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Abstract The dinB homolog (Dbh) is a member of the

Y-family of translesion DNA polymerases, which are

specialized to accurately replicate DNA across from a wide

variety of lesions in living cells. Lesioned bases block the

progression of high-fidelity polymerases and cause detri-

mental replication fork stalling; Y-family polymerases can

bypass these lesions. The active site of the translesion

synthesis polymerase is more open than that of a replicative

polymerase; consequently Dbh polymerizes with low

fidelity. Bypass polymerases also have low processivity.

Short extension past the lesion allows the high-fidelity

polymerase to switch back onto the site of replication. Dbh

and the other Y-family polymerases have been used as

structural models to investigate the mechanisms of DNA

polymerization and lesion bypass. Many high-resolution

crystal structures of Y-family polymerases have been

reported. NMR dynamics studies can complement these

structures by providing a measure of protein motions. Here

we report the 15N, 1H, and 13C backbone resonance

assignments at two temperatures (35 and 50 �C) for Sul-
folobus acidocaldarius Dbh polymerase. Backbone reso-

nance assignments have been obtained for 86 % of the

residues. The polymerase active site is assigned as well as

the majority of residues in each of the four domains.

Keywords Y-family polymerase � Bypass polymerase �
Translesion synthesis � Sulfolobus acidocaldarius � Dbh
(dinB homolog)

Biological context

Dbh (dinB homolog) is a 354 amino acid DNA polymerase

from the thermophilic archaeon Sulfolobus acidocaldarius

(Boudsocq et al. 2004). Dbh belongs to the Y-family of

translesion (TLS) DNA polymerases that can accurately

bypass a variety of damaged DNA templates (Yang and

Woodgate 2007). Members of the Y-family include Dpo4

from Sulfolobus solfataricus, pol IV [E. coli, (Wagner et al.

1999)] mammalian pol j (Ogi et al. 1999; Ohashi et al.

2000; Gerlach et al. 2001), pol g (Johnson et al. 1999a, b),

pol i (McDonald et al. 1999; Tissier et al. 2000), and Rev1

(Lin et al. 1999; Wiltrout and Walker 2011). In particular,

Dbh shares 54 % sequence identity to Dpo4. Members of

the Y-family share canonical polymerase architecture

consisting of a catalytic core composed of palm, fingers,

and thumb domains, and have an additional unique C-ter-

minal domain termed the ‘‘wrist’’, ‘‘polymerase-associated

domain’’ (PAD), or ‘‘little finger’’ (LF) domain. Notably,

the LF domain is tethered to the catalytic core by a flexible

linker and has been found to occupy a variety of confor-

mations (Pata 2010). Y-family polymerases also have a

significantly larger active site than that of replicative

polymerases, which allows the accommodation of bulky

DNA adducts, but increases the error-rate extending pri-

mers across from undamaged DNA (Sale et al. 2012).

Hence, Y-family polymerases are usually highly regulated

in eukaryotes, most often through monoubiquitination of

PCNA, to prevent error-prone replication of cellular DNA

(Yang et al. 2013). TLS polymerases can allow cancer cells
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to tolerate DNA damage caused by chemotherapeutics; for

example, pol g can bypass cisplatin adducts (Alt et al.

2007). In this way, TLS polymerases that are upregulated

can confer resistance to chemotherapy. Furthermore, loss

of translesion synthesis can generate chromosomal abnor-

malities that can contribute to a cancerous phenotype (re-

viewed in Lange et al. 2011).

Different Y-family polymerases generate characteristic

mutations; in particular, Dbh is highly prone to generating

single-base deletions resulting in -1 frameshift mutations

in vitro (Potapova et al. 2002). The first crystal structures of

the apo form of Dbh were reported in 2001 (Silvian et al.

