UC Berkeley UC Berkeley Previously Published Works

Title

Catalytic Conversion for Clean Energy: From Basics to Applications

Permalink

https://escholarship.org/uc/item/9ff8b4gr

Journal

Topics in Catalysis, 67(13-14)

ISSN

1022-5528

Authors

Chen, Hao Yang, Ji Su, Ji <u>et al.</u>

Publication Date

2024-06-01

DOI

10.1007/s11244-024-01954-4

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

Peer reviewed

PREFACE

Catalytic Conversion for Clean Energy: From Basics to Applications

Hao Chen¹ · Ji Yang² · Ji Su³ · Miquel Salmeron⁴

Accepted: 12 April 2024 / Published online: 9 May 2024

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

The unrestrained combustion of fossil fuels is the leading contributor to greenhouse gas (GHG) emissions, which are the primary driver of global climate change and environment crisis. To achieve CO_2 emissions reaching net zero between 2050 and 2060, i.e., carbon neutrality, it is highly necessary to make a rapid shift to clean and sustainable energy sources. Within this context, heterogeneous catalysis plays a central scientific role, offering a platform to help the existing energy systems to reduce GHG emissions and create innovative pathways for clean energy generation.

Within this special issue—Catalytic Conversion for Clean Energy: From Basics to Applications, the most recent research advances in surface science, sustainable energy and environmental catalysis have been compiled and systematically reviewed. This special issue includes 12 original research articles and 6 review articles. The selected articles are organized into the following topics: model catalysis (articles 1–2), hydrogen energy (articles 3–5), exhaust gas treatment (articles 6–8), value-added chemical conversion (articles 9–12), electrochemical ammonia synthesis (articles 13 and 14), and volatile organic compounds control (articles 15–18).

The guest Editors are grateful to the Editors-in-Chief, Prof. Hans-Joachim Freund and Prof. Eric I. Altman, and the Managing Editor, Dr. Cansu Kaya, for their guidance leading to the accomplishment of this Special Issue. As guest editors we wish to express our appreciation to all contributing authors and reviewers who have made this special issue possible. We anticipate that readers will find these articles helpful, as they offer insights into the latest technological advancements in catalysis.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Hao Chen haochen1@stanford.edu
	Ji Yang jiyang@lbl.gov
	Ji Su JiSu@lbl.gov
	Miquel Salmeron mbsalmeron@lbl.gov
1	Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, California 94025, USA
2	The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
3	Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
4	Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA