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ABSTRACT

Central to all systems for machine learning from examples is an
induction algorithm. The purpose of the algorithm is to generalize
from a finite set of training examples a description consistent with
the examples seen, and, hopefully, with the potentially infinite set
of examples not seen. This paper surveys four machine learning
induction algorithms. The knowledge representation schemes and a PDL
description of algorithm control are emphasized. System
characteristics that are peculiar to a domain of application are
de-emphasized. Finally, a comparative summary of the learning
algorithms is presented.



1. Introduction

This paper examines the induction algorithms developed by the following

research projects in the area of machine learning:

- Winston's ARCH program [23] which learns concepts to describe simple
structures.

- Quinlan's IDS program [19] which has been applied to the domain of
chess endgame win/loss classification.

- Michalski, et.al. INDUCEl.2 program [14] which has been applied to
several domains including bean disease classification and structural
descriptions.

- Mitchell, et.al. LEX program [17] which learns heuristics for
problem solving in the domain of integration.

This paper focuses on the central component of these learning systems: the

induction algorithm. In section 2, we examine each algorithm from a domain

independent point of view. In section 3, we compare the algorithms with

emphasis on relative strengths and weaknesses important for performance.

2. Descriptions of Induction Algorithms

In this section we describe the induction algorithms of four machine

learning research projects. By abstracting to a domain independent algorithm,

we hope to illuminate commonalities and differences.

2.1. Assumptions and Format

Each algorithm is presented with its knowledge representation scheme and a

PDL description of the processing. The important knowledge for the induction

algorithm is represented in the instance and generalization languages for

expressing examples and concepts, respectively. Since the induction

algorithms are being studied apart from the overall architecture of each

learning system and without concern for the domain used to test it, we make

the following assumptions:



- Training instances are presented to the induction algorithm and are
pre-classified by concept.

- Description languages are adequate for representing training
instances and concept definitions.^

- The training session is noise-free. In section 3 we examine whether
this constraint can be relaxed for each algorithm.

2.2. Winston's ARCH Algorithm

Similar to other induction algorithms, ARCH allows both unary and binary

relations in descriptions. The unary relations (or features) describe facts

about a single object (e.g. its color or shape). Binary predicates express

relationships between two objects (e.g. relative positions).

Winston uses a semantic net representation for both the instance language

and the generalization language. Arcs are annotated with names of binary

relations between nodes which represent objects. In addition, nodes are

created with names of unary relations which are attached via HAS-PROPERTY-OF

arcs to the objects they describe.

The single representation technique [16] is used, which means that the

generalization language contains the instance language. For arcs, the

generalization language also includes annotation which expresses the relative

importance of a relationship to the correct concept definition. For example,

in the instance language, an arc name might be a relationship between two

objects in the instance. In the generalization language, this relationship

may be emphatic (MUST-BE, MUST-NOT) or optional (MAYBE). For nodes, the

additions consist of a renaming of object names to form a "generic" object.

^Some initial work has been done on introducing new descriptors to
enable generalization. See [10, 14, 21].



Given two training instances, corresponding objects (nodes) from each semantic

net form a common name in the generalization.

A third representation is used by Winston to express the differences

between a training instance and the current concept description. This is also

a semantic net. Objects considered irrelevant to the concept are simply

deleted in this representation. Moreover, meta-relations (i.e. relations

between relations) are represented. For example, if two nets, and SN2,

are compared and relation R holds in and relation ~R holds in SN2, then

the relation OPPOSITE can be used to describe the difference.

Given the description of the differences between a training instance and

the current concept definition, the algorithm specializes (for negative

instances) or generalizes (for positive instances) the concept description.

Generalization/specialization operators that are used are:

1. climbing/descending concept tree - meta-relations are related by
strength using a concept tree. Also objects are generalized (e.g.
a CUBE is a type of BLOCK).

2. dropping conditions - objects considered irrelevant to the concept
are dropped by removing them from the semantic net. Note that
relationships found irrelevant are simply weakened by (1).

Winston's induction algorithm is described in figures 2-1 - 2-3.

Concept <— first positive TI
REPEAT

Input a TI
Diff <— skeletal_match(Concept,TI)
Concept <— incorporate_diff(Concept,Diff)
DISPLAY Concept

UNTIL teacher satisfied

Figure 2-1: Winston's Main Loop



FUNCTION skeletal_match(Concept,TI)
skeleton <— match nodes of TI and Concept semantic nets

to find "best" correspondences^.
skeletal_match <— annotate skeleton with notes describing

the match. Most common is INTERSECTION which means both

matched nodes in the two graphs point to the same concept
(node) with the same relationship (arc). Another note is
NEGATIVE-SATELLITE used to denote opposite relationships.
EXIT notes annotate nodes outside of the match. These

nodes are considered irrelevant to the concept.

