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ABSTRACT OF THE DISSERTATION

Inverse Problems

in Mean Field Games

by

Weiyi Liu
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2023
Professor Wilfrid Dossou Gangbo, Chair

In this thesis, we propose a new class of inverse problems to recover Lagrangians in Mean
Field Games from boundary data. We present strategies to address these problems when
the Lagrangian we are searching for is assumed to be analytic. Our study can be viewed as
an extension of inverse problems from Riemannian manifolds to infinite-dimensional metric
spaces, such as the Wasserstein space, which possess differential structures. It can also be
regarded as an infinite-dimensional version of the travel time tomography problem. The
application of our inverse problem is to learn the rules governing people’s migration when

we have limited knowledge of their movements at the boundary.
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CHAPTER 1

Introduction

1.1 Some background of the Mean Field Games Theory

In this project, we propose a new class of inverse problems to recover Lagrangians in Mean
Field Games from boundary data. We present strategies to address these problems when

the Lagrangian we are searching for is assumed to be analytic.

Mean Field Games Theory is a theory of strategic decision-making in differential games
played by large populations with small interactions. In this theory, each player acts based
on his or her own optimization, like minimizing the cost or maximizing the benefits of
the game, taking into account the decisions of other players. The term “mean field” was
first introduced in statistical mechanics, where the number of particles tends to infinity to
approximate the original model with a simpler one after averaging over degrees of freedom.
Under this assumption, one have to consider many components interacting with each other.
The mean field models we are interested in involve searching for Nash equilibria when there
are infinitely many identical players. At a fixed time, the collection of players is represented

by a probability measure p with a finite second moment, denoted as p € Py (R?).

Mean Field Games Theory was first studied by Jean-Michel Lasry and Pierre-Louis Lions
[19], and independently by P.E. Caines, M. Huang, and R.P. Malhamé [7], [9]. Over the past
decades, it has become a popular field of research thanks to the contributions of many

mathematicians. For an introduction to recent developments in this field, we refer to [2].

Over the past years, Mean Field Games Theory has found numerous applications in



diverse subjects such as economics (see [5], [1], [8]), machine learning (see [5], [25]), robotics
(see [22]), crowd motion (see [27]), large population dynamics (see [29], [20]), and public
health (see [21], [17]).

There are three mechanisms at work in MFG models, one of which is governed by a

Lagrangian function

L:R?x Py(RY) x R — R.

Another mechanism is induced by the so-called individual noise operator, which ensures
that the measures representing the players are absolutely continuous with respect to the
Lebesgue measure. The common noise operator induces a third mechanism, transforming the
MFG system into a system of stochastic partial differential equations. In this dissertation,
we focus solely on the first mechanism, which presents a greater challenge as we have to
deal with potentially singular measures. Additionally, we make the simplification that our

Lagrangian L is separable, meaning it can be expressed in the form

L(g, p,v) = L(q,v) + F*(q, ),
where F* is the Fréchet derivative of a prescribed function F : Py(RY) — R.

A typical example is when we are given an interaction potential ® € C?(R? x R?) and

L(q, p,v) = %\vl2 +/Q¢>(q,y)u(dy)-

In the general theory of MFG, the players (also referred to as agents) move within a domain
Q) contained in R? over a prescribed time interval [0, T]. The cost of each player is determined
not only by its own trajectory but also by the trajectories of all the other players. Once
the Lagrangian is fixed, the Hamiltonian H in the game is defined such that H(q,-) is the

Legendre transform of L(q,-) for each q. More precisely,

H(q,p) = max(p, &) = L(g, £).



The search for Nash equilibria involves studying the following classic system of partial
differential equations (PDEs), known as MFG systems. This system is close to our inverse

problem in the literature and it is stated as follows.

Given G : R? x Py(RY) — R and p € Py(RY), we seek to find
w:[0,T] xR R and o:t€[0,T]+— o, € Po(R?)

such that )
ou(t,q) + H(q, Vul(t, q)) = F%q,0,) in(0,T) x R4

00+ Vy - (0:V,H(q, Vau(t,q))) =0 in(0,T) x R (1.1.1)

\O-T = W, u(07 Q) = G(q’ JO) n Rd

The first equation in (1.1.1), known as the Hamilton-Jacobi equation, is formulated in
backward time, and u represents the value function. The second equation in (1.1.1) is a
forward-time continuity equation that ensures the conservation of total mass for o, over
time. In certain MFG models, R? is replaced by a bounded domain, denoted as €2, which is

an open connected set, or by the torus T¢ (see, for example, [18] and [6]).

1.2 Our inverse problem

In our case, we would like to study a type of inverse problem which involves making some
measurements of a group of people passing through the boundary of a given region. From
those measurements, we would like to predict people’s behavior inside the region. In other

words, we want to find the Lagrangian dictating the movement from boundary measurements.

Mathematically, we postulate that the Lagrangian of the system is L, where

L(q, p,v) = L(q,v) + F(q, p).

Our inverse problem is to determine L and F' given partial knowledge on the boundary.



In this thesis, we consider a bounded open convex set {2 C R? that is of class C*!. We
further focus on a class of Lagrangians induced by metrics. Let 0 < a < b < oo be fixed
real numbers, and denote by G(a,b) the set of g € C*(R?, R%*?) such that g;; = g;; and the
eigenvalues of g(g) are greater than or equal to a but less than or equal to b for all ¢ € Q.
For such g, we define the Lagrangian as

1< . _
L,(q,v) = 5 Uz_l gii(q)v'’, Y(q,v) € Q x RY,

When ® € C?(R? x R?) is a symmetric function, we set

Folp) = 5 [ ®lan audanuld), Vo € Pa(R).

The Fréchet derivative of Fp is the function Fg given by

1
Fg(QlaM) = 5/ ©<Q1aQ2)H(dQ2), Vi € 732(Rd)-

Q

The set Py(R?) can be replaced by P(Q), the set of probability measures supported by Q.
A prescribed data on the boundary 0f2 is a piecewise narrowly continuous path of measures

t — 1, such that
¢t(39) <1, Vte (07 T) and wo(ﬁQ) = wT(aQ) =1.

We define the cost for transporting vy to 1 to be

(o,0)

C[ (tho, ¥r) := inf {/OT<F<‘7t) + /QLQ(% Ut(Q))Ut(dQ)>dt},

where the infimum is performed over the set of (o,v) such that o : [0,T] — P() satisfies
some regularity properties which will be specified later. v is the velocity field driving o. The
initial condition is given by oy = 1y, the terminal condition by o = ¥, and the constraint
oy > 1 holds on 0f). The constraint o; > 1, distinguishes our study from previous works in

optimal transportation theory.

We have discovered that the dual problem to (3.0.1) involves maximizing a function

J(+,+,-|Y) expressed in terms of dual functions (u, h,«) as given in (4.1.12). We require u
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to be continuous on [0, T x Q, but we can only impose the condition that  and h are Borel
maps on [0,T] x €, since we expect h to be non-negative and equal to zero outside 9.
Unlike the conventional conditions satisfied by dual functions in classical optimal transport

theory, the functions (u, h, a) are connected by a more intricate inequality.

ult:1(8)) = u(s,7(6)) < [ (Lor3) = bl o(r)) + alra(r) ) ar

forall 0 < s <t <T andall y € WH(s,¢;Q). We demonstrate that CF (1, 97) is equal to
the supremum of 7 (u, h, a|t)) subject to the aforementioned constraints. However, unlike in
standard optimal transport problems, it is not expected that this supremum of J (u, h, a|t)) is
attained except in special cases. This reality significantly increases the challenges we face in
our study and leads to a system of variational inequalities that is more complex than (1.1.1).
When (u, h,«) is a maximizer, the expression J(u,h,a|t)) contains boundary information
that is accessible to us and is suitable for setting up an inverse problem. We establish that,

by appropriately selecting F' and Py, Pr € 0f2, we can choose (¢).s¢ such that

26 (e, hye[Y)) = %distf] (Po, Pr) + o(e). (1.2.1)

This identity is utilized to recover the metric g, leaving only ® to be determined. We

have access to the values of the functional

I[®](Fo, Pr,Qo,Qr) = /0 O(vp(t), vo(t))dt,

where yp and v¢ are constant-speed geodesics joining P to Pr and @)y to Qr, respectively.
Unfortunately, we can only recover ® from I, when ® is real analytic. We lack a stability

result to extend the recovery to the case where ® belongs only to the class C*.

The remaining part of this thesis is organized and recapitulated as follows. Chapter 2
introduces the notations used throughout the project and states some preliminary results.
We prove that CE (¢, 1r) is produced by a unique minimizer under appropriate convexity

conditions on Fg and L. For educational purpose and dual problem settings, Chapter 3



focuses on the case with zero potential Fp = 0. In Chapter 4, we prove the identity in
(1.2.1) and recover the metric g from it. Chapter 5 demonstrates that ® can be recovered
when it is assumed to be real analytic. An appendix containing useful information can be

found in Chapter 6.

The first example appeared in the literature, an extensively studied finite dimensional
version of the inverse problem, is the travel time tomography problem. The travel time
tomography theory provides ways we can estimate the subsurface structure of the Earth

from the boundary measurements of travel time of seismic waves.

Our study can be viewed as an extension of inverse problems from Riemannian manifolds
to infinite-dimensional metric spaces, such as the Wasserstein space, which possess differential
structures. It can also be regarded as an infinite dimensional version of the travel time
tomography problem. The application of our inverse problem is to learn the rules governing
people’s migration when we have limited knowledge of their movements on the boundary.
Other related inverse problems, although of a completely different nature, have been studied

in [24], and some numerical methods were developed in [10].

1.3 Notations and settings of our MFG problem

In this section, we introduce some basic notations and settings.

Our domain € is a bounded open subset of R? with C*! boundary. It is also geodesic
convex, which means that for any two points in €2, there exists a unique minimizing geodesic

within ) that joins those two points.

We denote M () as the set of finite Radon measures on R? that are supported by 2.

The set M™*(99) is equipped with the narrow convergence topology.

For any subset £ C R?, we use Ms(E) to denote the set of measures p on E with finite

second moment, i.e., [, |z[*du(z) < oo.



Given ju,v € P(£), we denote II(u, v) as the set of measures on Q? that have y and v as
the first and the second marginal respectively. We define the Wasserstein distance Wo(pu, /)
as

1
2

Watu) =it [ oy}
Qx0

In the context of a metric space (S, dist) and a path ¢ : [0,7] — S, we use o} to denote

o(t). If there exists m € L*(0,T) such that
¢
dist(as,at) < / m(r)dr, VO<s<t<T,

we say that o is 2-absolutely continuous and we write ¢ € AC?(0,T5;S).

For o0 € AC?*(0,T;S), we also define the limit

107](t) 1= lim 258(0(8), 0 (8))

s—t |s—t|

The study of AC?(0,T;S) when S = Py(R?) is discussed in [3]. It is shown that o €
AC?(0,T; Py(R%)) if and only if there exists a Borel velocity field v : (0,7T) x R? — R? such

that the continuity equation
o+ V- (vo)=0 on D'((0,T) x R?).

is satisfied in the distribution sense. In this case, we say v is the velocity field driving o.

We define the set of data S as follows:

S = {f e C([0, T MM (09)), f; >0, [ fildg) <1, fo(0Q) = fr(09Q) = 1}-

o0N

Given p, v € P(Q), we denote Xr (1, ) as the set of pairs (o, v) such that o € AC?(0, T'; Po(R%))
and v : (0,T) x Q — R? is a Borel vector field satisfying

(i)
oo =, or =v, supp (0;) CQ, Vte[0,T). (1.3.1)



(i)
o+ V- (vo)=0 on D'((0,T) x R?). (1.3.2)

Given ¢ € S, we denote by X7 (u, v|t)) the set of (0,v) € X (p, ) such that

O't’aQ > wt on [O,T] x 0f).

Notice that since 1)y and 17 are probability measures on 99, (o,v) € Er(p, v[1)) implies
that

o0 = p =1y, Or=V="1Yr.

Given a symmetric function ® € C?(R? x RY) we define
1
Fo(p) := 7 | ®(q1, g2) p1(dgr) p(dga).
0

We always assume that the functional Fy is strictly convex on P(Q).

For a given Lagrangian L : Q x R? — R and a function F : P(Q) — R, we define

Al = [ (Fov+ [ 2 udaatan

)
and refers to AL as an action functional. The minimizers (o,v) of AL over X (u, v|1p) are
formally characterized by the following given system of partial differential equations, where
u, a0 € C([0,T] x Q), h: [0,T] x Q — [0, 00] are Borel maps.

(

Owu(t,q) + h(t,q) + H(q, Vu(t,q)) = o, in (0,T) x Q

ay = ao—F(O't)

Oy = wt; ht — a.c.
\



CHAPTER 2

Forward Problem

In this chapter, we study the forward problem by first working on the following optimization

problem.

Given ¢ € §, we define the cost for transporting ¢y to ¥1 to be
Cf(@boy ¢T) = (ll'lf) AE [0-7 U]a
where the infimum is performed over the set of (o,v) € X (1o, Yr|?).

We prove the existence and the uniqueness of the minimizer to the above problem.

2.1 Preliminaries

Throughout this chapter, we make the following assumptions about general L. Notice that
here L does not rely on any metric g. We would like to first establish some general lemmas

for our future application.

Assume

H, L e C*RYxRY, L>0, (2.1.1)

such that L(g,-) and H(q,-) are Legendre transforms of each other for any ¢ € R?. We

assume there exist constants x and kg such that

D5,L > rkly, D2 H >0, (2.1.2)
and
DH, DL are ko-Lipschitz. (2.1.3)

9



Thus, for all (¢1,¢), (¢}, ) € R? x RY, we have

|DH(q1,42) = DH (g3, 45)| < kov/ (01 — 41)? + (g2 — ¢b)*.
We further assume that there exist \; > 0 and A\g < 0 such that
MIEPP 4o < L(g,€) < AT = Do (2.14)

By duality, we have

1 1
TP 2o < H(g,p) < AP = o, (2.1.5)

In the case when L is given by a metric g as we mentioned in Chapter 1, the above

settings of L are easily satisfied.

We still assume that F' comes from a symmetric function ® € C?(R? x R?) and set

F=Fo(n)i=3 | S audnutdn), Ve PR,

Notice that @ is bounded as € is compact. We assume F is convex on P(R?).

2.2 Kinetic formulation

Recall in Chapter 1 that given ¢ € S, we denote by Y7 (0¢, or|1)) the set of (o, v) satisfies

supp(o;) C Q, Vvt e [0,T]. (2.2.1)
oo =1y, op=1p on O (2.2.2)
otloq > on [0,7] x 99. (2.2.3)
do+V-(vo)=0 on D((0,T) x R?). (2.2.4)

We will enlarge Y1 (0g, or|1) to a bigger set of f, which describes kinetic movement.

10



We denote that
C:=[0,T] x Q x R

Let My(C) be the set of signed Borel measures f on R??*! which are supported by C.
Note that My (C) is a topological vector space when endowed with the narrow convergence

topology. The set M3 (C) consists of non-negative elements f of M(C') such that
| 16t da. de) < .
c

The kinetic formulation provides us with a linearized problem for which it is easier for

us to identify the dual problem.

In kinetic formulation, the transport equation of the measure is given by

/Rd (uT(Q)oT(dq)—uO(Q)ao(dq)> Z/C(é’tu(t,q)+<§,W(t,Q)>)f(dt,dq,d€) (2.2.5)

for any u € C>°(R4*1)
We denote by F(og,0r) the set of measures f in M7 (C) satisfying (2.2.5).

A sufficient condition for (2.2.5) to hold is

Of+V-(vf)=0 on D(R*™M).

Similarly, we define F (o, or|t)) by
Fl(oo,o0Y)) = {f € Flog,or) : of >Vt e 0,7}

Given Xr(0g,0r|t), by the Riesz representation theorem, we can construct a kinetic

measure f7" as

/de+1 o(t,q, &) foV(dt, dg, dE) :/0 dt /Rd o(t, q,v(q)) o (dg). (2.2.6)

In other words,

70 = (id x v)go € M3 (C).

11



We denote the measure at the left hand-side of (2.2.6) as fov. For any u € C>°(R4*1),

we have
/R (wr(@rr(da)  wol)ro(da)) = /C (Brult, ) + (€. Vult, ) /17 (dt, dg, d€).  (2.2.7)

Given f € F(og,0r), we use disintegration theory to build (o, v).

Let f be marginal of f on [0,T] x © C R*!. The theory of disintegration of measures

ensures the existence of Borel probability measures (t,q) — f (t:9) such that

/R2d+1 of(dt,dq,d§) = f(dt,dq) /]Rd ot q, &) fTD(dE), Vi € O (R¥H),

Rd+1

Let i/ be the projection of f on [0,7]. Disintegrate further, we find a Borel probability

measure 0{ such that

T
/ pf(dt,dg, dS) = / n(dt) / of (dq) / o(t,q, ) fP(dE), Vo € CF R,
R2d+1 0 Rd Rd

Proposition 2.2.1. Assume f is a finite Borel measure on R that is supported on [0, T] x

Q. Assume v : R — R? is a Borel vector field such that
Ohf+V-(vf)=0on D((0,T) x R?).
That is, for any u € C°(R*), we have
[ (wr@ontan) = (o) = [ @uito) + . Vult) Firde).  (2:28)

R R

Let 0/ be the projection of f on R so that we can disintegrate f to obtain
_ —t 00
[ etafad = [ o) [ otaf. vee @)
Rd+1 R R4

Then n' is the Lebesque meausre on [0, T).

Proof. Indeed Choosing u = u(t) in (2.2.8) and using the fact that oy and o are probability

measures, we obtain
T
/ a(t)dt = u(T) — u(0) = / at)n! (dt), Vu e CX(R).
0 R

12



Thus, 7/ is the Lebesgue measure on [0, T].

Define I1° : R x R x R? — R such that (¢,q,&) — t.

Taking ¢(t,q, &) = u(t), where u € C®°(R¥1). For all f € F(oy,0r), by disintegration

theory, we can write for any Borel ()
T
[ uto) st da.de) = [ uteynta)
c 0

In case the conditions in Proposition 2.2.1 are satisfied, the n/ is Lebesgue measure
restricted to [0,77]. That is
W =0 = L]0, 7],
In the sequel, we shall only consider f such that nf = E[loﬂ.

Then we can simplify our above disintegration

T
/ o(t, 0. €)(dt, dg, d€) = / dat / o(t, ¢, ) f(da, d),
C 0 QxR4

for some continuous map t -+ f* € P(Q x RY).

Moreover,

| otaornae = [ o) [ o000

Q

In other words, atf = H;# ft a probability measure, where IT' : R? x R? — R? such that
(4,6) = a.

Set
@)= [ ereote),
Assume

/ € £ (dg, d€) < oc.

QxR4

13



Since L is convex, by Jensen’s inequality, we have

/Rd L(q, &) f"(d¢) > (q,/ T dg)) L(q,v!(q)),

and the inequality is strict unless f(t9) = O¢(t,q)-

As L is bounded from 2.1.4, we thus have

[t [ ot @)l < [ saorandnag <

Notice that the inequality above is strict unless f%9 = Out (1,q) f-almost everywhere.

From the construction, (of,v/) we constructed from f satisfies (2.2.4).

Lemma 2.2.2. Assume f, — f narrowly in F(oq,o7). Then o™ — of narrowly in P(Q).

Proof. We use proposition 3.3.1 (Arzela-Ascoli Theorem) in [4] to claim the lemma. In order

to do so, we simplify our notation by denoting v/ as v and ¢/ as ¢ and notice the following.

Let v be the velocity field driving . Notice we have

T
/ dt [ |oPouldg) < o0
0 Rd

By Theorem 8.3.1 in [4], we have that

|U/|2 < /d ‘Ut‘QUt(dQ)-
R

Also by Theorem 1.1.12 in [4], we have that

¢
Wp(at,as)gf |o’|dT.

t
(01, 05) /|a|d7‘< /|a'|2d7')§(/ 1dr)
/ dT/ v |20 dq)) (t—s) )2 < ( / dT/ lve|*o(dq))

Therefore, W,(oy, 05) is bounded, where 0 < s <t <T.

Thus

[N

w\»—‘
NI

(t = s)
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Based on our assumption, the following lemmas are standard (see [4]).

Lemma 2.2.3. Assume p, — p narrowly in P(Q). Then

lim F(u,) — F(pn)-

n—oo

Lemma 2.2.4. If f, — f narrowly in F(og,or) and ¢ : Q2 x R — [0, 00] is continuous and

bounded from below, then
fiminf [ ola. €)1, (dt,d.d) > [ ola. €)F(dt.da.de).
c c

Recall the action functional we try to minimize over X (og, or|9)).

Aflo] = [ ' (Flo0+ [ L ntayontan Jar

Q

Notice the action functional has exactly the same minimizers as the functional
T
AY o] = / (F(at) + / (L(q,ve(q)) + )\)at(dq)>dt = Aplo,v] + \T.
0 Q

Therefore, without lost of generality, we may assume that F' > 0.

We define
A5f) = /C L(q, €)/(dt, da, d) + /0 Fof)dt. (2.2.9)

Then we have
—F o,
AL = Aflo, v].
Proposition 2.2.5.

Cinf AL [f] admits a minimizer.
feF(oo,0r|¥)

Proof. By Remark 5.1.5 in [4], we know that

{fa}o2, is narrowly compact if and only if there exists G on R such that the set {G < c}

is compact for any real number ¢ and

sup/ Gf, < oo.
Rd

n

15



We take a minimizing sequence {f,}5°, such that

T
/ L(g,&) fuldt, dg,d€) + / F(ol™)dt
c 0

decreases to the infimum.
To use the narrowly compact property above, take G = L.

Notice that
T
[ taondeag + [ el
C 0

T
O.fl —
< /C L(q.€)f:(dt, dg, d€) + /0 Flof )t = A.

As F'is bounded from below, we may write F' < M for some real number M.

Thus
/ L. €)fldt, dg, d€) < A— MT, V> 1.
C

Then {f,} is narrowly compact and we can find a subsequence f,, which converges

narrowly to f for some f € F(og, or[t)). We can check easily that such f is a minimizer.

O]
We then have that

—F
inf ALlf] = inf Ao ).
fef(do,O'Th/)) r [ ] (0-77))6]:(0-070'T|w) L [ ]

Therefore, we can conclude the following proposition.

Proposition 2.2.6.

inf Aflo, v
(o.0)€F(00,00l8) o]

admits a minimizer. If L(q,-) is convex and F is strictly convex, then the minimizer (o, v)

1S UNIQUE.

16



Proof. 1t is sufficient to check the uniqueness.