2001; Zhou et al. 2001), followed by preinsertion binary

(Dbh, primer/template DNA), insertion ternary (Dbh, pri-

mer/template DNA, incoming dNTP) and postinsertion

binary (Dbh, primer ?1/template DNA) crystal structures

(Wilson and Pata 2008). The binary and ternary structures

indicated that Dbh generates single-base deletions by a

template-slippagemechanism (Wilson and Pata 2008).Dpo4

also generates single-base deletions at high rates (Kokoska

et al. 2002), albeit with a somewhat altered mutational

spectrum from Dbh. Intriguingly, the mutational and lesion

bypass properties of Dbh can be made to resemble those of

Dpo4 by generating chimeras of Dbh/Dpo4 containing the

catalytic core ofDbhwith the LF domain ofDpo4 (Boudsocq

et al. 2004), Dbh core/LF with the linker region of Dpo4

(residues 231–245) (Wilson et al. 2013), or evenmerely three

residues of the Dpo4 linker (R242,K243,S244) substituted

for residues (K243,I244,P245) of Dbh (Mukherjee et al.

2014). The crystal structures of the Dbh chimeras (Boudsocq

et al. 2004;Wilson et al. 2013; Mukherjee et al. 2014) reveal

that the orientation of the LF domain with respect to the core

resembles that of the LF in the Dpo4 crystal structure (Ling

et al. 2001). This observation raises the question of how the

position, flexibility, and dynamics of the LF domain affects

substrate alignment in the active site of Dbh. Here we report

the 15N, 1H, and 13C backbone assignments of Dbh, which

will be used to interpret residue specific T1, T2, and
15N–1H

NOE relaxation data, and CPMG relaxation dispersion data.

The relaxation data will provide valuable information on the

mechanism of polymerization of DNA and generation of

single-base deletion errors by Dbh.

Methods and experiments

Protein expression and purification

The Dbh gene was incorporated into the vector pKKT7-H

(a derivative of pKK233, Promega) containing an N-ter-

minal His6 tag (MHHHHHHLVPRGM). Quick-change

mutagenesis (Stratagene) was used to change Cys31 to Ser

(hereafter referred to as C31S-Dbh) to eliminate potential

formation of disulfide bonds. Transfected E. coli BL21

cells were grown in 1L Neidhart’s minimal media (Neid-

hardt et al. 1974) at 37 �C containing 1 g 15N ammonium

chloride (15N-labeled samples), or 1 g 15N ammonium

chloride, 3 g 13C glucose, and 80 % D2O (2H, 15N, 13C-

labeled samples) to *1.0 OD; expression was induced by

the addition of 1 mM IPTG. Protein was expressed for 5 h;

subsequently, the cells were harvested by centrifugation

and frozen at -80 �C. Dbh or C31S-Dbh were purified

from cell lysate by Ni–NTA affinity chromatography under

native conditions, and then dialyzed into buffer (20 mM

HEPES, 100 mM NaCl, 50 lM EDTA, 50 lM NaN3, pH

7.5) at 4 �C, then one change of buffer without EDTA

(20 mM HEPES, 100 mM NaCl, 50 lM NaN3, pH 7.5). To

prepare the NMR samples, Dbh or C31S-Dbh protein was

concentrated to at least 0.5 mM, and transferred into a

Shigemi NMR tube. D2O was added to the sample for a

final concentration of 10 % v/v. Since polymerase enzymes

use aspartic acid side chains to coordinate Mg2? at the

active site, we were particularly interested in assigning the

Asp groups. 15N-HSQC spectra of selectively 15N labeled

(Asp) and un-labeled (Asn, Arg, Gly, Lys, His, Met, Ser)

samples were used to confirm amino acid identity within

the sequence. Selectively labeled 15N-Asp C31S-Dbh was

prepared using the E. coli auxotroph strain EA1, which is

unable to convert Asp to Asn (Muchmore et al. 1989), and

by supplementing 1L of Neidhart’s media with 100 mg
15N-Asp. Selectively unlabeled Asn, Arg, Gly, Lys, His,

Met, Ser C31S-Dbh samples were prepared using 1 g 15N

ammonium chloride per L of Neidhart’s minimal media,

BL21 cells, and by supplementing with 0.5 g of each 14N

amino acid separately. Since the HNCO experiment on

C31S-Dbh was by far the most sensitive, an HNCO spec-

trum of a selective 13C’-Leu, fully 15N enriched sample

was used to confirm amide resonances preceded by leucine

residues. 13C’-Leu was incorporated by expressing the

protein in BL21 cells and adding 150 mg of 13C’-labeled

Leu to 1 L of Neidhart’s medium containing 1 g 15N

ammonium chloride.

