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Abstract

Massive MIMO technology, leveraging beamforming and precoding, significantly

enhances spectrum and energy efficiency when CSI at the transmitter is available.

However, the large-scale arrays envisioned for millimeter-wave or terahertz communi-

cations drastically increase the downlink CSI training overhead and uplink feedback

overhead, necessitating efficient CSI feedback designs in FDD wireless systems. Sim-

ilar to image compression, after downlink CSI estimation at the UE, downlink CSI is

encoded into a low-dimensional codeword stream, transmitted to the base station, and

decoded for downlink CSI recovery. Recently, deep learning, particularly autoencoders,

has been widely discussed as an efficient CSI feedback approach, outperforming tradi-

tional compressive sensing methods. However, several challenges remain unaddressed

in learning-based CSI feedback frameworks.

In this dissertation, we address six critical issues in learning-based CSI feedback

frameworks. We explore the exploitation of uplink/downlink frequency-division du-

plexing reciprocity. The energy, delay, and angles of arrival and departure of uplink

and downlink channels are highly correlated. Yet, uplink CSI, available at the base

station, is seldom used to reduce the uncertainty of downlink CSI recovery. We propose

a deep learning CSI feedback framework leveraging this reciprocity, with a redesigned

loss function for joint encoding of CSI magnitudes and phases. Evaluation shows su-

perior performance and better utilization of frequency-division duplexing reciprocity

compared to previous works.

We also address the reduction of pilot transmission overhead. Given limited pilot

resources, it is impractical to transmit pilots for all antenna ports in a massive MIMO

system. We introduce a beam-based pilot precoding approach and a deep learning
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CSI feedback framework to minimize pilot transmission and CSI feedback overhead

from UE. Furthermore, we propose scalable CSI encoding. Existing frameworks of-

ten encode and decode full CSI using autoencoders, leading to heavy models and low

scalability. Recognizing low correlation between widely spaced antennas, we propose

a scalable deep learning CSI feedback framework using a divide-and-conquer princi-

ple to encode CSI subarray-by-subarray. This dynamic compression approach achieves

significant model size reduction while maintaining downlink CSI recovery performance.

To tackle the reduction of training costs, deep learning models typically require

extensive data collection and customization for different channel types. Inspired by

the simplicity and generality of JPEG in image compression, we propose a JPEG-

based CSI feedback approach, which requires no prior training and adapts to various

channels, offering comparable recovery performance to learning-based methods. Addi-

tionally, we enhance frequency selective channel performance. Current learning-based

models struggle with CSI recovery in frequency selective channels due to sparse pilot

placement. We propose an uplink CSI-assisted CSI upsampling module at the base

station, compatible with most previous explicit CSI feedback frameworks. Ensuring

adherence to standardized feedback, we note that current learning-based CSI feedback

methods do not strictly follow standardized CSI feedback, making industry adoption

challenging. We propose a lightweight, efficient precoder upsampler as a plug-in mod-

ule for the base station, enhancing performance in high delay-spread channels.

For prospective researchers, we suggest two directions to bridge artificial intelli-

gence research and cellular communications industries. Addressing channel aging in

CSI feedback is crucial due to the time lag between downlink CSI training and down-

link data transmission, which may result in outdated precoders. Future research should

focus on developing learning-based CSI and precoder prediction to adapt to non-linear
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channel variations. Additionally, in practical frequency-division duplexing systems,

the base station lacks exact CSI knowledge from UE and relies on fed-back precoders.

Researchers should develop precoder-based user scheduling algorithms to avoid inter-

ference and maximize system throughput.
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Chapter 1

Introduction

In this chapter, we present an introduction to the research topic addressed by this dis-

sertation. First, we briefly review the channel state information (CSI) feedback prob-

lem for multiple-input multiple-output (MIMO) frequency-division duplexing (FDD)

wireless systems. Then, we concisely discuss the existing CSI feedback frameworks,

highlighting the problems in current solutions, including the lack of domain knowl-

edge, model size and scalability, model generality, and low pilot placement density and

deviation from the practical CSI feedback mechanisms. Finally, we summarize the

structure of this dissertation.

1.1 CSI Feedback for MIMO FDD Systems

Massive MIMO technologies play an important role in improving the spectrum and

energy efficiency of 5G and future-generation wireless networks. The power of massive

MIMO hinges on accurate DL CSI at the base station or gNodeB (gNB). Without up-

link (UL)/DL channel reciprocity assumed in time-division duplexing (TDD) systems,

as illustrated in Figure 1.1, an FDD base station typically relies on user equipment (UE)

feedback for DL precoder design. The feedback approaches can be broadly categorized

into explicit CSI feedback and implicit CSI feedback.
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Channel

DL CSI 
Estimation

Pilot Transmission

DL CSI Feedback

Data Transmission

Precoder
Design

Figure 1.1: Illustration of CSI feedback in FDD system.

Since CSI in most environments has limited delay spread and can be viewed as

sparse, CSI feedback by UEs can leverage this low dimensionality for CSI feedback

compression. Compressive sensing (CS) [1–4] appears to be a promising solution to

recover such sparse signals. However, CS has limitations: [5]:

(a) CSI recovery is not accurate enough since CSIs are not exactly sparse in any basis,

(b) the random projection matrix may not fully exploit the structural features of CSIs,

(c) involvement of iterative approach for signal reconstruction usually is time-consuming

while CSI recovery task is somehow time-sensitive.

Thus, both industry and researchers have been dedicated to finding a new effective

solution for CSI feedback. The 3rd Generation Partnership Project (3GPP) recently

released the features of Release 18 [6], which embraces artificial intelligence (AI) and

machine learning (ML) for enhancing CSI feedback (e.g., reducing overhead and im-

proving estimation accuracy).

1.2 AI-aided CSI Feedback

Inspired by the success in image compression, deep neural networks have been widely

adopted for CSI feedback frameworks in recent years. To improve feedback efficiency,

previous works [5, 7] developed a deep convolutional neural network with an autoen-

2



coder structure, where the encoder and decoder are deployed at the UE and gNB,

respectively, for CSI compression and recovery. Related works and variants [8–11] have

demonstrated performance advantages over traditional compressive sensing approaches.

Recent studies have highlighted the importance of exploiting correlated channel

information such as UL CSI [12–16], past CSI [17], and CSI of adjacent UEs [18] for

improving DL CSI recovery accuracy at base stations. Important physical insights

regarding FDD reciprocity, slow changes in the propagation environment over time,

and similar propagation conditions within short geographical distances underscore the

strong spectral, temporal, and spatial correlations between magnitudes of different CSI

in the angle-delay (AD) domain. Since side information from correlated CSI lowers the

conditional entropy (uncertainty) of the DL CSI, its effective utilization reduces the

encoded feedback payload required from UEs [8, 17].

Recent works have also focused on practical issues such as pilot design, model size,

computational complexity, and training strategy. For example, notable progress has

been made in recovery performance among recent autoencoder-based CSI feedback

frameworks [19] by considering the joint design of pilot and CSI recovery. Lightweight

learning models [9, 20] for low-cost UEs have been proposed to ease the broad de-

ployment of such systems. Self-supervised and federated learning strategies have been

adopted in some works [21,22] to address the challenge of scarce data collection. How-

ever, fundamental problems of AI-aided CSI feedback still hamper real-world imple-

mentation.

1.3 Challenges for Learning-based CSI Feedback

In the following subsections, we describe the problems of existing learning-based CSI

feedback frameworks addressed by this article:
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1.3.1 Inefficient Utilization of FDD Reciprocity

FDD reciprocity denotes the correlation between UL/DL CSI. Since radiations prop-

agate similarly in both directions, the energy, delay, and angles of arrival/departure

(AoAs/AoDs) of multipaths in UL and DL transmission are highly correlated. Thus,

there is a high correlation between DL and UL CSI magnitudes in the AD domain.

Existing solutions [12, 13, 18] have adopted dual feedback frameworks that separately

encode and recover CSI phases from their corresponding magnitudes. These studies

use an isolated autoencoder to compress and recover the CSI magnitudes. For phase

recovery, significant phases are encoded according to their corresponding magnitudes.

Presently, some magnitude-dependent CSI feedback frameworks train two learning

models to encode and recover DL CSI magnitudes and phases, respectively. For exam-

ple, [18] designed a deep learning model with CSI magnitude and phase autoencoders,

training the phase branch with a magnitude-dependent polar-phase (MDPP) loss func-

tion to penalize discrepancies in CSI phase estimates with larger magnitudes. However,

this does not fully reflect the real MSE loss, thus failing to guarantee minimized MSE.

Both CSI magnitudes and phases depend on the RF propagation environment, in-

cluding multipath delays, Doppler spread, bandwidth, and scatter distribution. There-

fore, CSI magnitude and phase encoding and recovery should be jointly optimized. The

structural sparsity of CSI phases and their joint distribution with the CSI magnitude

are generally unknown and underexplored.

1.3.2 Limited Pilot Resources

The estimation accuracy of DL CSI at UEs depends on factors such as channel fad-

ing properties and reference signal (RS) placement. Beyond feedback overhead, the

required resource pilot (i.e., CSI-RS) allocation for CSI estimation grows proportion-

ally with the antenna array size. More resources allocated to CSI-RS improve DL CSI

estimation accuracy but degrade spectrum efficiency. In practical systems such as [23],

4



CSI-RS resources are sparsely allocated on the time-frequency physical resource grid.

Only a few studies [19,24] have considered the sparse CSI-RS availability in designing

CSI feedback mechanisms.

Our earlier work [24] proposed a deep learning partial CSI feedback framework that

reduces RS resource overhead by leveraging temporal CSI correlation. The work in [19]

optimizes the DL pilot symbols (i.e., CSI-RS) based on UL CSI without reducing the

CSI-RS resources. However, this implementation does not reduce any resource pilot

allocation and requires dynamic exchange of optimized pilot symbols between the gNB

and the UE, which is incompatible with the current use of predefined CSI-RS.

1.3.3 Large Model Size and Low Scalability

Existing deep learning methods attempt to extract underlying mutual dependency

among gNB antennas in massive MIMO configurations by simultaneously feeding CSI

of all DL antennas into the learning machine for joint compression. Such large input

sizes make it harder to develop low-complexity and lightweight deep learning models.

Attempts to reduce encoder model complexity [25–28] have achieved limited success.

Additionally, the rigidity of the input/output size of deep learning models necessitates

new models for different array sizes.

Inflexible model latent sizes require model retraining for different compression lev-

els. To avoid this, [29] applied transfer learning to reduce training costs for multiple

compression levels. A related work [30] designed a multi-rate CSI feedback framework

with a matching classification model for selecting a target compression ratio according

to the number of channel clusters. However, the physical connection between com-

pressibility and channel cluster number remains unconfirmed.
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1.3.4 Efforts for Model Training and Generality

Operators face obstacles in deploying learning-based frameworks in real-world systems,

including the cost of training data collection needed for deep learning optimization.

CSI data acquisition for massive MIMO requires accurate models and extensive field

measurement, posing serious practical challenges [31]. Practical wireless networks are

deployed in a wide range of RF environments, requiring multiple deep learning models

for different channel scenarios and compression ratios, each trained separately, cus-

tomized, and selected for a specific scenario.

These practices incur large memory burdens for UEs to store multiple deep learning

models, require large training datasets under multiple RF channel scenarios for deep

learning optimization, and determine the suitable deep learning model to use. Transfer

learning and online learning concepts [32, 33] have moderately reduced training costs.

However, the implementation and storage of multiple deep learning models still lead

to high costs in hardware and power, especially at the UE side, as channel bandwidth

and antenna numbers continue to grow.

1.3.5 Poor Performance in Frequency Selective Channels

In 5G-NR, CSI-RS is used for channel state inference and precoder design instead of

full-channel estimation. With low CSI-RS placement density in the frequency domain,

the fast variation of CSIs due to large delay spread cannot be captured at the UE side.

From the gNB’s perspective, recovering full CSI at the subcarrier level may result in

strong aliasing effects even if the UE performs perfect CSI feedback. To the best of

our knowledge, previous works have barely considered this issue, making it crucial to

design a pre- or post-aliasing suppression approach for CSI feedback frameworks.
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1.3.6 Deviation from 3GPP Specification

Existing commercialized CSI feedback system is based on implicit feedback instead

of explicit CSI feedback. In modern cellular networks such as 5G-NR, UEs feedback

precoder matrix indicators (PMI) and layer indicators (LI) for each subband (SB)

to select precoders from a codebook at the gNB side. For flat fading channels, it is

acceptable to apply a wideband or SB-level precoder to different resource blocks (RBs)

since their channels are nearly identical. However, for outdoor scenarios with high

delay spread, an SB-level precoder may perform poorly for specific RBs. Although

AI-based CSI feedback can perform RB-level CSI compression and recovery with good

performance, deploying it in cellular networks is challenging before 3GPP agrees on

a new standard. Thus, industry tends to adopt an early-stage solution: a one-sided

precoder upsampler deployed only at the gNB, acting as a plug-in module compatible

with existing protocols and specifications.

1.4 Structure of the article

In Chapter 2, we describe the signal model and introduce the general CSI feedback

problem in FDD MIMO systems. Then, we review how a deep learning-based autoen-

coder architecture helps reduce uplink overhead and improve CSI estimation accuracy.

In Chapter 3, we tackle the challenge of inefficient utilization of FDD reciprocity.

We develop a deep learning-based CSI feedback framework that jointly optimizes

magnitude and phase encoding, proposing a new loss function, namely sinusoidal

magnitude-adjust phase error (SMAPE), which directly corresponds to the MSE of

DL CSI recovery. We also propose novel circularly convolutional neural network (C-

CNN) layers to enhance CSI compression efficiency and recovery performance.

In Chapter 4, we address the challenge of limited pilot resources. We develop an

efficient and reconfigurable deep learning beam-based CSI feedback framework that
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leverages UL/DL angular reciprocity for FDD wireless systems to reduce DL CSI-RS

and UL feedback overhead while maintaining DL CSI recovery accuracy.

In Chapter 5, we address the challenge of large model size and low scalability. Utiliz-

ing the physical insight that only nearby massive MIMO antennas exhibit non-negligible

CSI correlation, we propose a light-weight autoencoder that compresses large-array

CSI via a divide-and-conquer principle (DCP). This approach substantially decreases

input size and, consequently, the deep learning model size. We also design a novel

dynamic-rate CSI feedback framework with a matching classifier to determine the op-

timal compression level for maximizing codeword efficiency.

In Chapter 6, we address the challenge of model training and generality. We de-

velop a simpler, scalable, and flexible algorithm inspired by the JPEG compression

of images. Our zero replacement (ZR) compressive CSI feedback algorithm is univer-

sal, accommodating different compression ratios and a wide range of channel scenarios

without requiring special training datasets.

In Chapter 7, we address the challenge of poor performance in frequency selective

channels. We design a new CSI upsampling module compatible with any explicit CSI

feedback frameworks for post-aliasing suppression deployed at the gNB side, exploiting

FDD reciprocity to design a bandpass filter (BPF) for aliasing suppression.

In Chapter 8, we address the challenge of specification deviation. We design a

plug-in precoder upsampling module deployed at the gNB, which is computationally

efficient and compatible with existing Type II and modified enhanced-Type II (eType

II) precoders.

In Chapter 9, we summarize the contributions of this article and highlight potential

future research directions.
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Chapter 2

System Model and Problem

Formulation

In this chapter, we delve into the details of system modeling and problem formulation.

First, we introduce the general downlink and uplink system signal model. Then, we

formulate our CSI feedback problem in FDD wireless systems. Last, we give an big

picture illustrating the relationship between the following chapters.

2.1 Signal Model

We consider a single-cell MIMO FDD link where a gNB using an NH × NV uniform

planar array (UPA) with Nb = NVNH antennas communicates with single-antenna

UEs. Note that a UPA becomes a uniform linear array (ULA) when NV = 1 and

Nb = NH . In FDD systems, UEs estimate DL CSIs and feedback to the serving base

station after encoding and quantization. The gNB then recovers the DL CSI based on

this feedback. Following the 3GPP specification [23] and focusing on a specific UE,

the DL subband consists of NRB RBs within the bandwidth for both data and pilot

transmission. We assume channels within an RB to be under slow, flat, and block

fading.
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Figure 2.1: Resource block configuration. There are Nf ×NO time-frequency REs in a
RB (Nf subcarriers and NO OFDM symbols). Pilots are allowed to be placed at those
REs in designated region (surrounded by the black frame). There are L = 16 available
REs for pilot placement in this illustration.

As shown in Figure 2.1, there are Nf ×NO time-frequency resource elements (REs)

in a specific RB (Nf subcarriers and NO OFDM symbols). In each RB, there are L

REs designated for pilot transmission (i.e., CSI-RS placement). We typically adopt a

general setting of L = Nb so that the CSI of every antenna port can be estimated in

each RB.

The OFDM signal spans NRB DL RBs. The DL signal received from the kth RB is

yf,DL = hH
f,DLwfxf,DL + nf,DL,

where (·)H denotes conjugate transpose. Here for the k−th RB, hf,DL ∈ CNb×1 denotes

the CSI vector and wf ∈ CNb×1 denotes the corresponding precoding vector1 whereas

xf,DL ∈ C and nf,DL ∈ C denote the DL source signal and additive noise, respectively.

With the same antennas, gNb receives UL signal

yf,UL = hf,ULxf,UL + nf,UL ∈ CNb×1,

1gNB calculates precoding vectors at subcarriers with DL CSI matrix. For example, a maximum-
ratio combining precoder hf,DL/||hf,DL|| is used for maximizing the receiving gain at UE.
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where hf,UL ∈ CNb×1 is the UL channel vector, and the subscript UL denotes the UL

signals and noise. Without channel reciprocity in TDD system, hf,DL and hf,UL are

different. Yet, the delays, energy and AoAs/AoDs of multi-paths are highly correlated.

In FDD system, gNB replies on the UE feedback to design precoders to improve the

reception power in downlink transmission. The feedback machanisms can be roughly

categorized into two types: explicit and implicit CSI feedback illustrated in Figures 2.2

(a) and (b), respectively. Both architectures are considered in this article. They will

be introduced in the following sections.

2.2 Explicit CSI Feedback

The idea of explicit CSI feedback as shown in Figure 2.2 (a) is to compress DL CSI

at UE side after channel estimation and recover it at base station side so as to design

precoders for downlink transmission. Encoder and decoder are deployed at UE and

gNB sides for CSI compression and recovery, respectively.

2.2.1 CSI Estimation via Pilots and Truncation

Assume that UEs and gNB can perfectly estimate DL/UL CSIs, respectively2. DL

and UL channel vectors can be jointly written as spatial-frequency channel state

information (SF-CSI) matrices HSF
DL = [h1,DL, ...,hNRB,DL] ∈ CNb×NRB and HSF

UL =

[h1,UL, ...,hNRB,UL] ∈ CNb×NRB , respectively. Typically in FDD systems, DL CSI HSF
DL is

estimated and fed back by UE to gNB. However, the number (Nb×NRB) of unknowns

in HSF
DL requires substantial feedback resources in large or massive MIMO systems,

consuming excessive bandwidth. To reduce the CSI feedback overhead, we can apply

2Since gNB usually uses high-energy pilots for DL CSI estimation in modern communication sys-
tems, recovery loss mainly originates from lossy compression. In such case, there is little difference
when using different channel estimation schemes. Furthermore, in the context of CSI, perfect estima-
tion is commonly adopted in most related works.
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Figure 2.2: Working block diagrams of (a) explicit CSI feedback and (b) implicit CSI
feedback in FDD system.

discrete Fourier transform (DFT) FA ∈ CNb×Nb and inverse DFT (IDFT) or discrete

cosine transform (DCT) FD ∈ CNRB×NRB and on HSF to generate either spatial-delay

(SD) or angle-delay (AD) domain CSI matrices:

HAD = FH
AH

SFFD,

HSD = HSFFD,

which demonstrates sparsity. Note that HSF denotes either HSF
UL or HSF

UL. Owing to

limited multipath delay spread and limited number of scatters, most elements in HSD
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and HAD are found to be near insignificant, except for the few columns. For simplicity,

we shall denote HSD
DL and HAD

DL as H̃DL in the rest of this article except for cases when

ambiguity may arise.

To reduce UL feedback overhead, we exploit the physical multipath delay sparsity of

CSI by transforming full DL CSI into delay domain through discrete Fourier transform

(DFT) or discrete cosine transform (DCT). We truncate the insignificant near-zero

elements in trailing (large) delay indices as follows:

HDL = H̃DL

 INt×Nt

0


︸ ︷︷ ︸

T

∈ CNb×Nt , (2.1)

where T ∈ CNRB×Nt performs delay domain truncation. Note that the design of matrix

T may varies according to transformation FD and the CSI properties. Matrix T in

Eq. (2.1) is an example for DCT transformation that drops the last NRB−Nt columns

of H̃ corresponding to large multipath delays.

2.2.2 Deep Learning Compression

Autoencoder has shown successes in several deep learning frameworks. An encoder

at UE compresses its estimated DL CSI for uplink feedback and a decoder at gNB

recovers the estimated CSI according to the feedback from UE. Assuming negligible

CSI elements at large delays, many have exploited convolutional layers to compress

and recover the truncated DL pilot CSI via

Encoder: q = fen(HDL), (2.2)

Decoder: ĤDL = fde(q). (2.3)
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The decoder should replace the truncated DL CSI ĤDL via zero-padding to transform

CSI back from delay domain to estimate DL CSI matrix H̃DL in the subcarrier domain

as follows:

̂̃
HDL =

[
ĤDL 0Nb×(NRB−Nt)

]
FH

D . (2.4)

Eq. (2.4) is an example for DCT transformation that drops the last NRB − Nt

columns of H̃ corresponding to large multipath delays. The CSI recovery accuracy can

be measured by the normalized mean square error (NMSE) of the full DL CSI:

NMSE(
̂̃
HDL, H̃DL) =

D∑
d=1

∥ ̂̃HDL,d − H̃DL,d∥2F/∥H̃DL,d∥2F ,

where subscript d denotes the d-th test. When training the autoencoder, the CSI error

due to truncation is unavailable. Hence, autoencoder loss function can simply rely on

the truncated DL CSI error

NMSE(ĤDL,HDL) =
D∑

d=1

∥ĤDL,d −HDL,d∥2F/∥HDL,d∥2F .

2.3 Implicit CSI Feedback

The idea of implicit CSI feedback, or codebook-based precoder feedback, is to determine

the precoder at UE side from codebooks and feedback to gNB for the following downlink

transmission shown in Figure 2.2 (b). There are shared codebooks between gNB and

UEs. UEs estimate DL CSI from pilots, and then feedback precoder matrix indicator

(PMI) and layer indicator (LI) to gNB. Common codebook-based precoding in modern

FDD system include Type I, Type II and eType II [34–36] precoding, which will be

introduced below in a high-level manner (for simplicity, we consider one polarization

only):

14



2.3.1 Type I/Type II Precoding

Type I precoding exploits the spatial diversity provided by multiple transmit antennas

to enhance communication performance. The UE selects a beam and a co-phase coef-

ficient from an oversampled set of beam directions as the Type I precoder. The Type

I precoder for the f -th SB can be expressed as:

wf = argmaxw∈Ωl
{|hH

f,DLw|}, f = 1, ..., N3. (2.5)

Where Ωl is the codebook containing oversampled beams corresponding to the l-th

layer, and N3 is the number of SBs in BWP. Then the UE acknowledges the selected

precoder by feeding back the beam index (i.e., PMI) and the layer l. For the Type

II precoder, designed for the multi-user MIMO (MU-MIMO) use case, it provides

more flexibility in choosing multiple beams and the degree of freedom to combine the

selected beams to match DL CSI. The selected Type II precoder for the f -th SB can

be expressed as:

wf =
L∑
i=1

αf,iwf,i/L. (2.6)

where wf,i is the i-th selected oversampled beam, and αf,i is the complex combining

coefficient in the f -th SB. Note that, to reduce the feedback overhead, both Type I

and Type II precoders are fed back per SB.

2.3.2 eType II Precoding

The eType II precoder is a more efficient feedback method compared to Type I and

Type II precoders. Figure 2.3 reveals the differences between Type II and eType II

precoding. In Figure 2.3(a), it can be seen that the UE designs the Type II precoder

for each SB independently. Considering the high correlation of the spatial structures

of channels for SBs in a BWP, the eType II precoder design allows the gNB to enable

UEs to jointly select L wideband beam for all SBs in the entire BWP, which is called
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Figure 2.3: The comparison between (a) Type II and (b) eType II Precoder.

spatial compression, and feedback the precoder.

To further reduce the feedback overhead, the eType II precoder performs frequency-

domain compression. It first transforms the SB-level precoders into delay-domain ones.

According to the principles of radiology and propagation loss, the delay-domain beam

combining coefficients are truncated by retaining only the first Mv delay taps. To

further compress in the delay domain, due to the sparsity of the truncated delay-

domain coefficients, the coefficients can be compressed by a factor of R, feeding back

only the significant delay taps and their positions.
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2.3.3 Problem Formulation - Insufficient Feedback Resolution

Given the restriction of uplink feedback overhead, all types of codebook-based precoder

feedback can only be conducted per SB. For some frequency-selective channels (e.g.,

outdoor channels with large delay spread), such a low feedback rate cannot fully exploit

the channel diversity provided by the precoder. Without modifying the current speci-

fication, operators seek a non-linear mapping function fΘ(·) to upsample the SB-level

precoders WSB to RB-level ones ŴRB, thereby better exploiting the channel gain via a

finer-resolution precoder in the frequency domain. The loss function can be expressed

as follows:

Θ = argmaxΘ

NRB∑
f=0

|hH
f ŴRB,f |, (2.7)

ŴRB = fΘ(WSB ∈ CNb×N3) ∈ CNb×NRB , (2.8)

where Θ represents the trainable parameters of the learning-based upsampler, WSB

consists of precoders for N3 SBs, ŴRB,f denotes the precoder for f -th RB.