Let (o1, v') and (09, v?) be minimizers of A¥ [0, v]. We have f; = floh) and f, = flo2v®)

which are minimizers of A [f].
Let f = L(fi + f2). Then of = Lof* + Lof.
Then
AL 2 AL + S AL )

By linearity of A in f, we get
T 1 /T 1 /T
/ F(of)dt > —/ F(atfl)dwr—/ F(o*)at.
0 2 Jo 2 Jo

As F is strictly convex, we have F(o]) < LF(o]") + LF(c]*).

Thus
T 1 (7 1 (7
/ F(ol)dt < = / F(ol)dt + = / F(of)dt.
0 2 /o 2 /o
Therefore, we have o f b= 052 and o; = o0y.

Assume v} (q) # vZ(q) for some t € [0,T7],q € R<.
Then 14, 1) 10, 2(¢) 18 not a Dirac mass.

By the convexity of L(g,-) and Jensen’s inequality, we have

1 1 1 vi(q) +v3(q
/ L(q,f)(ﬁ&)g(q) + §5vt2(q))d€ > L(q,f/ (55?1%(11) + 5 2@)da) = L(g, + (@) . i ( ))
R4 Rd

Thus

Ll 0t @) + St 12(0) > L(g, LD,

contradicting to the minimality of (o, v!) and (o9, v?).

Therefore, v! = v? and the minimizer is unique.

17



2.3 Duality

Notice that a{ > 1 is equivalent to

/ h(t,q)f(dt,dq,d§) > / h(t, q)y(dt, dg),
C

[0,T)xQ
for all non-negative h € C}(R**1).

We define U2, to be the set of pairs (u, h) such that u € C([0,T] x Q), h: [0,T] x Q —

[0, 0] is Borel and non—negative and

t216) = u(s,7(6) < [ (L003) + alrin) = hir ) )dr

forall0 <s<t<T.
On U7, the following functional is well-defined.

We also define

J(u, h) :—/(uT(q)aT(dq)—uo(q)ao(dq)) —|—/0 dt/th(q)zﬂt(dq). (2.3.1)

Q

Set
. T
L(f,u,h) == J(u, h)+/ F(atf)+/ (L(q,g)—atu(t,q)—vqu(t,q).g—h(t,q))f(dz,dq,dg).
0 C
Proposition 2.3.1. If we set
U = CHRH) x CHRHY) T
then

A zF . ﬁ )
sup £(f,u,h) = Ul if f e F(oo,or|P)

(wh)eu 00 if otherwise

Notice that h is non-negative here.

18



Proof. Let’s define
Z(f?“’v h) = ﬁ(f?“’v h) _Zf[f]

That is,

mﬁwm:/‘

Q

T
(UTO'T — U00'0> — /C(ﬁtu + un . f)f + /0 /th(Q)'(ﬁt(dq) — /Chf<dt, dq, d&)
We will prove that

~ O f J—:. :
sup L(f,u,h) = it J € Floo, or|¢)

(u,h)ed oo if otherwise.

Indeed, if f € F(oo,07|1), then L(f,u, h) < 0 by definition of F (oo, or|1h). Notice that
here we have

L(f,u,h) < 0= L(f,0,0).

Thus L(f,0,0) is the maximum.

Moreover, if f ¢ F (oo, or|1), then either f ¢ F(oy, o) or 0{ <y on aset A C[0,1] of

positive measure.

Let hf = Axa, where A > 0. Then
[t —olmt=x [ - ol o
AxS)

As A — oo, i(f,u,hf) — 00.

Therefore sup(, 4)ey/ L(f,u,h) = co.

Proposition 2.3.2. Show that

inf  sup L f,u,h)= sup inf ﬁf,u,h.
fePHC) (u,n)eu ( ) (u,h)eu TEPH(C) ( )

and the infimum on the left hand side is in fact a minimum. Here,
PYC)={feP(C) : nf =1}.
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Proof. We will use Sion’s Theorem 1.6 in [23].

Notice first that we can equip C} (R?*!) with the C' norm. i.e.

llullor = [Jullz + ||Vl |1, Vu € Cf (RT).

Then (C}(R1), || - ||c1) is a topological vector space and {ulL(f,u,h) > ¢} is closed
and convex for any constant c.

Indeed, take {u,} C {u|£ > ¢} such that u, — u in (C} (R, || [|c1). Let’s show that
ue {ull > c}.

It suffices to show that |£(f, un, h) — L(f,u, h)| = 0.
L(f. un, k) — L(f, u, h)
Notice that

= [(Cwalr—un)portaa)- |

Q

((tm)o—0) (@)0(dg)— / (Ou(t0— )+ (ot —u)-€) £ (dt. dg, dE).

c

By Cauchy-Schwarz inequality,
LL(fs s h) = £ h)] < 2ty =l oo ]|V (=) | 02 4[|V (1t —10) | o= /C [€1£(dt, dg, dE).
By Jensen’s inequality,
([ lelstananac)? < [ [eR fndr.d) < .

Therefore
\L(f, un,h) — L(f,u,h)| = 0 as n — oc.
Moreover, since L(f, u,, k) is linear in u, {u|L(f,u, h) > ¢} is convex.

Notice next that we can equip P?(C') with narrow convergence topology and P?(C) —
M(C), where M(C) is also equipped with the narrow convergence topology. Then P?(C')

equipped with narrow convergence topology is compact.
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We know that P?(C') with narrow convergence topology is a convex subset of M(C).

Indeed, it suffices to check that [0,7] x P%(C) x P*(C) — P*(C) via (A, p,v) —>
(1 — AN)p + Av is continuous. Thus if A\, — A, p,, = p, v, — v, and given any ¢ € Cy,(C'), we

want to show that

/C¢((1 — Aot + M) — / (1 =N+ ).

C

This follows from

<1—AH>L¢una<1—A>[)¢u

)\n/ogzﬁyn—>)\/cgby.

Now let’s check that {f : £(f,un, h) < ¢} is convex and closed in P2(C) for any given
(u,h) €U.

and

Since L(f, un, ) is linear in f, {f : L(f,un, h) < ¢} is convex.

For closeness, notice that if f,, — f narrowly, it suffices to show that
lim infﬁ(fn, u, h) > lim inff,(f, Up, D).
By Lemma 2.2.2 and Lemma 2.2.3, it suffices to prove that
lim inf/C[L(q, §) = O+ Vault,q) - §) — hlfn = /C[L(%f) — (Guu+ Vault,q) -§) — hlf.
Then by Lemma 2.2.4, we just need to check that

L(q,&) — (O + Vyu(t,q) - §) —h is bounded from below.

Indeed, we may assume that dyu(t, q), V,u(t, ¢), and h are bounded by a, b, ¢ from below

respectively. Then

L(Qag) - (atu + qu(t,q) ' 6) —h Z )\1’5‘2 + )\0 —a—= b‘f’ —C.
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Ai)€[2 — bJ¢| has minimum value A since A; > 0. Then
L(q,&) — (Owu+ Vu(t,q) - §) —h > A+ X\g — a — ¢ as wanted.

Finally since P?(C) is narrowly compact, the infimum on the left hand side is actually a

minimum.

We thus obtained the following proposition.

Proposition 2.3.3. For any (u,h) € U, we have

inf L h
onte (f,u,h)

= J(u,h) — /0 F* <8tu(t, q) + h(t,q) + H(q, Vu(t, q))>dt.

Here F* is the Legendre transform of F', which is defined as

Fla)= sw { [ aloutda) - Fu)}.

pEM*T(Q) *JQ
If we denote
. T
J(u,h) = J(u, h) - / Fi(Quult, ) + h(t, ) + H (-, Vu(t,) )t
0

as a corollary, we get

Corollary 2.3.4.

Cg(¢07¢T) = Ssup j(ua h)
(u,h)eU

When o € C([0,T] x Q) Borel, we define

Aol = [ at [ (2a0@) + att.0)orta)

where (o,v) € Xr(vo, Yr|)).
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We fix p > d and define
Ui = Uz, = Uy 0 (W22 x W),

We set
I'r = C([0,T;R?)

We consider (o,v) € X1 (1o, ¥r|1)) such that

Ao, v] < oo.

Using 77 as the probabilistic representation of (o, v), for almost every (q,7) € Q x 'y

with respect to 17, we have that v € ACy(0,T;9Q).

Now, let u € C1([0,T] x Q) and h : ([0,T] x Q) — [0, 00) be a Borel function. Based on

the fact that o, > 1, almost everywhere, we can make the following observation:

J(u, h) < / "t /Q (atu+<vu,v> +h>at(dq)

[ ([ (uton s Futecrisy 46, ) (o
- [ (wra - oo + )i ) . ).
If we further assume that for € > 0,

(T A(T) = 0.0 < 2+ [ (£09) + a(r7) = b))

for all v € AC5(0,T; ), then

swmy<2er [ ([0 o+ at) ) )

QXFT

Therefore we have

J(u, h) < 2e+ Afo,v]. (2.3.2)
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Lemma 2.3.5. If (u,h) € Uy and (o,v) € Br (o, Yr|), then

J(u,h) < /OT (/Q (L(q,ve) + oz(t,q))crt(dq))dt.

Proof. Let (u,h) € Uy and (0,v) € Sr(p, v]h). We can choose (uc). € C*([0,T] x Q) such
that |u — u.| < e. For any v € ACy(0,T; ), we have

u (T, v(T)) — u(0,7(0)) < 2 +u(T,v(T)) — u(0,~(0))
< 2+ /0 (L(m) + () — h(r, 7))017.
By (2.3.2), we have

J(u, h) < 2+ /OT (/Q (L(q,ve) + a(t,Q))Ut(dq)) dt.

Let € tend to 0. We conclude the proof of the Lemma.

Corollary 2.3.6. For any set U* such that Uy C U™ C Uy, we have

sup J(u,h) = sup J(u,h)= sup J(u,h)= min Ao, v].
(u,h) €U (u,h)eUe (u,h)eUL (o,0)€Sr (p,v|¥)

Proof. By Lemma 2.3.5, we easily have

sup J(u,h) < sup J(u,h) < sup  J(u,h) < min  Af[o,v].
(u,h)EUS (u,h) U (u,h)EU 1 (0:0) €87 (v [¥)

By Proposition 2.3.1, Proposition 2.3.2, and Proposition 2.3.3, we have that

sup J(u,h) > min AG o, v].
(u,h)EUS ( ) (o) EST (p,v]) L[ ]

Hence the corollary holds.

24



2.4 Some useful lemmas

Lemma 2.4.1. Let i € P(Q) and o : Q — R be a bounded Borel function such that

/QQ(Q)f(Q)M(dQ) =0

for all f € C(Q) such that [ f(q)u(dg) = 0. Then there exists a constant cq such that

Q= Cq jia.e.
Proof. Let fo € C(Q). We set

£(@) = fola) — / fola)ulday).

/f p(dg) = 0.

0= [ al@flantdn) ~ [ a@n(dn) [ fowntda
~ [ e (et - [ atutan) )t

Since fo, € C(Q) is arbitrary, this implies

Then we have

Thus

a(gs) = / algu(ds)  p—ac.

Corollary 2.4.2. Let a : Q — R be a bounded Borel function. Assume ji mazimizes

Ao 1) = / a(q)i(dq) — Fo(1)

©|

over P(S).

Then
¢ alq) - / B(q, g2)p(dds)

18 constant p—a.e.
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Proof. Take f € C() such that
/Qf((J)M(dQ) =0.

Set ¢ = p(1+ ef). We have that ¢ € P(Q) and
1) = 10+ [ (alan) ~ [ @l autden) ) fan(dan) + ofe)
o) Q
By the maximality property of u° = u, we have that

0=/Q(Oé(ql)—/Q‘P(ql,qz)u(sz))f(ql)u(dql)'

Apply Lemma 2.4.1, we obtain the desired result.

O
For the rest of this section, let ® € C?(R? x R?). We define
alt.a) i= | Bla.aw)on(dar)
Q
and set
E(t7 q, 'U) = L(Qa U) + Ol(t, q)? H(tv Q7p) = H(Q>p) - Oé(t, q)
Given Py € R?, we define
t — —
u(t,z) = inf { / Liz, 7, A)dr : 5y € W2(s,8Q), 4(0) = Py, (t) = } (2.4.1)
v 0
By the definition of u and the boundedness of L, we have the following lemma.
Lemma 2.4.3. For any0 < s<t<T,
t — —
u(t, () — u(s, (s)) S/ L(7, 7, %)dr, ¥y € WH(s, Q). (24.2)

The function u defined in (2.4.1) is Lipschitz continuous.
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Lemma 2.4.4. (i) For any 0 < s <t < T, we have
t
[ utt.aetda) ~ [ uts.otin < [ i [ Lig.v@)or(do)
Q Q s Q
(ii) Therefore, the function
t
terut)i= [ dr [ Llgwla)ontdn) - [ utt.goildo
0 O Q

s monotone non-decreasing.
Proof. Note that since a(r,-) is of null o, average, we have

[ L@ vn(@)on(dn) = | Lia.vn(@)o(da).
Q Q

Thus, if 7 is the probabilistic representation of (o, v), then

/Q L(g, v+(q))o (dg) = / L7 A(r), A (dg, ). (2.4.3)

QXFT

Since

[ uttayotan) — [ uts.qjontin = [ (utt. ) = uls.9 (6 ). ),

we use (2.4.2) to conclude that
[ utt.etan) = [ wtsqyotda) < [ ( / t L<T,fy<7>,v<r>>dr) i (da, ).

Since L is bounded from below, we can use Fubini’s theorem to obtain

[utaotan - [wsiotan< [([ L) )i

This, together with (2.4.3) implies that w is monotone non—decreasing.
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We define

_ L(P,, ) + alt, ) — %u(t,P) if ¢=P,
h(t,q) :=

Here %u(t, P,) is the right derivative of u with respect to t.

Lemma 2.4.5. The function h is non-negative and for 0 < s < t < T, the u defined in

(2.4.1) satisfies
ult, 1(1)) — u(s,2(s)) + / W,y (r))dr < / Ly 3)dr, Yy € W(s,5:Q).

Proof. The fact that h > 0 is a direct consequence of (2.4.2) when we use v(t) = P;.

Fix 0 < s <t <T andlet 7 : [s,t] — Q be a Lipschitz curve and set
So={re(s): P =3(n}, Si={re(st): P =), Tulr3(r) = —u(r,P)}.

Recall that the set Sy \ S; is of null Lebesgue measure (see Lemma 6.3.1).

Let 7 be a point of differentiability of u(-,%). On the one hand if 7 € Sy N .S} then
dr dr

Ul 32) + M 3r) = L7, A7) = -u(T, Pr) + h(r, Pr) = L(Pr, Pr) = 0.

On the other hand, if 74, # P,, then there exists 6 > 0 such that 5, # P, for all [ €
[ — 6,7 4 §]. We use (2.4.2) to obtain that

dr ) d+ )
_ ~ ~ ) VY —- ~ ) 5~ A < 0.
dTU(T, A7) + h(T,7%) — L(¥-,77) dTu(T’ ) — L(37,7:) <0

In conclusion,
d+

EU(t, ’715) + h(t, ’775) — L(’?t, ’775) S 0 £1 a.e.

Integrating, we obtain the desired inequality.
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Let €y be a positive real number and let A : [0,7] — [eg, 1] be a piecewise continuous

function which is continuous at 0 and 1, such that A\(0) = A(1) = 1. We assume

wt - )\t(SPt, Vt € [O,T]

We define h: {(t, P,) : t € [0,7]} — [0, 00] by

h(t, P;) = 1 lim sup H(t+9) - H(t).

t §—0t J
Note that

/ " \h(t, Pt = / Wt = H(T) — H(0)

In other words,

[ (urtarortan) ~wtwntaa)) + [ at [ teaytan = [ ar [ s ve@ontan,
Since F§(oy) + Fgp(oy) = 0, we conclude that

J(u,h) — /OT Fi(oy)dt = AL[o,v)]. (2.4.4)

Recall that if -y is a minimizer in (2.4.1), then setting p(s) = D, L(s,7v(s),5(s)), we have

")/:DpHL(S77ap)7q p:_DqHL(S77’p)

Thus

d _

EH@?’%p) = atﬁ(t/‘)/?p) + <DqH(t7"y7p),"y> + <Dqﬁ(t7ﬁyap)7p> = atﬁ(t/.)@p)

Thus,
H(s,7(s), p(s)) = H(t 2, p(t)) — / dyax(7.)dr.

From this, we get a uniform bound on the L*-norm of p. Thus, there is a bound on the

L*>-norm of 4.
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CHAPTER 3

Zero Potential and Duality

In this chapter, we first derive a useful result by assuming the linear potential given by

Q

F(u) = Foln) = / B(q)uldg).

for some strict convex ® € C?(R%). Then we assume ® = 0 for the remaining part of the

chapter. Although most results can be easily extended to linear or general potentials, we

keep it zero in this chapter to make our argument clear.

Our goal is to study the following minimization problem via duality

inf {Af[a, v] @ (o,v) € F(UO,UTWJ)}a

(o,0)

where

Aflo,v] Z/OTAL(q,vt(Q))Ot(dQ)dt-

We assume t — P, € 0% is of class C?.

We define Uy to be the set of pair (u, h) such that
u € C0,T] x Q), h:[0,T]x 92— [0, +oc) Borel

and
ult2(0) = w26 < [ (£60:9) = htra(e))) i

forall 0 < s <t <T andall y € Wh>(s,t; Q).
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3.1 Minimizer of the cost function
For s,t € [0,T] and v € W2(s,t;R?Y), we define
t
Ay i= [ L)+ @()dr.

Since L is convex and & is strict convex, we have
(q,€) — L(q,&) + @(q) is strictly convex.
Therefore, for all s,t € [0,T] and x,y € R? we have
v Al(y) s strictly convex on  {y € W'2(s,t;RY), ~v(s) = x,y(t) = y}. (3.1.1)
For s,t € [0,T] and z,y € R? we define
ie,y) = min {AL7) 1 y € WH(s, RY), (s) = 2.7(8) = v} (3.1.2)

Since ® is continuous on compact subset Q, ®|g is bounded. Write K; < ®(q) < K> for

any q € .
By (2.1.4)
P —z|?
A |yt _z| + Xo(t = 8) + Ky < i, y) < AT |yt _gj = Xo(t = 5) + K. (3.1.3)

First let’s prove that (3.1.2) indeed admits a minimizer, so it is well-defined.

Lemma 3.1.1. (3.1.2) admits a minimizer. By (3.1.1), this minimizer is unique and will be

denoted by 7%y,

Proof. For simplicity in notation, we denote A%[y] as A[y] and work with v € W'2(a, b, RY).
Fix x and y in Q, let v € W'2(a,b,RY) such that v(a) =  and y(b) = ¥.
Set ¥(t) = (1 — =2)z + =2y, Then (1) = L£2.
Let {,} be a minimizing sequence in W12,
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Since Aly,] < A[7] for larger enough n, for simplicity, we assume A[y,] < A[7].

Notice that

b b .
/ Mo + [l A1 + @ () dt < Aly] < A[F] = / L7, %) + ®(F)dt =: M.

Then

b — J—
R e
a 1

Thus

[ (t) = 2 = | (t) = Ym(a)| = !/ n(T)dT| < \// (7)1 dTVE—a < Vb — ay/ M.

Then (7,), is bounded in W2 N L>(a,b). Indeed,

|l < 2] + Vb — aMy < Mg + Vb — aMy,

where \g = sup |v|.
ve)

By Banach-Alaoglu Theorem, there is a subsequence of {~,}, still denoted as {~,} for
simplicity, that converges weakly to some v € W2, That is, 7, — « in L? and 4, — ¥ in
L2

Notice that

L(g,v) + ®(q) > Ao + Mi|v? +inf & > Ao+ Ky =1 do.

Then
L(q,v) + ®(q) — A2 > 0.

Observe that .
[ (£023)+ 8(0)+ Oyt = AR + (b= a)C,
where C is any fixed constant.
Without loss of generality, we may assume that L + & > 0.
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Set
T.:={t € (ab):|¥t)] <r}.

Notice that L(q,v) is convex and ® is convex, we have

/ L, ) + Bt — / L(y.4) + ®(y)dt

- / B() = 2t + [ Lo i) = L)t + / L) — L7, 4)dt

> / (V)70 — )i + / (DL, 4), 4 — 4}t + / L(d) — L, 3)dt.

Therefore, we get

/ L) + ®(y)dt > / xr (L. 3) + ©(7))dt + / Nt DL (,4), A — )t

4 / A VO(), 7 — )t + / wr (L, 3) — Ly, 4))dt

Notice that

X1 | L(Yn, 7) = L, )] < () = () es (),

where

es(r):= sup D,L(q,v).

|v]<r,|z[<6

Hence
b b
/ X1 L (Vs ¥) — L, Y)|dt < 66(7“)/ 7 (t) = ()]t < es(r)v'b — al|vn — V]| 2(a)-
Since x71, D, L(7,7) € L?, as n — oo, we get that
b b b
/ XT,.<DUL(%7),%—1>dt+/ X1, (V®(7), 1 — 7>dt+/ X1, (L, 7) = L(7,7))dt — 0.
Let r — oo, we get

b
lim inf/ L(n, An) + @(yn)dt = liminf A[y,] > Alv].

n—oo n—o0
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Thus ~y is the minimizer we want.
Let ¢ € C°(a,b). Set 7. = v + €¢. Since

e—0 €

=0,
we have the Euler-Lagrange equation

d . . -
@(DUL(%V)) = D,L(v,%) € L*™.

Also D,L(v,%) € W2(a,b) since D,L(~,7) € L*. Therefore

p(t) := D,L(v,%) € Whe,

Then 4 = D,H(v,p) € W, Therefore v € W,
Now we show that ¥ € L*. Indeed, let A € C°(a,b) and define S.(t) =t + €A(t).
If |e| < 1, we may assume that S(t) > 2.

Then by the inverse function theorem, S, : [a, b] — [a, b] is a bijection with a differentiable

inverse 7.

Notice that ve(a) = 7(Sc(a)) = 7(a) = z and 7¢(b) = 7(5c(b)) = 7(b) = y.

Moreover,
d

— = 34(5.)8. € L™.
dt’y(Se) Y(Se)Se €

By the fact that v is a minimizer, we have A[y(S.)] > A[y].

Denote L = L + ®. Notice that

Denote 7 = S,(t). Notice that Sc(t) = 1+ €A(t). Then T.(7) = 1 — eA(7) + o(e).

Then




- / T(1(),4(r) + eA4(r) + 0(e))(1 — eA(r) + o(e))dr

b
= [ T30 + €AW D). 4) = T 4) + of e

Recall that D,L(v,%) = D,L(7,%) = p and (p,5) = L + H.

We thus get

0= 1—>0 e(t)

A [icpzensar = [ Ane

Hence we get the conservation of the Hamiltonian, i.e. H(v,p) is a constant.