NMR experiments

NMR data were acquired at 35 and 50 �C on a Varian

INOVA 800 MHz NMR spectrometer equipped with a

5-mm triple resonance XYZ-gradient probe. The chemical

shifts were referenced using 2,2-dimethyl-2-silapentane-

sulfonic acid (DSS). All spectra were processed using

NMRPipe/NMRDraw (Delaglio et al. 1995) and analyzed

using CcpNmr Analysis (Vranken et al. 2005). A set of 3D

triple resonance experiments, including HNCO,

HN(CA)CO, HN(CO)CA, and HNCACB were carried out

using TROSY (Pervushin et al. 1997) for the sequential

backbone resonance assignment (Kay 1997). In addition,
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15N-edited NOESY-HSQC spectra were also used to con-

firm resonance assignments.

Assignment and data deposition

Figure 1 displays the 15N-HSQC of the full length C31S-

Dbh protein (354 amino acids) with a N-terminal hex-

ahistidine tag. Complete or partial backbone resonance

assignments have been obtained for 86 % (306 of 354)

residues in C31S-Dbh, and 81 % of amide resonances (276

of 339 non-proline residues). Twelve additional peaks were

visible in the 15N-HSQC spectrum and the 3D spectra; we

were unable to find connectivities for these resonances. In

addition, four resonances in the 15N-HSQC did not have

visible corresponding resonances in the 3D data or in the
15N-edited NOESY spectrum. Figure 2 presents the C31S-

Dbh amino acid sequence with assigned residues indicated.

Residues 36–38 and the C-terminus (residues 345–354)

were disordered in the crystal structures of Dbh [PDB

entries 1K1S/1K1Q (Silvian et al. 2001) and 3BQ0 (Wilson

and Pata 2008)]; unfortunately, we were unable to assign

the backbone resonances of the regions that were not vis-

ible in the crystal structures. If we omit the 13 residues

Fig. 1 2D 15N-HSQC spectra

of C31S-Dbh, recorded at

800 MHz and 50 �C (323K).

The one-letter amino acid code

and the residue number indicate

resonance assignments.

Unassigned resonances are

indicated by an ‘‘x’’ symbol.

Additional conformations of a

particular residue are indicated

by an asterisk ‘‘*’’. Peaks in the

HSQC which did not have

visible corresponding peaks in

the 3D spectra are marked by a

hash ‘‘#’’. The crowded central

region of the spectra is

displayed in the inset for clarity.

44A is aliased in the 15N

dimension; its true 15N shift is

133.701 ppm

1H, 13C, and 15N backbone resonance assignments of the full-length 40 kDa S. acidocaldarius…
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(36–38; 345–354) that are disordered in the crystal struc-

tures of Dbh, we can account for 89 % of residues with at

least one assigned backbone resonance. Likewise, most of

the linker region (residues 232–245) between the LF and

thumb domains was not assigned. The linker and disor-

dered regions from the crystal structure are flexible and

solvent exposed. Hence, the signals may be missing due to

intrinsic exchange with the solvent. In conclusion, for

portions of C31S-Dbh where we would expect rigid

structure to enable us to detect NMR signals, we have

assigned 94 % of the protein.

A small part of the structure appears to have an alternate

conformation; several residues have two corresponding

peaks in the 15N-HSQC spectrum and 3D data (97D, 98K,

100E, 101V, 102A, 103S, 108Y, 109L, and 110D), con-

sistent with slow chemical exchange. These residues are

located in the b-sheet structure of the active site palm

domain, surrounding the metal ion coordinating residues

105D and 106E.