Figure 2-2: Skeletal Match Function

FUNCTION incorporate_diff(ConceptjDiff)
incorporate_diff <— heuristically selected "best"

generalization of concept with Diff.^
Non-determinism arises in the matching process and
the specialization of the concept. Generalizing with
positive instances is not a problem because they loosen
constraints by minimal generalization of relations using
concept tree. Thus any number of differences can exist
between the current concept and a positive instance (as
long as a skeletal match can be found).
Negative instances are a problem because:

1) there are multiple features of a training instance
which might account for the "miss"

2) there are multiple ways to specialize a relation
using the concept tree.

Only "near-misses" are permitted for negative instances.
A near miss is defined [24] as differing from the
current concept in only one feature. This constraint
mitigates these problems.

Figure 2-3: Incorporate Difference Function

Sub-graph isomorphism (matching) is NP-complete. However the search is
constrained by arc annotation. Winston ignores the problem of multiple
matchings by expecting the teacher to present examples with little
difference. For one approach to handling "interference matching" see [51.

3 • • '
This IS a point of non-determinism. The algorithm backtracks if the

generalization returned is found to violate subsequent training instances.



2.3. Quinlan's IDS algorithm

The goal of this induction algorithm is to produce a concept definition

which can efficiently classify instances. To this end, Quinlan (see also [7])

builds a decision tree from a collection of pre-classified training instances.

This tree is analogous to a compiled collection of rules.

The instance language for ID3 is a conjunct of features. If n features are

used to classify instances then the feature vector is of the form:

<f ,f2,... ,fs.t. for all l<=i<=n
f^ is an element of ,V£2 j • • • , the set of m possible
values for feature i.

The generalization language is a decision tree which is equivalent to a

collection of rules each with conjunction and disjunction of feature values.

The nodes represent features chosen from the set {fj,f2,...,fjj} and the arcs

from a node labeled f^ are chosen from the set of values for f^,

^^il »Vi2»• ••)Vij^}. Leaves of the tree are labelled with names from the set of

classes, {cj ,C2» •••,Cj^}. Figure 2-4 is an example of a decision tree which

ID3 can form.

number of legs classes={chair,stool,table}
y \4 features={number of legs,
/ \ armrests present,

STOOL armrests height}
present values: number of legs={3,4}

n^^yes armrests present={yes,no}
height CHAIR

tal ^/^hort
STOOL TABLE

height={tall,short}

Figure 2-4; Example ID3 decision tree

An instance is classified by the decision tree by traversing the tree from

the root. At each internal node labeled f^, evaluate the instance with



respect to and traverse the arc labelled with the result of the evaluation.

When a leaf is reached then the instance is classified by the leaf's value.

The induction algorithm is surprisingly straightforward.^ The PDL is shown

in figures 2-5 - 2-6.

Instances <— a set of training instances
Features <— feature vector <f , f2 ,. .. jf input from teacher
Domains <— set of domains for Features. {d^,d2>«••

where each d^^ is a set of possible values
{vii,V2i,...,Vmi} for fj_.

Classes <— set of classes {cj ,02,. • . Note this
set is simply {+,-} for single concept learning.

Rule <— form_rule(lnstances,Features,Domains,Classes)
DISPLAY Rule

Figure 2-5; ID3 Main Program

FUNCTION formruleClnstances,Features,Domains,Classes)
For some class in Classes, IF all members of Instances

fall into class then RETURN class

. ELSE

f <— seiect_feature(Features, Instances)
d <— domain from set Domains corresponding to f
RETURN a tree of form:

f <— root labeled f

di/ |d2 \ djjj <— arcs labeled with
/ I . .\ values from d

<— each child is a subtree

created by recursive call:
formruleC{iIi in Instances, eval(i,f)=d•},Features,Domains)

for l<=j<=m

Figure 2-6: Recursive function FORMRULE

The select_feature function selects a feature from the set of features

which will be used to sub-divide the current set of instances. Several of the

more interesting criteria which might be used in the select_feature function

^The author implemented it using about 20 lines of Prolog (not including the
beam search; see below).



are:

- random selection — while guaranteed to result in a correct decision
tree (i.e. complete and consistent with instances given),^ the rule
is sub-optimal. Features may be chosen which do not divide the set
of instances into useful subsets. For example, all instances may
share one value of the feature, resulting in a node with one
descendant. Or, more subtle, the feature may subdivide the
instances, but not be criterial to the rule. In this case the
subsets have the same mixture of positive and negative instances as
the set before subdividing.