2.4 Overview

Figure 2.4 shows a tree diagram illustrating the features and relationship between the

proposed methods in this dissertation. From Sections 3 to 7, we focus on developing

efficient compression/recovery algorithms and CSI upsampling approach for explicit

CSI feedback considering different important practical needs. The CSI upsampling

module proposed in Section 7 can be incorporated with the previous explicit CSI feed-

back mechanisms and most prior works. For Section 8, we follow the current 3GPP

standarized implicit CSI feedback approaches. A plug-in precoder upsampling module,

which is compatible with Type II and eType II precoder feedback approaches, was

proposed to boost the precoder gain from channels.
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Chapter 3

Deep Learning Phase Compression

for MIMO CSI Feedback with

Limited FDD Channel Reciprocity

Large scale MIMO FDD systems are often hampered by bandwidth required to feed-

back DL CSI. Previous works [12, 13] have made notable progresses in efficient CSI

encoding and recovery by taking advantage of FDD UL/DL reciprocity between their

CSI magnitudes. Such framework separately encodes CSI phase and magnitude, which

cannot efficiently exploit the correlation between CSI magnitudes and phases. To fur-

ther enhance feedback efficiency, we propose a new deep learning architecture for joint

magnitude and phase encoding based on limited CSI feedback and magnitude-aided

information.

In this chapter, we first mention the background of existing DL CSI feedback frame-

works with the aids of correlated CSIs locally available at base stations. Then, we

propose a new deep learning CSI feedback framework which better exploits UL CSI to

jointly encode DL CSI phase and magnitude for better CSI recovery performance. The

model architecture and loss function designs are then detailed. Finally, our test results
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Figure 3.1: General network architecture. (a) Conventional CSI feedback frame-
work, (b) conventional magnitude-aided CSI feedback framework, and (c) proposed
magnitude-aided CSI feedback framework.

demonstrate that the newly proposed framework outperforms other SOTAs with or

without the aids of UL CSI information. Note that, in this chapter, we represent DL

CSI HDL by H for simplicity and use HUL for UL CSI for simplicity.

3.1 Magnitude-aided CSI feedback Framework

Most deep-learning works on CSI compression leverage the success of real-valued deep

learning network (DLN) in image processing by separating CSI matrices into real and

imaginary parts that are analogous to image files [5, 7, 17], as shown in Figure 3.1(a).

Recent studies [13,17,18], however, uncovered the benefit of separately encoding mag-

nitudes and phases of H instead in order to better exploit other correlated CSI magni-

tudes as auxiliary magnitude information (AMI). Note that, in this chapter, the CSI H

is on AD domain. Such architecture, illustrated in Figure 3.1(b), requires substantially

lower feedback overhead for the magnitudes of H and allocate more feedback resources

for phase feedback of H.

Figure 3.1(c) illustrates our proposed new DLN framework, consisting of magni-

tude and phase branches. The gNB further contains a combining network to estimate
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the full CSI based on results from magnitude and phase decoders. We optimize en-

coders, decoders, and combining network jointly by minimizing a single loss function

for end-to-end learning during offline training. Note that the magnitude branch can

be independently optimized. For ease of convergence [37], the training of the DLN

has two stages. In stage-1, the CSI magnitude encoder/decoder branch is pre-trained

for magnitude recovery. In stage-2, both the CSI phase branch and the combining

network are optimized with the help of the magnitude branch, while the parameters of

the magnitude branch are fixed.

3.1.1 DualNet-MP

We now present a new DLN called DualNet-MP. As shown in Figure 3.2, DualNet-MP

splits each complex CSI matrix into

H = |H| ⊙ ej∡H,

where ⊙ represents Hadamard product. Denote the (m,n)-th entry of H as Hm,n =

|Hm,n|ej∡Hm,n . The magnitude matrix |H| and consists of entries |Hm,n| and phase

matrix ej∡H consists of entries ej∡Hm,n .

Similar to [12], we forward the CSI magnitudes to the magnitude encoder network,

including four 7 × 7 circular convolutional layers with 16, 8, 4, and 1 channels and

activation functions. Given the circular characteristic of CSI matrices, we introduce

circular convolutional layers to replace the traditional linear ones. Subsequently, a

fully connected (FC) layer with ⌈CRMAGQtNb⌉ elements is connected for dimension

reduction after reshaping. CRMAG denotes the magnitude compression ratio. The

output of the FC layer is then fed into the quantization module, called the sum-of-

sigmoid (SSQ) [12] to generate magnitude codewords for feedback.

At the gNB, a magnitude decoder uses received magnitude codewords and locally
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available UL CSI magnitudes1 as AMI to jointly decode the DL CSI magnitudes. The

magnitude branch is first optimized by updating the network parameters ΘMAG

argmin
Θen,MAG,Θde,MAG

{
∥|Ĥ| − |H|∥2F

}
(3.1)

to minimize the MSE of recovered MIMO CSI magnitude

|Ĥ| = fde,MAG(fen,MAG(|H|,Θen,MAG),Θde,MAG,HUL), (3.2)

in which subscripts en, de, UL, and MAG of the f(·) denote the encoder, decoder, UL,

and magnitude branch, respectively. Additionally, Θ denotes DLN parameters.

For CSI recovery of MIMO channels, we are only interested in their wrapped phases

(i.e., ∡H). There is 1-to-1 relationship between a phase value ϕ and (cos(ϕ), sign[sin(ϕ)]).

For these reasons, we propose to form a ”cosine” matrix whose entries are cosines of

entries from H denoted by

Cos = cos(∡H). (3.3a)

Denote entry Am,n = sign[sin[∡(Hm,n)]]. We further form a sign matrix

A = [Am,n] . (3.3b)

Thus (Cos,A) uniquely determines ∡H.

Since Cos matrix is real, we can adopt a phase encoder similar to the magnitude

encoder. Let CRPHA denotes the phase compression ratio. Each Cos generates a

⌈CRPHAQtNb⌉-element codeword. Our DLN uses tanh activation function in each

circular convolutional layer of the phase encoder to capture the underlying features

of significant phases associated with large magnitudes. Upon completion of encoder

training, the UE processes each CSI H, and feeds back the CSI magnitude codeword

fen,MAG(|H|,Θen,MAG), the phase codeword fen,PHA(Cos,Θen,PHA) and the sign matrix

A to gNB.

At the gNB receiver, the phase codeword fen,PHA(Cos,Θen,PHA) and the feedback

1UL CSI is estimated at the gNB and assumed to be perfectly estimated.
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sign matrix A are sent to the phase decoder with the tanh activation function as

the last layer to constrain the entries of DL CSI cosine matrix Ĉos within [−1, 1].

The magnitude codeword and side information are used by the magnitude decoder to

obtain an estimated CSI magnitude matrix |Ĥ|. Based on the relationship sin(ϕ) =

sign(sin[ϕ])
√

1− cos2(ϕ), we form

Ŝin = A⊙ (1− Ĉos⊙ Ĉos)1/2.

Therefore, we can directly generate a preliminary CSI estimate

Ĥ =
[
|Ĥ| ⊙ Ĉos, |Ĥ| ⊙ Ŝin

]

from locally available Ĉos, A, |̂H|. The combining network is trainable and can include

two residual blocks containing four circular convolutional layers to refine the DL CSI

matrix.

For end-to-end optimization, we apply the following training criterion herein

minimize
Θen,PHA,Θde,PHA,ΘC

{
||Ĥ−H||2F

}
, (3.4)

to optimize the parameters Θen,PHA of phase encoder fen,PHA and parameters Θde,PHA

of phase decoder fen,PHA to generate an estimate

Ĉos = fde,PHA(fen,PHA(Cos,Θen,PHA),Θde,PHA). (3.5)

Using the same loss function (3.4), we also train the combining network fC by opti-

mizing parameters ΘC to generate

Ĥ = fC(|Ĥ|, Ĉos,A,ΘC). (3.6)

Since the training of the magnitude learning branch can be decoupled, our framework

optimizes the entire architecture by minimizing the overall CSI MSE of (3.4). It is

possible, however, to also partially incorporate the MSE of (3.4) to further refine the
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magnitude DLN branch by adopting a slower learning rate.

3.1.2 Loss Function Redesign

Considering the MSE loss function, it may be intuitive to simply rewrite the loss

function as follows:

MSE0 = MSECSI(|̂H|,∡Ĥ) = ∥H− Ĥ∥2F

= ∥|H| ⊙ cos(∡H)− |Ĥ| ⊙ cos(∡Ĥ)∥
2

F

+ ∥|H| ⊙ sin(∡H)− |Ĥ| ⊙ sin(∡Ĥ)∥
2

F.

(3.7)

This means that |H| and ∡H are used as encoder network input variables whereas

their estimates are the decoder network output variables. However, the presence of

infinitely many and shallow local minima of sinusoidal functions sin(·) and cos(·) often

lead to training difficulties [38]. To overcome this problem, the authors in [18] recently

proposed a weighted MDPP loss function

MSEMDPP = ∥|∡H− ∡Ĥ|⊙|H|∥2F (3.8)

which still uses |H| and ∡H as input and output variables. where ∡H and ∡Ĥ denote

the true and estimated phases, respectively. By weighting the original phase discrep-

ancy with the true CSI magnitude, this new loss function helps capture the underlying

features of the critical phases associated with CSI coefficents with dominant magni-

tudes. However, the loss function is not equivalent to our final goal for minimizing

MSE of DL CSI. We now propose a reparamterization of the same MSE loss function

during training. Instead of changing the loss function, we can overcome the training

problem of directly parameterization in Eq. (3.7). Instead, recognizing that only the

wrapped phases of ∡H are of interest, we replace ∡H with Cos and A via the following
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reparameterization:

MSESMAPE(|̂H|, Ĉos,A) = ∥H− Ĥ∥2F (3.9)

= ∥|H| ⊙Cos− |Ĥ| ⊙ Ĉos∥2F

+ ∥|H| ⊙ Sin− |Ĥ| ⊙ Ŝin∥2F,

where we have used the sign matrix A feedback to generate

Sin = A⊙ (1−Cos⊙Cos)1/2 (3.10a)

Ŝin = A⊙ (1− Ĉos⊙ Ĉos)1/2. (3.10b)

This formulation saves about half the bandwidth by sending the sign matrix A without

encoding matrix Sin.

Moreover, the sparsity of H means that we only need to feed back partial entries

of A associated with a swath of entries with dominant magnitudes. If we define a

reduction ratio Rs to further reduce feedback overhead2. The total phase feedback

overhead (in bits) is summarized as follows:

BSMAPE = CRPHA(KPHANtNb +RsNtNb)(bits), (3.11)

where KPHA denotes the number of encoding bits for each entry of the compressed

cosine matrix fen,PHA(Cos,Θen,PHA).

To summarize our training strategy of DualNet-MP, we use Eq. (3.1) as the loss

function during the first training stage. In the second training stage, we used Eqs.

(3.9) as the loss function to build an end-to-end learning architecture.

2Usually, the reconstruction performance can remain approximately the same even if the sign ratio
Rs is less than 0.25 due to the sparsity.
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3.2 Experimental Evaluations

3.2.1 Experiment Setup

In our experiments, we let the UL and DL bandwidths be 20 MHz and the subcarrier

number be Nf = 1024. We consider both indoor and outdoor cases. We place the gNB

with a height of 20 m at the center of a circular cell coverage with a radius of 20 m for

indoor and 200 m for outdoor. The number of gNB ULA antennas is Nb = 32 whereas

each UE has a single antenna. A half-wavelength inter-antenna spacing is considered.

For each trained model, the number of epochs and batch size were set to 1,000 and 200,

respectively. We generate two datasets consisting of 100,000 random channels for both

indoor and outdoor cases from two different channel models. 60,000 and 20,000 random

channels are for training and validation. The remaining 20,000 random channels are

test data for performance evaluation.

In the first dataset (indoor), we used the industry-model COST 2100 [39] to gen-

erate indoor channels at 5.1-GHz UL and 5.3-GHz DL. We generate a second dataset

(outdoor) using the QuaDRiGa method, described in 3GPP TR 38.901 [40]. For the

outdoor dataset, We consider the urban microcell (UMi) scenario at 2 and 2.1 GHz

of UL and DL bands, respectively, without line-of-sight (LOS) paths. The number of

cluster paths was set as 13. For more detailed data generation settings, please refer to

the preprint version [37]

In the following section, we evaluate the performance of CSI recovery by adopting

the proposed optimization method and encoder/decoder architecture. Thus, we trained

DualNet-MP with the same core network design for magnitude recovery. However, we

test different methods to reconstruct the CSI phases for two phase compression ratios

of CRPHA = 1/8 and 1/16 3:

• SMAPE: the network architecture follows DualNet-MP. The sign ratio Rs varies

3All alternate approaches consume 1.2 and 0.625 bits/phase entry
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between [0.25, 0.125] and we use KPHA = 8 bits for both CRPHA = {1/8, 1/16}.

• MDPQ [13]: the design assigns [0, 0, 0, 3, 7] and [0, 0, 0, 0, 5] bits for CRPHA =

[1/8, 1/16], respectively, to encode the CSI phases corresponding to [0, 0.5, 0.7, 0.8, 0.9]

of the cumulative distribution of CSI magnitude.

• MSE0: instead of cosine, CSI phases are fed directly to the phase encoder. Both

cosine and sine functions are appended as the final layer of the phase decoder.

The loss function for phase reconstruction is given by Eq.(3.7). We set KPHA to

8 bits.

• MDPP [18]: we reuse the loss function Eq.(3.8) with the same network architec-

ture. We set KPHA to 10 bits.

Detailed setting about the alternatives can be found in [37].

3.2.2 Different Phase Compression Designs

To demonstrate the superiority of the proposed SMAPE loss function, we applied

different phase reconstruction approaches to DualNet-MP for different phase compres-

sion ratios CRPHA. Figures 3.3 (a) and (b) show the NMSE performance of different

approaches under indoor and outdoor scenarios, respectively, at different compression

ratios. As expected, DaulNet-MP encounters training difficulties when using the simple

loss function MSE0. By adopting MDPP loss functions, DualNet-MP performs much

better than the simple loss function Loss0. Although DualNet-MP appears to be better

when using MDPQ instead of MDPP, encoding bit-assignment require careful tuning

to achieve a satisfactory result. Finally, DualNet-MP based on the proposed SMAPE

loss function achieves 4-dB performance improvement in terms of NMSE reduction for

CRPHA=1/8 at outdoor and 7-dB improvement for CRPHA=1/8 at outdoor.
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3.2.3 Different Core Layer Designs

To investigate the appropriate core layer designs of DualNet-MP in order to efficiently

extract the underlying features of CSI phases, we provide a performance evaluation

using FC, linear convolutional, and circular convolutional layers, respectively, for the

core network. Denoted respectively as DNN, CNN and C-CNN, these networks adopted

SSQ [12] and binary-level quantization (BLQ) as the quantization module at the en-

coder. Denote that the DNN design follows the recent work [18]. CNN and C-CNN

design follow the DualNet-MP without and with utilization of circular convolutional

layers, respectively. We consider the phase compression ratio of CRPHA = 1/8. For

SSQ, we assign KPHA = 8 bits for each codeword. That is, there are CRPHAQtNb = 128

8-bit codewords sent to the gNB. In contrast, there are KPHACRPHAQtNb = 1024 1-bit

codewords when applying BLQ.

Figures 3.4.(a) and (b) show the NMSE performance for the considered core layer

designs. For both indoor and outdoor scenarios, DualNet-MP demonstrates superiority

when adopting SSQ and C-CNN, which can be attributed to two possible reasons.

Firstly, unlike BLQ, SSQ is differentiable such that it is easier to train. Secondly, there

are many structural and circular features of CSI phases in the angle-delay domain that

can be extracted better with the proposed structural changes.

In terms of storage and complexity of the proposed architecture, we note that C-

CNN with only 826K parameters is considerably simpler than DNN requiring 11.6M

parameters, whereas required floating point operations are comparable. As a result,

we find the proposed new DualNet-MP architecture that combines SSQ and C-CNN

delivers both performance advantages and cost benefits.
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3.3 Conclusions

This work presents a new deep-learning framework for large scale CSI estimation that

leverages feedback compression and auxiliary CSI magnitude information in FDD sys-

tems. Utilizing strong domain knowledge in deep-learning for CSI estimation to over-

come known training issues, our new framework provides a novel loss function to enable

efficient end-to-end learning and improves CSI recovery performance. We further ex-

ploit the circular characteristics of the underlying CSI in DA domain to propose an

innovative circular convolution neural network (C-CNN). Our test results reveal sig-

nificant improvement of overall CSI recovery performance for both indoor and outdoor

scenarios and complexity reduction in comparison with a number of published alterna-

tive deep-learning compression designs for MIMO CSI feedback.
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Figure 3.2: Network architecture of DualNet-MAG-PHA.
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Figure 3.3: NMSE performance for different loss functions in (a) indoor and (b) outdoor
scenarios.

Figure 3.4: NMSE performance for different core layer designs in (a) indoor and (b)
outdoor scenarios.
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Chapter 4

Exploiting Partial FDD Reciprocity

for Beam Based Pilot Precoding

and CSI Feedback in Deep Learning

Massive MIMO systems can achieve high spectrum and energy efficiency in DL based

on accurate estimate of CSI. Existing works have developed learning-based DL CSI

estimation that lowers UL feedback overhead. One often overlooked problem is the

limited number of DL pilots available for CSI estimation. One proposed solution lever-

ages temporal CSI coherence by utilizing past CSI estimates and only sending CSI-RS

for partial arrays to preserve CSI recovery performance. Exploiting CSI correlations,

FDD channel reciprocity is helpful to base stations with direct access to UL CSI. In

this work, we propose a new learning-based feedback architecture and a reconfigurable

CSI-RS placement scheme to reduce DL CSI training overhead and to improve encoding

efficiency of CSI feedback.

In this chapter, we first describe a beam-space (BS) precoding and CSI feedback

scheme for pilot reduction in Section 4.1. In Section 4.2, we proposed a neural network,

BSdualNet0, to recover low-dimensional BS CSIs according to inter-beam correlation.
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Then, we further formulate a criterion to find the optimal beam merging matrix for

compact representation of DL CSIs and the approximation mapping function to re-

cover full DL CSIs. In Section 4.3, we propose two neural networks, BSdualNet and

BSdualNet-MN, to find the beam merging matrix and the approximation function. In

Section 4.4, to further reduce DL CSI training and UL feedback overhead, we pro-

pose a CSI feedback framework with a reconfigurable CSI-RS placement by exploiting

the sparsity and smoothness in beam and frequency domains, respectively. In Section

4.5, the numerical results demonstrate the proposed frameworks provide better CSI

recovery performance while maintaining a descent complexity and storage requirement

advantages under different compression ratios.

4.1 BS Precoding for CSI-RS Reduction

In FDD systems, UEs estimate DL CSIs and feedback to the serving base station after

quantization. Then, gNB recovers the DL CSI based on the feedback. For brevity, we

use h̃DL and ĥDL in the following section to represent the estimated CSI obtained at

UE and gNB, respectively. Focusing on a specific UE, the DL subband consists of κ

RBs within the bandwidth for CSI-RS placement. We assume channels within an RB

to be under slow, flat and block fading. As shown in Figure 4.1, there are Nf × NO

time-frequency REs in a specific RB (Nf subcarriers and NO OFDM symbols). Since

the same processing procedures are applied for every RB, without loss of generality,

we only discuss the processing in a single RB in this section.

4.1.1 DL CSI recovery

Given that the gNB assigns L = Nb REs for DL CSI training for Nb antennas, the

received signal vector yDL ∈ CNb×1 at UE can be expressed as

yDL = SDL,Nb
· hDL + nDL, (4.1)
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Figure 4.1: Resource block configuration. There are Nf ×NO time-frequency REs in a
RB (Nf subcarriers and NO OFDM symbols). Pilots are allowed to be placed at those
REs in designated region (surrounded by the black frame). There are L = 16 available
REs for pilot placement in this illustration.

where hDL = vec(HDL) ∈ CNb×1 denotes the DL CSI vector whereas SDL,Nb
= diag(sDL) ∈

CNb×Nb denotes the CSI-RS training symbol matrix which is diagonal matrix with di-

agonal entries of training symbols s
(n)
DL ̸= 0, n = 1, ..., Nb. nDL ∈ CNb×1 denotes the

additive noise. HDL ∈ CNH×NV denotes the DL CSI matrix before reshaping. With

the assumption of perfect channel estimation, from known training symbols in SDL,Nb
,

the UE can estimate its DL CSI for feedback to gNB via h̃DL ≈ hDL.

4.1.2 Single-beam BS Precoding and DL CSI recovery

Existing wireless systems [23, 41] have applied beamforming/precoding techniques to

CSI-RS symbols for beam selection, DL CSI estimation, or resistance to attenuation in

high frequencies. According to [42], we can find Nb orthogonal beams to construct an

unitary “orthogonal beam matrix (OBM)” B = [b(1) b(2) ... b(Nb)]. As shown in Figure

4.2.A, applying the OBM to the CSI-RS matrix SDL,Nb
in the digital beamforming

module, the UE receives signals at different REs:

yDL = SDL,Nb
BThDL + nDL. (4.2)
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Figure 4.2: Signal processing flow for BS precoding

From the orthogonality of the OBM, DL CSI can be reconstructed at the gNB from the

BS quantized UE feedback ḡB = Q(h̃BS,DL ≈ BThDL) ∈ CNb via ĥDL = B∗ḡB ∈ CNb

where Q(·) denotes a differentiable quantizer. More details about Q(·) can be found in

[12].

Given the angular sparsity of DL CSIs, especially for DL CSIs in LOS scenarios, the

beam space (BS) DL CSI hBS,DL(= BThDL) can be assumed as a L-sparse vector and

thus DL CSI hDL can be approximated according to the most significant L (L < Nb)

beams as follows:

ĥDL = B∗
SḡB,S (4.3)

where BS ∈ CNb×L and ḡB,S ∈ CL×1 respectively denote the significant beam matrix

consisting of the steering vectors of the most significant L orthogonal beams, and the

corresponding quantized beam responses1. Relying on L significant beams, the gNB

only need to assign L (< Nb) REs for CSI-RS in DL to reduce UL feedback. We denote

the heuristic DL CSI approximation approaches as BS-DL and BS-UL when using DL

CSI and UL CSI to obtain the significant beam matrix BS, respectively. Note that

BS-DL is an ideal approach with the assumption that we already have perfect DL CSI.

Typically, the S significant beams could be found through beam training or direction

1According to [43], in propagation channels with low angular spread, only few significant beams
contribute to most DL CSI energy in beam domain. This is also shown in Table 4.1
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finding [43,44] by utilizing additional bandwidth and power resources. Fortunately, the

FDD UL/DL reciprocity in magnitudes of angular CSI [13] can help gNB implement

this beam selection process by relying the available UL CSI at gNB.

4.1.3 Single-beam Precoding and AI-aided DL CSI Recovery

To find the optimal serving beam in the beam management task, the work [43] ef-

ficiently derived a fine-resolution beam response map by only scanning few ”eigen-

beams” with the help of deep-learning network according to the correlation between

vertically and horizontally adjacent beam responses. Reference [43] shows that it is

possible to recover the full BS CSI via few significant beam responses. Equally impor-

tant is the fact that UL CSI magnitudes are highly correlated to DL CSI magnitude in

beam space so that gNB can find significant DL beams based on locally available UL

CSIs.

Leveraging these insights, we first develop a heuristic CSI feedback framework,

BSdualNet0. As shown in Figure 3, the BSdualNet0 consists of three phases:

• UL-CSI aided significant beam selection: the gNB selects L beams con-

taining the largest UL beam response magnitudes (i.e., |HBS,UL|) as significant

beams. Next, the gNB applies the L significant beams to training symbols on L

REs for CSI-RS transmission to UEs. We denote the index set of these beams as

ΩB.

• Beam response feedback: the UE estimates the beam responses h̃BS,DL via well

known channel estimation methods for direct encoding and feedback quantized

beam responses ḡFB to the gNB.

• Beam response refinement: the gNB first generates a sparse mapM filled with

quantized beam responses ḡFB and zeros as initial BS DL CSI estimate according

to the index set of the selected beams ΩB. The sparse map M and local UL
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Figure 4.3: Illustration of BSdualNet0. In this illustration, we consider a gNB equipped
with an 8× 4 UPA communicating with a single-antenna UE. The number of REs, L,
is set to 8. This means that 8 significant beams are chosen according to BS UL CSI
|HUL| for precoding the CSI-RS and recorded in a chosen beam index set ΩB. The UE

obtains the BS DL CSI estimate h̃BS,DL and feeds it back to the serving gNB after CSI
quantization. Next, the gNB forms a sparse map M according to the beam response
feedback ḡFB and the chosen beam index set ΩB, and recovers the full BS DL CSI
according to the sparse map M and BS UL CSI magnitudes |HUL|.

CSI magnitudes |HUL| form inputs to a deep learning network for estimating the

missing elements in the sparse map for DL CSI refinement. The CNN generates

refined DL beam domain CSI ĤDL.

In this BS DL CSI recovery framework, the gNB assigns L orthogonal beams to L

REs and recovers the full BS DL CSI based on the feedback of the L beam responses

from UEs via correlation between adjacent beam responses.

4.1.4 Fuzzy-beam Precoding and AI-aided DL CSI Recovery

We also develop a BS DL CSI recovery framework which assigns all orthogonal beams

to L REs (L < Nb). Instead of utilizing a single beam for each RE (Figure 4.2.A), as

shown in Figure 4.2.B, a combination of weighted beams is applied. Let us denote an
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L×Nb beam merging matrix

T =



tT1

tT2
...

tTL


∈ CL×Nb , ti =


t1,i
...

tNb,i

 . (4.4)

The received signal vector at UE is expressed as

yDL =



∑Nb

i=1 ti,1h
T
DLb

(i)s
(1)
DL∑Nb−1

i=0 ti,2h
T
DLb

(i)s
(2)
DL

...∑Nb−1
i=0 ti,Lh

T
DLb

(i)s
(L)
DL


+ nDL =



hT
DLBt∗1s

(1)
DL

hT
DLBt∗2s

(2)
DL

...

hT
DLBt∗Ls

(L)
DL


+ nDL

= SDL,LTBThDL + nDL = SDL,LThBS,DL + nDL,

(4.5)

where T is used to reduce the required REs and to find a compact representation

of DL CSI. hBS,DL = BThDL denotes the DL CSI vector in beam domain. Since the

recovery loss mainly attributes to the quantization and compression error instead of CSI

estimation discrepancy, we adopt a common assumption without loss of generality in

our benchmarks [5,9,14,17] that UEs provide perfect channel estimation for simplicity.

