ (0, t0) : Ṗt = ˙̄γ(t),

d

dt
u(t, γ̄(t)) =

d

dt
u(t, Pt)

}
.

Recall that the set S0 \ S1 is of null Lebesgue measure (see Lemma 6.3.1).

Let t be a point such that u(·, γ̄) is differentiable at t.

On one hand, if t ∈ S0 ∩ S1, then

d+

dt
u(t, γ̄t) + h(t, γ̄t)− L(γ̄t, ˙̄γt) =

d+

dt
u(t, Pt) + h(t, Pt)− L(Pt, Ṗt) = 0.

On the other hand, if γ̄t ̸= Pt, we combine Lemma 3.1.7 and Lemma 3.3.2 to conclude

that
d+

dt
u(t, γ̄t) + h(t, γ̄t)− L(γ̄t, ˙̄γt) =

d+

dt
u(t, γ̄t)− L(γ̄t, ˙̄γt) ≤ 0.

In conclusion,
d+

dt
u(t, γ̄t) + h(t, γ̄t)− L(γ̄t, ˙̄γt) ≤ 0 L1 a.e.

Integrating, we have (3.5.1), which concludes the proof of the lemma.
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3.6 Properties of optimal curves

In this section, we discuss optimal curves properties in probabilistic representation of mea-

sures.

We set

ΓT,2 := AC2(0, T ; Ω̄)

Recall that ΓT,2 is a subset of the Hilbert space W 1,2(0, T ;Rd). For γ0 ∈ ΓT,2 and δ > 0,

we denote by Bδ(γ0) the ball in ΓT,2, of radius δ, centered at γ0.

Given γ ∈ ΓT,2, if there exists s0 ∈ (0, T ) such that γ(s0) =: x0 ∈ Ω, we define

t−(γ, x0) := inf
s∈[0,T ]

{
s : s < s0, γ

(
(s, s0)

)
⊂ Ω

}
and

t+(γ, x0) := inf
s∈[0,T ]

{
s : s > s0, γ

(
(s0, s)

)
⊂ Ω

}
.

For γ ∈ AC2(s, t; Ω̄) such that 0 ≤ s < t ≤ T , we define

Et
s(γ) := cts

(
γ(s), γ(t)

)
−
∫ t

s

L(γ, γ̇)dτ.

When γ ∈ AC2(0, T ; Ω̄), E
t
s(γ) means Et

s(γ|[s,t]).

Let s, t ∈ [0, T ] be such that s < t. Since γt,ys,x satisfies the system of differential equations

d

dt
DvL(γ

t,y
s,x, γ̇

t,y
s,x) = DqL(γ

t,y
s,x, γ̇

t,y
s,x),

the uniform bound
∥∥γt,ys,x∥∥W 1,2(s,t)

obtained in Proposition 3.1.2 implies that

Sst := sup
x,y∈Ω̄

∥∥γt,ys,x∥∥W 2,2(s,t)
<∞. (3.6.1)

By the Sobolev embedding theorem, increasing the value of Sst if necessary, we have∥∥γt,ys,x∥∥C([s,t])
≤ Sst

∥∥γt,ys,x∥∥W 1,2(s,t)
and

∥∥γt,ys,x∥∥C1([s,t])
≤ Sst

∥∥γt,ys,x∥∥W 2,2(s,t)
(3.6.2)

and both injections from C([0, T ]; Ω̄) intoW 1,2(0, T ; Ω̄) and from C1([0, T ]; Ω̄) intoW 2,2(0, T ; Ω̄)

are compact.
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Lemma 3.6.1. Take γ ∈ ΓT,2 such that there exists s0 ∈ (0, T ) such that γ(s0) =: x0 ∈ Ω

and set t± = t±(γ, x0). Assume γ(0), γ(T ) ∈ ∂Ω.

(i) We have 0 ≤ t− < s0 < t+ ≤ T.

(ii) We have γ
(
(t−, t+)

)
⊂ Ω and γ(t−), γ(t+) ∈ ∂Ω.

Proof. (i) Take ϵ > 0 such that the open ball B in Rd centered at γ(s0) and of radius ϵ is

contained in Ω. Since γ is continuous at t0, there exists δ > 0 such that when |s − s0| ≤ δ

then γ(s) belongs to B. We have t− ≤ s0 − δ and s0 + δ ≤ t+.

(ii) Let (sn)n be a monotone sequence in [0, s0) decreasing to t
− such that γ

(
(sn, s0)

)
⊂ Ω.

Since

γ
(
(t−, s0)

)
=

∞⋃
n=1

γ
(
(sn, s0)

)
,

we conclude that γ
(
(t−, s0)

)
⊂ Ω. If t− = 0 then γ(t−) ∈ ∂Ω. If t− > 0 and γ(t−) ̸∈ ∂Ω, then

by (i), t−(γ, γ(t−)) < t−, which yields a contradiction. Using similar when t− is replaced by

t+, we conclude the proof of (ii).

Lemma 3.6.2. For any s, t ∈ [0, T ] such that s < t, the function Ats is Lipschitz on bounded

subsets of AC2(s, t; Ω̄).

Proof. Let γ, γ̄ ∈ AC2(s, t; Ω̄).

Notice

L(γ, γ̇)− L(γ̄, ˙̄γ) =

∫ 1

0

〈
DL

(1− λ)γ̄ + λγ

(1− λ) ˙̄γ + λγ̇

 ,

γ − γ̄

γ̇ − ˙̄γ

〉dλ.
By the fact that DL is κ0–Lipschitz continuous, we conclude that there exists a constant

C, independent of s, t, γ or γ̄ such that∣∣∣L(γ, γ̇)− L(γ̄, ˙̄γ)
∣∣∣ ≤ C

(
κ0(|γ|+ |γ̇|+ |γ̄|+ | ˙̄γ|) + |DL(0)|

)(
|γ̄ − γ|+ | ˙̄γ − γ̇|

)
.
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Integrating over [s, t] and increasing the value of C if necessary, we conclude that∣∣∣Ats(γ)− Ats(γ̄)
∣∣∣ ≤ C

(
∥γ∥W 1,2(s,t) + ∥γ̄∥W 1,2(s,t) + 1

)
∥γ̄ − γ∥W 1,2(s,t).

Remark 3.6.3. Let s, t ∈ [0, T ] such that s < t.

(i) Since by Proposition 3.1.2, cts is continuous on Ω̄2 and C([s, t]; Ω̄) compactly embeds

in W 1,2(s, t; Ω̄), Lemma 3.6.2 implies that Et
s is a continuous function on W 1,2(s, t; Ω̄).

(ii) Let (xn)n and (yn)n be two sequences in Ω̄ converging respectively to x and y in Ω̄.

We use the W 2,2 uniform bound in (3.6.1), the compactness property in (3.6.2),(i) above,

and the fact that γt,ys,x if the unique minimizer connecting x to y to conclude that
(
γt,y

n

s,xn

)
n

converges to γt,ys,x in C1([s, t]; Ω).

Take γ0 ∈ ΓT,2 such that the range of γ0 intersects Ω at a point x0. Take s, t such that

t−(γ, x0) < s < t < t+(γ, x0). (3.6.3)

Fix δ > 0 and define the map M δ ≡M δ
γ0 : ΓT,2 → ΓT,2 by setting,

M δ(γ) = γ

for γ ∈ ΓT,2 \ Bδ(γ0).

For γ ∈ Bδ(γ0), we define M δ(γ) by

M δ(γ)(τ) :=


γ(τ) if τ ∈ [0, s] ∪ [t, T ]

c
t,γ(t)
s,γ(s)

(
τ
)

if τ ∈ (s, t).

(3.6.4)

Lemma 3.6.4. Take γ0 ∈ ΓT,2 and s, t such that (3.6.3) holds and let δ > 0.

(i) The map M δ is continuous on Bδ(γ0) and on {γ ∈ ΓT,2 : ∥γ − γ0∥W (1,2)(0,T ) > δ}.
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(ii) The map M δ is a Borel map.

Proof. (i) Since M δ coincides with the identity map on the open set {γ ∈ ΓT,2 : ∥γ −

γ0∥W (1,2)(0,T ) > δ}, it is continuous there. To complete the proof of (i), we fix γ ∈ Bδ(γ0) and

take any arbitrary sequence (γn)n ⊂ ΓT,2 converging to γ. We need to show that
(
M δ(γn)

)
n

converges to M δ(γ).

Since Bδ(γ0) is an open set, there exists N0 such that γn ∈ Bδ(γ0) for all n ≥ N0.

Without loss of generality, we assume that N0 = 1. Applying the Sobolev embedding theorem

C([0, T ]; Ω̄) ⊂ W 1,2(0, T ; Ω̄), we obtain existence of the limits

x := lim
n→+∞

xn, y := lim
n→+∞

yn, where xn := γn(s), yn := γn(t).

Remark 3.6.3 ensures that
(
γt,y

n

s,xn

)
n
converges to γt,ys,x in C1([s, t]; Ω). Thus,

lim sup
n→+∞

∥∥∥M δ(γn)−M δ(γ)
∥∥∥
W 1,2(s,t)

= lim sup
n→+∞

∥∥∥γt,yns,xn − γt,ys,x

∥∥∥
W 1,2(s,t)

= 0.

Since ∥∥∥M δ(γn)−M δ(γ)
∥∥∥
W 1,2

(
(0,s)∪(t,T )

) = ∥γn − γ∥
W 1,2

(
(0,s)∪(t,T )

),
we conclude that

lim sup
n→+∞

∥∥∥M δ(γn)−M δ(γ)
∥∥∥
W 1,2

(
(0,s)∪(t,T )

) ≤ lim sup
n→+∞

∥γn − γ∥W 1,2(0,T ) = 0.

This shows that M δ is continuous at γ.

(ii) Let O ⊂ ΓT,2 be an open set and denote by Oδ, the inverse of O under M δ. Then Oδ

is the union of

O1
δ := {γ ∈ Bδ : M δ(γ) ∈ O}

and

O2
δ := {γ ∈ ΓT,2 \ Bδ : M δ(γ) ∈ O} = (ΓT,2 \ Bδ) ∩ O.

By (i), O1
δ is an open set. Thus it is a Borel set. Since, O2

δ is the intersection of a closed

set and an open set, it is also a Borel set. As a consequence, Oδ is a Borel set. This proves

that M δ is a Borel map.
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Theorem 3.6.5. Let (σ, v) ∈ ΣT (σ0, σT |ψ) and let η be a Borel probability measure on

Rd×ΓT be such that σ = ση, according to (3.4.2). Assume γ0 ∈ ΓT,2∩ supp(η) has the range

of γ0 intersecting Ω at x0 = γ(s0) and s, t, s0 ∈
(
t−(γ0, x0), t

+(γ0, x0)
)
, where s < s0 < t.

If Et
s(γ

0) = −2ϵ < 0 then for δ > 0 small enough, there exists (σδ, vδ) ∈ ΣT (σ0, σT |ψ) such

that

AF
L [σ

δ, vδ] < AF
L [σ, v].

Proof. By Remark 3.6.3 (i), Et
s is continuous. Thus there exists δ > 0 such that

Et
s(γ) < −ϵ, ∀γ ∈ Bδ(γ0). (3.6.5)

Increase the value of Sst if necessary. The Sobolev embedding theorem gives∥∥γ∥∥
C([s,t])

≤ Sst
∥∥γ∥∥

W 1,2(s,t)
, ∀γ ∈ W 1,2(s, t). (3.6.6)

Since γ0([s, t]) ⊂ Ω and both γ0([s, t]) and ∂Ω are compact sets,

δ0 := dist
(
γ0[s, t], ∂Ω

)
> 0. (3.6.7)

Choose δ > 0 small enough so that we further have δSst < δ0/2.

Let M δ be the map defined in (3.6.4) and set

ηδ := (id×M δ)#η.

By Lemma 3.6.4, ηδ is also a Borel probability measure. We define σδτ by∫
Rd

φ(y)σδτ (dy) :=

∫
Rd×ΓT,2

φ(γ(τ))ηδ(dq, dγ).

In other words, ∫
Rd

φ(y)σδτ (dy) :=

∫
Rd×ΓT,2

φ
(
M δ(γ)(τ)

)
η(dq, dγ).

If γ ∈ Bδ(γ0), then∫ T

0

L(γ, γ̇)dτ =

∫
(0,s)∪(t,T )

L(γ, γ̇)dτ +

∫ t

s

L(γ, γ̇)dτ.
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Since ∫ T

0

L(γ, γ̇)dτ =

∫ T

0

L
(
M δ(γ), ˙M δ(γ)

)
dτ − Et

s(γ),

we use (3.6.5) to conclude that∫ T

0

L(γ, γ̇)dτ ≥ ϵ+

∫ T

0

L
(
M δ(γ), ˙M δ(γ)

)
dτ.

Thus∫
Rd×Bδ(γ0)

(∫ T

0

L(γ, γ̇)dτ

)
η(dq, dγ) ≥

∫
Rd×Bδ(γ0)

(∫ T

0

L
(
M δ(γ), ˙M δ(γ)

)
dτ

)
η(dq, dγ)

(3.6.8)

+ϵη
(
Rd × Bδ(γ0)

)
. (3.6.9)

Since M δ(γ) ≡ γ on the complement of Bδ(γ0), we conclude that∫
Rd×
(
ΓT \Bδ(γ0)

) (∫ T

0

L(γ, γ̇)dτ

)
η(dq, dγ)

=

∫
Rd×
(
ΓT,2\Bδ(γ0)

) (∫ T

0

L
(
M δ(γ), ˙M δ(γ)

)
dτ

)
η(dq, dγ).

This, together with (3.6.8) implies∫
Rd×ΓT,2

(∫ T

0

L(γ, γ̇)dτ

)
η(dq, dγ)

≥
∫
Rd×ΓT,2

(∫ T

0

L(γ, γ̇)dτ

)
ηδ(dq, dγ) + ϵη

(
Rd × Bδ(γ0)

)
. (3.6.10)

We use Proposition 6.1.1 with η replaced by ηδ to conclude that the path t 7→ σδ belongs

to ΓT,2 and there is a velocity vδ for σδ such that∫ T

0

∫
Rd

L(x, vδτ (x))σ
δ
τ (dx) ≤

∫
Rd×ΓT,2

(∫ T

0

L
(
γ(τ), γ̇(τ)

)
dτ

)
ηδ(dq, dγ).

This, together with (3.6.10) and the fact that σ = ση, implies∫ T

0

∫
Rd

L(x, vδτ (x))σ
δ
τ (dx) + ϵη

(
Rd × Bδ(γ0)

)
≤
∫ T

0

∫
Rd

L(x, vτ (x))στ (dx).
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Since γ0 belongs to the support of η, we have η
(
Rd × Bδ(γ0)

)
> 0.

Thus ∫ T

0

∫
Rd

L(x, vδτ (x))σ
δ
τ (dx) <

∫ T

0

∫
Rd

L(x, vτ (x))στ (dx). (3.6.11)

Note that if γ ∈ Bδ(γ0), then for any τ ∈ [s, t], we have

|γ(τ)− γ0(τ)| ≤ Sst∥γ − γ0∥W 1,2(s,t) ≤ Sstδ <
δ0
2
.

Thus

γ(τ) ̸∈ ∂Ω ∀τ ∈ [s, t]. (3.6.12)

1. Claim. If A ⊂ ∂Ω is a Borel set, then χA

(
M δ(γ)(τ)

)
≥ χ(γ(τ)) for all τ ∈ [0, T ].

Proof of the Claim. We need to prove the claim only for γ ∈ Bδ(γ0) and for τ ∈ [s, t].

Under these additional assumptions,(3.6.12) implies that χ(γ(τ)) = 0, which concludes the

proof.

2. Let A ⊂ ∂Ω be a Borel set. We have

σδτ (A) =

∫
Rd×ΓT,2

χA(γ(τ))η
δ(dq, dγ) =

∫
Rd×ΓT,2

χA

(
M δ(γ)(τ)

)
η(dq, dγ).

We use Claim 1 to conclude that

σδτ (A) ≥
∫
Rd×ΓT,2

χA(γ(τ))η(dq, dγ) = στ (A) ≥ ψτ (A).

This proves that

σδτ ≥ ψτ ∀τ ∈ [0, T ]. (3.6.13)

By Remark 3.4.2 M δ(γ(τ)) = γ(τ)) = Pτ for τ ∈ {0, T}. Hence,

σδτ = στ ∀τ ∈ {0, T}. (3.6.14)

We combine (3.6.13) and (3.6.14) to conclude that (σδ, vδ) ∈ ΣT (σ0, σT |ψ).

60



Corollary 3.6.6. Let (σ, v) ∈ ΣT (σ0, σT |ψ) be the minimizer of AF
L over ΣT (σ0, σT |ψ) and

let η be a Borel probability measure on Rd×ΓT such that σ = ση. If γ0 ∈ ΓT,2∩ supp(η) such

that the range of γ0 intersection Ω at x0 = γ(s0), and if s, t, s0 ∈
(
t−(γ0, x0), t

+(γ0, x0)
)

such that s < s0 < t, then

γ0|[t−,t+] = γt
+,y
t−,x,

where

t− := (t−(γ0, x0), t+ := (t−(γ0, x0), x = γ0(t−), y = γ0(t+).

Proof. By Theorem 3.6.5,

γ0|[s,t] = γ
t,γ0(t)

s,γ0(s), ∀t− < s < t < t+.

Letting s tend to t− and t tend to t+, we conclude the proof.
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CHAPTER 4

Action Involving a Metric and a Potential

Recall that M+(∂Ω) denotes the set of Borel measures on Rd with their supports in ∂Ω. Let

S be the set of Borel paths ψ from [0, T ] to M+(∂Ω) that are piecewise continuous on [0, T ]

with respect to narrow convergence topology and are also continuous at 0 and T .

We first review some settings for this chapter.

4.1 Preliminaries

We define

S :=
{
ψ ∈ S0 : ψ0(Ω̄) = ψT (Ω̄) = 1, ψt(∂Ω) ≤ 1

}
.

We denote by G(a, b), the set of g ∈ C2(Rd,Rd×d) such that gij = gji and there exist

0 < a < b <∞ such that the eigenvalues of g(x) are between a and b for all x ∈ Ω̄. For such

a g, we define the Lagrangian

Lg(x, v) =
1

2

d∑
i,j=1

gij(x)v
ivj, ∀(x, v) ∈ Ω̄× Rd.

We denote by g−1 the inverse of g and the associated Hamiltonian is

Hg(x, p) =
1

2

d∑
i,j=1

g−1
ij (x)pipj, ∀(x, p) ∈ Ω̄× Rd.

At x ∈ Ω̄, we define the inner product and the norm

⟨v, w⟩g(x) := ⟨g(x)v, w⟩, |v|g(x) =
√
⟨v, v⟩g(x)
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Our Lagrangian can then be written as

Lg(x, v) =
1

2
|v|2g(x), ∀(x, v) ∈ Ω̄× Rd.

The distance distg between x ∈ Rd and y ∈ Rd is

distg(x, y) = min
γ

{∫ 1

0

|γ̇|g(γ)dt : γ(0) = x, γ(1) = y, γ ∈ AC2

(
0, 1;Rd

)}
. (4.1.1)

We assume that if γ is a minimizer in (4.1.1) and x, y ∈ Ω̄, then

γ(0, 1) ⊂ Ω, (4.1.2)

which means that the range of γ minus {γ(0), γ(1)} is entirely contained in Ω.

We set g0ij(x) ≡ δij and

distΩ ≡ distg0 . (4.1.3)

Given Φ ∈ C2(Ω̄2), we define

FΦ(µ) :=
1

2

∫
Ω̄2

Φ(x1, x2)µ(dx1)µ(dx2), ∀µ ∈ P(Ω̄).

We define X to be the set of pairs (g,Φ) such that g ∈ G, Φ ∈ C2(Ω̄2), Φ is symmetric

and FΦ is strictly convex.

Given µ, ν ∈ P(Ω), we recall that ΣT (µ, ν) is the set of (σ, v) satisfies

supp(σt) ⊂ Ω, ∀t ∈ [0, T ]. (4.1.4)

σ0 = µ, σT = ν on ∂Ω (4.1.5)

∂tσ +∇ · (vσ) = 0 on D′((0, T )× Rd
)
. (4.1.6)

We also recall that if ψ ∈ S, then ΣT (µ, ν|ψ) is the set of (σ, v) ∈ ΣT (µ, ν) satisfies

σt|∂Ω ≥ ψt on [0, T ]× ∂Ω. (4.1.7)
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For (g,Φ) ∈ X and (σ, v) ∈ ΣT (µ0, µT ), our action functional becomes

AΦ
g [σ, v] :=

∫ T

0

(∫
Ω̄

1

2
|vt(x)|2g(x)σt(dx) + FΦ(σt)

)
dt (4.1.8)

Similarly, for α ∈ C([0, T ]× Ω̄), we define the action

Aα
g [η, w] :=

∫ T

0

∫
Ω̄

(
1

2
⟨g(q)wt(q), wt(q)⟩+ α(t, q)

)
ηt(dq)

and study the variational problem

inf
(η,w)

{
Aα
g [η, w] : (η, w) ∈ ΣT (σ0, σT , |ψ)

}
. (4.1.9)

Let U be the set of tuples (u, h, α) such that u, α ∈ C([0, T ] × Ω̄), h : [0, T ] × Ω̄ → R

are Borel maps such that h ≥ 0. Note that h is defined pointwise and we are not assuming

there is an underlying measure for which h is define up to a set of zero measure. It makes

sense to consider those tuples (u, h, α) satisfying the condition

u(t, γ(t))− u(s, γ(s)) ≤
∫ t

s

(
Lg(γ, γ̇)− h(τ, γ(τ)) + α(τ, γ(τ))

)
dτ (4.1.10)

for all 0 ≤ s < t ≤ T and all γ ∈ W 1,∞(s, t; Ω̄).