- information theoretic selection — as explained by Quinlan [19] this
method selects the feature (for sub-dividing each node) which
results in a tree with minimum expected classification time. The
feature is selected which is most criterial to the concept being
formalized. Criteriality is measured by the ability of a feature to
classify instances.

- minimal cost selection — used in Hunt's original CLS system [7],
this feature selection method balances the cost of evaluating an
instance for a feature with the cost of misclassifying the instance.
Input to the function are two sets of costs: {P^} of measuring the
i^" feature of some instance and {Qji,} of misclassifying it as
belonging to class j when it is really a member of class k. The goal
is to minimize the combined costs. This method is useful when the
cost of evaluating instances is not uniform for all features (e.g.
medical diagnosis [18]).

When the size of the set of Instances becomes large the goal of efficient

rule generation is lost. The problem occurs in two steps of the formrule

function: the first step of determining whether all members of Instances fall

into the same class and the last step which involves evaluating each instance

with respect to a feature. Due to this practical concern IDS has been

implemented using a beam search. Basically, a subset of the set of instances

is selected and a rule is formed which is complete and consistent with respect

to the subset. If the rule is not contradicted by any instances in the set of

instances, then the beam search terminates. Otherwise, a new selection of

As defined in [13], a concept is complete if it covers all past
positive instances; A concept is consistent if it does not cover any past
negative instances.



instances is made and the search continues. Quinlan [19] and Michalski [14]

have experimented with different criteria for selecting the subset of

instances to use at each iteration of the search.

2.4. Michalski et.al.'s INDUCE algorithm

The INDUCE algorithm, as described in [14], forms a generalization rule

using a multitude of generalization techniques and a highly expressive

description language. Both the instance language and the generalization

language allow descriptions of an instance or a concept using Annotated

Predicate Calculus (APC). Descriptions are of the form:
<quantifier formXconjunction of relational statements>

where <quantifier form> represents zero or more quantifiers and <relational

statements> are predicates expressed in APC. Michalski defines APC with a set

of syntactic additions to first-order predicate calculus (FOPC) and semantic

preserving two-way transformations. This allows for more natural encodings of

knowledge. Examples of APC usage and mappings to FOPC are given in figure

2-7.

APC form

internal conjunction
internal disjunction
relational stmts.

negations of
relational stmts.

exception operator
(-\)

Example

went(mary&mother,movie)
inside(key,(desklvdeskZ)
length(rect)>width(rect)

~(size(ball)=large)

went(mary,movie) -\
went(mother,movie)

APC <--> FOPC

p(Tl&T2) <--> p(Tl)&p(T2)
p(TlvT2) <--> p(Tl)vp(T2)

Terml rel Term2 <—>

rel(Terml,Term2)
~(relational stmt) <—>
<relational stmt with

opposite relation>
SI -\ S2 <-->

(-S2=>S1)&(S2=>~S1)

Figure 2-7: Examples of Description Language

The instance language and the generalization languages differ only in that

internal disjunction is prohibited in the former and allowed in the latter.

This a natural restriction since a known instance can be described without
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this non-determinism. Used in the generalization language, internal

disjunction allows more efficient and "natural" representation than the

traditional external disjunction used in Vere's Thoth system [22], for

example.

The generalization rules employed by INDUCE are also very powerful. To

some extent this power results from "big step" generalizations. More

conservative generalization rules, such as climbing generalization tree,

turning constants to variables and dropping a condition, proceed in small

steps and are not as likely to drastically deviate from the "correct" learning

path. Michalski introduces (where, following Michalski's notation, EXP stands

for an arbitrary expression, ::> stands for "is in class", and |< stands for

"can be generalized to"):

1. The closing the interval rule:

fS I rT^^Kl "II h ^ [L=a..b] ::> KEXP & [L=b] ::> K I

This rule states that two rules can be generalized if they differ
only in the value of a term. The values are assumed to be extremes
of a range for which the rule applies.

2. The extension against rule:

EXPj & [L=Rll ::> K L [L3tR2] : :> K
EXP2 & [L=R2] ::> K I

The rule states that given two rules, one positive and one negative
for concept K, form a generalization which ignores all but one teirm
from each rule. The rule then infers that any instance for which
descriptor L does not take value R2 is positive for class K.