The raw and quantized response vectors of the merged beam responses are denoted by

gFB = ThBS,DL and ḡFB = Q(gFB), respectively.

Our goal is to find a beam merging matrix T ∈ CNb×L and a mapping function fre

for recovering the DL CSI based on the quantized feedback vector via the principle of

arg min
T,Ωre

||B∗fre(Q(ThBS,DL))− hDL||22 (4.6)

where Ωre denotes the deep learning model parameters to be optimized. Following this

principle, the detailed design and architecture of an UL CSI-aided feedback framework
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for DL CSI estimation will follow in the next section. Since the encoding function

Q(·)[12] and each layer of the combining network are differentiable, the deep model

parameters Ωre can be optimized through backpropagation.

4.2 Encoder-Free CSI Feedback with UL CSI As-

sistance

In last section, to optimize the CSI recovery discrepancy, an efficient beam merging

matrix and a recovery mapping function need to be found. In this section, we start

with the general architecture of the two proposed frameworks (BSdualNet, BSdualNet-

MN ) which characterize different designs of the mapping function fre. Both exploit

UL/DL reciprocity to design the beam merging matrix T for dimension reduction

but utilize different recovery schemes. Next we introduce detailed learning model

objectives and design principle. Note that, existing learning-based frameworks often

treat CSI compression as a black box with the help of DNN encoders deployed on the

UEs, thereby imposing heavy memory and computation burden on low cost UEs. In

fact, they require an even more complex DNN decoder to resolve the low-dimensional

feedback. Instead, our new framework unloads CSI compression efforts of UEs by

utilizing available beamforming hardware at gNB to lowers the required REs for CSI-

RS of DL MIMO channels and reduces UL feedback overhead.

4.2.1 General Architecture

Consider a wireless communication system with L REs assigned in each RB for CSI-

RS placement. For CSI feedback reduction, we first design a beam merging matrix T

to match Nb orthogonal beams with different weights to the L REs that carry CSI-

RS. We use a beam merging network that use UL CSI magnitudes in beam domain

as inputs. Owing to the high correlation between magnitudes of UL and DL CSIs in
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beam domain, the beam merging network learn to assign suitable weights to orthogonal

beams according to the corresponding BS UL CSI magnitudes |BThUL| that are locally

available at gNB.

Next, we apply the beam merging matrixT to L CSI-RS symbols on the L REs. The

linear mapping matrix T instead of a general or non-linear mapping function f : CNb −→

CL for pilot dimension reduction provides the advantage of simpler implementation

and easier decoupling of CSI-RS symbols. Consequently, the effective channels at UEs

after CSI estimation would be the weighted sum of beam responses as estimate of the

full CSI at downlink. Obtaining effective channels, the UE simply quantizes and feeds

back the channel information to the gNB. The gNB recovers DL CSI by sending the

quantized feedback and the known beam merging matrix T into the proposed deep

learning decoder network. For simplicity, Figure 4.4 shows the general architecture

of the proposed CSI feedback framework for a single UE, though the same principle

applies for multiple UEs.

Unlike previous works, our new framework does not require any encoder at UE to

store and compress full DL CSI. This is beneficial to UE devices with limited com-

putation, storage, and/or power resources. Moreover, we reduce the DL overhead of

CSI-RS and provide higher spectrum efficiency while previous frameworks require REs

proportional to its transmit antennas. The number of required REs for DL CSI train-

ing in our framework heavily depends on the sparsity in beam domain. Since the beam

sparsity increases with larger array, this would bring more benefits in reducing DL CSI

overhead when considering a large-scale transmit antenna array.

4.2.2 BSdualNet

Figure 4.5 shows the proposed CSI feedback framework, BSdualNet, in multi-user

scenarios (i.e., N UEs). BSdualNet consists of three learning networks at gNB which

serve on distinct objectives:
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Figure 4.4: General architecture of the proposed BS CSI feedback framework. (Each of
the small grids is a RE. The region covered by the bold black frame is the designated
place for RS replacement. Thus, in this example, the available number of REs, L, is
16.)

• Beam merging network: it designs an matrix T which is applied to DL CSI

training for reducing the required REs and UL feedback overhead while maintain-

ing accurate CSI recovery. With the aids of partial FDD UL/DL reciprocity, the

beam merging matrix T transforms effective BS CSI at UEs into a compressive

representation.

• Recovery network: it estimates the full BS CSI according to the quantized

estimated beam responses from UEs.

• Combing network: it refines the magnitudes of DL BS CSI by using the known

magnitudes of UL BS CSI based on partial FDD UL/DL reciprocity.

As shown in Figure 4.6, we aggregate and reshape the magnitudes of BS UL

CSIs of each UE H
(i)
BS,UL ∈ CNH×NV = reshape(h

(i)
BS,UL), i = 1, ..., N , into a tensor

|HBS,UL| ∈ CNH×NV ×N , which is sent to the beam merging network at gNB. The beam

merging deep learning network (Figure 4.6) consists of four 3×3 circular convolutional

layers with 16, 8, 4, and 2 channels, respectively, to learn the importance of different
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Figure 4.5: Block Diagram of BSdualNet. gNB designs beam merging matrix T via the
beam merging network, fbm, according to locally available UL CSIs H

(i)
BS,UL, i = 1, ..., N

of N UEs and apply it to DL CSI estimation. UE estimates its effective BS CSI g
(i)
FB

and feed it back to gNB after quantization. The gNB first obtains initial estimate of
full BS DL CSI Ĥ

(i)
BS,DL,ini by the recovery network fre according to the quantized BS

CSI. Then, it is refined as the final BS DL CSI Ĥ
(i)
BS,DL via the combing network fc

with the knowledge of BS UL CSI magnitudes.
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Figure 4.6: Network design of BSdualNet.

orthogonal beams according to the spatial structures of UL beam domain CSI mag-

nitudes. Given the circular characteristic of BS CSI matrices, we introduce circular

convolutional layers to replace traditional convolution. Subsequently, a fully connected

(FC) layer with 2NbL elements is included to generate desired dimension after reshap-

ing (Recall that T is a complex matrix with size of Nb × L). After CSI estimation at

UEs, the gNB receives the N copies of quantized feedbacks from N UEs and obtains

quantized feedbacks ḡ
(i)
FB ∈ C2L, i = 1, 2, . . . , N .

Now we focus on the network at gNB. For the i-th UE, we forward the received

feedback ḡ
(i)
FB to a FC layer with 2Nb elements. After reshaping the feedback data

into a matrix of size NH × NV × 2, we use four 3 × 3 circular convolutional layers

with 16, 8, 4, and 2 channels and activation functions to generate initial BS DL CSI

estimate Ĥ
(i)
BS,DL,ini = fre(ḡ

(i)
FB) ∈ CNH×NV . Next, the gNB forwards the initial BS

DL CSI estimate Ĥ
(i)
BS,DL,ini together with the corresponding BS UL CSI magnitudes
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|H(i)
BS,UL| to the combining network for final DL CSI estimation Ĥ

(i)
BS,DL. The combining

network fc uses NB residual blocks, each block contains the same design of circular

convolutional layers and activation functions as the network for DL CSI recovery.

Since all layers and quantization function are differentiable, the BSdualNet is op-

timized via backpropagation and gradient descent to update the network parameters

Θbm, Θre and Θc of non-linear beam merging, recovery, and combining networks fbm,

fre and fc:

argmin
Θbm,Θre,Θc

{
N−1∑
i=0

||ĥ(i)
BS,DL − h

(i)
BS,DL||

2
2

}
, (4.7)

where ĥ
(i)
BS,DL = vec(Ĥ

(i)
BS,DL) and h

(i)
BS,DL = vec(H

(i)
BS,DL) denote the vectorized estimated

and original BS DL CSIs where Ĥ
(i)
BS,DL = fc(fre(ḡ

(i)
FB), |H

(i)
BS,UL|). ḡ

(i)
FB = Q(Th

(i)
BS,DL)

denotes the quantized BS DL CSI and the beam merging matrix is given by T =

fbm(|H(1)
BS,UL|, |H

(2)
BS,UL|, ..., |H

(N)
BS,UL|). Note that the superscript (i) denotes the UE in-

dex. H
(i)
BS,DL and H

(i)
BS,UL ∈ CNH×NV denote original BS DL and UL CSIs at the i-th

UE.

4.2.3 BSdualNet-MN

In BSdualNet, the beam merging network provides a beam merging matrix T to gen-

erate an efficient representation of the convoluted responses of all orthogonal beams.

Although T is optimized for the ease of decoupling individual beam responses, the

decoder remains a blackbox such that the information within T may not be fully ex-

ploited due to its indirect use. In this section, we would redesign the decoder by directly

using the beam merging matrix T to achieve better architectural interpretability and

performance improvement.

Unlike the previous works that split the deployment of CSI encoder and decoder at

UEs and gNB, respectively, our gNB knows the exact encoding and decoding processes

in our framework. Thus, we can exploit the locally known beam merging matrix T to
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decode the feedback more efficiently. To this end, we reformulate the problem of DL

CSI recovery for ĥ
(i)
BS,DL, i = 0, ..., N − 1 by seeking a minimum-norm solution to an

under-determined linear system

y
(i)
DL = Th

(i)
BS,DL + n

(i)
DL, i = 0, ..., N − 1.

As seen from Figure 4.7, the output of the recovery network can be expressed as follows:

fre(ḡ
(i)
FB) = TH(TTH)−1ḡ

(i)
FB, (4.8)

Clearly, the minimum norm solution depends on matrix T. Assuming perfect quanti-

zation and zero noise, we can approximate the decoder (See Appendix) of Eq. (4.8)

as

fre(g̃
(i)
FB) = ĥ

(i)
BS,DL ≈ TH(TTH)−1Th

(i)
BS,DL,

=
L∑
i=1

viv
H
i︸ ︷︷ ︸

Ĩ

h
(i)
BS,DL = Ĩ · h(i)

BS,DL,
(4.9)

where vi, i = 1, 2, . . . , Nb are right singular vectors of T. Since Trace(̃I) = L, h
(i)
BS,DL

cannot be fully recovered by only relying on the diagonal entries of Ĩ. If strong spatial

correlation exists in the beam domain, we will need a recovery matrix Ĩ with larger

off-diagonal entries, representing the correlation between beams. Given the FDD

UL/DL reciprocity in beam domain, by capturing the correlation between adjacent

beam response magnitudes of UL CSI, it would be more reasonable to define a merging

matrixT which contains well-behaved right singular vectors such that
∑N−1

i=0 ||̃Ih
(i)
BS,DL−

h
(i)
BS,DL||22 can be minimized.

With the same design of the beam merging network in BSdualNet, the recovery net-

work in BSdualNet-MN simply includes a series of matrix products. Thus, BSdualNet-

MN is not only more interpretable, its computational complexity and required model
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Figure 4.7: Block Diagram of BSdualNet-MN. The decoder design of BSdualNet-MN
is different from BSdualNet. It directly applies the beam merging matrix T to recover
full BS DL CSI Ĥ

(i)
BS,DL.

memory are also lower.

4.3 UL CSI Aided Beam Based Precoding and a

Reconfigurable CSI Feedback Frameworks

Generally, the aforementioned methods perform better with high sparsity CSI in beam

domain. Yet, such spatial sparsity may not hold for CSI of every propagation channels.

For example, indoor propagation channels tend to exhibit rich multi-paths with high

angular spreads. This could lessen spatial sparsity and degrade recovery accuracy

of DL CSI. Interestingly, however, such channels are alternatively characterized by

large coherence bandwidth because of the dominance of low-delay paths dominate[45].

This means that for such channels, it is not necessary to have high CSI-RS density in

frequency domain.

In this section, a reconfigurable CSI feedback framework will be described as a
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more flexible solution to reduce the number of pilots by selecting frequency reduction

(FR) and beam reduction (BR) ratios. Instead of regarding feedback of each RB

independently, as discussed in the signal model of Section II, we exploit the large

coherence bandwidth and consider a joint UL feedback for a total of K RBs. By

leveraging spectral coherence, we can further reduce the UL feedback overhead by

applying an autoencoder network. In what follows, we elaborate on the reconfiguration

of CSI-RS placement and the design of a learning-based CSI feedback framework,

BSdualNet-FR.

4.3.1 Frequency Resource Reconfiguration

In modern wireless protocols, there are designated resource regions for CSI-RS place-

ment [23]. Compatible with existing RS configurations, we can reduce the CSI-RS

placement density along the frequency domain by a frequency reduction factor FR by

placing pilots only at RB indices k = 1, 1 + FR, 1 + 2FR, ..., 1 + (K/FR − 1)FR as

shown in Figure 4.8. We can also further reduce the required REs by a beam reduc-

tion factor of BR(= round(Nb/L)) by applying beam merging matrix T designed by

using a three-dimensional (3-D) beam merging network with 3-D convolutional kernels

as shown in Figures 4.9 and 4.10. Jointly, the total REs for CSI-RS placement can

be reduced by a factor of BR · FR. Thus, the total number of pilot REs becomes

NbK/(BR · FR)2.

The DL received signal vector y
(i,k)
DL ∈ CL×1 at the i-th UE in the k-th RB can be

expressed as

y
(i,k)
DL = S

(k)
DL,LTh

(i,k)
BS,DL + n

(k)
DL, (4.10)

where the superscript (i, k) denotes the UE and RB indexes, respectively. Following

Section II, UE-i estimates beam response vectors g
(i,k)
FB , k = 1, 1+FR, ..., 1+(K/FR−

2In previous proposed frameworks, the total REs for CSI-RS placement are reduced by a factor of
BR. The total number of pilot REs for K RBs is NbK/BR.
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Figure 4.8: Illustration of pilot placement (a) before and (b) after reduction in fre-
quency domain. Note that the color grids represent the designated REs in one of the
pilot placement configurations defined in 5G specification [23]. The largest allowable L
is 32 and FR can be 1 or 2 in legitimate pilot placement configurations. For example,
FR = 2 means that one of every 2 consecutive RBs in the assigned bandwidth for
CSI-RS is used for pilot placement. In this work, we assume FR can be any positive
integer.

1)FR as a beam response matrix

G
(i)
FB =

[
g
(i,1)
FB ,g

(i,1+FR)
FB , . . . ,g

(i,1+(K/FR−1)FR)
FB

]
∈ CL×K/FR

where the estimates g
(i,k)
FB = Th

(i,k)
BS,DL ∈ CL are based on pilots reduced by FR.

4.3.2 BSdualNet-FR

For further reduction of UL feedback overhead, we compress the beam responses G
(i)
FB

by implementing a frequency compression module (FCM) similar to an autoencoder.

The FCM consists of an encoder at UE and decoder at gNB for CSI compression

and recovery, respectively. The encoder consists of four 3 × 3 circular convolutional

layers with 16, 8, 4 and 2 channels. Subsequently, an FC layer with ⌈2LK/(CR · FR)⌉

elements accounts for dimension reduction by a factor of CReff = BR · FR · CR after
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reshaping. CReff and CR respectively denote the effective and feedback compression

ratios. The FC layer output is sent to a quantization module which uses a trainable

soft quantization function as proposed in [12] to generate feedback codewords.

At the gNB, the codewords from different UEs are forwarded to the FMC decoder

network to recover their respective DL CSIs. The decoder first expands the dimension

of the codewords to their original size of 2NbK. Reshaped into a size of Nb×K × 2, a

codeword enters four 3× 3 circular convolutional layers with 16, 8, 4 and 2 channels to

generate the FCM output. Note that the dimensions in both the frequency and beam

domains are already the same as our target output in this stage. The FCM output

serves as an initial DL CSI estimate Ĥ
(i)
BS,DL,ini ∈ CNb×K which is used to calculate the

first loss.

loss1 =
N−1∑
i=0

||Ĥ(i)
BS,DL,ini −H

(i)
BS,DL||

2
F, (4.11)

H
(i)
BS,DL =

[
h
(i,1)
BS,DL h

(i,2)
BS,DL · · · h

(i,K)
BS,DL

]
(4.12)

Ĥ
(i)
BS,DL,ini = fFMC,de(fFMC,en(G

(i)
FB)). (4.13)

Next, the combining network refines the initial estimate with the help of UL CSI

magnitudes. The combining network first split the magnitude and the phase of the ini-

tial estimate before sending the initial estimate magnitudes and the UL CSI magnitudes

into five residual blocks which are constructed by a shortcut and four circular convo-

lutional layers with 16, 8, 4, 2 and 1 channels and activation functions for magnitude

refinement. From there, the refined magnitudes of DL CSI and their corresponding

phases form the final output Ĥ
(i)
BS,DL ∈ CNb×K to determine the second loss function.

loss2 =
N−1∑
i=0

||Ĥ(i)
BS,DL −H

(i)
BS,DL||

2
F, (4.14)

H
(i)
BS,UL =

[
h
(i,1)
BS,UL h

(i,2)
BS,UL · · · h

(i,K)
BS,UL

]
(4.15)
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Ĥ
(i)
BS,DL = fc(Ĥ

(i)
BS,DL,ini, |H

(i)
BS,UL|), (4.16)

The BSdualNet-FR is optimized by updating the network parameters Θbm, ΘFMC,en,

ΘFMC,de and Θc of the non-linear 3-D beam merging, FMC encoder/decoder, and com-

bining networks fbm, fFMC,en, fFMC,de and fc:

argmin
Θbm,ΘFMC,en,ΘFMC,de,Θc

{α · loss1 + (1− α) · loss2}

where hyperparameter α adjusts the weighting. Note that both loss1 and loss2 are

differentiable.

Note that the deep learning network contains many hyperbolic tangent activation

functions and a soft quantization function which could lead to the gradient vanishing

problem for parameters in those layers. To mitigate this problem, we suggest a two-

stage training scheme for optimizing the proposed framework. In the first stage, we

train the model by setting α = 1 for Nfirst epochs, freezing the combining network and

focusing on finding the best beam merging matrix and encoding/decoding networks.

In the second stage, we change α = 0.1 and focus on refining the final estimates with

the aid of UL CSI magnitudes. Using the elbow method [46], we found that Nfirst = 30

is usually sufficient to obtain a good tradeoff.

4.4 Experimental Evaluations

4.4.1 Experiment Setup

In our numerical test, we consider both indoor and outdoor cases. Using channel model

software, we position a gNB of height equal to 20 m at the center of a circular cell

with a radius of 30 m for indoor and 200 m for outdoor environment. We equip the
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Figure 4.9: Block Diagram of BSdualNet-FR. The gNB designs beam merging matrixT
via the beam merging network, fbm, according to locally available UL CSIs H(i)

BS,UL, i =
1, ..., N of N UEs over K RBs and applies it to DL CSI estimation. The i-th UE
estimates its effective BS CSI G

(i)
FB and feeds it back to gNB after compression by

the FMC encoder, fFCM,en, and quantization. The gNB first obtains initial estimate

Ĥ
(i)
BS,DL,ini of full BS DL CSI by the FCM decoder, fFCM,de, and refines it with the

knowledge of BS UL CSI magnitudes via the combining network fc. Note thatH
(i)
BS,UL ∈

CNb×K = reshape(H(i)
BS,UL ∈ CNH×NV ×K).
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Figure 4.10: Network design of BSdualNet-FR.

gNB with a 8× 4(NH ×NV ) UPA for communication with single-antenna UEs. UPA

elements have half-wavelength uniform spacing. The number of residual blocks in the

combining network is set to NB = 5 throughout.

For our proposed model and other competing models, we set the number of epochs

to 300 and 1500, respectively. We use batch size of 200. For our model, we start with

learning rate of 0.001 before switching to 10−4 after the 100-th epoch. Using channel

simulators, we generate several indoor and outdoor datasets, each containing 100,000

random channels. We use one seventh of these channels as test data for performance

evaluation. The remaining channels are split into 2/3 and 1/3 for training and valida-

tion, respectively. For both indoor and outdoor, we use the QuaDRiGa simulator [40]

using the scenario features given in 3GPP TR 38.901 Indoor and 3GPP TR 38.901

UMa at 5.1-GHz and 5.3-GHz, and 300 and 330 MHz of UL and DL with LOS paths,

respectively. For both scenarios, 1024 subcarriers with a 15K-Hz spacing are considered

for each subband. Here, we assume UEs are capable of perfect channel estimation. We
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set antenna type to omni. We use normalized MSE as the performance metric

1

ND

D∑
d=1

N∑
n=1

||Ĥ(i)
BS,DL,d −H

(i)
BS,DL,d||

2
F||H

(i)
BS,DL,d||

2
F, (4.17)

where the number D and subscript d denote the total number and index of channel

realizations, respectively.

4.4.2 Determining significant beam matrix BS based on DL

and UL CSIs

Figure 4.11 illustrates the recovery performance of DL CSI by determining precoding

matrix BS which consists of the L significant beams selected according to CSI magni-

tudes in UL and DL beam domains, respectively. The modest difference in terms of

CSI estimation error demonstrates the high correlation between CSI magnitudes in UL

and DL beam domains (partial FDD reciprocity). Specifically, the L dominant beams

of UL and DL channels are highly correlated. Good CSI recovery performance requires

sufficient number of beams L or REs for CSI-RS.

To evaluate the beam sparsity for different array geometries, Table I demonstrates

the average numbers and ratios of significant beams to recover 90% of total CSI energy

for UPA with different antenna numbers. We see that larger array and lower angular

spread (outdoor channels) lead to a higher beam sparsity. The proposed framework

exploits beam sparsity to allocate a small number of required REs while maintaining

recovery performance. Namely, more REs are saved for DL CSI training for large-scale

arrays and channels with low angular spread. This shows the practical potential of

such feedback framework in communications systems with large-scale arrays.
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No. of available REs, L

Figure 4.11: Normalized mean square error (NMSE) of the recovered results obtained
by beam selection according to UL/DL CSI magnitudes. (This experiment is based on
simulated outdoor UMa channels generated by QuaDRiGa channel simulator [40].)

Table 4.1: Beam sparsity evaluation for different array geometries. Higher sparsity

means lower ratio of beams required to achieve 90% of total energy.

Indoor

No. of antennas (NH ×NV ) 32 (8× 4) 64 (16× 4) 128 (16× 8) 256 (32× 8)

No. of beams (> 90%) 11.688 19.43 31.45 55.398

Ratio of beams (> 90%) 0.36 0.30 0.25 0.22

Outdoor

No. of antennas (NH ×NV ) 32 (8× 4) 64 (16× 4) 128 (16× 8) 256 (32× 8)

No. of beams (> 90%) 8.23 13.3 18.71 32.9

Ratio of beams (> 90%) 0.26 0.21 0.15 0.13

4.4.3 Testing Different Numbers of Available REs

We evaluate the performance of CSI recovery by adopting the proposed encoder-free

CSI feedback frameworks, BSdualNet0, BSdualNet and BSdualNet-MN. To test the ef-

ficacy without considering quantization, we first compare BSdualNet0 with two heuris-
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tic approaches (denoted as BS-UL and BS-DL) that recover DL CSIs according to L

beam responses where the beams are selected according to the UL and DL CSI magni-

tudes, respectively. Note that BS-UL should serve as the lower bound of BSdualNet0

since BSdualNet0 is equivalent to refine the result of BS-UL with an additional com-

bining network.

Figures 4.12 (a) and (b) provide the NMSE performance for different number of

available REs L in an RB for BSdualNet0, BS-UL and BS-DL in both indoor and

outdoor scenarios, respectively. The results show that BSdualNet0 delivers better per-

formance than BS-UL and also BS-DL in outdoor scenario owing to the high spatial

correlation in beam domain. Because of the high angle spread induced by the more com-

plex multi-path environment in indoor scenarios, the combining network in BSdualNet0

only marginally improve the recovery performance.

Figures 4.13 (a) and (b) illustrate the NMSE performance for different number L

of REs within a RB for BSdualNet0, BSdualNet and BSdualNet-MN for both indoor

and outdoor channels, respectively. We can observe the benefits of the beam merging

matrix T especially in outdoor cases. Furthermore, instead of using a convolution-

layer based combining network, changing the combining function as a minimum-norm

solution yields a significant performance improvement in both indoor and outdoor

scenarios. Since minimum-norm solution directly uses the beam merging matrix T, it

becomes more efficient to decouple the superposition of weighted beam responses by

minimizing the MSE of DL CSIs.

4.4.4 Performance for Different Numbers of UEs

Similar to our beam merging matrix T, measurement matrix in compressive sensing

based frameworks [47, 48] also functions to shrink the dimension of original data and

derive a better representation for their sparsity that can be easier to recover. To

demonstrate the relative performance of the proposed frameworks, we also compare

55



Figure 4.12: NMSE performance of BS-UL, BS-DL, and BSdualNet0 for different REs
L in (a) indoor, (b) outdoor scenarios.

Figure 4.13: NMSE performance of BSdualNet0, BSdualNet, and BSdualNet-MN for
different REs L in (a) indoor, (b) outdoor scenarios.
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with two successful compressive approaches ISTA [47] and ISTA-Net [48]:

• Iterative Shrinkage-Thresholding Algorithm (ISTA): Its regularization

parameter and maximum iteration number are set to 0.5 and 3000, respectively.

• ISTA-Net: The phase and epoch numbers are set to 5 and 1000, respectively.

Figures 4.14 (a) and (b) provide the NMSE performance comparison for different

numbers of UEs N for L = 8 REs in a RB for BSdualNet, BSdualNet-MN, ISTA and

ISTA-Net and under indoor and outdoor scenarios, respectively. From the results, we

observe the clear performance degradation for BSdualNet and BSdualNet-MN as UE

number grows. This is intuitive since it is difficult to find an optimum beam merging

matrix for all active UEs. Fortunately, for most cases, the performance degradation

tends to saturate after the UE number exceeds a certain number typically less than 10

for BSdualNet-MN.

Our tests show that both BSdualNet and BSdualNet-MN deliver better performance

over ISTA and ISTA-Net under different UE numbers. Our heuristic insight is that

measurement matrix in ISTA and ISTA-Net is unknown at recovery whereas the beam

merging matrix is designed by the gNB and can be explicitly utilized by the recovery

decoders of BSdualNet and BSdualNet-MN.