We define

Ug :=
{
(u, h, α) ∈ U : (4.1.10) holds

}
. (4.1.11)

For (u, h, α) ∈ Ug and ψ ∈ S, we set

J (u, h, α|ψ) := J(u, h|ψ)−
∫ T

0

F ∗
Φ(αt)dt, (4.1.12)

where

J(u, h|ψ) :=
∫
Ω̄

u(T, q)ψT (dq)−
∫
Ω̄

u(0, q)ψ0(dq) +

∫ T

0

dt

∫
∂Ω

h(t, q)ψt(dq).

Here F ∗
Φ is the Legendre transform of FΦ, which is defined as

F ∗
Φ(α) = sup

µ∈M+(Ω)

{∫
Ω

α(q)µ(dq)− FΦ(µ)
}
.
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Since we can choose the extension of F to be +∞ outside P(Ω), then

F ∗
Φ(α) = sup

µ∈P(Ω)

{∫
Ω

α(q)µ(dq)− FΦ(µ)
}
.

The first main result of this chapter is the following theorem whose proof will be divided

into several steps.

Theorem 4.1.1. Let ψ ∈ S and let (σψ, vψ) be the unique minimizer of AΦ
g over the set

ΣT (ψ0, ψT |ψ). Recall that our duality asserts that

AΦ
g [σ

ψ, vψ] = sup
(u,h,α)∈Ug

J (u, h, α|ψ).

The optimal αψ can be chosen to satisfy

αψt (q) =

∫
Ω

Φ(q, q2)σ
ψ
t (dq2)− 2FΦ(α

ψ
t ). (4.1.13)

We only need to show (4.1.13)

Whether or not J admits a maximizer over Ug, thanks to Theorem 4.1.1, we will continue

to assume that we can measure the supremum of J which is uniquely determined.

4.2 The relevant maps for our inverse problem

We endow the set S with the following topology: a sequence (ψn)n ⊂ S converges to ψ in S

if, for every φ ∈ Cc(Rd+1), we have

lim
n→∞

∫ T

0

(∫
Ω̄

φ(t, q)ψnt (dq)

)
dt =

∫ T

0

(∫
Ω̄

φ(t, q)ψt(dq)

)
dt,

and for every f ∈ Cc(R) we have

lim
n→∞

∫
Ω̄

f(q)ψnT (dq) =

∫
Ω̄

f(q)ψT (dq) and lim
n→∞

∫
Ω̄

f(q)ψn0 (dq) =

∫
Ω̄

f(q)ψ0(dq).
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Remark 4.2.1. Suppose that (ψn)n ⊂ S converges to ψ in S and let (σψ, vψ) is the unique

minimizer of AΦ
g on the set ΣT (ψ0, ψT |ψ). For every ϵ > 0, we can find (u, h, α) ∈ Ug such

that h is continuous and

AΦ
g [σ

ψ, vψ] ≤ ϵ+ J (u, h, α|ψ) = ϵ+ lim inf
n→∞

J (u, h, α|ψn) ≤ ϵ+ lim inf
n→∞

AΦ
g [σ

n, vn].

Hence ψ 7→ AΦ
g [σ

ψ, vψ] is lower semicontinuous from S to R.

We denote by F(S;R) the set of real valued function on S. We define

I : G × C2(Ω̄2) → F(S;R)

by

I(g,Φ)(ψ) = AΦ
g [σ

ψ, vψ] +

∫ T

0

F ∗
Φ(α

ψ
t )dt, (4.2.1)

where (σψ, vψ) is the unique minimizer of AΦ
g on the set ΣT (ψ0, ψT |ψ) and αψt is given by

(4.1.13).

We shall have access to the boundary measurement I(g,Φ) on S. The inverse problem

we are interested in is to find (g,Φ) knowing I(g,Φ).

4.3 Some results when T = 1

In this section, we take T = 1 for simplicity. This does not make our results special as it is

just reparameterization.

It is well known that if g ∈ G and γ is a minimizer in (4.1.1), then |γ̇(t)|g(γ(t)) is time

independent and

dist2g(x, y) =

∫ 1

0

|γ̇|2g(γ)dt = min
γ̃

{∫ 1

0

| ˙̃γ|2g(γ̃)dt : γ̃(0) = x, γ̃(1) = y
}
. (4.3.1)

Let α : Ω̄ → R be a Borel function and let Φ ∈ C2(Ω̄2) be a symmetric function such

that FΦ is strictly convex.
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Define

Iα(µ) :=

∫
Ω̄

α(q)µ(dq)− FΦ(µ), ∀µ ∈ P(Ω̄).

Given µ0, µ1 ∈ P(Ω̄), we define µt := (1− t)µ0 + tµ1. We have

Iα(µt) =Iα(µ0) + t

∫
Ω̄

(
α(q1)−

∫
Ω̄

Φ(q1, q2)µ0(dq2)

)
(µ1 − µ0)(dq1)

−t
2

2

∫
Ω̄2

Φ(q1, q2)(µ1 − µ0)(dq1)(µ1 − µ0)(dq2). (4.3.2)

Similarly,

Iα(µt) =Iα(µ1) + (1− t)

∫
Ω̄

(
α(q1)−

∫
Ω̄

Φ(q1, q2)µ1(dq2)

)
(µ0 − µ1)(dq1)

−(1− t)2

2

∫
Ω̄2

Φ(q1, q2)(µ1 − µ0)(dq1)(µ1 − µ0)(dq2).

Write Iα(µt) = (1− t)Iα(µt) + tIα(µt). We conclude that

Iα(µt) =(1− t)Iα(µ0) + tIα(µ1)

+
1

2
(1− t)t

∫
Ω̄2

Φ(q1, q2)µ0(dq2)(µ1 − µ0)(dq1)(µ1 − µ0)(dq2).

The strict convexity of FΦ is equivalent to the strict concavity of Iα, which means∫
Ω̄2

Φ(q1, q2)µ0(dq2)(µ1 − µ0)(dq1)(µ1 − µ0)(dq2) > 0, ∀µ0 ̸= µ1. (4.3.3)

Proposition 4.3.1. Assume µ ∈ P(Ω) and set

αµ(q) :=

∫
Ω̄

Φ(q, q2)µ(dq2).

Then

F ∗
Φ(αµ) = Iαµ(µ).

Thus µ ∈ ∂·F
∗
Φ(αµ) and αµ ∈ ∂·FΦ(µ). Furthermore, for any λ ∈ R, we have

F ∗
Φ(α + λ) = F ∗

Φ(α) + λ.
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Proof. Let µt ∈ P(Ω̄). Take µ0 = µ in (4.3.2) and (4.3.3). Notice that

Iαµ(µt) = Iαµ(µ)−
t2

2

∫
Ω̄2

Φ(q1, q2)(µ1 − µ0)(dq1)(µ1 − µ0)(dq2) ≤ Iαµ(µ), ∀t ∈ [0, 1].

Thus F ∗
Φ(αµ) = Iαµ(µ). Therefore, µ ∈ ∂·F

∗
Φ(αµ) and αµ ∈ ∂·FΦ(µ).

Since Iαµ+λ(µ) = Iαµ(µ) + λ, we conclude that F ∗
Φ(αµ + λ) = F ∗

Φ(αµ) + λ.

Remark 4.3.2. Note that by Proposition 4.3.1, we have

αµ ∈ ∂·FΦ(µ),

where

αµ(q) :=

∫
Ω̄

Φ(q, q2)µ(dq2)− 2FΦ(µ).

Then

F ∗
Φ(αµ) + FΦ(µ) = 0, and

∫
Ω̄

αµ(q)µ(dq) = 0.

Lemma 4.3.3. If P0, P1 ∈ ∂Ω, then

min
(σ,v)

{∫ 1

0

∫
Ω̄

∣∣vt(x)∣∣2g(x)σt(dx)dt : (σ, v) ∈ Σ1

(
δP0 , δP1

)}
= dist2g

(
P0, P1

)
and the minimum is attained by any (σ∗, v∗) such that σ∗ = δγ where γ is any minimizer in

(4.3.1) and v∗t (γt) = γ̇t.

Proof. Observe first that if γ is a minimizer in (4.3.1), then

{(s, t) ∈ (0, 1)2 : γt = γs, γ̇t ̸= γ̇s} has null L2
(0,1)2–measure.

Therefore, there exists a Borel vector field v∗ : (0, 1)× Ω̄ → Rd such that v∗t (γt) = γ̇t.

We have ∫ 1

0

∫
Ω̄

∣∣v∗t (x)∣∣2g(x)σ∗
t (dx)dt =

∫ 1

0

|γ̇t|2g(γt)dt = dist2g
(
P0, P1

)
. (4.3.4)
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Let (σ, v) ∈ Σ1

(
δP0 , δP1

)
and let ησ be its probabilistic representation given by Theorem

8.2.1 [4] such that

vt(γt) = γ̇ for a.e. t, ησ a.e. (q, γ). (4.3.5)

Denote Γ1,2 := AC2(0, 1; Ω̄). We use (6.1.3), (4.3.5), and apply Fubini’s theorem to obtain∫ 1

0

∫
Ω̄

∣∣vt(x)∣∣2g(x)σt(dx)dt = ∫ 1

0

∫
Rd×Γ1,2

∣∣γ̇t∣∣2g(γt)ησ(dq, dγ)dt. (4.3.6)

Since (6.1.3) also ensures that the set of (q, γ), with either γ(0) ̸= P0 or γ(1) ̸= P1, is of

null ησ–measure, we have∫ 1

0

∫
Rd×Γ1,2

∣∣γ̇t∣∣2g(γt)ησ(dq, dγ)dt ≥ ∫Rd×Γ1,2

dist2g
(
γ(0), γ(1)

)
ησ(dq, dγ)dt = dist2g

(
P0, P1

)
.

This, together with (4.3.4) and (4.3.6), yields the desired result.

4.4 Minimizers of AΦ
g

In this section, we will see that minimizers ofAΦ
g are also minimizers of an auxiliary linearized

problem.

Our goal is to prove a fixed point property, which means that we can choose α such that

there exists (η̄, w̄) which is a minimizer in (4.1.9) and such that

α(t, q) :=

∫
Ω̄

Φ(q, q2)η̄t(dq2).

We first explain the idea that guided our intuition in this section. Assume we have two

functions A and B and we know that A + B is minimized at x0 and A is convex. Consider

the function A + B̃x0 , where B̃x0(x) = B(x0) + ⟨B(x0), x − x0⟩. The function A + B̃x0 is

convex and its gradient at x0 is ∇A(x0) +∇B(x0). Since x0 is a critical point for A+B, it

is also a critical point for A+ B̃x0 . For convex functions, critical points are minimizers. so,
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x0 is a minimizer for A + B̃x0 . In conclusion, every minimizer of A + B is also a minimizer

of A+ B̃x0 . Furthermore, let us assume we have a duality result

sup
β
J(β) = min

x
A+ B̃x0 .

This implies

sup
β
J(β) = min

x
A+B.

We will show that the argument above, which is applied in a Hilbert setting, works in

our case as well. To achieve this goal, we need to convert AΦ
g into a convex functional.

Let’s set

G(q, a,m) :=


1
2a
⟨g(q)m,m⟩ if a > 0

0 if a = 0,m = 0

+∞ if (a = 0,m ̸= 0) or a < 0

The Legendre transform of G(q, ·, ·) is

G∗(q, b, n) = sup
a>0

{
ab+

a

2
⟨g−1(q)n, n⟩

}
=


+∞ if b+ 1

2
⟨g−1(q)n, n⟩ > 0

0 if b+ 1
2
⟨g−1(q)n, n⟩ ≤ 0

Thus

G∗∗(q, a,m) = sup
b,n

{
ab+ ⟨m,n⟩ : b+ 1

2
⟨g−1(q)n, n⟩ ≤ 0

}
.

We observe that G∗∗(q, 0, 0) = 0 and G∗∗(q, a,m) = +∞ if either a < 0 or a = 0 and

m ̸= 0. When a > 0, we have

G∗∗(q, a,m) = sup
n

{
⟨m,n⟩ − a

2
⟨g−1(q)n, n⟩

}
=

1

2a
⟨g(q)m,m⟩.

This proves that G(q, ·, ·) = G∗∗(q, ·, ·).

Thus, G(q, ·, ·) is convex and lower semicontinuous.
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We identify σ ∈ AC2(0, T ;P(Ω̄)) with the measure on [0, T ] × Ω̄, which we continue to

denote by σ for simplicity.

We define∫
[0,T ]×Ω̄

φ(t, q)σ(dt, dq) :=

∫ T

0

∫
Ω̄

φ(t, q)σt(q), ∀φ ∈ C([0, T ]× Ω̄).

If v is a velocity field driving σ, we define the vector field m = σv, whose components

are signed measures, by∫
[0,T ]×Ω̄

⟨ψ(t, q),m(dt, dq)⟩ :=
∫ T

0

dt

∫
Ω̄

⟨ψ(t, q), vt(q)⟩σt(q), ∀ψ ∈ C([0, T ]× Ω̄,Rd).

(4.4.1)

We write m ∈ M((0, T )× Ω̄)d to express the fact that each one of the component of m

is a signed Borel measure. Note that |m| << σ.

We now consider the function

Ãg(σ,m) :=



∫
[0,T ]×Ω̄

G(q, f, dm/df)σ̃(dt, dq) if |m| << σ, dm/dσ = v

+∞ if |m| ≮< σ

Here, σ̃ is a probability measure and f is a non–negative function such that σ = fσ̃. Since

G(, q, ·, ·) is convex and 1–homogeneous, the definition is independent of f . In particular, we

can take f ≡ 1.

If (σ,m, v) are as in (4.4.1). then

Ãg(σ,m) =
1

2

∫ T

0

∫
Ω̄

⟨g(q)vt(q), vt(q)⟩σt(dq). (4.4.2)

One advantage of the new formulation is that Ãg is convex on the set

P̃ :=
{
(σ,m) : σ ∈ P((0, T )× Ω̄), m ∈ M((0, T )× Ω̄)d, ∂tσ +∇ ·m = 0, D′((0, T )×Rd

)}
.

Therefore, Ãg is convex on the set

P̃0 :=
{
(σ,m) ∈ P̃ : σt ≥ ψt, σ0 = δP0 , σT = δPT

}
.
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Theorem 4.4.1. Suppose (σ, v) minimizes AΦ
g over ΣT (σ0, σT |ψ). Then (σ, v) minimizes

Aα
g over ΣT (σ0, σT |ψ), where

α(t, q) :=

∫
Ω̄

Φ(q, q2)σt(dq2).

Proof. We first observe that

FΦ(η) = FΦ(σ) +

∫
Ω̄

α(t, q1)(η − σ)(dq1) +
1

2

∫
Ω̄2

Φ(q1, q2)(η − σ)(dq1)(η − σ)(dq2). (4.4.3)

Thus

Aα
g [η, w] =

∫ T

0

∫
Ω̄

1

2
⟨g(q)wt(q), wt(q)⟩ηt(dq) +

∫ T

0

(
FΦ(η)− FΦ(σ) +

∫
Ω̄

α(t, q1)σ(dq1)
)
dt

−1

2

∫
Ω̄2

Φ(q1, q2)(η − σ)(dq1)(η − σ)(dq2).

We conclude that

Aα
g [η, w] =AΦ

g [η, w] +

∫ T

0

(
− FΦ(σ) +

∫
Ω̄

α(t, q1)σ(dq1)
)
dt

−1

2

∫
Ω̄2

Φ(q1, q2)(η − σ)(dq1)(η − σ)(dq2).

Using the minimality property of (σ, v), we deduce that

Aα
g [η, w] ≥AΦ

g [σ, v] +

∫ T

0

(
− FΦ(σ) +

∫
Ω̄

α(t, q1)σ(dq1)
)
dt

−1

2

∫
Ω̄2

Φ(q1, q2)(η − σ)(dq1)(η − σ)(dq2)

=Aα
g [σ, v]−

1

2

∫
Ω̄2

Φ(q1, q2)(η − σ)(dq1)(η − σ)(dq2).

Replacing [η, w] by [ηλ, wλ] := (1− λ)[η, w] + λ[σ, v], the previous identity provides

Aα
g [η

λ, wλ] ≥ Aα
g [σ, v]−

(1− λ)2

2

∫
Ω̄2

Φ(q1, q2)(η − σ)(dq1)(η − σ)(dq2). (4.4.4)

We set

mλ := (1− λ)ηw + λvσ,
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and use the convexity of Ãg to conclude that

(1− λ)

(
Ãg[η, ηw] +

∫ T

0

dt

∫
Ω̄

α(t, q1)η(dq1)

)
+ λ

(
Ãg[σ, σv] +

∫ T

0

dt

∫
Ω̄

α(t, q1)σ(dq1)

)
≥Ãg[ηλ,mλ] +

∫ T

0

dt

∫
Ω̄

α(t, q1)η
λ(dq1).

This means

(1− λ)Aα
g [η, w] + λAα

g [σ, v] ≥ Aα
g [η

λ, wλ].

This, together with (4.4.4), implies

(1− λ)Aα
g [η, w] + λAα

g [σ, v] ≥ Aα
g [σ, v]−

(1− λ)2

2

∫
Ω̄2

Φ(q1, q2)(η − σ)(dq1)(η − σ)(dq2).

Rearranging and then simplifying the subsequent inequality by (1− λ), we get

Aα
g [η, w] ≥ Aα

g [σ, v]−
(1− λ)

2

∫
Ω̄2

Φ(q1, q2)(η − σ)(dq1)(η − σ)(dq2).

Let λ tend to 1. We conclude that Aα
g [η, w] ≥ Aα

g [σ, v].

Remark 4.4.2. Note that if (σ, v) is the unique minimizer AΦ
g over ΣT (σ0, σT |ψ) and set

ᾱ(t, ·) = ασt, which means

ᾱ(t, q) :=

∫
Ω̄

Φ(q, q2)σt(dq2).

Then (see also Remark 4.3.2)

FΦ(σt)−
∫
Ω̄

ᾱ(t, q)σt(dq) = −F ∗
Φ(ᾱ(t, ·)).

Corollary 4.4.3. If (σ, v) and ᾱ are as in Remark 4.4.2, then the following hold.

(a) For any (η, w) ∈ ΣT (µ, ν), we have

AΦ
g [η, w] ≥ Aᾱ

g [η, w] +

∫ T

0

(
FΦ(σt)−

∫
Ω̄

α(t, q)σt(dq)

)
dt.
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(b) Hence,

min
(η,w)

{
AΦ
g [η, w] : (η, w) ∈ ΣT (σ0, σT |ψ)

}
= AΦ

g [σ, v]

=min
(η,w)

{
Aᾱ
g [η, w] : (η, w) ∈ ΣT (σ0, σT |ψ)

}
+

∫ T

0

FΦ(σt)dt = Aᾱ
g [σ, v]−

∫ T

0

F ∗
Φ(ᾱt)dt.

Proof. By Proposition 4.3.1,

FΦ(ηt) ≥ FΦ(σt) +

∫
Ω̄

ᾱ(t, q)(ηt − σt)(dq).

Thus

AF
g [σ, v] ≥

∫ T

0

dt

∫
Ω̄

(
1

2
|wt(q)|2g(q) +

∫
Ω̄

ᾱ(t, q)ηt(dq)

)
+

∫ T

0

(
FΦ(σt)−

∫
Ω̄

ᾱ(t, q)σt(dq)

)
dt,

which proves (a).

Use (a), Remark 4.4.2, and the fact that when η = σ, we have∫ T

0

FΦ(ηt)dt =

∫ T

0

dt

∫
Ω̄

α(t, q)ηt(dq)−
∫ T

0

F ∗
Φ(ᾱt)dt,

which concludes that (b) holds.

We now finish the proof of Theorem 4.1.1.

By the duality relation

min
(η,w)

{
AΦ
g [η, w] : (η, w) ∈ ΣT (σ0, σT |ψ)

}
= sup

(u,h)

{
J(u, h|ψ) : (u, h, ᾱ) ∈ Ug

}
and the fact that, by Theorem 4.4.1, (σ, v) minimizes Aᾱ

g over ΣT (σ0, σT |ψ), we have

Aᾱ
g [σ, v] = sup

(u,h)

{
J(u, h|ψ) : (u, h, ᾱ) ∈ Ug

}
.

