UCLA UCLA Electronic Theses and Dissertations

Title

Modeling Human Neural Development Using Pluripotent Stem Cells

Permalink https://escholarship.org/uc/item/9fg436zc

Author Patterson, Michaela Cyr

Publication Date 2012

Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA Los Angeles

Modeling Human Neural Development Using Pluripotent Stem Cells

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Molecular, Cell and Developmental Biology

by

Michaela Cyr Patterson

2012

ABSTRACT OF THE DISSERTATION

Modeling Human Neural Development Using Pluripotent Stem Cells

by

Michaela Cyr Patterson Doctor of Philosophy in Molecular, Cell and Developmental Biology University of California, Los Angeles, 2012 Professor William Lowry, Chair

Human pluripotent stem cells (hPSCs) are derived from the developing blastocyst or through transcription factor based reprogramming. hPSCs have the capacity to self-renew and give rise to all cell types of the human body. These two defining characteristics make them attractive for a variety of uses including regenerative medicine and modeling human development and disease. While it is clear that hPSCs can differentiate into all cell types, it is unknown how similar hPSC derivatives are to cells that have undergone development *in vivo*. Using previously established differentiation protocols we demonstrated that both types of hPSCs could generate functional motor neurons that displayed repetitive action potentials characteristic of mature motor neurons. Furthermore, these motor neurons differentiated through a progressive and predictable induction of developmental stages, suggesting hPSC differentiation appears to obey normal developmental progression. In a comprehensive comparison of hPSC derivatives and tissue-derived counterparts, we determined that the progeny of hPSCs are most similar to a cell type found prior to 6 weeks of gestation. These hPSC derivatives continued to express genes normally found at 3-5 weeks of gestation, including *LIN28*; while tissue derived counterparts had already silenced these genes. *In vitro* function demonstrated that hPSC derivatives also acted like developmentally primitive cells. These findings suggest that developmental timing is conserved *in vitro* and perhaps even innate to the differentiating cell. Finally, we explored the role of the *LIN28*/let-7 pathway on the developmental maturity of hPSC-derived neural progenitor cells (hPSC-NPCs) as measured by their ability to generate neurons or glia. We determined that addition of let-7s into hPSC-NPCs can correct a significant number of the genes differentially expressed between hPSC derivatives and tissue-derived counterparts. Furthermore, the manipulation has a modest, but significant effect on the functional maturity of PSC-NPCs. Taken together, these data demonstrate that hPSCs can serve as an excellent and tractable model of human development.

The dissertation of Michaela Cyr Patterson is approved.

Alvaro Sagasti

Karen Lyons

Harley Kornblum

William Lowry, Chair

University of California, Los Angeles 2012

I dedicate this dissertation to my grandfather, John Stanley Patterson.

He has forever instilled in me the importance of love and family.

LIST OF FIGURES viii		viii
ACKNOWLEDGEMENTS x		X
VITA		xii
СНАР	TER 1: Introduction	1
	Preface	2
	Pluripotent stem cell derivation and characterization	3
	hESCs versus hiPSC as a biological tool	6
	Differences between hESCs and hiPSCs - the undifferentiated state	7
	Deriving clinically relevant cell types - hPSC progeny	12
	Significance and specific aims of this dissertation	14
	References	19
	TER 2: Directed differentiation of human induced pluripotent stem cells generates active motor neurons	
		23
	active motor neurons	23
	active motor neurons	23 24 25
	active motor neurons	23 24 25
	active motor neurons	23242525
	active motor neurons	 23 24 25 25 28 29
СНАР	active motor neurons	 23 24 25 25 28 29 33
СНАР	active motor neurons Introduction Materials and Methods Results Discussion References TER 3: Defining the nature of human pluripotent stem cell progeny	 23 24 25 25 28 29 33 34
СНАР	active motor neurons Introduction Materials and Methods Results Discussion References TER 3: Defining the nature of human pluripotent stem cell progeny Introduction	 23 24 25 25 28 29 33 34 35

TABLE OF CONTENTS

	References	48
CHAP	TER 4: Functional role of <i>LIN28</i> /let-7 in the developmental maturity of pluripoter stem cell derived neural progenitors	
	Introduction	82
	Results	84
	Discussion	89
	Materials and Methods	91
	References	99
CHAP	TER 5: Discussion	101
	Modeling development 1	02
	Regenerative Medicine and transplantation 1	104
	Modeling human disease with disease-specific hiPSC 1	05
	References 1	107

LIST OF FIGURES

CHAPTER 1: Introduction

Figure 1.1	 16
Figure 1.2	 17
Figure 1.3	 18

CHAPTER 2: Directed differentiation of human induced pluripotent stem cells generates active motor neurons

	Figure 1	25
	Figure 2	26
	Figure 3	27
	Figure 4	28
	Supporting Information Figure S1	30
	Supporting Information Figure S2	31
	Supporting Information Figure S3	32
СНАР	TER 3: Defining the nature of human pluripotent stem cell progeny	

Figure 1	. 36
Figure 2	37
Figure 3	38
Figure 4	40
Figure 5	42
Figure 6	44
Figure 7	46
Figure S1	. 50

Figure S2		52
Supplemen	tary Table 1	54
	nctional role of <i>LIN28</i> /let-7 in the developmental maturity of pluripoten neural progenitors	t
Figure 4.1		94
Figure 4.2		95
Figure 4.3		96
Figure 4.4		97
Figure 4.5		98

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my thesis advisor and mentor, Bill Lowry. His guidance and encouragement has helped me develop into the scientist I am today. He has supported every career decision I have made along the way and created a perfect research environment for creativity, independence, and growth. I would also like to express my gratitude to my committee members, Drs. Alvaro Sagasti, Karen Lyons and Harley Kornblum for their support and advice.

I would like to acknowledge all the members of the Lowry Lab who have provided technical support and advice over the last five years. I am especially grateful to David Chan, Kimberly Loo, Laura Richter, Soheila Azghadi, Otaren Aimiuwu, Adelaja Akinlolou, Joan Khuu, Yan Cui, Dr. Peiyee Lee, Dr. Andrew White, Christine Deng, and Iris Ha. In addition, I have had the pleasure to work with many outstanding scientific collaborators including, Dr. Joy Umbach, Dr. Bennett Novitch, Katrina Adams, Dr. Kathrin Plath, Dr. Mark Chin, Felicia Codrea, Jessica Scholes, Dr. Xinmin Li, and Dr. Andrew Charles.

Finally, I would like to thank my family and friends for their love and support. In particular, I thank my parents, James and Renée Patterson, for selflessly giving me everything I needed in life and more. I can only hope to do the same for my own children someday.

Chapter 2 was originally published in *Stem Cells*: Karumbayaram S*, Novich BG*, Patterson M*, Umbach J, Richter L, Lingren A, Conway A, Clark A, Goldman SA, Plath K, Wiedau-Pazos W, Kornblum HI and Lowry WE. (2009). Directed differentiation of human induced-pluripotent stem cells (iPS) generates active motor neurons. *Stem Cells*; 4: 806-811. It is reprinted here with permission from John Wiley & Sons, Inc. and all co-authors. This work

was funded by CIRM grant (#RS1-00259-1) and a Basil O'Connor Starter Scholar Research Award from the March of Dimes awarded to WEL.

Chapter 3 was originally published in *Cell Research*: Patterson M*, Chan DN*, Ha IC, Case D, Cui Y, and Lowry WE. (2012). Defining the nature of human pluripotent progeny. *Cell Research*, 22: 178-193. It is reprinted here with permission from Nature Publishing Group and all co-authors. MP was supported by the Training Program in Genetic Mechanisms (GM007104-33) and by a Predoctoral Training Grant from CIRM (TG2-01169). This work was supported by a seed grant from CIRM (RS1-00259-1), a Basil O'Connor Starter Scholar Award (5-FY09-61), and the Fuller Foundation at EEBSCRC awarded to WEL.

Chapter 4 is unpublished work performed by Michaela Patterson, Kimberly Loo, Soheila Azghadi, and William Lowry. It is published here with permission from all co-authors. The authors would like to thank Jessica Scholes and Felicia Codrea of the UCLA FACS core and Xinmin Li and Jian Zhao of the UCLA Clinical Microarray Core. MP was supported by a Predoctoral Training Grant from CIRM (TG2-01169). This work was supported by NIH-NGMS (P01GM99134), CIRM (RB3-05207), the Fuller Foundation, and a Basil O'Connor Starter Scholar award awarded to WEL.

VITA

2005	Bachelor of Science, Biology and Spanish Bates College, Lewiston, ME
2005-2006	Research Technician, Isacson Lab McLean Hosptial, Belmont, MA
2006-2007	Assistant Lab Manager, Isacson Lab McLean Hospital, Belmont, MA
2009	Teaching Assistant (MCDB 144) Department of Molecular, Cell and Developmental Biology University of California, Los Angeles
2009-2010	Predoctoral Fellow, Genetic Mechanisms Training Grant USPHS National Research Service Award, GM07104
2010	Teaching Assistant (LS4) Life Sciences Core Curriculum, University of California, Los Angeles
2010	Certificate of Distinction in Teaching Life Sciences Core Curriculum, University of California, Los Angeles
2010	Graduate Research Advocacy Day Representative University of California, Office of the President
2010-2011	Collegium of University Teaching Fellow Office of Instructional Development, University of California, Los Angeles
2010-2012	Predoctoral Fellow California Institute for Regenerative Medicine, TG2-01169
2011	Distinguished Teaching Assistant Award Academic Senate, University of California, Los Angeles

PUBLICATIONS

- Patterson M*, Chan DN*, Ha IC, Case D, Cui Y, and Lowry WE. (2012). Defining the nature of human pluripotent progeny. *Cell Research*, 22: 178-193. *Co-first authors
- Karumbayaram S, Lee P, Azghadi SF, Cooper AR, Patterson M, Kohn DB, Pyle A, Clark A, Byrne J, Zack JA, Plath K, and Lowry WE. (2012). From skin biopsy to neurons through a pluripotent intermediate under Good Manufacturing Practice (GMP) protocols. *Stem Cells Translational Medicine*; 1:36-43.

- Zhang J, Tokatlian T, Zhong J, Ng QK, Patterson M, Lowry WE, Carmichael ST, Segura T. (2011). Physically Associated Synthetic Hydrogels with Long-Term Covalent Stabilization for Cell Culture and Stem Cell Transplantation. *Advanced Materials*, 23:5098-5103.
- Tchieu J, Kuoy E, Chin MH, Trinh H, Patterson M, Sherman SP, Aimiuwu O, Lindgren A, Hakimian S, Zack JA, Clark AT, Pyle AD, Lowry WE, Plath K. (2010). Female Human iPSCs Retain an Inactive X Chromosome. *Cell Stem Cell*; 7: 1-14.
- Karumbayaram S*, Novich BG*, Patterson M*, Umbach J, Richter L, Lingren A, Conway A, Clark A, Goldman SA, Plath K, Wiedau-Pazos W, Kornblum HI and Lowry WE. (2009). Directed differentiation of human induced-pluripotent stem cells (iPS) generates active motor neurons. *Stem Cells*; 4: 806-811. *Co-first authors; listed alphabetically.
- Vinuela A, Hallett PJ, Reske-Nielsen C, Patterson M, Sotnikova TD, Caron MG, Gainetdinov RR and Isacson O. (2008). Implanted reuptake-deficient or wild-type dopaminergic neurons improve ON L-dopa dyskinesias without OFF-dyskinesias in a rat model of Parkinson's disease. *Brain*; 131(12): 3361-3379.
- Sanchez-Pernaute R, Lee H, Patterson M, Reske-Nielsen C, Yoshizaki T, Sonntag KC, Studer L and Isacson O. (2008). Parthenogenetic dopamine neurons from primate embryonic stem cells restore function in experimental Parkinson's disease. *Brain*; 131(8): 2127-2139.
- Hemming M, Patterson M, Reske-Nielsen C, Lin L, Isacson O, Selkoe OJ. (2007). Reducing Amyloid Plaque Burden via Ex Vivo Gene Delivery of an Aβ-Degrading Protease: A Novel Therapeutic Approach to Alzheimer Disease. *PLOS Medicine*; 4(8): e262.

POSTERS AND PRESENTATIONS

- Patterson M, Chan DN, Ha IC, Case D, Cui Y, and Lowry WE. "Defining the nature of human pluripotent progeny." ISSCR 9th Annual Meeting. Toronto, Canada. June 15-18, 2011. (poster)
- Patterson, M. "Defining the transcriptional landmarks of early human development with pluripotent stem cells." 7th Annual Stem Cell Symposium. University of California, Los Angeles. February 18th, 2011. (poster)
- Patterson, M., S. Karumbayaram, B.G. Novich, J. Umbach, A. Charles, W.E. Lowry.
 "Mechanisms of Human Motor Neuron Development and Disease." 6th Annual Stem Cell Symposium. University of California, Los Angeles. February 12, 2010. (poster)
- Patterson, M., S. Karumbayaram, B.G. Novich, J. Umbach, L. Richter, A. Lingren, A. Conway, A. Clark, S.A. Goldman, K. Plath, M. Wiedau-Pazos, H.I. Kornblum and W.E. Lowry. "Directed differentiation of human induced-pluripotent stem cells (iPS) generates active motor neurons." 5th Annual Stem Cell Symposium. University of California, Los Angeles. February 27, 2009. (poster)

CHAPTER 1:

Introduction

Preface

Human pluripotent stem cells (hPSCs) have two defining characteristics: 1) the ability to self-renew; and 2) the capacity to give rise to all cell types of the human body. These attributes make them an attractive biological tool to clinicians and research scientists alike.

One proposed use of hPSCs is for regenerative medicine or cell transplantation, whereby disease relevant cell types can be generated from hPSCs and then transplanted into a patient who lost those cells to disease or injury. Parkinson's disease and type-I diabetes are prime examples of diseases that may benefit from this proposed technique. In each case, a specific cell type, dopamine neurons or pancreatic β -cells respectively, is lost to disease. There are no known cures for either disease, and alternative sources of cells for transplantation are scarce or non-existent. hPSC technology could provide an unlimited source of these cells for the purpose of transplantation into patients.

Another use would be for drug discovery and toxicity testing. Currently, the field of drug discovery is hampered by inadequate tools and cell sources for testing efficacy and possible toxicity of drugs prior to advancing to clinical trials. Cellular based screening is typically performed on accessible primary cells or, more commonly, on established cell lines. More relevant cell types, those affected by the disease itself, are rarely accessible or used. Furthermore, unless drugs are tested on a variety of cell types it will remain unknown if they have toxic side effects on other tissues. Animal models can be a good tool for understanding how a drug might affect an entire organism, however they are expensive and the results do not always mirror what happens in humans. hPSCs could serve as a cost-effective tool for testing the efficacy and toxicity on a variety of human cell types, so we can better anticipate how a drug will act once it advances to the clinic.

Finally, hPSCs can be exploited to better understand human development and disease. As a scientific community, we rely heavily on animal models to understand how an organism or even a tissue is generated, however developmental and disease mechanisms do not always translate from one organism to another. Furthermore, capturing specific transient events can be challenging when using a whole animal. hPSCs are an *in vitro* tool thought to reflect the embryonic epiblast state, which can give rise to all the cells of an entire organism. Theoretically, we can follow the differentiation of hPSCs to a specific cell lineage to better understand the molecular mechanisms required to generate that cell type. The fact that these events occur in a petri dish could make them a tractable model of human development.

These three proposed uses of hPSCs make them an exciting biological tool and it is no wonder that the number of PSC-related publications and funding opportunities have steadily grown over the last decade. However, there is still much to understand about these potent cells and the derivatives they make. In this chapter, I will provide background information on hPSCs and their progeny. I will discuss the advances in the field and identify the areas where more focus is warranted. Finally, I will introduce the aims of this dissertation and our contributions to understanding the types of cells we can derive from hPSCs.

Pluripotent stem cell derivation and characterization

There are two main sources of hPSCs. Embryonic stem cells (ESCs), isolated from a preimplantation embryo, represent the gold-standard PSC. Induced pluripotent stem cells (iPSC), generated through the reprogramming of a somatic cell to a pluripotent state, represent an *in vitro*, artificially generated PSC. The isolation and characterization of both sources will be discussed further here.

Human Embryonic Stem Cells (hESCs)

ESCs are isolated from the inner cell mass (ICM) of a pre-implantation blastocyst. They were first isolated from mouse embryos in 1981¹⁻², followed by non-human primates in 1995³ and finally from human blastocysts in 1998⁴. Most hESC lines are generated from discarded embryos produced by in vitro fertilization (IVF) for clinical purposes.

Remarkably, cells of the ICM only have a transient capacity to self-renew as they begin to differentiate within a day; however when placed into culture, these cells can be passaged indefinitely and have high telomerase activity indicative of their immortality and self-renewing capacity⁴. Typically they grow in flat, tightly compact colonies with well-defined borders. hESCs can spontaneously differentiate into all three embryonic germ layers. This pluripotency is typically measured two ways: 1) *in vitro* embryoid body formation, where undifferentiated colonies are removed from their feeder layer and maintenance growth factors thus allowing them to form a differentiated cells containing all three germ layers; and 2) *in vivo* teratoma formation, where undifferentiated cells are injected into an immune compromised mouse resulting in large benign tumors containing cell types representing all three germ layers. A third method, accessible only in animal models, entails the generation of a chimeric offspring or a complete animal through tetraploid complementation; however for ethical reasons this cannot be repeated for hPSCs.

Since the isolation of the first hESC lines, we have learned a great deal about the mechanisms that control their pluripotency and self-renewal. Originally, three key transcription factors, *OCT3/4*, *SOX2*, and *NANOG*, were individually identified for their involvement in the maintenance of the undifferentiated state⁵⁻⁸. It is now believed that these factors work in unison

as regulatory factors that positively regulate each other's expression and that of the other genes required for self-renewal⁹.

While hESCs have great promise as a source of hPSCs and they remain the gold standard in the field, there are many technical limitations associated with their clinical use. First, as previously discussed, they are isolated from discarded embryos derived for IVF purposes. These embryos are sometimes damaged or considered less than ideal for implantation, which could suggest that they are less than ideal for generation of hESCs as well. Second, it takes many passages to establish a new line and genetic abnormalities increase with continued passaging (discussed further in a later section). Currently, there is little to no access to low passages of available hESC lines. Finally, should hESCs be used for tissue regeneration they would not be a genetic match to the recipient and therefore patients would require immunosuppressive drugs to avoid graft rejection.

Human Induced Pluripotent Stem Cells (hiPSC)

Decades before ESCs were isolated, Gurdon and colleagues demonstrated in xenopus that an enucleated oocyte had the capacity to reprogram a somatic cell nucleus to the undifferentiated state in a process now called somatic cell nuclear transfer (SCNT)¹⁰. In 2006, Takahashi and Yamanaka set out to identify factors that could be responsible for this reprograming event. They started with twenty-four candidate genes specifically expressed in ESCs and asked if any individual or combination of those genes could reprogram somatic cells into PSCs. Remarkably, they determined that just four transcription factors, *OCT3/4*, *SOX2*, *KLF4*, and *C-MYC*, when virally transduced into mouse fibroblasts could reprogram them into a pluripotent, embryoniclike state¹¹. Within a year, four groups repeated the experiment on human fibroblasts¹²⁻¹⁵. The resulting induced pluripotent stem cells (hiPSC) had seemingly similar characteristics to hESCs: they grew as tightly compact colonies with well-defined borders; they could be passaged indefinitely and had high telomerase activity; and they expressed markers of hESCs and even turned on the endogenous locus for the virally transduced genes¹². hiPSC could form both embryoid bodies and teratomas, thereby meeting the gold standard for human pluripotency.

hESCs versus hiPSC as a biological tool

hiPSC technology may have advantages over hESCs because of several defining features. The first benefit is that hiPSC can be derived from patients harboring a genetic disease. Disease-specific hiPSCs could allow us to model diseases in a petri dish to better understand the mechanisms that cause the disease. Furthermore, the disease-specific hiPSCs could be used for drug screens. Not only can these cells generate disease-relevant cell types, as previously discussed, but they would also contain the specific genetic mutation that causes the disease. Therefore drug efficacy could easily be tested on disease-relevant cells harboring the disease causing lesion (Figure 1)¹⁶. hiPSC lines have now been generated from patients with ALS¹⁷, SMA¹⁸, Rett syndrome¹⁹ and many others.

Another benefit is that hiPSC lines can be patient specific. Theoretically, they can be generated from each individual, such that if a patient requires transplantation, hiPSCs can be derived from that patient, forced to become the desired cell type and transplanted back into the same patient with lower risk of immune rejection. Furthermore, as the technology improves, the patient's genetic mutation, which caused their disease in the first place, can be corrected prior to

transplantation (Figure 1). This theoretical process has already been achieved in mouse iPSCs (miPSC) harboring the mutation for sickle cell disease²⁰.

Despite significant progress in reprogramming methodology, hiPSC technology does carry substantial risks to clinical application. hiPSC were originally derived through retroviral integration of the four transcription factors previous described. The use of retroviruses creates random integrations in the host genome, which could result in unwanted and potentially harmful mutations. Furthermore, some of the reprogramming genes themselves are known oncogenes. The exogenous transgenes should theoretically be silenced upon differentiation just as the endogenous pluripotency genes are; however a big concern is that the exogenous transgenes will not be under the same control and therefore may be aberrantly reactivated even after differentiation. Aberrant expression of the oncogenic transgenes in the wrong cell type could lead to tumorigenesis. Indeed, when mice were generated from miPSC to test for germline contribution, 20% of the offspring generated tumors attributable to the reactivation of the C-MYC transgene²¹.

Many groups have been working on alternative methods for deriving hiPSC that would avoid these risky side effects. Some proposed alternatives include: using constructs that can be removed after successful reprogramming, so that genes cannot be reactivated later²²; and using non-integrating methods to express the reprogramming factors such as episomal vectors²³, miRNAs²⁴, proteins²⁵, or even through small molecules²⁶⁻²⁷.

Differences between hESCs and hiPSCs - the undifferentiated state

Some of the first papers stemming from Yamanka and Takahashi's finding concentrated on the similarity of hiPSC to hESCs. On a superficial level, hiPSC seemed identical to their embryonic counterparts; they had the right morphology, expressed the right markers and could generate the same types of cells. However, their drastically different methods of derivation begged the question of how truly similar were they?

When researchers took a more global approach to identify differences between hiPSC and their embryonic counterparts, they observed subtle variances that distinguished the two sources of PSCs. One of the first studies described a transcriptional variance between hESCs and hiPSC regardless of which lab had generated the hiPSC clones²⁸. Chin et al. pointed out that while hiPSC were more similar to hESC than to their parental fibroblasts, they still retained a transcriptional signature akin to the parental cell type. Interestingly, early passage hiPSCs (<p10) had greater retention of this parental fate, while later passage hiPSCs (>p30) had corrected some, but not all, of the discrepancies. Furthermore, similar results were found when comparing miPSC to mESCs²⁸. This suggests that there is an incomplete resetting of the parental fate that is universal to the reprogramming process. Many other groups have confirmed these observations even when alternative donor cell types and alternative reprogramming methods are used (29-31) and some have offered possible mechanisms underlying these observed transcriptional differences.

Genomic aberrations

One explanation as to why hiPSC are transcriptionally different from hESCs is that the reprogramming process introduces genetic mutations into the clones. Chin et al. reported that there were no conserved genomic abnormalities when comparing hESCs to hiPSC by gross karyotyping²⁸. However, when more sensitive, genomic sequencing of protein coding regions was instead performed, it was found that hiPSC had a higher level of mutational load compared

to their parental fibroblasts³². In this study, Gore et al. did not sequence hESC lines so it is unclear if the additional mutations were the result of the reprogramming event itself or simply due to continued passaging.

Another group, using high resolution genotyping, reported that hiPSCs had greater copy number variation (CNV) on average than somatic cells. In contrast, while hESCs had greater variation in CNV than somatic cells, the average CNV was not significantly higher³³. In addition, Laurent et al. determined that the CNV changes were a dynamic process during reprogramming. Low passage hiPSC had high percentage of deletions in tumor suppressor genes, and some of these aberrations were even necessary for efficient reprogramming. On the other hand, late passage hiPSC had corrected some of the observed tumor suppressor deletions and instead displayed an increase in duplications of proliferation genes. These duplications were also observed in the variable hESC lines. These findings together suggest that while reprogramming is a likely cause of some of the observed genomic aberrations, continued time in culture is also a probable source.

Epigenetic Memory

While genetic mutations could theoretically affect the transcriptional output of cells and therefore could explain some of the gene expression differences between hESCs and hiPSCs, they do not fully account for the observation that a significant portion of the differences resulted from failure to silence the parental cell's transcriptome. An alternative mechanism that has been proposed is that the epigenetic marks known to control gene expression are incompletely rewritten during the reprogramming process and as a result hiPSC retain an epigenetic memory of their parental cell. Several groups have provided evidence supporting this hypothesis. Histone modifications are one such example of an epigenetic mark that can contribute either positively or negatively to gene expression. For example, Histone3 lysine27 trimethylation (H3K27me3) correlates with repressed genes. Chin et al. and Hawkins et al. both determined that this mark was almost completely reset to an hESC state during the reprogramming process^{28, 34}, suggesting it cannot account for the transcriptional differences observed between the two sources of hPSCs. On the other hand, H3K9me3, another repressive mark, tagged a significant number of promoters in hiPSC, 68% of which were not tagged in hESCs³⁴. Furthermore, the genes corresponding to these aberrantly marked promoters significantly overlapped with the original list of genes that Chin et al. identified in their comparison of hESC and hiPSC. This finding suggests that aberrant H3K9me3 repressive marks contribute to a greater portion of the gene expression differences than H3K27me3. On a more global level, it also suggests that specific histone modifications may be more relevant than others.

Another type of epigenetic modification is DNA methylation. Several groups have reported the existence of differentially methylated regions (DMRs) when comparing hESCs, hiPSC, and parental somatic cells^{30, 35-37}. In a thorough investigation of epigenetic memory in miPSC, one group demonstrated that miPSC derived from either fibroblasts or blood cells had a strong propensity to differentiate back into their cell of origin and were inefficient at contributing to a new lineage³⁸. On the other hand, mESCs and mPSCs derived by SCNT (ntPSC) were capable of generating both cell types with good efficiency. Kim et al. later linked this observation to residual DNA methylation signatures found on miPSC that linked them back to their somatic cell of origin, suggesting the DNA methylation signature was incompletely rewritten during transcription factor induced reprogramming. Furthermore, Kim and colleagues

demonstrated that they could correct this epigenetic memory either by serial reprogramming, where cells were reprogrammed, forced to differentiate into a new lineage, and reprogrammed again; or by administering chromatin-modifying drugs during the reprogramming process³⁸. They found similar results, when comparing hiPSC derived from human cord blood or human fetal keratinocytes³⁷. These studies demonstrate that not only do iPSC have an epigenetic memory of their parental cell type, but that this memory also affects their capacity to differentiate into new lineages. Furthermore, their findings in mPSCs suggest that transcription factor based reprogramming may not be as faithful as nuclear transfer reprogramming.

As more papers are published and more methods are used to compare hiPSC to hESCs it has become clear that the original assessment that hiPSC are seemingly identical to their embryoderived counterpart was naïve. hiPSC are similar, but not perfect. One hypothesis that has been offered to explain the discrepancies found between hiPSC and hESCs, is that if one compares any number of hESC lines to each other based on any criteria (i.e. epigenome, transcriptome, proteome, differentiation efficiency, etc.) there will be a level of variance between the group; no two cell lines will be perfectly identical. If the analysis is repeated for hiPSC, it appears that the variance between lines is increased, however there exist subsets of hiPSC clones that fall into the cloud of variance encompassed by hESC lines (Figure 2)³⁹. This increased variance observed amongst hiPSC lines is perhaps not surprising as the number of methods for deriving the lines is vast. Furthermore, other contributing factors (i.e. sites of integration, stochastic control of transgene expression, etc.) are hard to hold constant between derivations.

The effect these discrepancies observed in the undifferentiated state have on the progeny of hiPSC following differentiation is still not well understood. As was previously described, it appears that the differential epigenetic signatures may contribute to the efficiency of iPSC to generate specific cell lineages³⁷⁻³⁸, but in the event that a cell of interest is generated from hiPSC, regardless of efficiency, does the resulting progeny function to the same capacity as a counterpart derived from hESCs? I will address this question further in chapters 2 and 3 of this dissertation.

Deriving clinically relevant cell types – hPSC progeny

Ultimately, when thinking about the proposed utility of hPSCs, it is not the undifferentiated cells that we are interested in exploiting. Instead, it is their progeny or the cells we generate from them that are clinically relevant. It is well established that hPSCs, when removed from their normal culturing conditions, can randomly differentiate into many cell lineages; however, in most cases, scientists and clinicians are instead interested in generating one pure cell type without contamination from other lineages. To achieve this, directed differentiation and purification from the mixed culture are required.

Current methodology

Many have applied the knowledge of mammalian development to generate sequential protocols for the accurate induction of specific cell types of interest. These protocols usually include: the addition of growth factors or small molecules to activate only those signaling pathways important for that lineage, while blocking aberrant signaling pathways (Figure 3); co-culture with a supporting cell to recapitulate the niche; and/or use of extracellular matrices and engineered substrates to produce 3-dimentional structures akin to a whole organ (reviewed in ⁴⁰).

Once a putative cell type of interest has been generated, it is important to demonstrate that it displays the unique characteristics of that lineage. Currently, several methods are used to demonstrate the fate of a cell. These methods include: morphology, expression of specific cell fate markers, *in vitro* function, and *in vivo* transplantation or rescue of an animal model of disease. Our own group demonstrated that by using differentiation protocols, established by the hESC field, we could generate motor neurons from both hESCs and hiPSCs. The resulting motor neurons had undergone a predictable induction of motor neuron lineage markers and after eight weeks could produce repetitive action potentials characteristic of mature motor neurons⁴¹. This work is discussed further in Chapter 2.

Advancing the methodology

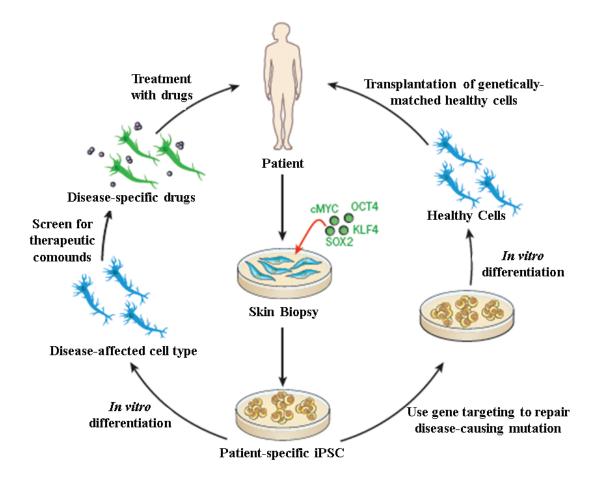
As we observed when comparing hESCs and hiPSC, it may be dangerous to characterize a cell only by superficial examination of its traits. We may not fully appreciate the nature of a cell unless more comprehensive analyses are used. In addition, it is also important to compare the *in vitro* generated cell to an appropriate positive control, such that if it displays an identifying characteristic (i.e. the expression of a specific gene) it does so at a level comparable to the positive control. In the case of hPSC derivatives, the most appropriate control would be an equivalent cell isolated from a human tissue source. This "natural counterpart" has undergone development normally, a process which scientists are attempting to recapitulate when they differentiate hPSCs. Furthermore, these tissue-derived cells are precisely the cells that are meant to be replaced if hPSC technology advances to the clinic, so it will be important to determine if hPSC derivatives will behave like cells found in the human body. Unfortunately, this control is rarely used and so it remains unknown how similar *in vitro* differentiation of an hPSC mirrors normal, *in vivo* development. If differences are observed between hPSC progeny and their tissuederived counterpart it will be important to determine what consequence if any they may have. I will begin to discuss this issue in Chapters 3 and 4.

Our own work comparing three hPSC derivatives, representing each of the embryonic germ layers, to their respective tissue-derived equivalent uncovered a list of genes that were differentially expressed between the two sources regardless of cell type. The differential expression of these genes, along with functional data and microarray analysis from 3-19 week human embryos suggested that derivatives of hPSCs are most similar to a tissue derived counterpart found before 6 weeks of gestation⁴². I will address this issue further in Chapter 3 of this dissertation.