4.4.5 Different CSI-RS Configurations and Compression Ra-

tios

We consider a 5.76 MHz subband (i.e., 32 RBs each of bandwidth 180K-Hz). Each

codeword element uses 8 quantization bits. To comprehensively evaluate BSdualNet-

FR, The two tables in Figure 4.15 and Figure 4.16 provide the NMSE performance

of BSdualNet-FR against different CSI-RS configurations and compression ratios in

outdoor and indoor scenarios, respectively. We apply the same background color on

results with the same pilot and feedback overhead reduction ratios.
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Figure 4.14: NMSE performance for different number of UEs N when L = 8 in (left)
indoor, (right) outdoor scenarios.

Since outdoor channels generally exhibit stronger sparsity and larger delay spread

respectively in beam and delay domains, we observe a slight performance degradation

with BR increase as opposed to FR increase. Importantly, for BR = 4, there is a clear

performance loss even when using the same pilot and feedback overhead reduction

ratio. Despite the channel sparsity, with the use of half-wavelength antenna spacing

(i.e., Nyquist sampling in spatial domain), the overly aggressive compression in beam

domain cause too much information loss to recovery at the gNB. For indoor channels,

we observe a slight performance degradation when increasing FR instead of BR because

of larger angular and shorter delay spread of indoor CSI.

4.4.6 Different Effective Compression Ratio CReff

As benchmarks, we also compare BSdualNet-FR with CsiNet [5], CRNet[9], CsiNet-Pro

[17] and another successful method DualNet-MP [14]. The newly proposed DualNet-

MP also exploits FDD reciprocity by incorporating the UL CSI magnitude as side
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Figure 4.15: NMSE performance of BSdualNet-FR for different CSI-RS placement
configurations in indoor scenarios. (The results with the same effective compression
ratio are denoted as the same color. The best performance at the same effective
compression ratio is denoted by bold fonts with underline.)

Figure 4.16: NMSE performance of BSdualNet-FR for different CSI-RS placement
configurations in outdoor scenarios. (The results with the same effective compression
ratio are denoted as the same color. The best performance at the same effective
compression ratio is denoted by bold fonts with underline.)
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information at CSI decoder of gNB. Table II presents the comparison of NMSE for

CsiNet, CRNet, CsiNet-Pro, DualNet-MP and BSdualNet-FR with different values of

effective compression ratio CReff in indoor and outdoor cases. Benefiting from the

UL CSI magnitudes, both BSdualNet-FR and DualNet-MP can outperform CsiNet,

CRNet and CsiNet-Pro in most cases. Interesting, better utilization of UL CSI by

BSdualNet-FR provides better performance than DualNet-MP. Although the perfor-

mance gain becomes less impressive for higher CReff, it is practically important to note

the additional benefit of the BSdualNet-FR framework in reducing REs for DL CSI-RS

by a factor of BR · FR, which enables gNB to reconfigure the CSI-RS placement to

enhance DL spectrum efficiency.

Table 4.2: NMSE performance of different CSI feedback frameworks at different CReff.
CsiNet CRNet CsiNet-Pro DualNet-MP BSdualNet-FR

CReff Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor

4 -17.1 -11.3 -18.1 -12 -24.2 -13 -27.3 -19.1
-34.6

(FR = 1,
BR = 1)

-19.8
(FR = 1,
BR = 1)

8 -16.7 -10.4 -17.6 -11.8 -20.8 -12.5 -20.9 -16.4
-34.5

(FR = 4,
BR = 1)

-16.5
(FR = 1,
BR = 1)

16 -16.4 -10 -17.3 -10.5 -14.4 -11.8 -20.2 -13.3
-27.2

(FR = 8,
BR = 1)

-13.3
(FR = 1,
BR = 2)

32 -13.4 -8.9 -14.3 -9.1 -13.2 -8.6 -16.8 -11
-17.4

(FR = 8,
BR = 1)

-11
(FR = 2,
BR = 2)

To demonstrate the benefits of DL spectrum efficiency, we use achievable rate as

another performance metric. We allow gNB to choose MRC precoder w = ĥDL

||ĥDL||2
for

maximizing DL transmission gain. According to 5G NR specification, we assume 32

REs (for 32 antenna ports) among all 168 REs in each RB for CSI-RS transmission

and we adopt a frequency reduction rate FR to lower CSI-RS placement density. We

can define the achievable rate in each RB as follows:

R = γ · E[log2(1 +
| ĥH

DL

||ĥDL||2
hDL

||hDL||2
|

N0

)](bit/s/Hz), (4.18)

where ĥDL and hDL respectively denote the estimated and original DL CSIs. N0 denotes

60



(a) Indoor (b) Outdoor

4

5

6

7

8

9

10

11

12

0 5 10 15 20

ac
hi
ev
ab
le
 r
at
e 
(b
it/
s/
Hz
)

SNR (dB)

4

5

6

7

8

9

10

11

12

0 5 10 15 20

ac
hi
ev
ab
le
 r
at
e 
(b
it/
s/
Hz
)

SNR (dB)
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Figure 4.17: DL achievable rate under different SNRs for (a) indoor and (b) outdoor
scenarios. Note that we consider a CSI-RS sparsity P = 4 and CReff = 32 (FR =
8, BR = 1, CR = 4 is for indoor channels whereas FR = 2, BR = 2, CR = 8 is for
outdoor channels) in the test results.

the ambient noise level. The quantity

γ =
K · 168 · P −K · 32/(FR ·BR)

K · 168 · P
=

168P − 32/(FR ·BR)

168P

denotes the effective ratio of REs being used for data transmission, where P is the

sparsity of CSI-RS placement in terms of slots3. Figure 4.17 shows the achievable rate

of all alternatives under different signal-to-noise ratios (SNRs) for both indoor and out-

door scenarios. We observe that BSdualNet outperforms other compared approaches in

terms of DL achievable rate although its NMSE performance may not always prevail.

This is due to the effect of saving REs for DL signaling to avoid bandwidth waste for

data transmission.

4.4.7 Complexity: FLOPs and Parameters

Most UEs have stronger memory, computation, and power constraints. The system

design favors light-weight and simpler encoders for deployment at UEs. In comparison

3One out of every P slots is assigned for CSI-RS placement.
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Table 4.3: Comparison of parameters (PARAs) and FLOPs at encoder.
CsiNet CRNet CsiNet-Pro DualNet-MP BSdualNet-FR

CReff PARAs FLOPs PARAs FLOPs PARAs FLOPs PARAs FLOPs PARAs FLOPs

4 2.8M 1.1M 2.8M 1.2M 4.3M 11.1M 3.8 M 19.2M 7.6M
(FR∗BR)

11.1M
(FR∗BR)

8 1.4M 0.56M 1.4M 0.68M 3.8M 10.56M 1.9M 18.9M 3.8M
(FR∗BR)

10.6M
(FR∗BR)

16 0.7M 300K 0.7M 420K 1.9M 10.3M 980 K 18.8M 1.9M
(FR∗BR)

10.3M
(FR∗BR)

32 350K 170K 350K 290K 950K 10.2M 490 K 18.7M 950K
(FR∗BR)

10.2M
(FR∗BR)

with the baseline CsiNet Pro and DualNet, Table 4.3 shows dimension reduction in fre-

quency and beam domains and smaller input size of our encoder/decoder architecture.

BSdualNet-FR provides significant reduction in terms of FLOPs and the number of

model parameters. Similarly, if the total reduction factor FR ·BR ≥ 4, BSdualNet-FR

shows lower storage requirement than those light-weight models CsiNet and CRNet.

4.5 Conclusions

This work presents a new deep learning framework for CSI estimation in massive MIMO

downlink. Leveraging UL CSI estimate to reduce its CSI-RS resources, the gNB designs

a beam merging matrix based on UL channel magnitude information to transform

DL CSI observation at UEs into a lower dimensional representation that is easier for

feedback and recovery. We further develop an efficient minimum-norm CSI recovery

network to improve recovery accuracy. Our new framework does not deploy training

deep learning models at UEs, thereby lowering UE complexity and power consumption.

We achieve further reduction of DL CSI training and feedback overhead, by introducing

a reconfigurable CSI-RS placement. Test results demonstrate significant improvement

of CSI recovery accuracy and reduction of both DL CSI training and UL feedback

overheads.
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Chapter 5

An Efficient and Scalable Deep

Learning Framework for Dynamic

CSI Feedback under Variable

Antenna Ports

Existing deep learning architectures for downlink CSI feedback and recovery show

promising improvement of UE feedback efficiency and eNB/gNB CSI recovery accu-

racy. One notable weakness of current deep learning architectures lies in their rigidity

when customized and trained according to a preset number of antenna ports for a

given compression ratio. To develop flexible learning models for different antenna port

numbers and compression levels, this work proposes a novel scalable deep learning

framework that accommodates different numbers of antenna ports and achieves dy-

namic feedback compression. It further reduces computation and memory complexity

by allowing UEs to feedback segmented DL CSI. We showcase a multi-rate successive

convolution encoder with under 500 parameters. Furthermore, based on the multi-rate

architecture, we propose to optimize feedback efficiency by selecting segment-dependent
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compression levels.

In this chapter, in Section 5.1, we first developed a multi-rate light-weight subarray-

based (SAB) CSI feedback framework with flexible number of antennas via a DCP.

Then, in Section 5.2, following the same principle, we proposed a SAB framework for

flexible number of antenna ports. For further uplink feedback overhead reduction and

better recovery performance, we introduced DCP feedback pruning scheme and local

normalization, respectively. In Section 5.3, we design a dynamic CR CSI feedback

framework to adpatively encode CSI according to its significance. In Section, 5.4, test

results demonstrate superior performance, good scalability, and high efficiency for both

indoor and outdoor channels. Finally, in Section 5.5, we summarize the proposed light-

weight SAB framework and its future research directions. Note that, in this chapter,

we represent DL CSI HDL by H for simplicity.

5.1 Multi-rate CSI Feedback Framework with Flex-

ible Number of Antennas

There have been notable progresses in terms of recovery performance among the recent

autoencoder-based CSI feedback frameworks [14,18–20]. Since UEs often have limited

resources [20], an important consideration is the computation complexity and storage

needed by the CSI encoder at the UE. Unfortunately, näıve use of autoencoders from

image compression for CSI compression requires direct input of full CSI matrix H as

a 2D “image” to deep learning networks for feature extraction. The inevitably large

input size necessitates large autoencoder learning models at both UE and gNB, thereby

making it highly challenging to effectively reduce model complexity and storage need.

This raises an question: is it necessary to simultaneously feed full DL CSI matrix

into the model for encoding CSI features across all ports? The answer may vary. In
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application when antenna configuration avoids spatial aliasing 1 (e.g., half-wavelength

antenna spacings), CSI correlation across the multiple antenna ports tends to be weak

and negligible. Thus, it may be unnecessary to import CSIs across many antennas of

the same MIMO configuration to the UE encoder for compression and feedback.

We can gain some insights from the following test results. Figures 5.1 (a) and (b)

show the correlation between different antennas and the statistics at different delay

taps for different antennas. It is apparent that correlation between antennas is weak

and, in fact, CSI statistics at different delay taps even for different antennas appears

similar. This recognition motives us to propose to apply a common and smaller deep-

learning model to encode and decode the DL CSI across large number of antenna ports

when distinct antennas serve as multiple activated ports.

Figure 5.1: (a) Cross-correlation between different beams (we consider a 8× 4 orthog-
onal beam set), and (b) correlation versus various delay tap difference (we consider
CSIs of 32 antennas denoted by curves with different colors). The low cross-correlation
between beams and the high similarity of these curves in delay domain imply the pos-
sibility to compress and recovery CSI antenna-by-antenna.

1As a rule of thumb, CSI of antennas spaced more than one wavelength apart are nearly indepen-
dent.
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5.1.1 SAB Framework

Previous works such as [5, 7, 13, 14] send full CSI matrix like an image as encoder in-

put for compression. Such 2-D CSI structure in antenna and delay domains is akin

to a natural 2-D image. However, from the preliminary results of Figures 5.1 (a) and

(b), the inter-antenna independence and similar statistics of delay profile of different

antennas motivate a simpler subarray based (SAB) CSI encoding and decoding frame-

work. In this section, we propose an SAB framework which divides a full DL CSI into

non-overlapping several subarray pieces before their individual compression and gNB

recovery.

We first define a new quantity, subarray width, as the spatial domain width of the

new framework input. Let subarray width beK to captureK consecutive antenna ports

among the Nb rows of the CSI matrix that exhibit correlation [20]. We concatenate real

and imaginary parts of the full DL CSI matrixH = [h1 h2 . . .hNb
]T (Note that we adopt

a DL CSI in antenna-delay domain in this section) in an interleaving manner as an aug-

mented real-value full DL CSI matrixHaug = [Real(h1) Imag(h1) Real(h2) . . . Imag(hNb
))]T

of size 2Nb×Nt before partitioning the 2Nb rows to form 2Nb/K matrices of size K×Nt

as follows:

H(i) = Haug(Ki+ 1 : Ki+K, :), i = 0, 1, ..., Nb/K − 1. (5.1)

We train a common autoencoder for each of the K subarray CSIs. Each subarray

matrix Hi enters the common encoder q(i) = fen(H
(i)) at UE for compression and

feedback. At the gNB, the decoder Ĥ(i) = fde(q
(i)) recovers the subarray CSI before

stacking them back into the full DL CSI matrix

Ĥaug =

[
Ĥ(1); Ĥ(2); ...; Ĥ(Nb/K)

]
(5.2)

By extracting rows at the odd and even indexes, we can obtain the estimate of the full

DL CSI matrix Ĥ.
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5.1.2 Multi-rate CSI Feedback Framework

In practical applications, physical environment affects the MIMO CSI characteristics

including its sparsity and entropy. Therefore, the degree to which an MIMO CSI can

be compressed in a deep learning framework would vary with physical environment.

Without knowing the actual CSI a priori, multiple encoder-decoder pairs may have to

be deployed at UEs and gNB to achieve the required accuracy and feedback compres-

sion. Training multiple encoders would lead to higher memory use to store the models

and possibly higher complexity to test the outcomes of different compression models

(i.e., ratios).

To this problem, the authors of [25] proposed a multi-rate CSI framework as illus-

trated in Figure 5.2. Its encoder of [25] can generate 4 different output arrays of 4

distinct compression ratios. The parameters of all layers in its encoder are common

except for a final fully-connected (FC) layer. This framework of [25] reduces the total

number of encoder parameters by enforcing convolutional layers for different compres-

sion ratios to remain the same so as to generate similar features. Only the final layer

decides the encoder output for feedback at different compression ratios.

In this chapter, we consider a similar architecture but proposing a new encoder

design with fully convolutional layers and the proposed SAB framework. We name the

new architecture “successive convolutional encoding network (SCEnet)” whose model

complexity can be significantly tamed while preserving good recovery performance.

To achieve a good tradeoff between performance and model complexity, we focus on

complexity reduction at the encoder for low cost UEs. For the UE encoder, we introduce

a fully-convolutional down-sizing block (FCDS) to lower the input size by half. The

FCDS block consists of 1 × 7, 1 × 5 and 1 × 3 convolutional layers with 2 channels,

respectively. Note that the stride lengths are all 1 except for the final horizontal stride

in the last convolutional layer which is of length 2 to drop the input size by half. Figure

5.3 shows an example of a CSI feedback framework using S FCDS blocks for dealing
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Figure 5.2: Illustration of previous multi-rate CSI feedback frameworks, CsiNet-SM
and CsiNet-PM. The encoders share model parameters at different compression ratios
except for FC layers, which contribute the majority of model complexity.

with 4 compression ratios (S= 4 throughout this chapter). Specifically, the output

of i-th block with size of K · Nt/2
i represents codewords with compression ratio =

2i, i = 1, ..., S.

Since gNBs are less resource constrained, individual CSI decoder is designed for each

compression ratio. For the i-th decoder, the codeword is first fed to a K ·Nt FC layer, a

1× 3 convolutional layer and activation function after reshaping for initial estimation.

An ensuing RefineBlock [25] provides refinement. RefineBlock uses a residual structure

and consists of three 1× 3 convolutional layers with 16, 8 and 1 channels, respectively.

The RefineBlock is followed by a K · Nt FC layer for generating real/imaginary CSI

estimates. To further improve recovery accuracy, we provide another SCNnet, called

SCEnet+ by adding an additional FC layer at the end of each FCDS block which

provides extra non-linearity at the same output size.

The parameters of the SCEnet are optimized according

Ωen,Ωde = argmin
D∑

d=1

S=4∑
s=1

Ws · ∥Hd − Ĥd,s∥2F, (5.3)

Ĥd,1, Ĥd,2, Ĥd,3, Ĥd,4 = fde(fen(Hd)), (5.4)
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Figure 5.3: SAB Framework and SCE Network Architecture. Input data are first split
into real and imaginary and separated into subarray matrices. These matrices are fed
to the SCE network and recovered in parallel. Note that, at encoder, after each FCDS
block, the total size of input is reduced by half. The fully convoluted FCDS blocks share
parameters. We also provide another alternative encoder (SCEnet+ encoder) where a
FC layer is attached at the end of each FCDS block for enhancing performance.

where subscript s denotes the outcome from the s-th compression ratio and Ωen, Ωde

denote the trainable parameters of encoder fen and decoder fde. D is the training data

size. In [25], hyper-parameters {W1,W2,W3,W4} were chosen as {30/39, 6/39, 2/39, 1/39}.

5.2 Multi-Rate CSI Feedback Framework with Flex-

ible Number of Antenna Ports

The proposed SAB framework can effectively reduce the model size and computational

complexity. However, the uplink feedback overhead is not lower with this framework.

To reduce feedback information, we observe that CSI in beam domain (i.e., angular

domain) appears to be sparse. For instance, outdoor propagation channels usually

characterized with its low angular spread. If we transform CSI matrices from antenna

(i.e. spatial) domain to beam domain before compression and recovery with the pro-

posed SAB framework, we may require fewer or even no codewords for those subarray

CSIs with negligibly low energy. With this motivation, we propose a DCP feedback

pruning mechanism to further reduce the uplink information for CSI feedback and the

computational complexity of encoding/decoding at UE and gNB, respectively.
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5.2.1 SAB framework in BD domain

We represent the full CSI matrix in antenna-delay domain as

HAP = M ·H (5.5)

where M ∈ CNb×Nb is an orthogonal transformation matrix transforming from antenna

to antenna port (AP) domain. Without loss of generality, we can have a DL BD CSI

matrix HB by designing an orthogonal beam matrix M = B which be found via the

mechanism in [42]. Following the same preprocessing in the previous section, we first

concatenate real and imaginary parts of CSIs as an augmented DL BD matrix HB,aug

and divide the augmented DL BD matrix into 2Nb/K subarray CSI matrices of the

same size K ×Nt given below

H
(i)
B = P(i)HB,aug, ∀i = 1, 2, ..., Nb/K. (5.6)

Thus, the parameters of the SCEnet are optimized according to criterion:

Ωen,Ωde = argmin
D∑
d

S=4∑
s

Ws · ∥Hd −BHĤB,d,s∥2F, (5.7)

ĤB,d,1, ĤB,d,2, ĤB,d,3, ĤB,d,4 = fde(fen(HB,i)). (5.8)

5.2.2 DCP Feedback Pruning

Due to small angular spread, outdoor CSIs in beam domain are usually sparse in

angular domain. To take advantage of this physical property, we propose a DCP

feedback pruning method to exploit the beam sparsity to further reduce the uplink

feedback overhead and encoding/decoding computations by skipping feedback of those

insignificant subarray CSI matrices of negligibly low Frobenius norm.
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To evaluate whether a subarray CSI matrix is insignificant, we measure its relative

energy ratio

RE,i = ∥HB,i∥2F/∥HB,aug∥2F . (5.9)

Subarray CSI matrices with energy ratio below a predefined threshold T are regarded

as insignificant and are ignored at the UE encoder. Importantly, UEs need to transmit

extra information bits to indicate insignificant subarray to the gNB during feedback.

To minimize the information bits, as illustrated in Figure 5.4, we suggest that UE

could utilize a prefix bit indicating whether to send a zero-skipping request to base

station. As depicted in Figure 5.5, the additional bit is appended before the bit stream

of each subarray CSI matrix as a prefix which is decoded first at gNB to avoid the

subsequent CSI recovery for the insignificant subarray CSI matrix. For subarray CSI

matrix with energy ratio RE ≥ T , UE encodes the CSI matrix and the codeword

feedback on uplink to gNB with the indicator bit = 1. Otherwise, UE sends zero

uplink feedback with indicator bit = 0. Alternatively, a 2Nb/K bitmap can lead or

trail the CSI codeword feedback as indicators to the decoder. The gNB examines these

indicator bits to decide whether to decode the corresponding subarray CSI codeword

or to zeropad the corresponding subarray CSI before moving onto the next subarray

CSI.

By doing so, a larger threshold T tends to skip more encoding/decoding process,

use less uplink bandwidth for feedback, but possibly cause performance degradation

due to the zero-skipping process. Thus, the selection of threshold T becomes a trade-

off between the amount of uplink feedback overhead and recovery performance. Fortu-

nately, due to the sparsity in angular domain, we can effectively reduce uplink feedback

bandwidth and computations while not sacrificing too much recovery performance in

general, especially for channels with low angular spreads.
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Figure 5.4: Illustration of DCP Feedback Pruning. If the energy ratio of the i-th DL
BD subarray CSI matrix is less than the predetermined threshold T , UE skips encoding
and send only one bit to tell base station to fill zeros in the corresponding region of
the DL BD subarray CSI matrix. Otherwise, UE operates SAB framework normally.

Figure 5.5: DCP feedback pruning block diagram and ordered feedback bit sequence.

5.2.3 Local Normalization

Recall that one assumption for SAB framework is the similar statistics of delay profile

of different antennas. After transforming CSI from antenna to beam domain, although

the relative delay profile is still similar for different beams, CSI energy concentrates in

a few specific angles (directions) for in most propagation with low angular multipath

spreads. As a result, CSI recovery may degrade because of training bias in which

deep learning model endeavor to recover those stronger subarray CSI matrices better.

This may lead to very poor recovery performance for subarray CSI matrices of modest

energy. To tackle this problem, as depicted in Figure 5.6(b), we let UE normalize each

encoded subarray CSI matrix individually and encode the normalization factor as a
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feedback to gNB.

Figure 5.6: Illustrations of (a) global normalization and (b) local normalization.

5.2.4 2D Lightweight Encoder

In this section, we proposed a SAB framework in BD domain along with subarray row

feedback and pruning to further reduce uplink feedback overhead by taking advantages

of its beam domain sparsity. In fact, sparsity is also observed in the delay domain. A

natural extension is develop a two-dimensional (2D) SAB framework as illustrated in

Figure 5.7 along with feedback pruning method to skip near-zero CSI matrix blocks
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for reducing uplink feedback bandwidth.

However, overly aggressive model reduction as such requires the CSI energy to

be not only similarly distributed in the delay domain across antenna ports but also

similarly distributed in spatial domain for each delay. Such property has not been

experimentally verified. Therefore, although a 2D lightweight encoder admits a low

complexity autoencoder structure, we must carefully weigh the complexity-accuracy

tradeoff of such efforts.

Figure 5.7: Illustrations of 2D SAB framework (N and K are the numbers of delay
taps and beams being considered in a single subarray CSI matrix, respectively).

5.3 SAB framework with dynamic CR

The proposed SAB feedback switches on/off the encoding of CSI subarrays for achieving

a higher effective compression ratio. We can utilize more feedback resource on high-

energy subarray CSI matrices especially for channels with sparse distribution in beam

or angular domain such as outdoor channels. Yet, instead of using a hard decision to

determine whether to feedback or skip the encoding/recovery process, the multi-rate

architecture motivates a softer decision approach. Here, we propose a dynamic CR

CSI feedback framework which compresses subarray CSI matrices in a full DL CSI

using dynamic CR by a energy-based CR selector according to their significance (i.e.,
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normalized subarray CSI energy) to maximize the codeword efficiency (CE) of CSI

feedback.

To define the efficiency of codeword, we measure the expected capacity provided

by each codeword. With orthogonal multiple access, when using estimated full CSÎ̃
H = [

̂̃
H1;

̂̃
H2; ...;

̂̃
H2Nb/K ] as a maximum-ratio combining (MRC) precoder for DL

transmission at gNB, the expected capacity for the i-th subarray CSI matrix in DL

transmission can be reasonably set as

Ci = log2(1 + SNRi) (5.10)

SNRi =

∥∥( ̂̃Hi)
∗H̃i/

∥∥ ̂̃Hi

∥∥
F

∥∥2

F

K·Nf ·PN

(5.11)

where
∥∥( ̂̃Hi)

∗H̃i/
∥∥ ̂̃Hi

∥∥
F

∥∥2

F
/(K·Nf ) and PN denote the average signal and noise power,

respectively, over Nf subcarriers and K antenna ports. H̃i denotes true subarray CSI

matrix.

Let the sum length of uplink feedback codeword q = [q1;q2; ...;q2Nb/K ] from UE to

gNB be L =
∑2Na/K

i=1 Li. We can define the average CE as

CE =

2Nb/K∑
i=1

Ci
Li

K

2Nb

(bits/s/Hz/codeword). (5.12)

This metric measures the contribution of each codeword to the eventual end-to-end

CSI feedback performance.

Take the multi-rate CSI feedback framework, DCnet, as an example, it provides four

distinct lengths of codewords (corresponding to four compression ratios) for different

compressing/recovery quality. To achieve the best performance, we should compress

CSI with the least compressive codewords and vice versa. There always exists a trade-

off between uplink feedback cost and recovery performance. Yet, although there is no

best choice of compression ratio, the most efficient one exists.
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By dividing a full-size CSI matrix into several subarray CSI matrices, we discover

that only a fraction of subarray CSI matrices dominate in terms of energy. That is,

if we could recover those subarray CSI matrices well, we will have a high-quality CSI

recovery even if other subarray CSI matrices are recovered with large errors. Hence, to

improve feedback efficiency, we should utilize more resources (i.e., CR = 2) on subarray

CSI matrices with larger significance (i.e., higher energy) and less resources (CR = 16)

on those with less significance. We first evaluate the significance of the i-th subarray

CSI matrix for each data sample according to its normalized CSI energy RE,i defined

in (5.9).