3. Constructive generalization rule:

EXP &Fj : :> K I< g . .> ^
Fi => F2 I 2

This rule generates an inductive assertion that uses descriptors
(in this example F2) not present in the original instance
description. By applying background knowledge rules which draw
conclusions from observed facts, new terms are introduced for use
in the generalization language. This allows learned concepts to be
used in forming new concepts. This incremental learning rule is
also used by Sammut [20].
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Using the description language APC and the powerful generalization rules

discussed above, the INDUCE algorithm is summarized from [14] in figures 2-8

2-9.

pos <— set of positive instances from teacher
neg <— set of negative instances from teacher
m <— upper bound on the number of candidate concept descriptions
REPEAT while COLLECTing all values of rule to form set rules

posinst <—• a random selection from pos
rule <— formrule(posinst, pos, neg, m)
reduce pos to include only those instances not covered by rule

UNTIL disjunction of elements of rules covers pos
apply collection of FOPC —> APC transformations on rules to

get a simpler expression and DISPLAY

Figure 2-8: INDUCE main program

FUNCTION formrule(posinst, pos, neg, m)
candidates <— {f|f is one conjunct of posinst}
order candidates, favoring those which cover the

greatest portion of pos and reject the greatest
portion of neg

expand the set of candidates by applying the following
inference rules to posinst:
1) constructive generalization
2) problem-specific generalizations defined for the

dofiiain (this can cover alot of "dirty-tricks" and
is not well defined by Michalski)

3) the definitions of previously-learned concepts to
determine whether parts of posinst satisfy some
already known concepts (again ill-defined).

order candidates using criteria described above.
delete all but the m most preferable descriptions from the

set of candidates.

-solutions <— {r|r is in candidates and r is complete and
consistent with respect to pos and neg}

consistent <— {r|r is in candidates and r is consistent
aeg but incomplete with respect to pos}

generalize elements of consistent by applying:
1) extension against rule
2) closing the interval rule
3) climbing generalization tree rule

add to the set of solutions those elements of consistent
which are now complete

formrule <— m-best candidates from solutions as ordered
by above preference criteria

Figure 2-9: INDUCE formrule function
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Notice that the formrule function (figure 2-9) forms a set of maximally

general rules which are complete and consistent with the positive and negative

instances. This is due to the "seeds" chosen in the first step: maximal

generalizations of a selected positive instance. These seeds are then

specialized. Since the rules are maximally general, the INDUCE algorithm can

form a rule to cover a (non-trivial) subset of the set of positive instances

by considering only a single instance. One (maximally general) rule will then

be found which covers the entire set.

2.5. Mitchell et.al.'s LEX algorithm

LEX, described in [16, 17], views concept learning as a search through a

space of concept definitions. Both positive and negative training instances

are used for navigating through the space. The space of candidates is

structured by a partial ordering imposed on candidate concepts. This ordering

is defined by a more-specific-than relation between concepts and results in a

tree with the most specific concept at the root and least specific concepts at

the leaves.^ Positive instances force generalizations (i.e. searching deeper

in a branch) and negative instances prune branches of the tree.

Traditional breadth first and depth first strategies for searching the

space of candidate concept definitions require keeping past instances and

verifying that current candidates do not violate previous instances. LEX

avoids these time and space requirements by a search technique analogous to

bi-directional'search. LEX maintains two sets of candidate concept

definitions. One set, S, contains candidates which are equal to or more

^If this ordering cannot be imposed on the generalization language for a
domain then the LEX algorithm is not applicable.
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specific than (as defined by the partial ordering) the correct concept. The

other set, G, contains candidates which are equal to or more general than the

correct concept. The correct concept lies between these boundaries. Mitchell

calls this space between S and G (inclusive) the version space of the concept.

The version space is implicitly defined and structured by concept hierarchy

trees which relate terms in the description languages according to the partial

ordering.