Significance and specific aims of this dissertation

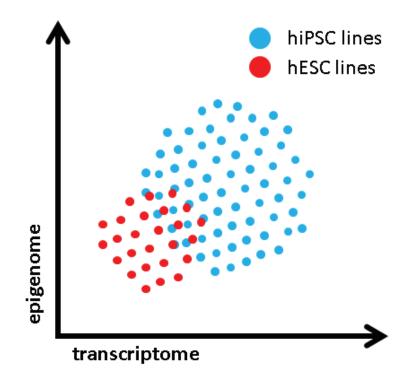
The work presented in the next three chapters represents my own contributions to our understanding of the types of cells we are generating from hPSCs and how similar they are to a counterpart found in the human body.

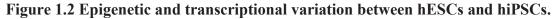
Aim I: Determine if hiPSC and hESCs, generate functional and clinically relevant cell types.

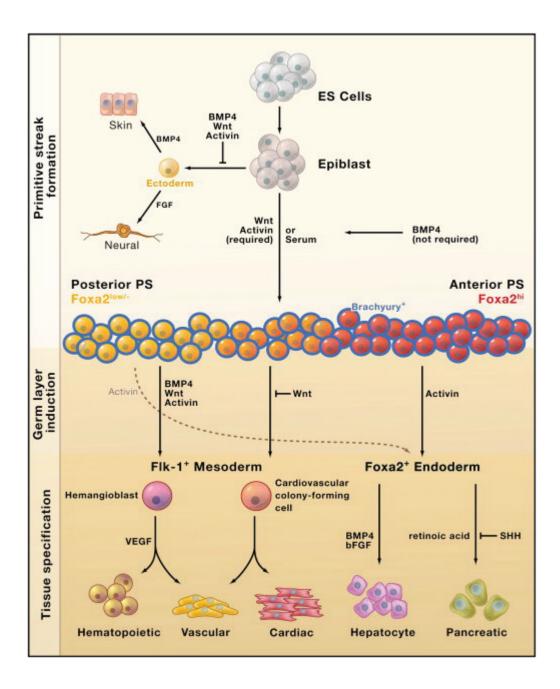

In chapter 2 of this dissertation, I present our work demonstrating that hiPSC and hESCs can generate functional motor neurons and that they differentiate down this lineage via a progressive induction of predictable developmental markers. These findings suggest that *in vitro* differentiation appears to obey normal development. This chapter was previously published in *Stem Cells*⁴¹ and is reprinted in its entirety here with permission from John Wiley & Sons, Inc and all co-authors.

Aim II: Determine if hiPSC and hESC derivatives are "identical" to one another and if they represent a cell type found in the human body.

In chapter 3, I will present our work where we globally compare hESC-, hiPSC- and tissue-derived cells. We demonstrate that derivatives of hiPSC and hESCs are nearly indistinguishable, suggesting that the differences observed in the undifferentiated state dissipate upon differentiation. Furthermore, we determine that, based on transcriptional and functional data, derivatives of either hPSC source are perhaps most similar to a cell type found prior to six weeks of gestation. These finding suggest that developmental timing during *in vitro* differentiation is faithful to *in vivo* development. This chapter was previously published in *Cell Research*⁴² and is reprinted in its entirety with permission from Nature Publishing Group and all co-authors.


Aim III: Establish a functional role for LIN28/let-7 in the developmental maturity of hPSCderived neural progenitor cells (PSC-NPCs).


In this final chapter, we explore the functional relevance of one of the gene pathways identified in our *Cell Research* paper as being differentially expressed between hPSC-derivatives and their respective natural counterpart. We determined that the *LIN28*/let-7 pathway can correct a significant portion of the genes differentially expressed between PSC-NPCs and fetal tissue-derived NPCs and can functionally mature PSC-NPCs, suggesting that it may be one pathway involved in the developmental timing of cells. This work is published here with permission from all co-authors.


Figure 1.1 Patient-specific treatments in the advent of iPSC technology.

With the ability to reprogram somatic cells to the pluripotent state, a source of hPSC can now be generated from patient biopsies, thereby harboring all patient-specific genes. These iPSCs can either be used to screen for new drugs in a patient specific manner (left), or be used for tissue transplantation following correction of the disease-causing mutation (right). Adapted from Robinton and Daley¹⁶ with permission from Nature Publishing Group.

If hESC lines (red) are compared by any characteristics (represented here by epigenetic and transcriptional signatures) then they will display a degree of variance between lines. If the same analysis is done on hiPSC lines (blue) then the variation will be greater, however a subset of lines will fall within the normal variation of hESCs. Adapted from Bock et al.³⁹ with permission from Elsevier.

Figure 1.3 Directed differentiation of PSCs to clinically relevant cell types.

hESCs and hiPSC can be directed to differentiate into various cell types through the sequential addition or repression of growth factors as established by our understanding of mammalian development. Reprinted from Murray and Keller⁴⁰ with permission from Elsevier.

References

- 1. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. *Nature*; **292**, 154-6. (1981)
- 2. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. *Proc Natl Acad Sci USA*; **78**, 7634–7638. (1981)
- 3. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP. Isolation of a primate embryonic stem cell line. *Proc Natl Acad Sci USA*; 92, 7844–7848. (1995)
- Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. *Science*; 282, 1145–1147. (1998)
- 5. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. *Nat Genet*; **24**, 372–376. (2000)
- Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA, Ko MS, Niwa H. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. *Nat Cell Biol*; 9, 625–635. (2007)
- Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, Vrana J, Jones K, Grotewold L, Smith A. Nanog safeguards pluripotency and mediates germline development. *Nature*; 450, 1230–1234. (2007)
- Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. *Cell*; 113, 643–655. (2003)
- Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA. Core transcriptional regulatory circuitry in human embryonic stem cells. *Cell*; **122**, 947–956. (2005)
- 10. Gurdon JB, Elsdale TR, Fischberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. *Nature*; **182**, 64-5. (1958)
- 11. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. *Cell*; **126**, 663-76. (2006)
- 12. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. *Cell*; **131**, 861-72. (2007)

- 13. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. *Science*; **318**, 1917-20. (2007)
- Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ. Reprogramming of human somatic cells to pluripotency with defined factors. *Nature*; 451, 141–146. (2008)
- 15. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K. Generation of human induced pluripotent stem cells from dermal fibroblasts. *Proc Natl Acad Sci USA*; **105**, 2883–2888. (2008)
- 16. Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. *Nature*; **481**, :295-305. (2012)
- 17. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. *Science*; **321**, 1218-21. (2008)
- 18. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN. Induced pluripotent stem cells from a spinal muscular atrophy patient. *Nature*; **457**, 277-80. (2009)
- 19. Hotta A, Cheung AY, Farra N, Vijayaragavan K, Séguin CA, Draper JS, Pasceri P, Maksakova IA, Mager DL, Rossant J, Bhatia M, Ellis J. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. *Nat Methods*; **6**, 370-6. (2009)
- 20. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. *Science*; **318**, 1920-3. (2007)
- 21. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. *Nature*; **448**, 313-7. (2007)
- Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, and Jaenisch R. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. *Cell*; 136, 964–977. (2009)
- 23. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA. Human induced pluripotent stem cells free of vector and transgene sequences. *Science*; **324**, 797-801. (2009)
- 24. Judson RL, Babiarz JE, Venere M, Blelloch R. Embryonic stem cell-specific microRNAs promote induced pluripotency. *Nat Biotechnol*; **27**, 459-61. (2009)
- 25. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, and Kim KS. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. *Cell Stem Cell*; **4**, 472–476. (2009)

- 26. Shi Y, Desponts C, Do JT, Hahm HS, Schöler HR, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. *Cell Stem Cell*; **3**, 568-74. (2008)
- 27. Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, Loh KM, Carter AC, Di Giorgio FP, Koszka K, Huangfu D, Akutsu H, Liu DR, Rubin LL, Eggan K. A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. *Cell Stem Cell*; 5, 491-503. (2009)
- 28. Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J, Khvorostov I, Ott V, Grunstein M, Lavon N, Benvenisty N, Croce CM, Clark AT, Baxter T, Pyle AD, Teitell MA, Pelegrini M, Plath K, Lowry WE. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. *Cell Stem Cell*; 5, 111-23. (2009)
- 29. Ghosh Z, Wilson KD, Wu Y, Hu S, Quertermous T, Wu JC. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. *PLoS One*; **5**, e8975. (2010)
- 30. Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T, Qi Z, Downey SL, Manos PD, Rossi DJ, Yu J, Hebrok M, Hochedlinger K, Costello JF, Song JS, Ramalho-Santos M. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. *Nat Cell Biol*; 13, :541-9. (2011)
- 31. Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T, Natesan S, Wagers AJ, Melnick A, Evans T, Hochedlinger K. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. *Nat Biotechnol*; 28, 848-55. (2010)
- 32. Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K. Somatic coding mutations in human induced pluripotent stem cells. *Nature*; **471**, 63-7. (2011)
- Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Izpisua Belmonte JC, Murry C, Keirstead HS, Park HS, Schmidt U, Laslett AL, Muller FJ, Nievergelt CM, Shamir R, Loring JF. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. *Cell Stem Cell*; 8, 106-18. (2011)
- 34. Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, Edsall LE, Kuan S, Luu Y, Klugman S, Antosiewicz-Bourget J, Ye Z, Espinoza C, Agarwahl S, Shen L, Ruotti V, Wang W, Stewart R, Thomson JA, Ecker JR, Ren B. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. *Cell Stem Cell*; 6, 479-91. (2010)

- 35. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O'Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. *Nature*; **471**, 68-73. (2011)
- 36. Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S, Miller J, Schlaeger T, Daley GQ, Feinberg AP. Differential methylation of tissueand cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. *Nat Genet*; **41**, 1350-3. (2009)
- 37. Kim K, Zhao R, Doi A, Ng K, Unternaehrer J, Cahan P, Huo H, Loh YH, Aryee MJ, Lensch MW, Li H, Collins JJ, Feinberg AP, Daley GQ. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. *Nat Biotechnol*; 29, 1117-9. (2011)
- 38. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ. Epigenetic memory in induced pluripotent stem cells. *Nature*; 467, 285-90. (2010)
- 39. Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft GF, Amoroso MW, Oakley DH, Gnirke A, Eggan K, Meissner A. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. *Cell*; **144**, 439-52. (2011)
- 40. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. *Cell*; **132**(4):661-80. (2008)
- 41. Karumbayaram S, Novitch BG, Patterson M, Umbach JA, Richter L, Lindgren A, Conway AE, Clark AT, Goldman SA, Plath K, Wiedau-Pazos M, Kornblum HI, Lowry WE. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. *Stem Cells*; 27, 806-11. (2009)
- 42. Patterson M, Chan DN, Ha I, Case D, Cui Y, Van Handel B, Mikkola HK, Lowry WE. Defining the nature of human pluripotent stem cell progeny. *Cell Res*; **22**, 178-93. (2012)

CHAPTER 2:

Directed differentiation of human induced pluripotent stem cells generates active motor neurons

Directed Differentiation of Human-Induced Pluripotent Stem Cells Generates Active Motor Neurons

SARAVANAN KARUMBAYARAM,^a BENNETT G. NOVITCH,^{b,c} Michaela Patterson,^d Joy A. Umbach,^e Laura Richter,^d Anne Lindgren,^d Anne E. Conway,^d Amander T. Clark,^{c,d} Steve A. Goldman,^f Kathrin Plath,^{c,g} Martina Wiedau-pazos,^a Harley I. Kornblum,^{c,e,h} William E. Lowry^{c,d}

Departments of ^aNeurology, ^bNeurobiology, ^eMolecular and Medical Pharmacology, ^gBiological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California, USA; ^eBroad Stem Cell Center; and ^dDepartment of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, California, USA; ^fCenter for Translational Neuromedicine, Department of Neurology, University of Rochester, Rochester, New York, USA; ^hThe Semel Institute and the Mental Retardation Research Center at UCLA, Los Angeles, California, USA

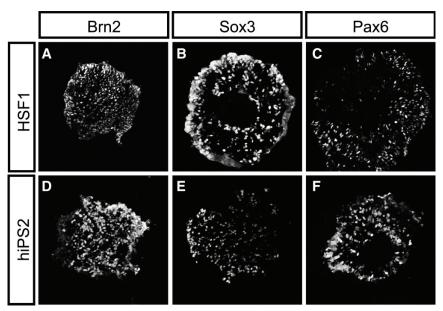
Key Words. Embryonic stem cells • Neural differentiation • Neuron • Reprogramming • Pluripotent stem cell

ABSTRACT

The potential for directed differentiation of human-induced pluripotent stem (iPS) cells to functional postmitotic neuronal phenotypes is unknown. Following methods shown to be effective at generating motor neurons from human embryonic stem cells (hESCs), we found that once specified to a neural lineage, human iPS cells could be differentiated to form motor neurons with a similar efficiency as hESCs. Human iPS-derived cells appeared to follow a normal developmental progression associated with motor neuron formation and possessed prototypical electrophysiological properties. This is the first demonstration that human iPSderived cells are able to generate electrically active motor neurons. These findings demonstrate the feasibility of using iPS-derived motor neuron progenitors and motor neurons in regenerative medicine applications and in vitro modeling of motor neuron diseases. STEM CELLS 2009;27:806–811

Disclosure of potential conflicts of interest is found at the end of this article.

INTRODUCTION


Several groups have demonstrated the feasibility of reprogramming various types of human somatic cells to an embryonic state upon the introduction of pluripotency factors that yield induced pluripotent stem cells (iPS cells) [1–4]. The excitement surrounding iPS technology is predicated upon the potential to treat disease or injury with derivatives of patientspecific stem cells. In the more immediate term, their value may lie in the opportunity to model human diseases in vitro for which the etiology is unknown. Motor neurons are lost in many conditions, including spinal cord injury, amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA). A major therapeutic goal is to develop the means to functionally replace these cells and to model their states of disease in vitro. Previous studies have outlined methods to derive functional motor neurons from human embryonic stem cells (hESCs) [5–7], and two recent studies applied similar methods to human iPS cell lines derived from patients with ALS and SMA [8, 9]. Before human iPS cells are used for regenerative medicine or to model motor neuron diseases, it is imperative to demonstrate that these cells can generate electrically active motor neurons with the characteristics of their natural counterparts.

Human iPS cells were capable of generating derivatives representing the three embryonic germ layers both in vitro in embryoid bodies (EBs) and in vivo teratoma assays ([1] and supporting information Fig. S1). Here, we show that two established methods to derive motor neurons from murine cells and hESCs can also be used to produce functionally mature motor neurons from human iPS cells [1]. First, an EB differentiation protocol was used to enrich for motor neuron differentiation [10, 11]. Second, an adherent approach was used to enable the characterization of the differentiated cells for their gene

Author contributions: S.K.: conception and design, collection and assembly of data, data analysis and interpretation, manuscript writing, final approval of manuscript; B.N.: conception and design, collection and assembly of data, data analysis and interpretation; J.U.: conception and design, collection and assembly of data, data analysis and interpretation; J.U.: conception and design, collection and assembly of data, data analysis and interpretation; J.U.: conception and design, provision of study material; A.L.: collection and assembly of data; A.C.: collection and assembly of data; A.C.: collection and assembly of data; A.C.: collection and assembly of data; financial support; S.A.G.: data analysis and interpretation, manuscript writing, final approval of manuscript; K.P.: data analysis and interpretation, manuscript writing, final approval of manuscript; W.E.L.: conception and design, data analysis and interpretation, manuscript writing, final approval of manuscript; writing

Correspondence: William E. Lowry, Ph.D., 621 Charles Young Drive South, Mail Box 160606, Los Angeles, CA 90095. Telephone: 310-794-5175; Fax: 310-794-9323; e-mail: blowry@ucla.edu; Bennett G. Novitch, e-mail: bnovitch@ucla.edu; Martina Wiedau-Pazos, e-mail: mwiedau@mednet.ucla.edu; or Harley I. Kornblum, e-mail: hkornblum@mednet.ucla.edu. Received August 4, 2008; accepted for publication February 4, 2009; first published online in STEM CELLS *Express* February 23, 2009. © AlphaMed Press 1066-5099/2009/\$30.00/0 doi: 10.1002/stem.31

STEM CELLS 2009;27:806–811 www.StemCells.com

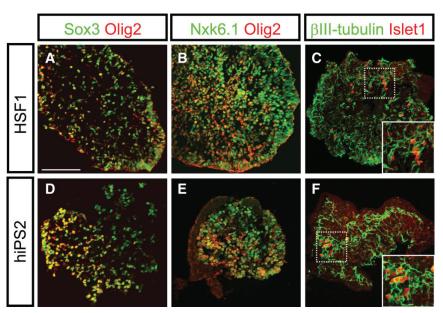
Figure 1. Human embryonic stem cells and human iPS-derived cells can both generate neural progenitors. Both HSF1 and hiPS2-derived embryoid bodies (EBs) were grown for 5-7 days in the presence of retinoic acid (1 μ M, Sigma) and the Shh pathway agonist purmorphamine (1.5 μ M, Calbiochem, San Diego, http://www.embbiosciences.com) and generated EBs full of neural progenitors as judged by immunostaining for Brn2, Sox3, and Pax6 (A–F). Similar results were obtained using a different Shh pathway agonist (HAg1.3, 500 nM, Curis, data not shown). Abbreviations: hiPS2, human-induced pluripotent stem cells; HSF1, human embryonic stem cell line.

expression and electrophysiology [6, 7]. For both approaches, we directly compared the ability of different human iPS cell lines and the well characterized hESC line HSF1 to generate both motor neuron progenitors and differentiated motor neurons. The results of this study should provide a platform for future studies of human motor neuron diseases in vitro.

MATERIALS AND METHODS

Immunostaining

Antibody staining was performed on 4% parformaldehyde fixed, cryosectioned EBs and cultured cells as previously described [11]. Antibodies used include the following: goat anti-Brn2 (sc-6029; Santa Cruz Biotechnology Inc., Santa Cruz, CA, http:// www.scbt.com); goat anti-choline acetyl transferase (ChAT; Millipore, Billerica, MA, http://www.millipore.com); rabbit anti-Hoxa3 and guinea pig anti-Hoxa5 (generously provided by J. Dasen and T. Jessell) [13]); goat anti-Hoxc6 (SC-46135; Santa Cruz Biotechnology); mouse anti-Hoxc8 clone C952-7E (MMS-266R; Covance, Princeton, NJ, http://www.covance.com); goat anti-Isl1 (AF1837; R&D Systems Inc., Minneapolis, http:// www.rndsystems.com); mouse anti-Isl1 clone 39.4D5 (Developmental Studies Hybridoma Bank, Iowa City, IA, http://www.uiowa.edu/dshbwww); mouse anti-Lim3 clone 4E12 (Developmental Studies Hybridoma Bank); mouse anti-Nkx6.1 clone F55A10 (Developmental Studies Hybridoma Bank); rabbit anti-Nkx6.1 (generously provided by S. Morton and T. Jessell) [14]; guinea pig anti-Olig2 [11]; mouse anti-Pax6 (Developmental Studies Hybridoma Bank); mouse anti-Pax7 (Developmental Studies Hybridoma Bank); mouse anti-Nestin (Neuromics); rabbit anti-Sox1, anti-Sox2, and anti-Sox3 (all generously provided by T. Edlund and J. Muhr) [15]; and rabbit anti- β -III tubulin (MRB-435P, Covance). The monoclonal antibodies obtained from the Developmental Studies Hybridoma Bank were developed under the auspices of the NICHD and maintained by The University of Iowa, Department of


Biological Sciences, Iowa City, IA. Alexa488-, FITC-, Cy3-, and Cy5-conjugated secondary antibodies were obtained from either Invitrogen (Carlsbad, CA, http://www.invitrogen.com) or Jackson Immunoc.com). Fluorescence and DIC images were collected using a Zeiss Axioobserver microscope equipped with the Apotome optical imaging system, or a Zeiss LSM5 Exciter confocal imaging system. Images were processed using the Zeiss Axiovision and LSM Exciter software suites (Carl Zeiss, Oberkochen, Germany, http://www.zeiss.com), and Adobe Photoshop CS2 (Adobe Systems, San Jose, CA, http://www.adobe.com).

Electrophysiology

Electrophysiology was performed at 20-23°C using standard whole-cell, current-clamp techniques. Patch pipettes [3-5 µM] were filled with the following: 140 mM potassium gluconate, 10 mM Na HEPES, 1 mM EGTA, 4 mM ATP-Mg, 0.3 mM GTP, pH 7.2 [adjusted with KOH]. Cells were bathed in 120 mM NaCl, 1.2 mM KH₂PO₄, 1.9 mM KCl, 26 mM NaHCO₃, 2.2 mM CaCl₂, 1.4 mM MgSO₄, 10 mM D-Glucose, 7.5 mM Na HEPES [pH with NaOH to 7.2] equilibrated with 95% O₂ and 5% CO₂ and resting potentials were maintained at about -70mV. Graded current injections used durations of 0.5 milliseconds (in steps of 100 pA) or 250 milliseconds (in steps of 20 pA). Signals were sampled at 10 kHz using a Digidata 1322A analog to digital converter and acquired and stored on a computer hard drive using pClamp six software. Data were analyzed offline using pClamp six (Clampfit; Molecular Devices, Sunnyvale, CA, http:// www.moleculardevices.com/home).

RESULTS

To demonstrate whether human iPS are able to differentiate down neural lineages to form motor neurons, we generated

Figure 2. The directed differentiation of human embryonic stem cell and human iPS-derived cells recapitulates the stereotypical progression associated with motor neuron formation. After 8-10 days in the presence of retinoic acid, Shh pathway agonists and neurotrophic factors, both HSF1 and human iPS-derived embryoid bodies (EBs) contained Sox3⁺, Nkx6.1⁺, and Olig2⁺ motor neuron progenitors (**A**, **B**, **D**, **E**). Both HSF1 and human iPS cells were further able to produce differentiated Islet1 and β III-tubulin-positive motor neurons within these EBs (**C**, **F**). Scale bar = 100 μ m (**A**–**F**). Abbreviations: hiPS2, human-induced pluripotent stem cells; HSF1, human embryonic stem cells.

EBs from human iPS cells (hiPS2) and hESCs (HSF1), as previously described [1]. The EBs were cultured for 1 week in hESC media lacking FGF2 and then treated for an additional week with retinoic acid (RA; 1 μ M) and a Sonic Hedgehog pathway agonist (purmorphamine, 1.5 μ M) [16]. This method is known to both neuralize and ventralize EBs, as defined by the expression of ventral neural progenitor markers [11]. Both HSF1 and human iPS cells followed a standard course of development, serially differentiating from pluripotent cells to neural progenitors to fully differentiated motor neurons. As the EB protocol initiates specification in a somewhat stochastic manner, only a proportion of EBs from either HSF1 or iPS cells were specified to be neural, as demonstrated by immunostaining for the neural progenitor markers Brn2, Sox3, and Pax6 (Fig. 1A–1F and supporting information Fig. S2).

We did observe marked differences in the efficiencies by which HSF1 and hiPS cells underwent specification down the neural lineage (supporting information Fig. S2). Given the well-described variation of differentiation potentials among pluripotent stem cell lines [17], it is unclear whether this finding reflects an inherent difference between embryonic and induced pluripotent stem cells. However, within those EBs that were specified as neural, the percentage of cells expressing neural progenitor markers Brn2, Sox3, and Pax6 was similar whether the EBs were derived from HSF1 or human iPS cells (Fig. 1A–1F and data not shown). These findings suggest that both HSF1 and human iPS cells can be directed to form comparable neural progenitors.

After another week in the presence of RA and Shh pathway agonists, along with neurotrophic factors known to promote motor neuron survival [ciliary neurotrophic factor (CNTF) 20 ng/ml, brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF), 10 ng/ml each], the EBs were fixed, cryosectioned, and immunostained for Sox3 and the motor neuron progenitor markers Nkx6.1 and Olig2. In the EBs that expressed markers of neural progenitors, the extent of labeling with Nkx6.1 and Olig2 antibodies was similar between HSF1 and human iPS-derived cells (Fig. 2B, 2E), and the percentage of Sox3⁺ cells that expressed Olig2 was comparable (59.1% \pm 7.07% for HSF1 and 57.6% \pm 9.88% for human iPS-derived cells). Further analysis was conducted with a combination of markers known to be specific to differentiated motor neurons. Within EBs that were specified towards a neural fate and expressed markers of motor neuron progenitors (Nkx6.1 and Olig2), a small but significant number of Islet1 and β III-tubulin doublepositive neurons were observed (Fig. 2C, 2F). The physical limitations of the EB differentiation method precluded detailed functional analysis of these cells, but these results together provide evidence that both HSF1 and human iPS cells can be induced to generate differentiated motor neurons.

To enable a physiological characterization of these iPSderived motor neurons, we used another method of directed differentiation using previously described adherent conditions [6, 7]. Neural rosettes generated from HSF1 and human iPS1, iPS2, and iPS18 cells were mechanically isolated and then replated onto laminin-coated dishes in medium containing RA $(1 \ \mu M)$ and Shh (200 ng/ml). After a week, neurotrophic factors were added (BDNF, CNTF, and GDNF; 10 ng/ml each), the Shh concentration was lowered (50 ng/ml), and the cells were allowed to differentiate for 3-5 weeks. Both HSF1 and human iPS-derived cells followed the expected course of differentiation, from Nestin-positive neuronal progenitors (Fig. 3B, 3F) to mature motor neurons (BIII-tubulin, ChAT, and Islet1-positive; Fig. 3C-3H). In both HSF1 and human iPS derived β III-tubulin-positive cells, a similar percentage of Islet1-positive cells was detected (28.2% \pm 5.7% for HSF1, 33.6% \pm 12% for human iPS2) (Fig. 3C, 3G), suggesting again that once specified to a neuronal fate. human iPS-derived cells and HSF1-derived cells are equally efficient at generating motor neurons in these conditions.

STEM CELLS

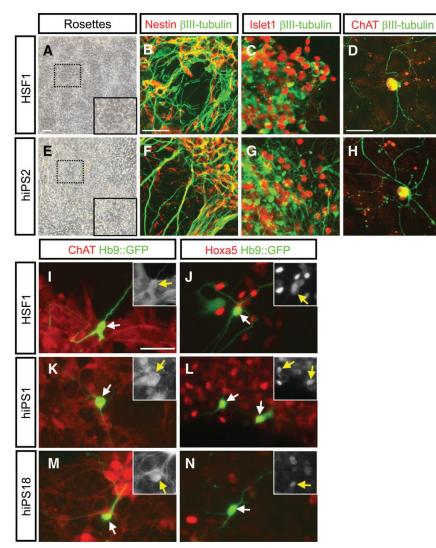


Figure 3. Neurons derived from human iPS cells and human embryonic stem cells express several motor neuron markers. Neural rosettes formed after 8-10 days in adherent culture (A, E). After mechanical dissection of rosettes from both HSF1 and hiPS2, Nestin-positive neural progenitors remain while differentiated neurons expressing β III-tubulin are formed (B, F). Confocal imaging demonstrates the generation of cells double stained for definitive markers of motor neurons including β III-tubulin and Islet1 (C, G) or β III-tubulin and ChAT (D, H). Late-stage differentiated neurons from were transiently transfected with a reporter indicative of Hb9 expression (Hb9:: green fluorescent protein [GFP]; I–N). Staining with an antibody recognizing ChAT demonstrates the specificity of the reporter for mature motor neurons (J, K, M). Costaining with antibody against Hoxa5 demonstrates a rostral cervical character of both HSF1 and hiPS-derived motor neurons (J, L, N). Insets in panels (I–N) show the single channel stains for either ChAT or Hoxa5 in the Hb9::GFP-positive cells indicated by the arrows. Scale bars = 200 μ m (A, E); 70 μ m (B, C, F, G); 50 μ m (D, H); 50 μ m (I–N). Abbreviations: ChAT, choline acetyl transferase; hiPS2, human-induced pluripotent stem cells; HSF1, human embryonic stem cells.

To further demonstrate that this differentiation protocol generates spinal cord neurons, cells from both HSF1 and human iPS cells were also stained with markers of various regions of the spinal cord and a reporter specific for activity of *Hb9* (*Mnx1* or *Hlxb9*), which encodes for a transcription factor specifically expressed by mature motor neurons [6]. This Hb9-driven green fluorescent protein (GFP) reporter was transfected into HSF1 and human iPS derived cells to enable the identification and targeting of motor neurons in which *Hb9* was transcriptionally active [6]. Activity of this reporter tightly correlated with markers characteristic of rostral cervi-

cal motor neurons such as Hoxa5 and ChAT in both HSF1 and hiPS-derived cells (Fig. 3) [11, 12].

Finally, to establish the phenotypic maturation of the human iPS-derived neurons, we studied their electrophysiological properties. It is well established that the firing of repetitive action potentials in response to current injection is typical of the behavior of adult vertebrate motor neurons [10] and that this repetitive firing develops as function of their maturation [18]. The excitability of HSF1 and human iPSderived motor neurons was assayed by whole cell patch clamping in the current clamp mode. Action potentials were

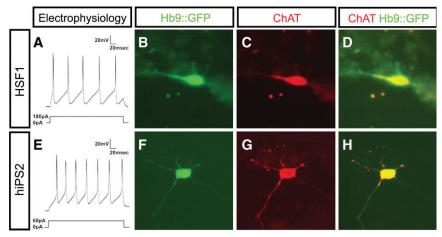


Figure 4. Neurons derived from human iPS cells and human embryonic stem cells (hESCs) display mature motor neuron characteristics. Whole cell patch clamp recordings from Hb9:: green fluorescent protein (GFP) expressing hESC and human iPS-derived neurons show repetitive firing after stimulation (**A**, **E**). Results shown are representative of recordings made from at least 20 cells derived from both hESCs and human iPS cells. Imaging of cells fixed after electrophysiological recordings show that these cells expressing the Hb9::GFP reporter also contained ChAT (**B–D** and **F–H**). Abbreviations: HSF1, human embryonic stem cells; hiPS2, human-induced pluripotent stem cells; ChAT, choline acetyl transferase.

recorded 48-62 days after plating. Upon application of current to either hESC or human iPS-derived neurons with Hb9::GFP activity, roughly half responded with single action potentials, whereas the other half responded with repetitive action potentials (Fig. 4A, 4E). After recordings were made, the neurons were fixed and analyzed for Hb9::GFP expression and ChAT staining to confirm that those cells that generated a typical motor neuron response to electrical stimulation also possessed cholinergic properties (Fig. 4B–4H). Identical results were achieved with motor neurons derived from three independent human iPS cell lines and were indistinguishable from motor neurons derived from HSF1 (supporting information Fig. S3). Together, these results demonstrate the general feasibility of the generating electrophysiologically active motor neurons from human iPS cells.

DISCUSSION

A primary objective of hESC and human iPS cell technology is to be able to generate relevant cell types to enable the repair of tissue damage and in vitro modeling of human disease processes. Here, we demonstrate the successful generation of electrically active motor neurons from multiple human iPS cell lines and provide evidence that these neurons are molecularly and physiologically indistinguishable from motor neurons derived from hESCs. The generation of motor neurons from human iPS cells isolated from patients harboring ALS and SMA mutations has recently been described, even though the electrophysiological activity of these motor neurons was not assessed [8, 9]. Demonstrating that human iPS cells can adopt this key hallmark of functional maturation is essential for any future application of human iPS cells in the study or treatment of motor neuron diseases. To our knowledge, our results present the first demonstration of the electrical activity of human iPS-derived neurons and further suggest the feasibility of using these cells to explore how changes in motor neuron activity contributes to the degeneration of these cells underlying that underlies motor neuron disorders [19, 20].

It remains unclear why the potential for the human iPS cell lines described here to appeared to undergo neural speci-

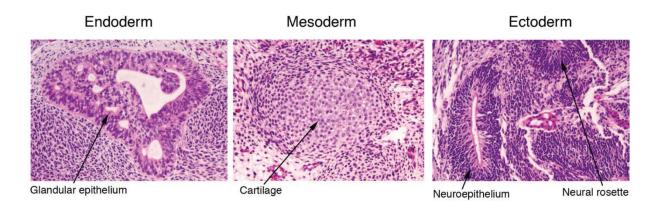
fication with a lower efficiency than HSF1 in these experiments. Marked variability in neuralization competence has been described among different lines of hESCs [21], and thus it seems likely that such differences may be noted also in human iPS cells. More importantly, the data presented here demonstrate that, of the cells that were specified to become neural, human iPS-derived neural progenitors proved as competent at generating motor neurons as their HSF1-derived counterparts. These findings support the possibility that reprogrammed somatic cells might prove to be a viable alternative to embryo-derived cells in regenerative medicine. Finally, as the human iPS cells appeared to obey a normal developmental progression to mature, electrically active neurons, it seems possible that disease-specific somatic cells may be reprogrammed and used to model and ultimately to treat a variety of human neurological disorders.