We use Corollary 4.4.3 and the fact that FΦ(σt) + F ∗(ᾱt) = 0 to conclude that

AΦ
g [σ, v] = sup

(u,h,ᾱ)

{
J (u, h, ᾱ|ψ) : (u, h, ᾱ) ∈ Ug

}
.

This concludes the proof of the theorem.
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4.5 Special family (ψϵ)ϵ ⊂ D

In this section, we study minimizers of AΦ
g over ΣT (δP0 , δPT

|ψϵ) for a special class of (ψϵ)ϵ ⊂

D.

For ϵ ∈ (0, T/4), we set

tϵ :=
T

2
− ϵ, tϵ :=

T

2
+ ϵ.

Fix P0, PT in ∂Ω and assume t 7→ P ϵ
t ∈ ∂Ω is a differentiable function such that

P ϵ
t = P0 ∀t ∈ [0, tϵ], P ϵ

s = PT ∀s ∈ [tϵ, T ], P ϵ
l ̸∈ {P0, PT} ∀l ∈ (tϵ, t

ϵ).

Let λϵ : [0, T ] → R and ψϵ be defined by

λϵt := χ[0,tϵ]∪[tϵ,T ], ψϵt = λϵtδP ϵ
t
. (4.5.1)

Note that ψϵ ∈ D.

Let (σϵ, vϵ) be the unique minimizer of AΦ
g over ΣT (δP0 , δPT

|ψϵ) and set

αϵ(t, q) :=

∫
Ω̄

Φ(q, q2)σ
ϵ
t(dq2)− FΦ(σ

ϵ
t), ∀(t, q) ∈ [0, T ]× Ω̄.

We have that

σϵt =

 P0 if t ∈ [0, tϵ]

PT if t ∈ [tϵ, T ]

and the restriction of (σϵ, vϵ) to [tϵ, t
ϵ] is the unique minimizer of∫ tϵ

tϵ

∫
Ω

(
Lg(x, vt(x))σt(dx) + FΦ(σt)

)
dt

over the set of (σ, v) such that v is a velocity driving σ and

σ ∈ AC2(tϵ, t
ϵ; Ω̄), σtϵ = δP0 , σtϵ = δPT

.

To reparameterize the time into T = 1, we define

σ̂ϵs := σ2ϵs+tϵ , v̂ϵs := 2ϵvϵ2ϵs+tϵ , ∀s ∈ [0, 1].
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Then (σ̂ϵ, v̂ϵ) is the unique minimizer of

Âϵ[σ, v] :=

∫ 1

0

(∫
Ω̄

1

2
⟨g(x)vs(x), vs(x)⟩σs(dx) + 4ϵ2FΦ(σs)

)
ds

over the set ΣT

(
δP0 , δPT

)
and we have the identity

1

2ϵ
Âϵ[σ̂ϵ, v̂ϵ] =

∫ tϵ

tϵ

∫
Ω

(
Lg(x, v

ϵ
t(x))σt(dx) + FΦ(σ

ϵ
t)
)
dt.

Observe that

AΦ
g [σ

ϵ, vϵ] = tϵ

(
FΦ

(
δP0

)
+ FΦ

(
δPT

))
+

∫ tϵ

tϵ

(∫
Ω̄

1

2

∣∣vϵt(x)∣∣2g(x)σϵt(dx) + FΦ(σ
ϵ
t)

)
dt.

Thus

AΦ
g [σ

ϵ, vϵ] = tϵ

(
FΦ

(
δP0

)
+ FΦ

(
δPT

))
+

1

2ϵ
Âϵ[σ̂ϵ, v̂ϵ]. (4.5.2)

We now study supports of the minimizers of Âϵ.

Using the notation of section 4.5, we recall (σ̂ϵ, v̂ϵ) is the unique minimizer of Âϵ[σ, v]

over the set ΣT (δP0 , δPT
|ψϵ).

We define

α̂ϵt(q) =

∫
Ω̄

Φ(q, q2)σ̂
ϵ
t(dq2)− 2FΦ

(
σ̂ϵt
)
, L̂g,ϵ(t, x, v) :=

1

2
⟨g(x)v, v⟩+ 4ϵ2α̂ϵt(q).

We denote

B̂g,ϵ[γ] :=

∫ 1

0

L̂g,ϵ
(
t, γt, γ̇t

)
dt.

We linearize FΦ around σ̂ϵt and consider the functional

B̂g,ϵ0 [σ, v] :=
1

2

∫ 1

0

dt

∫
Ω̄

⟨g(x)vt(x), vt(x)⟩σt(dx)

+4ϵ2
∫ 1

0

dt

∫
Ω̄

α̂ϵt(x)(σt − σ̂ϵt)(dx) + 4ϵ2
∫ 1

0

FΦ

(
σ̂ϵt
)
dt.

We set

B̂g,ϵ[σ, v] :=
∫ 1

0

dt

∫
Ω̄

L̂g,ϵ(t, x, vt(x))σt(dx).
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In light of the last identity in Remark 4.3.2, the previous expression can be written as

B̂g,ϵ0 [σ, v] = B̂g,ϵ[σ, v] + 4ϵ2
∫ 1

0

FΦ

(
σ̂ϵt
)
dt.

Let γ̂ϵ be a minimizer of B̂g,ϵ over the set of γ ∈ W 1,2(0, 1; Ω̄) such that γ0 = P0 and

γ1 = PT . We assume that the minimizer in (4.3.1) is unique, which means γ̂0 is unique. In

Theorem 4.9.1 of section 4.9, we will give a sufficient condition to conclude the uniqueness

of the minimizer.

The relation

c0|v|2 − 4ϵ2∥Φ∥L∞(Ω̄2 ≤ L̂ϵ(t, x, v) ≤ c0|v|2 − 4ϵ2∥Φ∥L∞(Ω̄2)

implies that {γ̂ϵ}ϵ≥0 is bounded in W 1,2(0, 1; Ω̄). If (γ̂ϵj)j is a subsequence converging weakly

to some γ∗ in W 1,2(0, 1; Ω̄), in light of the Sobolev embedding theorem, we may assume

without loss of generality that (γ̂ϵj)j converges to γ
∗ in L∞(0, 1; Ω̄). We have

B̂g,0[γ∗] ≤ lim inf
j→∞

B̂g,ϵj [γϵj ] ≤ lim inf
j→∞

B̂g,ϵj [γ] = B̂g,0[γ],

for any arbitrary γ ∈ W 1,2(0, 1; Ω̄) such that γ0 = P0 and γ1 = PT . This means that γ∗ = γ̂0.

Thus, {γ̂ϵ}ϵ≥0 has a unique accumulation point. We obtain the following lemma.

Lemma 4.5.1. Suppose γ̂0 is unique and γ̂0(0, 1) ⊂ Ω. Then any minimizers (γ̂ϵ)ϵ≥0 con-

verges weakly to γ̂0 in W 1,2(0, 1; Ω̄) and strongly in L∞(0, 1; Ω̄).

Lemma 4.5.2. Suppose γ̂0 is unique and γ̂0(0, 1) ⊂ Ω. Let ηϵ be the probabilistic repre-

sentation of (σ̂ϵ, v̂ϵ) given by (3.4.2). Then except on a set of zero–ηϵ measure, every γ in

the support of ηϵ, minimizes B̂g,ϵ over the set of γ ∈ W 1,2(0, 1; Ω̄) such that γ0 = P0 and

γ1 = PT .

Proof. Set σ̂∗ϵ = δγ̂ϵ and let v̂∗ϵ its unique velocity field. We have (σ̂∗ϵ, v̂∗ϵ) ∈ Σ1(δP0 , δPT
|0).

Let (σ, v) ∈ Σ1(δP0 , δPT
|0).
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Let η be the probabilistic representation of an arbitrary (σ, v). By Remark 3.4.2, except

on a set of zero η measure, every γ in the support of η, belongs to W 1,2(0, 1; Ω̄) and satisfies

γ0 = P0 and γ1 = PT .

Since η is a probability measure, we have

Bg,ϵ[σ, v] =
∫
Ω̄×W 1,2(0,1;Ω̄)

(∫ 1

0

L̂ϵ(t, at, ȧ)dt

)
η(dx, da) ≥ B̂g,ϵ[γϵ] = Bg,ϵ[σ̂∗ϵ, v̂∗ϵ]. (4.5.3)

This, together with Theorem 4.4.1, implies

min
(σ,v)

{
Bg,ϵ[σ, v] : (σ, v) ∈ Σ1(δP0 , δPT

|0)
}
= Bg,ϵ[σ̂∗ϵ, v̂∗ϵ] = B̂g,ϵ[γϵ] = Bg,ϵ[σ̂ϵ, v̂ϵ]. (4.5.4)

We combine (4.5.3) and (4.5.4) to conclude the proof of the Lemma.

Corollary 4.5.3. For each δ ∈ (0, 1/2) there exists ϵ0 > 0 such that the support of the σ̂ϵt

denoted by supp(σ̂ϵt), is contained in compact set in Ω for all t ∈ [δ, 1− δ] and all ϵ ∈ [0, ϵ0].

Proof. Let δ ∈ (0, 1/2). Since γ̂0 is a continuous function, γ̂0([δ, 1−δ]) is a compact set which

by assumption, is contained in Ω. Let d0 > 0 be the distance between ∂Ω and γ̂0([δ, 1− δ]).

By Lemma 4.5.1, there exists ϵ0 > 0 such that if ϵ ∈ [0, ϵ0], and γ̂ minimizes B̂g,ϵ over

the set of paths in W 1,2(0, 1; Ω̄) which start at γ0 = P0 and end at γ1 = PT , then γ̂([δ, 1− δ])

is contained in the d0/2–open neighborhood of γ̂0([δ, 1− δ]), which we denote by O. Thanks

to Lemma 4.5.2, (3.4.1) implies

supp(σ̂ϵt) ⊂
{
γ(t) : γ ∈ W 1,2(0, 1; Ω̄), γ0 = P0, γ1 = PT , B̂

g,ϵ[γ] = B̂g,ϵ[γ̂ϵ]
}
⊂ O,

which yields the desired result.
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4.6 Existence of a dual maximizer when ψ = ψϵ

Throughout this section, we choose ψϵ as in section 4.5. Set

αϵ(t, q) :=

∫
Ω̄

Φ(q, q2)σ
ϵ
t(dq2)− FΦ(σ

ϵ
t), ∀(t, q) ∈ [0, T ]× Ω̄.

Note that

αϵ(t, Pt) = 0, ∀t ∈ [0, tϵ] ∪ [tϵ, T ]. (4.6.1)

On [tϵ, T ]× Ω̄, we define

uϵ(t, z) := min
γ

{∫ t

tϵ

(
Lg(γ, γ̇) + αϵ(t, γ)

)
dτ : γ(tϵ) = P0, γ(t) = z, γ([tϵ, t]) ⊂ Ω̄

}
.

On [0, tϵ]× Ω̄, we define

uϵ(t, z) := max
γ

{
−
∫ tϵ

t

(
Lg(γ, γ̇) + αϵ(τ, γ)

)
dτ : γ(tϵ) = P0, γ(t) = z, γ([tϵ, t]) ⊂ Ω̄

}
.

Let γϵ be a minimizer of

γ 7→
∫ tϵ

tϵ

(
Lg(γ, γ̇) + αϵ(τ, γ)

)
dτ

over the set of γ ∈ W 1,2(tϵ, t
ϵ; Ω̄) such that γ(tϵ) = P0 and γ(tϵ) = PT .

We have

uϵ(s, γϵ(s))− uϵ(t, γϵ(t)) =

∫ s

t

(
Lg(γ, γ̇) + αϵ(t, γ)

)
dτ, ∀tϵ ≤ t < s ≤ tϵ. (4.6.2)

Remark 4.6.1. We know that the restriction of uϵ is Lipschitz continuous on [tϵ, T ] × Ω̄.

By the representation formula above, the restriction of uϵ is also Lipschitz continuous on

[0, tϵ] × Ω̄. Since uϵ is continuous on {tϵ} × Ω̄, we conclude that uϵ is Lipschitz continuous

on [0, T ]× Ω̄.

Lemma 4.6.2. The function t 7→ uϵ(t, P ϵ
t ) is monotone non-increasing on respectively [0, tϵ]

and on [tϵ, T ]. Similarly, the function

t 7→ m(t) :=

∫ t

tϵ

(
Lg(P

ϵ, Ṗ ϵ) + αϵ(τ, P ϵ)
)
dτ − uϵ(t, P ϵ

t )

is monotone non-decreasing on [tϵ, t
ϵ].
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Proof. (i) Assume 0 ≤ t < s ≤ tϵ. Choose γ ∈ W 1,2(s, tϵ; Ω̄) such that γ(s) = P0 and

uϵ(s, P0) = −
∫ tϵ

s

(
Lg(γ, γ̇) + αϵ(t, γ)

)
dτ,

Let γ̃ be the extension of γ to [t, s) obtain by setting γ̃(τ) = P0 on this interval. Since

γ̃ ∈ W 1,2(t, tϵ; Ω̄) and γ(t) = P0, using (4.6.1), we have

uϵ(t, P0) ≥−
∫ tϵ

t

(
Lg(γ̃, ˙̃γ) + αϵ(t, γ̃)

)
dτ

=−
∫ s

t

0dτ −
∫ tϵ

s

(
Lg(γ, γ̇) + αϵ(t, γ)

)
dτ = uϵ(s, P0).

Thus, t 7→ uϵ(t, P0) is monotone non-increasing on [0, tϵ] A similar argument allows to

conclude that t 7→ uϵ(t, P0) is monotone non-increasing on [tϵ, T ].

(ii) Assume tϵ ≤ t < s ≤ tϵ. Since uϵ satisfies the semi–group property, we have

uϵ(s, P ϵ
s ) ≤ uϵ(t, P ϵ

t ) +

∫ s

t

(
Lg(γ, γ̇) + αϵ(τ, γ)

)
dτ

whenever γ(s) = P ϵ
s and γ(t) = P ϵ

t . In particular,

uϵ(s, P ϵ
s ) ≤uϵ(t, P ϵ

t ) +

∫ s

t

(
Lg(P

ϵ, Ṗ ϵ) + αϵ(τ, P ϵ)
)
dτ

=uϵ(t, P ϵ
t )−

∫ t

tϵ

(
Lg(P

ϵ, Ṗ ϵ) + αϵ(τ, P ϵ)
)
dτ +

∫ s

tϵ

(
Lg(P

ϵ, Ṗ ϵ) + αϵ(τ, P ϵ)
)
dτ.

Rearranging, we obtain the last part of the proof.

Remark 4.6.3. (i) In light of Lemma 4.6.2, we can define the non–negative function

hϵ(t, P0) := − lim
h→0+

uϵ(t+ h, P0)− uϵ(t, P0)

h
, ∀t ∈ [0, tϵ) ∩ (tϵ, T ].

We extend hϵ to ([0, tϵ)∩ (tϵ, T ])× (Ω̄ \ {P0}) by setting its value to be 0 on this set. We

have

uϵ(s, P0)− uϵ(t, P0) = −
∫ s

t

hϵ(τ, P0)dτ, ∀s, t ∈ [0, tϵ]. (4.6.3)
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Since Lg(P
ϵ, Ṗ ϵ) + αϵ(τ, P ϵ) ≡ 0 on [0, tϵ], this is equivalent to

uϵ(s, P ϵ
s ) = uϵ(t, P ϵ

t ) +

∫ s

t

(
Lg(P

ϵ, Ṗ ϵ) + αϵ(τ, P ϵ)− hϵ(τ, P ϵ)
)
dτ, ∀s, t ∈ [0, tϵ].

The same identity holds for s, t ∈ [tϵ, T ].

(ii) Lemma 4.6.2 also implies that for almost every t ∈ (tϵ, t
ϵ), the following limit exists

and is non–negative:

hϵ(t, P ϵ
t ) := lim

h→0+

mϵ(t+ h)−mϵ(t)

h
.

The identity

mϵ(s)−mϵ(t) =

∫ s

t

hϵ(τ, P ϵ)dτ, ∀s, t ∈ [tϵ, t
ϵ]

reads off

uϵ(s, P ϵ
s ) = uϵ(t, P ϵ

t ) +

∫ s

t

(
Lg(P

ϵ, Ṗ ϵ) + αϵ(τ, P ϵ)− hϵ(τ, P ϵ)
)
dτ, ∀s, t ∈ [tϵ, t

ϵ].

We extend hϵ by setting hϵ(t, x) = 0 if t ∈ [tϵ, t
ϵ] but x ̸= P ϵ

t .

Lemma 4.6.4. If Ug is defined as in (4.1.11), then (uϵ, hϵ, αϵ) ∈ Ug.

Proof. Recall that uϵ and αϵ are Lipschitz and hϵ is a non–negative Borel function. It remains

to show that (4.1.10) holds. For this, we fix 0 ≤ s < t ≤ T and a Lipschitz continuous path

γ : [t, s] → Ω̄. One readily check that

uϵ(s, γ(s))− uϵ(t, γ(t)) ≤
∫ s

t

(
Lg(γ, γ̇) + αϵ(τ, γ)

)
dτ. (4.6.4)

Set

S0 =
{
l ∈ (t, s) : P ϵ

l = γ(l)
}

and

S1 =
{
l ∈ (t, s) : Ṗ ϵ

l = γ̇(l),
d

dl
uϵ(l, γ(l)) =

d

dl
u(l, P ϵ

l )
}
.

Recall that the set S0 \S1 is of null Lebesgue measure in Lemma 6.3.1. By Remark 4.6.3

d

dl

(
uϵ(·, γ)

)
= Lg(γ, γ̇) + αϵ(·, γ)− hϵ(·, γ), a.e. on S0 ∩ S1.
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If l0 ∈ (t, s) such that γ(l0) ̸= P ϵ
l0
, then there exists δ > 0 such that γ(l) ̸= P ϵ

l for

l ∈ (l0 − δ, l0 + δ). Thus, l → −hϵ(l, γ(l)) is identically null on (l0 − δ, l0 + δ). We use (4.6.4)

to conclude that if we further assume that l0 is a point of differentiability for uϵ(·, γ), then

d

dl

(
uϵ(·, γ)

)∣∣
l=l0

≤
(
Lg(γ, γ̇) + αϵ(τ, γ)

)∣∣∣
l=l0

= Lg
(
γ(l0), γ̇(l0)

)
+ αϵ

(
l0, γ(l0)

)
− hϵ

(
l0, γ(l0)

)
.

In conclusion, we have

d

dl

(
uϵ(·, γ)

)
≤ Lg(γ, γ̇) + αϵ(·, γ)− hϵ(·, γ), a.e. on (0, T ).

Integrating over [t, s], we conclude the proof of the lemma.

Recall that J is given in (4.1.12), AΦ
g is given in (4.1.8), and ψϵ is given in (4.5.1).

Theorem 4.6.5. We have

AΦ
g [σ

ϵ, vϵ] = J (uϵ, hϵ, αϵ|ψϵ). (4.6.5)

Thus (σϵ, vϵ) minimizes AΦ
g over ΣT

0

(
δP0 , δPT

|ψϵ
)
and (uϵ, hϵ, αϵ) maximizes J over Ug.

Proof. We know that AΦ
g (σ, v) ≥ J (u, h, α) for any (σ, v) ∈ ΣT

0

(
δP0 , δPT

|ψϵ
)

and any

(u, h, α) ∈ Ug. Since Lemma 4.6.4 asserts that (uϵ, hϵ, αϵ) ∈ Ug, it suffices to show (4.6.5).

By (4.6.3),

uϵ(T, P ϵ
T )− uϵ(tϵ, P ϵ

tϵ) +

∫ T

tϵ
dt

∫
∂Ω

hϵ(t, q)ψϵt(dq) = 0.

We use Remark 4.3.2 and the fact that∫
Ω̄

Lg(q, v
ϵ
t)σ

ϵ
t(dq) ≡ 0

on [tϵ, T ] to conclude that

uϵ(T, P ϵ
T )− uϵ(tϵ, P ϵ

tϵ) +

∫ T

tϵ
dt

∫
∂Ω

hϵ(t, q)ψϵt(dq)−
∫ T

tϵ
F ∗
Φ(α

ϵ
t)dt

=

∫ T

tϵ

(∫
Ω̄

Lg(q, v
ϵ
t)σ

ϵ
t(dq) + FΦ(σ

ϵ
t)

)
dt. (4.6.6)
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Similarly,

uϵ(tϵ, P
ϵ
tϵ)− uϵ(0, P ϵ

0) +

∫ tϵ

0

dt

∫
∂Ω

hϵ(t, q)ψϵt(dq)−
∫ tϵ

0

F ∗
Φ(α

ϵ
t)dt

=

∫ tϵ

0

(∫
Ω̄

Lg(q, v
ϵ
t)σ

ϵ
t(dq) + FΦ(σ

ϵ
t)

)
dt. (4.6.7)

We use first use Lemma 4.6.4, then we use the fact that hϵ ≥ 0 and finally use (4.6.2) to

obtain that

uϵ(tϵ, γϵ(tϵ))− uϵ(tϵ, γ
ϵ(tϵ)) ≤

∫ tϵ

tϵ

(
Lg(γ

ϵ, γ̇ϵ) + αϵ(τ, γϵ)− hϵ(τ, γϵ)
)
dτ

≤
∫ tϵ

tϵ

(
Lg(γ

ϵ, γ̇ϵ) + αϵ(τ, γϵ)
)
dτ

= uϵ(tϵ, γϵ(tϵ))− uϵ(tϵ, γ
ϵ(tϵ)).