Provided to LEX is the set of concept trees necessary for representing

instance descriptions and concept descriptions. The features used for an

instance description must be contained in the leaves of the trees. The

concept description must be expressible using the terms contained anywhere in

the trees. An example concept tree for the concept FUNCTION is given in

figure 2-10.

function

/ \
trans- \

cendental polynomial
/ \ \

trig explog monomial n-nomial
/ \ / \

sin cos exp In

Figure 2-10: Concept Tree for FUNCTION

The LEX algorithm is described in figures 2-11 - 2-13.
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Ctrees <— set of concept trees from teacher
posinst <— initial positive instance from teacher
S <— {posinst}
G <— {g|maximal_generali2ation(posinst,Ctrees,g)}
repeat

TI <— training instance from teacher
if TI is a positive instance then

retain in G only those elements g, s.t. match(TI,g,Ctrees)
for all s in S, s.t. ~match(TI,s), replace s in S by

generalize(s,TI,Ctrees)
for all s in S, remove s from S if there exists g in G, s.t.

matchC s,g,Ctrees)
for all distinct pairs of elements Sj and S2 in S, remove

Sj from S if match( S2, Sj^,Ctrees)
if TI is a negative instance then

retain in S only those elements s, s.t. ~match(Tl,s)
for all g in G, s.t. match(Tl,g,Ctrees), replace g in G by

specialize(g,Tl,Ctrees)
for all g in G, remove g from G if there exists s in S, s.t.

match(g,s,Ctrees)
for all distinct pairs of elements gj^ and g2 in G, remove

gj^ from G if matchCgj^,g2,Ctrees)
until S=G

Display S
Figure 2-11: LEX main program
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FUNCTION generalizeCconcept, instance, Ctrees)
RETURN the list of minimal generalizations of concept
with the (ground) instance, w.r.t. Ctrees.
Assuming a concept definition of n objects, the list of
generalizations returned will be at most length n!.
For each pairing of objects in concept with objects
in instance, find the minimal generalization by:

generalization <— "null" term
for all pairs of corresponding terms t£ in instance and
tj, in concept

ctree <— member of Ctrees s.t. t^ is a node of ctree
append to generalization the closest common ancestor of

and t(. in ctree.

FUNCTION specializeCconcept, instance, Ctrees)
RETURN the list of minimal specializations of concept
with the (ground) instance, w.r.t. Ctrees.
This list is formed by collecting the results of all successful
paths through the non-deterministic algorithm:

for all pairs of corresponding terms t^ in instance
and t(, in concept

ctree <-- member of Ctrees s.t. t^ is a node of ctree
replace t^, with a descendant of t^. from ctree

in concept.
if match(instance,concept,Ctrees) then

concept<— specialize(concept,instance,Ctrees)
EXIT with concept

Figure 2-12: Generalize and Specialize functions

Boolean FUNCTION match(spec,gen,Ctrees)
(comment: match is true iff spec is equal to, or more
specific than, gen).

RETURN true if

for some pairing of objects in spec with objects in gen,
for each pair of terms tg in spec and tg in gen,
there exists ctree in Ctrees s.t.

ts=Tg or
tg is a descendant of t„ in ctree

otherwise RETURN false

Figure 2-13: Match test

The LEX induction algorithm terminates when the S and G boundaries meet.

This convergence is guaranteed given sufficient (and different) training
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instances. If the boundaries pass then the training set must be noisy. The

ability to estimate confidence in a partially-learned concept (as estimated by

the "distance" between S and G) and to determine whether the training set was

noisy is an important feature of LEX discussed in section 3.

3. Evaluations of Inductive Algorithms

In this section we evaluate the inductive algorithms described in section

2. Our main emphasis is on performance issues:

- adequacy of description languages — what constraints do the
instance and generalization languages place on concepts that can be
learned?^ Are the languages "natural" for representation?

- generalization rules — do the generalization rules used by the
induction algorithm restrict the class of concepts that can be
learned? How rapidly does learning progress?

- complexity of induction algorithm — what are the time and space
requirements? Does the complexity restrict the class of concepts
that can be learned?

- environmental requirements — does the induction algorithm make
assumptions about teacher behavior, peculiarities of the domain, or
other external entity? What if the training set is noisy?

3.1. Winston's ARCH Algorithm

Winston's system represents instances and concepts with "simple" semantic

nets. These are particularly useful for representing structure, which was

Winston's application domain. However, the description languages are weak.

O

N-ary relations cannot be directly represented in semantic nets°. The

^As pointed out by [4], we are focusing on descriptions that can be
learned, not just represented. For example, SPROUTER [5] uses a variant
of FOPC as the representation language. Although disjunction can be
represented in FOPC, only conjunctive concepts can be learned by this
induction algorithm.

Q

Although not used by Winston, n-ary relations can be represented with n+1
binary relations. See [3].
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instance language permits only conjunctive descriptions (since all relations

in the semantic net are assumed to hold simultaneously) while the

generalization language allows weak forms of disjunction and exceptions.