ACKNOWLEDGMENTS

We thank J. Dasen, T. Edlund, T. Jessell, S. Morton, and J. Muhr for the generous gift of reagents. J.A.U. has support from the Department of Molecular and Medical Pharmacology at UCLA. B.G.N. was supported by grants from the March of Dimes Foundation, the Muscular Dystrophy Association, and the NINDS. H.I.K., S.K., M.W.P., and S.A.G. were supported by The Miriam and Sheldon Adelson Medical Research Foundation and the Adelson Program for Neural Regeneration and Repair. MWP was also supported by the David Vickter Foundation and by Robert and Louise Schwab. W.E.L. is supported by a CIRM grant (#RS1-00259-1) and a Basil O'Connor Starter Scholar Research Award from the March of Dimes.

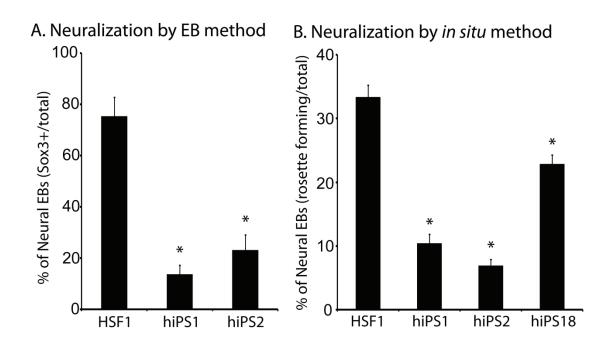
DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST

The authors indicate no potential conflicts of interest.

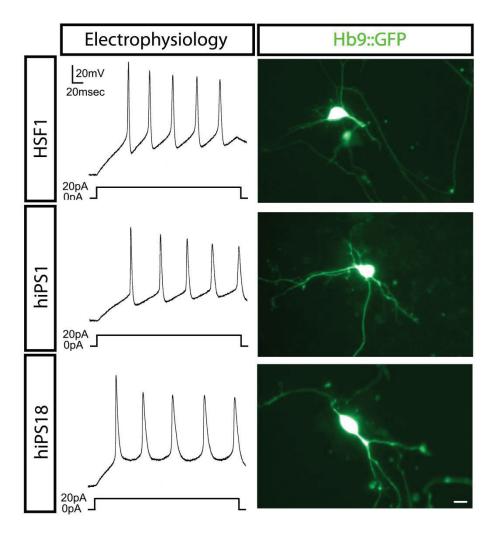

STEM CELLS

REFERENCES

- Lowry WE, Richter L, Yachechko R et al. Generation of human 1 induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 2008;105:2883-2888.
- Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861-872.
- 3 Park IH, Zhao R, West JA et al. Reprogramming of human somatic
- cells to pluripotency with defined factors. Nature 2008;451:141–146. Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem 4 cell lines derived from human somatic cells. Science 2007;318: 1917-1920.
- Lee H, Shamy GA, Elkabetz Y et al. Directed differentiation and 5 transplantation of human embryonic stem cell-derived motoneurons. Stem Cells 2007;25:1931-1939.
- Singh Roy N, Nakano T, Xuing L et al. Enhancer-specified GFP-based 6 Singh Koy N, Nakano I, Atung L et al. Emancer-spectifice Of Possee FACS purification of human spinal motor neurons from embryonic stem cells. Exp Neurol 2005;196:224–234. Li XJ, Du ZW, Zarnowska ED et al. Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 2005;23:215–221.
- 7
- Dimos JT, Rodolfa KT, Niakan KK et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008;321:1218–1221. Ebert AD, Yu J, Rose FF et al. Induced pluripotent stem cells from a
- spinal muscular atrophy patient. Nature 2009;457:277–2801. Miles GB, Yohn DC, Wichterle H et al. Functional properties of 10 motoneurons derived from mouse embryonic stem cells. J Neurosci 2004;24:7848-7858.


- 11 Wichterle H, Lieberam I, Porter JA et al. Directed differentiation of embryonic stem cells into motor neurons. Cell 2002;110:385–397.
- 12 Dasen JS, Liu JP, Jessell TM. Motor neuron columnar fate imposed
- by sequential phases of Hox-c activity. Nature 2003;425:926–933. Dasen JS, Tice BC, Brenner-Morton S et al. A Hox regulatory net-13 work establishes motor neuron pool identity and target-muscle connectivity. Cell 2005;123:477-491.
- De Marco Garcia NV, Jessell TM. Early motor neuron pool identity and muscle nerve trajectory defined by postmitotic restrictions in 14 Nkx6.1 activity. Neuron 2008;57:217-231
- 15 Bylund M, Andersson E, Novitch BG et al. Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci 2003;6:1162–1168.
- Li XJ, Hu BY, Jones SA, Zhang YS et al. Directed differentiation of 16 ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells 2008;26:886-893.
- Osafune K, Caron L, Borowiak M et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Bio-technol 2008;26:313–315.
- Gao BX, Ziskind-Conhaim L. Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons. J Neurophysiol 1998;80:3047–3061.
- Balice-Gordon RJ, Smith DB, Goldman J et al. Functional motor unit failure precedes neuromuscular degeneration in canine motor neuron disease. Ann Neurol 2000;47:596-605.
- Bories C, Amendola J, Lamotte d'Incamps B et al. Early electrophysiological abnormalities in lumbar motoneurons in a transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 2007;25: 451-459
- Tropepe V, Hitoshi S, Sirard C et al. Direct neural fate specification 21 from embryonic stem cells: A primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 2001;30:65–78.

See www.StemCells.com for supporting information available online.


Supporting Information Figure S1. In vivo differentiation demonstrates the pluripotency of human iPS cells.

One million human iPS cells were injected into the testis of immunocompromised mice, and eight weeks later teratoma tumors were removed and subjected to histology by hematoxylin and eosin staining. Arrows indicate regions where cells typical of the indicated germ layers were found. Note that while human iPS cells always generated multipotent teratomas, injection of up to ten million parental fibroblasts never produced a single tumor of any kind (data not shown).

Supporting Information Figure S2. HSF1 and human iPS appear to have different propensities for neural specification.

Differentiation of embryoid bodies (EBs) made from HSF1 and human iPS cells drives a portion of them down a neural lineage as measured by expression of Sox3. Quantification of the percentage of EBs with at least 90% of cells expressing Sox3 highlights a difference in neuralization between HSF1 and human iPS1 and 2 after 2 weeks of differentiation (* denotes $p \le 0.0003$ for each human iPS cell line versus HSF1)(a). The reduced efficiency of human IPS cells in forming neural progenitors was similarly observed when three different lines (hiPS1, 2, and 18) along with HSF1 were directly differentiated into neural rosettes without EB formation. These results suggest that the differences in neural formation are not simply due to variations in EB formation by HSF1 and these human iPS cell lines. Two weeks after replacing the standard hESC maintenance media (KO serum replacer, Invitrogen) to neural/ventralization media (as described in the text, Fig 1), the number of colonies that displayed neural rosette formation was quantified as a percentage of the total (* denotes $p \le 0.0004$ for each human iPS line versus HSF1)(b). Data were collected from at least two independent experiments and represent the average across an $n \ge 6$. Error bars represent standard error of the mean. A two-tailed t-test was performed based on unequal variance to generate p values for each human iPS cell line versus HSF1.

Supporting Information Figure S3. HSF1, hiPS1, and hiPS18 all generate mature, electrophysiologically active motor neurons.

Rosettes derived from HSF1, hiPS1, and hiPS18 were differentiated for at least 50 days and transfected with the Hb9::GFP reporter. Whole cell patch clamp recordings from Hb9::GFP expressing HSF1 and human iPS-derived cells (Right) show repetitive firing after stimulation (Left). Results shown are representative of recordings made from at least 7 cells derived from HSF1 and hiPS18.

CHAPTER 3:

Defining the nature of human pluripotent stem cell progeny

Defining the nature of human pluripotent stem cell progeny

Michaela Patterson^{1, 3, *}, David N Chan^{1, 3, *}, Iris Ha¹, Dana Case⁴, Yongyan Cui¹, Ben Van Handel^{1, 3}, Hanna KA Mikkola^{1, 2, 3, 4}, William E Lowry^{1, 2, 3, 4}

¹Department of Molecular, Cell and Developmental Biology; ²Jonsson Comprehensive Cancer Center; ³Eli and Edythe Broad Center for Stem Cell Research; ⁴Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA

While it is clear that human pluripotent stem cells (hPSCs) can differentiate to generate a panoply of various cell types, it is unknown how closely *in vitro* development mirrors that which occurs *in vivo*. To determine whether human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) make equivalent progeny, and whether either makes cells that are analogous to tissue-derived cells, we performed comprehensive transcriptome profiling of purified PSC derivatives and their tissue-derived counterparts. Expression profiling demonstrated that hESCs and hiPSCs make nearly identical progeny for the neural, hepatic, and mesenchymal lineages, and an absence of re-expression from exogenous reprogramming factors in hiPSC progeny. However, when compared to a tissue-derived counterpart, the progeny of both hESCs and hiPSCs maintained expression of a subset of genes normally associated with early mammalian development, regardless of the type of cell generated. While pluripotent genes (*OCT4, SOX2, REX1,* and *NANOG*) appeared to be silenced immediately upon differentiation from hPSCs, genes normally unique to early embryos (*LIN28A, LIN28B, DPPA4*, and others) were not fully silenced in hPSC derivatives. These data and evidence from expression patterns in early human fetal tissue (3-16 weeks of development) suggest that the differentiated progeny of hPSCs can serve as useful *in vitro* models of early human development, but also raise important issues for disease modeling and the clinical application of hPSC derivatives.

Keywords: hESC; hiPSC; differentiation; human development; human fetal tissue; pluripotent *Cell Research* (2012) **22**:178-193. doi:10.1038/cr.2011.133; published online 16 August 2011

Introduction

hiPSCs are similar to hESCs in that they share the same pluripotency markers, display self-renewal, and are capable of differentiation into all three germ layers. The rapid development of hiPSC technology has delivered new hope for personalized medicine. In addition, hiPSCs may present a better tool for modeling disease as they can be derived from patients with various genetic diseases at virtually any age [1].

We and others have demonstrated that undifferentiated hiPSCs at early passages display a somewhat unique gene expression pattern from hESCs [2-4]. However, the

Correspondence: William E Lowry

Tel: +1 310-794-5175; Fax: +1 310-794-9323

E-mail: blowry@ucla.edu

functional relevance of any gene expression differences between hiPSCs and hESCs remains unclear. Recent evidence suggests that these differences may be explained by the fact that hiPSCs are more variant than hESCs at the epigenetic and transcriptional level [5-7]. It is also possible that the differences between hiPSCs and hESCs persist upon differentiation and that these differences influence the derivation of specified progeny, but this has not been formally tested. Recent work in murine and human iPSCs has shown that a residual epigenetic memory of the starting cell type is retained after reprogramming, and this memory appears to influence the efficiency of differentiation [8-11]. Furthermore, epigenetic differences between mouse iPSC lines diminish, as the cells are passaged [8], consistent with what was shown for gene expression between hiPSCs and hESCs [2, 12]. So far, differentiation efficiency appears to be as variable amongst hESC lines as it is for hiPSC lines [5, 13-15].

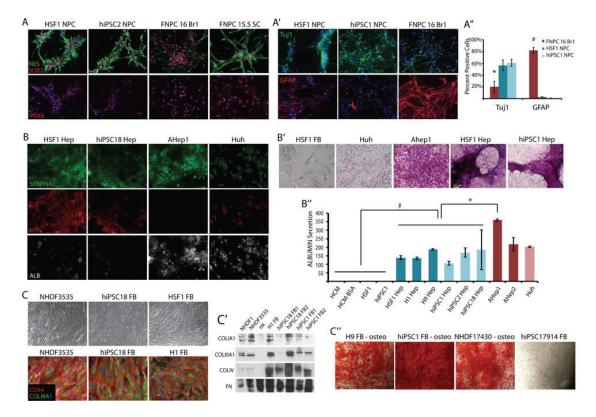
Despite varying efficiencies, all hPSC lines appear to have some potential to generate an array of functional

^{*}These two authors contributed equally to this work.

Received 19 April 2011; revised 1 June 2011; accepted 6 July 2011; published online 16 August 2011

cell types, including motor neurons, cardiomyocytes, dopaminergic neurons, hematopoietic cells, hepatocytes, etc. [16-21]. While it is clear that hiPSCs are capable of generating similar cell types as hESCs as determined by expression of a select number of markers, it remains to be seen if, on a global level, these derivatives are truly analogous. Furthermore, for hESCs or hiPSCs to be employed in therapy or as models of human development, it is also important to determine how well their differentiation mirrors natural development. Because both hiPSCs and hESCs undergo development in vitro instead of in vivo, it is not clear if current differentiation protocols accurately recapitulate the development that occurs in the human embryo. Nor is it clear whether cell types can be generated from hPSCs that mimic mature adult phenotypes.

To address these issues, we generated and purified derivatives of all three germ layers from hESCs and hiP-SCs using established protocols. We compared the global gene expression pattern between the progeny of hESCs and hiPSCs, and primary tissue-derived equivalents from various stages of development. Our results show that the gene expression differences found between hiPSCs and hESCs in the undifferentiated state mostly dissipated after differentiation and derivatives from hiPSCs and hESCs were very similar to each other transcriptionally. On the other hand, a significant number of genes were different between PSC derivatives and their respective natural counterpart, regardless of the cell type generated. While OCT4, SOX2, REX1, and NANOG were effectively silenced, an alternative set of genes normally associated with the pluripotent state including LIN28A, LIN28B, and DPPA4 remained expressed in pluripotent cellderived progeny. We hypothesize and provide significant evidence that these cells derived from hPSCs are representative of cells found during human development prior to 6 weeks of development. Our data are consistent with the notion that ESC-derived cells represent early stages of development [22-25], but we demonstrate here that this also applies to hiPSC-derived cells. Furthermore, we attempt to place the PSC derivatives into a more precise developmental time frame than that has been established previously. These findings underscore the need to consider the maturity of cells produced from hPSCs for disease modeling or regenerative medicine.


Results

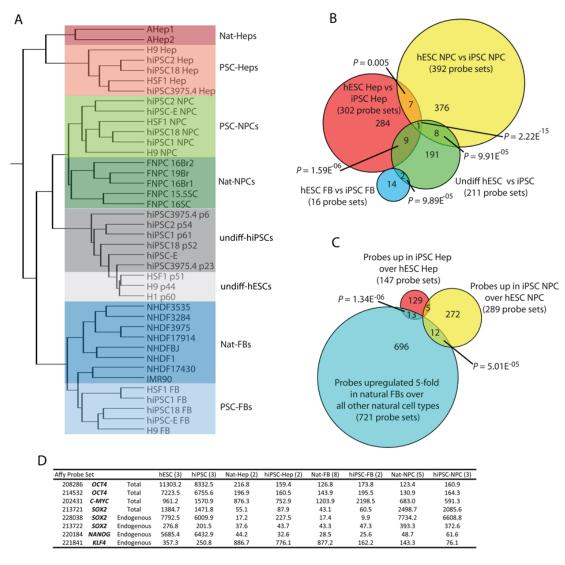
hESC and hiPSC lines are capable of generating derivatives representing all three embryonic germ layers

Using previously established protocols, we differentiated hESCs and hiPSCs into derivatives representing all three embryonic germ layers: neural progenitor cells (NPCs) (ectoderm) [18], hepatocytes (endoderm) [20], and fibroblasts (FBs) (mesoderm). In our studies, the efficiency of derivation of various cell types from PSCs (including hESCs and FB-derived hiPSCs) was highly variable amongst various lines and across multiple experiments (data not shown and Karumbayaram *et al.* [18]). However, it was clear that all the PSC lines used here were able to generate a reasonable number of cells of the indicated type for analysis of gene expression and functional capacity.

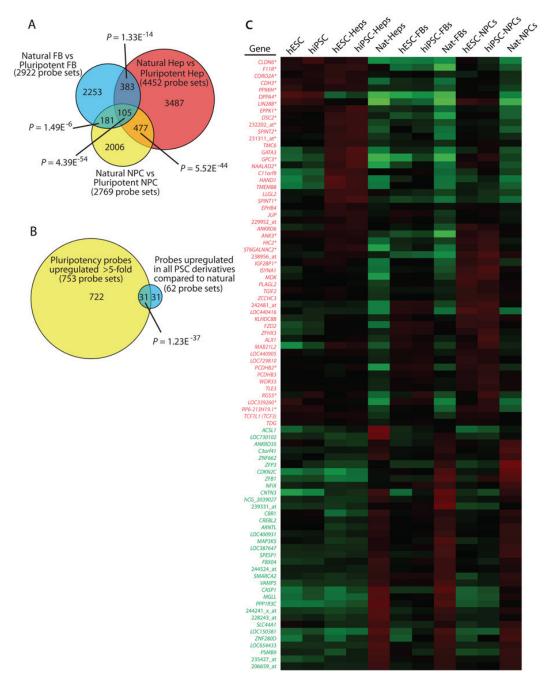
Generation of ectoderm

When hESCs and hiPSCs were directed to generate NPCs and were isolated based on rosette morphology (p1), well-established neural stem cell markers (MUSASHI, PROMININ, PAX6, SOX2, and NESTIN) were induced as measured by RT-PCR (Supplementary information, Figure S1A). Immunocytochemistry confirmed the expression of these and other NPC markers at the protein level (Figure 1A and Supplementary information, Figure S1A'). By immunostaining, all the NPC markers labeled at least 80% of cells, demonstrating that the culture represented a homogenous pool of NPCs. While hESC and hiPSC-derived NPCs appeared to express these genes at a similar level to one another, there was variation in the level of protein expression on a per-cell basis observed between PSC-NPCs and those isolated from 16-week-old fetal brain. The transcription factor PAX6 was expressed at a lower level in PSC-NPCs when compared to 16-week-old fetal brain-derived NPCs (FNPC-16 Br) on a per-cell basis, while NESTIN expression was higher (Figure 1A). Because retinoic acid and smoothened agonist were used in the neural specification, it is possible that we induced a more posterior/ ventral fate than NPCs isolated from fetal brain. To explore this possibility, the PCS-NPCs were also compared with NPCs isolated from 15.5-week-old fetal spinal cord (FNPC-15.5SC) and expanded under the same conditions. In fact, NESTIN and PAX6 were expressed in FN-PC-15.5SCs at a similar level as in our PCS-NPCs (Figure 1A and Supplementary information, Figure S1A'). By immunostaining and morphology, both PSC-NPCs and 16-week-tissue-derived NPCs had the capacity to generate both Tuj1+ neurons and GFAP+ glia (Figure 1A'); however, the p1 PSC-NPCs mostly generated neurons (Tuj1+), while the 16-week-old-tissue-derived NPCs mostly produced glia (GFAP+) (Figure 1A"). Because neurogenesis precedes gliogenesis during in vivo development [26], these data suggest that PSC-NPCs may represent earlier developmental time points than the NPCs derived from 16-week-old fetal tissue.

Figure 1 hESC and hiPSC lines make cell types representing all three germ layers. hESC and hiPSC lines were directed to differentiate into either NPCs (**A**), hepatocytes (**B**), or fibroblasts (**C**). (**A**) Immunofluorescence staining for SOX2 (red, top panel), NESTIN (green, top panel), and DNA (blue) and PAX6 (red, bottom panel). (**A'**) Immunofluorescence staining demonstrating that NPCs derived from hESCs, hiPSC, or natural sources could be differentiated into Tuj1+ neurons (green) and GFAP+ glia (red). (**A''**) Quantification of the percent of cells undergoing neuronal (Tuj1+) or glial (GFAP+) differentiation. Error bars represent standard error over 5-8 fields of view. **P* < 0.05; **P* < 1.0E–06. (**B**) Immunofluorescence staining dycogen storage in natural- and pluripotent-derived hepatocytes. (**B''**) ELISA measuring albumin secretion on confluent plates. Error bars represent standard error over two replicates. **P* < 0.01; **P* < 0.05. (**C**) Top, phase-contrast images of fusiform morphology displayed by pluripotent- and naturally derived fibroblasts. (**C**) Bottom, immunofluorescence staining of CD44 (red), COLIIIA1 (green), and DNA (blue). (**C'**) Western blot for secreted collagen proteins (COLIA1, COLIIIA1, and COLIV) and FIBRONECTIN (FN). HK, human keratinocyte. (**C''**) Alizarin Red stain following further differentiation of pluripotent cell- and tissue-derived fibroblasts down the osteogenic lineage.


Generation of endoderm

For hepatocyte derivation, hESCs and hiPSCs were directed to undergo definitive endoderm formation, hepatic specification, hepatoblast expansion, and finally hepatic maturation as described previously [16, 20]. After 3 days of differentiation, definitive endoderm markers, *HNF3B* and *SOX17*, were induced, as demonstrated by RT-PCR (Supplementary information, Figure S1B). Following hepatic induction and expansion, the *SOX17* mRNA level declined, while various hepatic markers (*AFP*, *ALB*, *SERPINA1*, *CYP3A4*, and *CYP3A7*) were induced over time, as found in mature adult tissue-derived hepatocytes or a hepatocarcinoma cell line (Figure 1B and Supplementary information, Figure S1B). By morphology and immunostaining, the hepatocytes produced from PSCs were more similar to hepatoblasts, or immature hepatocytes that populate the developing early fetal liver (Figure 1B and Supplementary information, Figure S1B). These hepatic derivatives expressed a higher level of fetal hepatic genes such as *AFP* and *CYP3A7*, and a lower level of the more mature equivalents *ALBUMIN* and *CYP3A4*, when compared to counterparts made from adult liver (Figure 1B and Supplementary information, Figure S1B). Again, this suggested that PSC-Heps could represent a younger developmental stage than those of adult liver. Regardless, the hepatocytes generated from PSCs were able to both store glycogen (Figure 1B') and secrete albumin (Figure 1B'').


Generation of mesoderm

For FB generation, embryoid bodies (EBs) were first generated from hESCs and hiPSCs. The EBs were then plated in adherent conditions and grown in FB culturing media. Following several passages, these cultures began to display a homogenous fusiform morphology typical

npg

Figure 2 Global gene expression analysis. **(A)** Hierarchical clustering analysis of global gene expression in undifferentiated hESCs, hiPSC, and their progeny compared to naturally derived cells. **(B)** Venn diagram summarizing the probe sets that were differentially expressed (*t*-test P < 0.01; fold change ≥ 1.54) between the progeny of hiPSCs versus the progeny of hESCs for each germ layer and the undifferentiated. **(C)** Venn diagram overlapping fibroblast signature probe sets (*t*-test between natural-FB and all other natural cell types; upregulated in FBs ≥ 5.0) with probe sets upregulated in iPSC progeny over ESC progeny for the NPC and Hep lineages. *P*-Values from **B** and **C** were measured by hypergeometric distribution or simulation as in [2]. **(D)** Normalized values from microarray probe sets for the reprogramming factors used to make the hiPSCs used in this study.

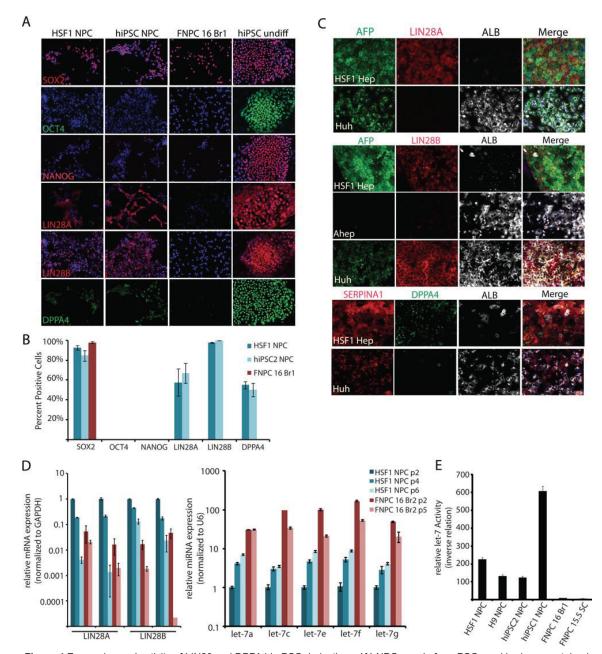
Figure 3 Expression profiling identifies a conserved list of probe sets differentially expressed between pluripotent derivatives and their natural counterparts. (**A**) A *t*-test (P < 0.01) was performed to identify probe sets differentially expressed between PSC derivatives (FB, blue; Hep, red; NPC, yellow) and their respective natural counterparts (fold change ≥ 1.54). Venn diagram reveals the overlap of these differences across the different progeny. (**B**) Overlap of the 62 probe sets specifically upregulated in 3A with probe sets that demonstrate a significant difference between pluripotent cells and naturally derived somatic cells (fold upregulation ≥ 5). *P*-Values from **A** and **B** measured by hypergeometric distribution or simulation as in [2]. (**C**) A heat map was generated for the 88 unique genes or ESTs represented by the 105 probe sets shown in **A** that are differentially expressed between PSC derivatives and tissue derived cells. Note that signal shown represents value divided by the average of all samples and genes in red were consistently found upregulated in PSC progeny versus tissue-derived cells, while those in green were always downregulated. *Indicates genes expressed highly in the pluripotent stem cells (identified in **B**).

Cell Research | Vol 22 No 1 | January 2012

of FBs (Figure 1C). For comparison, FBs were derived from human dermis or lung at various developmental time points and were grown in vitro under the same conditions. When characterized at the RNA level, FB markers were expressed in PSC-FBs at a level comparable to FBs derived from the dermis of skin (Supplementary information, Figure S1C). Furthermore, using immunocytochemistry, two fibroblast markers, CD44 and COLII-IA1, were expressed in PSC-FBs at levels comparable to that observed in a neonatal dermal FB line (Figure 1C). Functionally, the PSC-FBs secreted a profile of collagens similar to that secreted by dermal FBs, while human keratinocytes did not (Figure 1C'). In addition, the PSC-FBs, like their natural counterparts, were not necessarily terminally differentiated, as they still retained the ability to undergo osteogenic specification (Figure 1C").

Global characterization of PSC derivatives by gene expression profiling

To more precisely determine the identity of the derivatives of PSCs, each of the indicated cell types was purified and profiled for gene expression. We analyzed the transcriptional profiles of PSC derivatives as well as natural counterparts, and performed unsupervised hierarchical clustering (Figure 2A). From this clustering analysis we made several important observations.


First, most of the gene expression differences observed between hiPSCs and hESCs in the undifferentiated state were not found when hESC and hiPSC were differentiated, evident by the fact that hESC- and hiPSCderived progeny did not segregate from one another. Second, while a small number of significant differences was detected between hESC progeny and that of hiPSCs for each lineage (roughly 300), these differences were not detected when a more stringent statistical measure (false discovery rate (FDR)) was applied (Figure 2B and data not shown). Furthermore, very few of these differences overlapped with the list of genes differentially expressed between undifferentiated hESCs and hiPSCs (Figure 2B), and none of them could be categorized with gene ontological (GO) analysis. Whether these differences serve to functionally distinguish hESC from hiPSC derivatives will require extensive investigation of differentiated progeny from hiPSCs, reflecting a variety of different somatic cell types.

Recent evidence suggests that murine and human iPSCs retain an epigenetic signature from their cell of origin that influences their differentiation potential [8-11]. All of the hiPSCs used in our analysis were derived from FBs, making similar types of analysis in our model system impossible. We did, however, look for residual expression of FB-specific genes in hiPSC derivatives versus hESC derivatives and found a handful of genes that might represent residual gene expression from the target cell of reprogramming (Figure 2C). We also ruled out that any gene expression difference was due to expression of integrated reprogramming factors in the hiPSCs because the reprogramming factors were not significantly expressed in these progeny, except for *SOX2*, as would be expected for NPCs (Figure 2D).

The most striking observation made from our transcriptome analysis was that, while PSC derivatives representing the three germ layers clustered with their respective natural counterparts, within each germ layer cluster, the PSC progeny were always distinguished from their naturally derived counterparts (Figure 2A). This finding suggested that, with the methods employed here and commonly applied elsewhere, PSC derivatives are similar but not identical to tissue-derived counterparts. This led to further investigation of the transcriptional differences between hPSC derivatives and their tissue-derived counterparts, and whether these differences are reflective of differences in developmental maturity or arise due to development performed *in vitro*.

PSC derivatives and tissue-derived counterparts are distinguished by their gene expression

The genes differentially expressed between PSC derivatives and their tissue-derived counterparts were compared using a *t*-test (P < 0.01) and requiring at least a 1.54-fold expression difference. Out of 36 749 probe sets that were expressed in at least 10% of samples, 2 922 were differentially expressed between PSC-FBs and dermal/lung FBs; 4 452 were differentially expressed between PSC-Heps and adult hepatocytes; and 2 769 were differentially expressed between PSC-NPCs and 16-week-old fetal NPCs. GO analysis of the genes differentially expressed in each germ layer representative yielded many categories for hepatocytes, but few for NPCs and FBs (Supplementary information, Figure S2D). Surprisingly, when superimposing these pools of differentially expressed probe sets and taking direction of differential expression into account, 105 were found to be differentially expressed between all PSC derivatives and their natural counterparts (Figure 3A), suggesting that all types of PSC derivatives share common differences with tissue-derived cells. No GO terms were conserved across these 105 probe sets (Supplementary information, Figure S2D). A more stringent analysis employing FDR correction produced a smaller list of probe sets, but the differences still overlapped significantly across the three germ layers and were entirely inclusive with the non-FDR corrected analysis (Supplementary information, Figure S2A).

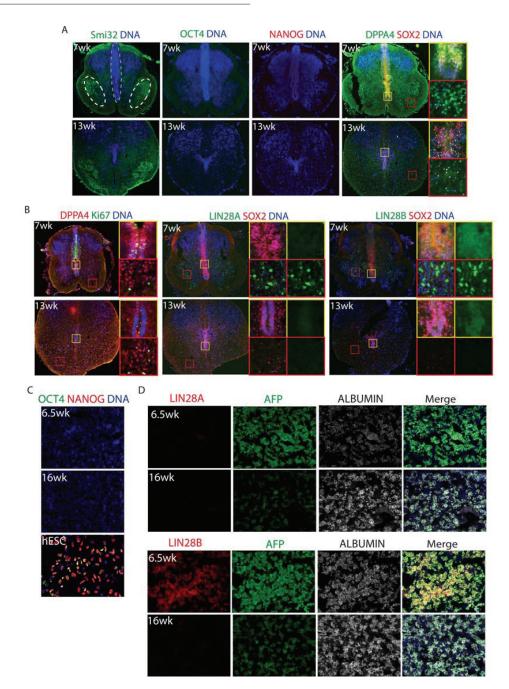
Figure 4 Expression and activity of LIN28 and DPPA4 in PSC derivatives. **(A)** NPCs made from PSCs and brain were stained with pluripotency markers SOX2, OCT4, NANOG, LIN28A, LIN28B, and DPPA4. Undifferentiated hiPSCs were stained as a positive control for the pluripotency markers. **(B)** Quantification of the percent of FNPCs and PSC-NPCs expressing the indicated pluripotency markers. **(C)** HSF1-derived hepatocytes and control cells were immunostained with antibodies recognizing ALBUMIN, AFP, or SERPINA1 to highlight both immature and mature cells and either LIN28A, LIN28B, and DPPA4 to demonstrate that these pluripotency factors are not silenced immediately upon differentiation. Hepatocytes taken from adult human liver did not express any of these pluripotency genes, while Huh, a hepatocarcinoma cell line expressed LIN28B. **(D)** Real-time PCR for *LIN28A* and *LIN28B* mRNA (left) and *let-7* miRNA family members (right). mRNA expression was normalized to GAPDH, while miRNA expression was normalized to U6. Error bars represent standard error over three or four replicates. **(E)** To determine the relative let-7 activity in the indicated cell types, each was transfected with let-7 reporter and constitutive reporter as a transfection control. Dual luciferase assays were performed 48 h after transfection in triplicate. Assay shown was representative of three independent experiments.