Thus

uϵ(tϵ, γϵ(tϵ))− uϵ(tϵ, γ
ϵ(tϵ)) =

∫ tϵ

tϵ

(
Lg(γ

ϵ, γ̇ϵ) + αϵ(τ, γϵ)− hϵ(τ, γϵ)
)
dτ (4.6.8)

and

hϵ(·, γϵ) ≡ 0 on [tϵ, t
ϵ]. (4.6.9)

In light of Lemma 4.5.2, by the minimality property of γϵ, we have∫ tϵ

tϵ

(
Lg(γ

ϵ, γ̇ϵ) + αϵ(τ, γϵ)
)
dτ

=min
(σ,v)

{∫ tϵ

tϵ

dt

∫
Ω̄

(
Lg(q, vt(q)) + αϵ(τ, q)

)
σt(dq) : (σ, v) ∈ Σtϵ

tϵ(δP0 , δPT
, 0)

}
.

We use Theorem 4.4.1 and Remark 4.3.2 to conclude that∫ tϵ

tϵ

(
Lg(γ

ϵ, γ̇ϵ) + αϵ(τ, γϵ)
)
dτ =

∫ tϵ

tϵ

dt

∫
Ω̄

(
Lg(q, v

ϵ
t(q)) + αϵ(τ, q)

)
σϵt(dq)

=

∫ tϵ

tϵ

(∫
Ω̄

Lg(q, v
ϵ
t(q)σ

ϵ
t(dq) + FΦ(σ

ϵ
t)

)
dt+

∫ tϵ

tϵ

F ∗
Φ(α

ϵ
t).
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This, together with (4.6.8)-(4.6.9), implies

uϵ(tϵ, γ(tϵ))− uϵ(tϵ, γ(tϵ)) +

∫ tϵ

tϵ

dt

∫
∂Ω

hϵ(t, q)ψϵt(dq)−
∫ tϵ

tϵ

F ∗
Φ(α

ϵ
t)dt

=

∫ tϵ

tϵ

(∫
Ω̄

Lg(q, v
ϵ
t(q)σ

ϵ
t(dq) + FΦ(σ

ϵ
t)

)
dt. (4.6.10)

We combine (4.6.6), (4.6.7) and (4.6.10) to conclude that∫
Ω̄

uϵ(T, q)σϵT (dq)−
∫
Ω̄

uϵ(0, q)σϵ0(dq) +

∫ T

0

dt

∫
∂Ω

hϵ(t, q)ψϵt(dq)−
∫ T

0

F ∗
Φ(α

ϵ
t)dt

=

∫ T

0

(∫
Ω̄

Lg(q, v
ϵ
t(q)σ

ϵ
t(dq) + FΦ(σ

ϵ
t)

)
dt.

Thus (4.6.5) holds.

4.7 Recovery of g

With all the settings in the previous sections, we now recover g in our inverse problem

depicted by (4.2.1).

By Theorem 4.6.5, J (·, ·, ·|ψϵ) admits a maximizer over Ug. Assume (uϵ, hϵ, αϵ) maximizes

J (·, ·, ·|ψϵ) over Ug, so that

J
(
uϵ, hϵ, αϵ|ψϵ

)
= AΦ

g [σ
ϵ, vϵ].

By Proposition 4.3.1, αϵt ∈ ∂·FΦ

(
σϵt) for a.e. t. Without loss of generality, assume that

the average of αϵt with respect to σϵt is null. We have

αϵt(q) =

∫
Ω̄

Φ(q, q2)σ
ϵ
t(dq2)− 2FΦ

(
σϵt
)
. (4.7.1)

The information which can be gathered from the boundary by direct measurements is

J
(
uϵ, hϵ|ψϵ

)
= AΦ

g [σ
ϵ, vϵ] +

∫ T

0

F ∗
Φ(α

ϵ
t)dt.
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We use Remark 4.3.2 and the definition of AΦ
g from (4.1.8) to obtain

J
(
uϵ, hϵ|ψϵ

)
= AΦ

g [σ
ϵ, vϵ]−

∫ T

0

FΦ(σ
ϵ
t)dt =

1

2

∫ T

0

∫
Ω̄

|vϵt(x)|2g(x)σϵt(dx)dt.

We use (4.5.2) to conclude that

2ϵJ
(
uϵ, hϵ|ψϵ

)
=

1

2

∫ 1

0

∫
Ω̄

|v̂ϵs(x)|2g(x)σϵs(dx)ds = Âϵ[σ̂ϵ, v̂ϵ]− 4ϵ2
∫ 1

0

FΦ(σ̂
ϵ
s)ds. (4.7.2)

Proposition 4.7.1. (i) We have

2ϵJ
(
uϵ, hϵ|ψϵ

)
=

1

2
dist2g

(
P0, PT

)
+O(ϵ2)

(ii) If we further assume that there is a unique path minimizing dist2g
(
P0, PT

)
, then

2ϵJ
(
uϵ, hϵ|ψϵ

)
=

1

2
dist2g

(
P0, PT

)
+ o(ϵ2).

Proof. We use Lemma 4.3.3 and the first identity in (4.7.2) to obtain that

1

2
dist2g

(
P0, PT

)
≤ 2ϵJ

(
uϵ, hϵ|ψϵ

)
. (4.7.3)

We use the minimality property of (σ̂ϵ, v̂ϵ) to obtain that

Âϵ[σ̂ϵ, v̂ϵ] ≤ Âϵ[σ̂0, v̂0] = Â0[σ̂0, v̂0] + 4ϵ2
∫ T

0

FΦ(σ̂
0
t )dt.

This means

2ϵJ
(
uϵ, hϵ|ψϵ

)
+ 4ϵ2

∫ T

0

FΦ(σ̂
ϵ
t)dt ≤

1

2
dist2g

(
P0, PT

)
+ 4ϵ2

∫ T

0

FΦ(σ̂
0
t )dt. (4.7.4)

We combine (4.7.3) and (4.7.4) to obtain

0 ≤ 2ϵJ
(
uϵ, hϵ|ψϵ

)
− 1

2
dist2g

(
P0, PT

)
≤ 4ϵ2

∫ T

0

(
FΦ(σ̂

0
t )− FΦ(σ̂

ϵ
t)

)
dt. (4.7.5)

We use the fact that FΦ is bounded to conclude the proof of (i).

(ii) Assume next that there is a unique path minimizing dist2g
(
P0, PT

)
. Then

lim
ϵ→0+

FΦ(σ̂
ϵ
t) = FΦ(σ̂

ϵ
t).
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Thus since FΦ(σ̂
0
t )− FΦ(σ̂

ϵ
t) is bounded independently of ϵ and t, we have

lim
ϵ→0+

∫ T

0

(
FΦ(σ̂

0
t )− FΦ(σ̂

ϵ
t)

)
dt = 0.

This, together with (4.7.5), completes the proof of (ii).

By the travel time tomography theory [28], g can be recovered once we know the distance

between any two points on the boundary.

4.8 Partial recovery of Φ

Note that by Proposition 4.7.1, g has been recovered. It only remains to recover Φ under

the assumption that we have access to boundary information and g is recovered. We further

assume we have chosen P ϵ in such a way that t 7→ P̂ ϵ
t converges in C1([0, 1]) to a path

t 7→ P̂ 0
t . Set

ĥϵ(s, P̂ ϵ
s ) := hϵ

(
2ϵs+

T

2
− ϵ, P̂ ϵ

s

)
, ∀s ∈ [0, 1].

By Remark 4.6.3,

2ϵ
(
ûϵ(s2, P̂

ϵ
s2
)− ûϵ(s1, P̂

ϵ
s1
)
)
=

∫ s2

s1

(
Lg(P̂

ϵ,
˙̂
P ϵ) + 4ϵ2

(
α̂ϵ(l, P̂ ϵ

l )− ĥϵ(l, P̂ ϵ
l )
))

dl.

Thus

2ϵ
(
ûϵ(s2, P̂

ϵ
s2
)− ûϵ(s1, P̂

ϵ
s1
)
)
+ 4ϵ2

∫ s2

s1

ĥϵ(l, P̂ ϵ
l )dl −

∫ s2

s1

Lg(P̂
ϵ,

˙̂
P ϵ)dl

=4ϵ2
∫ s2

s1

(
α̂ϵ(l, P̂ ϵ

l )− ĥϵ(l, P̂ ϵ
l )
)
dl. (4.8.1)

Note that the expression in (4.8.1) contains only informations on ∂Ω, except for the

action involving Lg. Since g has been recovered in Proposition 4.7.1 and P ϵ is our choice,

the expression in (4.8.1) is part of our knowledge. Therefore, if {P ϵ}ϵ converges to P̂ 0 in C1,
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we have knowledge of

Î(s|P̂ 0) := lim
ϵ→0+

2ϵ
(
ûϵ(s2, P̂

ϵ
s2
)− ûϵ(s1, P̂

ϵ
s1
)
)
+ 4ϵ2

∫ s2
s1
ĥϵ(l, P̂ ϵ

l )dl −
∫ s2
s1
Lg(P̂

ϵ,
˙̂
P ϵ)dl

4ϵ2
.

In light of (4.8.1),

Î(s|P̂ 0) =

∫ s

0

α̂0(l, P̂ 0
l )dl.

Thus we have

˙̂
I(s|P̂ 0) = α̂0(s, P̂ 0

s ) = Φ(P̂ 0
s , γ̂

0
s )− Φ(γ̂0s , γ̂

0
s ).

Notice that if we assume that Φ(q1, q2) is of the form ψ(q1− q2), where ψ is even and real

analytic, then we have

˙̂
I(s|P̂ 0) = α̂0(s, P̂ 0

s ) = ψ(P̂ 0
s − γ̂0s )− ψ(0), ∀s ∈ [0, 1].

For this special case, we prove uniqueness of Φ from analytic continuation.

Denote the set of even and analytic ψ as

S := {ψ : Rd → R| ψ(x) = ψ(−x), ψ ∈ Cω(Rd)}.

Consider the map D : S → C(Rd × Rd) such that DΦ(x, y) := Φ(x, y) − Φ(x, x), where

x ∈ Ω̄, y ∈ ∂Ω.

Lemma 4.8.1. There exists an open set U ⊂ {x− y : x ∈ Ω̄, y ∈ ∂Ω}.

Proof. Take any open subset W ⊂ Ω. Then fix any point p ∈ ∂Ω. Notice that

U := W − {p} ⊂ {x− y : x ∈ Ω̄, y ∈ ∂Ω}

is an open subset.

Indeed, for any point x−p, where x ∈ W , we can find δ > 0 such that Bδ(x) ⊂ W . Then

for any point q ∈ Bδ(x − p), q + p ∈ Bδ(x) ⊂ W . Thus q = w − p for some w ∈ W . Hence

Bδ(x− p) ⊂ U and U is open.
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Lemma 4.8.2. Assume that Φi(x, y) = ψi(x − y) and ψi ∈ S, for i = 1, 2. If DΦ1 = DΦ2,

then ∃c such that ψ1 = ψ2 + c.

Proof. Since there exists an open set U ⊂ {x− y : x ∈ Ω̄, y ∈ ∂Ω} and DΦ(x, y) = Φ(x, y)−

Φ(x, x), where x ∈ Ω̄, y ∈ ∂Ω, then (ψ1 − ψ2)|U = ψ1(0) − ψ2(0). Take c = ψ1(0) − ψ2(0).

We get ψ1 = ψ2 + c on U . By analytic continuation, ψ1 = ψ2 + c.

Lemma 4.8.3. If DΦ = 0, then Φ(x, y) = c for some constant c.

Proof. There exists an open set U ⊂ {x− y : x ∈ Ω̄, y ∈ ∂Ω}. If DΦ = 0, then ψ|u = ψ(0).

Thus by analytic continuation, ψ = ψ(0). Take c = ψ(0). We get Φ(x, y) = c.

Based on the lemmas above, we impose the assumption that Φ(x, x) = 0 when we try

to recover Φ. This is the case in Chapter 5, in which we recover Φ when g and Φ are real

analytic.

4.9 σ̂ϵ concentrated on a curve

In this section, we give sufficient conditions for σ̂ϵ to concentrate on a curve. The main

Theorem 4.9.1 in this section provides the uniqueness of the minimizer γ̂0 in Lemma 4.5.1.

Set

ĉt,ϵs (x, y) := min
γ

{∫ t

s

L̂g,ϵ
(
τ, γτ , γ̇τ

)
dτ : γ ∈ W 1,2(s, t; Ω̄), γ(s) = x, γ(t) = y

}
.

The inequalities

−4ϵ2∥Φ∥L∞ + L̂g,0 ≤ L̂g,ϵ(t, ·, ·) ≤ L̂g,0(x, v) + 4ϵ2∥Φ∥L∞
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imply ∣∣∣∣ĉt,ϵs (x, y)− 1

2(t− s)
dist2g(x, y)

∣∣∣∣ ≤ 4ϵ2(t− s)∥Φ∥L∞ . (4.9.1)

Adapting the ideas of the proof of Proposition 3.11 [16] to the actions B̂g,ϵ, we obtain

d

dt

(
1

2

〈
g
(
γ̂ϵt
)
˙̂γt
ϵ
, ˙̂γϵt
〉
− 4ϵ2α̂ϵt

(
γ̂ϵt
))

= −∂tL̂g,ϵ
(
t, γ̂ϵt ,

˙̂γϵt
)
= −4ϵ2∂tα̂

ϵ
t(γ̂

ϵ
t ). (4.9.2)

This proves that t 7→ 1
2

〈
g
(
γ̂ϵt
)
˙̂γϵt ,

˙̂γϵt
〉
− 4ϵ2α̂ϵt

(
γ̂ϵt
)
is W 1,∞. Thus it is continuous.

Since t 7→ α̂ϵt
(
γ̂ϵt
)
is continuous, we conclude that

t 7→ 1

2

〈
g
(
γ̂ϵt
)
˙̂γϵt ,

˙̂γϵt
〉
+ 4ϵ2α̂ϵt

(
γ̂ϵt
)
= L̂g,ϵ

(
t, γ̂ϵt ,

˙̂γϵt
)

is continuous. (4.9.3)

Thus there exists tϵ ∈ [0, 1] such that

ĉ1,ϵ0 (P0, PT ) = L̂g,ϵ
(
tϵ, γ̂

ϵ
tϵ ,

˙̂γϵtϵ
)
. (4.9.4)

Integrating both sides of (4.9.2) and using (4.9.4), we obtain

1

2

〈
g
(
γ̂ϵt
)
˙̂γϵt ,

˙̂γϵt
〉
− 4ϵ2α̂ϵt

(
γ̂ϵt
)
=
1

2

〈
g
(
γ̂ϵtϵ
)
˙̂γϵtϵ ,

˙̂γϵtϵ
〉
− 4ϵ2α̂ϵtϵ

(
γ̂ϵtϵ
)
−
∫ t

tϵ

∂tL̂
g,ϵ
(
τ, γ̂ϵτ ,

˙̂γϵτ
)

=ĉ1,ϵ0 (P0, PT )− 8ϵ2α̂ϵtϵ
(
γ̂ϵtϵ
)
−
∫ t

tϵ

∂tL̂
g,ϵ
(
τ, γ̂ϵτ ,

˙̂γϵτ
)
.

Rearranging and using (6.5.3) and (4.9.1), we conclude that

1

2

∣∣∣∣〈g(γ̂ϵt) ˙̂γϵt , ˙̂γϵt〉− dist2g(P0, PT )

∣∣∣∣ ≤10ϵ2∥Φ∥L∞ +

∣∣∣∣ ∫ t

tϵ

∂tL̂
g,ϵ
(
τ, γ̂ϵτ ,

˙̂γϵτ
)∣∣∣∣

≤2ϵ2
(
5∥Φ∥L∞ + ∥∇Φ∥L∞

(
dist2g

(
P0, PT

)
+ 8ϵ2∥Φ∥L∞

) 1
2

)
.

(4.9.5)

We define some notations.

Let ∂qig(q) be the matrix obtained by differentiating the entries of g with respect to qi.

Since ∂qig(q) is symmetric, it is diagonalizable.
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Let Λ∇g be the largest absolute value of the eigenvalues of all the ∂qig(q) when q varies

in Ω̄. Similarly, each partial second derivative ∂qiqjg is diagonalizable. We denote λ∇2g as

the smallest eigenvalue of all the ∂qiqjg(q)’s. We also denote λg as the smallest eigenvalue of

all the g(q)’s.

By (4.9.5), we have

√
λg
∣∣ ˙̂γϵt ∣∣ ≤ [dist2g(P0, PT

)
+ 2ϵ2

(
5∥Φ∥L∞ + ∥∇Φ∥L∞

(
dist2g

(
P0, PT

)
+ 8ϵ2∥Φ∥L∞

) 1
2

)] 1
2

.

This means there exists a constant κ > 0, which depends only on Ω̄, ∥Φ∥L∞ and ∥∇Φ∥L∞

such that √
λg
∣∣ ˙̂γϵt ∣∣ ≤ distg

(
P0, PT

)
+ ϵκ. (4.9.6)

Let γ0, γ1 ∈ W 1,2(0, 1; Ω̄) be minimizers in ĉ1,ϵ0 (P0, PT ) and set

γλ = (1− λ)γ0 + λγ1, δγ = γ1 − γ0, ∀λ ∈ [0, 1].

Then

d2

dλ2

∫ 1

0

Lg
(
γλ, γ̇λ

)
dt =

∫ 1

0

〈
DvvLg

(
γλ, γ̇λ

)
δγ̇, δγ̇

〉
+
〈
DqqLg

(
γλ, γ̇λ

)
δγ, δγ

〉
+2

∫ 1

0

〈
DqvLg

(
γλ, γ̇λ

)
δγ̇, δγ

〉
dt.

Since 〈
DqvLg

(
γλ, γ̇λ

)
δγ̇, δγ

〉
=
∑
i

δγi
〈
∂ig(γ

λ, γ̇λ)δγ̇, γ̇λ
〉
,

we have ∣∣∣〈DqvLg
(
γλ, γ̇λ

)
δγ̇, δγ

〉∣∣∣ ≤ |δγ| |δγ̇| |γ̇λ| Λ∇g
√
d.

We use (4.9.6) to conclude that∣∣∣〈DqvLg
(
γλ, γ̇λ

)
δγ̇, δγ

〉∣∣∣ ≤ |δγ| |δγ̇| Λ∇g
√
d
(
distg

(
P0, PT

)
+ ϵκ

)
λ

−1
2
g . (4.9.7)
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Similarly, since 〈
DqqLg

(
γλ, γ̇λ

)
δγ, δγ

〉
=
∑
i,jk,l

∂2qiqjgkl
(
γλ)γ̇λk γ̇

λ
l ,

we conclude that 〈
DqqLg

(
γλ, γ̇λ

)
δγ, δγ

〉
≥ d2λ∇2g|δγ|2. (4.9.8)

We combine (4.9.7) and (4.9.8) to conclude that for every e > 0 we have

d2

dλ2

∫ 1

0

Lg
(
γλ, γ̇λ

)
dt ≥

∫ 1

0

(
λg|δγ̇|2 + d2λ∇2g|δγ|2

)
dt

−
∫ 1

0

Λ∇g
√
d)
(
e|δγ̇|2 + |δγ|2e−1

)(
distg

(
P0, PT

)
+ ϵκ

)
λ

−1
2
g dt.

Thus

d2

dλ2

∫ 1

0

Lg
(
γλ, γ̇λ

)
dt ≥

∫ 1

0

|δγ̇|2
[
λg − eΛ∇g

√
d
(
distg

(
P0, PT

)
+ ϵκ

)
λ

−1
2
g

]
dt

+

∫ 1

0

|δγ|2
[
d2λ∇2g − Λ∇g

√
de−1

(
distg

(
P0, PT

)
+ ϵκ

)
λ

−1
2
g

]
dt. (4.9.9)

We have
d2

dλ2
α̂ϵt
(
γλ
)
=

∫
Ω̄

〈
∇2
q1q1

Φ
(
γλ, q2

)
δγ, δγ

〉
σ̂ϵt(dq2).

Thus, if λ∇2Φ is the smallest eigenvalue of all the λ∇2Φ(q1, q2)’s, then

d2

dλ2

∫ 1

0

α̂ϵt
(
γλ
)
≥ λ∇2Φ

∫ 1

0

|δγ|2dt. (4.9.10)

We combine (4.9.9) and (4.9.10) to deduce that

d2

dλ2

∫ 1

0

L̂g,ϵ
(
γλ, γ̇λ

)
dt ≥

∫ 1

0

|δγ̇|2
[
λg − eΛ∇g

√
d
(
distg

(
P0, PT

)
+ ϵκ

)
λ

−1
2
g

]
dt

+

∫ 1

0

|δγ|2
[
d2λ∇2g + 4ϵ2λ∇2Φ − Λ∇g

√
de−1

(
distg

(
P0, PT

)
+ ϵκ

)
λ

−1
2
g

]
dt.