By (2.1.5), there exist constants A1 > 0 and Ay < 0, such that
Mlpl* +Xo < H(y(7), (7)) = H(7(0),p(0)).

Then p € L* since

H(7(0),p(0)) = Ao
ISW :

Ip|* < :
4

Since 4 = D,H(~,p) € W1, we conclude that ¥ € L* as wanted.

O
We assume ® = 0 for the rest part of this chapter.
We make appropriate additional assumptions on 2 so that
725((5,2&)) CQ  V0<s<t<I<T. (3.1.4)
This means
) = min {AL9) 1 7 € WH(s,6Q), 1(s) =290 =y} (315)

We set

Pa(m) = DL (). 344 ).
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From the definition above, it is easy to see that we have standard property
c(z,y) + c(y, 2) > c(x, 2), VO<s<t<I<T. (3.1.6)
If v is a minimizer in ¢ (x, z), then we have the following so-called semi-group property.
(2, 7() + ¢ (v(1), 2) = c(x, 2), VO<s<t<I<T. (3.1.7)
The following properties are standard ([12] [14]).
Proposition 3.1.2. Assume 0 <s <t <T.
(i) 2 € C3([s, 1)) and
St = DuH (V4 ). B = —DuH (242 o)
(i1) There exists a monotone function A : [0, T] — [0,00) such that lim,_,o+ Aq(T) = +00
and for all x,y € Q, cL(-,y) and c'(z,-) are Ao(t — s)—concave in a neighborhood of ).
(iii) For all x,y € Q, ¢ (-,y) and ci(z,-) are Ag—concave in a neighborhood of 0 and
pL(s) € I u)a) and (L) € (e ) (3.18)
(iv) Increasing the value of \q if necessary, we may assume that
&(,y), ci(x,-) are o(t —s)-Lipschitz  Vx,y € Q.
Furthermore, for every T € (s,t) and z := y24(T).
(v) There is a monotone function Aq : [0, T] — [0, 00) such that lim,_,+ (7)) = +00 and

’DL <7§1§M§:Z> < AoV z,y € Q.

Remark 3.1.3. Continuing with the notation of Proposition 3.1.2, for every T € (s,t) and
= 74(7)

(-, 2), c(z,-) are Mq(t—s)-Lipschitz  Vax,y € Q.
which means the Lipschitz constant is better than Aq(T — s) or Aq(t — 7).
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We define ! to be the set of pairs (u,v) € C(Q) x C(Q) such that
u(z) +o(y) <c(z,y), Vo,ye

and we denote above inequality as u @ v < ..

Definition 3.1.4 (c-transform). Let u,v : @ — R U {—occ} and set ¢ := c.. The first c-
transform of u, u¢: Q — RU {—o0}, and the second c-transform of v, v, : Q — RU {—o0},

are defined by

u(y) = inf {c(z,y) — u(z)}, ve(z) == inf {c(z,y) — v(y)}. (3.1.9)

€2 yeQ

Lemma 3.1.5. Let \q be the function in Proposition 3.1.2 and set ¢ := ct. If u € C(£),
then

(Z) Then (UC)C 2> U, (uc)c > U, ((uc)c)c = U, and ((uc)c)c = u’.
(i1) If u = v¢ for some v : ) — RU{—o0} and v # —o0, then:

(a) u is Aq(t — s)-Lipschitz and Aq(t — s)-semiconcave.

(b) If z € Q is a point of differentiability of u, § € Q, and u(z)+v(y) = c(z,7), then T
is a point of differentiability of c(-,y) and Vu(Z) = V,c(Z,y) = DUL<7;Z(O), 7%(0))

Furthermore iy is uniquely determined.
(i1i) If v = u., then the symmetric analogue of above holds.

(iv) As a consequence of (i-iii), if K C R is bounded, the set
{v°:v: Q — R is bounded from above, v°(2) N K # 0}

is compact in C(Q), and weak* compact in WH*(Q). The uniform norm as well as

the W norm of any element of {v¢ : v € C(Q), v¢(Q) N K # 0} depends only on
Aa(t — s) and K. In particular, we can take K = {0}.
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Proof. (i-iii) of the Lemma 3.1.5 can be found in [4]. We prove (iv) here.

Let 1,75 €  and assume without loss of generality that v°(xy) — v¢(z;) > 0. For € > 0

arbitrary, choose y € Q such that v°(x;) > c(z1,y) — v(y) — €.
We conclude that
v (2) —v*(21)| = v°(w2) —v"(21) < (w2, y) —v(y) — (21, y)+ov(y) +€ = (@2, ) — (21, y) +e.
Thus
[v¢(xe) — v°(21)| < Lip(c)|ze — 1] + €.
Since € is arbitrary, we conclude that Lip(v®) < Lip(c). Let B be a ball centered at the
origin and containing K. Choose xy € €2 such that v(z) € K. We have |v°(xo)| < R.
Thus
|v°(z) — v(zo)| < R+ Lip(c)diam(Q2).
This proves (iv).

[]

For p,v € Py(R%), we denote by I'(u, v) the set of Borel measures on R?¢ which have

as the first marginal and p; as the second marginal. For 0 < s <t < T, we define

C!(p,v) == min / c(x,y)m(dz, dy).
R2d

mel(p,v)
Remark 3.1.6. By the standard theory of optimal transportation (see [15]) and by the

compactness property provided in Lemma 3.1.5, we have that
C’f;((;pto,éptl) = max {u(ts, P,) — u(to, Py) }- (3.1.10)
Here B is any bounded set containing Q). The mazimum is performed over the set of
u € C([to,t1] X B) such that
u(t,y) —u(s,z) < ci(x,y), (3.1.11)
for all (x,y) € B? and (s,t) C [to,t1]. The mazimizer exists and is denoted as u*.
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Given a path v : [0,7] — Q and a function u : [0, T] x Q — R? the following function is

pointwise well-defined although it may take the values o0 :

o+ b+ bt h) — (b ()
t— Eu(t,’y(t)) =: hrr;isoup ; :

When v and u are Lipschitz then so is ¢ — wu(t,(t)). Thus, the latter function is
differentiable almost everywhere, which coincides almost everywhere with the bounded Borel

function ¢ — %u(t, Y(t)).

Lemma 3.1.7. Let u : [0,T] x Q — R be a Lipschitz function. The following conditions are

equivalent:

(i) For every 0 < s <t <T and every x,y € Q,

u(t,y) —uls, ) < ¢z, y).

(11) For every Lipschitz curve vy : [0,T] — Q

d+
Proof. (i) implies (ii):
For any Lipschitz curve v : [0,7] — Q

- — t+h
Dty () = limsup ST PV R) —utn(®) (@O0, +R)
dt 18 ; s p

By the definition of ¢ (y(t),y(t + h)), we get

d-‘r

t+h
SruA0) < msp o [ L) A7) + S = LA0.5(0) + 200,

Notice that L(v(7),5(7)) + ®(y(7)) is locally L' integrable.
The last equality thus follows from the Lebesgue differentiation theorem.

(ii) implies (i):
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For every 0 < s < t < t and every z,y € (, take any Lipschitz curve  such that y(s) = =
and y(t) = y.

Let T": [0,7] — R such that T'(t) = u(t,y(¢)). Then since u and ~ are Lipschitz, let a and
b be their Lipschitz constant respectively. It is easy to see that I is Lipschitz with Lipschitz
constant a(1 + b).

Indeed, we have that
[D(t+h) = L@)| = [u(t + h,y(t + h)) — u(t,~(t))]
< a([h] + |y(t + h) =y(t)] < (a + ab)|h].

Thus, I' is differentiable almost everywhere and

u(t,y) —u(s,z) =T(t) —T'(s) = / [(r)dr = / lim

h—0 h
- [ Gutra) < [ 16650+ e6)n

Take inf over all such ’s, we get [u(t,y) — u(s,z) < i (z,y) as wanted.

3.2 Maximizers in [tg,t1]

Given to < t; in [0,7] and B any bounded set containing €, let u* € C([to, 1], B) be a

maximizer in the problem at the right hand side of (3.1.10) and set

* Pt1
7= Tp,
so that
Aﬁé(’y*) = Cf& (5Pt076Pt1) = U*(tlv Ptl) - U*(t07 Pto)' (321)

Remark 3.2.1. Let t € (to,t1).
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(i) We have
Cil (7:7 Ptl) = u*<t1> Ptl) - U*(ta%?) and U*(t77:) = u*(tU? Pto) +Cio(Pto77:)' (3'2'2)

In fact, by a direct application of Lemma 3.1.5 (i), we can choose u* € C([to,tl],Q)

such that
u*(t,y) = mig_rzl {c},(z,y) + u*(to, T)}, vy € Q. (3.2.3)
ze
Then
u*(tg, x) = maéc{ — Gz, §) +ut(t,7) }, Vz € Q (3.2.4)
ge
and
u*(to, P,) = 0. (3.2.5)

(i) By Lemma 3.1.5 (iv), (3.2.4) implies that u*(to, -) is Aq(t1—to)-Lipschitz and Ao (t1—to)-

semiconver.

We shall prove in the next lemma that Vu*(¢,v*(t)) exists for any ¢ € (o, ;). Since

t+h
u%+m¢a+mwwwmw»:l Ly 4°)dr,

it is obvious that u*(-,7*) is differentiable at ¢. This means, we should expect from Lemma

3.2.2 that dyu*(t,v*(t)) exists, which means that u* is differentiable at (¢,~v*(¢)).

Lemma 3.2.2. Let (u*,7*) be as in Remark 3.2.1. Then for any t € (ty,t1), we have
H(30) = min el (2.7 + ' (t0, )} = max { — (o) + (1 9)}-
x Yy
Thus, u*(t,-) is continuously differentiable at ;.

Proof. Set

Q= Hlelg_rzl {cio(a:,ﬁ‘) + u*(to,w)}, B = mea%{ — cil(ﬁ,y) + u*(tl,y)}.
x Yy
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We use (3.1.11) to conclude that u*(¢, ;) < «. Since « is an infimum, by the second identity
in (3.2.2), we have

a < Cio(Ptoa 7:) + u*(t(J? Pto) = u*(t7 7:)
This proves that u*(t,7;) = a.

The identity u*(¢,~;) = S is obtained similarly by first using (3.1.11) and second using
the first identity in (3.2.2).

Let z € Q. By (3.1.11) and the second identity in (3.2.2) we have
U*(t’ Z) < U*(t07 Pto) + Cio (Ptoa 2)7 and U*(t(b Pto) = u(tv 7:) - Cio (Ptov ’Y:)

Thus,

U*(t’ Z) < u(t>7:) - Cio(Ptmﬁ)/:) + Cffo(Pto’ Z)
We apply Lemma 3.1.5 (ii) to find §; € R? and a constant A depending on t, such that

w(t,2) < u(t, V) + (0,2 — ) + Alz — v (3.2.6)

Similarly, using (3.1.11) and the first identity in (3.2.2), increasing the value of A if

necessary, we find 9, € R? such that
w'(t,2) 2 ult, ;) + (0n, 2 = 77) — Alz — (3.2.7)

This, together with (3.2.6), means that the sub differential and the super differential of
u*(t,-) at 47 is not empty. Thus, u*(t, -) is differentiable at ~;. Since u*(t, -) is a semi—concave

function, then it is continuously differentiable at ;.

3.3 Maximizers on the whole interval [0, 7]

Assume (u*,v*) is as in Remark 3.2.1 and satisfies (3.2.3).
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Set

u(t,a) = maéc{—cio(a,x) +u(to,x)} if t€[0,t), (3.3.1)
Te
u(t,a) :=u*(t,a) if t€ [to,t], (3.3.2)
and
u(t,a) :=min{c;, (y,a) + u*(t1,y)} if te (t,T). (3.3.3)
yeN

For t € (t1,T], we use (3.2.3) to conclude that

u(t,a) = min {c (y,a) + cip(2,y) +u” (to, x)}.
z,ye

We combine (3.1.6) and (3.1.7) to conclude that

u(t,a) = min{cj (z,a) + u*(to, )}  Vt e (t,T).
€S

By (3.2.3), this means

u(t,a) = min{cj (z,a) + u*(to,z)}  Vt € [to, T]. (3.3.4)

e

Proposition 3.3.1. We have
u:[0,t] x Q=R and wu:[ty,T] x Q — R are Lipschitz
Since u(ty,-) is Lipschitz, we conclude that u is Lipschitz on [0,T] x Q.

Proof. By Remark 3.2.1 (ii), u(to, -) is Lipschitz. In light of Lemma 3.1.5 (iv), the formulation
used in (3.3.4) shows that for each ¢t € (to, 7], u(t,-) is Aq(t — to)-Lipschitz. Similarly, by
(3.3.1), we conclude that u(t,-) is Aq(to — t)-Lipschitz for ¢ € [0, ).

Our goal is to improve these statements so that the Lipschitz constant of u(t, ) is inde-
pendent of t. To achieve this goal, we first show that u is Lipschitz in [0, 7] x €. Since for
any t € [0,77], u(t,-) is continuous on , by a simple approximation argument, u is globally

Lipschitz.
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Part 1. Lipschitz in space. Let t € (to,T]. Recall that by Remark 3.2.1, u(to,-) is k-
Lipschitz for some x > 0. Let v,y € Q. Interchanging the role of y; and y, if necessary, we
may assume that u(t,ys) — u(t,y1) > 0. Take v € W12(tg,¢; Q) such that

ult ) = ulto,A(to)) + / Ly A, () =

to

We first establish a control on 4. Indeed,
t

ulto, A(to)) + / Ly, 4)dr < ulto, ) + / L(y,0)dr < [[ultor Yo + TILC 0o

to to
This implies

t
[ L)dr < 2lutto, Mew + TILC Oy

to

We use (2.1.4) to conclude that
t
/ AP < 227 |ulto, le@ + TATILE, 0)lle@) — Ao (3.3.5)
to

By Cauchy-Schwarz inequality,

t
| il < V2 utto, ey + T ILC0) o) — o (3.3.6)
to
Set
R(7) :=~(7) + y2 — 41, VT € [0,t].
Note that R € W12(ty,t;R?) and R(t) = y,. Without loss of generality, assume that 1,

and g, are chosen so that the range of R is contained in (2. We have

u(t, y2) <u(to, R(to)) + /tL(R, R)dr

to

—ult, ) + ulto, B(t) — utto s (1) + [ (LCRE) = L0, 3) )

to
Thus

t 1
ult, ys) — u(t, y1) < Lip(ulto, ))lys — ys| + / / (DL (y + 5(ys — 1), 7). v — ya)dsdr
to JO
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Since by (2.1.3), DL is ko—Lipschitz, we have
t 1
ult. ) = ult. 1) < Lip(utto, Dl = wel + w0 [ [ (114131 o2 = ) o2 — aldsar
to 4O

Using (3.3.6) and the fact that the range of v is contained in the bounded set ©, there is

a constant K independent of ¢, y; and ys such that
|U’(t’ yQ) - u(tv y1>| < K|y1 - y2|'

Thus the Lipschitz constant of u(t,-) on  is independent of ¢ € [to, T]. We apply the
same reasoning to conclude that the Lipschitz constant of u(t,-) on Q is independent of
t €10, 10].

Part 2. Lipschitz in time. Let y € ) and let t; < s; < s9 < T. By the semi—group

property in 3.1.7, choosing the trajectory v(7) = y, we have

u(s2,y) —u(sy,y) < /82 L(y,0)dr < (sg — s1) max L(+,0). (3.3.7)

s1 Q

Next, choose v € W12(0, 55; Q) such that

u@%wzuwhWa»+/ﬁLwnmﬂ A(s2) = y.

S1

Since u(sy, -) is K-Lipschitz,
u(s1,7(s1)) > u(s1,y) — Kly —(s1)| = uls1,y) — K|v(s2) —v(s1)]-
Thus
52
u(sr.(s1)) 2 usi9) ~ K [l

Using the definition of v, we conclude that

w%w2u@wyhf7u%w—mer

S1

Thanks to (2.1.4), there is a constant K, bigger than maxg L(+,0) such that

u(sg,y) — u(s1,y) > —Ko(sy — 51).
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This, together with (3.3.7), implies u(-,y) is Ko—Lipschitz on [ty,T] for every y € Q.
Increasing the value of K| is necessary and using an analogous argument, we obtain that

u(+,y) is Ko—Lipschitz on [0, to] for every y € Q.

Lemma 3.3.2. We have
u(t,b) —u(s,a) < c(a,b), VO<s<t<T.

Proof. By (3.3.4), u satisfied the semi-group property on [to,T]. It suffices to prove the

lemma only for s € [0,%y). If s <t < ty, we need to check that

u*(to, x) < u(s,a) +cg(a,b) + ¢ (b,x).

This inequality holds since

u(s,a) > —c(a,x) + u(to,x) and ¥(a,x) < d(a,b) + (b, ).

Thus it remains to study the case when s € [0,ty) and t € [ty, T, which are the conditions
we impose in the sequel that s € [0,ty) and t € [to,T]. Let a,b € Q. By (3.1.7), we can

choose 7 : [s, ] — Q such that

Ci(a’ b) = CZO (aa ’y(to)) + Cio (’V(to)v b)?

and

u(t,b) < ¢, (v(to), b) + ulto, 7(to)) = ci(a, b) — ¢’ (a,7(to)) + ulto, y(to)).
We use (3.3.4) and the fact that s < ¢, to conclude that

u(t,b) < cl(a,b) + u(s,a).

This concludes the proof.
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3.4 Duality property in our particular case

We are halfway towards establishing the duality property in our particular case.

We endow 'y = C([0,T]; RY) with the supremum norm. Let (o,v) € Yr(0g, or|1h) and
let

£ = {(Qa”}/) 1 qE Rd7 v e A02(07T7 Rd)’ 7(0) =gq, ,)/ — U(‘?'Y) El—a.e.}

By Theorem 8.2.1 [4], there exists a Borel probability measure 7 on R? x I'; which is

concentrated on the set £ and such that
[ eaotdo = [ coOmdnd).  veeG®my tepT. @4
R RéXTp
Following [4], we shall use the notation
o=o'. (3.4.2)

Lemma 3.4.1. The identity (3.4.1) holds for every bounded Borel function ¢ : RY — R.

This implies the identity holds for every non-negative Borel function ¢ : RY — R.

Proof. 1t suffices to prove the lemma when ¢ = y4 and A C R? is a Borel set. Fix t € [0, 7]
and fix a Borel set A C R? For each natural number n > 1, we can find a compact set
K? C A such that
1
A\ K,) < —.
o(A\ Kn) <

Since A x 'z is a Borel subset and RY x I'y is a separable metric space, we can find a

compact set K C A x I'r (see section 5.1 [4]) such that
~ 1

n(AxFT\K> <=

n

The projection Pg : R? x I'y — R? be a continuous map, we conclude that K} := PZ(K)
is a compact subset of R? contained in A. Note that the compact set

M 0 1

K, :=U_, (K, UK,)
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is contained in A and satisfies
1 1
Kot € Koy oi(A\K,) <, n(AxFT\KanT> <=

As done above, we can find OY, O} open sets containing A and such that

1 1
O\ A) < -, n(o; T\ A % FT) <=

Set
On =N (0)N0O,).

Wehave
O(O O'(O \A><— <O XF \AXF><—
n n—1, t n TL’ n n T T n~

By Urysohn’s lemma there exists a continuous function g, € C(R?, [0,1]) such that

gn|Kn = 17 §n|On = 0.

Set
In = max{gh T 7gn}
Note that
gn—1 < 9n; gn|K" = 17 gTL'On =0
Therefore
g(z) := lim g,(x) € [0,1]
n—oo
exists for every € R%. The Borel sets
K:=U",K, O0:=n2,0,
satisfy
glx)=1, Ve K, and g(x)=0, VzeO.
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Moreover,

KcCAcCO, o (K) = 04(A), n(K x I'r) =n(A x Tr).

Since

/Rder Xr,xrr (V(0)n(dg, dvy) < /

RdXFT

gn(v(t))n(dgq, dv) < / Xonxrr (7(t))n(dg, dv),

RdXFT

we conclude that
2 2
n(OxTr) ==< [ gu(y()n(dg,dy) < n(K xTr) + =,
n RixTp n
Let n tend to oo and apply the dominated convergence theorem. We obtain

/RwT Xoxrr (Y(t))n(dg, dy) < /

RdXFT

g4 (B)n(dg, dy) < / siexr (1(8))(dg, 7).

RdXFT

In light of the inclusions K C A C O, we conclude that
9(v(t)) = xa(y(t)), for (¢,7) n-a-e.. (34.3)

It is straightforward to obtain the identity

g = X4, op-a.e. (3.4.4)

By (3.4.1),
/Rd 9n(q)ot(dg) = /Rd ; gn(Y(t))n(dg, dv).

We use the dominated convergence theorem to conclude that

/Rdg@“t(d‘-’) = / g(y(1))n(dg, d).

RdXFT

This, combined with (3.4.3) and (3.4.4), yields the desired result.
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Remark 3.4.2. Set A := supp(o;). Using the definition of € and Lemma 3.4.1, we have
1= 77{(%7) €R!xTr: 7(0) =g, () € Q}
Since 0y = dp, and op = dp,, we conclude that
¥(0) =Py, A(T)=Pr, and v(t,7(t)=4() for Lla.e(q,7) € supp(n).

Recall Uy given at the beginning of this chapter.

Proposition 3.4.3. For any (u,h) € Uy, we have

>

J(u,h) < Ao, 0] :=J

Proof. For each M > 0, set

so that hy, is bounded. Since h > hyy, we have that (u, hys) € Up.

We use Lemma 3.4.1 and the fact that L is bounded from below (in fact non-negative)

and the definition of € to obtain that

Ao = [ ([ 2(ot0wtean)atanan

:/OT </Rder L('Y(t):"Y(t))??(dq, dﬂy))dt.

We apply Fubini’s theorem and then use the fact that (@, h) € Uy to conclude that
T
72 [ (W) = a0 [ halra (e e ),
RdXFT 0
We use Remark 3.4.2 and apply Fubini’s theorem to conclude that
T
szat,pr) ~a@ R [ ([ bt )i
0 RexTp
T
—a(rpr) —a0.2+ [ ([t )ar
0 R4
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As hyr > 0, we can apply Fatou’s lemma to conclude that

J > u(T, Pr) — u(0, Py)+ /OT (/Rd h(r, q)UT(dq)>dT,

which is the desired result.

3.5 Duality and minimizers in a particular case

In this section, we show that our duality holds in a case with a special boundary measure

given below.