Disjunction is introduced via the MAYBE annotation. This is equivalent to

saying that a relation (unary or binary) holds OR it does not hold in the

description. This is a restricted form of internal disjunction in which the

set of permitted values (which are implicit in MAYBE annotation) are TRUE,

FALSE, and DON'T KNOW. Exceptions are represented in the generalization

language with the annotation NOT and MUST-NOT on arcs in the net. The

generalization language uses variables to replace constants (e.g. object

names) but makes no use of quantification^.

The remainder of the evaluation of Winston's learning system is

characterized as teacher-dependant. Winston assumes that training instances

are thoughtfully presented. The teacher must be cognizant of the current

state, the goal state, and the internal induction mechanism in order to direct

the learning process. By requiring that the teacher know the system's

knowledge state and plan the training sequence accordingly, Winston (largely)

avoids certain complications:

- checking past instances — The induction algorithm performs a
depth-first search through the space of concept descriptions. A
depth-first algorithm, in order to ensure consistency with past
instances, must check past positive instances when specializing and
past negative instances when generalizing. Winston does not perform
these checks and thus cannot make strong claims of consistent
concepts. By assuming that training instances differ from the
current concept by only a few features (one feature for negative
instances), induction proceeds in small steps. The generalization
tends to "stay on track" and minor errors can be corrected with
•subsequent training instances.

^see [6] for a discussion of encoding quantification in networks.
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- interference matching (combinatorial explosion) — For each training
instance presented, the induction algorithm finds the "best" match
between the instance arid the current concept description. The
problem of multiple matchings is alleviated by assviming that the
graphs being compared are highly similar.

- guaranteeing maximally-specific generalizations — Positive
instances must be presented in the "correct" order if
maximally-specific generalizations are to be found. Only one
candidate concept description is carried through the induction and
generalized and specialized with instances. Permuting the order of
the instances changes the final concept. In particular the concept
may not be maximally-specific.

For the same reasons that Winston's system is dependent on the teacher, it

is also highly sensitive to noise in the training set.

3.2. Quinlan's IDS algorithm

The expressive power of IDS's description languages is weak. Instances are

represented with a feature vector and concepts are represented with a decision

tree. The expressive power of a feature vector is minimal. External

conjunction is implicit. Disjunction, exception, variables and quantification

are not permitted. Decision trees allow both conjunction and disjunction of

features. Variables and quantification are not used. This prevents natural

encodings of structural and other n-ary relations. Exceptions, also, cannot

be represented.

The only generalization rule used in forming the decision tree is the

dropping condition rule. This is implicit in the operation of selecting a

feature to sub-divide a set of instances. Some features are not used in the

final decision tree because they are deemed non-criterial to the "minimal"

concept description.

Balancing the weak expressive power of the description language and the

modest generalization technique is IDS's efficiency. Efficiency of both the
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induction process and the resulting decision tree can be measured:

- the induction algorithm — ID3 was designed to perform induction
over large sets of instances. Quinlan [19] states that computation
time increases only linearly with difficulty as measured by the
product of:

* the number of given instances

* the number of features used to describe instances

* the number of nodes in the decision tree^®

A main source of complexity in the induction algorithm is evaluating
an instance w.r.t. a feature. This operation must be performed
1f|x|I| times at each node in the tree (where F is the set of
features used by I, the set of instances). The efficiency of this
step is dependent on the amount of useful knowledge encoded in the
feature vector.

- the decision tree — The final decision tree formed is minimal in

that the expected classification time of an instance using the tree
is no greater than the classification time of an "equivalent"
tree. This assumes that the set of instances "seen" by the
induction algorithm to form a decision tree is representative of the
distribution of the larger set of unseen instances.

ID3 requires no teacher assistance during the induction process. All

training instances must be provided before processing begins. The induction

proceeds depth-first and only one candidate concept description is maintained.

Since all instances are present, the problem of checking past instances for

consistency (required for incremental learning) is avoided. The concepts

(rules) learned are maximally-general in the sense that (on average) the

fewest number of features needed to classify instances for the concept are in

the rule.

^^this is exponential in the height of the tree.

^^We say two decision trees DTj and DT2 are equivalent if for all
instances I, classifiable by either DTj or DT2,
clas8ify(l,DT2)=classify(l,DT2).
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As described in section 2-3, ID3 uses a beam search for efficient learning

given a large set of training instances. Given this search strategy, we

believe that ID3 can be made noise tolerant by relaxing the constraint that a

decision tree be consistent with all instances, allowing a margin for error.