We design a energy-based CR selector which selects CR according to the normalized

energy of subarray CSI matrices. The CR determined by the CR selector for the i-th

subarray CSI matrix is given by

CRi =



2 a0 ≤ RE,i < a1

4 a1 ≤ RE,i < a2

8 a2 ≤ RE,i < a3

16 a3 ≤ RE,i ≤ a4

(5.13)

As illustrated in the Figure 5.8, there are five anchor points a = [a0 = 1, a1, a2, a3, a4 =

0] where 1 ≥ a1 ≥ a2 ≥ a3 ≥ 0 and a1, a2, a3 are trainable. If we optimize the three

anchor points by maximizing CE in Eq. 5.12, since the nominator does not grow

proportionally as the denominator increases, we will have a trivial CR selector, which

always suggests adopting the largest CR to achieve the highest codeword efficiency.

Unfortunately, this induces a fairness problem since the CR selector tends to secure

CE and ignore those CSI estimates with extremely poor performance. Those cases

should be considered as recovery failure. Thus, using a standard step function u(.), we
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define the mean outage capacity as

CE = E


2Nb/K∑
i=1

Ci
Li

· u(NMSEi − Tout)

 (5.14)

We define an outage threshold Tout to reject cases when gNB totally fails to estimate

DL CSI. In the training stage, as a rule of thumb, a typical value of Tout is set as −10

dB.

In this chapter, we provide a heuristic training strategy for searching optimal points

by following Alg. 6.1. Note that, since we consider four possible CRs, we need extra

two-bit information for each subarray CSI matrix in the uplink feedback to gNB for

correctly identifying the correct decoder of the corresponding CR as shown in Figure

5.9.

Figure 5.8: Five anchor points of normalized energy of subarray CSI matrix for CR
decision. Note that we only need to train the three anchor points a1,a2,a3 for separating
the operating regions of four CRs.

5.4 Experimental Evaluations

5.4.1 Experiment Setup

In our experiments, we consider both indoor and outdoor cases. Using channel model

software [40], we place a gNB of height equal to 20 m at the center of a circular cell with

a radius of 30 m for indoor and 200 m for outdoor environment. The gNB equipped

with a 8×4(NH×NV ) UPA for communicates with single-antenna UEs. UPA elements
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Algorithm 5.1 Multi-point linear searching algorithm

Require: a = [1, 0, 0, 0, 0], Nter, N , CEf = 0, Ω = {1, 2, 3}
Ensure: a = [1, a1, a2, a3, 0],CEf

for i = 1 : 1 : Nter do
j ← mod(i, length(Ω)) + 1
vf ← [aj − aj−1−aj

(N/2)+1
; ...; aj − (N/2)

aj−1−aj
(N/2)+1

]

vb ← [aj +
aj−aj+1

(N/2)+1
; ...; aj + (N/2)

aj−aj+1

(N/2)+1
]

v← [vf ;vb]
aold ← a
flag← False
for k = 1 : 1 : N do

aΩj
← v[k]

Evaluate CE according to a
if CE > CEf then

CEf ← CE
flag← True

end if
end for
if |a2 − a1| < 0.005 then

Ω = {[1, 2], 3}
else if |a3 − a2| < 0.005 then

Ω = {[1], [2, 3]}
else if |a2 − a1| < 0.005 and |a3 − a2| < 0.005 then

Ω = {[1, 2, 3]}
end if
if flag = False then

a← aold

end if
end for
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Figure 5.9: UE sends extra two bits for each subarray CSI matrix to indicate the
adopted CR. gNB selects the corresponding decoder according to the extra information.

have half-wavelength uniform spacing.

For our proposed model and other competing models, we set the number of epochs

to 1000. We use batch size of 200. For our model, we start with learning rate of 0.001

before switching to 5×10−4 after 300 epochs. Using the channel simulator, we generate

several indoor and outdoor datasets, each containing 100,000 random channels. One

seventh of these channels is test data for performance evaluation. Two and one thirds of

the remaining are for training and validation. For both indoor and outdoor, we use the

QuaDRiGa simulator [40] using the scenario features given in 3GPP TR 38.901 Indoor

and 3GPP TR 38.901 UMa at 5.1-GHz and 5.3-GHz, and 300 and 330 MHz of UL and

DL with LOS paths, respectively. To accurately assess recovery accuracy, we assume

UEs are capable of exact CSI estimation. For each data channel, we considerNf = 1024

subcarriers with 15K-Hz spacing and place Mf = 86 pilots with downsampling ratio

DRf = 12 as illustrated in the Figure 5.10. We set antenna type to omni. We use

NMSE Eq. 2.2.2 as the performance metric.
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Figure 5.10: Pilot placement illustration (Note that the red lines indicate the time-
frequency resources to be placed pilot symbols. AF and AD stand for antenna-
frequency and antenna-delay domains, respectively).

5.4.2 SCEnet vs. SCEnet+

Figures 5.11 (a) and (b) summarize NMSE performance for the two proposed models at

different compression ratios in indoor and outdoor scenarios, respectively. We observe

the benefits of the extra FC layer at encoder for low compression ratios. Considering

the negligible error improvement in linear scale, SCEnet and SCEnet+ achieve similar

performance. Yet, SCEnet+ has more flexible coding rate owing to the use of FC

layers. For brevity, we use SCEnet+ as our benchmark in the rest of this section.

5.4.3 Performance, Complexity and Storage Comparison

For comparison, besides the proposed models SCEnet and SCEnet+, we also include

two recent multi-rate CSI feedback alternatives which take full DL CSI as model

input and are listed below:

• CsiNet-SM [25]: Figure 5.2 (a) shows its general architecture. Note that we

accommodate the model for desired compression ratios by adjusting the size of

FC layers.
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Figure 5.11: NMSE performance at different compression ratios for SCEnet and
SCEnet+ in indoor and outdoor scenarios.

• CsiNet-PM [25]: Figure 5.2 (b) shows the general architecture. Note that

CsiNet-PM is a more compact model than CsiNet-SM but suffers slight perfor-

mance degradation in general.

Note that the proposed models adopt a similar decoder as the alternatives in com-

parison with required accommodations such as reduced sizes of FC layers and one

dimensional convolutional filter size (i.e., (1,3), (1,5) and (1,7)).

Most UEs have strict memory, computation and power constraints, thereby favoring

light-weight and simpler encoders for deployment. Figures 5.12 (a) and (b) model size

of encoder and decoder, respectively, for SCEnet, SCEnet+, CsiNet-SM, and CsiNet-

PM. Table 5.1 reveals computation complexity of encoder and decoder for alternatives

in comparison. Table 5.2 shows the NMSE performance at different compression ratios

and subarray width (K) for SCEnet+, CsiNet-SM and CsiNet-PM including both

indoor and outdoor scenarios. We observe that SCEnet+ with K = 64 generally

outperforms CsiNet-SM and CsiNet-PM and requires less FLOP number and storage

at UE side. Leveraging the SAB framework of smaller subarray widthK, we enjoy much

lower complexity and storage with slight performance degradation. The selection of

K = 2 yields an acceptable recovery performance and delivers several orders of encoder
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Table 5.1: Floating-point operation of alternatives in comparison. Compression ratio
is 8 for calculating decdoer’s FLOP numbers.

SCEnet SCEnet+ CsiNet-SM CsiNet-PM
Encoder FLOPs 1.16M 1.4M 4.3M 2.2M
Decoder FLOPs

(K=2)
10.7M

49.4M
Decoder FLOPs

(K=4)
12M

Decoder FLOPs
(K=8)

14.75M

and decoder size reduction as well2. Moreover, SCEnet+ becomes scalable and can be

a universal CSI feedback framework which can be applied to CSI feedback with various

numbers of antenna ports (according to the 3GPP specification, 2, 4, 8, 16, 32 are

possible antenna port number).

Figure 5.12: (a) Encoder and (b) decoder model size comparison of SCEnet, SCEnet+,
CsiNet-SM and CsiNet-PM.

5.4.4 Testing Different Encoder/Decoder Pairs

To show the efficacy of SAB framework, Figure 5.13 shows the NMSE performance

at different compression ratios and three encoder/decoder pairs: 1) SAB encoder plus

2The major model size reduction is attributed to smaller input size. However, smaller input size
does not simplify the computation complexity by the same order. Although FLOP number grows
proportionally with input size, the encoder is applied to multiple subarray CSI matrices.
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Table 5.2: NMSE performance of the CsiNet-SM and SCEnet for different selections
of subarray width (K).

CR Scen.
SCEnet+ CsiNet

-SM
CsiNet
-PMK=2 K=4 K=8 K=64

2
Ind. -39.2 -38.8 -36.7 -39.6 -29.7 -29.8
Out. -17.8 -16.3 -16.1 -19.8 -18.9 -18.8

4
Ind. -31.7 -32.0 -31.9 -31.5 -26.0 -25.9
Out. -13.6 -13.3 -12.6 -14.7 -15.3 -14.5

8
Ind. -20.7 -21.8 -22.2 -24.3 -20.3 -19.1
Out. -11.5 -11.0 -10.6 -12.7 -12.3 -11.2

16
Ind. -12.8 -12.3 -11.9 -15.4 -13.0 -12.0
Out. -10.3 -9.7 -9.5 -11.5 -10.2 -9.2

SAB decoder 2) SAB encoder plus pooling decoder 3) full-size encoder and decoder.

We consider a subarray width of 2 for SAB encoder and decoder. Pooling decoder

consists of 32 copies of SAB decoder and is followed by 2 residual blocks with 3 × 3

convolutional layers with 16, 8, 1 channels for pooling purpose. A full-size encoder

and decoder are the SAB ones with K = 64. With respect to limited correlation

between antennas, we can observe that the SAB encoder/decoder pair only causes

slight performance degradation while requiring much less storage and computational

burdens for UEs and base stations.

5.4.5 Testing Different Array Geometries

To show the scalibility of SCEnet+, Figure 5.14 shows the NMSE performance at dif-

ferent compression ratios and array geometries (8-element ULA, 16, 32-element UPAs)

in indoor and outdoor scenarios. The results show no obvious performance difference

for arrays of different sizes. This demonstrates the scalibility of the proposed SAB

framework.
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5.4.6 BD SAB Framework in GN and LN approaches

The sparsity of CSI matrix in beam domain allows DCP feedback pruning for fur-

ther uplink feedback reduction. On the other hand, it may cause power imbalance

across antenna ports and performance degradation. Fortunately, this problem could

be mitigated by LN.

Figure 5.15 shows the NMSE performance by applying GN and LN to SCEnet+

when K = 2 and 4 in indoor and outdoor channels. We observe better performance by

selecting a smaller subarray width K because of limited correlation between adjacent

beams. Additionally, we also see that performance improvement, especially for outdoor

scenario, is achieved by utilizing LN approach. Since outdoor channels characterize

with its low angular spread, this causes severe power imbalance problem over different

subarray BD CSI matrices when using GN approach. The experiment results show

that LN can effective alleviate power imbalance problem. Note that LN is adopted in

the following results.

5.4.7 DCP feedback pruning

In DCP feedback pruning, only subarray CSI matrices with energy ratio larger than

T are encoded and fed back. The remaining are fed back to gNB with a bit ”zero” as

illustrated in Figure 5.5. For a better understanding, we define a metric, called pruning

ratio, to be the ratio of the number of encoded subarray CSIs to all. Note that a larger

T can increase pruning ratio but cause performance degradation.

Figures 5.16 and 5.17 show the NMSE performance under different pruning ratios

in indoor and outdoor scenarios, respectively. The results suggest that the degradation

of 20% pruning (pruning ratio = 0.2) is acceptable. Although low compression ratios

appear to exhibit more severe performance loss in logarithm-scale, the actual discrep-

ancy in MSE is quite small. From Figure 5.17, we can observe that pruning exhibits

more advantages in outdoor case. It is because its high sparsity in beam domain gives
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rise to many near-zero subarray CSI matrices which can be skipped with little CSI

distortion.

5.4.8 2D SAB Framework

Figure 5.18 shows the NMSE performance versus compression ratios for different set-

tings of N under subarray width K = 2. We find that 2D SAB framework with a small

N degrades less when increasing pruning ratio. However, due to the low sparsity for

each subarray CSI matrix, the 2D SAB framework with a small N performs worse than

that with a large N . Note that the 2D SAB framework with N = 32 is equivalent to

the original SAB framework operating in BD domain. Performance degradation due to

a small N can be attributed to the aforementioned two factors: 1) incompatibility with

the requirement of similar delay profile and 2) trade-off between sparsity and recovery

performance. Yet, since the number of model parameters are nearly proportional to

the input size squared, a smaller size of inputs in 2D SAB framework could further

significantly reduce the model size of both encoder and decoder. However, the current

model size using K = 2 is already under 1000 parameters, an extraordinarily small

number for deep learning models. Further reduction of encoder model size appears to

be less critical. However, since SAB framework can compress and recover in parallel,

if the designer has strict computation time constraint, a 2D SAB framework may be a

viable choice.

5.4.9 CSI feedback with dynamic CR

To show the benefits of the dynamic CR CSI feedback, we compare the recovery per-

formance and codeword efficiency of the SAB CSI feedback frameworks with fixed and

dynamic CRs. Since compression ratio cannot be perfectly controlled in dynamic CR
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CSI feedback, we define an effective CR below for fair comparison

CReff =
1

D

D∑
d=1

2NtNb∑2Nb/K
i (Ld,i + LCR)

. (5.15)

LCR denotes the prefix codeword length to indicate adopted CR (i.e., 2 bits), which is

equivalent to 2/B codeword elements. B denotes the quantization bits used for each

codeword element. The beam-domain sparsity in outdoor channels reduces the cost of

uplink feedback with minor performance loss via DCP feedback pruning. Furthermore,

by properly assigning CRs to subarray CSIs, we can achieve performance improvement

and codeword efficiency.

We consider four possible CRs (= 2, 4, 16,∞), where CR =∞ denotes the case of

DCP feedback pruning. We define an outage CSI estimate when its NMSE is higher

than a predetermined Tout = −5 dB, rending the CSI recovery unusable. We use an

outage threshold Tout = −10 dB and PN = 0.01 for training anchor points. Figure

5.19 shows the average outage probability and codeword efficiency in outdoor scenario.

The optimal anchor points are located at a = [1, 0.018, 0.018, 0, 0]. This result reveals

that two CRs (i.e., CR = 2, 16) is sufficient to maximize codeword efficiency. This

further suggests that DCP feedback pruning is relatively inefficient owing to over-

simplifying the low-energy subarray CSIs. Moreover, the SAB framework via dynamic

CR feedback (effective CR is 5.9) can achieve comparable outage probability against a

fixed low CR = 2 (requiring the most resources and achieving the best recovery).

5.4.10 Different Noise Powers and CR Selections

From the previous results, we know that CR =∞ is unused in dynamic CR. Therefore,

we attempt an additional combination of CRs [2, 4, 8, 16]. Table 5.3 shows the optimal

points trained with different choices of PN = [0.01, 0.0001, 1e − 7] and CR sets (i.e.,

[2, 4, 8, 16] and [2, 4, 16,∞]) to maximize codeword efficiency. The results show that the
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Table 5.3: The resulting five anchor points.
Noise Power 4 CRs a0 a1 a2 a3 a4

PN = 0.01
[2,4,16,∞] 1 0.018 0.018 0 0
[2,4,8,16] 1 0.018 0.018 0.018 0

PN = 0.0001
[2,4,16,∞] 1 0.014 0.014 0 0
[2,4,8,16] 1 0.014 0.014 0.014 0

PN = 1e− 7
[2,4,16,∞] 1 0.012 0.012 0 0
[2,4,8,16] 1 0.012 0.012 0.012 0

optimal anchor points are insensitive to PN and continue to suggest that we only need

two CRs (CR = 2 and 16) for maximizing codeword efficiency. We conclude that the

most efficient strategy is to use the lowest CR to secure those subarray CSIs with high

significance and keep the codeword stream as compact as possible for subarray CSIs

with low energy. Also, we only need 1-bit information for acknowledging the adopted

CR to gNB.

Figure 5.20 shows the NMSE performance and outage probability via fixed CR and

dynamic CR feedback. The anchor points shown in Table 5.3 are trained with different

noise powers. The results show that dynamic CR manner not only improves the outage

probability but also leads to better recovery performance than fixed CR for outdoor

channels.

5.5 Conclusions

This work proposes a lightweight deep-learning architecture for encoding and feeding

back downlink CSI in massive MIMO wireless sytems. This new CSI feedback frame-

work flexibly accommodates different numbers of antenna ports in use and also requires

lower computational and storage hardware at resource constrained UEs. By develop-

ing a SAB CSI feedback framework, a common encoder allows encoding of subarray

CSI matrices separately. We further develop a dynamic encoding principle to flexibly

compress subarray CSI matrices by applying dynamic compression ratios according to
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their significance. The new framework includes a channel-based CR selector at UE

for determining CRs to achieve the maximum of codeword efficiency. Numerical re-

sults show the proposed framework generally outperforms the SOTAs, CsiNet-SM and

CsiNet-PM. In summary, the proposed SAB framework heralds a simple and system-

atic CSI feedback manner with higher flexibility, and scalibility while requiring lower

storage and computational complexity.
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Figure 5.13: NMSE performance versus compression ratios with different en-
coder/decoder pairs in (a) indoor and (b) outdoor scenarios.
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Figure 5.14: NMSE performance of SCEnet+ for arrays with different array geometries.
We consider 8-element ULA and 16- and 32-element UPAs.
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Figure 5.15: NMSE performance versus compression ratios with or without local nor-
malization (LN) in (a) indoor and (b) outdoor scenarios.
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Figure 5.16: NMSE performance versus pruning ratio for different selections of subarray
width K in indoor scenario.

Figure 5.17: NMSE performance versus pruning ratio for different selections of subarray
width K in outdoor scenario
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Figure 5.18: NMSE performance versus pruning ratio for different N in (a) indoor and
(b) outdoor scenarios.

Figure 5.19: Average CE and outage probability for dynamic CR and fixed CR CSI
feedback framework in outdoor scenario.
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Figure 5.20: NMSE performance and outage probability for dynamic CR and fixed CR
CSI feedback framework in outdoor scenario.
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Chapter 6

Applying JPEG Compression for

Feedback of Massive MIMO

Channel State Information

DL CSI acquisition plays a vital role in massive MIMO FDD systems. To improve

spectrum and energy efficiency, deep learning architectures for UE-side CSI feedback

and basestation-side recovery show notable improvement in feedback efficiency and CSI

recovery accuracy. However, deep learning based approaches often manifest practical

inflexibility since DL models are customized and trained for typical RF channel environ-

ments at specific compression level. The simplicity and success of image compression

algorithms for a wide range of images motivates us to investigate their adoption for

CSI compression and recovery. This work proposes a model-free JPEG architecture

for compressive CSI feedback that easily accommodates a variety of channel types and

compression ratios. We present a lossless entropy encoder to further lower CSI feedback

bandwidth. Test results of the proposed simple algorithm demonstrate very compet-

itive CSI recovery accuracy and feedback efficiency for various propagation channels

against DL models.
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In this chapter, we first introduce JPEG image compression in Section 6.1. Then

we reveal the proposed JPEG-based CSI feedback framework in Section 6.2. In Section

6.3, we demonstrate the simulation results as compared to the learning-based SOTAs.

Finally, we give conclusion and future work in Section 6.4.

6.1 JPEG Image Compression

JPEG is one of the most successful image lossy compression methods. JPEG achieves

efficient compression by focusing on visually sensitive components. We now briefly

summarize JPEG compression to ease the presentation of our proposed CSI feedback

framework inspired thereof.

Color Transformation and DCT Transformation

JPEG first splits an image for encoding into small square blocks M̃RGB ∈ U8×8×3
8

for separate compression and recovery, where U8 denotes a 8-bit unsigned integer set

from 0 to 255. Each block M̃RGB is transformed into blocks of colors M̃YBR ∈ U8×8×3
8

(including luminance M̃Y ∈ U8×8×1
8 , blue component M̃B ∈ U8×8×1

8 and red component

M̃R ∈ U8×8×1
8 ). Here we only use the 8 × 8 brightness block M̃Y as an example for

brevity. Then, we apply 2D DCT-II, termed as DCT in the following for simplicity, to

the brightness block M̃Y ∈ U8×8
8 given below

MY = THM̃YT (6.1)

where T ∈ R8×8 is a DCT transformation matrix.

Quantization and Dequantization

After 2D-DCT transformation,the upper-left area captures the low-frequency compo-

nents that dominate the image. According to human vision sensitivity to different
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Figure 6.1: Example of entropy encoding in JPEG compression.

components, higher precision is given to low-frequency components via element-wise

division by a quantization matrix Q to yield a transformed luminance block MY:

MY,Q = ⌊MY ⊘Q⌋, (6.2)

where ⌊·⌋ denotes rounding down. The exact quantization matrices Q can be found in

[49].

Entropy Encoding and Decoding

MY,Q is rearranged as a vectormY,Q ∈ U64
8 in a zigzag order and encoded as a codeword

stream qY,Q ∈ U64
8 via run-length encoding (RLE) algorithm. From the distribution of

MY,Q, zigzag reordering increases likelihood of repetitive zeros. Due to high efficiency of

RLE with data that contain many repetitive segments, RLE provides good compression

for mY,Q. Huffman encoding [49] can transform the codeword stream qY,Q into a

bit stream bY,Q. Figure 6.1 demonstrates an example of entropy encoding in JPEG

compression.
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6.2 JPEG-based CSI Feedback Framework

Recent works on DL-based CSI feedback frameworks have shown successes in UE com-

pression of CSI and recovery by BSs. However, one remaining problem is the rigidity

of DL frameworks that need to customize multiple DL models for different channel

scenarios and multiple compression levels. This shortcoming makes it difficult to apply

DL models flexibly at different compression levels and for practical gNBs which often

may consist of different numbers of MIMO antennas. The need for UEs to store multi-

ple pre-trained DL models is detrimental to widespread deployment, especially at low

cost UEs. Furthermore, training different DL configurations targeting different com-

pression ratios, different numbers of antennas, and various channel scenarios would

require suitable channel models and large amount of training data for each channel

scenario.

We aim to develop a simple, scalable, and general compressive CSI feedback algo-

rithm. Note that 2D CSI matrices are similar image data. In particular, CSI exhibits

certain delay and angular sparsity that can be revealed by DFT/DCT transformations.

On the other hand, CSI data also are different from images. For example, due to multi-

path propagation, CSI energy may spread over various directions, leading to distinct

patterns from that of visual images. Furthermore, unlike human vision perception, a

small amount of high-frequency CSI discrepancy may further lead to notable perfor-

mance loss by MIMO precoders. Since JPEG may not be directly applicable to CSI

compression, we apply domain knowledge and develop a model-free JPEG-based com-

pressive CSI feedback framework that accommodates different propagation scenarios,

compression ratios, pilot numbers, and antenna array configurations.
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6.2.1 Ordering Real/Imaginary CSI

JPEG compression is scalable to different image sizes for ease of hardware design.

However, careless use of JPEG on CSI matrices may obscure sparsity and lead to

compression degradation. To this end, we separate each full BD domain CSI matrix

H ∈ CNb×Nt for compression into two real-value CSI matrices as HR = Real(H) ∈

RNb×Nt and HI = Imag(H) ∈ RNb×Nt as images to be processed in parallel.

6.2.2 Zero Replacement (ZR)

An fixed quantization matrix design for CSI compression is intractable since the CSI

energy may come from any directions. To efficiently truncate insignificant information,

we need a dynamic sampling approach responsive to changing CSI energy distributions.

We represent CSI input matrix M (e.g., HR or HI) as (1) a sequence m and (2) an

indicator matrix I. We down-sample the input matrix M by a factor CR (compression

ratio) to obtain m consisting only of the top (1/CR) % elements ranked by magnitude.

The indicator matrix I ∈ {0, 1}Nb×Nt contains only 1’s and 0’s corresponding to sampled

and discarded elements, respectively.

6.2.3 Entropy Encoding/Decoding

Figure 6.2 shows the process flow of the proposed CSI entropy encoding. For effective

binary representations, we express the downsampled sequence m as bit stream Ωm

by µ-law companding entropy encoding with Q bits. We propose a modified RLE

(mRLE) to reduce transmission overhead of the indicator matrix I. Following the

pseudo code of mRLE shown in (Alg. 6.1), we obtain a symbol list ΩS marking the

numbers of consecutive zeros between ones in a back-and-forth scanning pattern shown

in Figure 6.2. The final entry EOS in the symbol list ΩS denotes ”end of symbols” and

also means that no more ones in the remaining sequence.
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Algorithm 6.1 Modified RLE

Require: ΩS = {}, I
Ensure: ΩS

i← vec(I)
N0 ← 0
for k = 1 : 1 : length(i) do

if i(k) = 1 then
ΩS ← {ΩS, N0}
N0 ← 0

else
N0 ← N0 + 1

end if
end for
if N0 ≥ 1 then

ΩS ← {ΩS,EOS}
end if

Figure 6.2: Example of CSI entropy encoding (Note that the numbers 0.0 represent
negligible elements in matrx M).

We next transform the symbol list ΩS into a bit stream ΩB by a modified Huffman

coding. Owing to the back-and-forth scanning pattern and CSI energy distribution in

BD domain, as shown in the symbol histogram (Figure 6.3), cases with small numbers

of consecutive zeros between ones are the majority. To lower transmission cost, we

design a modified Huffman coding Table 6.1. Note that we use three bits (101) to

represent EOS. The more frequently used symbols are presented in a small-size bit

stream. Prefix bit streams are designed for unambiguous matching. By reversing the

Huffman coding (decoding) and ZR, we could recover an estimate of input matrix M̂.
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Table 6.1: Modified Huffman coding table
Size Number of zeros Bit stream
0 0 0
1 1 EOS 10
1 2 3 110
2 4 5 6 7 1110
3 8 9 . . . 14 15 11110
4 16 17 . . . 30 31 111110
5 32 33 . . . 62 63 1111110
6 64 65 . . . 126 127 11111110
7 128 129 . . . 254 255 111111110
8 256 257 . . . 510 511 1111111110
9 512 513 . . . 1022 1023 11111111110

Figure 6.3: Accumulative ratio of symbols in symbol list ΩS for (a) indoor channels at 5
GHz and (b) outdoor channels at 300 MHz generated by QuaDRiGa channel simulator.
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6.3 Experimental Evaluations

6.3.1 Experiment Setup

In our tests, we consider both indoor and outdoor channels. We generate CSIs using

widely used channel model softwares [39, 40]. Our configuration features a gNB of

height equal to 20 m at the center of a circular cell with 30 m radius for indoor setting

and 200 m radius for outdoor environment. We consider gNB with a 8 × 4 UPA and

gNB with a 32-element ULA serving single-antenna UEs in QuaDRiGa and COST2100

simulators, respectively. Both UPA and ULA elements have half-wavelength uniform

spacing.