Let’s consider the following special boundary data

op, it t €0, 7]\ [to, t1]

@Z)t =
20p, if t € [to, t]
and define
dp, if t€[0,7)\ [to,t1]
Oy . —
30p, 4+ 30, if ¢ € [to, 1]
We define
L(P,B)—%u(t,P) if q=P
Wtg) =4 0 t

0 if ¢# P,
We combine Lemma 3.1.7 and Lemma 3.3.2 to conclude that
h > 0.
By Proposition 3.3.1

sup h < +oo.
[0,71xQ
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Lemma 3.5.1. Let u be as in (3.3.1 - 3.3.3) so that in particular Lemma 3.3.2 holds. Let
h be defined as before Lemma 2.4.5. We have

J(u,h) = A¥[o,v].

Here o is defined as the o, above and (o,v) € Lr(0g, or|1)).

Proof. Since uy, (Py,) = uy, (4,) and uy, (Pyy) = gy (Y4, ), we conclude that

ur(Pr) = uo(Po) =ur(Pr) — ey (P) + 3 (1 (Pu) = e (Pa)) + 5 (1, () = ()

ty, (Pto) - UO(P())'

We have
wr(Pr) — uo(Py) :/T ( h(r, P,) + L(P,, PT))dT
+§ /to (= v, ) + L(Py, ) ) dr
+% /: ( hT,7r) + L(%,%)>d
% /Oto ( h(r, P,) + L(P;, P, )>d7.
Then

1 [
ur(Pr) — uo(Py) = Af [0, v] / h(r, P;)dr — —/ h(r, P.)dT.
(0,t0)U(t1,T) 2 to

Thus -
wur(Pr) = wl(Po) = Affo o] = [ ula)is(d).
This concludes the proof.
O

Lemma 3.5.2. Let u be as in (3.3.1 - 3.3.3) so that in particular Lemma 3.3.2 holds. Let
h be defined as before Lemma 2.4.3. Then, we have

J(u,h) =sup J = AL [0, v].
Uo
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Proof. By Proposition 3.4.3 we have

sup J < Aflo,v].
Uo

In light of Lemma 3.5.1, it suffices to show that (u, h) € Up.

By Proposition 3.3.1, u is Lipschitz and h is bounded from above by a constant. We
combine Lemma 3.1.7 and Lemma 3.3.2 to conclude that h > 0. As a limit of Borel functions,
d+

“ru is also a Borel function. Thus, / is a Borel function.

It remains to show that for any Lipschitz curve 74 : [0, T] — €, we have
t .
u(t,3e) — uls, 7s) < / (L(af,m — h(r, ”_yT))dT, Vo<s<t<T. (3.5.1)

Let 4 : [0, 7] — Q be a Lipschitz curve and set

So={te(0,to) : =7}, Si= {t € (0,t9) : P, =A(t), %u(t,f_y(t)) = %u(zﬁ, Pt)}.
Recall that the set Sy \ S; is of null Lebesgue measure (see Lemma 6.3.1).
Let t be a point such that u(-,¥) is differentiable at ¢.
On one hand, if t € S, N Sy, then
+ _ d+ _
%U(tﬂt) +h(t, %) — L(Ye, %) = Eu(ta PB) + h(t, P,) — L(P;, P) = 0.

On the other hand, if 4; # P, we combine Lemma 3.1.7 and Lemma 3.3.2 to conclude

that
dr dr

gu(fﬂ%) + h(t, %) — L(3e, %) = au(tﬂt) — L(%, %) <0.

In conclusion,

d-‘r

%U(t, ’715) + h(t, ’?t) — L(’?t, ﬁt) S 0 ﬁl a.ce.

Integrating, we have (3.5.1), which concludes the proof of the lemma.
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3.6 Properties of optimal curves

In this section, we discuss optimal curves properties in probabilistic representation of mea-

sures.
We set
[y = ACy(0, T Q)
Recall that 'z is a subset of the Hilbert space W2(0, T; R?). For 4° € 'y and 6 > 0,
we denote by Bs(7o) the ball in I'r o, of radius 0, centered at .

Given v € I'r o, if there exists so € (0,7") such that v(so) =: zy € 2, we define

t™ (v, ) := inf } {s D s < so,’y((s,so)) C Q}

s€[0,T
and

tT(y, z0) = sei[%,fT] {s: 5> s0,7((s0,5)) C Q}.

For v € ACy(s,t;Q) such that 0 < s <t < T, we define
¢
E) = (1()9(0) = [ LvA)ir
When v € AC5(0,T;Q), EX(y) means EN(Y|is.7)-

Let s,¢ € [0, T] be such that s < t. Since 7.¥ satisfies the system of differential equations

d . .
—DuL(7:%,7:%) = DoL(55, 54),

dt
the uniform bound H’yﬁ:%”wm (s1) obtained in Proposition 3.1.2 implies that
St := sup H’y;gHWQ’Q(S’t) < Q. (3.6.1)

m,yEQ
By the Sobolev embedding theorem, increasing the value of Sg; if necessary, we have
a2 llogon < Sellillwingey  md [1eEller o < Sallr52lwese (3.6:2)

and both injections from C([0, T; ) into W2(0, T’; Q) and from C*([0, T; Q) into W?22(0, T; Q)

are compact.
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Lemma 3.6.1. Take v € I'ry such that there exists sy € (0,T) such that y(sg) =: o € Q
and set t£ = (v, x0). Assume v(0),v(T) € ON.

(1) We have 0 <t~ < 59 <t <T.

(it) We have v((t7,t7)) C Q and ~(¢t7),y(tT) € 0.

Proof. (i) Take ¢ > 0 such that the open ball B in R? centered at (sg) and of radius e is
contained in . Since 7 is continuous at ty, there exists 6 > 0 such that when |s — so| < §

then ~(s) belongs to B. We have t~ < sy — 0 and so+ 6 < ¢

(i) Let (s,), be a monotone sequence in [0, s9) decreasing to ¢~ such that v ((s,, so)) C Q.

Since

7((157750)) = U 7((871750))7

we conclude that y((¢7, sp)) C Q. If ¢~ =0 then y(¢t7) € 9Q. If = > 0 and v(t7) & 99, then
by (i), t~(v,7(t7)) < t~, which yields a contradiction. Using similar when ¢~ is replaced by

t*, we conclude the proof of (ii).

]

Lemma 3.6.2. For any s,t € [0,T] such that s < t, the function A% is Lipschitz on bounded
subsets of ACy(s,t;Q).

Proof. Let v,7 € ACs(s,t;Q).

Notice

L(v,ﬁ)—L(7ﬁ)=/1<DL L=M7+2) (7=7 >d/\.
0 (=M +A7) \7-7

By the fact that DL is ko—Lipschitz continuous, we conclude that there exists a constant

C, independent of s, t, v or 4 such that

Ly 4) = L, 3)| < € (kollyl + 31+ 1+ ) + IDLO)]) (17 = 1 + 15 = 41).
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Integrating over [s, t] and increasing the value of C' if necessary, we conclude that

L) = AL < C(Inllwraen + e + )17 = wsa.

Remark 3.6.3. Let s,t € [0,T] such that s < t.

(i) Since by Proposition 3.1.2, c. is continuous on Q* and C([s,t];Q) compactly embeds

in Wh2(s,t;Q), Lemma 3.6.2 implies that E' is a continuous function on W12(s,t;Q).

(ii) Let (z™), and (y"), be two sequences in ) converging respectively to x and y in Q.
We use the W2 uniform bound in (3.6.1), the compactness property in (3.6.2),(i) above,
and the fact that 72:% if the unique minimizer connecting x to y to conclude that (72%2)

converges to b4 in C*([s, t]; Q).
Take 7° € T'r such that the range of 7° intersects Q at a point 2°. Take s, ¢ such that
t(y,m0) < s <t <tt(y,z0). (3.6.3)
Fix 6 > 0 and define the map M° = Mjo :I'rg — I'po by setting,
M’(y) =1

for v € T'ra \ Bs(7?).

For v € Bs(1"), we define M?(v) by

v(7) it 7e€[0,s]Ult,T]
M°(y)(7) = (3.6.4)

0 (r) if 7€ (s,t).

L s(s)
Lemma 3.6.4. Take v° € T'ro and s,t such that (3.6.3) holds and let § > 0.
(i) The map M° is continuous on Bs(v°) and on {y € I'rz : ||y —7°|lwaaor > 0}
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(ii) The map M?° is a Borel map.

Proof. (i) Since M?° coincides with the identity map on the open set {y € T'rq : |y —
Yllwaa oz > 0}, it is continuous there. To complete the proof of (i), we fix v € B5(7°) and
take any arbitrary sequence (y"),, C I'r2 converging to 7. We need to show that (M 5(7"))n

converges to M?(v).

Since Bs(7°) is an open set, there exists Ny such that 4" € Bs(7°) for all n > Nj.
Without loss of generality, we assume that Ny = 1. Applying the Sobolev embedding theorem
C([0,T);Q) € WL2(0,T; ), we obtain existence of the limits

= i " = i " h T=A" = ~"().
T n—lgloox , Y n_lglooy , where T ' (s), Yy v"(t)

Remark 3.6.3 ensures that (722’;) converges to y4¥ in C'([s, t];Q2). Thus,

= 0.
W2(s,t)

lim su HM6 n) — M° H = lim su byl by
p||M°(y") (7) - P||Yean — Ve

n—-+00 n—-+o0o

Since

M§ ny M6 H _ n __
H (") (7) w2 ((0,9)U(T)) g 7||V‘/1’2((()’3)U(t’T))7

we conclude that

< limsup ||y" — 7||W1*2(07T) =0.

imsup [3£°) ~ 4%
p||M°(Y") — M°(v) w12 (0901) T nboo

n——+o00
This shows that M? is continuous at ~.

(ii) Let O C I'72 be an open set and denote by Oj, the inverse of O under M°. Then O

is the union of
O} i={yeB;: M°(y) € O}
and

Of :={y €Tz \Bs: Mﬁ(’Y) €0} =Tr2\Bs)NO.

By (i), O} is an open set. Thus it is a Borel set. Since, O% is the intersection of a closed
set and an open set, it is also a Borel set. As a consequence, Os is a Borel set. This proves

that M?° is a Borel map.
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Theorem 3.6.5. Let (o,v) € Yr(oo,0r|t0) and let n be a Borel probability measure on
R? x Ty be such that o = 0", according to (3.4.2). Assume v° € T'roNsupp(n) has the range
of 7° intersecting Q at xo = y(so) and s,t,s0 € <t_(’yo,x0),t+(’yo,xo)), where s < sg < t.
If E4(7°) = —2¢ < 0 then for 6 > 0 small enough, there exists (0°,v°) € Sp(0g, op|th) such
that

Al'lo? %) < AL, v].
Proof. By Remark 3.6.3 (i), E! is continuous. Thus there exists § > 0 such that
Ei(7) <—¢, ¥y eBs(y). (3.6.5)
Increase the value of S; if necessary. The Sobolev embedding theorem gives
Pleqeg < Setllvlwnagey V7 € WHGs: D). (3.6.6)
Since 7%([s,t]) C Q and both 7%([s, t]) and 9 are compact sets,
8o = dist(y°[s, t],00) > 0. (3.6.7)

Choose ¢ > 0 small enough so that we further have 055 < dq/2.

Let M° be the map defined in (3.6.4) and set

n° = (id x M°)yn.

By Lemma 3.6.4, 1° is also a Borel probability measure. We define o by

/Rd o(y)od(dy) = /Rd ) (v () (dg, dy).

In other words,

/Rdw(y)af(dy) = /RdXF @(M‘s(,y)(T))’r](dq,dry)‘

If v € Bs(1°), then

T t
/ L(y,4)dr = / L(y,4)dr + / L(v,3)dr.
0 (O,S)U(t,T) S
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Since
/OT L(v,5)dr = /OTL<M6<,Y)’ M5(7)>d7 _ El(y),

we use (3.6.5) to conclude that

/OT L(y,%)dr > e+ /OT L(M‘S(fy), Mﬁ'(fy))dr.

Thus
T T )
[ ([ o )aanan= [ ([ r(30). 0080 ir Jatan.
RixBs(10) \ Jo RixBy(10) \ Jo
(3.6.8)
d 0
—i—en(R x Bs( )). (3.6.9)
Since M?(v) = v on the complement of B;(7°), we conclude that
T
/ (/ L(%“’y)dT) n(dq, dv)
rix (rr\Bs(9)) \ Jo
T .
-/ ([ 2ot i) ar Yt
Rix (Pr2\Bs(v)) \Jo
This, together with (3.6.8) implies
T
/ </ L(%W)df)n(dq, dv)
RixTro \ J0
T
2/ (/ L(%W)dT)n‘;(dq,d'y) +677(Rd x Ba(vo))- (3.6.10)
RdXFTQ 0

We use Proposition 6.1.1 with 7 replaced by n° to conclude that the path ¢ — o belongs

to I'r2 and there is a velocity v® for o such that

/ /Rd or(dr) < /RderJ( /0 TL(V(T),W(T))dr>n5(dq,dfy).

This, together with (3.6.10) and the fact that o = 0", implies

//R (dx)+677<R x Bs(7 //R (,v:(z)) o (d).
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Since 7Y belongs to the support of 1, we have n(Rd X Bg(’ﬁ)) > 0.
Thus
T T
/ / Lz, 0(z))o? (dz) < / / L(z,v.(z))o.(dz). (3.6.11)
0o Jrd 0o Jrd

Note that if v € Bs(7°), then for any 7 € [s, t], we have
0 0 do
() =7 (D] < Sally =7 llwraen < Sad < -
Thus
Y(r) €00 V1€ [s,1]. (3.6.12)

1. Claim. If A C 09 is a Borel set, then x4 <M‘5(7)(7)> > x(y(7)) for all 7 € [0, 7.

Proof of the Claim. We need to prove the claim only for v € Bs(7°) and for 7 € [s,t].
Under these additional assumptions,(3.6.12) implies that x(v(7)) = 0, which concludes the

proof.

2. Let A C 992 be a Borel set. We have

A= [ b = [ (M6 )i

RdXFT,Q

We use Claim 1 to conclude that
A= [ b)) = or(4) 2 ()
RdXFTQ

This proves that
ol >, Vrelo,T]. (3.6.13)

By Remark 3.4.2 M%(y(7)) = v(7)) = P, for 7 € {0, T}. Hence,

o =0. Vre{0,T} (3.6.14)

T

We combine (3.6.13) and (3.6.14) to conclude that (¢°,v°) € Y7 (00, o7|1)).
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Corollary 3.6.6. Let (0,v) € Yr(0q,07|W) be the minimizer of AY over Yr(oq, or|t)) and
let n be a Borel probability measure on R? x T'y such that o = o". If ¥° € T'r2N supp(n) such
that the range of 7° intersection Q at wg = Y(so), and if s,t,s9 € <t_(’yo,x0),t+(70,xo)>

such that s < so < t, then

Ty

0 ot
Y ’[t*,ﬁL] - 7,57@7
where

= (0% 20), = (T w0), w=7"(), y=7"(t").
Proof. By Theorem 3.6.5,
Ylst] = Voro(s): " <s<t<tr.

Letting s tend to ¢t~ and ¢ tend to ¢, we conclude the proof.
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CHAPTER 4

Action Involving a Metric and a Potential

Recall that M*(99) denotes the set of Borel measures on R? with their supports in 9. Let
S be the set of Borel paths 1 from [0, 7] to M™(92) that are piecewise continuous on [0, T

with respect to narrow convergence topology and are also continuous at 0 and 7.

We first review some settings for this chapter.

4.1 Preliminaries

We define
S = {1 €8 : vo(Q) = vr(Q) = 1,4,(0Q) < 1}.

We denote by G(a,b), the set of g € C?(R? R%*9) such that g;; = g;; and there exist
0 < a < b < oo such that the eigenvalues of g(x) are between a and b for all z € 2. For such

a g, we define the Lagrangian

d
1 o _
Ly(z,v) = 5 E gij(x)v'v’, Y(z,v) € Q x RY.

ij=1

We denote by g~! the inverse of g and the associated Hamiltonian is

d
1 . i
Hy(w,p) =5 > o' (@p'y,  V(wp) € QxR

ij=1
At z € Q, we define the inner product and the norm
(v, W)g@) = (g(X)v, ), lg@) = 1/ (0, V)g(a)
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Our Lagrangian can then be written as
Lo A d
Ly(xz,v) = Q‘U’g(xy V(z,v) € Q x R%
The distance dist, between z € R? and y € R? is
1
dist,(z,y) = mvin {/ [Y]gepdt = ¥(0) =z,7(1) =y, v € ACQ(O, 1;Rd)}. (4.1.1)
0
We assume that if 7 is a minimizer in (4.1.1) and z,y € Q, then
~(0,1) C Q, (4.1.2)

which means that the range of v minus {7(0),v(1)} is entirely contained in €.

We set gis(z) = d;; and

distg = disty. (4.1.3)
Given ® € C%*(Q?), we define
1 _
Fo(u) == 5/ O (xq, x0)p(day)pu(das), Y € P(Q).
Q

We define X' to be the set of pairs (g, ®) such that g € G, ® € C?*(Q?), ® is symmetric

and Fg is strictly convex.

Given p,v € P(), we recall that X7 (u, v) is the set of (o, v) satisfies

supp(o;) C Q, vt € [0,77]. (4.1.4)
oo =, op=v on 0N (4.1.5)
o +V-(vo) =0 on D'((0,T)xR?). (4.1.6)

We also recall that if ¢ € S, then X (p, v]1)) is the set of (o,v) € Xp(u,v) satisfies

UtlaQ > ’l/)t on [O,T] x 0f). (417)
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For (g, ®) € X and (o,v) € X1 (0, ), our action functional becomes
® ’ 1 2
Ao, 0] = /O ( /Q £ 00 By 0n(dr) + E;,(at)) dt (4.1.8)

Similarly, for a« € C([0,T] x ), we define the action

A / / ( t<q>>+a<t7q>)m<dq>

and study the variational problem

inf {Ag[n,w] . (n,w) € Sp(00, or, |¢)}. (4.1.9)

(nyw)

Let U be the set of tuples (u, h,«) such that u,a € C([0,T] x Q), b : [0,T] x 2 — R
are Borel maps such that h > 0. Note that A is defined pointwise and we are not assuming
there is an underlying measure for which h is define up to a set of zero measure. It makes

sense to consider those tuples (u, h, ) satisfying the condition

ut 2 (6) = u(s,76) < [ (LonA) = hira(r) +altra(r))dr  (@.110)

forall 0 < s <t <T and all v € Wh(s,t;Q).

We define
U, = {(u,h,a) €U : (4.1.10) holds}. (4.1.11)

For (u,h,a) € U, and ¢ € S, we set
T
J(u, h, a|th) := J(u, h|y) —/ Fi(ay)dt, (4.1.12)
0
where
T
S blo) = [ a(Ta)irda) ~ [ a0.0pintda)+ [t [ it qntda)
Q Q 0 a0

Here Fj is the Legendre transform of F, which is defined as

Fit)= s { [ atoutdn) - Fala)}.

peEMT(Q)
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Since we can choose the extension of F' to be +o0o outside P(£2), then

Fite) = s { [ atoutdn) - Fala)}

HEP()

The first main result of this chapter is the following theorem whose proof will be divided

into several steps.

Theorem 4.1.1. Let 1 € S and let (o¥,v¥) be the unique minimizer of Ag’ over the set

Y1 (Yo, r|t). Recall that our duality asserts that

Alo¥ 0" = sup T (u.h.aly).

(u,h,a)EUg
The optimal o can be chosen to satisfy
af'(q) = / ®(q, g2)o) (dgz) — 2Fe(a)). (4.1.13)
Q

We only need to show (4.1.13)

Whether or not J admits a maximizer over U, thanks to Theorem 4.1.1, we will continue

to assume that we can measure the supremum of 7 which is uniquely determined.

4.2 The relevant maps for our inverse problem

We endow the set S with the following topology: a sequence (¢™), C S converges to 1 in S

if, for every ¢ € C.(R41), we have

i [ ([ eteawiian)ar= [ [ ote.amian)a

and for every f € C.(R) we have

i | f@er(dn) = [ f@urtd) and T [ faitn = [ oo,

n—o0
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Remark 4.2.1. Suppose that (Y™), C S converges to 1 in S and let (o¥,v?) is the unique
mianimizer of Ay on the set Xp(1o, 1r|h). For every e > 0, we can find (u,h, o) € Uy such

that h is continuous and
AZ[0?,vY] < e+ T (u, h,al) = €+ liminf J (u, h, a|¢") < €+ liminf A [0", 0"].
n—00 n—00

Hence i — AZ[0¥,v¥] is lower semicontinuous from S to R.

We denote by F(S;R) the set of real valued function on §. We define
T:GxC*D?) — F(S;R)

by

Z(g,®)(v) = Ag)[aw, vY] + /OT Fi(af)dt, (4.2.1)

where (o¥,v?) is the unique minimizer of Ag’ on the set X7 (¢, ¥r|1) and of is given by

(4.1.13).

We shall have access to the boundary measurement Z(g, ®) on S. The inverse problem

we are interested in is to find (g, ®) knowing Z(g, ).

4.3 Some results when 7' =1

In this section, we take T = 1 for simplicity. This does not make our results special as it is

just reparameterization.

It is well known that if ¢ € G and v is a minimizer in (4.1.1), then |[§(¢)|4(y)) Is time

independent and
1 1 .
distj(x,y):/ 17|§(7)dt=m%n{/ 1412 dt - ﬁ(O):x,ﬁ(l):y}. (4.3.1)
0 0

Let a : © — R be a Borel function and let ® € C?(Q?) be a symmetric function such

that Fg is strictly convex.
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Define
To(u) = / a(g)u(dg) — Fa(w),  Vue P().

Given pg, p11 € P(Q), we define p1; := (1 — t)pg + ti;. We have

]a<,ut) :Ia<,u0) + tﬁ

Q

(a(ql) _/QCI)(QhCD)NO(d%))(Ml — 110)(dq1)

—% o Pl @) = o) dar) (= pio)(dgz). (4.3.2)

Similarly,

L) =La(yur) + (1 — 1) /

Q
(1-t)?
2 a2

(ata) = [ ®(an avr(dae) ) (o = ) )

(1, 42) (1 = p0)(dgr) (i1 = 10)(dgz)-
Write I, () = (1 — €)1 (1) + t1o (1) We conclude that

To(pe) =(1 = ) Lo (po) + tla(p)

3=t | ®lar,aohinldan) i = o)) (1 = p) ()
The strict convexity of Fg is equivalent to the strict concavity of I,, which means
| o wdnolan) = o) o o = o) > 0. VoA g (433
Proposition 4.3.1. Assume p € P(Q) and set

a,(q) iz/Q(I’(qy%)M(d%)

Then
Fy(oy) = Lo, ().