Additional support for this belief is given by Quinlan [19] when describing

the main findings for using a beam search. He found a correct and consistent

tree was formed using only a small fraction of the total set of instances and

the search was not sensitive to the size of the subset selected at each

iteration. This indicates that a small margin for error will not disrupt

learning in general. A consequence of the ID3 decision tree representation

for rules is that the impact of small rule errors on final classification

errors is a function of the position of the error in the decision tree. Rule

errors near the root of the tree are more serious than errors near the leaves.

Rules encoded as decision trees are analogous to rules encoded as production

systems with an order imposed on the rule firing sequence.

3.3. Michalski et.al.'s INDUCE algorithm

As described in section 2.4, the description languages for INDUCE are as

expressive as FOPC. Conjunction, disjunction, exception, variables and

quantification are permitted. Moreover, there are syntactic modifications to

FOPC which allow natural encodings. In addition, the generalization rules

used are powerful. Constructive generalization adds descriptors to a

generalization which are not present in the instances used in the

generalization.

The INDUCE algorithm is non-incremental. The search technique has

components of both a beam search and best-first search. A set of
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maximally-general candidate concept descriptions is found which is consistent

with all negative instances and complete w.r.t. one positive instance. The

best description (as defined by a domain-specific heuristic) is saved. The

process repeats with another positive instance. The final rule is the

disjunction of best descriptions for some (hopefully small) number of

iterations.

INDUCE might demonstrate good noise immunity because of the structure of

generalizations found. A generalization is basically a disjunction of terms

where each term covers some subset of the positive instances. Noisy instances

(assuming they are very noisy) are in separate terms which can be removed.

Clearly, the description languages are able to represent any concept for

which FOPC is appropriate. But, guided by powerful generalization rules, what

class of concepts can be learned? The problem encountered is the size of the

search space. There are three points in the INDUCE algorithm in which

non-determinism arises (refer to figure 2-9):

1. Expanding the set of candidates by applying inference rules (line
3) — A non-deterministic selection from three powerful
generalization rules with multiple bindings likely.

2. Generalizing consistent concept descriptions in attempt to make
them complete (line 8) — Again three generalization rules.

3. Implicit matching of instances with concept descriptions — a
pattern matcher is implicit which finds "best" match between an
instance and a concept description. This is also used\to determine
if a concept covers an instance.

Countering this enormous search space, INDUCE employs a body of

domain-specific heuristics to select the most promising candidate concept

descriptions (lines 2,4, and 10 of figure 2-9). These pruning heuristics are

essential and are applied at every opportunity during each iteration of the
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search (fonnrule function performs one iteration). Surprisingly, INDUCE does

not guide the selection of generalization rules with heuristics. INDUCE must

select between five different rules to apply, each with the potential of

multiple bindings to the current state.

However, as described by Lenat [11], heuristics have a limited domain of

applicability. Outside of this domain, a heuristic can be useless or

dangerous. We are unable to judge the heuristic adequacy [12] of the INDUCE

algorithm. The "knowledge-intensive" approach is proving useful in problem

solving, expert systems and natural language processing (among other areas)

and should find application in inductive learning as well. However,

evaluation of such a system is easily influenced by the quality and quantity

of knowledge available to the system. This can conceal the

domain-independant, formal properties of an algorithm.

3.4. Mitchell et.al.'s LEX program

LEX trades off the power of INDUCE, for example, for a guarantee of

maximally specific, complete and consistent concept descriptions. The concept

trees used for generalization,and specialization combined with the frontiers

of the bi-directional search implicitly define the version space. Also

implicitly defined (reconstructable) are two sets of concept descriptions

which LEX has ruled out. One set contains those descriptions found

inconsistent with some past negative training instance. The second set

contains those descriptions found incomplete with respect to some positive

instance. LEX proceeds incrementally. For each new training instance, LEX

reduces the size of the version space by moving a frontier (effectively moving

candidate concept descriptions from the version space to one of the two sets
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of "ruled out" concepts). This ensures that only complete and consistent

concept descriptions remain in the version space. Furthermore, we say that

the frontiers are moved minimally with each training instance in the sense

that only those candidates from the version space which are inconsistent with

the current training instance are removed. This guarantees that LEX will find

the maximally specific concept description.