For both indoor and outdoor channels, we utilize QuaDRiGa and COST2100 sim-

ulators [39, 40] using scenario features given in 3GPP TR 38.901 Indoor (QuaDRiGa)

and IndoorHall 5GHz(COST2100) at 5.1 and 5.3 GHz, and in 3GPP TR 38.901 UMa

(QuaDRiGa) and SemiUrban 300MHz (COST2100) at 300 and 330 MHz of uplink and

downlink with LOS paths, respectively. For each data channel, we consider Nf = 1024

subcarriers with 15K-Hz spacing and place Mf = 86 pilots with downsampling ratio

DRf = 12. We set antenna type to “omni”. To accurately assess recovery accuracy, we

assume UEs have accurate CSI estimates. We use NMSE as the performance metric.

We compare our framework with multiple DL-based models, CsiNet[5], CRNet[9],

CsiNetPro[17]. We apply DCT and DFT transformations in our framework, termed as

DCT-ZR and DFT-ZR respectively. For DL models, we set the number of epochs to

1000 and use batch size of 200. We start with learning rate of 0.001 before switching

to 5 × 10−4 after 300 epochs. Using channel simulators, we generate several indoor

and outdoor datasets, each containing 100,000 random channels. We use one seventh

of these channels as test data for performance evaluation. The remaining channels are

split into 2/3 and 1/3 for training and validation, respectively.
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Figure 6.4: NMSE performance versus BPP for DCT ZR with and without Huffman
coding under different compression ratios (four anchor points of each curve corresponds
to the use of quantization bits Q = 4, 6, 8, 32).

6.3.2 Benefit of Huffman Encoding

Without using Huffman encoding, transmission overhead of the 32×32 indicator matrix

I is 1024 bit and hence we need at least 1 bit per pixel (BPP) 1. Fig 6.4 shows the NMSE

performance with and without Huffman coding under different compression ratios and

quantization levels. We observe that DCT-ZR breaks through the theoretical boundary

of BPP = 1 by leveraging Huffman codes.

6.3.3 DCT and DFT transformation

DCT transformation provides very compact image representation and yields good com-

pression efficiency in classic JPEG application. On the other hand, DFT can effectively

transform complex periodic features into low-dimensional subspaces in CSI compres-

sion. Figure 6.5 shows the NMSE performance under different compression ratios at

various quantization levels for DCT-ZR and DFT-ZR in indoor and outdoor channels

generated by QuaDRiGa and COST2100. We see that DCT transformation deliv-

1We need at least one bit to show whether the corresponding element is transmitted or not for
each pixel (element) even if we choose CR =∞.
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ers better recovery performance for most scenarios (QuaDRiGa UMa Outdoor at 300

MHz, QuaDRiGa and COST2100 indoor at 5 GHz). Meanwhile, DFT performs better

in COST2100 outdoor channels. Figure 6.6 shows the power delay profile of different

channels under test. We discover that DCT performs less efficiently on COST out-

door channels that give large DS. Unlike DFT, the low-frequency DCT sidelobes folds

back to superimpose instead of wrapping around. This allows channels with low DS at

the center of low frequency to provide more sparse representation via DCT than DFT

transformation. Since our framework is not rigidly frozen to a specific transformation,

it allows UE to chose the best transformation based on the sparsity of results from

multiple transformations. Specifically, UE only need 1-bit information for indicating

the selected transformation between DFT/DCT to the serving gNB for better recovery

performance.

6.3.4 Testing different channel scenarios

Training based DL model optimization for different channel scenarios and compression

ratios elevates the difficulty for broad practical deployment of DL-based compressive

MIMO CSI feedback in FDD communications systems. On the other hand, our pro-

posed DCT-ZR approach is directly applicable to different channel scenarios, different

antenna sizes, and various compression ratios.

Figure 6.7 compares the NMSE performance of DCT ZR, CsiNet, CsiNetPro, CR-

Net at different compression ratios and quantization levels in QuaDRiGa channels.

For QuaDRiGa channels, DCT-ZR exhibits superior recovery performance at higher

feedback rate while delivering performance comparable to DL-based benchmarks when

considering smaller feedback bandwidth.

To illustrate the scalability and flexibility of the proposed framework, we test dif-

ferent propagation channels. Figure 6.8 shows the NMSE results for DCT-ZR, CsiNet,

CsiNetPro, and CRNet when BPP = 1 and 2, respectively for both QuaDRiGa and
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Figure 6.5: NMSE performance versus BPP for DCT and DFT ZR under different
compression ratios (four anchor points of each curve corresponds to the use of quanti-
zation bits Q = 4, 6, 8, 32).

Figure 6.6: Power delay profile for indoor and outdoor channels generated from
QuaDRiGa and COST2100 simulators.
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Figure 6.7: NMSE performance versus BPP for CsiNet, CRNet, CsiNetPro, DCT-ZR
under different compression ratios (four anchor points of each curve corresponds to the
use of quantization bits Q = 4, 6, 8, 32).

COST2100 channels. DCT-ZR continues to outperform other DL-based compressive

feedback models, except in the case of COST2100 indoor channels. Nevertheless the

simple DCT-ZR algorithm still delivers highly competitive performance in comparison

to the DL-models dedicated for each specific channel and are optimized through train-

ing with large size datasets, each with as many as 57,000 channels. These comparative

results confirm that the proposed simple, scalable, and flexible DCT-ZR algorithm is

highly effective in compressive CSI feedback and recovery of massive MIMO channel

information.

6.4 Conclusions

We propose a low complexity model-free CSI feedback framework for encoding and

recovering downlink CSI in massive FDD MIMO wireless systems. Inspired by the suc-

cess of image compression, this framework exploits sparsity of CSI matrices in massive
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Figure 6.8: NMSE performance versus BPP for CsiNet, CRNet, CsiNetPro, DCT-ZR
under different compression ratios (four anchor points of each curve corresponds to the
use of quantization bits Q = 4, 6, 8, 32).

MIMO wireless systems to design a JPEG-inspired compressive feedback mechanism.

Free from customized training for different propagation channels at various compres-

sion ratios, this modified feedback framework neither requires high volumes of training

data nor needs to configure multiple DL models for different RF channel environments

and/or different compression ratios. Unlike DL approaches, this new ZR model can

be directly applied to new and unseen channel scenarios without pre-training or cus-

tomization. This flexbile and scalable framework is simple to implement and amenable

to broad deployment in practical massive MIMO wireless systems. Numerical results

demonstrate DCT-ZR performance to be competitive with complex state-of-the art DL

models such as CsiNet, CRNet and CsiNet-Pro in most tested propagation channels.

To highlight, this new JPEG-based framework heralds a simple and easy-to-deploy

CSI feedback approach that do not require large dataset and can be rapidly deployed

without any prior training.
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Chapter 7

Physics-Inspired Deep Learning

Anti-Aliasing Framework in

Efficient Channel State Feedback

Acquiring downlink channel state information (CSI) at the base station is vital for op-

timizing performance in massive Multiple input multiple output (MIMO) Frequency-

Division Duplexing (FDD) systems. While deep learning architectures have been suc-

cessful in facilitating UE-side CSI feedback and gNB-side recovery, the undersampling

issue prior to CSI feedback is often overlooked. This issue, which arises from low density

pilot placement in current standards, results in significant aliasing effects in outdoor

channels and consequently limits CSI recovery performance. The main objective of this

work is to solve this issue by introducing a new CSI upsampling framework at the gNB

as a post-processing solution to address the gaps caused by undersampling. Leverag-

ing the physical principles of discrete Fourier transform shifting theorem and multipath

reciprocity, our framework effectively uses uplink CSI to mitigate aliasing effects. We

further develop a learning-based method that integrates the proposed algorithm with

the Iterative Shrinkage-Thresholding Algorithm Net (ISTA-Net) architecture, enhanc-
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ing our approach for non-uniform sampling recovery. Our numerical results show that

both our rule-based and deep learning upsampling methods significantly outperform

traditional interpolation techniques and current state-of-the-art approaches by 8-13 dB

and 2-10 dB, respectively, in terms of normalized mean square error.

In this chapter, in Section 7.1, we first described the aliasing issue in explicit CSI

feedback. Then, in Section 7.2, to tackle aliasing isse, we proposed a UL-CSI-aided CSI

upsampling method with exploitation of FDD multipath reciprocity. In Section 7.3,

we proposed an AI-driven CSI upsampling approach, SRCsiNet, which elegantly guides

each part of the NN with desired functions. In Section, 7.4, we further proposed an

advanced version of SRCsiNet, which is called SRISTANet, which take the advantages

of the two networks ISTANet and SRISTANet to perform CSI upsampling from non-

uniform sampled CSI. In Section 7.5, test results demonstrate superior performance,

good scalability, high efficiency of SRCsiNet and SRISTANet for high outdoor channels.

We also show the downsides of SRISTANet and the suggestions when applying to the

practical system. Finally, we give conclusion in Section 7.6.

7.1 Problem Formulation: Aliasing Issue in CSI

Feedback

7.1.1 DL CSI Preprocessing

We consider a single-cell MIMO FDD link where a gNB with Nb antennas serves a

plurality of single-antenna UEs. Following 3GPP technical specifications, sparse pilot

symbols (i.e., CSI-RS) are uniformly distributed in frequency domain for DL channel

acquisition. Assuming each subband contains Nf subcarriers with a spacing of ∆f and

a pilot spacing of DRS subcarriers, adjacent CSI-RSs are separated by DRS·∆f Hz.

We denote hi ∈ CMf×1 as CSI-RS DL CSI of the i-th antenna at gNB at Mf pilot
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positions. Let the superscript (·)H denote the conjugate transpose. By collecting CSI

of each gNB, a pilot sampled DL CSI matrix HRS relates to the full DL CSI matrix

H ∈ CNb×Nf via

HRS = HQDRS
=

[
h1 h2 · · · hNb

]H
∈ CNb×Mf ,

where QDRS
= [e1, e1+DRS

, ..., e1+(Mf−1)DRS
] ∈ CNf×Mf is a downsampling matrix with

pilot rate DRS with ei ∈ CNf being the i-th column vector of an identity matrix of size

Nf .

7.1.2 DL CSI Feedback

Autoencoder has shown success in CSI compression. An encoder at UE compresses

its estimated DL CSI based on reference signals for UL feedback and a decoder at

gNB recovers the CSI according to the feedback from UE. Before compression and

after recovery, some works [5,50] may or may not transform CSI into the domain with

sparse features as pre-processing, which usually only pose slight impact. Many have

exploited convolutional and fully connected layers to compress and recover the DL pilot

CSI via

Encoder: q = fen(HRS +N),

Decoder: ĤRS = fde(q).

We note that the size of the codeword q ∈ C
NbMf
CR for the UL feedback is determined

by a specific compression ratio CR. We can evaluate the feedback loss by the NMSE

of the pilot DL CSI:

LossFB(ĤRS,HRS) =
D∑

d=1

||ĤRS,d −HRS,d||
2

F

||HRS,d||2F
,
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where subscript d denotes the d-th random test.

7.1.3 Aliasing Issue

Fig. 7.1 demonstrates the block diagram of a practical explicit CSI feedback framework.

Since UE can only acquire HRS, gNB needs to upsample ĤRS the actual full DL CSI,

denoted as H after CSI encoding and decoding for precoder design. Our primary

interest shifts towards the total discrepancy between the actual full DL CSI, denoted

as H, and the estimated full DL CSI, denoted as Ĥ. The discrepancy is given as

follows:

Loss = NMSE(Ĥ,H) =
D∑

d=1

||Ĥd −Hd||
2

F

||Hd||2F
,

Ĥ = f↑(fde(fen(HRS +N))),

where f↑(·) is the upsampling operation and Ĥ ∈ CNb×Nf is the estimated DL CSI

after upsampling/interpolation.

Base Station (FDD System)
Explicit CSI Feedback

UE

Channel Estimation

CSI Upsampling

DL Training (CSI-RS)

UL Feedback

Time

CSI Encoder

CSI Decoder
Uplink

Channel 𝐇𝑅𝑆

෡𝐇𝑅𝑆

෡𝐇

Figure 7.1: Block diagram of a CSI feedback framework. To the best of our knowledge,
all previous works neglected the necessity to upsample from RS CSI to full DL CSI or
they assumed that UE is able to acquire full DL CSI, which is not practical. This work
aims to design a CSI upsampler that leverages uplink channels and side information
against the aliasing issue.
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Figure 7.2: Illustration of the total discrepancy related to the losses at different stages.
∆1, ∆2 and ∆3 denote the distortions from channel estimation at UE side, feedback
from UE to gNB, and upsampling, respectively.

As shown in Figure 7.2, the total discrepancy in recovering the full DL CSI, denoted

as Loss, arises from three main factors: channel estimation (CE) noise N, feedback

loss LossFB, and upsampling/interpolation loss Loss↑. The CE loss, resulting from

imperfect CE at the UE side, has been effectively addressed by rule-based methods

like Least Square (LS) and MMSE estimation [51], as well as advanced learning-based

denoising networks [52, 53]. Feedback loss, due to limited CSI feedback, has been

extensively explored in existing CSI feedback frameworks [5, 13]. However, there has

been less focus on upsampling loss. This loss occurs when interpolating full DL CSIs

from a limited number of known estimated pilot DL CSIs. While feedback loss LossFB

is typically predominant in indoor propagation channels, the insufficient density of

current CSI-RS placements means that upsampling loss Loss↑ becomes a significant

challenge in recovering DL CSIs with large delay spread (i.e., fast-varying in frequency

domain).

Prior research often assumes adequate pilot density in the frequency domain for all
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types of channels. However, the density of pilot placement in CSI-RS, as specified in

cellular network standards [23], falls short for outdoor scenarios, particularly for chan-

nels with a high delay spread. This leads to a significant issue: the CSI-RS DL CSI

matrix, HRS, may experience aliasing due to downsampling, rendering it impossible to

accurately recover the full DL CSI, H. Let us define the pilot sample rate in frequency

as SF and the maximum delay tap as ∆tmax seconds. If
1

2SF
≤ ∆tmax, the channels cap-

tured from CSI-RS are considered to be aliased signals. Generally, recovering aliased

signals (i.e., aliased downsampled (DS) CSI) to their original form (i.e., full CSI) is not

feasible.

To give some realistic examples, based on the highest density of placement of CSI-

RS, which is per 12 subcarriers with a spacing of 15 kHz, the frequency sampling

interval is 180 kHz. According to the Nyquist theorem, the maximum measurable de-

lay is half the inverse of the frequency interval, i.e., 1
2·180 kHz

= 2.778 microseconds.

Consequently, any path with a delay greater than the maximum measurable delay will

wrap around into the low delay region (i.e., so-called aliasing effect). Specifically, once

the delay spread exceeds 1.4 microseconds, aliasing effects are inevitable regardless of

the mean excess delay. If the mean excess delay is significant, aliasing can also occur

even if the delay spread is less than 1000 nanoseconds. In practical field tests [54, 55],

some research findings corroborate our points by demonstrating that, in the sub-6 GHz

band, the delay spread of some measured channels can exceed 1000 nanoseconds. Ad-

ditionally, according to the 3D channel model study for 5G NR [56], the delay spread of

about 20% of NLoS Urban Macro channels is greater than 1 microsecond, as illustrated

in Fig. 7.3.

However, if the DS signals satisfy certain constraints, we may recover the full CSI

with aids of side information, which will be introduced in the following sections. Pre-
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Figure 7.3: The empirical delay spread CDF of 10000 NLoS Urban Macro channel
realizations according to 3D channel model of 5G NR.

vious studies often assume an overly idealistic approach to upsampling/interpolation,

which can be a critical operation in channels with a large delay spread, and results in

a bottleneck in reducing the total discrepancy1. To enhance the overall performance,

our focus should shift to improving this critical operation rather than the other two.

7.2 UL-CSI aided Upsampling with Aliasing Sup-

pression

7.2.1 CSI Upsampling with Side Information

For an arbitrary channel H ∈ CNb×Nf in frequency domain and its DS version HRS =

HQDRS
∈ CNb×Mf by a factor of DRS. If we upsample the HRS by inserting DRS − 1

1As the three operations (estimation, feedback, and interpolation) are sequential, the one causing
the largest loss becomes the bottleneck in reducing the total discrepancy. This operation is termed
the critical operation.
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zeros between any two consecutive samples along frequency domain, we have

HDS[:, j] =


H[:, j], ∀j ∈ ΨRS,

0, ∀j /∈ ΨRS,

(7.1)

where ΨRS = {0, DRS, ..., (Mf − 1)DRS} is a downsampling index set. Note that HDS

consists of the entries of HRS at frequencies with pilots and zeros elsewhere. By

DFT/IDFT transformation, the full and DS DL CSI in beam-delay (BD) domain can

be obtained as follows:

HBD = FABHFFD ∈ CNb×Nf ,

HDS,BD = FABHDSFFD ∈ CNb×Nf , (7.2)

where FAB ∈ CNb×Nb and FFD ∈ CNf×Nf are DFT and IDFT transformation ma-

trices, respectively. The subscripts AB and FD denote the transformation from an-

tenna/frequency to beam/delay domains, respectively. Note that we use subscript BD,

AD, AF to denote CSI in beam-delay, angle-delay, and angle-frequency domains, re-

spectively. We use no subscript to denote CSI in the original domain which is antenna-

frequency domain.

Given the DFT shifting theorem[57], after IDFT transformation, we have the fol-

lowing relationship between the full and DS DL CSIs:

HDS,BD[i, j] =

HBD[i, j] +HBD[i, j +Mf ]+

...+HBD[i, j +Mf (DRS − 1)]

DRS

,∀0 ≤ j < Mf

HDS,BD[i,mod(j,Mf )], otherwise

.
(7.3)

Note that HDS,BD is periodic in the delay domain with a period of Mf = Nf/DRS. If
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HBD[i, j] ̸= 0 for any j > Mf , we can say that the aliasing effect occurs and it cannot be

recovered to the original version H in general cases since we can only measure HDS,BD,

the sum of the multipaths. However, since HDS,BD is periodic in the delay domain with

a period of Mf , which matches the wrapped-around effect due to downsampling, the

IDFT transformation unwraps the delay bins of HBD to the original delay positions.

Thus, H can be recovered ifHBD[i, j] in the delay domain satisfies the two requirements

shown below:

• Bin Isolation Property: for any non-zero HDS,BD[i, j] in Eq.(7.3), only one

from theDRS aliased copiesHBD[i, j],HBD[i, j+Nf/DRS], ...,HBD[i, j+Nf (DRS−

1)/DRS] is non-zero. Namely, the delay bins (i.e., HBD[i, j], j > Mf ) and the low-

delay bin (i.e., HBD[i, j], j ≤ Mf ) are isolated after wrapped-around in its DS

version. If the bin isolation property holds, each non-zero DS signal HDS,BD[i, j]

in delay domain maps to a scaled unique delay bin in the original signal (i.e.,

HDS,BD[i, j] = HBD[i, nk]/DRS). Note that nk can only be j, j + Mf ,..., or j +

(DRS − 1)Mf .

• Knowledge of bin locations: we have the perfect knowledge map Φ ∈ CNb×Nf

with ones at the positions with non-zero values in the the full CSI matrixHBD[i, j]

and zeros elsewhere.

Figure 7.4 shows a simple illustration for the single antenna case with the intermediate

results of the proposed CSI upsampling approach using the bin location information.

If the full CSI matrix HBD satisfies the above two requirements, HBD can be ideally

obtained by

ĤBD = DRSΦ ◦HDS,BD ≈ HBD.

Note that ◦ denotes the operation of the element-wise product. Φ acts like a

bandpass filter in BD domain. Although the two requirements are ideal, they lead

us to a rationale to deal with aliasing problems. That is, to deal with sparse signals,
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we can suppress aliasing peaks with the knowledge of the non-zero bin locations as a

bandpass filter. In practice, DL CSI is somehow sparse so that a quasi-bin isolation

property can hold. As for the knowledge of bin locations of DL CSI, we can estimate

it according to UL CSI at base stations.

7.2.2 Multipath Reciprocity

Typically, acquiring the exact delay bin location information without the original DL

CSI, denoted as HBD, is challenging. However, in communications systems, the DL

CSI HBD is often closely correlated with the UL CSI, which is readily available at

base stations, especially in terms of magnitudes in the BD domain. Although DL

and UL CSIs do not exhibit full correlation in FDD wireless systems, as illustrated in

Figure 7.5, they often share similar large-scale multipath geometries. This multipath

reciprocity results in comparable delay and angle profiles, a finding supported by field

tests and mathematical analysis [58, 59]. Therefore, UL CSI in the BD domain is

typically considered a reliable estimate for the AD profiles of DL CSI. Owing to the

relatively high pilot placement density in UL CSI, there are no aliasing effects, allowing

for the design of a bandpass filter to mitigate aliasing effects in DL CSIs.

In modern communication systems, as depicted in Figure 7.6, the pilot placement

density in the frequency domain of the Sounding Reference Signal (SRS) is much higher

(every two subcarriers) compared to that of CSI-RS (every 12 subcarriers). Conse-

quently, the maximum non-aliasing delay (i.e., measurable delay) of UL CSI is approx-

imately six times greater than that of DL CSI, virtually eliminating aliasing effects in

UL CSIs. Based on the principle of multipath reciprocity, this work proposes designing

the bandpass filter Φ using UL CSI information.
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Figure 7.4: Illustration of CSI upsampling with side information. (A) shows the orig-
inal CSI magnitude in delay domain. (B) demonstrates the CSIRS CSI magnitude in
delay domain when DRS = 2. We can find that the high negative delay peak wraps
around (R = 1) into the low delay region, leading aliasing effect. (C) shows the DS
CSI magnitude in delay domain by inserting zero inbetween samples of CSIRS CSI in
frequency domain. The green curve represents an ideal binary bandpass filter Φ to be
the side information. (D) is the resulting DL CSI magnitude in delay domain after
applying the binary bandpass filter Φ.
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Figure 7.5: Illustration of multipath reciprocity between UL and DL propagation chan-
nels.
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7.2.3 UL Masking: UL-Assisted CSI Upsampling with Alias-

ing Suppression

Assume that we have perfect UL CSI HUL. According to the multipath reciprocity

between UL and DL CSIs, we can design a two-dimensional bandpass filter based on

the UL CSI magnitude in BD domains as follows:

ΦUL[i, j] =


0, |HUL,BD[i, j]| < T,

1, |HUL,BD[i, j]| ≥ T,

HUL,BD = FABHULFFD ∈ CNb×Nf ,

where we set T = R ·
√
P and P is the average power of HUL,BD. We next can estimate

the BD domain DL CSI by

ĤBD = ΦUL ◦HDS,BD.

Due to the multipath reciprocity, the filter can effectively suppress the aliased copies

as long as we design a proper threshold T which determines the pass band in delay

and angle domains. However, it is challenging to find a reasonable threshold T for all

CSIs.

7.3 Physic-inspired AI-driven Aliasing Suppression

Previous works [11, 18, 19] have been successfully applied to in CSI compression and

recovery. Enough pilot sampling rate was usually assumed. In fact, following the

3GPP 5G NR standard [23], UEs estimate the CSI-RS channels and send channel

state feedback. However, the frequency density of CSI-RS is not sufficient to capture

the fast channel variation along the frequency domain. Even if a perfect CSI feedback is

achieved, the aliasing loss due to downsampling is theoretically not possible to recover.
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7.3.1 Model Architecture

There are plenty of successful network architecture which can enhance image details

while maintaining visual fidelity after SR operation. In a sense of information theory,

the model learns prior information from the training data to fill the information gap

between the target and desired images. There are lots of common features in images

such as facial features, colors textures, edges and shapes. For example, as long as the

deep learning model can recognize a specific patch as a face, it can largely lower the

uncertainty to upsample the LR images since there exists nothing else except facial

features. However, unlike SR task in computer vision, the details of CSIs are random

and difficult to learn as prior information stored in the deep learning model. To fill

the information gap, we propose to utilize UL CSI information by exploiting multipath

reciprocity against aliasing effects due to an insufficient pilot sampling rate.

This section introduces a general learning framework designed to effectively up-

sample LR tensors into SR equivalents. This process is akin to the SR challenge in

computer vision, where numerous successful networks [60–62] have been developed to

enhance image details while preserving visual fidelity after SR operation. From the

perspective of information theory , the model employs prior knowledge obtained from

training data to fill the gap between actual and desired images. Certain image features,

including facial characteristics, colors, textures, edges, and shapes, are common across

various images. These features are retained as prior knowledge within the model, ready

to be utilized as necessary to aid in image processing tasks. For instance, if a deep

learning model identifies a particular segment as part of a face, it significantly reduces

the uncertainty involved in upscaling LR images, since the expected features are con-

fined to those associated with faces.

However, unlike the SR task in computer vision, the intricacies of CSI are random

and challenging to learn as pre-existing information within a deep learning model. To
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overcome this information gap, we propose leveraging UL CSI data, exploiting the

principle of multipath reciprocity to counteract the aliasing effects stemming from an

inadequate pilot sampling rate. Figure 7.7 gives a high-level understanding of the

proposed architecture. This framework is designed to be deployed at base stations

and consists of three modules: a) non-aliasing selection map generation, b) true peak

recovery, and c) CSI attention and refinement which are described in detail as follows:

True Peak Recovery

This module aims to upsample LR DL CSIs by inserting zeros and transform them

into the beam and delay domains. By doing so, we can have a DL CSI map in BD

domain which is periodic in delay domain. According to the DFT shifting invariance

property, we can map the aliasing delay bins to its original positions by inserting D−1

zeros in between samples. On the other hand, this will also lead to more false peaks

in the repetition map at the false delay positions. To implement, we basically follow

Eqs. (7.1) and (7.2) to generate the desired repetition map HBD,DS. We describe these

operations as a linear function fTPR(·) such that HBD,DS = fTPR(HRS).