Cell Research | Vol 22 No 1 | January 2012

From this pool of 105 differentially regulated probe sets, 62 were upregulated in all PSC derivatives versus their tissue-derived counterparts. Notably, 31 of these 62 probe sets overlap with probe sets that are highly upregulated in undifferentiated PSCs versus specified somatic cells (Figure 3B). This indicates that the PSC progeny continued to express a significant subset of genes associated with either pluripotency or early embryonic development. Many of these same genes were also expressed at a higher level in PSC derivatives versus tissue-derived cells generated independently by other groups, suggesting that these observations were not specific to our methods or the particular cell lines used here (Supplementary information, Figure S2C). OCT4, SOX2, and NANOG were not amongst the 31 probe sets related to pluripotency that remained high in PSC derivatives, demonstrating that these genes were silenced upon differentiation, as has been shown extensively. Instead, most of the 31 probe sets appeared to be not only expressed in PSCs but also play roles in early embryonic development as judged by functional data from lower organisms [27-29]. The expression pattern of all genes specifically expressed in PSCs can be found in Supplementary information, Table **S1**

The expression pattern across cell types for the 88 unique genes and unannotated probe sets differentially expressed between PSC derivatives and tissue-derived counterparts (represented by 105 probe sets) is represented in Figure 3C as a heat map. Of the 53 genes that were higher in PSC derivatives (in red), 22 were also strongly expressed in undifferentiated PSCs relative to somatic cells (indicated with asterisk). This list included *LIN28B*, *DPPA4*, and *TCF7L1* (*TCF3*), all of which are known to play a role in ESCs and in very early mammalian development [28, 30-33]. Furthermore, 35 genes were down-regulated in PSC derivatives compared to tissue-derived cells (in green), perhaps reflecting a state of incomplete specification, regardless of the cell type generated.

LIN28 was first discovered as a regulator of developmental timing in *C. elegans* [29, 34]. LIN28A and LIN28B are highly expressed in undifferentiated hPSCs, but are thought to be silenced, as tissues are specified and mature. LIN28A has also been employed as a reprogramming factor in the generation of hiPSCs [35], suggesting that it can play a functional role in maintaining or inducing immature cell fate. LIN28B was expressed in all hESC- and hiPSC-derivatives, whereas LIN28A was found at a high level in PSC-NPCs and PSC-Heps, but not in PSC-FBs. LIN28A, LIN28B, and DPPA4 were also frequently expressed at a high level in PSC derivatives generated by other groups (Supplementary information, Figure S2C), indicating that expression of these genes is not confined to just the hESC and hiPSC derivatives produced in our lab, but is perhaps an attribute of PSC derivatives in general.


npg

To determine whether the changes detected in the RNA profiling data were just due to residual-stabilized RNA from the pluripotent state, the expression of LIN28A, LIN28B, and DPPA4 in PSC derivatives was also examined at the protein level. In fact, DPPA4, LIN28A, and LIN28B were all expressed at the protein level in PSC-NPCs (Figure 4A and 4B) and PSC-Heps (Figure 4C), but not in their tissue-derived counterparts. On the other hand, none of the other classic pluripotency factors (OCT4, NANOG, and REX1/ZFP42) were expressed in any of the PSC derivatives at the RNA or protein levels (Figure 4A-4C, and data not shown).

The LIN28/let-7 circuit in PSC derivatives

LIN28 has been shown to act as an RNA-binding protein that regulates miRNA maturation, particularly the let-7 family [27, 29-31, 36-40]. If LIN28 activity is higher in PSC derivatives, these cells would be expected to have low levels of mature let-7. To determine if the increased LIN28 expression in PSC-NPCs correlated with low levels of mature let-7, RT-PCR was used to probe the relative levels of mature let-7 miRNA family members. As expected, PSC-NPCs were found to have very low relative levels of mature let-7 family members compared to tissue-derived NPCs (Figure 4D).

To determine if the low levels of let-7 expression in PSC-NPCs also correlated with low activity of these miRNAs, cells were transfected with a reporter that drives constitutive expression of the Renilla luciferase gene with let-7 seed sequences added to its 3' UTR [41]. Therefore, higher luciferase activity is a result of decreased let-7 miRNA activity in the cells. NPCs generated from 16-week-old fetal brain or spinal cord showed very little reporter activity, indicating high let-7 activity, whereas PSC-NPCs displayed high reporter activity, indicating the opposite (Figure 4E). Considering the LIN28 expression pattern, and the let-7 activity assay, PSC derivatives not only had high LIN28 expression, but also high LIN28 activity, which in turn led to low let-7 activity. While the LIN28/let-7 pathway has been implicated in development of many species including mouse [27, 30], this appears to be the first demonstration that human PSC derivatives have high LIN28 expression and low let-7 activity. These data further suggest PSC derivatives are developmentally immature compared to their natural counterparts and that caution is warranted in clinical application of these cells, as many human cancers are defined by high LIN28 and low let-7 expression [27, 39].

Figure 5 Differentially expressed genes, *DPPA4*, *LIN28A*, and *LIN28B* are found in early fetal tissues. (A) Spinal cord tissues (7- and 13-week-old) were fixed, sectioned, and stained with the indicated markers. Smi32 was used to highlight the motor neuron pool (white circles). SOX2 labels the NPCs found along the midline (grey outline). (B) DPPA4 co-localized with proliferation marker Ki67 along the midline (yellow inset) at 7 weeks, but not in the dispersed lateral stain (red inset). At 13 weeks, DPPA4 was more dispersed and the number of Ki67-positive cells was decreased. LIN28A had a cytosolic staining pattern and was located in cells outside of the midline (red and yellow insets) at 7 weeks, but absent at 13 weeks. LIN28B had a nuclear staining pattern at 7 weeks. It was often co-localized with SOX2 along the midline at 7 weeks and was weaker at 13 weeks (yellow inset). (C) Fetal liver (6.5- and 16-weeks-old) were stained with the indicated pluripotency markers, showing the complete silencing of pluripotency genes. hESCs were used as a positive control. (D) Fetal liver (6.5- and 16-week-old) were stained with LIN28A, LIN28B, and the indicated liver markers.

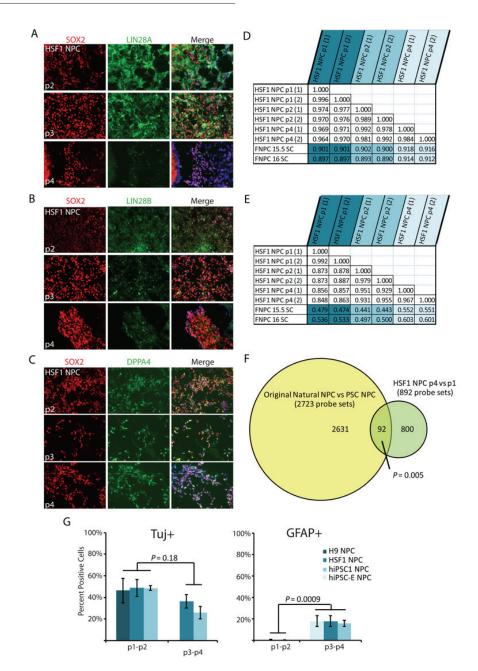
Cell Research | Vol 22 No 1 | January 2012

Expression of early embryonic genes in PSC derivatives suggests that they represent early stages of human development

To determine whether expression of the LIN28 genes and DPPA4 in PSC derivatives was indicative of very early fetal development or simply an in vitro phenomenon, fetal tissues were also probed for expression of these genes. In the human fetal spinal cord, regional identity was established with Smi32, a marker of motor neurons, which was localized to bilateral pools on each side of the ventral cord (Figure 5A). The neural progenitor pool was localized at the midline and expressed SOX2 and Ki67 (Figure 5A and 5B). DPPA4 was also strongly expressed in the midline of the spinal cord along with SOX2 at 7 weeks of development, but was weaker by 13 weeks (Figure 5B). LIN28A was expressed in scattered cells in 7-week-old spinal cord, but was lost by 13 weeks. LIN28B, on the other hand, was strongly detected in 7-week-old human spinal cord cells outside of the midline and weakly expressed in the midline progenitor cells along with SOX2. Expression of LIN28B was significantly reduced, but not absent, in the spinal cord by 13 weeks of development (Figure 5B). The fact that midline progenitor cells of the human spinal cord did express DPPA4 and LIN28B at 7 weeks could further suggest that PSC-NPCs are more similar to an earlier stage of fetal development, or that multiple pools of diverse progenitors are present at this time point.

In the fetal liver, LIN28B, but not LIN28A, was detectable at 6.5 weeks (Figure 5D). Neither LIN28 protein was detectable in fetal liver by 16 weeks (Figure 5D). As expected, neither OCT4 nor NANOG was expressed in the spinal cord or fetal liver at any time point analyzed, consistent with the notion that these pluripotent genes are silenced very early in human development (Figure 5A and 5C). These data highlight the possibility that PSC derivatives differed from the tissue-derived cells as shown in Figures 2 and 3, because the cells were taken from tissues that were of at least 16 weeks of development. The presence of both LIN28 proteins and DPPA4 in 7-weekold spinal cord and liver, the fact that PSC-NPCs tended to be neurogenic as opposed to gliogenic, and that PSC-Heps express AFP instead of albumin, are all consistent with the notion that pluripotent derivatives are similar to cells found at 7 weeks of development or earlier.

Are PSC-NPCs distinguished from fetal NPCs by time in vitro or time in vivo?


Following the observation that early embryonic genes were expressed in younger fetal samples, but significantly reduced at later stages, we were prompted to ask two additional questions: (1) could additional time in culture bring the PSC derivatives closer to a natural counterpart; and (2) would younger fetal samples more closely resemble our PSC derivatives on a transcriptome level? To answer these questions, we performed a series of additional gene expression profiling experiments on the NPCs.

npg

When PSC-NPCs were cultured for another month (each passage representing ~5-7 days in culture), both LIN28A and LIN28B mRNA were reduced as measured by RT-PCR analysis (Figure 4D). Furthermore, let-7 family members were upregulated with extended culture (Figure 4D). The reduction of LIN28A and LIN28B was also observed at the protein level, while DPPA4 did not seem to change with passaging (Figure 6A-6C). In order to determine if continued passaging brought PSC-NPCs globally closer to 16-week-old fetal spinal cord-derived NPCs, we performed two Pearson correlations comparing the transcriptomes of the indicated samples. When using only those probe sets identified by the original *t*-test (Figure 3A; 2 769 less 46 probes that did not make it past the new filtering), we observed a small increase in similarity between PSC-NPCs and fetal-derived NPCs (Figure 6E). In addition, we observed that a small, but statistically significant, number of the original 2 723 probe sets were "corrected" upon extended passaging, including LIN28A and LIN28B (Figure 6F). Ultimately, when all probe sets were considered, we observed only a modest increase in global transcriptome similarity with extended passaging (Figure 6D), suggesting that simply culturing PSC-NPCs does not generate cells that are equivalent to their tissuederived counterparts.

To functionally determine whether passaging PSC-NPCs promotes their developmental maturity, we compared the differentiation potential of PSC-NPCs before and after continued culturing. This analysis indicated that culturing PSC-NPCs for an additional month did increase their gliogenic capacity from < 1% to $\sim 15\%$ (Figure 6G), but not to levels typical of any tissue-derived NPCs we have tested to date (~50% - 80% gliogenic with NPCs derived from fetal tissue at 6.5-19 weeks of development (Figure 1A" and data not shown). These data further suggest that while continued culture can bring PSC-NPCs closer to their tissue-derived counterparts, this effect is small, and by itself is not sufficient to generate cells equivalent to tissue-derived NPCs. In addition, continued culture of PSC-NPCs in these conditions beyond 2 months (passage 4) led to the subsequent loss of NPC markers and differentiation capacity (data not shown). This suggests that, under these conditions, one cannot simply passage the cells indefinitely and expect continued developmental maturation in vitro.

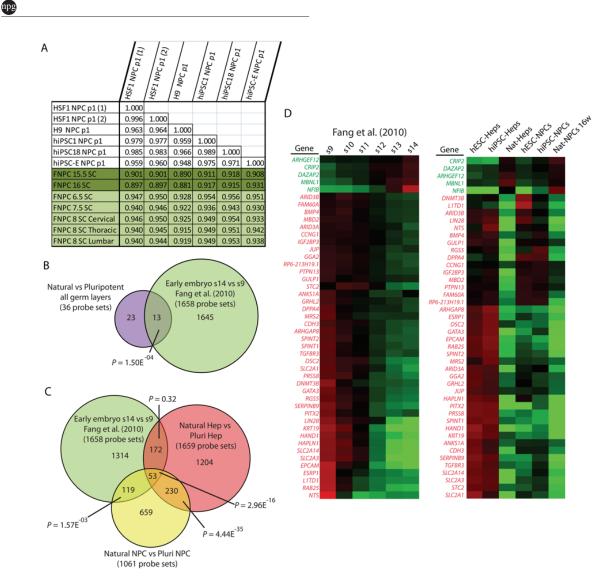
To determine if PSC-NPCs would more closely resemble an NPC type isolated from younger fetal spinal

Figure 6 Continued passaging of PSC-NPCs reduces LIN28 expression and corrects a small portion of the gene expression discrepancies. **(A-C)** Immunofluorescence staining of HSF1-derived NPCs over four passages. Each passage represents ~5-7 days in culture. **(D)** Pearson correlation comparing global gene expression between HSF1 NPCs over several passages and NPCs derived from 16-week-old fetal spinal cord. **(E)** Pearson correlation including only those probe sets identified as different between PSC-NPC and Nat-NPCs (analysis from Figure 3A). **(F)** Venn diagram demonstrating the original differences identified in Figure 3A overlap significantly with gene expression was taken into account. Statistical analysis performed by hypergeometric distribution. Note: later analyses were performed by normalizing and filtering only samples of the neural lineage. As a result the original 2 769 probe sets identified by analysis in Figure 3A were reduced to 2 723. **(G)** Percent of PSC-NPCs at the indicated passage undergoing neuronal (Tuj1) or glial (GFAP) differentiation following 3 weeks of differentiation.

cord, we profiled additional fetal samples from 6.5 to 8 weeks of development. Pearson correlation of the global transcriptome demonstrated a dramatic increase in similarity between PSC-derived NPCs and NPCs from young fetal spinal cord compared to 16-week-old spinal cord (Figure 7A). Ideally, a comparison between cells derived from fetal tissue earlier than 6 weeks would determine whether PSC derivatives accurately reflect their counterparts found during very early fetal development, but because of the lack of access to such tissue, this question is difficult to answer. However, data on gene expression across whole human embryos from 3-5 weeks of development recently became available [42].

We identified a list of 1 645 probe sets differentially expressed between 3-week (stage 9) and 5-week (stage 14) embryos. We overlaid these identified probe sets with the list of probe sets differentially expressed between PSC derivatives and their natural counterparts (Figure 3A; 105 is reduced to 36 due to the more restrictive chip used by Fang et al. See Materials and Methods for details) and found significant overlap. LIN28A was the most differentially expressed probe set between stage 9 and stage 14 embryos. Knowing that LIN28A was differentially expressed in both the NPC and hepatocyte lineages, but not the FBs of our data, we repeated the analysis and excluded FBs (Figure 7C). Amongst the 53 probe sets conserved in our data and the Fang et al. [42] data are DPPA4 and LIN28A (note: LIN28B is not represented on the Fang et al. array). The expression pattern for the 46 unique genes represented by those 53 probe sets is represented by two heat maps, one including the samples from Fang et al. [42] and the other including our own samples (Figure 7D). The fact that a significant number of genes that are normally downregulated between 3-5 weeks of development appear to distinguish PSC derivatives from their tissue-derived counterparts further suggests that PSC derivatives might accurately recapitulate cells found prior to 6 weeks of development.

Discussion


Our data have revealed several important insights about differentiation from hPSCs. First, our data showed that hESCs and hiPSCs make specified derivatives that are nearly equivalent transcriptionally. This was surprising considering the vastly different circumstances by which hESCs and hiPSCs are derived, and in light of well-documented differences between them at the epigenetic and transcriptional levels in the undifferentiated state [2-6, 8, 9, 43, 44]. This similarity might be attributed to the fact that only high-passage hiPSCs (> 40) were used. However, even at high passage, a small number of genes still appeared to distinguish the undifferentiated hiPSC and hESC lines used. The fact that these differences were largely undetectable in the differentiated state could suggest that the progeny of these cell types are more similar than their parental cells or that the genes differentially expressed between them are not expressed in the specified progeny.

Second, upon differentiation, we did not detect appreciable re-expression of the exogenous reprogramming factors. Because the expression of *OCT4* was undetectable in any PSC derivative, it is unlikely that the loci representing the retroviral reprogramming factors were reactivated upon differentiation or even continued culture. This finding could suggest that, at least in the contexts analyzed here, concerns over re-expression of oncogenic factors from hiPSC lines generated by viral integration could be mitigated by specification of hiPSCs to even a progenitor state, such as NPC, hepatoblast, or FB.

Third, both hESCs and hiPSCs made progeny that continued to express a group of genes known to play roles in very early embryonic development. While the progeny of ESCs have been proposed to represent embryonic cell types because of the primitive nature of the starting cell types [23, 25, 45], to our knowledge human pluripotent cell-derived progeny have not yet been placed into such a narrow developmental context. The most logical interpretation of our data is that the PSC derivatives generated here represent cells similar to those found earlier than 6 weeks of development.

It remains possible, however, that current protocols to make hPSC derivatives generate cells that do not completely represent cells found in tissue at any developmental stage. With limited access to tissues representing the earliest stages of development, this possibility will remain unexplored for now. It is also possible that new culture conditions could be defined that improve differentiation in vitro to better recapitulate that which occurs in vivo. In addition, it is possible that experimentally manipulating the expression of early embryonic genes described here could be used to accelerate development in vitro. Regardless of the fact that PSC derivatives produced in other labs also express some of the same early embryonic genes suggest that many protocols lead to a consistent result, so perhaps a shift in differentiation strategy or expectations is required.

Our data also suggest that simple approaches, such as continued culture, can further the development of PSCderived cells, though this method also has its limitations as described above. Nevertheless, it is tempting to speculate that, upon specification, the differentiation process is more or less pre-determined by mechanisms that lock cells into a process that takes a specific amount of time,

Figure 7 Evidence that PSC derivatives reflect cell types found prior to 6 weeks of development. (A) Pearson correlation comparing global gene expression between PSC-NPCs and fetal spinal cord NPCs. (B) Comparison of the original probe sets identified as different between PSC derivatives and their natural counterpart (Figure 3A) and those differentially expressed between stage 9 and stage 14 embryos (Fang *et al.* [42], *t*-test P < 0.01, fold change ≥ 1.54). (C) Venn diagram comparing the probe sets different between PSC derivatives and their tissue-derived counterparts for the Hep and NPC lineages and those differentially expressed between stage 9 and stage 14 embryos. (D) Heat maps generated for the 46 unique genes represented by the 53 probe sets shown in C. Left, samples include the six stages of embryonic development represented in Fang *et al.* [42]. Right, samples include PSC-derived NPCs and Heps and their respective natural counterparts. Green probe sets represent those genes upregulated over the course of development, while red probe sets are those downregulated over the course of development.

or number of cell divisions complete, regardless of the culture conditions employed. This idea has significant support from studies with *in vitro* murine development [45], where differentiation of mESCs under minimal

conditions allowed appropriate temporal and regional specification of neural tissue.

Recent work suggested that hPSC derivatives share hallmarks of gene expression with oncogenic cells [46].

Our data suggest that the presence of oncogenic hallmarks could be explained by persistent expression of genes in hPSC derivatives that are typical of the early embryo and known to be re-expressed in cancers. For example, while LIN28 is not normally expressed in postnatal mammalian tissue, it was recently shown to be reexpressed in 15% of human cancers; and cancers with poor prognosis that are high in LIN28 expression are low in let-7 family expression [39]. This study also showed that overexpression of LIN28 drove transformation of FBs, consistent with its proposed role in reprogramming [35, 38]. Therefore, if the derivatives of PSCs are to be used clinically, it could be important to take into account the residual expression of the early embryonic genes, particularly, LIN28. Finally, one of the great benefits of iPS technology is the ability to model human diseases in vitro using patient-derived cells. Our data would suggest that it could be difficult to model human diseases in this context, unless a phenotype manifests very early in development.

Materials and Methods

Human tissue sourcing

Primary human hepatocytes and FBs were acquired from Lonza (Switzerland). Fetal tissues were generated from discarded anonymized material obtained from elective terminations of first and second trimester pregnancies performed by the Family Planning Associates or the UCLA Medical Center. The fetal ages discussed throughout the paper represent the developmental age established 2 weeks after the first day of the last menstrual cycle. Tissues were harvested directly into sterile containers with PBS and transported on ice in PBS containing 5% FBS (Hyclone), 0.1% Ciprofloxacin HCl (10 μ g/ml, Sigma), 1% amphotericin B (250 μ g/ml, Invitrogen) and 1% penicillin-streptomycin (10 000 U/ml-10 000 μ g/ml, Gibco) and processed the same day. Fetal spinal cord NPC lines were generated from 6-16-week-old spinal cords treated with collagenase and dispase for 1 h at 37 °C and plated on poly-ornithine/ laminin-coated plates.

Cell culture

hESC and hiPSC were cultured as described previously [2, 47] in accordance with the UCLA ESCRO. Neural rosette derivation, NPC purification, and further differentiation to neurons and glia were performed as described [18]. Hepatocytes were differentiated using the four-stage protocol as described [20], with the exception of using FBS during the first 3 days of endoderm derivation. The AFP-GFP reporter [48] was transfected during differentiation using Lipofectamine 2000 (Invitrogen) and labeled cells were isolated using FACSA RIA (BD Biosciences). To generate FBs, EBs were cultured in adherent conditions using standard FB culturing media [47] and passaged until adopting typical FB morphology.

Immunostaining and western blot

Tissue acquired from embryonic spinal cord was fixed in 4% PFA for 1 followed by cryopreservation with sucrose and embed-

ding in O.C.T. Compound (Sakura). Fetal livers were freshly embedded in O.C.T. Compound. Both tissues were sectioned on a CM3050S cryostat (Leica) at 6-10 µM thickness. Liver sections were fixed in formalin for 10 min at room temperature prior to immunostaining. Immunostaining was performed as described [18, 50]. Coverslips were fixed in 4% PFA, blocked for 1 h in 10% serum + 0.1% Tween 20 (or 0.1% Triton-X-100), then incubated overnight at 4 °C with primary antibodies. Following primary antibody incubation, the coverslips/cryosections were incubated with Alexa Fluor secondary antibodies (Invitrogen) at room temperature for 1 h and mounted in Prolong Gold with DAPI (Invitrogen). All imaging was performed on Zeiss Axio Imager A1. Antibodies used include the following: mouse anti-DPPA4 (Abnova), goat anti-ALB (Bethyl Laboratories), rabbit anti-SOX2 (Biolegend), rabbit anti-LIN28A, rabbit anti-LIN28B, and rabbit anti-Nanog (Cell Signaling Technology), rabbit anti-PAX6, rabbit anti-Tuj1 (Covance), rabbit anti-GFAP (DAKO), anti-CD44 (Developmental Studies Hybridoma Bank), mouse anti-NESTIN (Neuromics), goat anti-COL3A1, mouse anti-AFP, mouse anti-OCT3/4 (Santa Cruz Biotechnology Inc.), rabbit anti-SERPINA1 (Sigma Aldrich), and rabbit anti-Ki67 (Abcam). Western blot analysis was performed using standard procedures as described [50].

Assays for function

For periodic acid-schiff assay, cells were fixed with formalinethanol fixative and stained using standard protocol described in the manufacturer's manual (Sigma Aldrich). For albumin ELISA assay, media were collected from confluent wells and subjected to ELISA assay according to the manufacturer's protocol (Bethyl Laboratories). For Alizarin Red staining, natural and PSC-FBs were subjected to osteogenic induction and were stained with Alizarin Red as described [51]. Student's *t*-tests for the ELISA and NPC differentiation assays were performed in Excel.

Reporter assay

Cells transfected with the psiCHECK2- let-7 $8 \times$ luciferase reporter (Addgene #20932) or psiCHECK2 control reporter (Promega) were lysed 72 h post-transfection and subjected to dualglo luciferase assay as described in the manufacturer's protocol (Promega). The Renilla luciferase gene was driven by T7 promoter and contained eight let-7 targeting sequences in the 3' UTR, and Firefly luciferase driven by a constitutive promoter as a transfection control. Luciferase assays were carried out in a GloMax 96 Microplate Luminometer (Promega).

Expression analysis

RNA isolation, reverse transcription, and real-time PCR were performed as described (Lowry *et al.* [47]). Microarray profiling was performed with Affymetrix Human HG-U133 2.0 Plus arrays as described [47, 52]. Data were normalized with Robust Multichip Algorithm in Genespring. Probe sets that were not expressed at a raw value of > 50 in at least 10% of samples were eliminated from further analysis. Note that outside data were normalized and analyzed separately, but with identical methods described above. Later, analysis on the NPC lineage was performed after separate normalization and filtering of only relevant samples. Outside data sets were collected from the Gene Expression Omnibus (NCBI) and includes: GSE19735 (Rafii), comparing hESC-derived endothelial cell (EC) to human umbilical vein ECs (HUVECs) and human smooth muscle cells; GSE14897 (Duncan), comparing undifferentiated hESCs and hiPSCs to hepatocytes made from each; GSE20013 (Wilson), comparing ECs made from hESCs to ECs made form tissue (HUVEC); and GSE18887 (Fang), comparing entire human embryo samples from 3-5 weeks of development. All outside data were analyzed separately, but by employing the same methods. Fang et al. [42] utilized a U133 chip, which had fewer probe sets than our U133 2.0 plus chip. Only those probe sets that made it past the filtering on both chips were included in this analysis. Hierarchical Euclidian clustering was performed with complete linkage. Gene expression differences were judged to be significant if the *P*-value of the fold change was < 0.01 and at least 1.54-fold different between indicated samples. Gene expression differences were also judged by Benjamini-Hochberg correction for FDR at a *P*-value of < 0.05 and 1.54-fold change (Supplementary information, Figure S2). Further statistical analysis for hypergeometric distribution and three-way simulation was performed with R, package 2.9.2 as described [12]. Heat maps were generated by averaging the raw value of like samples and representing it as a ratio of the average of the raw value of all samples (Cluster 3.0, Java TreeView). Pearson correlations were generated in Excel.

Acknowledgments

We are grateful to Eric Wexler and Heather Martin for assistance in the acquisition of fetal tissues; to Margaret Baron for sharing the AFP-GFP reporter; to Soheila Azghadi, Hung Trinh, Otaren Aimiuwu, Kimberly Loo and Adelaja Akinlolou for technical support; and to Mark Chin and Raj Sasidharan for assistance with bioinformatic analyses. We would like to acknowledge the core facilities at the UCLA including: FACS (Felicia Cordea and Jessica Scholes); the Clinical Microarray Core (Xinmin Li and Jian Zhou); and the hiPSC and hESC Cores. MP was supported by the Training Program in Genetic Mechanisms (GM007104-33). MP and DC were supported by Predoctoral Training Grants from CIRM at EEBSCRC (TG2-01169). This work was supported by a seed grant from CIRM (RS1-00259-1), a Basil O'Connor Starter Scholar Award (5-FY09-61), and the Fuller Foundation at EEB-SCRC (WEL). WEL holds the Maria Rowena Ross Chair in Cell Biology and Biochemistry.

References

- Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861-872.
- 2 Chin MH, Mason MJ, Xie W, et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 2009; 5:111-123.
- 3 Ghosh Z, Wilson KD, Wu Y, Hu S, Quertermous T, Wu JC. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. *PLoS ONE* 2010; 5:e8975.
- 4 Marchetto MC, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR. Transcriptional signature and memory retention of human-induced pluripotent stem cells. *PLoS ONE* 2009; 4:e7076.
- 5 Bock C, Kiskinis E, Verstappen G, *et al.* Reference maps of human ES and iPS cell variation enable high-throughput char-

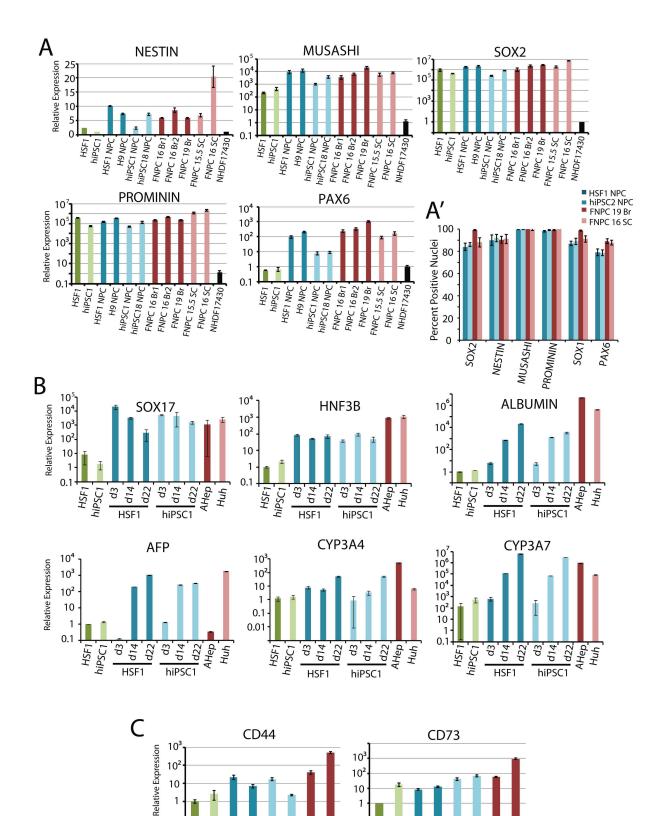
acterization of pluripotent cell lines. Cell 2011; 144:439-452.

- 6 Lister R, Pelizzola M, Kida YS, *et al.* Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. *Nature* 2011; **471**:68-73.
- 7 Narsinh KH, Sun N, Sanchez-Freire V, et al. Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J Clin Invest 2011; 121:1217-1221.
- 8 Polo JM, Liu S, Figueroa ME, *et al.* Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. *Nat Biotechnol* 2010; 28:848-855.
- 9 Kim K, Doi A, Wen B, et al. Epigenetic memory in induced pluripotent stem cells. *Nature* 2010; 467:285-290.
- 10 Ohi Y, Qin H, Hong C, *et al.* Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. *Nat Cell Biol* 2011; **13**:541-549.
- 11 Bar-Nur O, Russ HA, Efrat S, Benvenisty N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet Beta cells. *Cell Stem Cell* 2011; 9:17-23.
- 12 Chin MH, Pellegrini M, Plath K, Lowry WE. Molecular analyses of human induced pluripotent stem cells and embryonic stem cells. *Cell Stem Cell* 2010; 7:263-269.
- 13 Osafune K, Caron L, Borowiak M, et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 2008; 26:313-315.
- 14 Feng Q, Lu SJ, Klimanskaya I, et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 2010; 28:704-712.
- 15 Boulting GL, Kiskinis E, Croft GF, et al. A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol 2011; 29:279-286.
- 16 Si-Tayeb K, Noto FK, Nagaoka M. *et al.* Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. *Hepatology* 2010; 51:297-305.
- 17 Pfannkuche K, Liang H, Hannes T, et al. Cardiac myocytes derived from murine reprogrammed fibroblasts: intact hormonal regulation, cardiac ion channel expression and development of contractility. *Cell Physiol Biochem* 2009; 24:73-86.
- 18 Karumbayaram S, Novitch BG, Patterson M, et al. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 2009; 27:806-811.
- 19 Zhang J, Wilson GF, Soerens AG, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. *Circ Res* 2009; **104**:e30-41.
- 20 Song Z, Cai J, Liu Y, *et al.* Efficient generation of hepatocytelike cells from human induced pluripotent stem cells. *Cell Res* 2009; 19:1233-1242.
- 21 Choi KD, Yu J, Smuga-Otto K, *et al.* Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. *Stem Cells* 2009; 27:559-567.
- 22 Kennedy M, D'Souza SL, Lynch-Kattman M, Schwantz S, Keller G. Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. *Blood* 2007; 109:2679-2687.
- 23 Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. *Genes Dev* 2005; **19**:1129-1155.
- 24 Pankratz MT, Li XJ, Lavaute TM, Lyons EA, Chen X, Zhang

Cell Research | Vol 22 No 1 | January 2012

SC. Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. *Stem Cells* 2007; **25**:1511-1520.