Thus p € 0.Fg(cy,) and o, € 0.Fo(p). Furthermore, for any A € R, we have

Fila+N) = Fi(a) + A
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Proof. Let j; € P(Q). Take g = p in (4.3.2) and (4.3.3). Notice that

Lo, () = Lo, (1) — g/m (g1, g2) (1 — po)(dqr) (1 — po)(dga) < I, (), ¥t € [0, 1].

Thus Fg(ay,) = Iy, (1). Therefore, p € 0.Fg(,) and a,, € 0.F(p).

Since I, 4(1t) = Lo, (1) + A, we conclude that Fg(ay, +A) = Fg(oy) + A

Remark 4.3.2. Note that by Proposition 4.5.1, we have
ay € 8.Fq>(/¢),

where
G(q) = / B(q, 42)1(das) — 2Fu(1).
Then
Fildi)+ Folp) =0, and [ @ @hutda) =

Lemma 4.3.3. If Py, P, € 090, then

! 2
min {/0 /Q ‘vt(x)|g(z)0t(dx)dt : (o,v) € 21(5130,5131)} = distg(Po,Pl)

(o)

and the minimum is attained by any (o*,v*) such that o* = d, where 7y is any minimizer in

(4.3.1) and v} () = .
Proof. Observe first that if 7 is a minimizer in (4.3.1), then
{(5,t) € (0,1)? : v, = s,% # s} has null E%O’l)g—measure.

Therefore, there exists a Borel vector field v* : (0,1) x © — R? such that v} (vy;) = 5.

[ [

We have
F(dx)dt = /|’yt\2 dt = dist} (P, P1). (4.3.4)
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Let (o,v) € ¥4 (5p0, 0 pl) and let n? be its probabilistic representation given by Theorem
8.2.1 [4] such that

v(y) =4 forae t, n?ae. (q,7). (4.3.5)

Denote I'y 5 := AC(0,1; ). We use (6.1.3), (4.3.5), and apply Fubini’s theorem to obtain

1 1
2 2

ve(w o(dw dt:/ / ] ?(dq,dy)dt. 4.3.6

/O /Q| t( Mg(m) t( ) 0 JRIXT2 ‘fyt|g(%)77 ( 7> ( )

Since (6.1.3) also ensures that the set of (¢, ), with either v(0) # Py or (1) # P, is of

null n°—measure, we have

1
/ / \%Ii(%)n"(dq,dv)dtz / dist?(v(0), (1)) n° (dq, dy)dt = dist? (Py, P1).
0 JRAxT o R4XT,2

This, together with (4.3.4) and (4.3.6), yields the desired result.

4.4 Minimizers of A}

In this section, we will see that minimizers of Ag’ are also minimizers of an auxiliary linearized

problem.

Our goal is to prove a fixed point property, which means that we can choose « such that

there exists (77, w) which is a minimizer in (4.1.9) and such that
a(t,q) = / D(q, g2)1(dg2)-
Q

We first explain the idea that guided our intuition in this section. Assume we have two
functions A and B and we know that A + B is minimized at xzy and A is convex. Consider
the function A + B,,, where B,,(z) = B(xo) + (B(xo), — o). The function A + B,, is
convex and its gradient at g is VA(xg) + VB(xg). Since zy is a critical point for A + B, it

is also a critical point for A + B,,. For convex functions, critical points are minimizers. so,
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xo is a minimizer for A + B,,. In conclusion, every minimizer of A 4+ B is also a minimizer

of A+ B,,. Furthermore, let us assume we have a duality result
sup J(8) = min A + B,,.
IB x

This implies
sup J(f) = min A + B.
B x

We will show that the argument above, which is applied in a Hilbert setting, works in

our case as well. To achieve this goal, we need to convert Ag’ into a convex functional.

Let’s set
.
%(g(q)m,m) if a>0
G(g,a,m) =40 if a=0,m=0
+o0 if (a=0,m=#0)ora<0

\

The Legendre transform of G(q, -, -) is

r
oo if b+ 3(g7(g)n,n) >0

() = sup [+ St ) =

a>0 2

0 if b+ %(g_l(q)n,n) <0

Thus
*k 1 —1
G*™(gq,a,m) = sup {ab+ (m,n): b+ §<g (@)n,n) < O}.

b,n
We observe that G**(¢,0,0) = 0 and G**(q,a, m) = 400 if either a < 0 or a = 0 and
m # 0. When a > 0, we have

G (gsam) = sup {(mon) = 5o~ @) } = 5-(glgym. m).

This proves that G(q,-, ) = G*(q, -, ).
Thus, G(q,-,-) is convex and lower semicontinuous.
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We identify o € ACy(0,T;P(Q)) with the measure on [0, 7] x €, which we continue to

denote by o for simplicity.

We define
/[o,T]XQ et gjoldt, dg) = /OT/QW’Q)%(Q% Vo € C([0,T] x Q).

If v is a velocity field driving o, we define the vector field m = ov, whose components

are signed measures, by

/ (W(t, ), midt, dg))
[0,7]x2

We write m € M((0,T

/ dt/ W(t, q),ve(q))oe(q), Vi € C([0,T] x Q,RY).
(4.4.1)

) x Q)% to express the fact that each one of the component of m

is a signed Borel measure. Note that |m| << o.

We now consider the function

(
f[oﬂxﬁ G(q, f,dm/df)a(dt,dq) if |m| << o,dm/do=v

Ay(o,m) =
if |m| £<o

+00
\

Here, ¢ is a probability measure and f is a non—negative function such that ¢ = f&. Since

G(,q,-,-) is convex and 1-homogeneous, the definition is independent of f. In particular, we

can take f = 1.

If (o,m,v) are as in (4.4.1). then

/ / +(q))ot(dq). (4.4.2)

One advantage of the new formulation is that flg is convex on the set

P o= {(a m): o€ P(0,T) xQ), m € M((0,T) x %, o+ V -m =0, D((0,T) x Rd)}.

Therefore, A, is convex on the set

Py = {(a m)eP: o>y, 0o = 0p,, 01 = 5PT}
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Theorem 4.4.1. Suppose (0,v) minimizes Ay over ¥r(oo,or|)). Then (o,v) minimizes

A§ over Yr(og, or|), where

a(t, q) 3_/9‘13(%612)%(61(]2)-

Proof. We first observe that

Q

Fali) = Falo) + |

altea)n = o)) + 5 [ @lar )0 = o)) - 0)d). (443)
Q

Thus

A= [ [ Yot + [ (Fatn - o)+ [ attaotia))a

=
_% /QQ (g1, 42)(n = 0)(dgr)(n — 0)(dgs).

We conclude that

%WM=£WM+£%—%EHXFWMd%Uﬁ

_%/ﬂ ®(q1,q2)(n — o) (dq1)(n — 0)(dgz).

Using the minimality property of (o, v), we deduce that

Aj [, w] ZA;D[U, v] + /OT ( — Fy(o) + /Qoz(t,ql)a(dql)>dt

—%l;wmﬂﬂ@—aﬂ@ﬂm—UM@ﬂ

Aol = 5 [ o)y - o)(da)n ~ o) (de)

Replacing [n, w] by [n*, w?] := (1 — A\)[n, w] + Ao, v], the previous identity provides

e « (1 — )‘)2
Ag [77/\7 wA] > Ag [07 U} -

/Q (g1, 2)(n — o) (dq1)(n — o) (dg2). (4.4.4)

We set

m* = (1 — Nnw + lvo,
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and use the convexity of flg to conclude that

(1- ) (Ag[n,nw]+ /0 L /Q a(t,ql)'r;(dql)) +A<Ag[a, o] + /O " /Q alt, ql)a(dql))

T
> A, mY) + / at /Q alt, ) (da).
0

This means
« « af, A A
(1= NAG [, w] + AAG [0, v] > A0, w?].
This, together with (4.4.4), implies

(= A )+ 3 gl ) > Agloo) = L2 [ e )= 0) )0 - o)),

Rearranging and then simplifying the subsequent inequality by (1 — \), we get

(1-2

Aj[n,w] > Ao, v] — 5 /Q (g1, 92)(n — 0)(dq1)(n — o) (dga).

Let A tend to 1. We conclude that Ag[n, w] > Ag|o, v].

]

Remark 4.4.2. Note that if (o,v) is the unique minimizer A3 over ¥y (oo, op|i) and set
a(t, ) = a,,, which means

a(t, q) ::/Q(I)((L(D)Ut(d(h)-

Then (see also Remark 4.3.2)

Falon) — [ att.a)oulde) = ~Fi(a(t. )
Q
Corollary 4.4.3. If (o,v) and & are as in Remark 4.4.2, then the following hold.

(a) For any (n,w) € Xp(u,v), we have

Aol 2 Alpl + [ (Folo) -~ [ atgetan )i
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(b) Hence,

min {Aq)[n, w]: (n,w) € ET(JO,UTW)} = .A;I)[U, v]

(m,w)

T T
:%}7113 {Ag‘[n,w] D (nw) € ET(‘707UT|w>}+/O Fy(oy)dt = AZ[o, ] —/0 Fy(ay)dt.

Proof. By Proposition 4.3.1,
Fy(ne) > Fo(or) + / a(t,q)(n: — o:)(dg).
Q

Thus

o> [ | (3@t + [ atoun) + [ (Foto0 ~ [ att.gjntan) ),

which proves (a).

Use (a), Remark 4.4.2; and the fact that when n = o, we have

/OT Fo(n)dt = /OT dt/ﬁa(t, Q)mu(dgq) — /OT Fi(a,)dt,

which concludes that (b) holds.

We now finish the proof of Theorem 4.1.1.

By the duality relation
in { A7) 5 (1.) € Srlov.orlu) = sup {J i) (u, ) € Uy}
and the fact that, by Theorem 4.4.1, (o, v) minimizes Aj over Xr (oo, or|¢), we have
Aglo,v] = (suug {J(u,hlw) : (u,h,@) € L{g}.
We use Corollary 4.4.3 and the fact that Fg(oy) + F*(a;) = 0 to conclude that
Aj[a, v] = (312%) {j(u, h,aly) : (u,h,a) € L{g}.

This concludes the proof of the theorem.
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4.5 Special family (¢°). C D

In this section, we study minimizers of A7 over Xp(dp,, dp, [¢)) for a special class of (1) C

D.

For e € (0,7/4), we set

t'—T te'—T—i-
€= 3 €, =3 €.

Fix Py, Pr in 02 and assume ¢ — P € 0€) is a differentiable function such that
Pf=PF, Vtelot], P =Pr Vselt,T], Pr g {Py, Pr} Ve (t,t9).
Let A°: [0,7] — R and 9° be defined by
A§ 1= X[o,tulte, 1] Yy = A\iops. (4.5.1)

Note that ¢ € D.

Let (¢, v) be the unique minimizer of A3 over Xr(dp,, dp, [¢)) and set
()= | Daoilde) — Falo), Vit) € 0.7] x 2

We have that
Py if t€[0,¢t]

Pr if te [tE,T]

€ __
O't—

and the restriction of (o€, v°) to [t,t°] is the unique minimizer of
tE
| ] (Lotauteodn) + Falon))
te JQ
over the set of (o,v) such that v is a velocity driving o and
o c AOQ(tE7 tﬁ, Q)? Ot. = 5P07 Ote = 5PT'
To reparameterize the time into T' = 1, we define

A€ L ~NE L €
05 1= Ogespt,, Uy 1= 2€V5., 4, Vs € [0,1].
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Then (6¢,0¢) is the unique minimizer of

1

Aol = | 1 ([ 3@t w)odo) + 1 Fafon) ) ds

over the set X (5p0, ) pT) and we have the identity
—.AE 5¢, 0°] / / (x,vf(z))o(dx) + Fcp(ot))dt
Observe that
dr e € r 1 € 2 € €
’Ag [0‘ , U ] = tE (Fq, (5130) + Fcp (5PT)> + ~ §|Ut(x)|g(x)0-t (dl’) + Fq>(0't) dt.
te Q

Thus
1 -
Ao, 0] = 1, <F¢ (6p,) + Fo (5PT)) + 5o Al o) (4.5.2)
We now study supports of the minimizers of Ae,

Using the notation of section 4.5, we recall (¢, 7¢) is the unique minimizer of Ao, v]

over the set X1 (dp,, Ip, [1°).

We define
~E ~ € ~ € 7 € 1 ~E
as(q) = / (g, 42)07(dge) = 2Fu(67),  L(t,2,v) := S{g(w)v, v) + €65 (q).
o)
We denote

1
Bo<y) = / £ (t, 0 30) .

0

We linearize Fg around o; and consider the functional

BY€lo,v ::%/ dt/ (x))o(dx)

/ dt/ozt 6¢)(dz) + 46 /01F¢(6§)dt.

B9 0] = /0 it /Q 29<(t, 2, vi(2) ) (d).

We set



In light of the last identity in Remark 4.3.2, the previous expression can be written as
R R 1
B lo,v] = BY[o,v] + 462/ Fy(67)dt.
0

Let 4¢ be a minimizer of B%¢ over the set of v € W'2(0,1;Q) such that 7o = P, and
1 = Pr. We assume that the minimizer in (4.3.1) is unique, which means 4° is unique. In
Theorem 4.9.1 of section 4.9, we will give a sufficient condition to conclude the uniqueness

of the minimizer.

The relation
colo? = 4620 w2 < £4(t,,0) < colvf? — 4@ ey

implies that {¥}>o is bounded in W12(0, 1; Q). If (9%); is a subsequence converging weakly
to some ~* in W12(0,1;0), in light of the Sobolev embedding theorem, we may assume

without loss of generality that (4%); converges to v* in L>(0,1; ). We have

B*[y7] < lim inf B2 [y] < liminf B9 [y] = B*[4],

j—00 Jj—00
for any arbitrary v € W12(0,1; Q) such that 9 = Fy and 7; = Pr. This means that v* = 4°.

Thus, {¥¢}c>0 has a unique accumulation point. We obtain the following lemma.

Lemma 4.5.1. Suppose 4° is unique and 4°(0,1) C Q. Then any minimizers (¥)c>o con-

verges weakly to 4° in WH%(0,1;Q) and strongly in L>(0,1;Q).

Lemma 4.5.2. Suppose A° is unique and 4°(0,1) C . Let n° be the probabilistic repre-
sentation of (6¢,0°) given by (3.4.2). Then except on a set of zero—n° measure, every vy in
the support of n¢, minimizes B9 over the set of v € WH%(0,1;Q) such that vo = Py and
T = Pr.

Proof. Set 6*¢ = 5 and let 0*¢ its unique velocity field. We have (6*¢,0*) € ¥1(0p,, dp,|0).
Let (O’, ’U) S El((spo, 5PT|O)
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Let ) be the probabilistic representation of an arbitrary (o,v). By Remark 3.4.2, except
on a set of zero 1 measure, every « in the support of 1, belongs to W12(0,1; Q) and satisfies

Yo = Py and 1 = Pr.

Since 7 is a probability measure, we have
1 A A
Bo[o, v] — / ( / et an, d)dt)n(dx, da) > BUy] = B[, 6% (4.5.3)
QxW12(0,1;Q) 0
This, together with Theorem 4.4.1, implies

I(IliI)l {Bg’e[a, v]: (o,0) € 21(5p0,5pT|0)} = B9€[67, 0" = B9[] = B¥[6¢,0]].  (4.5.4)

We combine (4.5.3) and (4.5.4) to conclude the proof of the Lemma.

]

Corollary 4.5.3. For each § € (0,1/2) there exists ¢y > 0 such that the support of the &§

denoted by supp(d¢), is contained in compact set in Q for allt € [0,1 — 0] and all € € [0, ).

Proof. Let § € (0,1/2). Since 4" is a continuous function, 4°([d, 1 —4]) is a compact set which

by assumption, is contained in 2. Let dy > 0 be the distance between 9Q and 4°([,1 — 4]).

By Lemma 4.5.1, there exists ¢y > 0 such that if ¢ € [0, ), and 4 minimizes B%¢ over
the set of paths in W12(0, 1; ) which start at 49 = P and end at y; = Pr, then 4([6, 1 — d])
is contained in the dy/2-open neighborhood of 4°([d, 1 — §]), which we denote by O. Thanks
to Lemma 4.5.2, (3.4.1) implies

Supp(af) - {V(t) e € WLQ(O? 1aQ)7 Yo = POa Y1 = PT7 BQ,E[,Y] = BQ,G[,?E]} - 07

which yields the desired result.
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4.6 Existence of a dual maximizer when ¢ = ¢

Throughout this section, we choose ¥¢ as in section 4.5. Set
(teq) = [ Dlaa)otldar) - Falo). ¥itq) € 0.7] x 2.
Q

Note that

a(t,P) =0,  Vtelot]ult,T). (4.6.1)

On [t,, T] x €, we define

~

u‘(t, z) == min { /: (Lm,w + Oze(t,v))dT py(te) = Po,v(t) = 2z, ([t t]) C Q}

On [0,t] x Q, we define

5

) = ma = [ (L) + o)) 2(6) = () = 2 (et < 2,

Let ¢ be a minimizer of

v /tt (Lg(%"v) +Of(7m))d7
over the set of v € Wh2(t,, 1% Q) such that y(t.) = Py and () = Pr.
We have
(s, 7)) — us(t, 75 (1)) = /t (Lg(’y,"y) + ae(t,fy)>d7, Vi, <t<s<t.  (4.6.2)

Remark 4.6.1. We know that the restriction of u¢ is Lipschitz continuous on [t., T] x Q.
By the representation formula above, the restriction of u® is also Lipschitz continuous on

[0,t] x Q. Since u is continuous on {t.} x Q, we conclude that u¢ is Lipschitz continuous

on [0,T] x €.

Lemma 4.6.2. The function t — u(t, Pf) is monotone non-increasing on respectively [0, t]

and on [t,T). Similarly, the function
¢
ts m(t) = / (L9<P€, P9 + of(r, P5)>d7 —u(t, PY)
te
is monotone non-decreasing on [t.,t¢].
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Proof. (i) Assume 0 <t < s < t.. Choose v € W'2(s,t.;Q) such that v(s) = Py and
te
U’E(Sv PO) = _/ <L9(77 ,Y) + ae(t7 ’7)>d7-7

Let 4 be the extension of v to [¢,s) obtain by setting ¥(7) = Py on this interval. Since
7y € WE2(t,t;Q) and v(t) = Py, using (4.6.1), we have

it 2= [ (3.5 + e 7) )i

=~ [Toar— [ (ko) + 0ttt ) = (s, )

Thus, t — u(t, Fy) is monotone non-increasing on [0,t.] A similar argument allows to

conclude that ¢ — u(¢, Fy) is monotone non-increasing on [t¢, 7.

(i) Assume t. <t < s < €. Since u satisfies the semi—group property, we have
Wl P < wlt P+ [ (L) +atm))dr
whenever v(s) = P¢ and v(t) = Pf. In particular,
u(s, PS) <u(t, Py) + /S (Lg(PG, P9) + (T, P€)>d7'
t
—uf(t, PY) — /t (Lo(P P) + 0, P) ) + / (Lo(P ) + 0, P) ) dr.
te te

Rearranging, we obtain the last part of the proof.

Remark 4.6.3. (i) In light of Lemma 4.6.2, we can define the non-negative function

he(t, Py) := — lim wilt+h By) — 't By)

t t) N (¢, T).
ot h , VEE(08) N (T

We extend he to ([0,t.) N (t5,T]) x (Q\ {Po}) by setting its value to be O on this set. We
have

u(s, Py) — u(t, By) = —/ he(r, Py)dr, Vs,t € 0,t]. (4.6.3)

t
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Since Ly(P¢, P¢) + ac(, P) = 0 on [0,t.], this is equivalent to
u(s, PS) = u(t, Pf) + / (Lg(Pe, P9) 4 (1, P¢) — h*(r, PE)>dT, Vs, t €0, t].
¢

The same identity holds for s,t € [t¢,T].

(i) Lemma 4.6.2 also implies that for almost every t € (t.,t%), the following limit exists

and is non—negative:

The identity
me(s) — me() = / Be(r, PYdr, Vst € [t 4]

t

reads off
u(s, PS) = u(t, PY) +/ (Lg(PE, P9) + (1, P¢) — h¥(r, Pe)>d7', Vs, t € [te, 1.
t

We extend he by setting h(t,x) =0 if t € [t., 1] but © # Pf.

Lemma 4.6.4. If U, is defined as in (4.1.11), then (uf, h%, o) € U,.

Proof. Recall that u® and o are Lipschitz and A€ is a non—negative Borel function. It remains
to show that (4.1.10) holds. For this, we fix 0 < s <t < T and a Lipschitz continuous path

v : [t,s] = . One readily check that
w@m@ﬁ—wmv®)§/‘@d%%+ﬂﬂﬂﬂ)ﬁ (4.6.4)
t
Set

So={l€ts) : Pf =)}

and
So={1e () P =4(0), Sur(t,9(0) = ull. P}

Recall that the set Sp\ S; is of null Lebesgue measure in Lemma 6.3.1. By Remark 4.6.3

d : € €
EW%mﬂz%ww+a@w—h@w,&em So N Sy
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If [y € (t,s) such that y(lp) # Py, then there exists 6 > 0 such that y(I) # P for
l € (lo—96,lp+0). Thus, I — —h*(l,~(l)) is identically null on (ly — d,lp + ). We use (4.6.4)
to conclude that if we further assume that [y is a point of differentiability for u(-, ), then

d

a(ue(‘a 7)) |l:l0 < (Lg(%#) + a“(r, ’Y))‘ =L, (7(10%7(10)) +af (1077@0)) - he(loﬁ(lo»-

I=lp

In conclusion, we have

%(ue(',v)) < Ly(v:4) +a(,y) = h°(,y), ae on (0,7).

Integrating over [t, s|, we conclude the proof of the lemma.

Recall that J is given in (4.1.12), A is given in (4.1.8), and ¢ is given in (4.5.1).
Theorem 4.6.5. We have
dr e €1 __ € 1€ €l./€
A [0 0] = T (uf, he, ). (4.6.5)
Thus (o¢, v°) minimizes A3 over N (61:0, 5PT\¢€> and (uf, he, o) mazimizes J over U,.

Proof. We know that A?(o,v) > J(u,h,a) for any (o,v) € 20T(5P075PT|1/16> and any
(u, h, @) € Uy. Since Lemma 4.6.4 asserts that (u€, h¢, a%) € U,, it suffices to show (4.6.5).

By (4.6.3),
T
(TP = P+ [ [ o) o
te Q
We use Remark 4.3.2 and the fact that
[ Lataviroitd) =0
Q

on [t¢,T] to conclude that

) e m+ [ [ it - [ Fep
- [ ([ tataepoitan + Futei) ) (1.6.6)
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Similarly,

) 0,2 + [t [ ittt — [ FiGaa
_ /0 ‘ ( /Q Lg(q,vf)af(dq)+F¢(J§))dt. (4.6.7)

We use first use Lemma 4.6.4, then we use the fact that h° > 0 and finally use (4.6.2) to

obtain that
)~ @) < [ (LA + )~ B
< [ (w63 + atr)ar
— (7)) — (e 00).
Thus
) ) = [ (L673) +am) —i)ar (069

and

he(,7)=0 on [t,t]. (4.6.9)

In light of Lemma 4.5.2, by the minimality property of v¢, we have

[ (B + o f))df
_mm{ / i / J(0.0(@) + () )or(da) : (0.0) ezgj(apo,apT,O)}.

We use Theorem 4.4.1 and Remark 4.3.2 to conclude that

/tj (Lor",5%) + a(r,7) dT_/ dt/ 10,5 @) + (7, ) o)
:/te (/QLQ(Q,vt( )at(dq)+Fq>(a§))dt+/: Fi(af).
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This, together with (4.6.8)-(4.6.9), implies

te te
Wt (t) = wane) + [ de [ waitd) - [ Faapa
te o0 te
tE
- / ( / Lg(q,vte(q)af(dq)—|—F¢(U§)>dt. (4.6.10)
te Q
We combine (4.6.6), (4.6.7) and (4.6.10) to conclude that
T T
| w@ooiidn) - [wasin + [ e [ naidn - [ Fiaj
9 0 o0 0

Q

- [ ([ matavitaritan + Fofo))a

Thus (4.6.5) holds.

4.7 Recovery of g

With all the settings in the previous sections, we now recover ¢ in our inverse problem

depicted by (4.2.1).

By Theorem 4.6.5, J (-, -, -[¢°) admits a maximizer over U;. Assume (u¢, h, o) maximizes

J (-, -|¢°) over Uy, so that
T (us, b, af|yc) = AJ [0, v°].

By Proposition 4.3.1, o5 € 0.Fp(of) for a.e. t. Without loss of generality, assume that

the average of af with respect to oy is null. We have
aile) = | Blg.a)oi(de) ~ 2Fa (o). (1.71)
Q
The information which can be gathered from the boundary by direct measurements is
T
It ) = ALl o]+ [ Faaie
0
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We use Remark 4.3.2 and the definition of A} from (4.1.8) to obtain

T
J (u€, h|y) :Ag[ae,ve]—/o Fy(oy)d / /| v |2 yoi (dz)dt

We use (4.5.2) to conclude that
2eJ (us, he[Y°) = / / |05 (x ]2 “(dx)ds = A[6¢, 1] — 4 /1 Fy(6%)ds. (4.7.2)
0
Proposition 4.7.1. (i) We have
2eJ (u, h[Y°) = %dz’stﬁ(zﬂo, Pr) 4+ O(€)
(i) If we further assume that there is a unique path minimizing distz (PO, PT), then
2eJ (u, h[Y°) = %dz’stﬁ (Po, Pr) + o(€?).
Proof. We use Lemma 4.3.3 and the first identity in (4.7.2) to obtain that
%distz (Po, Pr) < 2eJ(uf, h|y). (4.7.3)
We use the minimality property of (¢, 0¢) to obtain that
A[6¢, 0] < A[6°, 0°) = A°[6°, 0°] + 42 / ' Fy(69)d.
0
This means

T 1 T
2¢J (u, h[Y°) + 4€? / Fp(69)dt < 5distj(Po,PT) + 4¢? / Fp(67)dt. (4.7.4)
0 0

We combine (4.7.3) and (4.7.4) to obtain
1 T
0 < 2eJ (u, hY°) — §dist§ (Po, Pr) < 4€ / (Fq,(&?) - F¢(6§)>dt. (4.7.5)
0
We use the fact that Fi is bounded to conclude the proof of (i).
(ii) Assume next that there is a unique path minimizing dist?] (Py, Pr). Then
lim Fg(0}) = Fo(oy).
e—07t
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Thus since Fg(6?) — Fp(6¢) is bounded independently of € and ¢, we have

e—0F

T
lim (1%(&,?) - Fcp(&;)) dt = 0.
0

This, together with (4.7.5), completes the proof of (ii).

]

By the travel time tomography theory [28], g can be recovered once we know the distance

between any two points on the boundary.

4.8 Partial recovery of ¢

Note that by Proposition 4.7.1, g has been recovered. It only remains to recover ¢ under
the assumption that we have access to boundary information and g is recovered. We further
assume we have chosen P¢ in such a way that ¢t — Pf converges in C'([0,1]) to a path
t+— PY. Set

he(s, PS) := h* <2€S + % — ¢, P;), Vs € [0, 1].

By Remark 4.6.3,

~

A « 52 .~ X « N
26(@6(52,3;2)—ae(sl,P§1)> :/ (Lg(Pe,PE)MeQ(@G(l,P;)—he(z,f)le)))dl.
s1
Thus

e, P2 —i(os, P) 46 [ i By [

51 S1

:462/ (df(l,ﬁf)—ff(l,ﬁf))dl. (4.8.1)

S1

Note that the expression in (4.8.1) contains only informations on 0f2, except for the
action involving L,. Since g has been recovered in Proposition 4.7.1 and P¢ is our choice,

the expression in (4.8.1) is part of our knowledge. Therefore, if {P¢}, converges to P° in C",
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we have knowledge of

A

o 26(116(82,1352) - ﬁe(af;)) +Ae? [ he(1, Pr)dl — [ Ly(P*, Pe)d
I(s|P") := lim .

e—0t 4e?

In light of (4.8.1),

Thus we have

Notice that if we assume that ®(qi, g2) is of the form ¥ (q; — g2), where v is even and real

analytic, then we have
I(s|P%) = (s, P?) = (P! = 3%) = 0(0), Vs € [0,1],

For this special case, we prove uniqueness of ® from analytic continuation.

Denote the set of even and analytic 1) as
Si={¢: R = R|¢(z) = ¢(~x),y € C*(RY)}.

Consider the map D : S — C(R? x R?) such that Dg(z,y) := ®(z,y) — ®(x,z), where
xeQ,ye .

Lemma 4.8.1. There exists an open set U C {x —y: 2z € Q,y € 00}.

Proof. Take any open subset W C €). Then fix any point p € 0€2. Notice that
U=W-{p}C{r—y:2eQ,ycoN}
is an open subset.

Indeed, for any point  — p, where x € W, we can find 0 > 0 such that Bs(z) C W. Then
for any point ¢ € Bs(x — p), ¢+ p € Bs(x) C W. Thus ¢ = w — p for some w € W. Hence
Bs(x —p) C U and U is open.
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Lemma 4.8.2. Assume that ®;(z,y) = ;(x —y) and 1p; € S, fori =1,2. If Dy = Dgs,
then Je such that ¥ = Yy + c.

Proof. Since there exists an open set U C {x —y : 2 € Q,y € 90} and Dg(x,y) = ®(z,y) —
®(x,x), where z € Q,y € 99, then (Y1 — ¥o)|y = ¥1(0) — ¥»(0). Take ¢ = 1(0) — 1(0).
We get 1)1 = 1) + c on U. By analytic continuation, ¢ = ¢ + c.

Lemma 4.8.3. If Dy =0, then ®(z,y) = ¢ for some constant c.

Proof. There exists an open set U C {z —y : 2 € Q,y € 9Q}. If Dg = 0, then |, = ¥(0).
Thus by analytic continuation, 1) = 1(0). Take ¢ = ¥(0). We get ®(z,y) = c.

]

Based on the lemmas above, we impose the assumption that ®(z,x) = 0 when we try
to recover ®. This is the case in Chapter 5, in which we recover ® when g and ® are real

analytic.

4.9 ¢ concentrated on a curve

In this section, we give sufficient conditions for ¢ to concentrate on a curve. The main

Theorem 4.9.1 in this section provides the uniqueness of the minimizer 4° in Lemma 4.5.1.

Set

t
¢b(x,y) := min { / Lo(7, 77,4 )dr o v € W (s, 4,Q), 7(s) = 2,79(t) = y}-

Y

The inequalities

—4€%||®| oo + LI° < LI(L, -, -) < L9z, v) + 46| D[ o
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imply

~t,e 1 ci 2 2
e (z,y) — mdlstg(:c,y)' < 4e*(t — 5)||P|| poo- (4.9.1)

Adapting the ideas of the proof of Proposition 3.11 [16] to the actions B9¢, we obtain

d 1 ~€ g€ ~E A€ ~E(2E
£<2<g(’yt)% ,fyt> 424 (%>) = —0,L% (t fyt,fyt) = —4e20,a5(35). (4.9.2)

This proves that ¢ — 1{(g(5)45, 4¢) — 4€2a5(55) is W, Thus it is continuous.

Since t — & (95) is continuous, we conclude that

1 o . .
t— §<g(&f)%,%> +4€a5 (y;) = L7°(t,4;,%;) s continuous. (4.9.3)

Thus there exists ¢, € [0, 1] such that
ey (Po, Pr) = Lo (L, 45, A%). (4.9.4)
Integrating both sides of (4.9.2) and using (4.9.4), we obtain
1 APy 2r€(2€ 1 re\AE A€ 2A ge
500030357 —4€a; (7)) =5(9 (3 )0, 30.) — 4€"a &:L (m 4%, 45)
—b*(Py, Pr) — 8¢, / 0L (r. 4% A1).
Rearranging and using (6.5.3) and (4.9.1), we conclude that

1 R Je Ae . t .o o
) (9(30)356) — dlstz(PO>PT> <10€*(|®|| o + ‘/ B, Lo (45, 4¢)
te

1
€2 <5\|<I>||Loo 4 V[ (distﬁ(Po, Pr) + 862\|<I>||Loo> )

(4.9.5)

We define some notations.

Let 0,,9(q) be the matrix obtained by differentiating the entries of g with respect to g;.

Since 0,,9(q) is symmetric, it is diagonalizable.
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Let Ay, be the largest absolute value of the eigenvalues of all the 0,,9(¢) when ¢ varies
in (0. Similarly, each partial second derivative O4:4;9 18 diagonalizable. We denote Ayz, as
the smallest eigenvalue of all the 9,,4,9(¢)’s. We also denote A, as the smallest eigenvalue of

all the g(q)’s.

By (4.9.5), we have

< |dist?(Py, Pr) + 2€ (5||<1>||Loo + | V®|| poe <dist3(P0, Pr) + 862||<1>||Lm) )}

Se
Yt

Viw

This means there exists a constant £ > 0, which depends only on Q, ||®||z~ and ||[V®| 1

such that

35| < distg (Po, Pr) + k. (4.9.6)

Vg

Let 70, 7' € W12(0,1; Q) be minimizers in & (P, Pr) and set
7Y 0

P=0A=2)"+XN',  v=7"=9"  vre[01].

Then

d_Q/lL(A -A)dt:/l@ L 4)59,64) + ( DLy (4, 5)67.57)
e g\V . wlg\Y 7Y )07, 0% aqog\V Y )

1
42 / <quLg(fyA,‘yA)(5‘y,(5fy>dt.
0
Since
(DanLy (7" 3)83,87) = > 709,794, 7).

we have

[(DaLa (7 4)539,87)| < 1971 1631 7] vV,

We use (4.9.6) to conclude that

=1
2

‘<Dq,,Lg(7*,V)57,5y>‘ < 164] 164 AVQJE(distg(PO,PT) +m> A7 (4.9.7)
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Similarly, since

<quL (v 5%)0, 5’7> > 0 o (V)R
i,5k,l
we conclude that
<quLg (vA,V)M,M > d® Az, 072, (4.9.8)

We combine (4.9.7) and (4.9.8) to conclude that for every e > 0 we have

d2 ' A A ! 2|2 2 2
_d)\Q/ Ly(v}4 )dtz/ (Al312 + d Az 6712 ) i
0 0

1 1
= [ Aeg VA (cl8iP + 891 (disty (B Pr) + )27 de.
0

Thus

d2 1 ' 1 ‘ ‘ o
W/o L, (7/\77/\)6% Z/O |65 [)\g — eAngE(dlstg (Po, PT) + em) A ]dt

1 —1
+/ |57|2 |:d2)\v2g — Avg\/;le_l (distg (P(), PT) + 6%) )\92:| dt (499)
0
We have
T20i(r) = / <V§1ql (7", 42) 67, 57>?75 (dgs)-

Thus, if Ay24 is the smallest eigenvalue of all the Ay24(q1, g2)’s, then

d2 1 . 1
3 / &5 (7)) > Avze / |67|%dt. (4.9.10)
0 0

We combine (4.9.9) and (4.9.10) to deduce that

2

d 1 R 1 1
=3 / L9 (A, 4 dt > / |64 {Ag —eAy,Vd (distg(Po, Pr) + m) Ag ]dt
0 0
1 -1
‘|‘/ ‘(5’Y|2 |:d2)\v2g + 4€2Av2¢. — Avg\/ae_l (dlStg (PO, PT) + €H> )\gQ:| dt.
0

(4.9.11)
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Theorem 4.9.1. Assume
TAg >Avg\/_d28t (PO,PT))\7 and 7r2)\ +d? Avzg >27rAvg\/—dzst (PO,PT))\T. (4.9.12)
Then for small enough € > 0, there exists a unique 4 € WY2(0,1;Q) minimizer in

AlG(P(J?PT)

Proof. 1t suffices to show that we can find e > 0 such that the expression at the right
handside of (4.9.11) is positive for e = 0. By continuity, the conclusion would hold for small

enough ¢, unless v = 0.

By Poincare’s inequality, we have

1 1
/ 032 > n2 / 6y P2dt.
0 0

Thus, if e < 1/m, then A\, > eAvg\/c_i<distg (Po, PT) + em) )\g_7 for € > 0 sufficiently small.
Apply Poincare’s inequality again, we obtain
1 -1
/ 1642 [Ag — e,V (disty (Po, Pr) + ex) A7 }dt
0
1
2 {)\g - eAvg\/E<distg (Po, Pr) + GH) Ag* } / |62 dt.
0
We use (4.9.11) to conclude that

2 1

3 Lge(’v AN dt > (e /W dt,

where we have set
—1
©c(e) == [/\g — eAvg\/E(distg (PO, PT) + e/<o> Ay’ }
—1
—f- |:d2/\v2g —I— 4€2Av2q> — Avg\/ge_l <dISt (P(), PT) + 6/1))\ 2 :|
The study of ¢y lead us to compute ¢ (77!) to discover that
;1
e (r) = 7r2)\g + d2)\vzg + 42 Ag2g — 27r_1Avg\/E<distg (PO, PT) + em) Ay >0,

for € > 0 small enough.
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4.10 Optimal paths in terms of Christoffel symbols

In this section, we assume that (4.9.12) holds. Set

B(q) = Ba,0), L(av) = 3ol +n(a).

Note that in the above section n = 4¢2 > 0, but some of the comments we shall make in

this section still make sense for n < 0 provided that |n| << 1.

There exists 79 > 0 and dy > 0 such that if |z — y| < dp and 1 € [—ng, 7], then
1
@ [ L@
0

admits a minimizer Q(-,n), over the set of () such that Q(0) = z and Q(1) = y. Furthermore,

the minimizer is unique for n € [0, 7).

Note
1, 5, b : 1.,
édIStg<x7y) - |T]|||(I)‘|Loo(§2) < o L(Q(t77]>7 Q(t,?]))dt < §d18tg(x7y) + |7]|||CI)||LDO(§2)
Thus
Y1 ) _ 1.,
8l ey < [ (G gy + nE QL) )it Fdist}(r.9) < 3|l gy
By the conservation of the Hamiltonian, we have

) - 1 ..
|Q(tan)|3(Q(t,n)) + U‘I’(Q(t>77)) - §d15t3(x7 y) S 3|77|H(I>||Loo(§2)> (4101)

N | —

B[l e, <

for all ¢ € [0, 1].

The Euler-Lagrange equation satisfies by @ = Q(-,n) are

SDL(Q,0) = DLy(Q.Q) +1VB(Q), Q0m) =.QLm) =y,

The system of ODEs is equivalent to

S0(Q)0 = DLy(Q.0) + 1V Q). (1102
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This, together with (4.10.1), implies there exists a constant cy(no, do, P, g) which depends

only on 19, dg, P, g such that
Q)| o (0,1]x [=n0m0)) < Co(10; 0, P, g).- (4.10.3)

Let (¢9%);; be the inverse of g. Then the Christoffel symbols for g are

Fy]{j(q) _ Zgai (39@'((]) + dgir(q) . 89jk(<]))_

i—1 gy, 9q; dq;

We define the bilinear form I' by
I'*(q)(v,v) = Z F?k(q)vjvk-
jk
Remark 4.10.1. By (4.10.2),
Q=-T(Q)(Q.Q) +n9 (Q)VP(Q). (4.10.4)
Thus

. ' S o R

0" == 525 (Q 9,Q' @ Q" = 3 T(Q) 8,7 Q" = 3 TH(Q) @& 0,Q¢
gkl g,k g,k

0D g , 0 02D l

#2205 (@ 1 5@ 000 Q)+ 0" @ 5@ 010

j7l

Lemma 4.10.2. We have Q € C’([O, no); C2([0, 1];]Rd)>.

Proof. Part 1. We claim that Q) € C([O, no); C([0, 1];]Rd)>. Indeed, let 7 € [0, 7], We want
to show that lim,_; [|Q(-,n) — Q(-,7)||cx = 0. It suffices to show that if (1), C [—no, 70| is

a sequence converging to 7, then up to a subsequence, we have
Tim Q) — Q.7 = 0.

Note that if (1,), C [0,70] is a sequence converging to 7, then by (4.10.1) and (4.10.3),

Ascoli-Arzela Lemma implies that (1, ), is precompact in C'. Thus, it admits an accumula-

tion point @ in this topology. For any Q € Cl([O, 1]; RY) such that Q(0) = z and Q(1) =y,
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we have

/01( QM) S +77n<f>(Q(t,77n))>dt</

Using a converging subsequence of (1,),, we conclude that

/01 <%IQ( o) + 77@(Q(t))> dt < /01 (%|Q(t)|§@(m)) 4 ﬁ@(@(t))) &t

1

< Q) o +77n‘1>(Q(t)))dt-

This proves that Q = Q(-,7) is uniquely determined and, up to a subsequence,
Tim Q1) — Q)| = 0.

Part 2. Notice that Q € C’([O,no];C’l([O, 1];Rd)>. Since ¢!, V@, and the Christoffel
symbols I'* are all continuous, (4.10.4) implies that Q € C’([O, nol; C%([0, 1]; Rd)>.

Integrating (4.10.4), we obtain

Q(t,n) = Q(0,m) + /O < —T(Q(r.m) (Q(1, 1), Q(1,m)) +ng~ (Q(7,1)) VO (Q(r, n)))dT

and
Q(t,n)

=z +1tQ(0,n) / ds/ ( (Q(7, 1), Q(r,m)) +ng " (Q(7.n)) Ve (Q(, n)))dT.
Thus

OO,7) = y—z— / ds/ ( (Q(r.m), Q(T,n))—i—ng_l(Q(T,n))V(I)(Q(T,n))>dT.

We then use this expression of Q(0,7) to conclude that

Qt,n) =z +t(y — x) (4.10.5)

—t/o ds /0 (—F(Q(T,n))(Q(T,n),Q(T,n)) +n0g~H(Q(7, 77))V‘I’(Q(Tﬂ7)))d7
+/0 ds (—F(Q(T, M) (Q(r,7), Q(7,m)) +ng~ (Q(7, 1) V& (Q(r, 77))>dT

0
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Hence

v=a= [ as [ (1) (@50 Q) + 1™ @) VE(Q) )
¥ / (- T @, atr 77))+779‘1(Q(T,n))V@(Q(T,n))>dT. (4106)

There exist 79 > 0 and J§y > 0 such that if |z — y| < ¢, then there exists a map

M : C([O, 1] x [0,n0]>d — C([O, 1] x [—770,770]>d,

which verifies the relation

M(Q)(t,n) =z + t(y
_t/ ds/ ( (Q(1, 1), Q(7,m)) +ng(Q(7,n))V®(Q(r, n)))dT
/ ds/ ( (Qr.m), Q(7.m)) +ng‘l(Qv,n))Vé(Q(T,n)))dT.

Furthermore, M(-,n) € C?([0, 1])d.

Remark 4.10.3. We have

a—n(|r@<s,n>||§w») =a—n(zgzj<@>@z@)

ij

agzg Vi Ql 'j i Q
_Z " QQ +Z 9is (877Q (Q)Q )

.7,k

We now assume that (4.9.12) holds and study optimal paths depending on 7.

Lemma 4.10.4. We have

1
510 B = 5ista ) + o #(@e.0) - [ B(@u0)dr) +oln). (@107
Proof. As observed in Proposition 4.7.1

(t,n)|? — Ldist?(z,
lim Jo 316200 gyt — 5t Y _o (4.10.8)

n—0 n

96



By the conservation of the Hamiltonian,

e _ 1 .
/o (5\@(75777)13@(1:,77)) - ﬁ@(Q(taﬁ))) dt = 5\@(75, n)’Z(Q(t,n)) —n®(Q(t,n))

Since (t,n) — ®(Q(t,n)) is uniformly continuous, using (4.10.8), we have

st o) = | BQLONE +o(n) = FIQgreny — 1P(QE0) + ol

4.11 Crossing curves

In this section, we consider a case with a special ¥¢ and four points Py, Pr, Qq, Q1 € 0f).
When § = €, we have the special case with two curves that starts at the same time t = 0
at points Py, Pr € 00 and ends at the same time ¢t = T" at points Qo, Q1 € 0€) respectively.

This helps us separate the influences of the two curves and establish the map /, in the next

Chapter 5.
We set
( . T
(1 —€)dp, +€bg, if te€ (0,5 —¢
€, if te(L—-¢T—90]
Yr =94 0 if te(Z-62+9)
€6Qy if telf+6,%+¢€)
| (1 —€)dp, + €dgr if tel[l+eT]
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For any admissible (o,v), we have
inf AZlo.0] =3 (5 - ) (0= P07, Po) + 2601 = 9B, Qo) + (0, Q))
+%(§ — e) ((1 — €)°®(Pr, Pr) + 2¢(1 — €)(Pr, Qr) + €0(Qr, QT))

. 1 € € 2 € € 3 € €
+p€T/2jsIvl£eT/2+5 {]e <w%767 P%%) +1e (pgf‘v P%+5> +1 ('0€+5’ ¢%+e> }
(4.11.1)

1/T ) ,
:5(5 - e) (1 —€)*®(Py, By) + 26(1 — €)P( Py, Qo) + € P(Qo, Qo)

1,T ) )
+§<§ — e) (1 —€)°®(Pr, Pr) +2¢(1 — €)®(Pr,Qr) + €9(Qr, Q1)

1 € €,% 2 €,% €% 3 e .