The description languages and the generalization rules are central to the

LEX version space approach. The description languages are essentially feature

lists. The description languages allow more natural, domain specific, forms

of description (e.g. mathematical notation for the domain of integration

problems) but the expressive power is equivalent to a conjunction of features.

The only generalization/specialization rule is climbing/descending concept

hierarchy trees. By introducing more powerful rules, perhaps operating on a

more expressive generalization language, LEX would forfeit the ability to

re-construct the search space from the frontiers and to divide the search

space into three sets: possible candidates, incomplete candidates, and

inconsistent candidates.

LEX is capable of learning multiple-concepts. This is done by maintaining

separate version spaces (search graphs) for each concept.

LEX differs from the other induction algorithms surveyed in the domain of

application. Learning rules for problem solving (calculus problems for LEX)

can be a dynamic process. For example, a problem solver can be incorporated

with the induction algorithm or a heuristic function can measure proximity of
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a problem state to a goal.^^

LEX takes advantage of the potential of learning dynamically with a

teacherless four component system [17] (see figure 3-1).

- The problem generator — this component proposes problems to be
solved from which LEX can refine its knowledge base.

- The problem solver — this component attempts to solve the proposed
problem using the current knowledge.

- The critic — this component analyses the resulting search graph.
Credit assignment defines "appropriate" applications of a
(partially-learned) rule from the knowledge base as those on the
solution path. Inappropriate applications are those deviating from
the solution path.

- The generalizer — this component integrates the positive and
negative instances of rule application (identified by the critic)
with the current knowledge base. This corresponds to the version
space induction algorithm.

problem
practice generator partially
problem learned heuristics

problem rule
solver generalizer

trace of y ^training
problem solving / instances

behavior critic

Figure 3-1: LEX's Dynamic Learning Cycle
(reproduced from [17], page 167)

One strong advantage of the version space algorithm is that LEX has a

dynamic representation of what it knows. This meta-knowledge could be used by

lex's problem generator. The problem generator could measure the degree of

convergence on a concept (as measured by the distance between the frontiers of

12- • • ...This property of learning in dynamic domains was used in building a system
for learning rules for solving simultaneous linear equations. See [8, 9, 10].
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the search graph). A problem could be proposed which bisects the version

space, for an optimum learning rate. In fact, the meta-knowledge is not

currently used by the problem generator, although Mitchell documents its

potential [17]. Another use of this meta-knowledge allows LEX to measure the

confidence of a partially-learned concept. This could allow the problem

solver and the critic to prudently use partially-learned concepts when

expanding a search graph or performing credit assignment. A third use of the

meta-knowledge is for learning with noisy training sets. Mitchell [15, 2] has

defined a modified version space algorithm which maintains multiple boundary

sets. In the modified algorithm, the sets Sq and Gq correspond to the sets S

and G in the noise-free algorithm. Added to the storage requirements are

®l~^n ^l~^n where each description in the set Sj_ is consistent with all

but i of the positive training instances and each description in the set G^ is

consistent with all but i of the negative instances, for i between 0 and

n. The algorithm detects when a pair of boundaries and G^ cross. The

algorithm concludes that at least i instances were noisy and looks for

convergence on a concept bounded by and

Young et.al. [25, 1] have devised a space-saving modification to the

version space algorithm. Basically, they propose eliminating the explicit

representation of the frontiers by an implicit representation. Markers are

placed at nodes in each concept tree corresponding to the most specific and

most general abstractions of the each concept which is consistent with past

instances. This is analogous to distributing the frontiers from the concept

version space to each of the concept trees involved in the total concept.
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4. Conclusions

We have surveyed the induction algorithms used by four significant learning

systems. These systems are in the class of learning by examples. We have

detailed the control mechanism and the knowledge representation used by each.

Winston's ARCH system was found to be domain and teacher dependant. By

relying on near examples and near misses in the training set, ARCH avoids

incorrect concepts and combinatorial explosion. Quinlan s ID3 algorithm buys

efficiency and simplicity at the expense of expressive power. Michalski,

et.al.'s INDUCE program has the expressive power of FOPC, and powerful

generalization rules. It represents a significant effort to apply more domain

knowledge to the learning process. Finally, Mitchell, et.al. s LEX system

guarantees complete and consistent concept descriptions, but employs weak

description languages and generalization rules. We have attempted to

illuminate the commonalities and differences of these algorithms. More

important, however, are the ubiquitous trade~offs of expressive power versus

efficiency, domain independence versus strong methods, and teacher guidance

versus combinatorial explosion, that characterize the state of the art of

machine learning.
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