- 25 Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. *Genes Dev* 2008; 22:152-165.
- 26 Deneen B, Ho R, Lukaszewicz A, Hochstim CJ, Gronostajski RM, Anderson DJ. The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. *Neuron* 2006; **52**:953-968.
- 27 Viswanathan SR, Daley GQ. Lin28: A microRNA regulator with a macro role. *Cell* 2010; 140:445-449.
- 28 Madan B, Madan V, Weber O, *et al*. The pluripotencyassociated gene *Dppa4* is dispensable for embryonic stem cell identity and germ cell development but essential for embryogenesis. *Mol Cell Biol* 2009; 29:3186-3203.
- 29 Moss EG, Tang L. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. *Dev Biol* 2003; 258:432-442.
- 30 Zhu H, Shah S, Shyh-Chang N, *et al*. Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. *Nat Genet* 2010; **42**:626-630.
- 31 West JA, Viswanathan SR, Yabuuchi A, et al. A role for Lin28 in primordial germ-cell development and germ-cell malignancy. *Nature* 2009; 460:909-913.
- 32 Merrill BJ, Pasolli HA, Polak L, et al. Tcf3: a transcriptional regulator of axis induction in the early embryo. *Development* 2004; 131:263-274.
- 33 Pereira L, Yi F, Merrill BJ. Repression of Nanog gene transcription by Tcf3 limits embryonic stem cell self-renewal. *Mol Cell Biol* 2006; 26:7479-7491.
- 34 Ambros V, Horvitz HR. Heterochronic mutants of the nematode *Caenorhabditis elegans*. Science 1984; 226:409-416.
- 35 Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. *Science* 2007; **318**:1917-1920.
- 36 Lehrbach NJ, Armisen J, Lightfoot HL, et al. LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in *Caenorhabditis elegans*. Nat Struct Mol Biol 2009; 16:1016-1020.
- 37 Hagan JP, Piskounova E, Gregory RI. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. *Nat Struct Mol Biol* 2009; 16:1021-1025.
- 38 Heo I, Joo C, Kim YK, et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uri-


dylation. Cell 2009; 138:696-708.

39 Viswanathan SR, Powers JT, Einhorn W, et al. Lin28 promotes transformation and is associated with advanced human malignancies. *Nat Genet* 2009; 41:843-848.

npg

- 40 Heo I, Joo C, Cho J, Ha M, Han J, Kim VN. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. *Mol Cell* 2008; **32**:276-284.
- 41 Iwasaki S, Kawamata T, Tomari Y. *Drosophila* argonaute1 and argonaute2 employ distinct mechanisms for translational repression. *Mol Cell* 2009; **34**:58-67.
- 42 Fang H, Yang Y, Li C, et al. Transcriptome analysis of early organogenesis in human embryos. Dev Cell 2010; 19:174-184.
- 43 Doi A, Park IH, Wen B, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. *Nat Genet* 2009; 41:1350-1353.
- 44 Hawkins RD, Hon GC, Lee LK, *et al.* Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. *Cell Stem Cell* 2010; **6**:479-491.
- 45 Gaspard N, Bouschet T, Hourez R, et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. *Nature* 2008; 455:351-357.
- 46 Ghosh Z, Huang M, Hu S, Wilson KD, Dey D, Wu JC. Dissecting the oncogenic potential of human embryonic and induced pluripotent stem cell derivatives. *Cancer Res* 2011; 71:5030-5039.
- 47 Lowry WE, Richter L, Yachechko R, *et al.* Generation of human induced pluripotent stem cells from dermal fibroblasts. *Proc Natl Acad Sci USA* 2008; 105:2883-2888.
- 48 Kwon GS, Fraser ST, Eakin GS, *et al.* Tg(Afp-GFP) expression marks primitive and definitive endoderm lineages during mouse development. *Dev Dyn* 2006; 235:2549-2558.
- 49 Lee R, Chang SY, Trinh H, *et al.* Genetic studies on the functional relevance of the protein prenyltransferases in skin keratinocytes. *Hum Mol Genet* 2010; **19**:1603-1617.
- 50 Lowry WE, Blanpain C, Nowak JA, Guasch G, Lewis L, Fuchs E. Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. *Genes Dev* 2005; **19**:1596-1611.
- 51 Tang Z, Sahu SN, Khadeer MA, Bai G, Franklin RB, Gupta A. Overexpression of the ZIP1 zinc transporter induces an osteogenic phenotype in mesenchymal stem cells. *Bone* 2006; 38:181-198.
- 52 Tchieu J, Kuoy E, Chin MH, *et al*. Female human iPS cells retain an inactive X-chromosome. *Cell Stem Cell* 2010; 7:329-342.

(**Supplementary information** is linked to the online version of the paper on the *Cell Research* website.)

NHDF17430

NHDF1

HSF1 FB H1 FB hiPSC1 FB hiPSC18 FB

hiPSC1

HSF1

hiPSC1 FB

hiPSC18 FB

NHDF17430

NHDF1

HSF1 FB H1 FB

hiPSC1

HSF1

Figure S1 hESC and hiPSC lines make cell types representing all three germ layers. **A**, RT-PCRs demonstrating mRNA expression of NPC markers (SOX2, NESTIN, MUSASHI, PROMININ, and PAX6) in NPCs derived from PSCs, fetal brain and fetal spinal cord.Error bars represent standard error over 4 replicates. Values set relative to NHDF17430. **A'**, Quantification of the percent positive cells in NPC cultures expressing SOX2,PAX6, MMUSASHI, PROMININ, and NESTIN). Error bars represent standard error over 10 fields of view. **B**, RT-PCRs of definitive endoderm markers (SOX17 and HNF3B), fetal hepatocyte markers (AFP and CYP3A7) and adult hepatocyte markers (ALBUMINand CYP3A4) following 3, 14 and 22 days of directed-differentiation. Error bars represent standard error over 4 replicates. Values set relative to HSF1. **C**, RT-PCR of fibroblast markers (CD44 and CD73) following differentiation of pluripotent stem cells to fibroblasts.Error bars represent standard error over 4 replicates. Values set relative to HSF1.

Go Terms: Biological Processes

NPC	Нер	FB
homophilic cell adhesion;	nervous system development; oxidation reduction; acute inflammatory response;	homophilic cell adhesion; cell-cell
nervous system development;	metabolic process; cofactor metabolic process; cellular lipid metabolic process;	adhesion
developmental process;	regulation of RNA metabolic process; regulation of nucleobase, nucleoside,	
calcium-dependent cell-cell	nucleotide; regulation of transcription, DNA-dependent; regulation of transcription;	
adhesion	aromatic compound metabolic process; regulation of gene expression; biphenyl	
	metabolic process; bilirubin conjugation; humoral immune response mediated	
	circulating immunoglobulin; activation of plasma proteins during accute	
	inflammatory response; complement activation, classical pathway; complement	
	activation; lipid metabolic process; regulation of macromolecule biosynthetic	
	process; tetrapyrrole catabolic process; porphyrin catabolic process; cellular	
	metabolic process; regulation of biosynthetic process; transcription; regulation of	
	cellular metabolic process; benzene and derivative metabolic process; negative	
	regulation of biosynthetic process; heterocycle metabolic process; regulation of	
	metabolic process; steroid metabolic process; negative regulation of gene	
	expression; biosynthetic process; negative regulation of transcription; negative	
	regulation of nucleobase, nucleoside, nucleotide; regulation of macromolecule	
	metabolic process; tetrapyrrole metabolic process; porphyrin metabolic process	

Figure S2 Gene expression differences between PSC and tissue derivatives are conserved regardless of statistical analyses employed or lab. **A and B,** A similar analysis as shown in Figure 3A and B, but instead using FDR ($p \le 0.05$) and fold change ≥ 1.54 as criteria to determine genes that were differentially expressed. **C,** The same analysis shown in Figure 3C was performed with 3 outside datasets. Outside data sets included: GSE19735 (Rafii), comparing hESC-derived endothelial cell (EC) to human umbilical vein endothelial cells (HUVEC) and human smooth muscle cells (SMC); GSE14897 (Duncan), comparing undifferentiated hESCs and hiPSCs to hepatocytes made from each; and GSE20013 (Wilson), comparing endothelial cells made from hESCs to endothelial cells made form tissue (HUVEC). **D,** Gene Ontology Biological Processes terms identified as different between PSC derivatives and their natural counterparts (p<0.01). Underlined terms were identified in 2 of 3 germ layers. Note: no term was identified in all three germ layers.

Duck - Cat ID	Gene Symbol	hESC (3)		hiPSC (6)		PSC-Heps (5)		Adult-Hep (2)	
Probe Set ID		avg	stderr	avg	stderr	avg	stderr	avg	stderr
214829 at	AASS	2936	215	1982	316	220	13	314	106
237974 at	ABHD12B	529	72	204	98	8	0	8	1
203872_at	ACTA1	897	106	1368	519	657	280	18	0
205132 at	ACTC1	2724	398	3937	690	4382	1100	125	14
236126 at	ACVR2B	3084	42	2631	168	1713	141	211	48
	ADAMTS19	314	16	316	34	135	35	36	3
213217 at	ADCY2	1071	44	1540	266	223	36	50	3
205268 s at	ADD2	624	78	789	126	35	3	44	5
228771 at	ADRBK2	866	38	644	81	575	46	55	13
	AIF1L	1006	59	1435	179	379	43	46	6
228342_s_at	ALPK3	215	32	235	27	1319	146	169	53
215783_s_at	ALPL	159	9	460	110	61	11	71	12
206385_s_at	ANK3	1363	85	1379	126	1438	94	290	164
209369_at	ANXA3	1028	141	1699	312	3550	863	939	427
	AP1M2	473	19	459	71	392	52	73	6
228415_at	AP1S2	9974	891	8598	1058	1932	179	408	30
203381_s_at	APOE	3165	72	2766	162	8399	1069	12644	6762
203946_s_at	ARG2	1026	28	873	93	1180	84	303	221
37117_at	ARHGAP8	976	48	873	100	2696	355	142	28
218964_at	ARID3B	936	89	1249	96	805	64	101	6
209464_at	AURKB	1012	38	915	69	140	18	97	62
1555962_at	B3GNT7	509	69	524	56	184	33	40	2
222891_s_at	BCL11A	1297	46	1032	123	424	75	18	1
227920_at	BEND3	1124	37	873	82	188	20	110	20
230896_at	BEND4	1497	181	824	94	22	6	11	0
218332_at	BEX1	4164	274	3931	216	5073	467	85	34
224367_at	BEX2	1514	149	1393	143	748	100	58	21
1554020_at	BICD1	791	108	633	93	216	22	40	29
205733_at	BLM	512	28	495	28	93	11	45	13
231953_at	BPTF	695	15	540	45	68	5	42	13
209642_at	BUB1	1695	60	1413	64	264	70	95	83
203755_at	BUB1B	2938	32	2576	127	390	66	215	179
228281_at	C11orf82	721	52	762	23	135	21	86	53
218614_at	C12orf35	2753	139	1609	139	1395	132	1001	533
227928_at	C12orf48	285	23	307	31	55	9	40	29
1570153_at	C13orf38	984	306	716	144	20	3	21	10
220536_at	C14orf115	609	7	501	41	103	7	104	22
226456_at	C16orf75	2096	64	1457	123	370	45	145	76
223631_s_at	C19orf33	332	57	333	111	623	94	158	6
219010_at	C1orf106	1645	59	1271	83	2317	188	390	154
220011_at	C1orf135	773	45	693	30	161	11	76	14
1554340_a_at	C1orf187	409	15	376	70	28	8	14	0
219004_s_at	C21orf45	1586	22	1361	53	262	32	181	64
232067_at	C6orf168	315	30	424	50	241	70	21	9
	C8orf42	1308	144	1328	137	451	46	414	114
243610_at	C9orf135	2099	301	1926	363	54	14	12	2
	CA11	787	87	519	93	120	19	21	2
	CA14	642	19	469	60	113	17	48	7

225627 s at	CACHD1	2449	113	1967	216	1664	267	109	20
204811 s at	CACNA2D2	484	46	386	80	148	15	79	17
205625 s at	CALB1	404	105	465	87	148	26	15	0
203025_ <u>s_</u> at	CALCB	136	74	211	142	26	8	13	4
226473 at	CBX2	1346	36	959	100	459	88	73	10
239233 at	CCDC88A	72	6	57	8	439 9	1	9	10
227228_s_at	CCDC88C	339	27	398	46	294	35	54	15
210381 s at	CCKBR	198	27	318	104	461	209	34	15
228729 at	CCNB1	2322	78	1721	104		41	177	156
202705 at	CCNB1 CCNB2	2785	63	2362		356 458	55		195
	CD200	1809	39	1618	84 281	222	55	226 31	195
209583_s_at									
209771_x_at	CD24	17099	52	14710	602	15262	1043	9532	1357
204695_at	CDC25A	1369	23	1255	91	253	15	101	12
203967_at	CDC6	611	52	652	33	156	13	99	78
204510_at	CDC7	1398	99	1268	93	291	27	127	76
224428_s_at	CDCA7	2738	36	2073	188	547	102	113	95
201131_s_at	CDH1	4756	206	3161	353	5044	640	2050	886
203256_at	CDH3	1688	6	1409	135	1869	250	94	34
226185_at	CDS1	368	26	282	29	608	74	64	17
228868_x_at	CDT1	615	1	496	38	168	24	47	25
219505_at	CECR1	1049	148	866	125	544	47	90	2
223729_at	CECR2	982	30	815	68	213	10	194	69
231772_x_at	CENPH	927	31	659	79	138	17	59	32
221378_at	CER1	492	154	501	156	60	23	33	1
225817_at	CGNL1	1538	74	1089	123	1192	44	1574	903
218829_s_at	CHD7	836	228	1447	138	1049	71	196	11
205394_at	CHEK1	1163	37	849	90	148	19	95	75
226803_at	CHMP4C	212	29	402	61	615	139	761	41
206533_at	CHRNA5	175	20	157	8	19	2	16	4
224400_s_at	CHST9	163	37	149	42	384	67	242	76
202712_s_at	CKMT1A/B	926	60	553	90	51	5	52	4
205328_at	CLDN10	715	32	845	144	47	5	94	0
237810_at	CLDN6	1051	312	2111	534	1113	85	28	1
202790_at	CLDN7	894	62	684	49	1444	208	507	192
219301_s_at	CNTNAP2	1404	132	1184	222	425	57	103	2
223796_at	CNTNAP3	284	43	256	48	33	7	26	7
213050_at	COBL	787	154	826	188	705	69	864	421
205229_s_at	СОСН	838	53	1292	322	187	33	42	18
213492_at	COL2A1	159	10	908	576	3865	944	43	6
213992_at	COL4A6	333	36	486	44	3188	414	20	3
227177_at	CORO2A	211	14	302	46	483	104	149	42
224344_at	COX6A1	2567	865	1506	544	57	6	46	0
208146_s_at	CPVL	598	20	543	48	726	163	38	19
239205_s_at	CR1/CR1L	74	37	175	33	10	1	9	1
239206_at	CR1L	62	32	108	14	15	1	14	0
205250 -+	CRABP1	947	59	4103	1430	405	332	62	1
205350_at						570	4 5	6	0
205350_at 223475_at	CRISPLD1	713	22	1917	1067	572	45	6	0
	CRISPLD1 CST1	713 131	22 23	1917 524	1067 393	572 1492	45 323	22	4
	1								

239155 at	CXADRP1	663	22	533	54	315	35	285	10
214974 x at	CXCL5	1544	424	2275	1030	36	8	456	337
206424 at	CYP26A1	1367	155	1472	343	103	23	33	4
223385 at	CYP2S1	291	25	778	229	94	15	42	5
235044 at	CYYR1	392	37	479	42	511	109	11	0
206588 at	DAZL	112	20	76	26	6	0	6	0
205399 at	DCLK1	1595	157	1347	183	38	7	20	3
235258 at	DCP2	504	74	359	44	240	26	62	10
219945 at	DDX25	497	53	374	62	54	8	34	3
226980 at	DEPDC1B	1227	48	898	93	192	35	53	21
205603 s at	DIAPH2	2259	737	1789	142	152	9	236	37
203003 <u>3</u> at 203764 at	DLGAP5	2130	39	1815	78	207	40	134	120
203764_at 209560_s_at	DLK1	108	14	721	464	6810	625	134	0
209360_s_at 226926 at	DIKI		21		-	716		94	8
220920_at 222640 at		1084		1176	174		90	-	
	DNMT3A	1967	36	1824	60	950	46	214	6
220668_s_at	DNMT3B DPPA2	12326 359	579 54	8911 150	479 18	660 46	118 7	134 26	16 3
240301_at 231385 at	DPPA2 DPPA3		-	43	18	-	61		0
	DPPA3 DPPA4	240 9192	14 358	45 7635	379	304	80	10 30	4
232985_s_at 226817 at	DSC2		63	871		447 2545		401	4 22
219000 s at	DSCC1	1051 1227	71	1044	114 72	126	162 11	401 89	36
219000_s_at 217901_at	DSG2		153		256	5354	711	2051	300
217901_at 218585_s_at		4138		3471					
	DTL E2F5	2142	109	2321	161	307	31	180	146
221586_s_at		960	17	1003	86	332	58	117	60
204271_s_at	EDNRB	1710	132	3166	671	930	122 7	143	118
219232_s_at	EGLN3 ELOVL7	384 312	21 13	381 253	51 40	113 473	127	172 73	111 3
227180_at 226789 at	EMB	906	15	783	40 110	242	78	106	29
220789_at 229080 at	_	240	31	306	43		78	52	0
	EMID2	1251	51	1234	-	427	16	2354	236
220161_s_at 229292 at	EPB41L4B EPB41L5	461	52	362	144	349 429	55		
229292_at 201839 s at	EPG41L5	7357	195	5443	40 524	429 9719		614 438	283
201839_3_at 205977 s at	EPCANI EPHA1	421	34	427	35	392	1314 72	438	20 77
203977_ <u>s_at</u> 229288 at	EPHAT	124	- 34 - 7	519	130	690	106	180	4
229288_at 220013_at	EPHX3	527	33	430	88	166	27	50	3
232165 at	ЕРРК1	478	12	430	95	970	216	96	
232105_at	ERBB3	1538	70	1024		1494	330	2774	, 1251
220213_at	ERCC6L	531	54	466	143 25	68	8		32
	ESRP1					2209		71	
225846_at 219395 at	ESRP1 ESRP2	3037 593	150 7	2478 522	340 68	1168	75 88	44 964	2 335
	F11R	4770	216	4284	316	6440	408	3156	616
223000_s_at 213506 at	F2RL1	2044	161	2561	702	9854	2230	1272	465
213506_at 219429 at	F2RL1 FA2H	2044	27	164	27	9854 108	17	58	465
	_		434		384				
202345_s_at	FABP5	10904		10457		4683	1258	523 218	452 87
235177_at	FAM119A	1700 927	74 27	1400	88 80	495	54	318	87
230067_at	FAM124A	837 177	37	698	80 79	43 29	4	37	12 50
238018_at	FAM150B	177 967	3	398	78 52		3	107	50 ••
235048_at	FAM169A	867 55	16 6	880 50	53 5	533	65 172	213 o	88
242348_at	FAM19A4	55 2202		50 1519		246	172	8 77	0
229518_at	FAM46B	2203	100	1518	62	770	72	77	34

2201.47	FANACOA	6725	54	6074	540	224.0	247	204	470
220147_s_at	FAM60A	6725	54	6074	516	2210	247	384	179
225687_at	FAM83D	1509	60	1425	82	144	23	161	116
235269_at	FAM83F	175	20	212	30	477	74	48	11
226129_at	FAM83H	453	16	519	55	944	56	469	9
225864_at	FAM84B	997	70	984	88	1669	130	350	116
242560_at	FANCD2	1740	72	1669	112	362	28	118	60
220615_s_at	FAR2	513	31	491	73	307	74	15	1
218796_at	FERMT1	806	72	660	97	186	19	213	126
205110_s_at	FGF13	1380	148	2101	215	469	93	86	11
223761_at	FGF19	154	13	222	85	62	7	38	11
203638_s_at	FGFR2	1139	107	935	102	1324	60	583	469
1570515_a_at	FILIP1	85	13	76	20	20	3	7	1
1553991_s_at	FLJ20674	942	67	557	60	76	9	290	18
1564413_at	FLJ36116	474	57	799	371	587	195	42	3
210287_s_at	FLT1	82	23	59	14	15	2	11	1
222906_at	FLVCR1	1358	175	1335	145	785	171	153	14
228463_at	FOXA3	324	38	243	14	547	32	449	7
241612_at	FOXD3	191	15	198	25	12	1	12	0
	FOXH1	1138	36	753	89	182	24	39	1
202724_s_at	FOXO1	1038	40	696	62	469	80	227	27
226145_s_at	FRAS1	2024	194	1784	287	4479	322	88	44
209864_at	FRAT2	1668	53	1258	102	471	59	260	46
	FREM2	535	60	412	69	1943	162	30	20
203697_at	FRZB	136	22	292	88	2791	224	15	1
221245 s at	FZD5	2433	28	2559	196	3828	735	1528	529
227830 at	GABRB3	2725	101	2266	163	96	8	40	3
214240 at	GAL	4289	628	4936	816	97	12	548	453
203397 s at	GALNT3	587	217	507	72	138	26	81	19
213280 at	GARNL4	831	34	625	91	267	32	105	54
230788 at	GCNT2	1903	45	1569	80	1475	65	558	1
220053_at	GDF3	1112	149	1167	687	96	31	59	4
206102 at	GINS1	3530	92	3173	173	538	52	284	193
221521_s_at	GINS2	1515	82	1476	67	209	30	130	62
1569886 a at	GLB1L3	194	9	105	30	6	0	6	0
204836_at	GLDC	2983	325	2976	330	3566	650	1970	263
220108 at	GNA14	475	100	1035	110	54	7	76	2
214071 at	GNAL	289	51	235	55	31	4	18	2
209220 at	GPC3	374	55	614	60	9377	1086	42	11
204984 at	GPC4	3755	202	3711	593	383	68	42	17
204984_at	GPR143	249	11	201	25	104	11	40	13
200090_at	GPR143 GPR160	960	67	714	45	515	136	40	13
207183 at	GPR100 GPR19	665	52	559	43 59	47	130	14	1
207185_at 206002 at	GPR19 GPR64	412	11	305	39	47	7	115	4
203632_s_at	GPRC5B	2138	45	1764	150	1766	498	870	239
205632_5_at 206204 at	GRB14	385	45 26	451	44	1766	498 27	2154	1437
205862_at	GREB1	144	15 24	187	41	295	54 29	76	57 4
219388_at	GRHL2	199	34	166 201	34 57	164	28 45	27	
229377_at	GRTP1	668	166	391	57	352	45	985	564
1255_g_at	GUCA1A	813	63	360	98	104	17	16	2
204237_at	GULP1	4701	358	4840	151	3680	214	80	15

223541 at	HAS3	896	97	845	50	154	31	162	100
239781 at	hCG 1815504	571	36	349	30	27	3	32	5
227350 at	HELLS	2866	60	2053	247	406	69	129	72
219863 at	HERC5	857	70	549	71	1554	738	88	2
231381 at	HESRG	13573	473	11514	439	28	5	16	0
211267 at	HESX1	560	60	398	78	46	3	46	12
219743 at	HEY2	548	32	364	13	129	17	75	41
212964 at	HIC2	990	40	817	91	1601	118	93	5
239975_at	HLA-DPB2	1348	251	731	169	14	3	11	1
208025 s at	HMGA2	2761	223	3488	340	1927	396	176	160
225601 at	HMGB3	2558	74	1972	123	628	36	434	114
207165 at	HMMR	2677	132	2164	216	360	73	311	195
	HOOK1	705	49	537	44	277	36	719	340
	HPGD	191	37	416	103	2660	638	3283	402
219983 at	HRASLS	368	29	296	27	231	37	15	7
1552767_a_at	HS6ST2	293	37	662	269	1341	129	33	16
204130_at	HSD11B2	107	11	99	11	34	4	25	5
210029_at	IDO1	2459	290	1164	370	49	3	40	7
230960_at	IGDCC3	276	14	655	114	2426	530	23	6
	IGF2BP1	750	43	1256	173	991	178	67	13
	IGF2BP3	5474	256	4570	433	2236	195	140	100
 216493_s_at	IGF2BP3	983	24	543	93	102	9	37	2
227760 at	IGFBPL1	464	27	602	106	164	40	23	1
	IL17RD	1566	61	2333	412	435	68	143	108
203126 at	IMPA2	1333	47	1221	128	760	89	270	64
	IPW	3908	155	3757	293	720	133	316	9
203474_at	IQGAP2	730	52	627	46	848	146	1669	849
	ITGA9	98	20	194	33	344	36	67	53
	ITGB1BP3	946	40	957	115	275	115	47	5
202747_s_at	ITM2A	966	72	532	67	196	27	39	7
203298_s_at	JARID2	4897	157	4373	191	1018	68	234	26
229139_at	JPH1	549	26	644	40	254	20	24	2
229294_at	JPH3	247	11	199	24	189	30	10	0
205206_at	KAL1	2053	84	2543	348	410	123	46	24
239835_at	KBTBD8	708	42	543	50	202	24	64	40
207103_at	KCND2	181	11	153	30	14	1	16	3
1552897_a_at	KCNG3	407	14	217	46	27	8	11	1
219615_s_at	KCNK5	271	27	231	20	85	15	184	79
220116_at	KCNN2	739	25	631	60	362	43	85	48
58916_at	KCTD14	399	13	362	30	126	17	446	206
203934_at	KDR	927	242	677	146	557	90	38	15
231887_s_at	KIAA1274	406	24	459	31	142	14	62	5
235301_at	KIAA1324L	379	32	333	27	334	16	36	7
228565_at	KIAA1804	688	50	745	115	203	43	234	86
232069_at	KIF26A	370	20	307	14	217	46	72	21
242517_at	KISS1R	310	25	166	32	419	160	45	12
213610_s_at	KLHL23	1825	92	1431	101	439	44	220	76
220239_at	KLHL7	1441	85	1510	63	230	17	113	52
206541_at	KLKB1	320	31	401	52	54	5	2822	2468
244264_at	KLRG2	238	26	342	98	74	8	35	1

201596 x at	KRT18	4494	302	5600	770	12374	954	14490	4342
201650_at	KRT19	1051	30	802	138	6793	511	1104	308
209008 x at	KRT8	1472	222	2030	438	7133	277	7813	2389
219955 at	L1TD1	12955	366	11925	449	196	33	32	4
227048 at	LAMA1	453	22	487	32	4531	1084	32	22
1554679_a_at	LAPTM4B	5291	351	3142	417	321	56	421	241
204891_s_at	LCK	769	64	635	100	41	2	36	2
206309 at	LECT1	813	16	901	124	27	2	25	3
206268 at	LEFTY1	1272	91	4740	1577	34	6	53	24
206012 at	LEFTY2	790	46	2988	1390	142	27	48	1
219823 at	LIN28	14338	239	11441	925	5595	633	18	4
229349 at	LIN28B	5194	135	4153	246	1749	119	10	1
227933_at	LINGO1	1703	62	867	133	186	17	72	3
230195 at	LOC100131138	1004	247	1340	379	163	17	13	3
226809 at	LOC100216479	703	264	661	119	342	71	24	8
232181 at	LOC153346	444	30	282	29	62	11	111	5
1561101 at	LOC153469	419	40	371	75	28	2	24	3
228051 at	LOC202451	498	30	402	70	87	14	46	8
1557369 a at	LOC285401	354	37	204	47	24	1	25	1
1564359 a at	LOC339260	502	22	223	51	184	30	10	2
236756 at	LOC389857	325	17	295	14	58	2	44	3
232001 at	LOC439949	489	55	479	60	47	3	37	7
229669 at	LOC440416	945	58	561	129	566	68	75	55
1557765 at	LOC643401	99	32	50	9	78	10	8	0
1568780 at	LOC649305	583	15	462	59	515	185	55	16
239319 at	LOC728342	147	22	158	40	45	8	25	2
242070 at	LOC728485	313	65	319	48	59	8	28	0
 229978 at	LOC729993	864	69	887	211	288	79	33	0
 232111 at	LOC730125	936	179	1042	88	64	12	32	1
	LOC91431	344	39	310	31	76	8	39	1
	LRAT	305	6	83	31	12	1	12	1
	LRRN1	3515	118	2651	201	1718	191	15	1
	LSR	637	44	924	155	2106	113	1442	284
223413_s_at	LYAR	1925	44	1480	172	261	24	255	135
232151_at	MACC1	216	22	181	36	85	24	26	3
203362_s_at	MAD2L1	3445	109	3179	175	538	67	314	262
224650_at	MAL2	2195	117	1763	156	1502	126	1055	254
213927_at	MAP3K9	334	8	283	30	506	40	148	16
202890_at	MAP7	2125	43	1281	188	869	109	664	172
235141_at	MARVELD2	1453	79	1398	218	3387	453	2879	1095
239350_at	MARVELD3	446	5	277	51	323	16	137	42
242260_at	MATR3	662	57	371	63	77	7	59	23
214397_at	MBD2	825	25	658	52	427	43	11	1
	MCM10	1126	43	1058	41	90	16	81	57
201555_at	MCM3	3310	117	3009	68	635	57	438	112
222037_at	MCM4	727	24	793	41	130	14	97	41
216237_s_at	MCM5	1970	57	1935	97	339	42	201	81
229797_at	MCOLN3	309	37	230	50	414	105	16	1
212693_at	MDN1	2023	43	2019	232	418	46	494	87
232523 at	MEGF10	1546	135	870	183	106	46	22	11

228658 at	MIAT	899	47	386	109	54	19	15	2
232291_at	MIRHG1	1082	43	680	155	172	49	81	6
218883_s_at	MLF1IP	3956	235	3451	234	470	51	145	77
223700 at	MND1	586	47	500	32	60	10	29	15
238778 at	MPP7	131	13	111	16	98	17	52	13
213924_at	MPPE1	480	42	580	92	197	27	72	0
218536 at	MRS2	1760	221	1674	169	1051	227	338	8
209421 at	MSH2	2327	94	2172	133	348	53	197	59
223311 s at	MTA3	1945	92	1371	129	521	39	240	4
203345 s at	MTF2	2838	76	2335	219	688	39	306	15
209757 s at	MYCN	3159	139	2783	357	868	217	17	15
229464 at	MYEF2	699	26	665	70	161	18	22	6
218966_at	MY05C	728	16	1026	199	687	135	540	159
228242 at	N4BP2	1458	10	1020	117	943	59	189	135
222161 at	NAALAD2	1450	61	1074	16	910	114	105	3
222101_at	NANOG	5685	278	6042	463	55	114	44	20
219368 at	NAP1L2	914	55	649	75	45	9	73	12
204749 at	NAP1L2 NAP1L3	2189	381	2242	221	213	69	89	82
201970 s at	NASP	6774	74	5543	336	1667	234	834	81
238697 at	NCRNA00086	298	51	193	37	613	89	22	8
203961 at	NEBL	262	38	327	36	245	16	150	8
203413_at	NELL2	1279	37	1309	82	111	26	44	3
204702 s at	NFE2L3	526	20	597	78	267	79	23	13
215228_at	NHLH2	108	24	145	32	33	5	16	15
2219226_dt	NLGN4X	3114	161	3385	379	354	127	25	7
221690 s at	NLRP2	1464	726	1088	446	1057	367	22	, 1
206023 at	NMU	2029	114	1623	197	55	14	26	4
230916 at	NODAL	900	39	997	163	309	108	68	1
206801_at	NPPB	632	204	548	177	1899	703	57	9
205440_s_at	NPY1R	143	31	71	18	64	16	9	3
228894_at	NR6A1	1154	57	1084	89	778	168	76	11
227494_at	NR6A1	727	58	915	121	772	162	109	7
206291 at	NTS	2103	646	3794	903	746	224	15	6
213947 s at	NUP210	547	26	547	54	293	39	202	87
220520_s_at	NUP62CL	84	16	86	7	29	3	32	4
209925 at	OCLN	198	28	184	31	624	148	578	430
213599 at	OIP5	2013	55	1393	114	176	21	110	72
205085 at	ORC1L	514	21	378	42	57	5	33	10
219073 s at	OSBPL10	907	20	995	164	855	106	87	73
242128 at	OTX2	2717	173	1782	294	551	161	9	1
 211778_s_at	OVOL2	168	16	141	20	213	56	30	5
228245 s at	OVOS/OVOS2	622	97	513	100	130	43	32	10
221868 at	PAIP2B	373	25	306	39	92	10	139	47
214834 at	PAR5	90	18	44	8	7	0	7	0
235165_at	PARD6B	566	33	420	61	1205	169	352	219
223435 s at	PCDHA1	756	21	943	128	834	129	48	2
231725_at	PCDHB2	570	95	584	46	588	91	23	8
223629_at	PCDHB5	657	146	702	219	488	94	66	5
232553_at	PCYT1B	226	53	237	17	152	20	20	2
 223358_s_at	PDE7A	1158	51	1002	56	473	30	65	36