(4.9.11)
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Theorem 4.9.1. Assume

πλg > Λ∇g
√
ddistg

(
P0, PT

)
λ

−1
2
g and π2λg+d

2λ∇2g > 2πΛ∇g
√
ddistg

(
P0, PT

)
λ

−1
2
g . (4.9.12)

Then for small enough ϵ ≥ 0, there exists a unique γ̂ϵ ∈ W 1,2(0, 1; Ω̄) minimizer in

ĉ1,ϵ0 (P0, PT ).

Proof. It suffices to show that we can find e > 0 such that the expression at the right

handside of (4.9.11) is positive for ϵ = 0. By continuity, the conclusion would hold for small

enough ϵ, unless δγ ≡ 0.

By Poincare’s inequality, we have∫ 1

0

|δγ̇|2 ≥ π2

∫ 1

0

|δγ|2dt.

Thus, if e ≤ 1/π, then λg > eΛ∇g
√
d
(
distg

(
P0, PT

)
+ ϵκ

)
λ

−1
2
g for ϵ ≥ 0 sufficiently small.

Apply Poincare’s inequality again, we obtain∫ 1

0

|δγ̇|2
[
λg − eΛ∇g

√
d
(
distg

(
P0, PT

)
+ ϵκ

)
λ

−1
2
g

]
dt

≥π2

[
λg − eΛ∇g

√
d
(
distg

(
P0, PT

)
+ ϵκ

)
λ

−1
2
g

] ∫ 1

0

|δγ|2dt.

We use (4.9.11) to conclude that

d2

dλ2

∫ 1

0

L̂g,ϵ
(
γλ, γ̇λ

)
dt > φϵ(e)

∫ 1

0

|δγ|2dt,

where we have set

φϵ(e) :=π
2

[
λg − eΛ∇g

√
d
(
distg

(
P0, PT

)
+ ϵκ

)
λ

−1
2
g

]
+

[
d2λ∇2g + 4ϵ2λ∇2Φ − Λ∇g

√
de−1

(
distg

(
P0, PT

)
+ ϵκ

)
λ

−1
2
g

]
.

The study of φ0 lead us to compute φϵ(π
−1) to discover that

φϵ(π
−1) = π2λg + d2λ∇2g + 4ϵ2λ∇2Φ − 2π−1Λ∇g

√
d
(
distg

(
P0, PT

)
+ ϵκ

)
λ

−1
2
g > 0,

for ϵ ≥ 0 small enough.
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4.10 Optimal paths in terms of Christoffel symbols

In this section, we assume that (4.9.12) holds. Set

Φ̄(q) = Φ(q, q), L̄(q, v) :=
1

2
|v|2g + ηΦ̄(q).

Note that in the above section η = 4ϵ2 ≥ 0, but some of the comments we shall make in

this section still make sense for η < 0 provided that |η| << 1.

There exists η0 > 0 and δ0 > 0 such that if |x− y| ≤ δ0 and η ∈ [−η0, η0], then

Q 7→
∫ 1

0

L̄(Q, Q̇)dt

admits a minimizer Q(·, η), over the set of Q such that Q(0) = x and Q(1) = y. Furthermore,

the minimizer is unique for η ∈ [0, η0].

Note

1

2
dist2g(x, y)− |η|∥Φ∥

L∞(Ω
2
)
≤
∫ 1

0

L̄
(
Q(t, η), Q̇(t, η)

)
dt ≤ 1

2
dist2g(x, y) + |η|∥Φ∥

L∞(Ω
2
)
.

Thus

−3|η|∥Φ∥
L∞(Ω

2
)
≤
∫ 1

0

(
1

2
|Q̇(t, η)|2g(Q(t,η)) + ηΨ̄(Q(t, η))

)
dt− 1

2
dist2g(x, y) ≤ 3|η|∥Φ∥

L∞(Ω
2
)
.

By the conservation of the Hamiltonian, we have

−3|η|∥Φ∥
L∞(Ω

2
)
≤ 1

2
|Q̇(t, η)|2g(Q(t,η)) + ηΨ̄(Q(t, η))− 1

2
dist2g(x, y) ≤ 3|η|∥Φ∥

L∞(Ω
2
)
, (4.10.1)

for all t ∈ [0, 1].

The Euler–Lagrange equation satisfies by Q ≡ Q(·, η) are

d

dt
DvL0(Q, Q̇) = DqL0(Q, Q̇) + η∇Φ̄(Q), Q(0, η) = x,Q(1, η) = y.

The system of ODEs is equivalent to

d

dt
g(Q)Q̇ = DqL0(Q, Q̇) + η∇Φ̄(Q). (4.10.2)
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This, together with (4.10.1), implies there exists a constant c0(η0, δ0,Φ, g) which depends

only on η0, δ0, Φ, g such that

∥Q̈(t, η)∥L∞([0,1]×[−η0,η0]) ≤ c0(η0, δ0,Φ, g). (4.10.3)

Let (gij)ij be the inverse of g. Then the Christoffel symbols for g are

Γαjk(q) =
d∑
i=1

gαi
(
∂gij(q)

∂qk
+
∂gik(q)

∂qj
− ∂gjk(q)

∂qi

)
.

We define the bilinear form Γ by

Γα(q)(v, v) =
∑
jk

Γαjk(q)vjvk.

Remark 4.10.1. By (4.10.2),

Q̈ = −Γ(Q)(Q̇, Q̇) + ηg−1(Q)∇Φ̄(Q). (4.10.4)

Thus

∂ηQ̈
α = −

∑
j,k,l

∂Γαjk
∂ql

(Q) ∂ηQ
l Q̇j Q̇k −

∑
j,k

Γαjk(Q)
˙∂ηQj Q̇k −

∑
j,k

Γαjk(Q) Q̇
j ˙∂ηQk

+
∑
j

gαj(Q)
∂Φ̄

∂qj
(Q) + η

∑
j,l

∂gαj

∂ql
(Q) ∂ηQ

l ∂Φ̄

∂qj
(Q) + η

∑
j,l

gαj(Q)
∂2Φ̄

∂qj∂ql
(Q) ∂ηQ

l

Lemma 4.10.2. We have Q ∈ C
(
[0, η0];C

2([0, 1];Rd)
)
.

Proof. Part 1. We claim that Q ∈ C
(
[0, η0];C

1([0, 1];Rd)
)
. Indeed, let η̄ ∈ [0, η0], We want

to show that limη→η̄ ∥Q(·, η)−Q(·, η̄)∥C1 = 0. It suffices to show that if (ηn)n ⊂ [−η0, η0] is

a sequence converging to η̄, then up to a subsequence, we have

lim
n→∞

∥Q(·, ηn)−Q(·, η̄)∥C1 = 0.

Note that if (ηn)n ⊂ [0, η0] is a sequence converging to η̄, then by (4.10.1) and (4.10.3),

Ascoli–Arzela Lemma implies that (ηn)n is precompact in C1. Thus, it admits an accumula-

tion point Q̄ in this topology. For any Q ∈ C1
(
[0, 1];Rd) such that Q(0) = x and Q(1) = y,
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we have∫ 1

0

(
1

2
|Q̇(t, ηn)|2g(Q(t,ηn)) + ηnΦ̄(Q(t, ηn))

)
dt ≤

∫ 1

0

(
1

2
|Q̇(t)|2g(Q(t,η)) + ηnΦ̄(Q(t))

)
dt.

Using a converging subsequence of (ηn)n, we conclude that∫ 1

0

(
1

2
| ˙̄Q(t)|2g(Q̄) + η̄Φ̄(Q̄(t))

)
dt ≤

∫ 1

0

(
1

2
|Q̇(t)|2g(Q(t,η)) + η̄Φ̄(Q(t))

)
dt.

This proves that Q̄ = Q(·, η̄) is uniquely determined and, up to a subsequence,

lim
n→∞

∥Q(·, ηn)−Q(·, η̄)∥C1 = 0.

Part 2. Notice that Q ∈ C
(
[0, η0];C

1([0, 1];Rd)
)
. Since g−1, ∇Φ̄, and the Christoffel

symbols Γi are all continuous, (4.10.4) implies that Q ∈ C
(
[0, η0];C

2([0, 1];Rd)
)
.

Integrating (4.10.4), we obtain

Q̇(t, η) = Q̇(0, η) +

∫ t

0

(
− Γ

(
Q(τ, η)

)(
Q̇(τ, η), Q̇(τ, η)

)
+ ηg−1

(
Q(τ, η)

)
∇Φ̄
(
Q(τ, η)

))
dτ

and

Q(t, η)

=x+ tQ̇(0, η) +

∫ t

0

ds

∫ s

0

(
− Γ

(
Q(τ, η)

)(
Q̇(τ, η), Q̇(τ, η)

)
+ ηg−1

(
Q(τ, η)

)
∇Φ̄
(
Q(τ, η)

))
dτ.

Thus

Q̇(0, η) = y−x−
∫ 1

0

ds

∫ s

0

(
−Γ
(
Q(τ, η)

)(
Q̇(τ, η), Q̇(τ, η)

)
+ηg−1

(
Q(τ, η)

)
∇Φ̄
(
Q(τ, η)

))
dτ.

We then use this expression of Q̇(0, η) to conclude that

Q(t, η) =x+ t(y − x) (4.10.5)

−t
∫ 1

0

ds

∫ s

0

(
− Γ

(
Q(τ, η)

)(
Q̇(τ, η), Q̇(τ, η)

)
+ ηg−1

(
Q(τ, η)

)
∇Φ̄
(
Q(τ, η)

))
dτ

+

∫ t

0

ds

∫ s

0

(
− Γ

(
Q(τ, η)

)(
Q̇(τ, η), Q̇(τ, η)

)
+ ηg−1

(
Q(τ, η)

)
∇Φ̄
(
Q(τ, η)

))
dτ
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Hence

Q̇(t, η) =y − x−
∫ 1

0

ds

∫ s

0

(
− Γ

(
Q(τ, η)

)(
Q̇(τ, η), Q̇(τ, η)

)
+ ηg−1

(
Q(τ, η)

)
∇Φ̄
(
Q(τ, η)

))
dτ

+

∫ t

0

(
− Γ

(
Q(τ, η)

)(
Q̇(τ, η), Q̇(τ, η)

)
+ ηg−1

(
Q(τ, η)

)
∇Φ̄
(
Q(τ, η)

))
dτ. (4.10.6)

There exist η0 > 0 and δ0 > 0 such that if |x− y| ≤ δ0, then there exists a map

M : C
(
[0, 1]× [0, η0]

)d
→ C

(
[0, 1]× [−η0, η0]

)d
,

which verifies the relation

M(Q)(t, η) =x+ t(y − x)

−t
∫ 1

0

ds

∫ s

0

(
− Γ

(
Q(τ, η)

)(
Q̇(τ, η), Q̇(τ, η)

)
+ ηg−1

(
Q(τ, η)

)
∇Φ̄
(
Q(τ, η)

))
dτ

+

∫ t

0

ds

∫ s

0

(
− Γ

(
Q(τ, η)

)(
Q̇(τ, η), Q̇(τ, η)

)
+ ηg−1

(
Q(τ, η)

)
∇Φ̄
(
Q(τ, η)

))
dτ.

Furthermore, M(·, η) ∈ C2
(
[0, 1]

)d
.

Remark 4.10.3. We have

∂

∂η

(
∥Q̇(s, η)∥2g(Q(s,η))

)
=
∂

∂η

(∑
ij

gij(Q)Q̇
iQ̇j

)

=
∑
i,j,k

∂gij(Q)

∂qk
∂Qk

∂η
Q̇iQ̇j +

∑
i,j

gij(Q)

( ˙∂Qi

∂η
Q̇j + gij(Q)Q̇

i
˙∂Qj

∂η

)

We now assume that (4.9.12) holds and study optimal paths depending on η.

Lemma 4.10.4. We have

1

2
|Q̇(t, η)|2g(Q(t,η)) =

1

2
dist2g(x, y) + η

(
Φ̄(Q(t, 0))−

∫ 1

0

Φ̄(Q(t, 0))dt

)
+ o(η). (4.10.7)

Proof. As observed in Proposition 4.7.1

lim
η→0

∫ 1

0
1
2
|Q̇(t, η)|2g(Q(t,η))dt−

1
2
dist2g(x, y)

η
= 0. (4.10.8)
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By the conservation of the Hamiltonian,∫ 1

0

(
1

2
|Q̇(t, η)|2g(Q(t,η)) − ηΦ̄(Q(t, η))

)
dt =

1

2
|Q̇(t, η)|2g(Q(t,η)) − ηΦ̄(Q(t, η))

Since (t, η) 7→ Φ̄(Q(t, η)) is uniformly continuous, using (4.10.8), we have

1

2
dist2g(x, y)− η

∫ 1

0

Φ̄(Q(t, 0))dt+ o(η) =
1

2
|Q̇(t, η)|2g(Q(t,η)) − ηΦ̄(Q(t, 0)) + o(η).

4.11 Crossing curves

In this section, we consider a case with a special ψϵ and four points P0, PT , Q0, QT ∈ ∂Ω.

When δ = ϵ, we have the special case with two curves that starts at the same time t = 0

at points P0, PT ∈ ∂Ω and ends at the same time t = T at points Q0, QT ∈ ∂Ω respectively.

This helps us separate the influences of the two curves and establish the map Ig in the next

Chapter 5.

We set

ψϵt =



(1− ϵ)δP0 + ϵδQ0 if t ∈
[
0, T

2
− ϵ
]

ϵδQ0 if t ∈
(
T
2
− ϵ, T

2
− δ
]

0 if t ∈
(
T
2
− δ, T

2
+ δ
)

ϵδQT
if t ∈

[
T
2
+ δ, T

2
+ ϵ
)

(1− ϵ)δPT
+ ϵδQT

if t ∈
[
T
2
+ ϵ, T

]
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For any admissible (σ, v), we have

inf
(σ,v)

AΦ
g [σ, v] =

1

2

(T
2
− ϵ
)(

(1− ϵ)2Φ(P0, P0) + 2ϵ(1− ϵ)Φ(P0, Q0) + ϵ2Φ(Q0, Q0)

)
+
1

2

(T
2
− ϵ
)(

(1− ϵ)2Φ(PT , PT ) + 2ϵ(1− ϵ)Φ(PT , QT ) + ϵ2Φ(QT , QT )

)
+ inf

ρϵ
T/2−δ

, ρϵ
T/2+δ

{
I1ϵ

(
ψϵT

2
−ϵ, ρ

ϵ
T
2
−δ

)
+ I2ϵ

(
ρϵT

2
−δ, ρ

ϵ
T
2
+δ

)
+ I3ϵ

(
ρϵT

2
+δ
, ψϵT

2
+ϵ

)}
(4.11.1)

=
1

2

(T
2
− ϵ
)(

(1− ϵ)2Φ(P0, P0) + 2ϵ(1− ϵ)Φ(P0, Q0) + ϵ2Φ(Q0, Q0)

)
+
1

2

(T
2
− ϵ
)(

(1− ϵ)2Φ(PT , PT ) + 2ϵ(1− ϵ)Φ(PT , QT ) + ϵ2Φ(QT , QT )

)
+

{
I1ϵ

(
ψϵT

2
−ϵ, σ

ϵ,∗
T
2
−δ

)
+ I2ϵ

(
σϵ,∗T

2
−δ, σ

ϵ,∗
T
2
+δ

)
+ I3ϵ

(
σϵ,∗T

2
+δ
, ψϵT

2
+ϵ

)}
(4.11.2)

Here, in (4.11.1), the inf is taken over all ρϵT/2−δ ≥ ϵδQ0 and ρϵT/2+δ ≥ ϵδQT
. Also, we

define

I1ϵ

(
ψϵT

2
−ϵ, ρ

ϵ
T
2
−δ

)
= inf

(σ,v)

{∫ T
2
−δ

T
2
−ϵ

(∫
Ω̄

1

2
|vt(x)|2g(x)σt(dx) + FΦ(σt)

)
dt :

σt ≥ ψϵt , σT
2
−ϵ = ψϵT

2
−ϵ, σT

2
−δ = ρϵT

2
−δ

}
and we define I2ϵ and I3ϵ by minimizing the actions on the appropriate intervals similarly.

Moreover, in (4.11.2) we denote (σϵ,∗T
2
−δ, σ

ϵ,∗
T
2
+δ
) as the minimizer of the problem (4.11.1), which

is also σ∗ at the time incident t = T
2
± δ of the optimizer (σ∗, v∗) in the original problem

inf(σ,v) AΦ
g [σ, v].

Reparametrize the time, we have

I1ϵ

(
ψϵT

2
−ϵ, ρ

ϵ
T
2
−δ

)
= inf

(σ,v)

{∫ 1

0

(∫
Ω̄

1

2(ϵ− δ)
|ṽs(x)|2g(x)σ̃s(dx) +

(ϵ− δ)

2

∫
Ω̄2

Φ(x, y)σ̃s(dx)σ̃s(dy)

)
ds :

σ̃s ≥ ψϵ
(ϵ−δ)s+T

2
−ϵ, σ̃0 = ψϵT

2
−ϵ, σ̃1 = ρϵT

2
−δ

}
. (4.11.3)
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Similarly, we have

I2ϵ

(
ρϵT

2
−δ, ρ

ϵ
T
2
+δ

)
= inf

(σ,v)

{∫ 1

0

(
1

4δ

∫
Ω̄

|ṽs(x)|2g(x)σ̃s(dx) + δ

∫
Ω̄2

Φ(x, y)σ̃s(dx)σ̃s(dy)

)
ds :

σ̃s ≥ ψϵ
2δs+T

2
−δ, σ̃0 = ρϵT

2
+δ
, σ̃1 = ρϵT

2
+δ

}
(4.11.4)

and

I3ϵ

(
ρϵT

2
+δ
, ψϵT

2
+ϵ

)
= inf

(σ,v)

{∫ 1

0

(∫
Ω̄

1

2(ϵ− δ)
|ṽs(x)|2g(x)σ̃s(dx) +

(ϵ− δ)

2

∫
Ω̄2

Φ(x, y)σ̃s(dx)σ̃s(dy)

)
ds :

σ̃s ≥ ψϵ
(ϵ−δ)s+T

2
+δ
, σ̃0 = ρϵT

2
+δ
, σ̃1 = ψϵT

2
+ϵ

}
. (4.11.5)

For a Riemannian manifold Ω with metric g, we say g is simple if Ω is geodesic convex

with respect to g.

Lemma 4.11.1. Assume g is a simple metric in Ω and consider the optimal transport

problem

W 2
g

(
δP0 , ν

)
:= inf

(σ,v)

{∫ 1

0

∫
Ω

|v(t, x)|2g(x)ρ(dq)dt : ∂tρ+∇(ρv) = 0, ρ0 = δP0 , ρ1 = ν

}
.

(4.11.6)

Recall that Q0 ∈ ∂Ω. If P0 ̸= Q0, then there exists an optimizer (σ, v) satisfies that

Q0 /∈ supp(σt) for all t < 1 ,

and therefore, we can choose an optimizer (σ, v) satisfying,

v(t, Q0) = 0 for all t < 1 .

Proof. The set Γ(γP0 , ν) of measures on Ω
2
which admit δP0 and ν as marginals is {δP0 × ν}.
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Hence

W 2
g (δP0 , ν) =

∫
Ω

dist2g(P0, y)ν(dy).

Let Υ be the map defined in section 6.4. For any y ∈ Ω, we set

γy := Υ(·, y) = γ1,y0,P0
(t) : [0, 1] → Ω.

Then

γy(0) = P0, γy(1) = y, |γ̇y(t)|g(γy(t)) = distg(P0, y) for all t ∈ [0, 1].

Therefore for t ∈ [0, 1], we have

dist2g(P0, γy(t)) = t2dist2g(P0, y).

We use (6.4.1) to show that the velocity of σ at γ(t) is γ̇(t), σ is 2–absolutely continuous

and σ0 = δP0 and σ1 = ν. We have

W 2
g (δP0 , σt) = t2W 2

g (δP0 , σ1)

Therefore σ is a constant speed Wg-geodesic and (σ,w) is an optimizer in (4.11.6).

Since

Υ(t, ·)
(
Ω
)
⊂ Ω, ∀t ∈ (0, 1), Υ(0, ·) ≡ P0, P0 ̸= Q0,

we conclude that

Q0 ̸∈ Υ
(
[0, 1)× Ω

)
.

Hence, if t ∈ [0, 1), since supp (σt) ⊂ Υ
(
[0, 1)× Ω

)
, we conclude that Q0 ̸∈ supp (σt).

Lemma 4.11.2. Assume Q0 ̸= P0 and g is a simple metric in Ω, ρϵT
2
−δ ≥ ϵδQ0 and ρϵT

2
−δ ̸=

ϵδQ0 . Then

I1ϵ

(
ψϵT

2
−ϵ, ρ

ϵ
T
2
−δ

)
≤ (ϵ− δ)

2
∥Φ∥L∞ +

(1− ϵ)

2(ϵ− δ)
W 2
g

(
δP0 , (1− ϵ)−1

(
ρϵT

2
−δ − ϵδQ0

))
.
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Proof. From (4.11.4), we have

I1ϵ

(
ψϵT

2
−ϵ, ρ

ϵ
T
2
−δ

)
≤(ϵ− δ)

2
∥Φ∥L∞ + inf

(σ,v)

{∫ 1

0

∫
Ω

1

2(ϵ− δ)
|v(t, x)|2g(x)ρ(dq)dt : δtρ+∇(ρv) = 0,

ρs ≥ ϵδQ0 , ρ0 = (1− ϵ)δP0 + ϵδQ0 , ρ1 = ρϵT
2
−δ

}
.

(4.11.7)

From Lemma 4.11.1, we can choose an optimizer (σ, v) in (4.11.6) such thatQ0 /∈ supp(σt)

and v(t, Q0) = 0 for t < 1.

We therefore have that

(σ̃t, v) = ((1− ϵ)σt + ϵδQ0 , v)

is a competitor for the problem (4.11.4).

Note that

σ̃0 = ψϵT
2
−ϵ, σ̃1 = ρϵT

2
−δ, and σ̃t ≥ ϵδQ0 .

Moreover, since vδQ0 = 0 for t < 1, we have

∂tσ̃t +∇ · (vσ̃t) = (1− ϵ) (∂tσt +∇ · (vσt)) + ϵ (∂tδQ0 +∇ · (vδQ0)) = 0.

Hence

I1ϵ

(
ψϵT

2
−ϵ, ρ

ϵ
T
2
−δ

)
≤(ϵ− δ)

2
∥Φ∥L∞ +

∫ 1

0

∫
Ω

1

2(ϵ− δ)
|v(t, x)|2g(x)σ̃t(dq)dt

=
(ϵ− δ)

2
∥Φ∥L∞ +

(1− ϵ)

(ϵ− δ)

∫ 1

0

∫
Ω

1

2
|v(t, x)|2g(x)σt(dq)dt

+
ϵ

(ϵ− δ)

∫ 1

0

∫
Ω

1

2
|v(t, x)|2g(x)δQ0(dq)dt

=
(ϵ− δ)

2
∥Φ∥L∞ +

(1− ϵ)

2(ϵ− δ)
W 2
g

(
δP0 , (1− ϵ)−1

(
ρϵT

2
−δ − ϵδQ0

))
,

where we used again that v(t, Q0) = 0 for t < 1.
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Lemma 4.11.3. Let Q0 ̸= P0, QT ̸= PQ and assume g is a simple metric in Ω. For any

P ∗ ∈ Ω \ {Q0, QT}, we have

δ

2(ϵ− δ)
W2

g

(
ψϵT

2
−ϵ, σ

ϵ,∗
T
2
−δ

)
+

1

4
W2

g

(
σϵ,∗T

2
−δ, σ

ϵ,∗
T
2
+δ

)
+

δ

2(ϵ− δ)
W2

g

(
ρϵT

2
+δ
, ψϵT

2
+ϵ

)
− ϵ∥Φ∥L∞

≤δ(1− ϵ)

2(ϵ− δ)
dist2g

(
P0, P

∗
)
+
ϵ

4
dist2g

(
Q0, QT

)
+
δ(1− ϵ)

2(ϵ− δ)
dist2g

(
P ∗, PT

)
+ ϵ∥Φ∥L∞ .

Proof. By (4.11.3)

1

2(ϵ− δ)
W2

g

(
ψϵT

2
−ϵ, ρ

ϵ
T
2
−δ

)
− (ϵ− δ)

2
∥Φ∥L∞ ≤ I1ϵ

(
ψϵT

2
−ϵ, ρ

ϵ
T
2
−δ

)
. (4.11.8)

Combining this with Lemma 4.11.2, we deduce that

1

2(ϵ− δ)
W2

g

(
ψϵT

2
−ϵ, ρ

ϵ
T
2
−δ

)
− (ϵ− δ)

2
∥Φ∥L∞

≤I1ϵ
(
ψϵT

2
−ϵ, ρ

ϵ
T
2
−δ

)
≤ (1− ϵ)

2(ϵ− δ)
W 2
g

(
δP0 , (1− ϵ)−1

(
ρϵT

2
−δ − ϵδQ0

))
+

(ϵ− δ)

2
∥Φ∥L∞ . (4.11.9)

By (4.11.4),

1

4δ
W2

g

(
ρϵT

2
−δ, ρ

ϵ
T
2
+δ

)
− δ∥Φ∥L∞ ≤ I2ϵ

(
ρϵT

2
−δ, ρ

ϵ
T
2
+δ

)
≤ 1

4δ
W2

g

(
ρϵT

2
−δ, ρ

ϵ
T
2
+δ

)
+ δ∥Φ∥L∞ .

(4.11.10)

Using PT in place of P0 and QT in place of Q0, the analogue of (4.11.9) is

1

2(ϵ− δ)
W2

g

(
ρϵT

2
+δ
, ψϵT

2
+ϵ

)
− (ϵ− δ)

2
∥Φ∥L∞

≤I3ϵ
(
ρT

2
+δ, ψ

ϵ
T
2
+ϵ

)
≤ (1− ϵ)

2(ϵ− δ)
W 2
g

(
(1− ϵ)−1

(
ρϵT

2
+δ

− ϵδQT

)
, δPT

)
+

(ϵ− δ)

2
∥Φ∥L∞ . (4.11.11)

We add up the expressions in the first identities in (4.11.9), (4.11.10), and (4.11.11) to

obtain that

1

4δ
W2

g

(
ψϵT

2
−ϵ, σ

ϵ,∗
T
2
−δ

)
+

1

2(ϵ− δ)
W2

g

(
σϵ,∗T

2
−δ, σ

ϵ,∗
T
2
+δ

)
+

1

2(ϵ− δ)
W2

g

(
ρϵT

2
+δ
, ψϵT

2
+ϵ

)
− δ∥Φ∥L∞

(4.11.12)

≤I2ϵ
(
σϵ,∗T

2
−δ, σ

ϵ,∗
T
2
+δ

)
+ I1ϵ

(
ψϵT

2
−ϵ, σ

ϵ,∗
T
2
−δ

)
+ I3ϵ

(
ρϵT

2
+δ
, ψϵT

2
+ϵ

)
.
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Below, we minimize over the set of pairs
(
η0, η1

)
such that η0 ≥ ϵδQ0 and η1 ≥ ϵδQT

. By

an approximation argument, we can assume without loss of generality that η0 ̸= ϵδQ0 and

η1 ̸= ϵδQT
.

We combine (4.11.9), (4.11.10), and (4.11.11) to deduce that

1

4δ
W2

g

(
ψϵT

2
−ϵ, σ

ϵ,∗
T
2
−δ

)
+

1

4δ
W2

g

(
σϵ,∗T

2
−δ, σ

ϵ,∗
T
2
+δ

)
+

1

4δ
W2

g

(
ρϵT

2
+δ
, ψϵT

2
+ϵ

)
− ϵ∥Φ∥L∞

≤ inf
η0,η1,η0 ̸=ϵδQ0

,ϵη1 ̸=δQT

{
I1ϵ

(
ψϵT

2
−ϵ, η0

)
+ I2ϵ

(
η0, η1

)
+ I3ϵ

(
η1, ψ

ϵ
T
2
+ϵ

)
: η0 ≥ ϵδQ0 , ϵη1 ≥ δQT

}
≤ inf

η0,η1

{
(1− ϵ)

2(ϵ− δ)
W 2
g

(
δP0 , (1− ϵ)−1 (η0 − ϵδQ0)

)
+

(1− ϵ)

2(ϵ− δ)
W 2
g

(
(1− ϵ)−1 (η1 − ϵδQT

) , δPT

)
+

1

4δ
W2

g

(
η0, η1

)
+ ϵ∥Φ∥L∞ : η0 ≥ ϵδQ0 , η0 ̸= ϵδQ0 , ϵη1 ≥ δQT

, ϵη1 ̸= δQT

}
.

(4.11.13)

We choose an arbitrary P ∗ ∈ Ω \ {Q0, QT} and in the optimization problem, use

η0 := (1− ϵ)δP∗ + ϵδQ0 , η1 := (1− ϵ)δP∗ + ϵδQT

to conclude that

1

2(ϵ− δ)
W2

g

(
ψϵT

2
−ϵ, σ

ϵ,∗
T
2
−δ

)
+

1

4δ
W2

g

(
σϵ,∗T

2
−δ, σ

ϵ,∗
T
2
+δ

)
+

1

2(ϵ− δ)
W2

g

(
ρϵT

2
+δ
, ψϵT

2
+ϵ

)
− ϵ∥Φ∥L∞

≤ (1− ϵ)

2(ϵ− δ)

(
W 2
g

(
δP0 , δP∗

)
+W 2

g

(
δP∗, δPT

))
+

1

4δ
W2

g

(
(1− ϵ)δP∗ + ϵδQ0 , (1− ϵ)δP∗ + ϵδQT

)
+ ϵ∥Φ∥L∞

=
(1− ϵ)

2(ϵ− δ)

(
dist2g(P0, P

∗) + dist2g(P
∗, PT )

)
+

1

4δ
W 2
g

(
(1− ϵ)δP∗ + ϵδQ0 , (1− ϵ)δP∗ + ϵδQT

)
+ ϵ∥Φ∥L∞

Since

W 2
g

(
(1− ϵ)δP∗ + ϵδQ0 , (1− ϵ)δP∗ + ϵδQT

)
= ϵdist2g(Q0, QT ),

We conclude the proof of the lemma.
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Corollary 4.11.4. Assume Q0 ̸= P0, QT ̸= PQ and g is a simple metric on Ω.

(i) From every sequence in (0,∞) one can extract a subsequence (ϵn)n and find ρ∗1
2

such

that

lim sup
n→+∞,δn=ϵ2n

{
W2

g

(
σϵn,∗T

2
−δn

, ρ∗1
2

)
+W2

g

(
ρ∗1

2
, σϵn,∗T

2
+δn

)}
= 0.

(ii) We have the following sharper inequality:

lim sup
ϵ→0,δ=ϵ2

ϵ−1W2
g

(
σϵ,∗T

2
−δ, σ

ϵ,∗
T
2
+δ

)
≤ dist2g

(
Q0, QT

)
.

Proof. Since Ω is a bounded set, by Prokhorov’s theorem, P2(Ω) is compact for the weak

topology. Thus, it is compact for the Wg topology.

By Lemma 4.11.3, we obtain that {σϵ,∗T
2
−δ}ϵ>0 and {σϵ,∗T

2
+δ
}ϵ>0 share the same points of

accumulation, which proves (i).

By Lemma 4.11.3,

1

2(ϵ− δ)
W2

g

(
ψϵT

2
−ϵ, ρ

ϵ,∗
T
2
−δ

)
+

1

4δ
W2

g

(
σϵ,∗T

2
−δ, σ

ϵ,∗
T
2
+δ

)
+

1

2(ϵ− δ)
W2

g

(
ρϵ,∗T

2
+δ
, ψϵT

2
+ϵ

)
≤ (1− ϵ)

2(ϵ− δ)
dist2g

(
P0, P

∗
)
+

ϵ

4δ
dist2g

(
Q0, QT

)
+

(1− ϵ)

2(ϵ− δ)
dist2g

(
P ∗, PT

)
+ 2ϵ∥Φ∥L∞ .

(4.11.14)

Observe that as ϵ→ 0 and δ = ϵ2, we have

ψϵT
2
−ϵ ⇀ δP0 and ψϵT

2
+ϵ
⇀ δPT

.

Therefore, multiply inequality (4.11.14) by ϵ and let ϵ to zero. We use (i) to conclude

that

1

2
W2

g

(
δP0 , ρ

∗
1
2

)
+

1

2
W2

g

(
ρ∗1

2
, δPT

)
+

1

4
lim sup
ϵ→0,δ=ϵ2

ϵ−1W2
g

(
σϵ,∗T

2
−δ, σ

ϵ,∗
T
2
+δ

)
≤1

2
dist2g

(
P0, P

∗
)
+

1

4
dist2g

(
Q0, QT

)
+

1

2
dist2g

(
P ∗, PT

)
. (4.11.15)
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Since

1

2
W2

g

(
δP0 , δPT

)
= min

ν∈P(Ω)

{
W2

g

(
δP0 , ν

)
+W2

g

(
ν, δPT

)}
≤ W2

g

(
δP0 , ρ

∗
1
2

)
+W2

g

(
ρ∗1

2
, δPT

)
,

(4.11.15) implies

1

4
W2

g

(
δP0 , δPT

)
+

1

4
lim sup
ϵ→0,δ=ϵ2

ϵ−1W2
g

(
σϵ,∗T

2
−δ, σ

ϵ,∗
T
2
+δ

)
≤ 1

4
W2

g

(
δP0 , δPT

)
+

1

4
dist2g

(
Q0, QT

)
.

This concludes the proof of the corollary.
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CHAPTER 5

Recovery of Real Analytic Potential

Throughout this chapter, we assume that g ∈ G has already been recovered and is real

analytic. We recover Φ when it is real analytic.

5.1 Euclidean geodesic

Before studying the general case, we first study a simple case when g = Id, the Euclidean

metric. Since Ω is convex, the geodesics curves are straight line segments.

We set

DΩ := {Φ ∈ Cω(Ω̄× Ω̄) : Φ(x, x) = 0,Φ(x, y) = Φ(y, x)}

and

D∂Ω := {(P0, PT , Q0, QT ) ∈ (∂Ω)4 : d2(P0, PT ) + d2(Q0, QT ) ≤ d2(P0, QT ) + d2(P0, QT )}.

Define Ig : DΩ → C(D∂Ω,R) by

Ig[Φ](P0, PT , Q0, QT ) =

∫ 1

0

Φ(γP (t), γQ(t))dt,

where γP and γQ are constant-speed geodesics joining P0 to PT and Q0 to QT respectively.

We have access to the values of Ig[Φ](P0, PT , Q0, QT ) and would like to know if we can

recover Φ uniquely. Since Ig is a well-defined linear functional from DΩ to C(D∂Ω,R), our

problem is equivalent to showing that the kernel of Ig is trivial.

Lemma 5.1.1. If Ig[Φ] ≡ 0, then Φ(x, y) = 0, ∀(x, y) ∈ (∂Ω)2.
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Proof. Suppose otherwise. Without loss of generality, ∃(x0, y0) ∈ (∂Ω)2 such that x0 ̸= y0

and Φ(x0, y0) > 0. By continuity, there exists r > 0 such that

Φ(x, y) > 0, ∀(x, y) ∈ Br(x0)×Br(y0).

Take r′ > 0 small such that for all P0, PT ∈ B′
r(x0) ∩ ∂Ω and all Q0, QT ∈ B′

r(y0) ∩ ∂Ω,

we have

(P0, PT , Q0, QT ) ∈ D∂Ω and (γP (t), γQ(t)) ∈ (B′
r(x0) ∩ Ω)× (B′

r(y0) ∩ Ω).

Then Ig[Φ](P0, PT , Q0, QT ) > 0, thus a contradiction.

Lemma 5.1.2. If g = Id and Ig[Φ] ≡ 0, then there exists r > 0, such that Φ(x, y) =

0,∀x, y ∈ Ωr, where Ωr := {x ∈ Ω : d(x, ∂Ω) < r}.

Corollary 5.1.3. As Φ is real analytic and Ωr is open, Lemma 5.1.2 implies that Φ(x, y) =

0,∀(x, y) ∈ Ω2.

Note that if g was complex analytic, Lemma 5.1.2 is a direct consequence of Lemma

5.1.1. We now prove lemma 5.1.2. We take Ω̃ open such that Ω̄ ⊂ Ω̃ and suppose that

Φ ∈ Cω(Ω̃× Ω̃).

Proof. Since Φ ∈ Cω(Ω̃× Ω̃) and Φ|∂Ω×∂Ω ≡ 0, it is enough to show the following claim:

∂αx∂
β
yΦ(x, y) = 0, ∀α, β ∈ Nd, ∀x ̸= y ∈ ∂Ω.

We show the claim by induction.

Clearly, if |α| + |β| = 0, by Lemma 5.1.1, we have Φ(x, y) = 0, ∀x, y ∈ ∂Ω. Suppose

that the claim holds ∀α, β such that |α| + |β| < k for some k ∈ N. Fix x0 ̸= y0 ∈ ∂Ω.

Choose small enough neighborhoods Br(x0) and Br(y0) around x0, y0 respectively. Take

P0, PT ∈ ∂Ω ∩Br(x0) and Q0, QT ∈ ∂Ω ∩Br(y0).
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Moreover, choose orthonormal coordinate frames {ex0i }di=1 and {ey0i }di=1 based at x0, y0

respectively such that ex01 = n⃗x0 and ey01 = n⃗y0 , normal vectors pointing inward. In the flat

Euclidean setting, we have γP (t) = (1−t)P0+tPT and γQ(t) = (1−t)Q0+tQT . We compute

derivatives in the directions of the new coordinates. For αi ∈ N , we denote α = (α1, · · · , αd)

and set α! = α1!α2! · · ·αd!.

By the Taylor expansion, we have

I[Φ](P0, PT , Q0, QT )

=
∑
α,β

d∏
i,j=1

∂αi

e
x0
i

∂
βj

e
y0
j

Φ(x0, y0)

αi!βj!

∫ 1

0

d∏
i,j=1

[(γP (t)− x0)] · ex0i ]αi [(γQ(t)− y0)] · ey0j ]βjdt,

where

∂αi

e
x0
i

∂
βj

e
y0
j

Φ(x0, y0) =
dαi

dtαi
|t=0

dβj

dsβj
|s=0Φ(x0 + tex0i , y0 + sey0j ).

Notice we have the inductive hypothesis that

∂α1

e
x0
1
· · · ∂αd

e
x0
d

∂β1
e
y0
1
· · · ∂βd

e
y0
d

Φ)(x, y) ≡ 0 on ∂Ω× ∂Ω

such that |α|+ |β| ≤ k.

Thus in the above expansion, we have that

I[Φ](P0, PT , Q0, QT )

=
∑

|α|+|β|>k

d∏
i,j=1

∂αi

e
x0
i

∂
βj

e
y0
j

Φ(x0, y0)

αi!βj!

∫ 1

0

d∏
i,j=1

[(γP (t)− x0)] · ex0i ]αi [(γQ(t)− y0)] · ey0j ]βjdt.

We need to show that if derivatives of order k+1 do not vanish, we have IΦ(P0, PT , Q0, QT ) ̸=

0, hence a contradiction. First we notice the following. By inductive hypothesis, we have

∀i, j ∈ {2, 3, · · · , d}

∂ex0i (∂α1

e
x0
1
· · · ∂αd

e
x0
d

∂β1
e
y0
1
· · · ∂βd

e
y0
d

Φ)(x, y) = 0, (5.1.1)

and, by symmetry,

∂ey0j (∂α1

e
x0
1
· · · ∂αd

e
x0
d

∂β1
e
y0
1
· · · ∂βd

e
y0
d

Φ)(x, y) = 0. (5.1.2)
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Indeed whenever {ey0j } is not a normal direction, we need to compute, for instance,

∂ex01 ∂e
y0
2
Φ(x0, y0) = ∂ey02 (∂ex01 Φ(x0, y0)) =

d

dt
|t=0[∂xΦ(x0, γ(t)) · ex01 ], (5.1.3)

where γ(0) = y0, γ
′(0) = ey02 , γ(t) ∈ ∂Ω.

Therefore, from the inductive step, one cannot have that ∂i
e
x0
1
∂j
e
y0
1
Φ(x0, y0) = 0 if i+ j =

k + 1 as all other derivatives of order k + 1 will vanish.

Then the Taylor expansion yields that

I[Φ](P0, PT , Q0, QT )

=
∑

|α|+|β|>k+1

d∏
i,j=1

∂αi

e
x0
i

∂
βj

e
y0
j

Φ(x0, y0)

αi!βj!

∫ 1

0

d∏
i,j=1

[(γP (t)− x0)] · ex0i ]αi [(γQ(t)− y0)] · ey0j ]βjdt

+
∑

i+j=k+1

∂i
e
x0
1
∂j
e
y0
1
Φ(x0, y0)

i!j!

∫ 1

0

[(γP (t)− x0)] · ex0i ]i[(γQ(t)− y0)] · ey0j ]jdt.

Set P0 = x0 and Q0 = y0, we get γP (t) − x0 = (1 − t)x0 + tPT = t(PT − x0) and

γQ(t)− x0 = (1− t)y0 + tQT = t(QT − y0)

Suppose that ∂i
e
x0
1
∂j
e
y0
1
Φ(x0, y0) ̸= 0 for some pair (x0, y0) ∈ (∂Ω)2 and we will show that

we can get a contradiction. i.e. I[Φ](x0, PT , y0, QT ) ̸= 0 for some PT , QT ∈ ∂Ω.