The mutation of residue 31 from Cys to Ser does not

appear to affect the structure. For example, the crystal

structures of apo C31S-Dbh [PDB entries 1K1S/1KIQ

(Silvian et al. 2001)] superimpose very well with ligand-

bound forms of WT Dbh [PDB entries 3BQ0, 3BQ1, and

3BQ2 (Wilson and Pata 2008)]. In addition, this mutation

did not significantly affect the NMR spectrum, as the 15N-

HSQC of WT Dbh and C31S-Dbh overlay extremely well

(data not shown). Only 11 peaks (9D, 10Y, 12F, 31S, 32V,

45T, 56K, 64A, 77R, 140T, and 301K) were observed to

have shifted by any appreciable amount ([0.05 ppm for 1H

or[0.2 ppm for 15N) upon mutation. Unsurprisingly, the

peaks for residue 31 and adjacent 32V are shifted, and all

but two (140T, 301K) of the remaining shifted peaks are

located in the same domain (finger) as residue 31.

The backbone resonance assignments of Dpo4 catalytic

core (Ma et al. 2010) and LF domain (Ma et al. 2011) at

50 �C have been published. Given the homology between

the two proteins (54 % sequence identity) and similar ter-

tiary structure, some of the resonances of the two proteins

would be expected to have similar chemical shifts. It

should be noted that all of the assignments of C31S-Dbh

were completed independently using only our own data;

the Dpo4 assignments were compared to those of C31S-

Dbh after we completed our assignments. The mutually

assigned amide peak positions of identical residues do not

correlate very well, with only 62 of 135 (46 %) available
1H shifts within 0.2 ppm and 54 of 135 (40 %) available
15N shifts within 0.8 ppm. However, the nearest neighbors

of a particular residue can have a significant effect on the

amide chemical shift, even if the residues are identical. For

instance, a neighboring isoleucine residue on the C-termi-

nal side of an amide could influence the 1H shift downfield

by *0.2 ppm (Schwarzinger et al. 2001) and the 15N shift

downfield by almost 5 ppm (Braun et al. 1994; Sch-

warzinger et al. 2001). Eliminating identical residues from

the comparison that do not also have identical neighbors,

the correlation between the two sets of shifts is improved:

30 of 54 (56 %) 1H shifts within 0.2 ppm and (57 %) 31 of

54 15N shifts within 0.8 ppm. All but one of the 1H shifts

and one of the 15N shifts in the preceding comparison are

found in the polymerase core: 29 of 45 (64 %) 1H shifts

within 0.2 ppm and 30 of 45 (67 %) 15N shifts within

0.8 ppm. This is not surprising, since the polymerase core

between the two proteins shares 59 % sequence identity,

while the LF domains of the two proteins only have 41 %

sequence identity. Even though the assignments of Dpo4

were completed on the polymerase core and the LF as

separate constructs, the core and LF domains appear to fold

independently into roughly the same native structure as

found in the full-length protein based on chemical shifts.

The chemical shifts of C31S-Dbh polymerase at 308K

and 323K (35 and 50 �C) have been deposited in the

BioMagResBank database under accession number 26564

[http://www.bmrb.wisc.edu, (Ulrich et al. 2008)]. The

backbone assignments will be used for relaxation dynamics

studies of Dbh, and the published crystal structures of Dbh

will be used to interpret NMR relaxation data through

molecular modeling and molecular dynamics simulations.

Fig. 2 C31S-Dbh amino acid sequence with assignments indicated.

Grey shade is used to indicate residues with at least one backbone

atom assigned. Black background with white lettering indicates

residues where only the 13C’ or 13Ca were found but not the NH.

White background represents residues that have not been assigned. In

blue lettering, amino acids 36–38 and 345–354 are too disordered in

crystal structures to be detected [PDB entries 1K1S/1K1Q (Silvian

et al. 2001) and 3BQ0 (Wilson and Pata 2008)]. These regions are

also not detected by NMR
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