Non-aliasing Selection Map Generation (Bandpass Filter Design)

This module aims to generate a bandpass filter in the BD domain which can suppress

aliasing peaks at wrong delay positions. Regarding the multipath reciprocity, we can

reply on UL CSI to infer where the true peaks are. Instead of using a rule-based

approach mentioned in the previous section, we adopt a neural network to design a

bandpass filter. We first transform the HR UL CSI into BD domain as HBD,UL with

the same size of the matrix HBD,DS to be filtered. We then feed HBD,UL into three

convolutional layers with two ReLU activations at the outputs of the first two convo-

lutional layers. We then utilize a sigmoid function as the last activation function to

output the bandpass filter ΦUL since it perfectly matches the soft filtering purpose (i.e.,
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Figure 7.7: General architecture of the proposed physic-inspired AI-driven aliasing
suppression framework. This framework consists of two parts. The first part is CSI
compression and recovery which are deployed at UE and base station sides, respectively.
The other part is the SR operation for the LR CSIs.
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Figure 7.8: Network architecture of SRCsiNet. It consists of three modules: 1) Non-
aliasing selection map generation, 2) True peak generation and 3) CSI attention and
refinement.

model cannot only yield zeros to suppress aliasing delay positions and ones elsewhere,

but also yield values between 0 and 1 to represent the model uncertainty and provide

flexibility). We called it as Bandpass Filter Design (BFD) Block. For brevity, we can

express the output of the branch of the model as

ΦUL = fBFD(HUL). (7.4)

CSI Attention and Refinement

This module aims to filter out the aliasing peaks and do refinement to generate the final

DL CSI estimates which can be expressed as Ĥ = fAR(ΦUL ◦HBD,DS). The function

fAR(·) aims to further refine and smooth the filtered result, which may have some

artifacts due to the imperfect bandpass filter ΦUL and the overlapped delay bins in

HBD,DS. We apply two residual blocks with SRCNN block [60] as the backbone to

refine the estimate first in BD domain and then in AF domain.
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7.3.2 Loss Function Design

This network aims to minimize the upsampling loss Loss↑ which is defined as

Loss↑(ΘBFD,ΘAR) =
1

D

D∑
d

||Ĥd −Hd||2F ,

=
1

D

D∑
d

||fAR(ΦUL,d ◦HBD,DS)−Hd||2F ,

=
1

D

D∑
d

||fAR(fBFD(HUL,d) ◦HBD,DS)−Hd||2F ,

where ΘBFD and ΘAR are trainable parameters of the functions fBFD(·) and fAR(·),

respectively.

7.3.3 Limitations and Failure Scenarios

As mentioned in Section 7.2.1, the full DL CSI H can be recovered if HBD satisfies

two requirements: bin sparsity and knowledge of bin locations. Low sparsity tends to

cause overlapped delay bins, which cannot be separated. Even if channel sparsity is

high but the magnitude correlation is low, the proposed approaches would generate a

poor-quality mask that cannot correctly mitigate aliasing delay bins. Yet, considering

the propagation model and path reciprocity, the two requirements are true for most

cases. If the two requirements are not met, in fact, there is little else we can do from

the point of view of information theory.

7.4 Efficient Channel State Feedback with Aliasing

Suppression from Non-uniform Sampling

The true delay position information can significantly improve the CSI recovery for

high-delay scenarios. In the perspective of information theory, if we can increase the
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mutual information between the input and the desired output, we can further improve

the CSI recovery accuracy.

According to the 3GPP 5G-NR standards [23], the primary and secondary syn-

chronization signals (PSS and SSS) play crucial roles in cell identification and frame

synchronization, appearing periodically every 25 subframes (approximately 25ms) and

spanning 64-128 subcarriers in bandwidth. Beyond these primary functions, as depicted

in Figure 7.9, UEs can also utilize PSS and SSS to estimate DL CSI, treating these

signals as virtual pilots for DL CSI acquisition. Furthermore, the Physical Broadcast

Channel (PBCH), instrumental for broadcasting system information and aiding UEs

in network access, also contributes to DL CSI estimation by UEs, acting as additional

virtual pilots. This dense placement of virtual pilots (SSS, PSS, and PBCH) aids in

detecting multipath effects with large delays, which CSI-RS might miss, despite the

mismatch in bandwidth coverage with the bandwidth part (BWP) designated for UEs.

In an ideal scenario, combining the channels from sparse uniform pilots (CSI-RS)

with those from dense virtual pilots would enable us to harness the strengths of both

pilot types, leading to more accurate CSI recovery. However, the effectiveness of our

proposed architecture, SRCsiNet, hinges on maintaining a uniform sampling relation-

ship between input and output to exploit the inversion discrete Fourier transform

(IDFT) shifting invariance property.

This section will introduce the integration of a compressive sensing-based deep

learning model into SRCsiNet, to address the challenges posed by a nonuniform pilot

setup while effectively employing a bandpass filter. We will begin by outlining the

compressive sensing-based CSI upsampling method, followed by an introduction to a

novel framework, SRISTA-Net.
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7.4.1 Compressive sensing based CSI upsampling

As illustrated in Figure 7.9, considering the extra subcarrier-level DL CSIs, we can

express the non-uniform pilot DL CSI, termed as LR DL CSI for simplicity, as

HLR[i, j] =


H[i, j],∀j ∈ ΨP ,

0,∀j /∈ ΨP ,

(7.5)

where ΨP = ΨRS ∪ Ψex is the union of ΨRS and Ψex = {I, I + 1, ..., I + P − 1} with

I being the smallest subcarrier index in SSS, PSS or PBCH. Ψex is the index set of

consecutive pilots with size of P . We can reformulate the LR DL CSI based on the full

AD DL CSI as

HLR = HI[:,ΦP] = HFFDF
H
FDI[:,ΦP]

= HADF
H
FDI[:,ΦP] = HADF̃DF,

(7.6)

where F̃FD = FFD[:,ΦP] ∈ CNf×|ΦP| is the trimmed DFT transformation matrix.

Mathematically, the goal of compressive sensing reconstruction is to infer the orig-

inal signal x ∈ CN from a low-dimensional measurement y = Φx ∈ CM , where

M ≪ N . By transposing Eq.(7.6), we have an exact projection of the problem of in-

terest to a compressive sensing reconstruction problem (i.e., y = HLR[i, :]
T , Φ = F̃T

FD,

x = HAD[i, :]
T where i = 1, ..., Nb). This inversion is typically an ill-posed problem.

However, it can be solved by compressive sensing reconstruction since the sparsity of

the original CSIs regularizes the possible outputs.

7.4.2 ISTA-Net Framework

Previous works have proposed a deep unfolding approach called ISTA-Net [48]. The

basic idea of ISTA-Net is to map the previous ISTA [47] approach updating steps to a

deep learning network. This architecture consists of a fixed number of phases, each of
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Figure 7.10: Network architecture of ISTA-Net.

the phases performing one iteration in the classic ISTA algorithm.

Figure 7.10 shows the deep learning network of the ISTA-Net. For each phase in

ISTA-Net, it consists of two modules, namely the r(k) module and the x(k) module.

The following items describe the operation in k-th phase as follows:

• r(k) Module: This aims to produce intermediate result which is the same as ISTA

algorithm. This step is to optimize the channel fidelity ||F̃T
FDx

(k−1) −HLR[i, :]
T ||

2

2.

To maintain the ISTA architecture while increasing the channel similarity, a

trainable step size ρ(k) to vary across different phases is adopted so that the

output of this module with input x(k−1) for i-th antenna can be represented as:

r(k) = x(k−1) − ρ(k)F̃FD(F̃
T
FDx

(k−1) −HLR[i, :]
T ). (7.7)

• x(k) Module: It aims to compute x(k) according to the intermediate result r(k),

which is given by

x(k) = F̃ (k)(soft(F (k)(rk), θ(k))), (7.8)

where a pair of functions F (k) and F̃ (k) which are inverse of each other such that

F̃ (k)(F (k)(·)) = I(·) with I(·) being an identity function. Such a constraint on

F (k) and F̃ (k) is called symmetry constraint.

7.4.3 SRISTA-Net Framework

The ISTA-Net can deal with non-uniform sampling but cannot exploit side information.

Thus, in this subsection, we propose a new framework which combines ISTA-Net and
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the proposed SRCsiNet to exploit the advantages of the two networks, which is termed

as SRISTA-Net.

Figure 7.11 shows the deep learning network of the proposed network SRISTA-

Net. We incorporate the SRCsiNet features into ISTA-Net by appending an additional

block, Reciprocity Assisting (RA) Block, before the r(k) module. This block aims to

suppress the aliasing effects of the input x(k−1) prior to solving the proximal mapping

by applying the UL CSI assisted bandpass filter according to multipath reciprocity.

We feed the magnitude of UL CSI HUL,BD in the BD domain into two convolutional

layers with ReLU and sigmoid functions, respectively, to obtain a bandpass filter ΦUL.

Intuitively, for early phases, the model tends to heavily rely on UL CSI information

and vice versa. Therefore, we design a weight matrix W(k) ∈ CNb×Nf to adjust the

dependency to the UL CSI at the k-th phase. We can rewrite the output of RA block

as

R(k)(r(k),HUL,BD) = W(k) ◦ΦUL ◦ r(k)BD + (1−W(k)) ◦ r(k)BD, (7.9)

where r
(k)
BD is the r(k) after transformation to BD domain. We then feed the output into

the x(k) module in ISTA-Net to minimize the constraints of the L1 norm.

7.4.4 Loss Function Design

Given the training data pair {(HDS,HUL,BD,H)}Dd=1, SRISTA-Net first transforms HDS

into its AD version HDS,AD as input and feeds into UL CSI information HUL,BD in each

phase to generate output x
(K)
d . Note that Hd, x

(k)
d , and r

(k)
d are all in the AF domain.

To reduce the discrepancy between Hd and x(K)d while maintaining the symmetry

constraint F̃ (k)(F (k)(·)) = I(·),∀k = 1, ..., K, we design the following loss function:

Lall(Θ) = Ldiscrepancy + γLsymmetry, (7.10)
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Figure 7.11: Network architecture of SRISTA-Net. For the construction of W(k),
we employ a pair of 2D convolutional layers followed by max pooling operations. This
approach is designed to refine the output, focusing it more acutely on specific segments
of the side information. Subsequently, integrating a sigmoid layer as the terminal
activation mechanism compels W(k) to execute a binary fusion of the processed and
unprocessed outcomes, specifically between ΦUL ◦ r(k)BD and r

(k)
BD. As for the generation

of ΦUL, we apply BFD block in Eq. 7.4 mentioned in the previous section.
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Ldiscrepancy =
D∑

d=1

∥∥∥x(K)
d −Hd

∥∥∥2

2
, (7.11)

Lsymmetry =
D∑

d=1

K∑
k=1

∥∥∥F̃ (k)(F (k)(q
(k)
d ))− q

(k)
d

∥∥∥2

2
, (7.12)

where q
(k)
d = R(k)(r(k),HUL,BD) is the output of the RA block at the k-th phase. D,

K and γ are the total number of training data size, the total number of SRISTA-Net

phases, and the regularization parameter, respectively. In this chapter, we follow the

original manuscript of ISTA-Net for the value of γ = 0.01.

7.4.5 Initialization

Like traditional iterative compressive sensing reconstruction, the proposed approach

requires an initialization denoted by x(0) as illustrated in Figure 7.11. From Eq.(7.6),

we know HLR[i, :]
T = F̃T

FDHAD[i, :]
T ,∀i = 1, ..., Nb. We take the LS solution to this

problem for initialization such that

x(0) = F̃∗
FD(F̃

T
FDF̃

∗
FD)

−1HT
LR (7.13)

To clarify the complex operations of SRISTA-Net, Alg. 7.1 shows the pseudo code of

SRISTA-Net Framework.

7.5 Experimental Evaluations

7.5.1 Experiment Setup

Tests were focused on outdoor channels using widely used channel model software,

QuaDriGa. The simulator considers a gNB with an 8 × 4 UPA and 32-element ULA

serving single-antenna UEs, respectively, with half-wavelength uniform spacing. 2000

UEs uniformly distribute in the cell coverage which is rectangular region with size
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Algorithm 7.1 SRISTA-Net Framework

Require: HLR, HUL,BD, K, γ
Ensure: Recovered DL CSI x(K) in AD domain
1: Initialize: x(0) = F̃∗

FD(F̃
T
FDF̃

∗
FD)

−1HT
LR

2: for k = 1 to K do
3: ISTA-Net r Module:
4: r(k) = x(k−1) − ρ(k)F̃FD(F̃

T
FDx

(k−1) −HT
LR)

5: RA Block:
6: ΦUL = fBFD(HUL,BD)
7: W(k) = Sigmoid(W1∗MaxPool(RuLU(Conv2D(RuLU(Conv2D((HUL,BD)))))))

8: r
(k)
BD = FBAx

(k−1)

9: r(k) = FH
BA(W

(k) ◦ΦUL ◦ r(k)BD + (1−W(k)) ◦ r(k)BD)
10: ISTA-Net x Module:
11: x(k) = F̃ (k)(soft(F (k)(r(k)), θ(k)))
12: end for
13: Loss Function:
14: Lall(Θ) = Ldiscrepancy + γLsymmetry

15: Ldiscrepancy =
∑D

d=1 ∥x
(K)
d −Hd∥22

16: Lsymmetry =
∑D

d=1

∑K
k=1 ∥F̃ (k)(F (k)(q

(k)
d ))− q

(k)
d ∥22

of 250(m)× 300 (m). The scenario features given in 3GPP TR 38.901 UMa were

followed, using Nf = 667 subcarriers with 15K-Hz spacing and Mf = 55 pilots with

a downsampling ratio of DRS = 12 as a common setting if not specified and assuming

precise CSI estimates at the UEs. The NMSE metric was used to assess performance.

For DL-based models, we conducted training with a batch size of 32 for 1500 epochs,

starting with a learning rate of 0.001 and setting an early stop criterion that validation

loss does not improve for 100 epochs. We generate outdoor data sets using QuaDRiGa

channel simulators. We consider 16 TTIs for each out of 2000 UEs. In total, the

dataset consists of 32,000 channels. We used one-tenth of the channels for testing and

validation, respectively. The remaining four-fifths channels are for training.

For ease in evaluating the degree of aliasing, it is common to use delay spread as

a performance metric. A channel with a larger delay spread tends to suffer aliasing

effects more severely since it contains more high-delay multipaths. We cluster all the

3200 test CSI data into 3 clusters according to their RMS delay spread: low (smaller
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than 500 ns), medium (inbetween 500 ns and 1000 ns), high-delay spread (larger than

1000 ns). The low, medium and high delay spread clusters have 883, 1221 and 1095

test cases and are denoted as CL1, CL2 and CL3, respectively.

7.5.2 UL Assisted Bandpass Filter Design for Anti-aliasing

Figure 7.12 displays the NMSE performance of the UL masking method at various R

levels compared to traditional interpolation across different CSI-RS placement densi-

ties. At a high CSI-RS density (DRS = 3), the performance disparity between these

approaches is minimal, notable mainly in the complete test dataset and CL1. How-

ever, a typical DRS value, being either 12 or 24, introduces a more significant aliasing

effect. For DRS = 12, the performance divergence becomes more pronounced, as the

NMSE metrics show effective mitigation of aliasing effects, particularly in the high-

delay-spread cluster, CL3.

In Figure 7.13, the NMSE performance of the UL masking approach at varying R

levels for DRS = 3, 6, 12 is depicted. This figure reveals the sensitivity of the proposed

method to the choice of the UL masking parameter R. In cases of CSI with intense

aliasing effects, a higher R is necessary to effectively suppress the aliasing copies.

Conversely, a large R might be excessively aggressive for channels with a low delay

spread, potentially compromising the integrity of the actual delay peaks.

7.5.3 SRCsiNet

In addition to the two upsampling approaches mentioned in the previous subsection, we

compare them with the proposed learning-based SRCsiNet and SR network, SRCNN

[60] and a deep unfolding framework, ISTA-Net[48]. Figure 7.14 shows the NMSE

performance of these alternatives for complete dataset and the three clusters. We

can discover that ISTA-Net performs better than UL masking approach in CL1 due

to the advantage of unfolding compressive sensing approach but performs poorly in
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Figure 7.12: NMSE performance of the proposed UL-assisted anti-aliasing and tradi-
tional linear interpolation for different CSI-RS placement densities (DCSI-RS = 3, 12).
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CSI-RS placement densities (DCSI-RS = 12, 6, 3). We can clearly know that the optimal
selection of the threshold level R varies with the aliasing effects. For the channels with
strong aliasing effects, we require a larger R to suppress aliasing copies.
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Figure 7.14: NMSE performance of the learning based UL-assisted framework, SRC-
siNet, and the alternatives in comparison for different clusters (i.e., all all samples and
the samples with low, medium, large delay spread).

CL3. That is because ISTA-Net does not introduce side information for dealing the

aliasing effect. Clearly, by introducing UL CSI and providing flexibility in designing

the bandpass filter, the overall performance can be improved by approximately 8 dB,

which is significant. Figure 7.15 shows the visualization of SRCsiNet. We can find

that the bandpass filter design can effectively suppress the aliasing peaks and retain

the delicate detail of the true peaks at the same time.

7.5.4 End-to-end CSI Recovery

In this subsection, we would like to demonstrate the importance of optimizing the

upsampling discrepancy to improve overall performance. Table 7.1 shows the NMSE

performance from the end-to-end, feedback, and upsampling operation for SRISTA-

Net, Interpolation, and ISTA-Net. End-to-end NMSE performance would be bounded

by either feedback loss or upsampling discrepancy. However, we can first discover that

end-to-end performance is generally bounded by upsampling loss in the considered

UMa channels. This means that upsampling loss plays an critical role for improving the

overall performance. Lastly, we can also find that the end-to-end NMSE performance
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Table 7.1: The end-to-end NMSE performance of SRISTA-Net, Interpolation and
ISTA-Net for different numbers of virtual pilots under compression ratio is 4.

P = 0 P = 64 P = 128
DualNet-MP + SRISTA-Net DualNet-MP + SRISTA-Net DualNet-MP + SRISTA-Net

ALL CL1 CL2 CL3 ALL CL1 CL2 CL3 ALL CL1 CL2 CL3
Loss -12.8 -16.2 -12.5 -9.8 Loss -15.5 -19.4 -15.8 -11.9 Loss -17.5 -21.6 -17.9 -13.7

LossFB -14.5 -16.7 -13.6 -12.6 LossFB -19.6 -23.2 -19.7 -16.3 LossFB -22.2 -26.2 -22.7 -18.6
Loss↑ -17.2 -24.5 -18.0 -12.6 Loss↑ -17.6 -22.3 -18.7 -13.4 Loss↑ -19.4 -24.0 -20.1 -15.3

DualNet-MP + Interpolation DualNet-MP + Interpolation DualNet-MP + Interpolation
ALL CL1 CL2 CL3 ALL CL1 CL2 CL3 ALL CL1 CL2 CL3

Loss -2.7 -8.3 -1.9 0.7 Loss -3.2 -8.9 -2.3 0.2 Loss -3.6 -9.4 -2.8 -0.1
LossFB -14.5 -16.7 -13.6 -12.6 LossFB -19.6 -23.2 -19.7 -16.3 LossFB -22.2 -26.2 -22.7 -18.6
Loss↑ -2.7 -8.6 -1.9 0.7 Loss↑ -3.2 -9.0 -2.3 0.3 Loss↑ -3.6 -9.5 -2.8 -0.1

DualNet-MP + ISTA-Net DualNet-MP + ISTA-Net DualNet-MP + ISTA-Net
ALL CL1 CL2 CL3 ALL CL1 CL2 CL3 ALL CL1 CL2 CL3

Loss -6.7 -13.5 -8.1 -1.9 Loss -13.3 -18.3 -14.2 -9.0 Loss -14.3 -19.5 -15.4 -10.0
LossFB -14.5 -16.7 -13.6 -12.6 LossFB -19.6 -23.2 -19.7 -16.36 LossFB -22.2 -26.2 -22.7 -18.6
Loss↑ -7.2 -15.8 -9.1 -2.1 Loss↑ -14.5 -20.5 -15.9 -9.9 Loss↑ -15.3 -20.8 -16.5 -10.8

improvement is about 6-10 dB compared to other upsampling approaches without

introducing UL CSI information.

7.5.5 Solving Overfitting problem

The SRISTA-Net architecture, necessitating 0.2 million parameters, faces a significant

challenge due to its size relative to the training data, often leading to overfitting is-

sues. This subsection highlights the effectiveness of Data Augmentation (DA) in our

approach. Table 7.2 presents the NMSE performance for varying numbers of virtual

pilots, comparing scenarios before and after implementing DA. A major hurdle in

deploying learning-based models at gNB is the acquisition of real CSI data. In our
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Table 7.2: NMSE performance of the SRISTA-Net with and without data augmentation
(DA).

P Method ALL CL1 CL2 CL3

0
SRISTA-Net -14.62 -21.34 -15.41 -10.12
SRISTA-Net + DA -16.88 -23.15 -17.73 -12.43

256
SRISTA-Net -17.20 -22.48 -18.34 -12.83
SRISTA-Net + DA -20.55 -23.89 -20.81 -17.18

experiments, the training of the deep learning model utilized less than 30,000 data

points. We observed that overfitting becomes a significant issue when relying solely

on the original training dataset. To counter this issue, we implemented circular shift-

ing, as suggested by [63], on the original training data in the angle domain, effectively

doubling the training dataset size. This augmentation was found to markedly enhance

NMSE performance, demonstrating the benefits of increased training data.

7.5.6 Temporal Sensitivity of SRISTA-Net

SRISTA-Net significantly surpasses other alternatives in NMSE performance. However,

it is important to note that previous experiments were conducted under the assumption

that both CSI-RS and virtual pilots are present within the same time slot2. Table

7.3 details the NMSE performance of SRISTA-Net, accounting for varying time gaps

between CSI-RS and virtual pilots, alongside different counts of virtual pilots. Given

the 10 ms periodicity of PBCH, PSS, and SSS, the maximum theoretical time difference

between CSI-RS and virtual pilots is limited to under 5 ms. Our findings reveal that

SRISTA-Net’s performance is highly susceptible to even minimal time differences, such

as 5 ms. Interestingly, the NMSE performance in scenarios with a 5-ms gap is observed

to be inferior compared to cases without any virtual pilots. In conclusion, when CSI-RS

and virtual pilots coexist in the same time slot, leveraging the additional information

is beneficial. Otherwise, it is preferable to upscale the DL CSI without incorporating

data from virtual pilots.

2It’s assumed here that the CSI remains constant within the same time slot
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Table 7.3: NMSE perfornace of SRISTA-Net for different time differences between CSI-
RS and virtual pilots.

P = 64
Time

Difference
ALL CL1 CL2 CL3

0ms -17.6 -22.3 -18.7 -13.4
5ms -13.6 -15.0 -14.1 -11.2
10ms -9.2 -10.1 -9.5 -7.4

One-shot
P=0

-17.2 -24.5 -18.0 -12.6

P = 128
Time

Difference
ALL CL1 CL2 CL3

0ms -19.40 -24.0 -20.1 -15.3
5ms -11.7 -12.5 -11.9 -10.3
10ms -6.2 -6.6 -6.3 -5.5

One-shot
P=0

-17.2 -24.5 -18.0 -12.6

7.5.7 Complexity and Storage Requirements

Table 7.4 outlines the complexity and storage requirements of all previously mentioned

approaches. It is observed that while SRISTA-Net and ISTA-Net have similar model

sizes and required similar complexities, SRISTA-Net significantly surpasses ISTA-Net

in terms of performance. However, this comparison also highlights a drawback of deep

unfolding methods. Due to the recursive application of convolutional operations on

full-size data, these models exhibit higher complexity relative to others. Fortunately,

the upsampling module in these models is implemented at the gNB. Considering the

demands of future AI-enhanced cellular systems, a gNB equipped with multiple GPUs

is envisioned, enabling real-time operation of such complex models. Nonetheless, there

is an ongoing need to reduce the complexity of deep unfolding approaches, potentially

through techniques like pruning [64,65] or other methods of model size reduction.

Finally but not least, to facilitate readers’ understanding of our contributions, we

provide Table 7.5 to highlight the key features of the proposed approaches compared
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Table 7.4: Storage (PARA: model parameters) and complexity (FLOPs) comparison.
PARA FLOPs

Interpolation 0 109K
UL Masking 0 206K
SRCNN 63K 55.5M
ISTA-Net 196K 2G
SRCsiNet 7K 3.1M
SRISTA-Net 215K 2.01G

to previous rule-based and learning-based upsamplers.

Table 7.5: Comparison between CSI upsampling approaches in terms of different key
features. High-DS recovery denotes the ability to recover high-DS CSIs (4 is the best).
Note that ISTANet may perform better than UL Masking if introducing virtual pilots.

High-DS
Recovery

FDD
Reciprocity
Utilization

Virtual
Pilot

Utilization

Model
Size

Complexity
Support

Non-uniform
Upsampling

Interpolation 1 X X N/A Low X
UL Masking 2 O X N/A Low X
ISTANet 2* X O High High O
SRCsiNet (Ours) 3 O X Low Medium X
SRISTANet (Ours) 4 O O High High O

7.6 Conclusions

The chapter addresses a key challenge in massive MIMO FDD systems: the acquisition

of DL CSI at the gNB, which is crucial for optimal performance. It identifies a signifi-

cant issue in current systems, where the undersampling of CSI due to low-density pilot

placement leads to aliasing effects, impairing CSI recovery. To deal with this issue,

the chapter proposes a novel CSI upsampling framework for gNB, designed as a post-

processing tool to fill the gaps caused by undersampling. This framework utilizes the

principles of the DFT shifting theorem and multipath reciprocity, employing UL CSI

to reduce aliasing effects. Additionally, the chapter presents a learning-based approach

that combines the proposed algorithm with the ISTA-Net architecture, aiming to im-

prove non-uniform sampling recovery. The chapter reports that both the rule-based

and the deep learning methods demonstrate superior performance over traditional in-

terpolation methods and current advanced techniques.
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Appendix

To clarify the symbols to understand the problem formulation and equation better, we

provide a summary of notations in Table 7.6.