We have ∫ 1

0

[(γP (t)− x0)] · ex0i ]i[(γQ(t)− y0)] · ey0j ]jdt

=

∫ 1

0

ti[(PT − x0)] · ex01 ]itj[(QT − y0)] · ey0j ]jdt = [(PT − x0)] · ex01 ]i[(QT − y0)] · ey0j ]j
1

k + 2
.

Set

i0 := argmin{i = ∂i
e
x0
1
∂k+1−i
e
y0
1

Φ(x0, y0) ̸= 0}.

Without loss of generality, assume that i0 ≤ ⌊k+1
2
⌋. Otherwise, we can swap x0 and y0.

We also assume that ∂i0
e
x0
1
∂k+1−i0
e
y0
1

Φ(x0, y0) > 0.

Let

ϵ := (QT − y0) · ey01 and δ(ϵ) := (PT − x0) · ex01 ,
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where δ is as a function of ϵ. We can take δ(ϵ) = Rϵ.

We then have∑
i+j=k+1

∂i
e
x0
1
∂j
e
y0
1
Φ(x0, y0)

i!j!

∫ 1

0

d∏
i,j=1

[(γP (t)− x0)] · ex0i ]i[(γQ(t)− y0)] · ey0j ]jdt

=
∂i0
e
x0
1
∂k+1−i0
e
y0
1

Φ(x0, y0)

i0!(k + 1− i0)!

∫ 1

0

[(γP (t)− x0)]
1

k + 2
δ(ϵ)i0ϵk+1−i0)

+
k+1∑

i=i0+1

∂i
e
x0
1
∂k+1−i0
e
y0
1

Φ(x0, y0)

i!(k + 1− i)!

1

k + 2
Riϵk+1),

where i ∈ {i0 + 1, · · · , k + 1}.

Now it only remains to show that

∑
|α|+|β|>k+1

d∏
i,j=1

∂αi

e
x0
i

∂
βj

e
y0
j

Φ(x0, y0)

αi!βj!

∫ 1

0

d∏
i,j=1

[(γP (t)−x0)]·ex0i ]αi [(γQ(t)−y0)]·ey0j ]βjdt = o(ϵi0+k+1).

In particular,∫ 1

0

d∏
i,j=1

tαi [(γP (t)− x0)] · ex0i ]αitβj [(γQ(t)− y0)] · ey0j ]βjdt =
1

|α|+ |β|

d∏
i,j=1

δ(ϵ)αiϵβj

=
1

|α|+ |β|

d∏
i,j=1

Rαiϵαiϵβj

Taking summations over i, j, we get 1
|α|+|β|R

|α|ϵ|α|+|β|. Notice that |α|+ |β| ≥ k + 2.

Choose ϵ small enough such that ϵ < [radius of convergence at (x0, y0)]
2. When R < 1,∑

|α|+|β|≥k+2

Cα,βR
|α|ϵ|α|+|β|−(k+2)

is bounded. Thus∑
|α|+|β|≥k+2

1

|α|! + |β|!
Cα,βR

|α|ϵ|α|+|β| = ϵk+2
∑

|α|+|β|≥k+2

Cα,βR
|α|ϵ|α|+|β|−(k+2) = o(ϵk+2),

as desired.
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5.2 General geodesic

We now consider general g ∈ Cω(Ω̃), where Ω̃ is open such that Ω̄ ⊂ Ω̃. We prove the lemma

5.1.2 in this general case.

Since the geodesics are not straight line segments here, new local coordinates are needed.

We use the exponential map exp defined locally over the smooth manifold. One can find

more properties about the exponential map and its derivative in Chapter 4 section 6 of [30].

Given v ∈ Tx0Ω̄, a geodesic γ : [0, 1] → Ω̄, with γ(0) = x0, γ
′(0) = v is given by

γ(t) = expx0(tv). Also d(expx0)0(v) =
d
dt
|t=0expx0(tv) = v.

Let x0 ∈ ∂Ω. Then ∃U ⊂ Ω open such that x0 ∈ U and expx0 : exp−1
x0
(U) → U is a

smooth diffeomorphism.

For x0, PT ∈ U , the geodesic connecting x0 to PT on ∂Ω is given by

γP (t) = expx0(t · exp
−1
x0
(PT )).

We then have

Ig[Φ](x0, PT , y0, QT ) =

∫ 1

0

Φ(γP (t), γQ(t))dt

=

∫ 1

0

Φ(expx0(t(expx0)
−1(PT )), expy0(t(expy0)

−1(QT )))dt

=

∫ 1

0

Φ̃x0,y0(t(expx0)
−1(PT ), t(expy0)

−1(QT ))dt,

where

Φ̃x0,y0(v, w) := Φ(expx0(v), expy0(w)) = Φ(expx0(
d∑
i=1

vie
x0
i ), expy0(

d∑
i=1

wie
y0
i )).

Here v, w ∈ (Tx0Ω̃)× (Ty0Ω̃) and (vi)
d
i=1, (wi)

d
i=1 ∈ Rd are the coordinates of v, w in the bases

{ex0i }di=1, {e
y0
i }di=1 respectively.

Notice that Ω is geodesic convex with respect to g. We may choose x0 close enough to

PT and ex01 in the direction of PT − x0 such that Projex01 (exp−1
x0
(PT )) = ex01 · exp−1

x0
(PT ) > 0.
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Likewise, we may assume that Projey01 (exp−1
y0
(QT )) = ey01 · exp−1

y0
(QT ) > 0.

Set vPT
:= exp−1

x0
(PT ), wQT

:= exp−1
y0
(QT ). Then∫ 1

0

Φ̃x0,y0(t(expx0)
−1(PT ), t(expy0)

−1(QT ))dt

=

∫ 1

0

1∑
α,β

∂α1
v1

· · · ∂αd
vd
∂β1w1

· · · ∂βdwd
Φ̃x0,y0(0, 0)

(|α|)!(|β|)!

d∏
i,j=1

(t(vPT
)i)

αi(t(wQT
)j)

βjdt,

where α = (α1, · · · , αd), β = (β1, · · · , βd).

To compute the cross derivatives, let’s prove the following lemma.

Lemma 5.2.1. If ∂αx∂
β
yΦ(x, y) = 0, where x, y ∈ ∂Ω ⊂ Ω̃, and |α|+ |β| ≤ k, then

∂αx∂
β
yΦ(x0, y0) = ∂αv ∂

β
wΦ̃(0, 0) = 0,

for |α|+ |β| = k + 1.

Proof. Define

Φ̃x0,y0(v, w) := Φ(expx0(v), expy0(w)).

Then

∂αv ∂
β
wΦ̃x0,y0(v, w) = ∂αv ∂

β
wΦ(expx0(

d∑
i=1

vie
x0
i ), expy0(

d∑
j=1

wje
y0
j ))

To develop our intuition, we first consider the first-order derivatives, for instance,

∂v1(Φ(expx0(
d∑
i=1

vie
x0
i ), expy0(

d∑
j=1

wje
y0
j )))

=
d∑
j=1

∂xjΦ(expx0(
d∑
i=1

vie
x0
i ), expy0(

d∑
j=1

wje
y0
j ))(d(expx0)|∑d

i=1 vie
x0
i
ex01 · ex0j ).

Then the second-order derivatives, for instance,

∂2v1(Φ(expx0(
d∑
i=1

vie
x0
i ), expy0(

d∑
j=1

wje
y0
j )))
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=
d∑
j,k

∂2xj ,xkΦ(expx0(
d∑
i=1

vie
x0
i ), expy0(

d∑
j=1

wje
y0
j ))

·(d(expx0)|∑d
i=1 vie

x0
i
ex01 ) · ex0j ) · (d(expx0)|∑d

i=1 vie
x0
i
ex01 ) · ex0k )

+
d∑
j=1

∂xjΦ(expx0(
d∑
i=1

vie
x0
i ), expy0(

d∑
j=1

wje
y0
j ))∂v1(d(expx0)|∑d

i=1 vie
x0
i
ex01 ) · ex0j )

Restrict the last equality to (v, w) = (0, 0), we get ∂2v1Φ̃x0,y0(0, 0) = ∂2x1,x1Φ(x0, y0) as

d(expx0)0 = Id and ∂xjΦ(x0, y0) = 0 by the assumption which says that all lower order

derivatives of Φ at (x0, y0) vanish. Under these restrictions, we have

d(expx0)|0e
x0
i · ex0

ĩ
= δĩi,

and

d(expy0)|0e
y0
j · ey0

j̃
= δjj̃.

Here δĩi or δjj̃ is the Kronecker-delta function.

Denote α = (αi)
d
i=1, α̃ = (α̃ĩ)

d
ĩ=1

.

As all lower order derivatives of Φ at (x0, y0) vanish, we then have

∂αv ∂
β
wΦ̃(v, w) = ∂αv ∂

β
wΦ(expx0(

d∑
i=1

vie
x0
i ), expy0(

d∑
j=1

wje
y0
j ))

=
∑

|α̃|+|β̃|=k+1

∂α̃x∂
β̃
yΦ(expx0(

d∑
i=1

vie
x0
i ), expy0(

d∑
j=1

wje
y0
j ))·

d,d̃∏
i=1,̃i=1

(d(expx0)|∑d
i=1 vie

x0
i
ex01 · ex0

ĩ
)α̃ĩ

d,d̃∏
j=1,j̃=1

(d(expy0)|∑d
j=1 wje

x0
j
ey01 · ey0

j̃
)β̃j̃

+ (lower order terms for Φ) × (higher order terms for exp) = 0.

Now by the Taylor expansion,

0 = Ig[Φ](x0, PT , y0, QT )
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=

∫ 1

0

Φ̃x0,y0(t(expx0)
−1(PT ), t(expy0)

−1(QT ))dt

=

∫ 1

0

1∑
α,β

∂α1
v1

· · · ∂αd
vd
∂β1w1

· · · ∂βdwd
Φ̃x0,y0(0, 0)

(|α|)!(|β|)!

d∏
i,j=1

(t(vPT
)i)

αi(t(wQT
)j)

βjdt.

We can use the same technique in the proof of the lemma 5.1.2 to check the derivatives

vanishing by change of coordinates and induction. We thus get the following theorem.

Theorem 5.2.2. If Ig[Φ] ≡ 0, then ∃r > 0, such that Φ(x, y) = 0,∀x, y ∈ Ωr, where

Ωr := {x ∈ Ω : d(x, ∂Ω) < r}. Here g ∈ Cω(Ω̃) and Ω̃ is open such that Ω̄ ⊂ Ω̃.
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CHAPTER 6

Appendix

6.1 Probabilistic representation of measures

We review some general properties of probabilistic representation of measures in this section.

We use disintegration theory as in Chapter 2.

Assume η is a Borel probability measure on Rd × ΓT which satisfies∫
Rd×ΓT

(∫ T

0

|γ̇(τ)|2dτ
)
η(dq, dγ) <∞. (6.1.1)

Define the probability Borel measure m on [0, T ]× R2d by∫
[0,T ]×R2d

φ(t, x, ξ)m(dt, dx, dξ) :=

∫
Rd×ΓT

(∫ T

0

φ(τ, γ(τ), γ̇(τ))dτ

)
η(dq, dγ),

for all φ ∈ Cc
(
[0, T ]× R2d

)
.

Taking φ ≡ φ(t), we see that the projection of m onto [0, T ] is the Lebesgue measure.

Therefore, by the theory of disintegration of measures (see [4] section 5.3), there exists a

path t 7→ mt of Borel probability measures on R2d such that∫
[0,T ]×R2d

φ(t, x, ξ)m(dt, dx, dξ) =

∫ T

0

(∫
R2d

φ(τ, x, ξ)mt(dx, dξ)

)
dt

for all φ ∈ Cc
(
[0, T ]× R2d

)
. The theory of disintegration of measures gives all the measura-

bility properties we will rely on.

Let σt be the first marginal of mt. We apply the disintegration theory again to find a

Borel map (t, x) 7→ mt,x on Rd such that∫
R2d

φ(x, ξ)mt(dx, dξ) =

∫
Rd

(∫
Rd

φ(x, ξ)mt(dξ)

)
σt(dx), a.e. t ∈ (0, T ), (6.1.2)
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for all φ ∈ Cc
(
R2d
)
.

Note that ∫
Rd

f(x)σt(dx) =

∫
Rd×ΓT

f(γ(t))η(dq, dγ), a.e. t ∈ (0, T ), (6.1.3)

for all f ∈ Cc(Rd).

We set

vt(x) :=

∫
Rd

ξmt(dξ) (6.1.4)

and set

β(τ) :=

(∫
Rd×ΓT

|γ̇(τ)|2η(dq, dγ)
) 1

2

.

By (6.1.1), β ∈ L2(0, T ).

By Jensen’s inequality∫
Rd×Rd

|ξ|2mτ (dx, dξ)dτ =

∫
Rd

(∫
Rd

|ξ|2mt(dξ)

)
στ (dx) ≥

∫
Rd

|vτ (x)|2στ (dx).

Integrating both sides of the previous inequality over [0, T ], we obtain

∞ >

∫
Rd×ΓT

(∫ T

0

L(γ(τ), γ̇(τ))dτ

)
η(dq, dγ) ≥

∫ T

0

(∫
Rd

|vτ (x)|2στ (dx)
)
dτ. (6.1.5)

Proposition 6.1.1. Suppose a Borel probability measure on Ω̄ × ΓT and satisfies (6.1.1).

Then the following hold.

(i) The path t 7→ σ belongs to ΓT,2 and (6.1.3) holds for every t ∈ [0, T ].

(ii) The map (t, x) 7→ vt(x) defined in (6.1.4) is a velocity for σ.

(iii) We have∫ T

0

∫
Rd

L(x, vτ (x))στ (dx) ≤
∫
Rd×ΓT

(∫ T

0

L
(
γ(τ), γ̇(τ)

)
dτ

)
η(dq, dγ).

Proof. For any γ ∈ ΓT,2, we have

χRd\Ω̄(γ(τ)) = 0, ∀t ∈ [0, T ].
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Thus ∫ T

0

σt
(
Rd \ Ω̄

)
dt =

∫
Rd×ΓT

(∫ T

0

χΩ̄(γ(τ)))dτ

)
η(dq, dγ) = 0.

This proves that for almost every t, σt is supported by Ω̄.

(i) For each 0 ≤ s < t ≤ T , define the measures πst by∫
Rd×Rd

f(x, y)πst(dx, dy) =

∫
Rd×ΓT

f
(
γ(s), γ(t))η(dq, dγ),

for f ∈ Cc(Rd × Rd).

We use (6.1.3) to conclude that the first marginal of πst is σs and the second marginal of

πst is σt. Thus

W 2
2 (σs, σt) ≤

∫
Rd×Rd

|x− y|2πst(dx, dy)

=

∫
Rd×ΓT

∣∣∣∣ ∫ t

s

γ̇(τ)dτ

∣∣∣∣2η(dq, dγ)
≤
∫
Rd×ΓT

(∫ t

s

|γ̇(τ)|dτ
)2

η(dq, dγ).

We use Minkowski inequality to conclude that

W 2
2 (σs, σt) ≤

(∫ t

s

β(τ)dτ

)2

.

This proves that t 7→ σ belongs to ΓT,2. Thus (6.1.3) holds for every t ∈ [0, T ].

(ii) Let φ ∈ C∞
c ((0, T )× Rd). We use (6.1.2) and (6.1.3) to obtain that∫ T

0

(∫
Rd

(
∂tφ(t, q) + ⟨∇φ(t, q)⟩

)
σt(dq)

=

∫ T

0

(∫
Rd×ΓT

∂τφ(τ, γ(τ))η(dq, dγ)

)
dτ +

∫ T

0

(∫
Rd×Rd

⟨ξ,∇φ(τ, x)⟩mτ (dq, dξ)

)
dτ

=

∫ T

0

(∫
Rd×ΓT

(
∂τφ(τ, γ(τ)) +

〈
γ̇(τ),∇φ

(
τ, γ(τ)

)〉)
η(dq, dγ)

)
dτ.
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We use Fubini’s theorem to conclude that∫ T

0

(∫
Rd

(
∂tφ(t, q) + ⟨∇φ(t, q)⟩

)
σt(dq) =

∫
Rd×ΓT

(∫ T

0

∂τ

(
φ
(
τ, γ(τ)

))
dτ

)
η(dq, dγ)

=

∫
Rd×ΓT

(
φ
(
T, γ(T )

)
− φ

(
0, γ(0)

))
η(dq, dγ)

=0.

This, together with (6.1.5), proves (ii).

Since L(x, ·) is a convex function for all x ∈ Ω̄, we use Jensen’s inequality to obtain that

L(x, vτ (x)) ≤
∫
Rd

L(x, ξ)mτ,x(dξ).

Thus ∫
Rd

L(x, vτ (x))στ (dx) ≤
∫
R2d

L(x, ξ)mτ (dx, dξ).

Integrating, we conclude that∫ T

0

(∫
Rd×Rd

L(x, vτ (x))m
τ (dx, dξ)

)
dτ ≤

∫ T

0

(∫
Rd×Rd

L(x, ξ)mτ (dx, dξ)

)
dτ.

This reads off the desired identity in (iii).

6.2 Properties of cost functions

Assume

L(x, ξ) := L0(v), Φ ≡ 0.

Then the optimal path connecting x := Pt0 to y := Pt1 is given by

γ(τ) = Pt0 +
τ − t0
t1 − t0

(
Pt1 − Pt0

)
, ∀τ ∈ [t0, t1].
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Thus for s < t, we have

cts
(
γ(s), γ(t)

)
= (t− s)L0

(
Pt − Pt
t− s

)
= (t− s)L0

(
Pt1 − Pt0
t1 − t0

)
.

We see that

∂sc
t
s

(
γ(s), γ(t)

)
= −L0

(
Pt1 − Pt0
t1 − t0

)
, ∂tc

t
s

(
γ(s), γ(t)

)
= L0

(
Pt1 − Pt0
t1 − t0

)
.

For general L, we have

cts
(
γ(s), γ(t)

)
:=

∫ t

s

(
L(γ, γ̇) + Φ(γ)

)
dτ, (6.2.1)

Then

∂tc
t
s

(
γ(s), γ(t)

)
= L(γ(t), γ̇(t)) + Φ(γ(t)), ∀s, t ∈ (t0, t1). (6.2.2)

and

∂sc
t
s

(
γ(s), γ(t)

)
= −L(γ(s), γ̇(s))− Φ(γ(s)), ∀s, t ∈ (t0, t1). (6.2.3)

We differentiable once more to conclude that

(s, t) 7→ cts
(
γ(s), γ(t)

)
is a map in C2

(
[t0, t1]

)

6.3 An useful variant of Theorem 3.3 in [11]

Let α < β be real numbers and assume that f ∈ W 1,1(α, β). Let g = f ′, where f ′ is the

distributional derivative. We have g ∈ L1(α, β) and

f(x) = f(α) +

∫ x

α

g(t)dt.

If x0 ∈ (α, β) is a Lebesgue point for g then (see [11] Theorem 1.34)

lim
B→x0

1

L1(B)

∫
B

|g − g(x0)|dx = 0,
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where the limit is taken over all closed balls B containing x0 and diam(B) → 0. In particular,

for h > 0, Bh = [x0, x0 + h], we have

lim
h→0+

f(x0 + h)− f(x0)

h
= lim

h→0+

∫
Bh
g(x)dx

L1(Bh)
= g(x0).

Similarly, for h < 0, Dh = [x0 + h, x0], we have

lim
h→0−

f(x0 + h)− f(x0)

h
= lim

h→0+

∫
Dh
g(x)dx

L1(Dh)
= g(x0).

This proves that f is differentiable at x0.

Let

Z := {x ∈ (α, β) : f(x) = 0, x ∈ dom(f ′)}.

Lemma 6.3.1. For almost every x ∈ Z, we have f ′(x) = 0.

Proof. Set

N := {x ∈ Z : x is not a point of density one in Z}.

If x0 ∈ Z \N such that f ′(x0) > 0, since

f(x0 + h) = h

(
f ′(x0) +

o(h)

h

)
,

we conclude that there exists δ > 0 such that

f > 0 on (x0, x0 + δ].

Thus [x0, x0+ δ]∩Z = {x0}. This contradicts the fact that x0 ∈ Z \N . Thus f ′(x0) = 0.

Similarly, we show that f ′(x0) < 0.

In conclusion,

Z \N ⊂ dom(f ′) ∩ {f ′ = 0}.

Since L1(N) = 0, this proves the Lemma.
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6.4 Special properties of Wg(δP0
, ν)

We use the notation γt,ys,x as in Remark 3.6.3 (ii) and define the map (t, y) ∈ [0, 1]×Ω 7→ Rd

by

Υ(t, y) := γ1,y0,P0
(t).

Given ν ∈ P(Ω), we define the probability measures

σt = Υ(t, ·)#ν.

Note that ∫
Ω

φ(y)σt(dy) =

∫
Ω

φ
(
γy(t)

)
ν(dy), ∀φ ∈ Cc(Rd) (6.4.1)

For a compact set K := supp (ν), we set

ΩP0 :=
(
∪y∈K γ1,y0,P0

[0, 1]
)
.