221898 at	PDPN	727	29	729	63	600	95	40	15
209493 at	PDZD2	216	37	192	22	57	9	16	4
213302 at	PFAS	2475	27	1977	98	465	69	364	152
225958 at	PHC1	4691	285	3371	261	369	44	152	21
218338 at	PHC1/PHC1B	4380	342	3203	403	505	20	242	31
235024 at	PHF17	1040	113	637	78	448	102	90	25
204269 at	PIM2	1267	154	891	41	126	4	104	2
205632_s_at	PIP5K1B	239	28	222	57	370	63	18	5
223551 at	РКІВ	1231	141	1280	120	1103	128	935	221
207717 s at	PKP2	274	9	361	43	1187	231	646	83
209581 at	PLA2G16	2962	195	2611	218	1425	441	1172	19
218454_at	PLBD1	563	34	490	50	409	93	194	40
214745 at	PLCH1	453	30	375	58	91	10	51	7
230441 at	PLEKHG4B	331	12	310	21	227	64	32	2
225726_s_at	PLEKHH1	653	20	520	71	1592	172	265	63
210198 s at	PLP1	1570	383	911	206	72	30	9	0
205190 at	PLS1	530	32	591	53	303	51	1358	140
	PMAIP1	4612	181	3351	303	471	185	325	309
201578 at	PODXL	9923	543	8961	415	5476	453	157	101
205909 at	POLE2	849	15	791	61	99	13	164	28
	POLR3G	2022	97	2036	171	52	12	115	65
	POU5F1 (OCT4)	11303	544	8105	983	170	15	217	56
214532 x at	POU5F1B	7223	102	6228	540	173	11	197	38
210265 x at	POU5F1P3	4766	233	3359	362	46	4	56	10
210905 x at	POU5F1P4	4009	162	2723	348	58	5	76	20
209529 at	PPAP2C	689	39	370	75	130	13	51	8
	PPAT	1328	13	1305	121	315	62	123	9
212686_at	PPM1H	638	19	395	80	501	70	99	18
228494_at	PPP1R9A	427	21	379	38	324	46	18	2
213849_s_at	PPP2R2B	1308	46	750	140	110	45	17	0
228010_at	PPP2R2C	187	22	204	35	27	2	22	4
233002_at	PPP4R4	106	16	158	26	21	3	45	12
220714_at	PRDM14	2002	213	996	223	72	4	65	10
230708_at	PRICKLE1	666	77	855	142	476	47	46	19
205053_at	PRIM1	1555	56	1329	82	163	26	151	2
210038_at	PRKCQ	517	72	411	61	87	7	46	1
204304_s_at	PROM1	2197	312	2047	298	5964	1308	137	69
208165_s_at	PRSS16	188	13	140	22	332	32	22	6
202525_at	PRSS8	390	41	415	68	2322	83	158	16
229073_at	PRTG	142	52	1078	565	3094	339	17	0
210758_at	PSIP1	1961	103	1526	101	199	15	131	32
204469_at	PTPRZ1	2467	192	2104	178	67	33	6	1
218186_at	RAB25	435	58	371	51	1237	208	64	10
203020_at	RABGAP1L	2024	70	1625	199	374	44	331	38
204146_at	RAD51AP1	2230	93	2089	249	269	44	160	110
220549_at	RAD54B	182	31	127	25	50	7	22	2
230563_at	RASGEF1A	655	71	467	50	289	46	16	3
219142_at	RASL11B	1341	163	979	98	491	86	84	9
218035_s_at	RBM47	1804	29	1995	176	2280	352	2304	549
228802_at	RBPMS2	5114	41	5443	415	2065	225	464	139

224578 at	RCC2	5617	91	5182	289	1941	128	534	214
204127 at	RFC3	2165	85	1987	162	274	43	245	133
204127_at 209071 s at	RGS5	487	41	1546	364	841	108	24J 81	133
214519 s at	RUSS RLN2	86	35	107	12	18	3	14	14
229782_at	RMST	1120	76	678	155	65	18	14	1
213467 at	RND2	576	5	597	38	145	9	55	0
235199 at	RNF125	886	125	448	92	47	5	391	171
239143_x_at	RNF125 RNF138	515	37	349	52	51	6	591	1/1
	ROR1						-		-
232060_at	-	2157	273	1905	226	738	119 E1	409	394
226482_s_at 218499 at	RP11-544M22.4	1482	104	1029 3211	187	589	51	965 205	179
	RP6-213H19.1	2967	127		392	1778	190	395	29
219370_at	RPRM	794	10	1460	321	148	16	88	28
1555878_at	RPS24	1368	76	964	119	341	19	636	107
213283_s_at	SALL2	4028	126	3267	207	832	120	114	3
243672_at	SALL3	1112	28	600	62	38	6	15	3
229661_at	SALL4	2998	135	3426	625	750	91	82	3
226548_at	SBK1	946	4	676	69	456	60	39	2
219196_at	SCG3	726	60	382	94	17	3	7	0
228782_at	SCGB3A2	504	47	352	41	36	3	24	1
203453_at	SCNN1A	1670	15	1241	118	876	245	123	23
203528_at	SEMA4D	318	9	255	24	180	10	27	1
223449_at	SEMA6A	2117	38	2983	572	1232	203	71	3
206442_at	SEMG1	85	3	111	17	10	1	10	0
208939_at	SEPHS1	5652	118	4429	150	415	72	335	96
209723_at	SERPINB9	3701	314	3945	485	2698	509	222	165
223122_s_at	SFRP2	2022	157	2859	588	305	112	18	3
205637_s_at	SH3GL3	656	35	846	133	324	35	54	1
230493_at	SHISA2	437	30	428	75	96	44	7	0
209848_s_at	SILV	466	21	376	32	252	18	107	43
210567_s_at	SKP2	413	33	360	36	91	9	37	8
202234_s_at	SLC16A1	2415	157	2000	110	1189	69	354	87
222939_s_at	SLC16A10	457	16	565	107	393	96	116	32
227506_at	SLC16A9	1684	289	1354	191	142	35	41	7
1554593_s_at	SLC1A6	290	111	296	50	26	8	8	0
203775_at	SLC25A13	1549	49	1574	84	1084	61	847	269
220474_at	SLC25A21	88	18	99	16	10	1	17	3
222088_s_at	SLC2A14	3002	143	3885	699	7479	899	101	37
202499_s_at	SLC2A3	4738	353	5842	1062	14179	1069	119	103
209267_s_at	SLC39A8	1077	95	1192	186	383	55	730	249
223748_at	SLC4A11	709	63	406	66	174	13	149	45
232263_at	SLC6A15	217	32	275	35	30	2	12	2
230597_at	SLC7A3	2146	21	1961	349	215	45	15	3
222071_s_at	SLCO4C1	250	28	165	33	242	98	195	117
1558217_at	SLFN13	36	8	124	22	30	2	19	5
205309_at	SMPDL3B	501	60	278	46	89	15	42	2
228370_at	SNRPN	4746	95	3650	385	566	84	228	8
206042_x_at	SNRPN/SNURF	6568	266	5196	531	515	79	850	2
	511111/511011								
200042_x_ut 220129_at	SOHLH2	373	79	293	77	72	8	14	1
		373 1405	79 95	293 1206	77 72	72 499	8 144	14 1300	1 1065

209891 at	SPC25	562	24	469	43	33	5	42	34
205185 at	SPINK5	186	23	180	42	211	33	27	5
202826 at	SPINT1	417	28	551	107	2228	171	259	55
210715 s at	SPINT2	2076	66	1621	147	4158	446	228	30
201998 at	ST6GAL1	1058	52	1173	138	1117	171	4933	463
228821 at	ST6GAL2	223	32	252	68	82	65	44	35
235334_at	ST6GALNAC3	263	20	310	28	715	85	12	4
227461 at	STON2	508	63	690	81	324	40	37	2
231969 at	STOX2	460	16	802	62	164	19	124	58
233252 s at	STRBP	1496	129	1158	127	436	79	286	6
205691 at	SYNGR3	842	41	844	43	326	69	52	5
244227 at	SYT6	341	75	377	73	85	11	33	11
206552_s_at	TAC1	158	17	148	18	57	14	6	0
235020 at	TAF4B	870	34	1124	68	89	14	54	25
234970_at	TC2N	103	4	66	8	53	9	16	6
206286_s_at	TDGF1/TDGF3	14828	287	13589	661	1863	486	46	5
200280 <u>s</u> at 223530 at	TDRKH	246	10	261	35	69	10	40 57	4
41037 at	TEAD4	690	10	672	61	266	22	97	71
	TERF1	9136	334		758	439	42	360	15
203449_s_at 228906 at	TET1	2962	554 119	6222 2278	220	459	42	47	15
	_								
221035_s_at	TEX14	66	9	169	60	21	4	26	3
232760_at	TEX15	232	25	208	38	12	1	10	1
203176_s_at	TFAM	1552	58	1265	160	311	40	238	44
230185_at	THAP9	513	35	398	30	114	13	65	6
205122_at	TMEFF1	2143	104	1749	167	1266	79	57	38
225822_at	TMEM125	352	10	274	24	544	59	64	8
213285_at	TMEM30B	333	36	223	42	491	78	216	115
238846_at	TNFRSF11A	172	3	107	26	22	6	15	3
210643_at	TNFSF11	300	54	130	28	39	6	262	211
220065_at	TNMD	87	10	82	17	18	4	16	1
205742_at	TNNI3	212	42	163	19	50	7	27	5
213201_s_at	TNNT1	795	50	631	96	740	160	40	1
201690_s_at	TPD52	1748	8	1601	184	1723	173	1336	232
206117_at	TPM1	1529	211	1687	137	703	140	188	8
211796_s_at	TRBC1/2	263	27	360	56	40	5	85	29
213301_x_at	TRIM24	2909	105	2090	173	1541	68	583	149
219736_at	TRIM36	307	25	273	53	48	6	30	11
223599_at	TRIM6	863	56	635	100	779	95	259	61
213172_at	TTC9	238	26	220	31	43	3	31	3
204822_at	ттк	1809	45	1476	109	263	39	106	84
214023_x_at	TUBB2B	5101	357	4535	475	2294	125	55	12
202954_at	UBE2C	4190	26	3746	302	771	79	446	345
228956_at	UGT8	631	23	406	58	259	53	7	0
231325_at	UNC5D	708	39	401	61	83	18	22	2
224048_at	USP44	3052	84	2435	181	21	3	14	1
202546_at	VAMP8	1058	43	1000	276	1188	230	2988	604
226029_at	VANGL2	791	59	1022	103	762	107	20	3
219740_at	VASH2	2068	294	1209	169	35	6	22	3
203797_at	VSNL1	756	125	1143	285	152	57	496	198
239552_at	VWDE	400	122	87	45	24	9	12	3

204728_s_at	WDHD1	737	37	579	47	120	12	48	25
1556429 a at	WDR67	324	7	226	27	23	4	22	5
204712 at	WIF1	305	53	220	27	243	62	16	1
229849 at	WIPF3	752	54	614	83	543	123	183	49
232282 at	WNK3	310	9	326	55	164	21	105	57
206698_at	XK	82	5	88	12	62	14	38	20
243161_x_at	ZFP42	3124	437	1417	472	376	101	12	3
233064_at	ZFR2	752	105	787	84	154	19	49	2
223642 at	ZIC2	3164	152	3434	405	384	119	12	2
207197 at	ZIC3	1762	16	1686	147	49	14	29	3
205739 x at	ZNF107	781	148	733	72	234	44	104	4
1552947 x at	ZNF114	325	8	257	32	174	58	15	1
206683 at	ZNF165	248	29	178	19	325	96	25	2
214823 at	ZNF204	415	25	397	76	267	12	15	2
242919 at	ZNF253	614	25	416	39	136	9	60	10
230789 at	ZNF280B	456	91	437	62	254	16	25	13
214761 at	ZNF423	1494	140	2038	269	672	189	66	26
1568873 at	ZNF519	367	30	290	29	50	7	30	7
219968 at	ZNF589	1162	36	970	96	184	15	131	1
207219 at	ZNF643	217	21	175	21	29	3	27	13
223616 at	ZNF649	524	112	499	54	61	12	33	6
242923_at	ZNF678	646	48	494	43	185	16	77	9
 239482_x_at	ZNF708	385	26	316	32	123	16	43	6
229700 at	ZNF738	3398	192	2171	277	757	55	89	68
244552 at	ZNF788	523	34	397	45	60	6	36	15
	ZNF814	509	8	319	57	101	14	39	2
	ZNF826	131	114	593	85	149	49	18	10
244640_at	ZNF850P	710	92	561	87	134	12	35	9
208119_s_at	ZNF93	1468	89	1193	87	500	43	97	33
1553875_s_at	ZSCAN10	558	89	624	92	53	4	59	2
231061_at		15325	617	13151	1369	465	69	132	0
231310_at		8281	300	6819	395	3450	207	23	10
1559280_a_at		4917	736	3763	421	2126	588	11	2
1554007_at		4634	130	3580	277	192	26	43	1
239752_at		3859	114	2879	224	908	86	573	423
226374_at		3328	32	2695	198	1693	84	1004	234
216405_at		3018	976	2086	723	54	4	35	5
237911_at		2969	868	992	116	13	1	10	0
228191_at		2581	272	2616	134	1731	309	399	11
1570266_x_at		2259	158	2466	247	162	7	139	3
227921_at		2007	47	1560	203	327	37	332	135
227492_at		1884	138	1875	121	2638	360	1813	1280
241535_at		1509	122	747	208	51	11	18	4
242346_x_at		1509	206	1137	162	214	20	54	41
211781_x_at		1486	108	1000	195	442	64	131	32
230785_at		1114	3	621	63	102	15	39	12
213484_at		1099	125	879	97	61	7	66	11
230356_at		1089	112	862	206	13	1	8	0
235363_at		1059	84	800	37	182	15	54	27
239231 at		1030	31	887	101	223	10	171	44

1569023 a at	1021	178	1387	740	21	5	7	1
230423 at	986	112	813	95	40	3	41	3
242890 at	983	27	1047	104	168	27	41	25
227769 at	950	68	1184	95	156	18	18	4
226498 at	917	136	911	82	461	66	17	6
230312 at	807	20	736	143	236	22	143	7
236236 at	807	20	669	53	412	39	319	, 153
237193 s at	792	136	809	170	92	28	15	135
231628_s_at	762	113	362	149	191	17	8	1
	-							
231690_at	739	37	418	57	53	11	254	98
232667_at	719	22	952	164	152	9	79	47
226497_s_at	658	103	612	58	395	52	25	3
240681_at	628	66	529	56	164	34	427	199
231079_at	604	11	586	68	37	2	37	4
230269_at	569	24	417	59	120	16	61	7
232254_at	544	38	551	104	169	21	58	24
230988_at	509	30	496	57	35	2	45	5
219987_at	509	19	495	90	183	49	30	5
240267_at	502	63	253	40	49	5	24	1
1560652_at	475	31	430	73	23	3	10	1
1556911_at	440	30	244	27	44	3	19	3
221648_s_at	432	23	326	49	472	219	1543	367
222033_s_at	431	35	339	57	272	19	42	12
227985_at	416	33	419	88	124	21	37	3
216319_at	395	59	221	47	10	1	12	3
243745_at	385	52	294	65	65	21	13	1
215594_at	384	48	354	130	226	80	62	29
237192_at	370	51	426	96	46	13	9	1
1556469_s_at	369	51	196	64	35	3	12	2
1562828_at	347	22	215	51	78	23	13	2
217676_at	333	102	227	74	30	3	28	5
239292_at	320	5	257	40	194	14	27	13
231192_at	313	28	205	51	20	2	25	13
233142_at	304	11	343	43	66	6	24	5
222325_at	275	9	169	25	57	11	12	1
239994_at	271	4	208	20	43	1	30	2
231311_at	269	50	245	27	919	94	89	8
237275_at	257	51	522	345	37	6	15	1
1564083_at	252	75	85	19	13	1	13	0
1554887_at	249	32	294	30	24	3	20	1
240987_at	237	45	183	98	39	15	7	0
231644_at	234	56	192	43	209	32	143	85
 228441_s_at	233	12	169	23	85	17	33	0
 233413_at	229	79	188	54	524	68	11	0
 241455_at	218	19	206	27	196	35	29	1
 243229_at	189	13	147	20	39	2	26	4
	187	8	141	22	35	3	36	4
241466 at								
241466_at 231470 at	_	92	136	44	22	5	10	0
241466_at 231470_at 232202_at	164 161	92 44	136 166	44 21	22 445	5 47	10 30	0

228440_at	158	17	83	17	81	15	21	0
231594_at	152	57	99	30	19	1	17	1
230951_at	152	13	106	15	116	18	345	194
244867_at	148	27	208	62	21	2	8	0
238175_at	145	18	45	18	9	1	9	1
231925_at	144	11	232	105	101	18	15	2
241776_at	131	57	201	34	28	4	16	1
241772_at	117	32	106	24	34	5	8	1
1564964_at	89	22	40	9	7	0	8	1

PSC-F	Bs (5)	Tissue	-FB (8)	PSC-N	PC (6)	Fetal-I	NPC (5)
avg	stderr	avg	stderr	avg	stderr	avg	stderr
113	18	101	18	300	59	197	24
8	0	8	0	8	0	8	1
50	15	30	3	33	4	31	5
1815	1118	1183	522	392	143	193	36
203	28	159	26	2901	209	711	187
81	28	33	3	118	36	35	4
73	13	66	6	379	86	560	126
25	3	35	4	115	17	192	25
84	21	91	43	777	174	142	61
54	3	35	2	1138	159	1639	207
69	32	22	3	43	7	39	10
76	10	69	26	86	6	31	6
170	42	12	2	1298	178	614	119
659	170	163	30	199	39	29	13
89	6	47	5	85	14	63	7
227	54	425	70	2418	630	1756	213
226	39	137	27	987	252	917	376
482	99	95	13	453	42	277	92
146	46	134	58	215	37	87	9
144	13	105	11	565	98	130	16
158	57	199	89	931	91	386	93
34	4	30	2	45	6	44	15
362	27	142	54	501	190	1235	817
132	6	118	13	336	59	199	23
16	0	13	1	103	19	81	45
1456	1267	513	202	4156	762	5305	1237
157	28	32	9	1214	164	973	309
156	31	118	26	85	12	214	17
55	11	66	22	302	29	170	24
51	7	61	9	112	20	41	5
145	47	233	93	829	62	559	99
337	116	459	173	1885	115	1174	226
113	23	155	52	353	16	281	29
234	53	237	37	483	31	301	56
60	9	66	19	122	8	61	6
49	2	43	11	133	33	55	21
96	3	91	3	115	19	82	4
188	53	210	20	1007	103	408	87
740	460	48	4	101	23	30	5
125	13	79	13	937	138	263	24
116	18	111	31	244	50	139	9
15	2	13	1	314	64	476	50
273	44	273	71	859	41	467	47
94	24	56	11	310	55	242	47
136	14	172	33	421	84	234	38
14	1	15	2	145	25	108	55
139	18	84	15	284	44	158	23
48	6	44	6	730	127	634	385

326	29	367	50	1355	64	646	93
68	7	54	5	444	106	116	14
16	0	14	1	283	173	612	282
10	1	14	1	46	1/5	18	202
91	12	95	20	1115	138	387	85
8	12	10	1	32	7	15	4
34	4	24	2	277	34	262	4 69
44	4	36	2	54	54 6	44	7
· · ·	85			-		762	
296 485		368 582	105 185	1484 2441	126 161	1386	124
226	171				-		360
	98 2295	45	14	1285	231	885	266
4014	2385	109	36	9649	794	6567	1176
140	34	135	45	653	99	260	56
137	49	182	85	252	18	179	16
166	38	196	51	1364	131	757	169
180	39	319	68	1263	107	955	211
31	8	20	8	710	166	132	68
331	127	68	3	610	117	198	21
84	24	29	2	153	24	90	16
70	25	101	31	183	44	109	12
104	36	142	28	797	258	473	87
90	9	93	10	244	26	170	27
62	15	124	25	481	61	269	52
32	3	34	2	31	4	27	3
184	46	74	12	280	33	266	113
163	38	36	13	1964	207	987	203
155	25	206	49	381	57	260	29
116	28	22	1	84	18	32	6
24	4	22	4	132	22	82	16
10	1	10	1	25	2	40	11
48	2	44	3	111	15	89	22
30	2	29	4	85	15	98	31
36	1	23	1	284	97	25	3
108	11	88	7	243	45	78	8
77	9	78	5	650	171	270	95
31	8	29	8	122	18	132	26
25	2	23	2	83	9	228	39
53	12	17	1	307	61	231	50
66	9	43	5	5100	1013	155	23
86	15	76	50	992	181	454	173
158	32	28	5	82	12	25	4
69	20	44	2	145	96	52	7
81	15	14	1	242	44	148	28
10	1	10	1	10	1	10	1
15	1	13	1	14	0	13	1
93	9	75	5	7308	1098	303	114
371	58	25	12	1438	148	1485	354
22	2	21	1	34	6	22	4
165	19	133	8	355	59	227	27
338	119	57	13	2570	398	1969	341

20	4	1 Г	1	07	10	70	12
29 43	4 19	15 146	_	87 53	13	70 124	13 73
43 46	5		86 2	237	18 95	35	4
201	106	32	4	51	95	32	3
		40		-	-		-
31	13	20	5	419	33	112	20
10	1	8	1	8	2	8	1
97	43	129	42	1025	284	1809	291
77	7	58	10	115	17	58	8
36	3	35	4	96	10	168	49
55	18	73	29	707	63	331	77
152	27	200	23	119	22	87	11
216	71	354	124	1367	116	862	169
368	274	31	14	7327	1798	229	87
70	11	83	21	108	23	36	8
270	22	184	18	1032	66	485	55
143	17	112	13	1129	368	204	19
28	1	26	2	40	5	25	3
11	1	11	1	13	2	12	1
73	16	20	1	1353	180	83	32
177	54	25	4	601	106	77	30
131	21	188	56	373	28	288	26
1758	141	61	23	1564	176	409	162
279	111	447	203	1649	87	948	189
226	58	107	24	1188	161	853	87
53	13	115	80	2750	620	1173	167
52	14	32	6	71	19	73	16
14	2	13	1	45	15	34	16
554	144	251	65	299	40	65	15
72	8	48	3	390	58	65	4
100	18	83	14	154	19	109	56
39	13	23	2	42	12	25	7
27	4	25	3	792	230	67	21
44	4	47	7	66	9	39	6
156	80	26	3	644	103	423	132
41	3	46	2	60	5	49	5
132	28	28	5	161	32	30	6
52	8	40	6	556	220	198	131
76	11	112	38	177	23	99	9
25	1	20	1	215	83	20	3
56	7	44	4	108	23	40	10
306	102	28	4	1145	268	276	73
1402	343	212	118	902	221	1598	993
27	3	23	1	32	4	50	9
2233	283	1097	345	4994	459	11312	1191
396	73	262	33	456	45	272	31
37	3	36	5	119	31	200	56
66	27	13	2	248	117	59	17
42	10	24	4	248	32	265	18
10	1	10	1	15	2	10	1
208	54	144	26	172	23	127	23

402	10	247	70	2520	470	504	26
482	46	347	78	2520	178	564	36
220	67	402	210	855	47	542	104
40	2	37	3	41	5	38	2
189	56	83	6	153	44	38	10
1055	277	37	18	1096	162	1438	336
181	56	191	61	986	195	571	111
386	154	138	34	157	19	134	47
186	24	157	38	150	25	136	42
45	16	110	29	1875	274	1381	277
35	1	31	2	250	56	37	5
140	69	52	14	838	113	608	166
41	19	13	2	53	10	33	13
72	2	92	13	92	8	84	8
48	6	46	2	51	4	46	3
31	9	14	2	11	1	10	1
214	53	140	15	496	72	279	56
33	2	29	2	43	6	32	3
10	1	11	0	83	45	94	78
40	1	37	1	61	13	42	2
287	94	124	35	328	28	150	54
268	43	467	129	445	75	250	194
149	12	121	8	233	27	103	8
9	2	7	0	702	153	332	98
441	314	44	24	1191	257	80	13
60	24	61	14	1554	726	237	67
40	3	50	4	195	41	379	114
134	39	412	339	150	19	111	68
77	35	43	15	70	12	30	13
93	19	102	18	144	35	103	21
92	33	48	27	386	84	200	48
64	2	61	3	177	41	81	24
281	78	345	141	1823	259	1206	218
217	65	276	113	1439	155	986	245
6	0	6	0	8	1	6	0
73	4	76	12	1363	261	1550	146
177	105	55	11	39	4	111	19
20	6	17	4	185	37	126	28
319	182	35	4	2953	558	387	244
625	263	141	28	1166	168	912	206
48	9	26	1	76	11	29	3
32	7	21	3	31	5	44	22
21	2	28	2	419	71	171	35
16	2	19	2	38	10	31	6
566	223	95	27	884	104	2070	405
34	8	13	2	48	8	112	8
23	7	12	0	900	122	44	11
32	3	25	2	54	9	28	2
14	1	51	10	99	35	82	16
59	18	25	3	146	33	94	23
1146	186	933	170	2464	187	1351	94

164	43	92	46	82	22	296	160
	_	-			23		169
68	11	44	4	43	8	35	5
195	50	303	108	1028	154	488	88
32	5	53	18	91	11	105	20
15	1	14	1	518	375	16	3
36	1	43	4	100	42	46	6
40	14	22	1	187	46	631	168
202	33	133	17	1181	183	188	34
9	1	8	0	37	16	12	2
2362	277	663	146	5391	721	619	247
242	45	315	31	958	91	598	111
337	129	569	201	1612	188	564	90
27	7	11	1	151	25	19	2
40	10	22	2	61	13	28	3
298	95	17	2	322	66	232	22
517	155	14	1	1053	99	716	117
18	2	16	1	35	3	20	2
58	4	52	2	54	9	210	126
38	4	30	3	4790	382	250	78
558	72	93	13	1454	175	175	14
1429	149	660	167	2909	450	1474	343
96	12	122	24	323	62	154	31
45	11	27	3	1641	239	1280	811
124	23	184	34	3145	394	1923	354
336	98	318	43	444	56	176	25
606	43	402	90	846	75	680	77
724	427	19	6	483	46	538	107
25	11	17	3	380	74	73	18
50	2	47	3	86	25	47	7
93	18	44	5	186	39	307	126
330	41	271	29	1380	224	604	29
337	147	25	2	79	21	241	91
18	2	13	1	159	41	168	62
1603	550	34	4	696	125	1410	319
97	16	54	24	79	125	62	12
20	3	12	1	38	12	230	78
12		12	0	22	7	11	1
40	3	44	5	132	19	38	6
		44 32	5 12	132		- 38 - 76	
623	363				42		27
36	3	53	9 3	53	9	56	4
623	309	31		342	142	380	171
84	19	44 105	4	247	26	239	12
162	22	105	34	427	46	82	11
72	15	35	3	57	6	47	2
72	16	44	5	365	53	100	24
47	4	33	3	210	65	42	3
91	26	137	36	1374	131	922	224
255	32	280	52	337	30	379	25
47	3	45	3	52	5	46	6
39	2	36	3	52	9	42	6

13634	2598	674	346	2487	429	163	44
1951	1005	410	283	693	204	103	3
5076	2073	135	10	1344	204	95	
48	10	51	7	701	354	52	16
40 78	22	82	26	441		224	25
	92	-			60		
629	-	564	85	905	159	1141	333
37	3	30	2	46	5	35	4
27	2	24	1	53	8	143	72
27	1	25	3	34	4	29	2
58	5	42	3	84	16	140	67
19	3	15	1	3502	1223	20	7
230	122	12	1	2952	460	23	5
102	13	82	8	746	157	482	179
15	2	13	1	36	14	18	5
140	39	32	3	289	75	133	28
51	12	30	3	49	4	72	19
26	2	23	1	63	12	143	82
47	24	48	15	124	40	191	40
24	2	23	1	31	4	35	6
246	84	10	0	224	30	14	3
49	4	42	3	129	38	88	9
39	6	20	1	76	14	39	7
1679	192	82	27	2601	233	81	44
50	17	9	1	84	22	6	1
50	6	81	23	187	19	133	28
22	1	17	1	19	2	18	2
57	6	33	2	82	9	33	5
35	5	27	2	81	19	118	25
45	10	33	1	160	29	128	46
33	6	63	15	179	16	117	28
9	0	9	0	13	2	10	0
152	37	18	10	1994	274	1551	194
52	9	86	8	221	68	41	10
304	40	388	69	447	67	224	14
21	1	18	1	26	4	19	2
631	176	733	242	2673	147	1419	183
476	265	14	2	279	72	79	32
121	34	22	2	157	40	123	52
19	4	86	20	180	29	160	35
199	23	147	14	248	71	153	17
56	3	54	3	63	5	56	6
47	7	83	10	53	7	30	5
13	1	16	1	365	78	115	51
131	43	252	153	529	23	441	80
445	94	538	132	1822	211	1004	220
89	9	140	46	275	31	265	30
244	85	339	104	809	88	597	133
36	13	53	8	58	16	21	3
289	16	354	33	401	55	249	39
93	45	13	3	1343	302	2568	751

28	3	59	12	783	325	459	219
36	4	62	13	151	48	32	8
416	4 153	619	267	2158	257	1404	486
50	133	79	35	468	64	201	480
92	27	19	5	408	11	12	2
61	27	67	17	501	107	329	62
314	40	227	20	440	32	145	26
314	40 56	339	67	1137	52 69	825	127
-			-				
368	13	331	22	512	31	193	18
524	42	396	37	1614	215	560	80
45	22	24	7	2338	69	1039	431
138	21	95	23	801	107	602	131
55	8	40	2	276	95	192	42
289	39	174	22	748	39	404	73
124	58	19	2	238	34	31	9
26	3	29	2	146	66	49	6
45	13	45	13	206	60	252	68
1138	251	336	92	1092	135	1460	168
554	73	845	96	4059	282	1735	289
18	1	18	1	133	27	99	21
71	28	22	2	430	104	223	68
54	4	51	7	2986	712	1960	806
102	34	86	29	40	3	98	42
18	1	18	1	468	142	99	76
87	40	102	43	1077	170	2232	209
61	27	20	2	150	79	37	6
89	45	22	2	652	67	243	34
90	6	78	2	76	12	73	4
940	505	48	3	470	291	35	3
28	10	7	1	100	62	14	1
84	4	63	6	320	42	70	5
128	4	109	5	412	109	105	3
18	1	15	2	353	113	38	14
87	8	63	5	433	71	227	48
16	5	9	1	132	21	21	2
21	3	22	4	28	5	25	4
173	52	211	91	936	41	666	133
41	4	46	10	111	11	62	10
791	248	222	50	162	47	81	34
10	1	10	1	1175	567	176	114
24	1	24	2	34	4	20	2
35	9	40	8	833	167	522	335
36	3	31	3	166	19	85	13
10	1	8	0	13	2	11	1
95	47	18	4	190	22	86	20
1258	105	32	4	929	142	702	87
749	89	86	8	732	111	125	35
298	60	43	11	512	158	277	39
34	11	21	2	88	18	215	30
146	15	163	21	872	110	412	93