Table 7.6: Notation Summary
Notation Description

General Notations
Na Number of antennas at gNB
Nf Number of subcarriers in each subband

∆f Subcarrier spacing
DRS Pilot (CSI-RS) spacing in subcarriers
SF Pilot sample rate in frequency
Mf Number of pilots (CSI-RS) in a BWP

Nf Number of subcarriers in a BWP

(·)H Conjugate transpose
∥·∥F Frobenius norm
◦ Element-wise product operation
ei i-th column vector of an identity matrix of size Nf

QDRS
Downsampling matrix with pilot rate DRS

ΨRS Downsampling index set
∆tmax Maximum delay tap

D Number of random tests
N Channel estimation noise
Φ Binary map for non-zero bin locations of HBD

Channel State Information (CSI) Matrices
hi RS CSI of the i-th antenna at gNB
H Full DL CSI matrix

HRS RS CSI matrix

ĤRS Estimated RS CSI
HDS DS CSI matrix
HBD Full DL CSI in BD domain

HDS,BD DS CSI in BD domain

Ĥ Estimated DL CSI after upsampling
HUL Full UL CSI matrix

HUL,BD Full UL CSI matrix in BD domain

Transformations and Functions
FAB DFT matrix for antenna to beam domain
FFD IDFT matrix for frequency to delay domain
fen(·) Encoder function
fde(·) Decoder function
f↑(·) Upsampling operation

fTPR(·) True Peak Recovery function
fBFD(·) Bandpass Filter Design function
fAR(·) CSI Attention and Refinement function

Feedback and Loss Functions
q Codeword for UL feedback

CR Compression ratio
LossFB Feedback loss
Loss↑ Upsampling loss

Ldiscrepancy Discrepancy loss

Lsymmetry Symmetry loss
Lall Total loss

Compressive Sensing and ISTA-Net

F̃FD Trimmed DFT transformation matrix

ρ(k) Trainable step size in ISTA-Net

F(k) Function in ISTA-Net

F̃(k) Inverse function in ISTA-Net

r(k) Intermediate result in ISTA-Net

x(k) Result in ISTA-Net

R(k) Reciprocity assisting function in SRISTA-Net

W(k) Weight matrix in SRISTA-Net
ΦUL Bandpass filter generated using UL CSI
HLR Low-resolution DL CSI

H̃LR Low-resolution CSI in AD domain
I Identity matrix

ΦP Pilot index set
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Chapter 8

Plug-in UL-CSI-Assisted Precoder

Upsampling Approach in Cellular

FDD Systems

Acquiring downlink channel state information (CSI) is crucial for optimizing perfor-

mance in massive Multiple Input Multiple Output (MIMO) systems operating under

Frequency-Division Duplexing (FDD). Most cellular wireless communication systems

employ codebook-based precoder designs, which offer advantages such as simpler, more

efficient feedback mechanisms and reduced feedback overhead. Common codebook-

based approaches include Type II and eType II precoding methods defined in the

3GPP standards. Feedback in these systems is typically standardized per subband

(SB), allowing user equipment (UE) to select the optimal precoder from the codebook

for each SB, thereby reducing feedback overhead. However, this subband-level feedback

resolution may not suffice for frequency-selective channels. This chapter addresses this

issue by introducing an uplink CSI-assisted precoder upsampling module deployed at

the gNodeB. This module upsamples SB-level precoders to resource block (RB)-level

precoders, acting as a plug-in compatible with existing gNodeB or base stations.
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In this chapter, in Section 8.1, we first described the precoder upsampling problem

in practical FDD system and introduced the precoder upsampling approach, SRPNet,

along with the modified Type II/eTypII precoder. Then, in Section 8.2, to tackle com-

plexity isse, we proposed rule-based and learning-based UL-CSI/SSB assisted switches

to avoid unnecessary processing SRPNet when applying to channels with low DS. In

Section 8.3, test results demonstrate superior gain improvement after applying SRP-

Net and the complexity reduction by utilizing the PDP-based switch. Finally, we give

conclusion in Section 8.4.

8.1 Type II/eTypeII based Precoder Upsampling

8.1.1 General Architecture

We propose a lightweight network deployed at the gNB that acts as a plug-in mod-

ule, providing precoder upsampling from SB-level to RB-level. This architecture is

compatible with existing modern cellular systems, such as 5G-NR. Figure 8.2 pro-

vides a high-level illustration of the proposed architecture, SRPNet. This network can

effectively recover undersampled channels by exploiting the DFT shifting invariance

property. Due to the UL/DL path reciprocity, the network can significantly suppress

the aliasing effects caused by sub-Nyquist sampling. The details can be found in [66].

8.1.2 Modified Type II/eType II precoding

We discovered that the selected precoders according to Eq. 2.5 may lose multipath

delay information. To maintain the signal structure of DL CSIs in Type II/eType II

precoder design, we modify the precoder design criterion as follows:
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wf = argminw||
hf

||hf ||2
−w||2 (8.1)

This criterion ensures that the Type II/eType II precoder is close to the normalized DL

CSI and preserves the phase information. Note that this criterion does not apply to the

Type I precoder, as it lacks the degrees of freedom in choosing beams and combining

coefficients.

For the eType II precoder, there is a critical problem to be solved. In the eType

II precoder, to reduce the feedback overhead, as illustrated in the left part of Figure

8.1, truncation is performed, leaving the remaining delay components zero except for

the first Mv delay taps. This truncation in the delay domain seems reasonable for

most low-delay spread (DS) channels but performs poorly in capturing the high-delay

components for precoders of high DS channels. Once the truncation is done on the UE

side, it is impossible to recover on the gNB side. In the proposed approach, we replace

the delay-domain truncation with frequency-domain downsampling. As illustrated in

the right part of Figure 8.1, we uniformly sample Mv precoders in the RB domain and

then transform them into the delay domain. We find that this modification preserves

all the multipath information but might mistake low-delay components for high-delay

ones due to sub-Nyquist sampling in the frequency domain, leading to aliasing effects.

However, these aliasing effects can be alleviated by the following precoder upsampling

module, SRPNet.

8.1.3 Precoder Upsampler, SRPNet

With the aid of delay domain sparsity, we introduce a lightweight neural network (NN),

called the super-resolution precoder network (SRPNet), to suppress the aliasing effect

due to sub-Nyquist sampling.
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Figure 8.1: Illustration of the original and the modified eType II encoding processing
for precoders of a high-DS DL CSI.

Architecture

This network consists of three modules: 1) bandpass filter (BPF) Design Module, 2)

Initial Precoder Upsampling Module, and 3) Precoder Refinement Module, as illus-

trated in Figure 8.2.

• BPF Design Module: To obtain the delay profile of precoders, leveraging

UL/DL multipath reciprocity, we feed the delay profile of the UL CSI into a

convolutional network to infer a BPF that suppresses aliasing delay taps and

preserves the true delay peaks of initial RB-level precoders in the delay domain.

• Initial Precoder Upsampling Module: We feed the modified Type II/eType

II SB-level precoders to generate RB-level aliased precoders as initial precoders.

These precoders may suffer severe aliasing effects but preserve all the true delay

peaks at the same time.
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Figure 8.2: The model design of the SRPNet. It consists of three modules: 1) BPF
Design Module, 2) Initial Precoder Upsampling Module, and 3) Precoder Refinement
Module.

• Precoder Refinement Module: First, we perform element-wise multiplica-

tion of the BPF and the RB-level aliased precoders. This guides the BPF Design

Module to design a BPF instead of a confusing matrix1. This opens up part of

the black box of the NN. Then, we perform BD-domain and AF-domain refine-

ment using convolutional NNs and shortcuts to generate the estimated RB-level

precoders.

Lastly, we design the network with fully convolutional layers for scalability to any

input size (i.e., different array sizes and bandwidths). For practical deployment consid-

erations, SRPNet may not always be necessary for different scenarios such as low-DS

DL CSIs. In the next section, we provide a PDP-based switch to determine when to

utilize SRPNet.

1If the BPF Design Module does not give a BPF, the aliasing peaks that are not suppressed will
confuse the rest of the network.
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8.2 UL-CSI/SSB Assisted Switch for Low-Complexity

Precoder Upsampling

This section aims to provide a bridge for the proposed approach to practical cellular

systems. We describe a PDP-based switch to help the system decide when to use simple

linear interpolation or SRPNet to upsample SB-level precoders to RB-level.

Even with the design of an extremely lightweight and flexible network for precoder

upsampling, SRPNet still leads to much higher computational complexity compared to

linear interpolation. Given that for most channels with low delay spread (DS), linear

interpolation can provide good enough precoder upsampling. Therefore, in this section,

we propose several options to switch between SRPNet and linear interpolation.

8.2.1 PDP-based Switch

The key to determining whether to use SRPNet lies in evaluating how frequently the

CSI varies with different RBs, which can be inferred from its delay profile. Although

the gNB does not have the power delay profile (PDP) of DL CSI, it can still be inferred

from the PDP correlation between UL and DL CSIs.

Threshold-based Switch

Assume we have RB-level PDP from UL CSI or SSB PDP ∈ CNRB . We make a decision

s (that is, s = 1 means SRPNet utilization and vice versa) by applying the following

measures, m, to trigger the switch on or off:

s =


1, m ≥ thres,

0, otherwise.
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• Maximum Excess Delay: the delay difference between significant multipath com-

ponents.

• Mean Excess Delay: the mean delay weighted by its PDP.

• Root-Mean-Square (RMS) DS

Learning-based Switch

We also train a learning-based switch with a single-layer NN, which can be represented

as:

s = fswitch(PDP) = Sigmoid(fTPDP+ b),

by maximizing the gain-minus-cost metric G−λ ·C, where G = s ·NG(WSRPNet,H)+

(1− s) ·NG(WITP,H) and C = s ·CSRPNet+(1− s) ·CITP. Here, NG(·) is the function

to evaluate the average normalized gain between the precoders and DL CSIs. CSRPNet

and CITP are the computational complexities of SRPNet and linear interpolation, re-

spectively. The ratio CSRPNet

CITP
is roughly 1000. λ is a hyperparameter that determines

the weight between computational cost and performance. In the test stage, we round

s to determine the final outcome.

8.3 Experimental Evaluations

8.3.1 Experiment Setup

Tests were focused on outdoor channels using the widely used channel model software,

QuaDriGa. The simulator considers a gNB with a 128-element uniform linear array

(ULA) serving single-antenna UEs, with half-wavelength uniform spacing. 2000 UEs
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are uniformly distributed in the cell coverage, which is a rectangular region of size

250m × 300m. The scenario features given in 3GPP TR 38.901 UMa were followed,

using NRB = 96 resource blocks (RBs) with a 20 MHz bandwidth part. The normalized

gain

g =

NRB∑
f=1

|hH
f w|

|hf | · |w|

was used to assess performance.

For DL-based models, we conducted training with a batch size of 32 for 1500 epochs,

starting with a learning rate of 0.001 and setting an early stop criterion if the validation

loss did not improve for 100 epochs. We generated the outdoor datasets using the

QuaDRiGa channel simulators. We considered 16 transmission time intervals (TTIs)

for each of the 2000 UEs. In total, the dataset consists of 32,000 channels. We used one-

tenth of the channels for testing and validation, respectively. The remaining four-fifths

of the channels were used for training.

To evaluate the degree of aliasing, it is common to use DS as a performance metric.

A channel with a larger DS tends to suffer from aliasing effects more severely since it

contains more high-delay multipaths. We clustered all the 3200 test CSI data into 3

clusters according to their RMS DS: low (smaller than 500 ns), medium (between 500

ns and 1000 ns), and high DS (larger than 1000 ns). The low, medium, and high DS

clusters have 883, 1221, and 1095 test cases, respectively.

8.3.2 Applying SRPNet to SB-level Type II Precoder

Figure 8.3 shows the capacity improvement ratio of precoders after applying SRPNet

at different SNRs for low and high DS CSIs. Apparently, SRPNet improves capacity

significantly especially for low SNRs. In addition, we can find that the benefit of the

SRPNet becomes more obvious in high DS CSIs. That is because aliasing effect occurs
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Figure 8.3: Capacity ratio of the SRPNet and other codebook-based approaches. Upper
one is the results for the low RMS DS cluster. Bottom one is for the large DS cluster)

for high DS CSIs with higher probability and SRPNet can effectively upsample SB-level

precoders to RB-level ones even if aliasing effects exist.

8.3.3 Applying SRPNet to SB-level eType II Precoder

Figure 8.4 demonstrates the normalized gain of Type II and eType II precoders before

and after being applied SRPNet with different settings. Different points in a curve

represent different configurations. For Type II precoders, we consider four different

numbers of SBs (N3 = 3, 6, 12, 24) representing different frequency downsampling rates
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(from 96 RBs). For each curve of the eType II precoder, the anchor points from right

to left represent R = 2, 4, 8, 16, and so on.

We observe a significant performance gap between the eType II precoder (Mv = 24)

with and without SRPNet upsampling for high DS scenarios. Additionally, SRPNet-

based eType II precoders outperform Type II and SRPNet-based Type II precoders,

especially for low UL feedback overhead. This demonstrates the higher efficiency of the

eType II precoder compared to Type II precoders after applying SRPNet. However,

we also find that eType II precoders do not perform better even with R = 1. This is

because eType II precoders find a common set of L beams for all SBs, which may not

be optimal for each SB, leading to a performance bound.

8.3.4 Applying PDP-based Switch for Complexity Reduction

Figure 8.5 shows the normalized gain after applying the proposed PDP-based switches

and a random switch to reduce computational complexity of precoder upsampling.

We compare our proposed switches (Threshold-based switches and Learning-based

switches) with a baseline random switch, which randomly chooses to utilize SRPNet

or interpolation. The curve of the random switch is generated by setting different

probabilities p to choose SRPNet (p = 1 for the rightmost point). It forms a straight

line since both the normalized gain and the complexity are linear combinations of the

outcomes of SRPNet and interpolation. We find that all the proposed switches perform

better than the random switch, indicating that the PDP of UL CSI or SSB is beneficial

for making the binary decision.

Among these rule-based switches, the one relying on maximum excess delay per-

forms the best, since maximum excess delay is more direct and can better reflect when

aliasing occurs (i.e., when the largest delay of significant paths exceeds the Nyquist

measurable delay). The curve of the learning-based switch is built by training the

model with different λ = 1×10−5, 5×10−5, . . . , 1×10−3. The learning-based approach
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random switch for computational complexity reduction of precoder upsampling.

performs the best among all the proposed switches and also has the lowest complexity.

However, we still face the challenge of finding a mapping from choosing λ to achieving

the desired complexity.

8.4 Conclusions

Acquiring accurate DL CSI is crucial for optimizing the performance of massive MIMO

systems in FDD. Existing cellular systems use codebook-based precoder designs, such

as Type II and eType II, which simplify feedback mechanisms and reduce overhead.

However, standardized feedback per SB often falls short for frequency-selective chan-

nels. To address this issue, we introduced SRPNet, an uplink CSI-assisted precoder

upsampling module deployed at the gNodeB. SRPNet improves SB-level precoders to

RB-level precoders and is compatible with existing base stations. Our results demon-

strated SRPNet’s effectiveness in improving normalized gain, particularly in high-DS

scenarios. Additionally, we proposed a PDP-based switch to intelligently choose be-
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tween SRPNet and linear interpolation, reducing computational complexity. Our find-

ings showed that the proposed switches, especially the learning-based switch, outper-

formed random switches and achieved better performance with lower complexity. In

summary, SRPNet and the PDP-based switch offer a robust solution for enhancing

downlink CSI acquisition in massive MIMO systems. These advances significantly

improve the efficiency and performance of modern cellular networks, particularly in

scenarios with high frequency selectivity.
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Chapter 9

Future Works and Conclusions

In this article, we focus on efficient explicit and implicit CSI feedback methods in FDD

cellular systems, considering various practical concerns and achieving significant per-

formance improvements. This area has recently garnered attention from both academia

and industry. As pioneers in this field, we suggest two future directions:

9.1 Channel/Precoder Prediction against Channel

Aging

In FDD cellular systems, UE estimates DL CSI and feeds it back to the gNB for

precoder design for the next scheduled downlink transmission. For channels with high

Doppler shifts, the precoder may become outdated by the time it is applied to the

scheduled transmission due to the time difference (∆t) between DL training and data

transmission. Predicting future CSI or precoder is crucial in practical scenarios to

proactively address the effects of channel aging.

Figure 9.1 demonstrates two possible solutions in practical codebook-based precoder

feedback: 1) gNB-side Precoder Prediction and 2) UE-side Channel Prediction. These

can be implemented either at the gNB or UE side as modules for precoder prediction or
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channel prediction, respectively. For gNB-side precoder prediction, the gNB, knowing

∆t, predicts future precoders based on past ones. For UE-side channel prediction, the

gNB first acknowledges ∆t, then the UE predicts the future channel and selects the

appropriate precoder for feedback.

For both approaches, they are very similar to the video prediction task, since we

are trying to estimate the future CSI or precoder map based on historical ones, analo-

gous to past reference video frames. However, common neural networks for the video

prediction task, such as the recurrent neural network (RNN), long-short-term memory

(LSTM) [67], ConvLSTM [68, 69], or Video Transformer (ViT) [70], require excessive

computational power and time. This poses a severe computational burden for UE-side

CSI prediction due to their limited available computing resources. Even for gNB-side

precoder prediction, computation time matters significantly. A long computation time

shortens the effective prediction horizon. Therefore, designing such a module requires

ensuring low computational time while maintaining good prediction accuracy for long

prediction horizons.

9.1.1 Problem Formulation: Future Precoder Prediction

In this subsection, we focus on the precoder prediction task. We first describe the

problem formulation, propose heuristic approaches, provide some preliminary results,

and give possible future directions.

Assume the gNB has a precoder matrix F with dimensions Na×NRB, consisting of

precoders for each Physical Resource Block (PRB) in a Bandwidth Part (BWP). The

gNB stores previous precoder matrices from the previous T time slots to predict the

precoder matrix for the next time slot. Thus, the predicted precoder matrix can be

expressed as

F̂T+1 = fpred(F1,F2, . . . ,FT ), (9.1)
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Figure 9.1: Illustration of (1) gNB-side precoder prediction and (2) UE-side channel
prediction.

where Ft is the precoder matrix for time slot t, and fpred(·) is the prediction oper-

ation, which can be either a rule-based extrapolator or a learning-based method. To

estimate the precoder matrix for t ≥ T +2, as illustrated in Figure 9.2, we append the

last estimated precoder to the previous input frames and remove the first frame of the

appended input as the new input for predicting the next precoder matrix.

9.1.2 Proposed Approaches and Preliminary Results

We aim to find a non-linear mapping function fpred which minimizes the MSE between

the true and predicted precoder matrix. We design three different heuristic 3D-CNN

based extrapolators, illustrated in Figure 9.3, and compare them with a well-known

video predictor, SimVP [71]. The evaluation metric is based on the normalized gain

(i.e., cosine similarity) between the precoder and DL CSI. We compare our approaches

with the sample-and-hold method, which applies the last precoder that the gNB
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Figure 9.2: Illustration of the CSI/precoder precoder for the prediction for t ≥ T + 2.

received to the future DL CSIs.

Figure 9.4 (a) demonstrates the preliminary results of the proposed approaches with

different designs compared to traditional prediction algorithms. We find that shortcut

designs significantly improve the initial performance for short prediction horizons. The

process in the BD domain helps the model capture variations between time slots.

Lastly, utilizing cosine similarity loss instead of MSE loss improves prediction for the

first step but significantly degrades performance for subsequent steps.

Figure 9.4 (b) shows that the more complex SimVPmethod, used in video prediction

tasks, outperforms our proposed approaches. However, for all the learning-based ap-

proaches, none outperform the simplest and most effortless sample-and-hold approach

for predicting the precoders of DL CSIs after four time slots. This indicates significant

room for improvement. We suggest introducing Doppler information into the model

for better inference of channel variations. Additionally, a conditional generative model

could better understand text information to control the content of generated videos.

Similarly, we could exploit this idea to let the model understand how Doppler influences
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Figure 9.3: Design Model Architecture of (left) Precoder Prediction 3D with Short-
cut (named PrecoderPrediction3D-sc in simulation plot): the core network consists
of stacked 3D CNNs with a shortcut, (middle) Precoder Prediction 3D with Linear
Transformation Shortcut (named PrecoderPrediction3D-sc-dense): same as the previ-
ous one with a linear transform shortcut, (right) Precoder Prediction 3D with Conv
Linear Transformation Shortcut (named PrecoderPrediction3D-sc-dense-conv): same
as the previous one, with an additional 3D CNN layer to merge adjacent pixels before
linear transformation.

channel variations in subsequent time slots. Finally, ensemble different approaches to

avoid performance degradation for long prediction horizons.

9.2 User Clustering for MU-MIMO

In previous works, we considered explicit and implicit CSI feedback for precoder de-

signs. The goal is to provide the serving base station with the optimal precoder for

each UE. In a Multi-User MIMO (MU-MIMO) scenario, as illustrated in Figure 9.5, the

same time-frequency resources can be assigned to multiple UEs to boost throughput

through resource reuse. However, the transmission signals to other UEs may act as

strong interference for a specific UE if the precoders serving other UEs are correlated

with its DL CSI. In this case, the gNB should perform user scheduling to assign UEs

with low-correlation channels to the same time-frequency resource. Many previous

works [72,73] have addressed this, but the assumption of full knowledge of DL CSIs at

the gNB is impractical in real FDD systems. In practical scenarios, only precoders are

fed back to the gNB.
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Figure 9.5: Illustration of mutual interference in MU-MIMO case. Note that we hope
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transmitted in the PRB.

We propose a precoder-based user scheduling approach based on a previous spectral

clustering approach [73], illustrated in Figure 9.6. In the example of Figure 9.6, there

are 200 UEs served by a gNB and 100 PRBs available. Assume each UE feeds its Type

II precoder back to the base station. The gNB’s goal is to assign the 200 UEs to the

100 PRBs to maximize system capacity.

Figure 9.7 shows the capacity when the CSI-based [73] and precoder-based spectral

clustering approaches are compared to the round-robin (RR)1 user scheduling approach

under different SNRs and numbers of antennas. We find that there is only a slight

performance difference between the two approaches, and both significantly outperform

RR. In summary, we suggest prospective research on the following: instead of passively

assigning UEs based on their precoders, we should adjust the precoders to avoid mutual

interference while maintaining the precoder gain of their own channel.

9.3 Conclusions

In this article, we have presented several new CSI feedback frameworks that address

different challenges faced by existing learning-based techniques. In Chapter 3, we

improved CSI feedback recovery performance by designing a UL-CSI-aided learning

1Note that the RR approach evenly assigns all UEs to all PRBs randomly.
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Figure 9.7: Illustration of (1) gNB-side precoder prediction and (2) UE-side channel
prediction.

network that jointly optimizes magnitudes and phases. In Chapter 4, we aimed to

save UL feedback overhead and reduce required resources for DL CSI training while

maintaining recovery performance. We proposed a learning-based feedback framework

that exploits FDD reciprocity to design CSI-RS precoding and CSI recovery schemes.

In Chapter 5, we focused on significantly reducing model size by proposing a DCP-based

CSI feedback along with tricks to further reduce storage and computational complexity.

In Chapter 6, a JPEG-based CSI feedback framework was proposed. This framework is

simple and does not require any prior training or knowledge about the channels, making

it easy to implement in real-world wireless systems at low cost. In Chapter 7, we

addressed the neglected undersampling issue prior to CSI feedback due to low-density

pilot placement in current standards. We proposed a physics-inspired UL-CSI assisted

CSI upsampling module to solve this problem, which can be applied to any similar CSI

feedback frameworks. In Chapter 8, we focused on the undersampling issue in most

cellular wireless FDD systems when performing codebook-based precoder feedback,
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including Type II and eType II feedback. A plug-in precoder upsampling approach was

proposed to upsample from SB-level precoders to RB-level ones to improve precoder

gains.

In this chapter, we presented two future directions that we are focusing on. Firstly,

we addressed the need for CSI and precoder prediction in practical FDD systems

and presented some entry-level solutions to this task. We demonstrated the superior

performance of the proposed approaches over the baseline sample-and-hold method

and pointed out current limitations and future improvement directions that may be

useful for prospective researchers. Lastly, we focused on the need for user scheduling

in MU-MIMO FDD systems. We highlighted that some previous approaches perform

well in user scheduling and provide decent performance but rely on an impractical

assumption that the gNB has knowledge of DL CSIs. We modified a previous CSI-

based spectral-clustering approach into a precoder-based one and achieved nearly the

same performance as the original. Finally, we suggested further investigation into a

precoder adjustment algorithm followed by user scheduling.
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Appendix A

Appendix

Proof of Eq. (4.9):

For an L × Nb merging matrix T with L < Nb, we have an underdetermined linear

problem y = Tx. The minimum norm solution is simply

xmn = TH(TTH)−1Tx, (A.1)

Based on singular value decomposition of T by

T = U

[
Σ 0

]
VH , (A.2)

where U and V respectively are left and right singular matrices corresponding to the

L × L diagonal Σ of nonzero singular values. Let V = [v1 v2 · · ·vNb
] denote the

corresponding right singular vectors. It is clear that

TH(TTH)−1T = V

 IL×L 0

0 0

VH =
L∑
i=1

viv
H
i (A.3)
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Define a matrix Ĩ =
∑L

i=1 viv
H
i . The minimum-norm solution is simply

xmn =
L∑
i=1

viv
H
i x = Ĩ · x. (A.4)

Since the singular vectors {vi} are orthonormal, i.e., vH
i vi = 1, it is clear that

Trace{Ĩ} =
L∑
i=1

Trace{viv
H
i }

=
L∑
i=1

Trace{vH
i vi} (A.5)

=
L∑
i=1

1 = L (A.6)

in which the equality of Eq. (A.5) holds because Trace{AB} = Trace{BA}.
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