Jr{f6 (ﬁ’g_e? 0%_(5) + I <0g_5’ 0%+5> + I <0§+6’ ;2p+€)} (4.11.2)

Here, in (4.11.1), the inf is taken over all Prra—s = €0 and piy 5 > €0g,. Also, we
define

(Vo)
50 1
= inf {/ (/ —|vt(x)|§($)at(d:x) + Fq:.(O't)) dt :
(o,v) %_E aQ 2

RZYh g =YL 03 = Peﬁé}
and we define I? and I? by minimizing the actions on the appropriate intervals similarly.

Moreover, in (4.11.2) we denote (0%, UEZ’*M) as the minimizer of the problem (4.11.1), which
2 2

is also o* at the time incident ¢t = % + § of the optimizer (¢*,v*) in the original problem

inf ) AJ [0, v].

Reparametrize the time, we have
1 € €
1 (Vgorss)
ut { [ ([ 5ol + 52 [ oo )a
=in ——|vs(2) |5 Ts(dx x,Y)0s(dx)o S
(o,v) 0 Q 2(6 — 5) 9() 2 O 4 4

O, > S 00 = V5 = p5 . A1
Os Z ¢(€,5)5+%,67 00 w%,@ 01 pgg} (4 11 3)

98



Similarly, we have
2 € €
()

=& { /01 (4_15 /Q 9:(2) e 7s(dr) +5/m <I>(x,y)6s(da:)6s(dy)) ds -

~ > € jod — € ~ — €
Os = 1/}255-1—%—5’ 00 p%_i_(p 01 p72"+5}
(4.11.4)

and

E% (5’wT+e)
1
— inf ¥ 2 5 @ = ~ ) :
(g;v){ / ( |5 s 5 () + | otes.tania.ta) )
5'5 2 wEE—5)s+%+67 6’0 = p%_HS, 5’1 = ¢%+6}. (4115)

For a Riemannian manifold 2 with metric g, we say ¢ is simple if €2 is geodesic convex

with respect to g.

Lemma 4.11.1. Assume g is a simple metric in Q0 and consider the optimal transport

problem

W <(5p0, = Lnf) {/ / o(t, 2) |2y p(dg)dt = Bip+ V(pv) =0, po = dp,, p1 = y}.
(4.11.6)

Recall that Qo € 092 If Py # Qo, then there exists an optimizer (o,v) satisfies that

Qo & supp(o;) for allt <1,

and therefore, we can choose an optimizer (o,v) satisfying,
v(t,Qo) =0 forallt <1.

Proof. The set I'(yp,, v) of measures on Q° which admit dp, and v as marginals is {dp, X V'}.
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Hence

W2(6p,.v) = /Q dist2(Py, y)(dy).
Let T be the map defined in section 6.4. For any y € Q, we set
Y= T(y) =05 1) 0,1] — Q.
Then
Y4(0) = Fo, 7(1) =y, [y (8)lgtr, 1)) = disty(Fo,y) for all ¢ € [0, 1].
Therefore for ¢ € [0, 1], we have

dist?( Py, y,(t)) = t*dist?( Py, ).

We use (6.4.1) to show that the velocity of o at (¢) is §(t), o is 2-absolutely continuous

and o9 = dp, and o7 = v. We have

W; ((SPO,O't) = t2WgQ ((SPO,O'l)

Therefore o is a constant speed W-geodesic and (o, w) is an optimizer in (4.11.6).
Since
T(t, )(ﬁ) C Q, vVt € (O, 1), T(O, ) = Po, PO 7é Qo,
we conclude that
Qo € T([0,1) x Q).
Hence, if ¢ € [0,1), since supp (o;) C T([0,1) x Q), we conclude that Qo & supp (o).
[
Lemma 4.11.2. Assume Qo # Py and g is a simple metric in €, Pr_s > €0q, and pr_; #
2 2
€dq,. Then

(€=9)
2

o 10 ()

1@l +

1 (Vgoorys) <
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Proof. From (4.11.4), we have
1w r )
Ll )H@HLN inf {/ / 5510002 Eplda)dt 0+ 5 (o) =0,

Ps 265@07100: (1_6)5P0+65Q0’ p1 :p%—ﬁ}'
(4.11.7)

From Lemma 4.11.1, we can choose an optimizer (o, v) in (4.11.6) such that Qo ¢ supp(oy)
and v(t,Qy) =0 for t < 1.

We therefore have that
(01,v) = ((1 — €)or + €, v)
is a competitor for the problem (4.11.4).
Note that
0o = Ut o1 = p%ﬂs, and 0y > €dg,.
Moreover, since vdg, = 0 for t < 1, we have

0o + V- (v6y) = (1 —€) (Opor + V - (vay)) + € (0rdg, + V - (vdg,)) = 0.

Hence
1! (@bi_e, pz_(;)
2 2

€—0 ! 1 .
<= Djg, / / sy

€—0
Sl + ¢ [ Lot ontdari
€ /1/ ot )12 5o, (dg)dt

e — (U 7x x 0 q

(_5) 0 62 9(@)"@

(e —9)

=20 + %W; (5P0, (1—e) (pg,g _ asQo) )

where we used again that v(t, Qo) = 0 for t < 1.
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Lemma 4.11.3. Let Qo # Fo, Qr # Pg and assume g is a simple metric in Q. For any
PreQ \ {Q07 QT}; we have

5 2 € €,% 1 2 €,% €,% (S 2 B
2(e —9) W (w%*’ J%—‘S) * ZWg (U%—ci’ U%M) + 2(e — 5)W ( +6’¢T+e> e[| P oo
(1 —e) i} 5(1—¢) . .
< .
<29 dist? (PO,P > + = dzst2 (QO,QT> 2 =3) dzstf] (P ,PT> + €||®]| L
Proof. By (4.11.3)
1 2 € € (6 - 5) 1 € €
T T — o < o o . 11.
2(e — ) Wy <w5—6”05—5) 9 [P < I <w5_€,p5_5> (4.11.8)

Combining this with Lemma 4.11.2, we deduce that
1

2 € 6 - (6 — 6)
2(6_5)W (w TP 5) 5 1l
< (V-0 )
(1 — 6) 2 1/ e (6 — 5)
< - T - 0. . .
=30 = 5)Wg, (6130, (1—e¢) <pT§ €5QO)> + 19|L (4.11.9)
By (4.11.4),
e 2 ET §T - oo < 2 €T ET 2 T T oo
45W <p§*5’p5+5> Of| |z < I <p7—6’p5+5> = 45W <p 5:P ) + 4| ®lx
(4.11.10)
Using Pr in place of Py and Qr in place of @, the analogue of (4.11.9) is
2 € (6 B 5)
2(e — 5)W ( TV +e> — Il
SHPRRT
(1—€) o 1 e (e —0)
< T - o0 . . .
=50 §)W (( —€) <P§+5 6(5QT> ,(5PT) + 5 I|P]| L (4.11.11)

We add up the expressions in the first identities in (4.11.9), (4.11.10), and (4.11.11) to
obtain that

i (voy) 2(61_5)W2< Lp0F) 2<e1 5 (#4505 ) = 912l

(4.11.12)

SIQ (UT 6’ > =+ Il (wT 70-%*,5> + Ie3 (p6%+6,1/1%+6>-
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Below, we minimize over the set of pairs (770, 771) such that ny > €dg, and 7, > €dg,.. By

an approximation argument, we can assume without loss of generality that 7y # €dg, and

m 7é E(SQT.
We combine (4.11.9), (4.11.10), and (4.11.11) to deduce that
2 € €* 2 €,% 2 € €
(oot )+ (0 ot) + (e ) Pl

< inf {Iel 1/162_6,770> + 1 (7707771> + 17 (77171/162+6) D10 = €0Qy, €M1 = 5QT}
7707771,7707'5656,20 67717é6QT 2

< inf {
10,71

(1—¢) 2 -1

<6P0’ 66(20)) + 2(6 — 5) Wg <(1 6) (771 E(SQT) 76PT>

+ 45W (770,771> + €| ||z = M0 > €6y M0 F# €0qes €M = 0gp, €M F 5QT}-
(4.11.13)

We choose an arbitrary P* € Q\ {Qo, @7} and in the optimization problem, use

Mo = (1 —€)0ps + €gy, M = (1 —€)dps + €dg,

to conclude that

2(e - 5)W2<w6 i )+45W2(”,a§1§)+2(6 Vi (a0 ¥) = el@los
1—

(1—¢)

<ate— 3 \ o Orsdi) + W3 (0pe,3ry) ) + 45w2((1 — )0p. + dqy, (1= 3. + eb, )
(1—¢€) /.. i _ .

:2(6 - (5) (dIStE(Po, P ) - dlSt!21<P ’pT)) + 5W2 ((1 - 6)(SP* + EéQO, (1 — 6)5]3* + E(SQT>
Since

Wg2 ((1 — 6)(5}7* + 65@0, (1 — 6)(513* + €5QT) = EdiStE(QO, QT),

We conclude the proof of the lemma.
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Corollary 4.11.4. Assume Qo # Py, Qr # Fo and g is a simple metric on Q.

(i) From every sequence in (0,00) one can extract a subsequence (€,), and find p% such
2

that
. 2 €n ¥ * 2 * En ¥ -
lim sup {Wg (U%%n,p%) + W, (Péaagwn)} = 0.

n—+00,0n=€2

(ii) We have the following sharper inequality:

lim sup e~ 1W2<0'T 6,05* ) < dzs#(@m@:r)

€—0,0=¢2

Proof. Since © is a bounded set, by Prokhorov’s theorem, P5(Q) is compact for the weak

topology. Thus, it is compact for the W, topology.

By Lemma 4.11.3, we obtain that {o%" }eso and {0%" s}eso share the same points of
2 2

accumulation, which proves (i).

By Lemma 4.11.3,

2(e- 5)W2<¢T —e )*45W2< 7 5 %s) +2(e 5)W2< PV ne)

() (o) S ) 1t

(4.11.14)
Observe that as € — 0 and § = €2, we have

€ €
w%—s N 5})0 and w%—i—e — 5PT'

Therefore, multiply inequality (4.11.14) by € and let € to zero. We use (i) to conclude
that

1 kS 1 * €,%
§Wg2 ((5p0,p%> + —Wg2 (,0;, 5pT> 1 lim sup e ' W? (U%’ﬂs, U§+5)

e—0,6=¢2

1
< dist] (PO, P*) + Laist? (QO, QT) + 5olistf7 (P*, PT). (4.11.15)
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Since

(W2 (60) + W2 (00m) } < W2 (0r,003) + W2 (0.

—W2((5p0,5pT) = min
veP(Q)

(4.11.15) implies

lwg(apo,apT) 411Hlsupe 1W2(0%*_ 0% 5) < W (Omy: Or) + 7 L dist? (QO,QT)

4 €—0,0=¢2

This concludes the proof of the corollary.
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CHAPTER 5

Recovery of Real Analytic Potential

Throughout this chapter, we assume that g € G has already been recovered and is real

analytic. We recover ® when it is real analytic.

5.1 Euclidean geodesic

Before studying the general case, we first study a simple case when g = Id, the Euclidean

metric. Since €) is convex, the geodesics curves are straight line segments.

We set
Dg:={2eC’QxQ): ®(x,z) =0,0(x,y) = P(y,7)}

and
DaQ = {(PO7PT7 QO?QT) € (89)4 : d2<P07 PT) + d2(Q07 QT) S d2<P07QT) + d2(P07 QT)}
Define I, : Dg — C(Dsq,R) by

1,(®)(Py, Pr, Q0. Qr) = /O D(vp(8), 1o E))dt,

where yp and ¢ are constant-speed geodesics joining Py to Pr and () to Q7 respectively.

We have access to the values of I,[®](Fy, Pr, Qo, @r) and would like to know if we can
recover ¢ uniquely. Since I, is a well-defined linear functional from Dg to C(Dgq,R), our

problem is equivalent to showing that the kernel of I, is trivial.
Lemma 5.1.1. If [,[®] =0, then ®(z,y) =0, V(z,y) € (00).
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Proof. Suppose otherwise. Without loss of generality, 3(zo,yo) € (0Q)? such that zq # yo

and ®(zg,yo) > 0. By continuity, there exists r > 0 such that

O(z,y) > 0, Y(z,y) € Br(x9) X Br(v0)-

Take ' > 0 small such that for all Py, Pr € Bl.(x¢) N0 and all Qy, Q1 € BL(yo) N 012,

we have

(Po, Pr,Qo, Q1) € Dog and  (7p(t),70(t)) € (B, (o) N Q) x (B, (yo) N€Y).

Then I1,[®|(Fo, Pr, Qo, Q1) > 0, thus a contradiction.

Lemma 5.1.2. If ¢ = Id and I,[®] = 0, then there exists r > 0, such that ®(z,y) =
0,Vz,y € Q,., where Q, .= {x € Q:d(z,00) <r}.

Corollary 5.1.3. As ® is real analytic and 2, is open, Lemma 5.1.2 implies that ®(x,y) =
0,V(x,y) € Q2.

Note that if g was complex analytic, Lemma 5.1.2 is a direct consequence of Lemma
5.1.1. We now prove lemma 5.1.2. We take Q open such that Q C Q and suppose that
e C¥(QxQ).

Proof. Since ® € C¥(Q x Q) and ®|sny90 = 0, it is enough to show the following claim:
8?85@(:6,;1/) =0, Ya, B € N, Vo # 9 € 0.

We show the claim by induction.

Clearly, if || + |8] = 0, by Lemma 5.1.1, we have ®(z,y) = 0, Va,y € 9. Suppose
that the claim holds Ve, 8 such that |o| + |5| < k for some k € N. Fix zy # yo € 0.
Choose small enough neighborhoods B, (x¢) and B,(yo) around xg,yo respectively. Take

Py, Pr € 0Q N Br(xg) and Qq, Qr € Q2N Br(yo).
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Moreover, choose orthonormal coordinate frames {ef°}¢, and {e!°}%, based at zg,yo
respectively such that ej® = 7i,, and e{° = 7,,, normal vectors pointing inward. In the flat
Euclidean setting, we have yp(t) = (1—t)Py+tPr and v4(t) = (1 —1)Qo+tQr. We compute
derivatives in the directions of the new coordinates. For o; € N, we denote o = (a1, -+ , )

and set a! = aqlan! - - oyl

By the Taylor expansion, we have

I[®)(Fy, Pr, Qo, Q)

Qi B
d az08130 xOﬂUO

=S T [ T ) o1 ot~ e,

a,fB i,j=1 i,j=1

where
d%i dﬁj

Qs 61 = — -
8@;0 ae]y_() q)(x()a yO) - dtei |t:0 dsﬁj |

s=0P(xo + te;, yo + se?o).
Notice we have the inductive hypothesis that

0% @ y @) (z,y) =0 on 99 x 00

l
such that |a| + |8] < k.

Thus in the above expansion, we have that

I[(I)](PO>PT>QO>QT)

= > H l@! /H vp(t) — 20)] - €2°1% [(vq(t) — yo)] - €X°]% dt.

|ee]+|8|>k %,5=1

We need to show that if derivatives of order k+1 do not vanish, we have Is( Py, Pr, Qo, Q1) #
0, hence a contradiction. First we notice the following. By inductive hypothesis, we have

Vi,je€{2,3,---,d}

Do (0%, - .ajzdoafgo o afgoqn(x, y) =0, (5.1.1)
and, by symmetry,
Do (O -+ .ajfgafgo > ~8fgdoq>)(:c, y) = 0. (5.1.2)
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Indeed whenever {e?o} is not a normal direction, we need to compute, for instance,
0, 108 w0 O (o, yo) = 8 0 (0, ZO(I)(.T(), Y)) = 75|t:0[836<1>(:60, v(t)) - el (5.1.3)

where 7(0) = yo,7'(0) = €3”,7(t) € 09.
Therefore, from the inductive step, one cannot have that 9%, 0jy0<I>(m0, yo) =0ifi+j =
€1 €

k + 1 as all other derivatives of order k + 1 will vanish.

Then the Taylor expansion yields that

1[®])(Fo, Pr, Qo, QT)

Sy e /H 1elt) = 0] - 1% (glt) — o) - €

|| +|B]>k+14,5=1

aéxo agyo (I)(xm yO) 1 . .
s 3 T (0 - ) () — ] - el

itj=k+1

Set Py = xo and Qo = yo, we get vp(t) —xg = (1 — t)xg + tPr = t(Pr — o) and
Yo(t) — o = (1 = t)yo + tQr = t(Qr — yo)
Suppose that 823130 8%0(1)(%, Yo) # 0 for some pair (g, o) € (992)* and we will show that
we can get a contradiction. i.e. I[®](xo, Pr,yo, Q1) # 0 for some Pr, Qr € 09.
We have 1
| () = )l Y (gte) = o) - i

1
E+2

1
= / t[(Pr — xo)] - ei° ]V [(Qr — wo)] - 5[ dt = [(Pr — @o)] - e1°'[(Qr — wo)] - €]°F
0
Set
ig := argmin{i = 8%00’%1 ‘®(xg,10) # 0}
Without loss of generality, assume that io < |%!]. Otherwise, we can swap zo and yj.
We also assume that 90°% %5~ ® (¢, y0) > 0.
€1” €
Let
e:=(Qr —yo) - €" and 0(e) := (Pr — xo) - €7,
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where ¢ is as a function of e. We can take d(¢) = Re.
We then have
Z 0 afoﬁjyocb (70, Yo0)

17l
itj=k+1 v

/ H ve(t) = 20)] - €V [(vo(t) — yo)] - et
i,7=1
0% 0" 0 (20, o) 1
_ &4 & t) — ) o ght1-io)
io!(k—i-l—io)' /0 [(’YP( ) xo)]/{—FQ (E) ‘
k41 alz akjl ZOQ)(.Z.O yO) 1 ;
0V vo ZEkH—l)

+Z k—l—l—z)' k+2 ’

i=ig+1
where i € {ig+1,--- ,k+1}.

Now it only remains to show that

> 11— H ((t) = 20)]- €21 (0 (£) — yo)]-e@ ]t = of e+,
lﬁl

oo+ B> k41 4,j=1 i,j=1

In particular,

/ LT e100(6) = ) - 1745 (2008 = o)) - — |B|H5 Jre”

2,j=1 i,0=1

R%i%i ,Bj
!Oé\ﬂﬁ\ H

2,7=1

Taking summations over i, j, we get R'O“ la 181 Notice that |af + |B] > &k + 2.

Choose € small enough such that € < [radius of convergence at (zg,vo)]>. When R < 1,

S CpReldatia-G2

|ae|+|B8|>k+-2
is bounded. Thus
3 L ROl 2 S CupROlaHA-04)  och2)
| | ’ ’
\a|+|ﬂ\2k+2| alt + 61! ol 812k +2
as desired.
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5.2 General geodesic

We now consider general g € C“’(Q), where € is open such that Q C Q. We prove the lemma

5.1.2 in this general case.

Since the geodesics are not straight line segments here, new local coordinates are needed.
We use the exponential map exp defined locally over the smooth manifold. One can find

more properties about the exponential map and its derivative in Chapter 4 section 6 of [30].
Given v € T, a geodesic v : [0,1] — €, with v(0) = 2¢,7'(0) = v is given by
Y(t) = expy, (tv). Also d(exp,,)o(v) = %], _gexp,, (tv) = v.
Let 2o € 0. Then 3U C Q open such that zo € U and exp,, : exp, ! (U) = U is a

smooth diffeomorphism.

For xq, Pr € U, the geodesic connecting xy to Pr on 0f2 is given by
V() = exp,, (t - exp, (Pr)).

We then have

(p(t), (1)) dt
q)(exparo (t(expxo)_l (PT>)’ eXpyo (t(eXpr>_1 (QT))>dt

1

(I)ffo,yo (t(expxo)fl (PT>7 t<eXpy0)71 (QT))dta

I[®)(xo, Pr,yo, Qr) =

I
S— >— 5—

where

d d
Do (v, W) 1= P(exp,, (v), exp,, (w)) = @(expm(z v;el°), expyo(z w;ed)).
i=1 i=1
Here v, w € (Ty,,Q) x (T}, ) and (v;)L,, (w;)%, € R? are the coordinates of v, w in the bases
{efo}d |, {el}4 | respectively.
Notice that () is geodesic convex with respect to g. We may choose xy close enough to

Pr and €7’ in the direction of Pr — g such that Proj.zo (expy, (Pr)) = €1° - exp! (Pr) > 0.
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Likewise, we may assume that Proj (exp, ' (Qr)) = €i* - exp, ' (Qr) > 0.

Set vp, = exp,, (Pr), wq, = exp,, (Qr). Then

/0 By (H(exD,)~ (Pr), Hexpy,) ™ (Qr))dt

1 1 9o, 9ugh ... 98cd (0,0) d
= = pe e Tl T (H(op i)™ (Hwg, );) 7t
/0 QZ; (|Oz’)'(|ﬁ‘)‘ ( ( P )) ( ( Q )])

ij=1

where v = (Oél,"' 7ad)7/8 = (617"' a/Bd)'

To compute the cross derivatives, let’s prove the following lemma.

Lemma 5.2.1. If 8?85@(.%&) =0, where z,y € 0Q C Q, and la| + 5] < k, then

020D (0, yo) = 05059(0,0) =0,

for ol + | =k + 1.

Proof. Define

Doy o (v, W) = Blexpy, (v), expy, (w)).

Then

d d
0503 D o (v, w) = OZO5D(exp,, (D vief),exp, (> w;el))
j=1

i=1

To develop our intuition, we first consider the first-order derivatives, for instance,

d d
Oy (P(expy, (D vie®), expy, (Y wiel)))
i=1 j=1
d d d
= Z Oz, ®(exp,, (Z vie;®), exp,, (Z w;ed))(d(exp,,) |Zgl=1 0470 ef° - el0).
j=1 i=1 j=1

Then the second-order derivatives, for instance,

d

d
0o (St (S
j=1

i=1
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d
Z’0
x eXpm0 v;e; expyo w]
=1

-(d(expzo)lzeg weo€1’) - €5°) - (d (epro)’E‘tlviefoel )-er’)
d

+Z@ D expxo(z ), exp,, ( ij expx0)|2 11}161061 °)-€ei°)

i=1

Restrict the last equality to (v,w) = (0,0), we get 92 ®y4,(0,0) = 92, ®(xo,y0) as

d(exp,,)o = Id and 0,,®(xo,10) = 0 by the assumption which says that all lower order

derivatives of ® at (zg,yo) vanish. Under these restrictions, we have

d(exp,,)loct - €20 = 5

1)

and

d(exp,,)|oe]” - ego =05

Here ¢;; or 0,5 is the Kronecker-delta function.

d

Denote o = (Oéi)?:p a = (Of)z 1

As all lower order derivatives of ® at (xg,yo) vanish, we then have

0292®(v,w) = 0205 D (exp,, Zvl , XDy, Zw]

= Z o 8’3<I> (exp,, sz s €XPy, Zwa

|&|+]Bl=k+1
d,d d,d )
H (d(expxo)‘zd vie; 061 6%50)06; H (d(expyo)‘z;l:l wjejo 611/0 : e?o)ﬁ;
i=1,=1 j=1,5=1

+ (lower order terms for ®) x (higher order terms for exp) = 0.