1202	696	07	27	400	6F	750	100
1302	686	97	27	400	65	752	188
26	6	19	3	127	69	150	60
379	57	357	76	1119	186	611	18
254	18	289	27	729	52	649	84
310	21	337	42	752	56	601	52
168	19	130	15	207	24	155	15
106	9	92	6	123	15	113	10
37	12	17	2	248	49	321	150
1079	146	20	4	1273	240	414	211
836	370	10	2	193	30	28	5
310	105	319	50	353	69	925	194
59	9	40	5	144	16	86	27
28	0	42	11	507	115	183	47
49	8	29	5	183	46	123	25
103	27	49	6	341	71	236	31
33	14	17	1	1010	349	532	277
66	8	36	13	146	15	104	24
1126	369	862	331	825	172	568	231
254	101	761	470	1153	145	1003	152
126	35	161	69	460	20	288	33
151	39	107	27	94	17	47	11
151	14	127	4	398	194	123	14
176	11	144	5	399	181	131	7
42	5	40	2	134	71	36	4
61	8	44	2	140	63	51	4
67	6	67	13	45	5	56	9
264	25	196	35	561	77	468	101
97	10	34	6	137	32	41	8
22	6	34	13	492	92	524	87
206	122	32	9	306	89	1833	490
48	21	26	3	80	31	114	34
17	4	37	16	96	28	23	6
70	3	68	4	89	16	66	7
722	100	227	40	303	73	208	103
153	40	222	83	706	91	467	100
63	7	46	3	97	12	62	3
37	20	14	2	1560	192	1606	445
26	6	14	1	43	15	12	1
49	3	37	3	174	56	34	3
25	3	24	3	3405	733	50	14
179	22	234	25	671	48	579	104
14	4	8	1	2576	570	7628	757
24	3	24	4	144	43	21	1
216	9	221	32	430	46	464	35
300	120	421	170	1377	197	763	154
49	11	23	5	40	3	36	2
33	10	47	15	51	12	52	9
102	18	98	23	452	73	407	122
379	184	55	14	193	23	110	11
917	422	169	42	1718	131	397	68

1305	86	1000	76	2526	100	1222	49
325	93	416	127	839	64	682	60
890	453	117	61	1247	501	142	45
12	455	11/	01	51	27	142	2
11	1	10	1	942	251	59	10
78	10	65	6	545	48	264	10
23	2	13	1	27	40	32	10
61	4	71	8	137	17	106	25
			-				
782	226	399	92	453	187	178	93 140
170	88	38	8	495	132	443	2.0
1261	260	174	47	2130	126	182	62
123	15	57	5	374	36	222	43
312	62	402	53	54	7	37	14
336	20	241	46	2702	421	1308	103
19	1	15	1	127	44	1077	224
135	21	105	8	592	90	120	11
48	2	39	2	1166	199	833	326
9	1	8	0	100	30	150	90
31	3	32	3	38	8	32	5
52	13	35	2	91	26	27	2
52	17	37	12	196	35	134	38
229	90	56	8	1031	192	1387	266
10	1	11	0	11	0	18	8
531	53	412	49	1543	67	915	148
852	353	157	46	437	211	51	27
484	458	420	191	3508	716	573	202
563	293	58	6	310	46	296	105
520	380	11	2	649	192	222	86
64	8	60	5	447	105	67	7
194	92	92	28	276	66	63	12
556	24	368	46	536	116	483	76
28	4	24	3	117	17	56	8
79	5	39	5	500	21	612	90
9	0	8	1	309	87	96	54
358	21	214	46	1062	105	340	45
10	1	12	3	18	2	11	1
694	133	670	143	1953	456	421	44
1097	202	954	260	3038	545	574	48
712	317	243	179	267	31	349	171
83	11	109	10	71	8	56	8
45	22	48	12	73	10	47	10
41	5	33	4	349	62	98	20
16	1	12	1	25	6	27	6
15	3	14	2	18	2	11	1
29	3	19	2	24	4	18	1
535	79	282	71	808	111	631	121
1163	105	912	171	1785	138	1517	139
38	105	23	3	393	136	55	8
53	12	55	29	502	59	471	138
	14	17	6	6639	629	7734	100

70	22	110	67	247	27	227	41
70	22	119	67	347	37	227	41
46	11	33	3	169	60	34	2
134	33	43	3	149	29	42	5
708	311	107	26	716	118	138	41
124	20	65	8	452	37	199	50
494	432	8	0	311	135	201	78
165	62	25	9	634	102	173	25
25	3	39	10	391	71	393	32
162	68	118	97	777	125	779	209
136	19	129	18	687	59	416	78
202	31	104	22	420	78	494	44
43	3	43	4	60	3	97	15
7	0	7	0	548	446	563	539
90	16	110	27	136	9	61	15
9	1	10	1	10	1	19	5
72	22	40	2	468	308	41	2
40	2	23	2	187	26	172	27
314	53	168	24	131	21	69	17
997	231	539	20	1062	111	716	23
145	20	143	22	1003	141	255	59
22	1	18	1	20	1	19	1
10	1	8	1	44	12	61	30
260	32	252	38	546	60	341	40
79	9	57	5	239	23	172	22
194	43	317	43	2442	152	1326	539
60	3	52	3	99	19	63	7
18	3	21	2	40	15	18	5
12	2	14	5	9	0	9	1
14	1	12	1	20	5	344	321
16	0	15	1	23	5	14	1
35	2	25	2	72	23	22	1
267	130	82	23	153	34	40	5
739	408	73	25	647	107	355	139
1006	299	488	90	675	90	230	72
71	40	46	15	29	3	62	39
405	35	191	26	1270	102	1196	200
26	3	17	2	317	115	409	187
252	15	205	31	197	44	51	8
33	10	8	1	91	26	208	72
180	67	267	111	918	55	571	120
363	225	175	70	5115	356	6165	532
812	292	923	385	3873	255	1952	440
7	0	8	0	94	11	247	50
19	1	24	3	247	67	333	61
25	4	107	53	215	71	39	6
326	170	33	6	308	93	69	29
230	53	49	18	2144	228	1236	232
56	19	59	37	2144	52	204	63
171	24	49	11	157	37	272	41
8	0	9	0	18	5	8	0
o	U	Э	U	10	5	0	0

60	-	407	24	275	24	4.02	20
69	7	107	21	275	31	182	28
37	5	39	8	97	17	51	3
17	1	17	1	76	33	66	26
55	6	55	6	220	59	602	256
52	6	20	2	349	64	240	46
19	5	10	1	31	7	20	4
94	64	14	1	109	64	15	2
59	6	52	5	294	69	115	10
176	100	12	1	2671	509	1536	302
34	9	23	2	484	157	191	53
83	26	110	16	217	16	295	47
25	2	15	2	93	3	59	15
12	1	16	1	29	7	17	1
37	15	26	9	167	37	55	21
45	5	53	8	212	43	180	37
237	26	71	17	256	68	169	20
155	48	92	30	3108	256	2023	396
30	5	47	6	179	41	82	24
146	11	153	12	235	25	172	12
47	5	29	6	76	6	53	9
48	4	62	5	71	10	70	7
79	14	78	16	380	31	253	17
43	3	53	8	173	36	107	16
350	49	341	49	2264	343	1057	240
52	4	98	11	87	14	105	11
36	3	41	5	57	12	50	8
29	2	46	9	178	42	49	18
112	24	58	9	139	29	79	11
178	31	171	23	554	31	456	85
73	2	65	4	62	8	65	5
115	12	145	12	764	381	132	27
24	3	22	4	2299	578	39	8
11	0	62	44	201	34	12	1
68	10	99	31	537	67	458	53
27	5	20	2	1245	181	616	182
177	58	29	8	1465	212	1171	235
54	23	38	2	588	552	25	3
9	1	10	1	54	29	10	1
510	125	266	32	1134	132	744	148
192	5	185	23	226	36	190	140
236	55	200	47	1349	320	721	188
129	46	133	37	342	75	200	40
33	8	57	23	148	48	42	10
55	6	60	13	215	42	171	23
183	33	81	5	272	53	147	48
49	2	37	3	1272	32	716	115
49 61	5	60	7	335	81	698	170
9	0	8	0	22	6	9	0
9 71	14	8 93				-	59
			26	388	39 65	361	
147	6	173	17	243	65	170	21

444402103335317110361217135524186304210162634136593319103645592455821603679177515363108182241257469715895399318216127515111889049931791171192224152283481281817526651060926974314811482215125643191944724124963737436348998076716931290117312413333111101713027325145427335531875174584794774210294209888028454401245345456143839 <t< th=""><th>8</th><th>0</th><th>7</th><th>0</th><th>8</th><th>1</th><th>8</th><th>0</th></t<>	8	0	7	0	8	1	8	0
1103612171355241863042101626341365933191036455924558216036791775153631081822412574697158953993182161275151188904993179117119222415228348128181752665106092697431481148221512564319194472412496373743634899807671693129011731241333311110171302732514542733553187517458479477421029420988802845440124534545614383901111111111116		-		-	-	_		-
4210162 634 136 593 319 1036 455 92 45 58 21 60 36 79 17 75 15 363 108 182 24 125 7 46 9 715 89 539 93 18 2 16 1 27 5 15 1 18 8 9 0 499 317 9 1 17 1 19 2 22 4 15 2 283 48 128 188 175 26 65 10 609 269 74 31 48 11 48 22 15 1 25 6 43 19 19 4 47 2 41 2 49 6 37 3 74 3 63 4 89 9 80 7 67 16 93 12 90 11 73 12 41 3 33 3111 10 171 30 27 3 25 1 45 4 27 3 24 1 22 1 27 2 34 21 3 35 5 31 8 75 17 45 8 47 9 47 7 42 10 29 4 209 88 <				_				
1036455924558216036791775153631081822412574697158953993182161275151188904993179117119222415228348128181752665106092697431481148221512564319194472412496373743634899807671693129011731241333311110171302732514542733553187517458479477421029420988802845440124534545614383901111111111116161711791173112623811282111161								
7917751536310818224125746971589539931821612751511889049931791171192224152283481281817526651060926974314811482215125643191944724124963737436348998076716931290117312413333111101713027325145427324122127234211111113954213355318751745847947742102942098880284544012453454561438312111016210011011111116167117		-						
12574697158953993182161275151188904993179117119222415228348128181752665106092697431481148221512564319194472412496373743634899807671693129011731241333311110171302732514542732412212723421111111395421335531875174584794774210294209888028454401245345456143839011111111116111016210011011011111168423 <td< td=""><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td></td<>			-	-				
18216127515118890499317911711922241522834812818175266510609269743148114822151256431919447241249637374363489980767169312901173124133331111017130273251454273341221272342111111139542133553187517458479477421029420988802845440124534545614383901112361882235185376713608423169443331211101111117311262 <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td></td<>				-			-	
18890499317911711922241522834812818175266510609269743148114822151256431919447241249637374363489980767169312901173124133331111017130273251454273241221272342111111139542133553187517458479477421029420988802845440124534545614383901112361882235185376713608423169443331211101111111161642741631126238 <td< td=""><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td></td<>			-	-				
171192224152283481281817526651060926974314811482215125643191944724124963737436348998076716931290117312413333111101713027325145427324122127234211111113954213355318751745847947742102942098880284544012453454561438390111236188223518537671360842316944333121110111111116126238112821114148135313356161264 <td></td> <td></td> <td>-</td> <td>_</td> <td></td> <td></td> <td></td> <td></td>			-	_				
28348128181752665106092697431481148221512564319194472412496373743634899807671693129011731241333311110171302732514542732412212723421111111395421335531875174584794774210294209888028454401245345456143839011123618822351853767136084231694433312111016210011011711791173112623811282111448135313356161264274 </td <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td>		-		-		-		
609 269 74 31 48 11 48 22 15 1 25 6 43 19 19 4 47 2 41 2 49 6 37 3 74 3 63 4 89 9 80 7 67 16 93 12 90 11 73 12 41 3 33 3 111 10 171 30 27 3 25 1 45 4 27 3 24 1 22 1 27 2 34 2 11 1 11 1 139 54 21 3 35 5 31 8 75 17 45 8 47 9 47 7 42 10 29 4 209 88 80 28 45 4 40 12 45 3 45 4 56 14 38 3 9 0 11 1 23 6 18 8 22 3 51 8 53 7 67 13 60 8 42 3 169 44 33 3 12 1 11 0 11 11 11 11 16 1 71 17 91 17 31 1 26 2 38 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td></td<>			-				-	
151256431919447241249637374363489980767169312901173124133331111017130273251454273241221272342111111139542133553187517458479477421029420988802845440124534545614383901112361882235185376713608423169443331211101111111612623811282111414813531335616126427416031429227580130379191538176501233134240<		-		-	-			-
472 41 2 49 6 37 3 74 3 63 4 89 9 80 7 67 16 93 12 90 11 73 12 41 3 33 3 111 10 171 30 27 3 25 1 45 4 27 3 24 1 22 1 27 2 34 2 11 1 11 1 139 54 21 3 35 5 31 8 75 17 45 8 47 9 47 7 42 10 29 4 209 88 80 28 45 4 40 12 45 3 45 4 56 14 38 3 9 0 11 1 23 6 18 8 22 3 51 8 53 7 67 13 60 8 42 3 169 44 33 3 12 1 11 0 11 1 11 11 16 1 71 17 91 17 31 1 26 2 38 11 28 2 111 44 29 2 275 80 130 37 9 1 9 1 538 176 50					-		-	
743 63 4 89 9 80 7 67 16 93 12 90 11 73 12 41 3 33 3 111 10 171 30 27 3 25 1 45 4 27 3 24 1 22 1 27 2 34 2 11 1 11 11 139 54 21 3 35 5 31 8 75 17 45 8 47 9 47 7 42 10 29 4 209 88 80 28 45 4 40 12 45 3 45 4 56 14 38 3 9 0 11 1 23 6 18 8 22 3 51 8 53 7 67 13 60 8 42 3 169 44 33 3 12 1 11 0 11 1 11 1 16 1 26 2 38 11 28 2 111 41 48 13 53 13 35 6 16 1 26 2 38 11 28 2 111 41 48 13 53 13 35 6 16 1 26 2 <			-	-		-	-	
67 16 93 12 90 11 73 12 41 3 33 3 111 10 171 30 27 3 25 1 45 4 27 3 24 1 22 1 27 2 34 2 11 1 11 11 139 54 21 3 35 5 31 8 75 17 45 8 47 9 47 7 42 10 29 4 209 88 80 28 45 4 40 12 45 3 45 4 56 14 38 3 9 0 11 1 23 6 18 8 22 3 51 8 53 7 67 13 60 8 42 3 169 44 33 3 12 1 11 0 11 1 11 1 16 1 71 71 91 17 31 1 26 2 38 11 28 2 111 41 48 13 53 13 35 6 16 1 26 2 38 11 28 2 111 41 48 13 53 13 35 6 16 1 26 4 27 <						-		
413 33 3 111 10 171 30 27 3 25 1 45 4 27 3 24 1 22 1 27 2 34 2 11 1 11 11 11 139 54 21 3 35 5 31 8 75 17 45 8 47 9 47 7 42 10 29 4 209 88 80 28 45 4 40 12 45 3 45 4 56 14 38 3 9 0 11 1 23 6 18 8 22 3 51 8 53 7 67 13 60 8 42 3 169 44 33 3 12 1 11 0 11 1 11 1 16 1 71 17 91 17 31 1 26 2 38 11 28 2 111 41 48 13 53 13 35 6 16 1 26 4 27 4 16 0 31 4 29 2 275 80 130 37 9 1 9 1 538 176 50 12 33 1 34 2 4		-				-		-
27 3 25 1 45 4 27 3 24 1 22 1 27 2 34 2 11 1 11 11 139 54 21 3 35 5 31 8 75 17 45 8 47 9 47 7 42 10 29 4 209 88 80 28 45 4 40 12 45 3 45 4 56 14 38 3 9 0 11 1 23 6 18 8 22 3 51 8 53 7 67 13 60 8 42 3 169 44 33 3 12 1 11 0 16 2 10 0 11 0 11 0 11 1 11 1 16 1 26 2 38 11 28 2 111 41 48 13 53 13 35 6 16 1 26 4 27 4 16 0 31 4 29 2 275 80 130 37 9 1 9 1 538 176 50 12 33 1 34 2 40 3 40 3 201 79 20 2 <		-					-	
241 22 1 27 2 34 21111111139 54 21 3 35 5 31 8 75 17 45 8 47 9 47 7 42 10 29 4 209 88 80 28 45 4 40 12 45 3 45 4 56 14 38 3 9 0 11 1 23 6 18 8 22 3 51 8 53 7 67 13 60 8 42 3 169 44 33 3 12 1 11 0 11 1 11 1 16 1 16 1 71 17 91 17 31 1 26 2 38 11 28 2 111 41 48 13 53 13 35 6 16 1 26 2 38 11 28 2 111 41 48 13 53 130 37 9 1 9 1 538 176 50 12 33 1 34 2 40 3 40 3 201 79 20 2 177 29 79 19 17 1 17 18 1 1		-		-		-		
111111139 54 21 33553187517458479477421029420988802845440124534545614383901112361882235185376713608423169443331211101621001101111111116116171179117311262381128211141481353133561612642741603142922758013037919153817650123313424034032017920217729791917117181141191908081173101291520621217119214		-	-					
35 5 31 8 75 17 45 8 47 9 47 7 42 10 29 4 209 88 80 28 45 4 40 12 45 3 45 4 56 14 38 3 9 0 11 1 23 6 18 8 22 3 51 8 53 7 67 13 60 8 42 3 169 44 33 3 12 1 11 0 16 2 10 0 11 0 11 1 11 11 11 16 1 16 1 71 17 31 1 26 2 38 11 28 2 111 41 48 13 53 13 35 6 16 1 26 4 27 4 16 0 31 4 29 2 275 80 130 37 9 1 9 1 538 176 50 12 33 1 34 2 40 3 40 3 201 79 20 2 177 29 79 19 17 1 17 1 18 1 14 1 19 1 90 8 0 8 1								
479 47 7 42 10 29 4 209 8880 28 45 4 40 12 45 3 45 4 56 14 38 3 90 11 1 23 6 18 8 22 3 51 8 53 7 67 13 60 8 42 3 169 44 33 3 12 1 11 0 16 2 10 0 11 0 11 1 11 1 1 16 1 16 1 71 17 91 31 1 26 2 38 11 28 2 111 41 48 13 53 13 35 6 16 1 26 4 27 4 16 0 31 4 29 2 275 80 130 37 9 1 9 1 538 176 50 12 33 1 34 2 40 3 40 3 201 79 20 2 177 29 79 19 17 1 14 0 21 2 16 1 9 1 9 0 8 0 8 1 17 1 14 0 21 2 16 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></td<>						-		
2098880 28 45 4 40 12 45 3 45 4 56 14 38 3 9 0 11 1 23 6 18 8 22 3 51 8 53 7 67 13 60 8 42 3 169 44 33 3 12 1 11 0 16 2 10 0 11 0 11 0 11 1 11 11 16 1 16 1 71 17 91 17 31 1 26 2 38 11 28 2 111 41 48 13 53 13 35 6 16 1 26 4 27 4 16 0 31 4 29 2 275 80 130 37 9 1 9 1 538 176 50 12 33 1 34 2 40 3 40 3 201 79 20 2 177 29 79 19 17 1 17 1 18 1 14 1 19 1 9 0 8 0 8 1 9 1 9 0 8 0 8 1 17 1 10 0 37 <td< td=""><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td></td></td<>		-	-	-	-		-	
45 3 45 4 56 14 38 3 9 0 11 1 23 6 18 8 22 3 51 8 53 7 67 13 60 8 42 3 169 44 33 3 12 1 11 0 16 2 10 0 11 0 11 0 11 1 11 1 16 1 16 1 71 17 91 17 31 1 26 2 38 11 28 2 111 41 48 13 53 13 35 6 16 1 26 4 27 4 16 0 31 4 29 2 275 80 130 37 9 1 9 1 538 176 50 12 33 1 34 2 40 3 40 3 201 79 20 2 177 29 79 19 17 1 17 1 18 1 14 1 19 1 90 8 0 8 1 9 1 9 0 8 0 8 1 17 1 14 0 21 2 16 1 9 1 9 0 8 0 <		-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-	
22 3 51 8 53 7 67 13 60 8 42 3 169 44 33 3 12 1 11 0 16 2 10 0 11 0 11 0 11 1 11 1 16 1 16 1 71 17 91 17 31 1 26 2 38 11 28 2 111 41 48 13 53 13 35 6 16 1 26 4 27 4 16 0 31 4 29 2 275 80 130 37 9 1 9 1 538 176 50 12 33 1 34 2 40 3 40 3 201 79 20 2 177 29 79 19 17 1 17 1 18 1 14 1 19 1 90 8 0 8 1 9 1 9 0 8 0 8 1 17 3 10 1 29 15 20 6 21 2 17 1 19 2 14 1 12 1 0 37 5 12 1 50 6 65 11 28 3		-	-					-
608 42 3 169 44 33 3 12 1 11 0 16 2 10 0 11 0 11 0 11 1 11 11 16 1 16 1 71 17 91 17 31 1 26 2 38 11 28 2 111 41 48 13 53 13 35 6 16 1 26 4 27 4 16 0 31 4 29 2 275 80 130 37 9 1 9 1 538 176 50 12 33 1 34 2 40 3 40 3 201 79 20 2 177 29 79 19 17 1 17 1 18 1 14 1 19 1 20 5 24 3 30 3 16 1 14 0 21 2 16 1 9 1 9 0 8 0 8 1 17 3 10 1 29 15 20 6 21 2 17 1 19 2 14 1 12 1 10 0 37 5 12 1 50 6 65 11 28 3 23		-				-	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-		-			-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-		-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-		-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_		_			-	
31 4 29 2 275 80 130 37 9 1 9 1 538 176 50 12 33 1 34 2 40 3 40 3 201 79 20 2 177 29 79 19 17 1 17 1 18 1 14 1 19 1 20 5 24 3 30 3 16 1 14 0 21 2 16 1 9 1 9 0 8 0 8 1 17 3 10 1 29 15 20 6 21 2 177 1 19 2 14 1 12 1 10 0 37 5 12 1 50 6 65 11 28 3 23 3 28 2 27 3 44 8 27 3			-	-		-		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	-				-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
9190808117310129152062121711921411211003751215066511283233282273448273								
17310129152062121711921411211003751215066511283233282273448273								
2121711921411211003751215066511283233282273448273								
12 1 10 0 37 5 12 1 50 6 65 11 28 3 23 3 28 2 27 3 44 8 27 3								
50 6 65 11 28 3 23 3 28 2 27 3 44 8 27 3								
28 2 27 3 44 8 27 3								
	35	2	31	2	44	°	27	1
33 2 31 2 44 3 23 1 9 0 11 1 29 9 39 12								
9 0 11 1 23 9 33 12 60 17 20 1 63 14 24 2								
00 17 20 1 03 14 24 2 23 8 11 2 18 8 6 0								

12	1	11	1	13	1	10	1
21	1	18	1	23	6	15	1
18	4	11	1	19	4	13	2
9	0	9	0	12	2	9	0
9	0	9	0	9	0	9	0
12	3	12	1	170	80	138	20
27	3	22	2	57	12	38	8
8	0	9	1	56	13	67	31
8	0	8	1	9	1	9	2

Supplemental Table 1 Expression of pluripotency genes across samples. Average normalized expression values across groups of similar samples for unique genes and unannotated probe sets identified as being highly expressed in pluripotent cells over specified somatic cells (Figure 3B). Note: in the event that more than one probe set for a single gene was identified, the probe set with the highest overall expression was selected.

CHAPTER 4:

Functional role of *LIN28*/let-7 in the developmental maturity of pluripotent stem cell derived neural progenitors

Introduction

Human pluripotent stem cells (hPSCs), derived from the developing blastocyst¹ or from transcription factor-induced reprogramming², have the capacity to generate all cell types of the human body making them quite attractive for clinical therapeutics. However, in order for these cells to reach the clinic we must have a better understanding of the cell types we are generating and how similar they are to tissue-derived counterparts. Recently, we performed large scale transcriptome profiling comparing neural, hepatic and mesenchymal derivatives of hPSCs to their respective tissue-derived counterparts in order to determine how similar in vitro differentiation is to normal, *in vivo* development³. We determined that, by both gene expression and in vitro function, the derivatives of hPSCs more closely resembled cell types found prior to 6 weeks of gestation than later timepoints. In fact, this appears to be an emerging theme. For example, Zambidis et al. reported that hematopoietic differentiation from human embryonic stem cells (hESCs) resembled that of the first wave of hematopoiesis found in the developing volk sac⁴, while Chang *et al.* found that erythrocytes derived from hESCs expressed ε -globin and γ globin (embryonic and fetal globins respectively), but little to no adult β -globin⁵. This suggests that hPSC derivatives are developmentally young, which could stem from inadequate culturing methods or alternatively could suggest that developmental timing is somewhat conserved in vitro.

In our own transcriptome comparison of hPSC derivatives, we identified a list of genes that were differentially expressed between the derivatives and their respective natural counterparts regardless of the cell type generated³. Many of these genes, including homologues *LIN28A* and *LIN28B*, are known to be expressed during early embryonic development and were not completely silenced upon *in vitro* differentiation from either hPSC source. *LIN28A* and *LIN28B* are RNA binding proteins that selectively block the post-transcriptional processing of let-7 miRNAs to their mature functional state⁶. *LIN28B* seems to function primarily in the nucleus by sequestering the pri-let-7s and preventing maturation by Microprocessor, while *LIN28A* functions in the cytoplasm by recruiting an uridylyl transferase to poly-uridylate the pre-let-7s and prevent their further processing by Dicer⁷. The let-7 miRNAs, which target such genes as *HMGA2, MYC, LIN28A*, and *LIN28B*, are highly conserved and strongly correlated with the differentiation status and self-renewing capacity of cells throughout development (Figure 1C)⁸. However, there is little evidence for the role of this pathway in human development specifically. Many groups have demonstrated that *LIN28* is re-expressed in a variety of human cancers and is highly correlated with prognosis and disease progression⁹⁻¹¹. Furthermore, it has also been used to reprogram somatic cells to the pluripotent state¹². All of these known roles are linked to developmental immaturity and make *LIN28* an attractive candidate for manipulating the developmental maturity of PSC-derived cells.

We decided to explore the role of the *LIN28*/let-7 pathway in the developmental maturity of PSC-derived neural progenitor cells (PSC-NPCs). During normal development, it is known that neurogenesis precedes gliogenesis¹³. In our original analysis, PSC-NPCs displayed a higher propensity to generate neurons, while 16 week fetal tissue derived NPCs had a higher propensity to generate glia, suggesting that PSC-NPCs were developmentally less mature than their tissue-derived counterpart. Here we demonstrate that this developmental immaturity correlates with high *LIN28A* and *LIN28B* expression along with low let-7 processing. Addition of shRNAs or siRNAs against the *LIN28* homologues was sufficient to induce let-7 maturity only modestly and corrected just a small number of transcriptional differences observed between PSC-NPCs and tissue derived-NPCs. However, addition of let-7 mimics not only corrected many of the

transcriptional discrepancies, but also had an effect on the functional maturity of PSC-NPCs. These results suggest that the let-7 pathway may help to regulate to the "gestational age" of PSCderivatives.

Results

PSC-NPCs are functionally and transcriptionally less mature than tissue-derived counterparts

NPCs have the capacity to generate all cell types of the central nervous system, including neurons and glia. During mammalian development, NPCs progress through three phases: an early expansion phase, characterized by symmetric divisions; a neurogenic phase, characterized by asymmetric divisions and resulting in new neurons; and finally a gliogenic phase, another asymmetric phase where glia are primarily produced¹³. The result is that neurogenesis precedes gliogenesis on a developmental timescale. In a comparison of the functional maturity of NPCs derived from either hPSCs or from fetal tissue sources (7-19 weeks of gestation), we determined that PSC-NPCs had a higher propensity to differentiate into Tuj1+ neurons (>50%) over GFAP+ glia (<10%) (Figure 1A and ³). Meanwhile, tissue-derived NPCs isolated from fetal brain and spinal cord samples at 7-19 weeks of gestation were more apt to differentiate into glia (>70%) over neurons (<20%) (Figure 1B and ³). These findings suggest that PSC-NPCs are functionally less mature than tissue-derived counterparts from 6-19 weeks of gestation.

Gene expression microarrays on PSC-derivatives and tissue-derived counterparts, were used to identify the molecular differences underlying this functional discrepancy³. Among the most differentially expressed genes conserved in all three lineages profiled were *LIN28A* and *LIN28B*. These homologues are known to negatively regulate the highly conserved let-7 family of miRNAs (Figure 1C), making them a candidate regulator of developmental maturity. By

microarray expression, early passage PSC-NPCs expressed both homologues at a level more than 100-fold higher than their fetal-derived counterparts. While continued passaging, does reduce the levels of *LIN28A* and *LIN28B* in PSC-NPCs it does not bring it to a level found in the fetal tissue NPCs (Figure 1D and³).

To determine if let-7 was also differentially active as a result of *LIN28* altered expression, we asked if let-7 targets were among the differentially expressed genes separating PSC-NPCs from their tissue-derived counterparts (Figure 1E). Two lists of let-7 targets were generated: one of published let-7 targets that have been experimentally confirmed (77 genes) and one of predicted let-7 targets generated by TargetScan 5.2 (751 genes). Of the 77 published let-7 targets, 20 were differentially expressed between PSC-NPCs and their tissue derived counterpart, while 134 of the 751 TargetScan predicted let-7 targets were differentially expressed. Notably, 95% and 63% respectively were upregulated in the PSC-NPCs, suggesting let-7 is less active in PSC-NPCs. Targets of unrelated control miRNA families (generated by TargetScan) did demonstrate overlap with the genes differentially expressed, however they did not show a directional trend like the let-7 family. This observation also held true for the two other lineages profiled.

shRNAs against LIN28A and LIN28B knock down their targets and cooperatively induce let-7 maturation

After demonstrating that the *LIN28*/let-7 pathway is differentially regulated in PSC-NPCs compared to tissue derived cells, we sought to determine if genetic manipulation of the pathway could correct the transcriptional and functional differences observed between the two types of NPCs. shRNAs against *LIN28A* (IRES-GFP) and *LIN28B* (IRES-RFP) were transfected into

PSC-NPCs and FACS sorted for double positive cells. shRNAs could cooperatively knock down *LIN28A* (to a level 20% of the negative control) and *LIN28B* (to a level 50% of the negative control) (Figure 2A). In addition, by RT-PCR for mature let-7 miRNAs, many of the let-7 family members were upregulated as a result of this knockdown (Figure 2B).

In order to determine if the shRNA knockdown corrected the transcriptional differences observed between the two sources of NPCs, microarray profiling was performed on two separate knockdown experiments. 1611 probe sets were found to be differentially expressed (\geq 2.0 fold difference) in the same direction between double positive (sh*LIN28A* and sh*LIN28B*) cells and their respective negative controls in both experiments. Of the original 2,625 probesets differentially expressed between PSC-NPCs and their tissue derived counterpart³, 140 were also differentially expressed in the anticipated direction in the two knockdown experiments, suggesting their misexpression had been "corrected" by the manipulation (Figure 2C). Of the 1140 unique genes (represented by 1611 probe sets) that were affected by sh*LIN28A/B* dual knock downs, only a modest number were let-7 downstream targets (Figure 2D), and even fewer were specifically suppressed, as would be expected if let-7 family members were induced.

siRNAs against LIN28A and LIN28B induce let-7 maturation, but cannot correct gene expression differences

In an attempt to improve the knockdown of *LIN28* homologues and thereby more strongly induce the let-7 family members, siRNA based knockdown strategy was used. Indeed, when si*LIN28A* and si*LIN28B* were introduced by transfection we saw a 70-75% knockdown of both homologues by RT-PCR (Figure 3A). This was also confirmed by western blot (Figure 3B). The let-7 family members were induced, as measured by RT-PCR, at 2 and 4 days post-

transfection, however by 7 days their levels were not above that of the non-target control siRNA (siNT) (Figure 3C). Also of note, siRNAs against both homologues were necessary to observe an induction of the let-7 family members. This was not surprising given their known semi-redundant roles in let-7 maturation⁶.

Microarray profiling of day 2 and 4 double knockdowns identified 403 probe sets differentially expressed (1.54 fold) at each time point over their respective siNT control. These differentially expressed probe sets did not significantly overlap with the original list of probe sets differentially expressed between PSC-NPCs and their natural counterparts (Figure 3D), nor were let-7 downstream targets, besides *LIN28A* and *LIN28B*, selectively knocked down (data not show). This suggested that siRNA based knockdowns can induce let-7s, however the resulting let-7 induction exerted little effect on the system, similar to what was observed using shRNA against Lin28.

There are several possible explanations for these results using RNA interference to silence *LIN28*. First, a two- to ten-fold increase in let-7 maturation is not sufficient to affect the downstream targets. Second, the RISC complex may be overburdened with exogenous siRNAs such that the endogenous miRNAs cannot bind and function. Or third, *LIN28*, being a downstream target of let-7, may not be the driver of let-7 levels, but rather simply a result of altered transcriptional expression of the family members. To determine if the first or second explanation were possible, an alternative approach was chosen to more directly induce let-7 activity.