Lemma 6.4.1. The map Υ is continuous. Thus ΩP0 is a compact set.

Proof. In order to show the lemma, assume that (tn, yn) ⊂ [0, 1]× Ω converges to (t, y).

By Remark 3.6.3 (ii), (γ1,y
n

0,P0
)n converges to γ1,y0,P0

in C1
(
[0, 1],Ω

)
. Thus

lim
n→∞

Υ(tn, y
n) = lim

n→∞
γ1,y

n

0,P0
(tn) = γ1,y0,P0

(t) = Υ(t, y).

This proves that Υ is continuous. Thus ΩP0 = Υ([0, 1]×K) is a compact set.

Remark 6.4.2. The goal of this remark is to lay down detailed arguments supporting the

fact that the identity supp (σt) = Υ(t, ·)[0, 1] is a consequence of the continuity property of

the map Υ(t, ·).
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(i) If y ∈ supp (ν), δ > 0 and we denote by Bδ(a), the open ball of center a and radius δ,

then

σt
(
Bδ(Υ(t, y)

)
= ν

{
x : |Υ(t, x)−Υ(t, y) < δ

}
.

Since Υ(t, ·) is a continuous function and
{
x : |Υ(t, x) − Υ(t, y) < δ

}
is an open set

containing y, we conclude that we can find r > 0 such that

Br(y) ⊂
{
x : |Υ(t, x)−Υ(t, y) < δ

}
.

Thus

σt
(
Bδ(Υ(t, y)

)
≥ ν(Br(y)) > 0, ∀δ > 0, ∀y ∈ supp (ν).

In other words, Υ(t, y) ∈ supp (σt). Hence we have proven that

Υ(t, ·)(supp (ν)) ⊂ supp (σt).

(ii) To show the reverse inclusion, we observe that since Υ(t, ·) is continuous, Υ(t, ·)(supp (ν))

is a closed set. Hence if z ̸∈ Υ(t, ·)(supp (ν)), 2δ∗ := dist
(
z,Υ(t, ·)(supp (ν))

)
> 0.

Let ϕ ∈ Cc(Bδ∗(z)). We have∫
Rd

ϕ(ω)σt(dω) =

∫
Rd

ϕ
(
Υ(t, y)

)
ν(dy) = 0, ∀ϕ ∈ Cc(Bδ∗(z)).

Then σt
(
Bδ∗(z)

)
= 0 and z ̸∈ supp (σt). Hence we have proven that(

Υ(t, ·)(supp (ν))
)c

⊂
(
supp (σt)

)c
,

which means that supp (σt) ⊂ Υ(t, ·)(supp (ν)).

6.5 Uniform bounds on v̂ϵ and differentials of L̂g,ϵ

We have

4ϵ2
∫ 1

0

FΦ(σ̂
ϵ
s)ds ≤ Âϵ[σ̂ϵ, v̂ϵ]− 1

2
dist2g

(
P0, PT

)
≤ 4ϵ2

∫ 1

0

FΦ(σ̂
0
s)ds (6.5.1)
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Adapting the ideas of the proof of Proposition 3.11 in [16] to the actions Âϵ, we conclude

conservation of the Hamiltonian in the sense that if we set p̂ϵ = g(x)v̂ϵ, then

s 7→ h(s) :=
1

2

∫
Ω̄

⟨g−1(x)p̂ϵ(x), p̂ϵ(x)⟩σ̂ϵs(dx)− 4ϵ2FΦ(σ̂
ϵ
s)

is independent of s. Replacing p̂ϵ by g(x)v̂ϵ, and using the fact that

h(s) =

∫ 1

0

h(t)dt,

we obtain

1

2

∫
Ω̄

⟨g(x)v̂ϵs(x), v̂ϵs(x)⟩σ̂ϵs(dx)−4ϵ2FΦ(σ̂
ϵ
s) =

∫ 1

0

(
1

2

∫
Ω̄

⟨g(x)v̂ϵt(x), v̂ϵt(x)⟩σ̂ϵt(dx)−4ϵ2FΦ(σ̂
ϵ
t)

)
dt.

Rearranging, we obtain that

1

2

∫
Ω̄

⟨g(x)v̂ϵs(x), v̂ϵs(x)⟩σ̂ϵs(dx) = Âϵ[σ̂ϵ, v̂ϵ] + 4ϵ2FΦ(σ̂
ϵ
s)− 8ϵ2

∫ 1

0

FΦ(σ̂
ϵ
t)dt

This, together with (6.5.1), implies

8ϵ2
(
FΦ(σ̂

ϵ
s)−

∫ 1

0

FΦ(σ̂
ϵ
t)

)
≤
∫
Ω̄

⟨g(x)v̂ϵs(x), v̂ϵs(x)⟩σ̂ϵs(dx)− dist2g
(
P0, PT

)
≤8ϵ2

(∫ 1

0

FΦ(σ̂
0
t )dt+ FΦ(σ̂

ϵ
s)

)
.

Thus ∣∣∣∣ ∫
Ω̄

⟨g(x)v̂ϵs(x), v̂ϵs(x)⟩σ̂ϵs(dx)− dist2g
(
P0, PT

)∣∣∣∣ ≤ 8ϵ2∥Φ∥L∞ . (6.5.2)

Since

∂tL̂
g,ϵ(t, q, v) =∂tα̂

ϵ(t, q)

=4ϵ2
∫
Ω̄

〈
∇q2Φ(q, q1), v̂

ϵ
t(q2)

〉
σ̂ϵt(dq2)

−4ϵ2
∫
Ω̄2

(〈
∇q1Φ(q1, q2), v̂

ϵ
t(q1)

〉
+
〈
∇q2Φ(q1, q2), v̂

ϵ
t(q2)

〉)
σ̂ϵt(dq1)σ̂

ϵ
t(dq2),

we conclude that

|∂tL̂g,ϵ(t, q, v)| ≤ 4ϵ2
(
2∥∇q2Φ∥L∞ + ∥∇q1Φ∥L∞

)
|v̂ϵt |g,L2(σϵ

t )
.

This, together with (6.5.2), implies

|∂tL̂g,ϵ(t, q, v)| ≤ 12ϵ2∥∇Φ∥L∞

(
dist2g

(
P0, PT

)
+ 8ϵ2∥Φ∥L∞

) 1
2
. (6.5.3)
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6.6 On Lasry-Lions strictly monotone functions

Recall that given Φ ∈ C2(R2d) symmetric, we defined

FΦ(µ) :=

∫
Rd

Φ(x, y)µ(dy).

When Φ ∈ C2(Rd) is even, we will abuse notation and continuous to write

FΦ(µ) :=

∫
Rd

Φ(x− y)µ(dy).

Let M(Rd) be the set of finite signed Borel measures on Rd. In this section, we would like

to find examples of Φ ∈ C2(Rd) such that FΦ is either Lasry–Lions monotone or Lasry–Lions

strictly monotone. We would also like to find conditions on Φ ∈ C2(Rd) even, such that

µ ∈ M(Rd) 7→ FΦ(µ) :=

∫
Rd

Φ(x− y)µ(dy)

is either Lasry–Lions monotone or Lasry–Lions strictly monotone.

This means that either

µ ∈ P2(Rd) 7→ FΦ(µ) :=
1

2

∫
R2d

Φ(x− y)µ(dx)µ(dy)

is convex or strictly convex.

If µ = µ1 − µ0 ̸= 0 and µ0, µ1 ∈ P2(Rd), we set µt := (1− t)µ0 + tµ1. Then

d2

dt2
FΦ(µt) =

∫
R2d

Φ(x− y)(µ1 − µ0)(dx)(µ1 − µ0)(dy) (6.6.1)

must be either non–negative or positive. This statement is related to Bôchner Lemma on

positive definite functions.
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6.6.0.1 Example and Polynomials

(i) Set Φ0(µ) =
1
2
|x|2. Using the fact that µ := µ1 − µ0 is of null average we have∫

R2d

Φ(x− y)µ(dx)µ(dy)

=

∫
Rd

µ(dy)

∫
Rd

(|x|2 + |y|2 − 2⟨x, y⟩)µ(dx)

=

∫
Rd

(∫
Rd

|x|2µ1(dx)−
∫
Rd

|x|2µ0(dx)− 2
〈∫

Rd

xµ1(dx)−
∫
Rd

xµ0(dx), y
〉)
µ(dy)

=− 2

∫
Rd

(〈∫
Rd

xµ1(dx)−
∫
Rd

xµ0(dx), y
〉)
µ(dy)

=− 2

∣∣∣∣ ∫
Rd

xµ1(dx)−
∫
Rd

xµ0(dx)

∣∣∣∣2
Hence −FΦ0 is Lasry–Lions monotone, but fails to be strictly monotone.

(ii) Consider

F1(µ) =
1

2

∫
R2d

|x+ y|2µ(dx)µ(dy).

As above, we have

d2

dt2
F1(µt) =

∫
Rd

µ(dy)

∫
Rd

(|x|2 + |y|2 + 2⟨x, y⟩)µ(dx)

=

∫
Rd

(∫
Rd

|x|2µ1(dx)−
∫
Rd

|x|2µ0(dx) + 2
〈∫

Rd

xµ1(dx)−
∫
Rd

xµ0(dx), y
〉)
µ(dy)

=2

∫
Rd

(〈∫
Rd

xµ1(dx)−
∫
Rd

xµ0(dx), y
〉)
µ(dy)

=2

∣∣∣∣ ∫
Rd

xµ1(dx)−
∫
Rd

xµ0(dx)

∣∣∣∣2
Hence (q, µ) 7→

∫
Rd |x+ y|2µ(dy) is Lasry–Lions monotone, but fails to be strictly mono-

tone.

(iii) For any a, b > 0, the following functions are Lasry–Lions monotone:

F(a,b)(q, µ) = a

∫
Rd

|x+ y|2µ(dy)− b

∫
Rd

|x+ y|2µ(dy) =
∫
Rd

Φ(a,b)(x, y)µ(dy)

where, Φ(a,b) are the polynomials

Φ(a,b)(x, y) = (a− b)(|x|2 + |y|2) + 2(a+ b)⟨x, y⟩
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In particular, F(1/2,1/2) is Lasry–Lions monotone and Φ(1/2,1/2) = ⟨x, y⟩. This is the most

important case since the contribution of |x|2 and |y|2 is immaterial. In general, Φ(a,b)(x, y)

is not a function of solely x− y.

Lemma 6.6.1. Let ν be a finite Radon measure on R and let λ 7→ ϕλ ∈ C2(Rd,Rd) be a

continuous function for the uniform topology and such that there exists c0 > 0 such that

|ϕλ(x)| ≤ c0(1 + |x|2) and |∇2ϕλ(x)| ≤ c0 for all x ∈ Rd.

Set

Φ(x, y) =

∫
R
⟨ϕλ(x), ϕλ(y)⟩ν(dλ).

Then FΦ is Lasry–Lions monotone.

Proof. Given µ0, µ1 ∈ P2(Rd), let set µ = µ1 − µ0. Notice that we have

2FΦ(µ) =

∫
R
ν(dλ)

∫
Rd

〈
ϕλ(x),

∫
Rd

ϕλ(y)(µ1(dy)− µ0(dy)
〉
µ(dx)

=

∫
R

∣∣∣∣ ∫
Rd

ϕλ(y)(µ1(dy)− µ0(dy)
〉∣∣∣∣2ν(dλ).

Remark 6.6.2. (i) Observe that if ν is an average of Dirac masses, then Lemma 6.6.1 is

applicable to

Φ(x, y) =
n∑
i=1

⟨ϕi(x), ϕi(y)⟩,

provided that there exists c0 > 0 such that for any i, we have |ϕi(x)| ≤ c0(1 + |x|2) and

|∇2ϕi(x)| ≤ c0 for all x ∈ Rd.

(ii) Given x = (x1, · · · , xd), y = (y1, · · · , yd) ∈ Rd, we use the notation

xα = xα1
1 · · ·xαd

d , ⟨xα, yβ⟩ =
d∑
i=1

xαi
i y

βi
i , ∀α = (α1, · · · , αd) ∈ N, β = (β1, · · · , βd) ∈ N.
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Given k ∈ N, let Nk be the cardinality of {α ∈ N : |α|ℓ1 = k}. We choose a bounded set

(Cα) ⊂ (0,∞) and define

Φ(x, y) =
∞∑
k=0

1

2k+1

∑
|α|ℓ1=k

Cα
Nk

⟨xα, yβ⟩.

Given µ0, µ1 ∈ P2(Rd) and setting µ = µ1 − µ0, we have∫
R2d

Φ(x, y)µ(dx)µ(dy) =
∞∑
k=0

1

2k+1

∑
|α|ℓ1=k

Cα
Nk

∣∣∣∣ ∫
Rd

xα(µ1(dx)− µ0(dx))

∣∣∣∣2 ≥ 0.

Furthermore, ∫
R2d

Φ(x, y)µ(dx)µ(dy) = 0

implies ∫
Rd

xαµ0(dx) =

∫
Rd

xαµ1(dx), ∀α ∈ N. (6.6.2)

Since span{xα : α ∈ N} is a dense subset of C(K) for any compact set K ⊂ Rd, (6.6.2)

implies that µ0 = µ1. Thus, FΦ is Lasry–Lions strictly monotone. Note that the proof does

not encompass the case where Φ is a polynomial since we required that Cα > 0 for all α.

6.6.0.2 Non-polynomial potential functions solely depending on x− y

Given a, b ∈ R, if we w = a+ ib, we set |w|2 = a2 + b2 ≥ 0.

Let S(Rd) be the Schwartz space, which is the set of f ∈ C∞(Rd,C) such that for any

multi–index α ∈ Nd
0 and any non-negative number N , the functions x 7→ (1 + |x|N)f(x) are

bounded. The standard topology on S(Rd) is in such a way that (fn)n ⊂ S(Rd) converges

to f ∈ S(Rd) if for any multi–indexes α, β ∈ Nd
0 and any non-negative number N we have

lim
n→∞

∥∥xβ∂α(fk − f)
∥∥
L∞(Rd)

= 0.

Recall that the Fourier transform of f ∈ L1(Rd) is f̂ ∈ Cb(Rd), defined by

f̂(ξ) =

∫
Rd

e−2πi⟨x,ξ⟩f(x)dx.
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Similarly, we define the Fourier transform of any finite signed Borel measure. If both µ

and ν are finite signed Borel measures, then µ ∗ ν is the signed finite Borel measure defined

by ∫
Rd

h(z)µ ∗ ν(dz) =
∫
R2d

h(x− y)µ(dx)ν(dy).

The functions µ̂ and ν̂ are bounded continuous and

µ̂ ∗ ν = µ̂ν̂. (6.6.3)

The Fourier transform can be extended to a map of L2(Rd) into L2(Rd). If also a con-

tinuous bijection of S(Rd) to itself. In particular, if we set

gλ(x) = e−λπ|x|
2

,

then gλ ∈ S(Rd) and

ĝλ =
√
λ
−d
g 1

λ
.

If we denote by ℓ the map x ∈ Rd 7→ −x, then the Fourier transform is invertible on

L2(Rd) and its inverse there is f 7→ f̂ ◦ ℓ.

When f ∈ S(Rd) and µ is a finite signed Borel measure, we have Plancherel formula∫
Rd

f(x)µ(dx) =

∫
Rd

f̂(ξ)µ̂(ξ)dξ.

Thus if we denote by µ0 the push forward of µ by ℓ, we have∫
Rd

f ∗ µ(x)µ(dx) =
∫
Rd

f(z)(µ ∗ µ0)(dz) =

∫
Rd

f̂(ξ)µ̂ ∗ µ0(dξ).

We use (6.6.3) to conclude that since µ is a real valued measure,∫
Rd

f ∗ µ(x)µ(dx) =
∫
Rd

f̂(ξ)µ̂(ξ)µ̂0(ξ)dξ =

∫
Rd

f̂(ξ)|µ̂(ξ)|2dξ. (6.6.4)

Now choose a real value function g ∈ S(Rd) such that g is even and g > 0. Set Φ := ĝ.

Since g is even, Φ is a real valued function. Furthermore,

Φ(−x) =
∫
Rd

e2πi⟨x,ξ⟩g(ξ)dξ =

∫
Rd

e−2πi⟨x,ξ⟩g(−ξ)dξ =
∫
Rd

e−2πi⟨x,ξ⟩g(ξ)dξ = Φ(x).
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Thus Φ is even. If µ0 ̸= µ1 are two probability measures and we set µt := (1− t)µ0+ tµ1,

using (6.6.1) and (6.6.4) and the fact that Φ̂ ◦ ℓ = g we have

d2

dt2
Fϕ(µt) =

∫
Rd

g(ξ)|µ̂1 − µ0(ξ)|2dξ > 0. (6.6.5)

6.7 Explicite formula for inverse map in some cases

Define F : C(Rd) → C(R) by

F (h)(s) = h
(
P̂s − γ̂s

)
− h(0), ∀s ∈ R.

For a1, · · · , an ∈ R distinct, we set

W := span
{
h1, · · · , hn

}
, hi : x 7→ e−ai|x|

2

.

By (6.6.1), to ensure the Lasry–Lions monotonicity condition, we need to impose that

a1, · · · , an > 0. This is needed to assert that hi ∈ L2(Rd) and to compute explicitly the

Fourier transform of hi.

Note that F is a linear map such that the range of its restriction to W is the linear space

V := span
{
F (h1), · · · , F (hn)

}
.

Since dimV = n, we conclude that F |W is a bijection and its inverse GW is a linear map.

Since

ln
(
F (hi)(s) + 1

)
= −ai|P̂s − γ̂s|2,

we conclude that

−ai =
∫ 1

0
ln
(
F (hi)(s) + 1

)
ds∫ 1

0
|P̂s − γ̂s|2ds

.

Hence

hi(x) = exp

(
|x|2

∫ 1

0
ln
(
F (hi)(s) + 1

)
ds∫ 1

0
|P̂s − γ̂s|2ds

)
.

129



In other words,

GW (fi) = exp

(
|x|2

∫ 1

0
ln
(
fi(s) + 1

)
ds∫ 1

0
|P̂s − γ̂s|2ds

)
.

This implies that

GW

( n∑
i=1

βifi

)
=

n∑
i=1

βi exp

(
|x|2

∫ 1

0
ln
(
fi(s) + 1

)
ds∫ 1

0
|P̂s − γ̂s|2ds

)

To obtain that
∑n

i=1 βihi is Lasry–Lions monotone, we assume that βi ≥ 0 and at least

one of the βi are positive.

6.8 Future work to be done

We state three problems that are open to future work in mean field games.

The first problem is about global uniqueness and boundary rigidity.

Problem 6.8.1. Find a class of metric and interactions C̃ × F̃ ⊂ G(a, b)× F such that, if

(g1, F1), (g2, F2) ∈ C̃ × F̃ is such that

Ig1,F1 = Ig1,F2 ,

then there exists a Ck+1 diffeomorphism η : Ω → Ω fixing the boundary such that

g1(q)δij = g2(η(q))
d∑

k=1

∂kηi(q)∂kηj(q) and F1(µ) = F2(η∗µ)

where η∗µ is the pushforward measure of µ by η.

Notice the conclusions above can be written as

g1 = η∗g2 and F1 = η∗F2 ,

where η∗g is now the pullback metric of g, and η∗F is also the pullback function of F , with

the notions defined as

η∗gq(v, w) := gη(q)(dηq(v), dηq(w)) and η
∗F (µ) := F (η∗µ) .
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The second problem is about generic local uniqueness and boundary rigidity.

Problem 6.8.2. Find a class of metric and interactions C̃ × F̃ ⊂ G(a, b)×F such that we

have a dense subset D ⊂ C̃×F̃ with the following property: for any (g0, F0) ∈ D, there exists

an ε > 0 such that if (g1, F1), (g2, F2) ∈ C̃ × F̃ with ∥gm − g0∥Ck(Ω) + ∥Fm − F0∥C1(P2(Ω)) ≤ ε

for m = 1, 2, and

Ig1,F1 = Ig2,F2 ,

then there exists a Ck+1 diffeomorphism η : Ω → Ω fixing the boundary such that

g1 = η∗g2 and and F1 = η∗F2 .

The last problem is about generic local stability of C̃ × F̃ .

Problem 6.8.3. Find a class of metric and interactions C̃ × F̃ ⊂ G(a, b)×F such that we

have a dense subset G ⊂ C̃ × F̃ with the following property: for any (g0, F0) ∈ G, there exists

an ε > 0 such that if (g1, F1), (g2, F2) ∈ C̃ × F̃ with ∥gm− g0∥Ck(Ω) + ∥Fm−F0∥C1(P2(Ω))) ≤ ε

for m = 1, 2, then there exists a Ck+1 diffeomorphism η : Ω → Ω fixing the boundary such

that

∥g1 − η∗g2∥Ck(Ω) + ∥F1 − η∗F2∥C1(P2(Ω)) ≤ d(Ig1,F1 , Ig2,F2) ,

for some expression d, which we can view as a metric.
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