Now by the Taylor expansion,

0 = I,[®](zo, Pr,yo, Qr)
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_ / By o (Hexpy, ) (Pr), Hexp,, )~ (Qr) )t

o 9B L 9B d, (0,0) . e
/Z T [T (Com )t )t

We can use the same technique in the proof of the lemma 5.1.2 to check the derivatives

ij=1

vanishing by change of coordinates and induction. We thus get the following theorem.

Theorem 5.2.2. If I ,[®] = 0, then 3r > 0, such that ®(x,y) = 0,Vz,y € ., where
Q,={z€Q:d(z,00) <r}. Here g C*(Q) and Q is open such that Q C €.
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CHAPTER 6

Appendix

6.1 Probabilistic representation of measures

We review some general properties of probabilistic representation of measures in this section.

We use disintegration theory as in Chapter 2.

Assume 7 is a Borel probability measure on R? x I'r which satisfies

L (] weorar Jatdna < . o)

Define the probability Borel measure m on [0, 7] x R?? by

T
[ et omdrdg = [ ( / @(Tﬁ(TM(T))df)n(dq,dv),
[0,T]xR2d RAXTp 0
for all ¢ € C.([0,T] x R*).

Taking ¢ = ¢(t), we see that the projection of m onto [0,7] is the Lebesgue measure.
Therefore, by the theory of disintegration of measures (see [4] section 5.3), there exists a

path ¢ — m! of Borel probability measures on R?? such that

T
/ o(t, 2, €)m(dt, dr, de) = / ( / so(r,x,amt(dx,dg))dt
[0,7] xR2d 0 R2d

for all ¢ € C’c([O, T] x R2d). The theory of disintegration of measures gives all the measura-

bility properties we will rely on.

Let o; be the first marginal of m’. We apply the disintegration theory again to find a

Borel map (¢, ) — m"® on R? such that
/ o(z, &) m’(dx, d§) = / (/ go(x,f)mt(df))ot(dx), a.e. t € (0,7, (6.1.2)
R2d R4 Rd
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for all p € C. (RQd).
Note that
f(@)u(de) = / FOO)n(da.dy),  aete(0,T), (6.1.3)
R4 RdXFT

for all f € C.(RY).
We set

v(z) = g Em'(dg) (6.1.4)

and set .
3

o= ([ BoPdaan)
By (6.1.1), § € L2(0, T).

By Jensen’s inequality
[, temtadgar = [ ([ iepuita))otin = [ ool
RIxR4 R4 Rd Rd

Integrating both sides of the previous inequality over [0, T], we obtain

o0 > /RMT (/OTL(’y(T),ﬁ(T))dT)n(dq,dy) > /OT </R |v7(x)\20T(da:))dT. (6.1.5)

Proposition 6.1.1. Suppose a Borel probability measure on Q x I'r and satisfies (6.1.1).
Then the following hold.

(i) The path t — o belongs to I'ry and (6.1.3) holds for every t € [0,T].
(i) The map (t,z) — v(x) defined in (6.1.4) is a velocity for o.

(11i) We have

/OT /Rd L(z, v-(x))o-(dz) < /RMT (/OTL(’Y(T),"}/(T))dT)n(dq,dfy)'

Proof. For any v € I'r2, we have

xena(7(7)) =0, vt €[0,T].
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Thus

/OT 0 (R\ Q)dt = /RMT (/OTXQ(V(T))>dT>TI<dQ,d”y) —0.

This proves that for almost every ¢, o, is supported by €.

(i) For each 0 < s <t < T, define the measures 7 by

[, taamtna = [ fGes)a0nn.d)

for f € C.(RY x R?).

We use (6.1.3) to conclude that the first marginal of 7% is o and the second marginal of

st is o,. Thus
Wi(o,,01) < / & — yPr*!(de, dy)

RIx R4
+ 2
- / / $(r)dr| n(dg, dv)
RdXFT S

S/RdxFT (/t w(r)\dr)Qn(dq,dv)-

We use Minkowski inequality to conclude that

W2(0s, 1) < (/:ﬁ(T)dT)Q.

This proves that ¢ — o belongs to I'ro. Thus (6.1.3) holds for every ¢ € [0, 7.

(ii) Let ¢ € C((0,T) x R?). We use (6.1.2) and (6.1.3) to obtain that

/OT (/Rd (atso(t,q) +(Velt, Q)>>0t(dq)

-/ ' (/ Onplr (s, ) Jar + | ) ([, € vetnanma.d))ar

_/OT (/RdXFT (&90(7',7(7')) + <7(T),Vg0(7’,7(7’))>)77(dq7d7)> dr.

117



We use Fubini’s theorem to conclude that

/OT (/R (@w(t, P q>>>at(dq) - /Rder (/OT o (90 (7 7(T))>d7>77(dq, d)
/RdXFT <90(T, (1)) — (0, 7(0))>77(dq, &)

=0.

This, together with (6.1.5), proves (ii).

Since L(x,-) is a convex function for all x € Q, we use Jensen’s inequality to obtain that

L(z,v:(x)) < / L, ().

Thus
/Rd Lz, v, (2))o,(dz) < / L(x, €)m" (dz, d€).

R2d

Integrating, we conclude that

/OT (/RdXRdL(x,vT(ZE))mT(dx,df))dT < /OT (/RdXRdL(x’f)mT<dx’d§))dT'

This reads off the desired identity in (iii).

6.2 Properties of cost functions

Assume

L(z, &) := Lo(v), o =0.

Then the optimal path connecting x := P,, to y := P, is given by

T—1
y(r) =By + L0 <Ptl _ Pt0>, Vr € [to, t1].
t— 1o
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Thus for s < t, we have

(e)0) = [ (L0:4) + @) Jar, (621)
Then
Arcs(v(5),7(1)) = L(y(1),5() + (v(t)), Vs, t € (to, t1). (6.2.2)
and
dsce ((5),7(1) = —=L(7(5),9(5)) = D(7(s)), Vs, t € (to,11). (6.2.3)

We differentiable once more to conclude that

(s,t) = L (7(3),7(2&)) is a map in 02([t0,t1])

6.3 An useful variant of Theorem 3.3 in [11]

Let a < 3 be real numbers and assume that f € Whl(a,8). Let g = f/, where f’ is the

distributional derivative. We have g € L'(a, 3) and

If 2y € (a, 5) is a Lebesgue point for g then (see [11] Theorem 1.34)
fim x| o = g(ao)ldz =0
BI_I};O El(B) 5 g g\Zo)|ax = U,
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where the limit is taken over all closed balls B containing zy and diam(B) — 0. In particular,

for h > 0, By, = [xo, x¢ + h|, we have

IR S P
h—0+ h h—ot+ LY By) giro):
Similarly, for h < 0, Dy, = [x¢ + h, z¢], we have
_ flao+h) = f(xo) . Jp, 9(@)dz
| =1 = = )
- h LD,y 9

This proves that f is differentiable at x.

Let
Z:={ze(a,p): f(x)=0, z€ dom(f)}.

Lemma 6.3.1. For almost every x € Z, we have f'(x) = 0.

Proof. Set

N :={x € Z: zis not a point of density one in Z}.
If zg € Z\ N such that f'(xo) > 0, since
e+ = n{ £a) + Z2),
we conclude that there exists 6 > 0 such that

f>0 on (xg,xo+ 0]

Thus [z, o+ 0] N Z = {x0}. This contradicts the fact that 2o € Z\ N. Thus f'(x¢) = 0.
Similarly, we show that f’(zq) < 0.

In conclusion,

Z\ N Cdom(f)yn{f =0}.

Since L'(N) = 0, this proves the Lemma.
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6.4 Special properties of W,(dp,, V)
We use the notation 7% as in Remark 3.6.3 (i) and define the map (¢,y) € [0,1] x Q — R?
by
Y(ty) = 1k (1).
Given v € P(1Q), we define the probability measures

o= T(t, ) pv.

Note that

/Q e(y)ou(dy) = / p(nw@®)rdy), Ve e C(RY) (6.4.1)

Q

For a compact set K := supp (v), we set

O, = (Uyer 204,00.1]).
Lemma 6.4.1. The map Y is continuous. Thus 2p, is a compact set.

Proof. In order to show the lemma, assume that (t*,y") C [0, 1] x Q converges to (¢,y).

By Remark 3.6.3 (ii), (1'% )n converges to 7%, in C*([0,1],9). Thus

lim Y (t,,y") = lim 1575 (t) = 175, () = T(t.v).

n—oo

This proves that T is continuous. Thus Qp, = T([0, 1] x K) is a compact set.

]

Remark 6.4.2. The goal of this remark is to lay down detailed arguments supporting the
fact that the identity supp (o) = Y(t,-)[0, 1] is a consequence of the continuity property of
the map Y(t,-).
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(i) If y € supp (v), § > 0 and we denote by Bs(a), the open ball of center a and radius 9,
then

oy (Bs(Y(t,y)) = y{:c Tt 7) — Y(ty) < 5}.

Since Y(t,-) is a continuous function and {x Y (tx) = T(ty) < 5} is an open set

containing y, we conclude that we can find r > 0 such that

B, (y) C {:L‘ Yt x) = T(ty) < 5}.

Thus
oy (B(;(T(t, y)) > v(B,(y)) >0, Vo > 0, Yy € supp (v).

In other words, Y(t,y) € supp (o). Hence we have proven that

T(t,-)(supp (v)) C supp (ov).

(ii) To show the reverse inclusion, we observe that since Y (t,-) is continuous, Y (t,-)(supp (v))
is a closed set. Hence if z ¢ Y(t,-)(supp (v)), 20, := dist(z,T(t,-)(supp (1/))) > 0.
Let ¢ € C.(Bs,(2)). We have

[ diniao) = [ o(T(ta)vid) =0, Vo e B

Then o,(B;s,(z)) = 0 and z & supp (0;). Hence we have proven that

({2 ) (supp (1) € (supp ()",

which means that supp (o) C Y(¢,-)(supp (v)).

6.5 Uniform bounds on ¢¢ and differentials of L9

We have

S

1 . 1 1
4¢ / Fp(6%)ds < A[6¢, 0] — 5distj(PO,PT) < 4¢? / Fp(6%)ds (6.5.1)
0 0



Adapting the ideas of the proof of Proposition 3.11 in [16] to the actions fle, we conclude

conservation of the Hamiltonian in the sense that if we set p¢ = g(z)0¢, then

s h) = 5 [ 7 @) (), ()% o) — 46 Fo(7)

is independent of s. Replacing p¢ by g(x)0¢, and using the fact that

we obtain
5 [ -ere = [ (3 [ o). s re )
Rearranging, we obtain that

5 /Q (g(x)05(x), ()05 (dx) = A6, ] + 4€* Fo(65) — 8¢ /0 1 Fo(oy)dt
This, together with (6.5.1), implies

8¢’ (Fé(é'é) - /0 1 Fq>(€f§)> < /Q (g(a)5(x), 05(2)) o5 (dx) — disty (Po, Pr)

§862</01 Fp(69)dt + Fcp(a—;)) :

Thus

< 862 ||P|| oo (6.5.2)

[ at@piste). xgenos(an) = dises (7, Pr)

Since

(9tf/g’e(t, q, ’U) :atde

—~

t,q)

Vi ®(a, ), 7(a2) )0 (day)

=4¢?

—4¢?

S— 5—

2 (<vql®<ql,q2>,@;<ql>> + <qu<1><q1,q2>,ﬁ§<q2>>)fr§<dq1)6§(dq2>,

we conclude that
0.L7(t,4,0)] < 46 (2] Vg, Bllz + [V @lle ) 152205

This, together with (6.5.2), implies

-

0 L9(t, q, )] < 1262]| VD] oo (dist§ (P, Pr) + 8e2uq>um> ’ (6.5.3)
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6.6 On Lasry-Lions strictly monotone functions

Recall that given ® € C?(R?*?) symmetric, we defined
Fo(p) = /Rd Oz, y)p(dy).
When ® € C?(R?) is even, we will abuse notation and continuous to write
Fo(p) = /Rd Oz — y)u(dy).

Let M(R?) be the set of finite signed Borel measures on R%. In this section, we would like
to find examples of ® € C?*(R?) such that Fp is either Lasry—Lions monotone or Lasry—Lions

strictly monotone. We would also like to find conditions on ® € C?*(R%) even, such that

p e M(R?Y) = Fy(p) = / O(z — y)u(dy)

R4
is either Lasry—Lions monotone or Lasry—Lions strictly monotone.

This means that either

pe Po(RY) o> Folu) = 5 / B — yulda)yldy)

is convex or strictly convex.
If = g1 — po # 0 and pug, gy € P2(RY), we set py := (1 — ) g + tyy. Then

%fé(ﬂt) = /de ©(z —y) (i — po)(dzx) (s — po)(dy) (6.6.1)

must be either non—negative or positive. This statement is related to Bochner Lemma on

positive definite functions.
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6.6.0.1 Example and Polynomials

(i) Set @o(p) = 3|z|*. Using the fact that p:= pi1 — o is of null average we have

/R @@ = y)uldz)p(dy)
= [ty [ G+ Iy = 2.9 ta)

:/Rd (/Rd\xy?ul(dx)—/Rd\xm(dx)—2</Rdxu1(d:v)—/Rd rhio(dz), y) ) uldy)
:—Q/Rd (< /Rdml(dx)—Adxuo(dw),y>>u(dy)

[ amta) = [ apotas) 2

Hence —F&, is Lasry—Lions monotone, but fails to be strictly monotone.

=—2

(ii) Consider
1

Filn) = [ b Pudeyutdy)

As above, we have

i) = [ ) [ (P + 1o + 2o 9) ()

:/Rd( N |x|2,u1(d:v)—/Rd |x|2uo(dx)+2<4dxu1(dx)—/Rd:vuo(d:v),y»u(dy)

= [ ([ amtdo) = [ araldo).y) i)

[ amtdo) = [ apafao 2

Hence (¢, 1) = [ga |2+ y|*p(dy) is Lasry-Lions monotone, but fails to be strictly mono-

=2

tone.

(iii) For any a,b > 0, the following functions are Lasry—Lions monotone:
Flap(a, 1) = a/ |+ y|*u(dy) — b/ |z + y*n(dy) :/ Dap) (w, y)p(dy)
R4 R4 R
where, ®(, ) are the polynomials
Do) (2. y) = (a = b)(J2|* + [y[*) + 2(a + b)(z, y)
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In particular, F{y/21/9) is Lasry-Lions monotone and ®/21/2) = (z,y). This is the most
important case since the contribution of |z|* and |y|?* is immaterial. In general, ®(, ) (z,y)

is not a function of solely = — y.

Lemma 6.6.1. Let v be a finite Radon measure on R and let X — ¢y € C*(R4,RY) be a
continuous function for the uniform topology and such that there exists cg > 0 such that
|pa(x)| < co(1 + |z]?) and |[V2¢r(z)| < ¢ for all x € RY.

Set
B(z,y) = / (6x(2), b)) ().

Then Fg 1s Lasry—Lions monotone.
Proof. Given pig, i1 € Po(R?), let set u = 1 — po. Notice that we have

2Fali) = [ v(@) [ {ox@), [ ext)aldy) - palas) ()

:/R 2

v(dN).

g Do (y) (1 (dy) — uo(dy)>

]

Remark 6.6.2. (i) Observe that if v is an average of Dirac masses, then Lemma 6.6.1 is

applicable to

n

(I)((I?, Z/) = Z<¢z(x)7 ¢z<y)>7

i=1
provided that there exists co > 0 such that for any i, we have |¢;(z)| < co(1 + |x|?) and
(V2¢i(x)| < o for all z € RY.

(ii) Given x = (21, -+ ,2q),y = (Y1, -+ ,ya) € R, we use the notation

d
xa:$?1,_,x§d7 <xa’yﬁ>zzx?zyzﬂl7 va:(Oéh"',Oéd)eN,ﬂ:(ﬁl,"‘,ﬁd)EN.
=1
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Given k € N, let Ny be the cardinality of {o € N : |a|p = k}. We choose a bounded set
(Cy) C (0,00) and define

22k+1 Z N >

|a|51 k

Given pig, 1 € Po(RY) and setting u = p1 — po, we have

[ e utdoyutdy) - ZQM > &

|a‘g1 =k

2

/ *(un(dz) — uo(dz))| > 0.

Furthermore,
/ 2@, y)u(dz)u(dy) =0
]RQ
implies

/ %o (d) :/ %y (dx), Vo € N. (6.6.2)
Rd Rd

Since span{z® : o € N} is a dense subset of C(K) for any compact set K C RY, (6.6.2)
implies that po = py. Thus, Fe is Lasry—Lions strictly monotone. Note that the proof does

not encompass the case where ® is a polynomial since we required that C, > 0 for all c.

6.6.0.2 Non-polynomial potential functions solely depending on x —y

Given a,b € R, if we w = a + ib, we set |w|? = a® + b* > 0.

Let S(R?) be the Schwartz space, which is the set of f € C*(R?, C) such that for any
multi-index o € N¢ and any non-negative number N, the functions z — (1 + |z|V) f(x) are
bounded. The standard topology on S(R?) is in such a way that (f,), C S(RY) converges

to f € S(R?) if for any multi-indexes «, 8 € N¢ and any non-negative number N we have

lim Hxﬂﬁ (fx —

n—oo

)HLoo(Rd) = 0.

Recall that the Fourier transform of f € L'(R%) is f € Cy(R%), defined by
fie) = [ e sy,
R4
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Similarly, we define the Fourier transform of any finite signed Borel measure. If both p
and v are finite signed Borel measures, then pu * v is the signed finite Borel measure defined
by

| st = [ ba = putdoway).

The functions i and © are bounded continuous and

—

L* V= fib. (6.6.3)

The Fourier transform can be extended to a map of L?(R?) into L*(R4). If also a con-

tinuous bijection of S(RY) to itself. In particular, if we set

—A7|z|?

ga(z) = e )
then g\ € S(R?) and
gr = \/X_d%-
If we denote by ¢ the map x € R? — —z, then the Fourier transform is invertible on
L2(R%) and its inverse there is f — f o (.

When f € S(R?) and p is a finite signed Borel measure, we have Plancherel formula

utde) = [ F@iepas

Thus if we denote by po the push forward of u by ¢, we have

[ ren@utan = [ 5w = [ Fomvma.
We use (6.6.3) to conclude that since u is a real valued measure,
f*,u w(dx) / f £)dé = / f )|2d¢. (6.6.4)

Now choose a real value function g € S(R) such that g is even and g > 0. Set ® := g.

Since g is even, ® is a real valued function. Furthermore,

b(o) = [ ey = [ meggie = [ g6 - o)

]R‘i ]Rd
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Thus ® is even. If py # pq are two probability measures and we set uy 1= (1 — ) + tpu1,

using (6.6.1) and (6.6.4) and the fact that ® o £ = g we have
2 I
gl = [ g(©)lu = po(§)[7dE > 0. (6.6.5)
R

6.7 Explicite formula for inverse map in some cases

Define F': C(RY) — C(R) by

For ay,--- ,a, € R distinct, we set

W .= span{hl,--- ,hn}, h; L x ey el

By (6.6.1), to ensure the Lasry—Lions monotonicity condition, we need to impose that
ay, -+ ,a, > 0. This is needed to assert that h; € L*(RY) and to compute explicitly the

Fourier transform of h;.

Note that F'is a linear map such that the range of its restriction to W is the linear space
V= span{F(hl), e ,F(hn)}.

Since dimV = n, we conclude that F|y is a bijection and its inverse Gyy is a linear map.

Since
In (F(hl)(S) + 1) - _ailps - 6/5’27
we conclude that
Jo I (F(hi)(s) + 1)ds
B f(]1 |ps_/3/s|2d8 '

Hence

hi(z) = exp (W Jo In (F(hi)(s) + 1)d5>.

1~ -
fo | Py — 9s|?ds
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In other words,

3o (12 Jo 12 (fi(s) +1)ds
v p(l | Jo 1P =Aul2ds )

This implies that

GW(ZM‘) = gﬁi exp <|:13]2 Jo I (fi(s) + 1)ds )

fo |P Ys|2ds

To obtain that > | B;h; is Lasry-Lions monotone, we assume that 8; > 0 and at least

one of the §; are positive.

6.8 Future work to be done

We state three problems that are open to future work in mean field games.

The first problem is about global uniqueness and boundary rigidity.

Problem 6.8.1. Find a class of metric and interactions C X F C G(a,b) x F such that, if
(91, F1), (g2, F») € C x F is such that

Lgr = 1oy F,
then there exists a C**1 diffeomorphism n : Q — Q fizing the boundary such that
91(2)di; = g2(n Zﬁkm )0kn;(q)  and  Fi(u) = Fa(n.p)
where N is the pushforward measure of p by n.
Notice the conclusions above can be written as
g1=n"g and Fy=n"F,

where 1*g is now the pullback metric of g, and n*F is also the pullback function of F', with

the notions defined as

0" Gq(v, w) 1= Gy(g) (dng(v), dng(w)) and n*F () := F(n.pu) .
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The second problem is about generic local uniqueness and boundary rigidity.

Problem 6.8.2. Find a class of metric and interactions C x F C G(a,b) x F such that we
have a dense subset D C C x F with the following property: for any (g0, Fo) € D, there exists
an & > 0 such that if (g1, F1), (92, F2) € C X F with || gm — goll oy + 1 Fm — Follca(pyay < €
form=1,2, and

7

91,F1 — Ig27F2 >

then there exists a C*+1 diffeomorphism n : Q — Q fizing the boundary such that

g =n"go and and Fy=n"F;.

The last problem is about generic local stability of C x F.

Problem 6.8.3. Find a class of metric and interactions C x F C G(a,b) x F such that we
have a dense subset G C C x F with the following property: for any (90, Fo) € G, there exists
an & >0 such that if (g1, F1), (g2, F2) € C X F with || gm — gollcx @) + |1 Fm = Follcr gpoay) < €
for m = 1,2, then there exists a C**! diffeomorphism n : Q — Q fiving the boundary such
that

g1 — 77*92Hck(§) + £ = U*F2||01(7>2(§)) < d(Zgy,r, Lgo 1) s

for some expression d, which we can view as a metric.
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