Addition of let-7 mimics knocks down let-7 targets and corrects transcriptional discrepancies between PSC-NPCs and tissue-derived NPCs

After two attempts to manipulate the let-7 pathway through knockdown of the upstream regulators, *LIN28A* and *LIN28B*, we instead directly increased mature let-7s in the system. Using mature oligonucleotides (mimics) for let-7b and let-7g transfected into PSC-NPCs, we were able to successfully knockdown the tested let-7 targets (*LIN28A*, *LIN28B*, *HMGA2*, *IGF2BP1*, and *PLAGL2*) by RT-PCR (Figure 4a). These results were also confirmed by gene expression microarray profiling (Figure 4b).

Microarray profiling of let-7 mimic treated NPCs identified 938, 1044 and 2184 probe sets differentially expressed between let-7 mimic treated NPCs and mimic controls (miCtrl) at 3, 5 and 7 days post-transfection respectively. Many, but not all, of the differences were shared across the three time points (Figure 4C). Furthermore, the transcriptional differences overlapped significantly with the original list of differentially expressed genes (Figure 4D), suggesting those differences had been corrected by the addition of let-7. Interestingly, when we asked how many direct let-7 downstream targets were affected by the addition of the mimics, we determined that not only were let-7 target genes overrepresented in the data, but they were specifically downregulated in let-7b/g transfected NPCs over miCtrls (Figure 4E).

Let-7 mimics contribute to the functional maturity of PSC-NPCs

To determine if the correction of differentially expressed genes by addition of let-7 mimics also affected their propensity to differentiate into neurons or glia, differentiation potential was assayed following let-7 manipulation. Following three weeks of differentiation induced by growth factor withdrawal, miCtrl transfected NPCs overwhelmingly produced Tuj+

neurons, while only rare GFAP+ cells were found (Figure 1A-C; p<0.005). When let-7b/g mimics were instead transfected, NPCs were slightly less neurogenic and many more GFAP+ glia were produced (Figure 1A-C; p<0.005). These findings suggest that the let-7 pathway has at least modest effect on the developmental maturity of PSC-NPCs.

Discussion

This work demonstrates that PSC-NPCs functionally represent early stages of gestation. Using gene expression microarray, we previously reported that this functional immaturity corresponded with a differential gene expression signature, including genes known to be expressed during embryonic development. This analysis allowed us to date-stamp PSC-NPCs to be most similar to an NPC found <6 weeks of gestation³. Many other groups, deriving various different cell lineages, have also reported that hPSCs generate embryonic or primitive cell types^{4,5,14}. Furthermore, when we looked at PSC-derivatives generated and profiled independently by other groups, we found that a significant number of the genes differentially expressed in our system also appeared in their data³. These findings taken together suggest that *in vitro* differentiation from hPSC generates immature cell types with a transcriptional signature akin to early embryonic development. It remains unknown, however, if this is a failure of *in vitro* differentiation protocols to fully recapitulate *in vivo* development or if instead developmental timing is innately controlled and 4-6 week differentiation protocols simply produce cells representing that gestational age.

If the transcriptional and functional discrepancies we observe between hPSC-derivatives and tissue-derived counterparts are at least partially the result of an intrinsic mechanism, the *LIN28*/let-7 pathway is a strong candidate. It is evolutionarily conserved and known to control developmental timing in *C. elegans* and mice⁸. In humans, it has been linked to reprogramming¹² and transformation⁹⁻¹¹, both of which are related to developmental maturity. We report here that the use of RNA interference to knock down of LIN28 homologues in PSC-NPCs is insufficient to correct the transcriptional discrepancies observed between PSC-NPCs and tissue-derived NPCs. Conversely, direct addition of let-7 family members can not only correct a significant portion of the transcriptional profile, but can also modestly affect their functional maturity. There are several possible reasons to explain this apparent discrepancy. First, it is possible that LIN28 expression in this system is not the relevant mechanism controlling let-7, but instead let-7 is controlled transcriptionally and LIN28 differential expression is simply a downstream effect of increased let-7 expression. In other words, let-7 is controlling developmental maturity through a LIN28 independent mechanism. Alternatively, manipulating the pathway by knock down of LIN28 may be technically more difficult. It is possible that a 2- to 10-fold induction of let-7 family members, observed when LIN28 homologues are knocked down, is insufficient to then affect let-7 downstream targets. In fact, if we consider our previous finding that many let-7 family members are 100-fold higher in tissue-derived NPCs over PSC-NPCs³, it may not be surprising that a 2- to 10-fold induction has little effect on the system. Furthermore, it is possible that overexpression of siRNA or shRNAs may bombard the RISC complex, such that the endogenous let-7s are outcompeted for binding and any induction observed may be functionally blocked.

To better address whether let-7 or *LIN28* is the regulator of the system and avoid any technical issues, it may instead be necessary to manipulate the pathway in fetal-derived NPCs. In this case, overexpression of *LIN28* homologues or introduction of antagomirs (siRNAs against miRNA specifically) against let-7 could be used to ask if either manipulation can force tissue-

derived NPCs to be more neurogenic rather than gliogenic. Yuan and colleagues recently reported that *LIN28B* was differentially expressed between human adult and fetal hematopoetic stem/progenitor cells (HS/PCs) and that overexpression of *LIN28B* reprogrammed adult HS/PCs into fetal-like HS/PCs based on their lymphogenic potential¹⁵. It is possible that a similar manipulation in our system may also be sufficient to reprogram NPCs.

Finally, we cannot rule out the possibility that another pathway or multiple pathways are responsible for the observed functional and transcriptional differences. Manipulation of let-7 corrected a significant, but modest number of genes differentially expressed between tissue-derived NPCs and PSC-NPCs. Furthermore, it only increased gliogenesis by 2%. Many other gene pathways were identified that could also be controlling the developmental maturity of PSC-derivatives. It will be interesting to see if any other pathways, singularly or in concert with let-7, can have a more profound effect on developmental timing in this system.

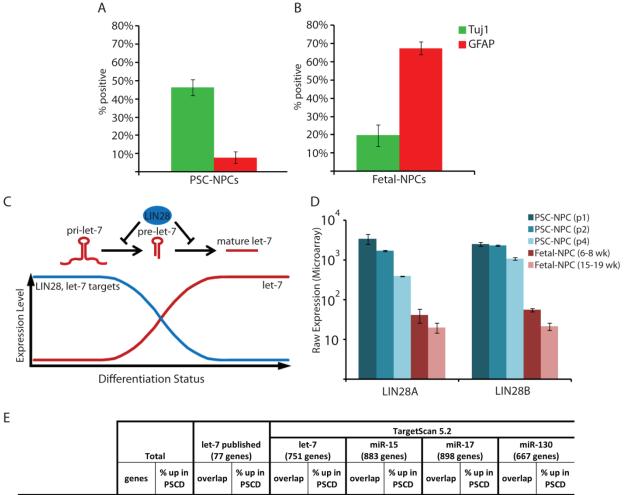
These data suggest that PSC-derivatives are functionally and transcriptionally primitive. From a clinical application viewpoint, it will be important to demonstrate that PSC-derivatives, being most similar to embryonic cell types, can incorporate and function within an adult tissue. It will be necessary to explore what consequence the continued expression of embryonic genes, such as *LIN28*, might have in adult tissues or if the expression of those genes can be manipulated to functionally age the cells prior to transplantation.

Materials and Methods

Cell culture

Undifferentiated hPSC lines, HSF1, H9, xiPSC2 were maintained as previously described¹⁶. Neural rosettes were derived, maintained and further differentiated as described¹⁷.

Lipofectamine 2000 (Invitrogen) was used to transfect shRNA plasmids (Genecoepoia) at a ratio of 8ul lipofectamine:8ug of DNA/well of a 6 well plate. shLIN28A contained an IRES-GFP transgene while shLIN28B contained an IRES-RFP allowing for sorting of transfected cells 5 days post-transfection with a FACS ARIA (BD Biosciences). siRNAs and let-7 mimics (Dharmacon) were transfected with Lipofectamine RNAiMAX (Invitrogen) at a ratio of 5 ul lipofectamine:20nM siRNA or 5 ul lipofectamine:40nM mimic/well of a 6 well plate. All transfections were performed overnight in Optimem (Gibco).


Immunostaining

Differentiated PSC-NPCs were passaged with TrypLE (Gibco) to glass coverslips 2 days prior to fixing. Coverslips were fixed and stained using standard protocols as described³. Primary antibodies included rabbit x Tuj1 (1:2000; Covance), rabbit x GFAP (1:1000; Dako), and chicken x GFAP (1:2000, Abcam). Western blot analysis was performed using standard procedures as described¹⁸. Primary western blot antibodies include rabbit x Lin28A (1:300; Cell Signaling), rabbit x Lin28B (1:300; Cell Signaling), and mouse x actin (1:1000).

Expression Analysis

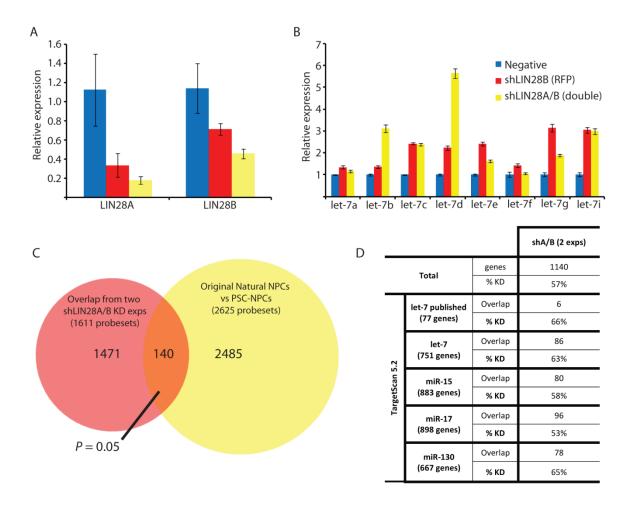
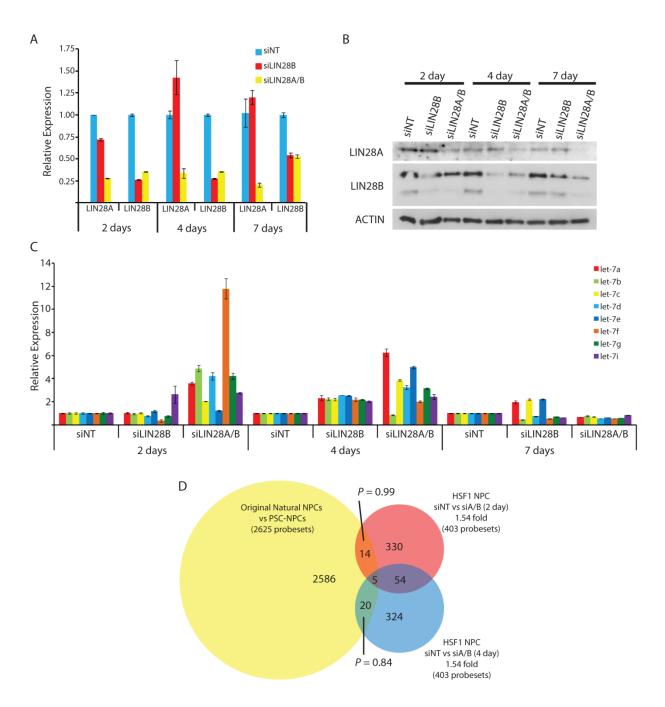
RNA isolation, mRNA reverse transcription, and real-time PCR were performed as described¹⁶. miRNA reverse transcription was performed with miScript reverse transcription kit (Qiagen) and real-time PCR was performed using miScript Sybr Green PCR kit and miScript Primer Assay (Qiagen). Microarray profiling was performed with Affymetrix Human HG-U133 2.0 Plus arrays as described^{16,19}. Data were normalized with Robust Multichip Algorithm in Genespring separately from previous analyses performed³. Probe sets that were not expressed at

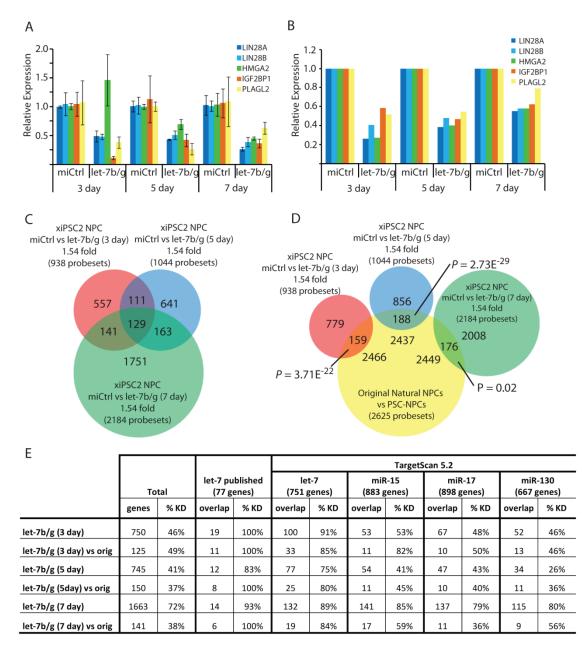
a raw value of > 50 in at least 10% of samples were eliminated from further analysis. Gene expression differences for the genetic manipulations were identified by fold change of \geq 2.0 (shRNA experiments) or \geq 1.54 (siRNA and mimic analysis). Gene expression differences for the original list of genes differentially expressed between PSC-NPCs and Natural-NPCs were determined as previously described³. Only those probe sets that made it past the filtering after both normalization s were included in this analysis. Further statistical analysis for hypergeometric distribution and three-way simulation was performed with R, package 2.9.2 as described¹⁹. Overlap with let-7 target genes was performed in Excel using lists generated either from the literature of from TargetScan 5.2.

	genes	% up in PSCD	overlap	% up in PSCD								
PSC-NPC vs Natural NPC	1885	44.4%	20	95.0%	134	62.7%	133	50.4%	127	25.2%	135	27.4%
PSC-Hep vs Natural Hep	3050	56.6%	18	88.9%	211	74.9%	210	69.5%	198	63.6%	164	66.5%
PSC-FB vs Natural FB	1961	52.2%	9	55.6%	142	60.6%	141	48.9%	147	46.9%	119	40.3%

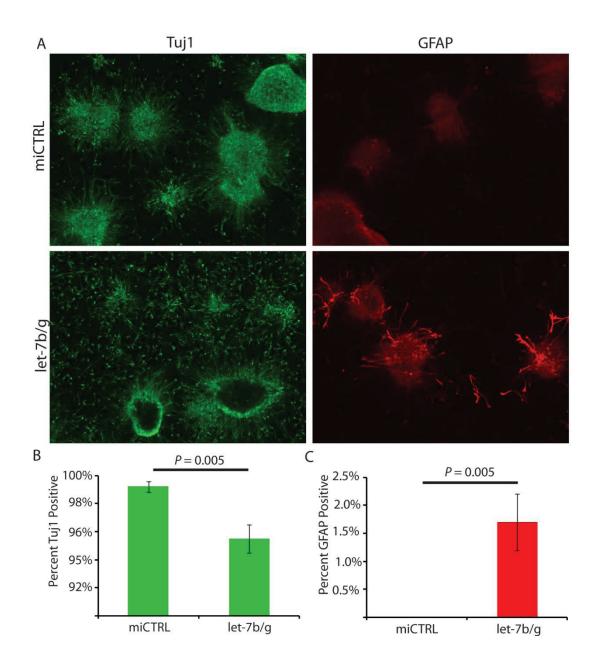
Figure 4.1 PSC-NPCs are functionally and transcriptionally less mature than tissuederived NPCs.

(A) Percent positive PSC-NPCs undergoing neuronal (Tuj1) vs. glial (GFAP) differentiation following 3 weeks growth factor withdrawal (n=7). (B) Percent positive fetal tissue-NPCs (7-19 weeks of gestation; n=7) undergoing neuronal vs. glial differentiation. Error bars represent standard error over biological replicates. (C) Schematic of *LIN28*'s role in the maturity of let-7 microRNAs and the pathway's link to development. (D) Average raw expression of *LIN28A* and *LIN28B* probe sets from the Patterson and Chan et al. microarray³. PSC-NPCs p1 (n=6), PSC-NPCs p2 (n=2), PSC-NPCs p4 (n=2), 6-8 week fetal-NPCs (n=6), 15-19 week fetal NPCs (n=5). Error bars represent standard error over biological replicates. (E) Genes differentially expressed between PSC-derivatives and their respective natural counterpart as identified³ and the number of let-7 targets represented in the data. Let-7 target lists were generated from published articles and TargetScan 5.2.


Figure 4.2 shRNAs against *LIN28A* and *LIN28B* knock down their targets and cooperatively induce let-7 maturation.

(A) Real time-PCR for *LIN28A* and *LIN28B* following shRNA knock downs. mRNA expression was normalized to *GAPDH*. (B) Real time-PCR for let-7 family members following shRNA knockdowns. miRNA expression was normalized to U6. Error bars represent standard error across three technical replicates. (C) Venn diagram demonstrating the original differences between PSC-NPCs and tissue derived-NPCs (yellow)³ and the overlap with gene expression differences between sh*LIN28A/B* double knock downs and negative controls (n=2 biological replicates; red). Direction of differential expression was taken into account. Statistical analysis performed by hypergeometric distribution. (D) Genes differentially expressed between sh*LIN28A/B* double knock downs and negative controls and the number of let-7 targets represented in the data.


Figure 4.3 siRNAs against *LIN28A* and *LIN28B* induce let-7 maturation, but cannot correct gene expression differences.

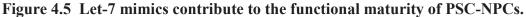

(A) Real time-PCR for *LIN28A* and *LIN28B* following siRNA knock downs. mRNA expression was normalized to *GAPDH*. (B) Western blots for LIN28A, LIN28B, and ACTIN control following siRNA knock downs. (C) Real time-PCR for let-7 family members following siRNA knockdowns. miRNA expression was normalized to U6. Error bars represent standard error across three technical replicates. (C) Venn diagram demonstrating the original differences between PSC-NPCs and tissue derived-NPCs (yellow)³ and the overlap with gene expression differences between si*LIN28A/B* double knock downs and non target controls (siNT) at day 2 (red) and day 4 (blue) post transfection.

Figure 4.4 Addition of let-7 mimics knocks down let-7 targets and corrects transcriptional discrepancies between PSC-NPCs and tissue-derived NPCs.

(A) Real time-PCR for let-7 target genes following addition of let-7 mimics. mRNA expression was normalized to *GAPDH*. (B) Relative expression of let-7 target genes as measured by microarray probe set expression. Expression was normalized by RMA normalization in Genespring. (C) Venn diagram depicting the overlap of genes differentially expressed between let-7b/g and mimic controls (miCtrl) at 3 (red), 5 (blue), and 7 days (green) post transfection. (D) Venn diagram demonstrating the original differences between PSC-NPCs and tissue derived-NPCs (yellow)³ and the overlap with gene expression differences between let-7b/g and miCtrl 3 (red), 5 (blue), and 7 days (green) post transfection. Note: Overlap between days is not depicted here. (E) Genes differentially expressed between let-7b/g and miCtrl and the number of let-7 targets represented in the data.

(A) Immunofluorescence of Tuj1+ neurons and GFAP+ glia in PSC-NPCs transfected with let-7b/g or miCtrl following 3 weeks of growth factor withdrawal. (B) Percent Tuj1 positive neurons in let-7b/g or miCtrl transfected cells. (C) Percent GFAP positive glia in let-7b/g or miCtrl transfected cells. Error bars represent standard error over technical replicates (n=8).

References

- Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. *Science*; 282, 1145–1147. (1998)
- Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. *Cell*; 131, 861-72. (2007)
- 3. Patterson M, Chan DN, Ha I, Case D, Cui Y, Van Handel B, Mikkola HK, Lowry WE. Defining the nature of human pluripotent stem cell progeny. *Cell Res*; **22**, 178-93. (2012)
- Zambidis ET, Peault B, Park TS, Bunz F, Civin CI. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. *Blood*; 106(3):860-70. (2005)
- Chang KH, Nelson AM, Cao H, Wang L, Nakamoto B, Ware CB, Papayannopoulou T. Definitive-like erythroid cells derived from human embryonic stem cells coexpress high levels of embryonic and fetal globins with little or no adult globin. *Blood*; 108, 1515-23. (2006)
- 6. Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. *Science*; **320**, 97-100. (2008)
- Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, Iliopoulos D, Gregory RI. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. *Cell*; 147, 1066-79. (2011)
- 8. Büssing I, Slack FJ, Grosshans H. let-7 microRNAs in development, stem cells and cancer. *Trends Mol Med*; **14**, 400-9 (2008)
- Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S, O'Sullivan M, Lu J, Phillips LA, Lockhart VL, Shah SP, Tanwar PS, Mermel CH, Beroukhim R, Azam M, Teixeira J, Meyerson M, Hughes TP, Llovet JM, Radich J, Mullighan CG, Golub TR, Sorensen PH, Daley GQ. Lin28 promotes transformation and is associated with advanced human malignancies. *Nat Genet*; **41**, 843-8. (2009)
- 10. King CE, Cuatrecasas M, Castells A, Sepulveda AR, Lee JS, Rustgi AK. LIN28B promotes colon cancer progression and metastasis. *Cancer Res*; **71**, 4260-8. (2011)
- 11. Hamano R, Miyata H, Yamasaki M, Sugimura K, Tanaka K, Kurokawa Y, Nakajima K, Takiguchi S, Fujiwara Y, Mori M, Doki Y. High expression of Lin28 is associated with tumour aggressiveness and poor prognosis of patients in oesophagus cancer. *Br J Cancer*; 106, 1415-23. (2012)

- Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. *Science*; **318**, 1917-20. (2007)
- Miyata T, Kawaguchi D, Kawaguchi A, Gotoh Y. Mechanisms that regulate the number of neurons during mouse neocortical development. *Curr Opin Neurobiol*; 20, 22-8. (2010)
- 14. Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L. Human ES cellderived neural rosettes reveal a functionally distinct early neural stem cell stage. *Genes Dev*; 22, 152-165. (2008)
- Yuan J, Nguyen CK, Liu X, Kanellopoulou C, Muljo SA. Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis. *Science*; 335, 1195-200. (2012)
- Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K. Generation of human induced pluripotent stem cells from dermal fibroblasts. *Proc Natl Acad Sci USA*; 105, 2883–2888. (2008)
- Karumbayaram S, Novitch BG, Patterson M, Umbach JA, Richter L, Lindgren A, Conway AE, Clark AT, Goldman SA, Plath K, Wiedau-Pazos M, Kornblum HI, Lowry WE. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. *Stem Cells*; 27, 806-11. (2009)
- Lowry WE, Blanpain C, Nowak JA, Guasch G, Lewis L, Fuchs E. Defining the impact of beta-catenin/Tcf Transactivation on epithelial stem cells. *Genes Dev*; **19**, 1596-1611 (2005)
- Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J, Khvorostov I, Ott V, Grunstein M, Lavon N, Benvenisty N, Croce CM, Clark AT, Baxter T, Pyle AD, Teitell MA, Pelegrini M, Plath K, Lowry WE. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. *Cell Stem Cell*; 5, 111-23. (2009)

CHAPTER 5:

Discussion

Human PSCs have many proposed uses from clinical transplantation to *in vitro* modeling of development and disease. Our work, presented in this dissertation, provides several important insights into the differentiation of hPSCs and how they can best be exploited. We demonstrate that hPSCs are an excellent and tractable model for human development, but raise possible issues regarding advancement of this technology to a clinical setting or its application for disease modeling.

Modeling development

One proposed application of hPSCs is to model human development in an accessible system amenable to characterization and manipulation and various stages. The premise is that hPSCs have the capacity to differentiate into all cell types of the human body. Therefore, it should be possible to follow their differentiation to a specific lineage *in vitro* in order to determine what molecular mechanisms are required to arrive at that final fate. The issue with this proposed application is the lack of understanding whether *in vitro* differentiation accurately recapitulates *in vivo* development or if hPSCs generate artificial cell types not found in the human body. While aspects of this complex question remain widely unexplored, we have established that hPSC differentiation to the neural lineage is seemingly faithful to *in vivo* development.

In chapter 2, we show that both hESCs and hiPSCs can generate electrophysiologically active motor neurons. Furthermore, through immunocytochemistry analysis we demonstrate that hPSCs differentiate to this mature state through a progressive and predictable pattern. They first undergo neuralization, displaying markers of NPCs. This is followed by motor neuron specification, marked by expression of motor neuron progenitors, and finally motor neuron

maturation, marked by expression of mature motor neuron markers and electrophysiological activity. This preliminary analysis of the differentiation route suggests that hPSCs appear to obey normal developmental progression.

In chapter 3, we take a more comprehensive approach to directly compare hPSC derivatives to a counterpart isolated from human tissue sources to determine if *in vitro* differentiation recapitulates *in vivo* development. In this thorough analysis, we first determined that the derivatives of hESCs and hiPSCs are seemingly indistinguishable, suggesting that the transcriptional differences that discern hiPSC from hESCs in the undifferentiated state¹ seem to dissipate upon differentiation. Furthermore, it implies that despite widely different derivation methods, these hPSCs undergo differentiation via similar mechanisms.

With this detailed analysis we were also able to demonstrate hPSC derivatives are most similar to tissue-derived cells isolated prior to 6 weeks of gestation. While we are not the first to report that hPSCs generate primitive cell types²⁻⁴, to our knowledge, this is the first report to provide such a narrow "date stamp" to hPSC differentiation. More importantly, it is perhaps not coincidental that a 3-6 week differentiation protocol generates cell types found prior to 6 weeks of gestation. These findings suggest that hPSC differentiation is a faithful model of human development and, more specifically, that developmental timing during *in vitro* differentiation is conserved and may be innate to the cell. It will be interesting to determine what mechanisms control this timing and if those mechanisms can be experimentally manipulated.

We have begun to explore the role of the evolutionarily conserved *LIN28*/let-7 pathway in this developmental timing. In chapter 4, we report that let-7 manipulations facilitate the functional maturation of hPSC derived NPCs; however not to a level comparable to 16-week fetal tissue NPCs. It remains unknown why the manipulation did not have a more profound effect. It is possible that multiple gene pathways contribute to developmental timing and that manipulation of more than one pathway will be necessary. On the other hand, we cannot rule out the possibility that *in vitro* differentiation protocols do not fully recapitulate the niche and that hPSC derivatives cannot progress past a specific developmental age when supportive cells become necessary. Therefore, it remains possible that hPSCs will continue to mature only if transplanted into an appropriate environment.

Regenerative medicine and transplantation

From a regenerative medicine view point, it is relatively easy to theorize the issues that need to be addressed before the technology can advance to the clinic. Some of these issues include immune rejection, tumor formation, graft survivability and functional incorporation into the host tissue/organ system. Our work presented in the chapters of this dissertation raises an additional caveat.

From a development standpoint it is exciting to think that cells develop at the same pace *in vitro* as they do *in vivo*, however from a cell transplantation point of view, this could be problematic. If hPSC derivatives behave similar to counterparts isolated from fetal tissue prior to 6 weeks of gestation, can those cells incorporate and function properly in an adult patient? In the field of Parkinson's disease, fetal ventral mesencephalic tissue is transplanted into patients with varying success⁵⁻⁶, so it is possible that fetal-like cells may be sufficient to cure adult patients; however each organ system or cell type is likely to have different tolerance. In a study performed in a mouse model of liver failure, it was determined that transplanted adult hepatocytes were significantly better at surviving, proliferating and rescuing the animal when compared to fetal liver or mESC-derived endoderm transplants⁷. Preclinical and clinical trials will be necessary to

demonstrate if complete maturity is necessary, if fetal-like cells will suffice, or if hPSCs will simply continue to mature once transplanted. Furthermore, one of the characteristics that allowed us to determine the gestational age of hPSCs derivatives was the continued expression of embryonic genes. Some of these genes, including *LIN28B*, are also re-expressed in human cancers and correlate with poor prognosis⁸⁻¹⁰. Continued expression of an oncogene in the grafted cell may incur undesirable proliferation or other cancer traits. Therefore, it will be necessary to determine, if these genes eventually silence upon transplantation or what consequence their continued expression might have on the grafted cells.

Modeling human disease with disease-specific hiPSC

Lastly, hiPSC specifically have been proposed to serve as an *in vitro* model of human disease. Similar to the idea of using hPSCs to tractably model development, hiPSCs can be derived from patients harboring a genetic disease and their differentiation to disease relevant cell types can be followed in order to determine the mechanisms underlying that disease. Furthermore, small molecule screening could be performed in order to identify drugs that may rescue the phenotype. Some of the diseases that have been proposed to benefit from this technology do not display symptoms until late into adulthood (ie ALS). Our finding that hPSC derivatives represent a developmentally young cell type raises the question whether we can model late-onset human disease in a petri dish? Will we capture the disease state or will the cells appear healthy until they reach the developmental age of onset? Our data suggests that it may be difficult to model a human genetic disease with these cells, unless that disease is characterized by early onset.

With this dissertation, we have demonstrated that *in vitro* differentiation of hPSCs is seemingly faithful to *in vivo* development. Previously, the study of human development has been limited to the use of animal models. These models, while extremely powerful, have their limitations. Some developmental mechanisms are not conserved from one species to another and it can be hard to capture transient events when using whole organisms. Our work presented here suggests that hPSCs could serve as a tractable model for understanding the mechanisms that govern human development and could help to overcome some of the limitations of animal models.

References

- Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J, Khvorostov I, Ott V, Grunstein M, Lavon N, Benvenisty N, Croce CM, Clark AT, Baxter T, Pyle AD, Teitell MA, Pelegrini M, Plath K, Lowry WE. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. *Cell Stem Cell*; 5, 111-23. (2009)
- Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L. Human ES cellderived neural rosettes reveal a functionally distinct early neural stem cell stage. *Genes Dev*; 22, 152-165. (2008)
- 3. Zambidis ET, Peault B, Park TS, Bunz F, Civin CI. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. *Blood*; **106**(3):860-70. (2005)
- Chang KH, Nelson AM, Cao H, Wang L, Nakamoto B, Ware CB, Papayannopoulou T. Definitive-like erythroid cells derived from human embryonic stem cells coexpress high levels of embryonic and fetal globins with little or no adult globin. *Blood*; 108, 1515-23. (2006)
- Freed CR, Breeze RE, Rosenberg NL, Schneck SA, Kriek E, Qi JX, Lone T, Zhang YB, Snyder JA, Wells TH, Ramig LO, Thompson L, Mazziotta JC, Huang SC, Grafton ST, Brooks D, Sawle G, Schroter G, Ansari AA. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease. N Engl J Med; 327, 1549-55. (1992)
- 6. Mendez I, Viñuela A, Astradsson A, Mukhida K, Hallett P, Robertson H, Tierney T, Holness R, Dagher A, Trojanowski JQ, Isacson O. Dopamine neurons implanted into people with Parkinson's disease survive without pathology for 14 years. Nat Med; **14**, 507-9. (2008)
- 7. Kamimura R, Ishii T, Sasaki N, Kajiwara M, Machimoto T, Saito M, Kohno K, Suemori H, Nakatsuji N, Ikai I, Yasuchika K, Uemoto S. Comparative study of transplantation of hepatocytes at various differentiation stages into mice with lethal liver damage. Cell Transplant. 2012 Apr 2. [Epub ahead of print]
- Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S, O'Sullivan M, Lu J, Phillips LA, Lockhart VL, Shah SP, Tanwar PS, Mermel CH, Beroukhim R, Azam M, Teixeira J, Meyerson M, Hughes TP, Llovet JM, Radich J, Mullighan CG, Golub TR, Sorensen PH, Daley GQ. Lin28 promotes transformation and is associated with advanced human malignancies. *Nat Genet*; 41, 843-8. (2009)
- 9. King CE, Cuatrecasas M, Castells A, Sepulveda AR, Lee JS, Rustgi AK. LIN28B promotes colon cancer progression and metastasis. *Cancer Res*; **71**, 4260-8. (2011)

 Hamano R, Miyata H, Yamasaki M, Sugimura K, Tanaka K, Kurokawa Y, Nakajima K, Takiguchi S, Fujiwara Y, Mori M, Doki Y. High expression of Lin28 is associated with tumour aggressiveness and poor prognosis of patients in oesophagus cancer. *Br J Cancer*; 106, 1415-23. (2012)