Something old and something new: The time is right to offer geriatric engineering programs

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of the American Geriatrics Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>JAGS-2609-ED-Dec-20.R1</td>
</tr>
<tr>
<td>Wiley - Manuscript type:</td>
<td>Editorial</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Herr, Amy ; UC Berkeley</td>
</tr>
<tr>
<td></td>
<td>Schwartz, Janice; University of California, San Francisco, Medicine; Jewish Home San Francisco, Research</td>
</tr>
<tr>
<td>Key Words:</td>
<td>System Engineering, Predictive Analytics, Environmental Gerontology, multidisciplinary team, engineering</td>
</tr>
</tbody>
</table>
Something old and something new: the time is right for geriatric engineering programs Amy E. Herr, MS, PhD1,2, and Janice B Schwartz, MD3

1Department of Bioengineering, University of California, Berkeley, Berkeley, CA; UC Berkeley – UCSF Graduate Program in Bioengineering, Berkeley, CA; 3Department of Medicine, UC San Francisco, San Francisco, CA

Corresponding Author:
Janice B. Schwartz, MD
UCSF Division of Geriatrics, Box 1265
490 Illinois Street, Floor 08
San Francisco, CA 94143-1265
Cell: 415.519.3161
@JaniceBSchwartz1

Alternate Corresponding Author:
Email address: amy e. herr <aeh@berkeley.edu>

Abstract word count: N.A.
Main text word count: 1488
Short running title: Adding engineering to the geriatric team
The fields of geriatric medicine and gerontology take pride in the multidisciplinary/interdisciplinary team approach to caring for and exploring ways to improve the lives of older adults. These teams often include health care professionals such as physicians, nurses, nurse practitioners, physician assistants, dentists, ophthalmologists, opticians, audiologists, physical and occupational therapists, pharmacists, podiatrists, and social workers. Often the challenges addressed by these teams involve physical or functional needs that benefit from innovation in assistive devices, accessible technology, and environmental adaptations. Yet, rarely are engineers or even the older adults themselves formally included as team members. It is time to update older concepts of the multidisciplinary geriatric team to a new model that includes geriatric engineering programs.

Adding geriatric engineering creates a powerful new opportunity for contemporary health care education curriculum to more effectively and efficiently address the unmet needs of older adults today, as well as (perhaps even more importantly) educate next generations of leaders in adaptable design thinking approaches. (Figure 1) The incorporation of design thinking frameworks into the fields of gerontology and geriatric medicine will equip us with leaders who are adept at continually evolving our understanding of aging, so as to identify and address not just today’s needs, but also to address the emerging needs of tomorrow.

In this Issue, Lubiner describes inception and maturation of one such geriatric engineering program. In addition to providing important context on the scope and scale of the geriatric engineering sub-discipline, the article shows the rich diversity of curriculum that brings medicine, geriatric medicine, engineering, and older persons together, moving beyond the more familiar combined MD/PhD degree programs. In addition to outlining learnings in development and launch of the geriatric engineering program at the author’s institution, we see the article as
an opportunity from which interested readers may launch into broader learning about program
objectives, design pedagogy at the interface of fields, and assessment and improvement metrics
to allow for the evaluation, evolution, and dissemination of such programs.

The power of integrating gerontology and geriatric medicine with engineering is that – in a
manner nearly analogous to role of the scientific method in basic research – the engineering
design process provides a systematic and disciplined method by which engineers rigorously
elucidate gaps (‘unmet needs’) and confidently create knowledge to bridge those gaps. At its
simplest level, the engineering design processes comprises a sequence of reinforcing stages: (1)
needs finding, (2) benchmarking and setting target performance specifications, (3) concept
generation and ideation, (4) concept down-selection, (5) prototyping and testing of top solution
concepts, (6) refinement and setting of final performance specifications, and (7) integrating the
matured solution concept into the user environment. Drilling into each of these stages,
curriculum is used to introduce powerful approaches, suites of structured methods, and well-
declared tools. At the intersection of aging and wellness, there is tremendous potential for
advancements big and small. 7

Several key elements increase the likelihood for impactful outcomes from use of the engineering
design process, even for novice adopters and college students. First is the iterative (not linear)
use of the staged design process, with frequent looping between stages to integrate new learnings
dynamically. The iterative process can be both intimidating and even frustrating to new adopters,
making a well-structured educational environment the perfect place to introduce and then gain
experience with the engineering design. Gaining practical experience mitigates misconceptions
common among novices that iteration indicates failure. The need for iteration is, more
accurately, the process of acquiring knowledge and integrating new understanding to yield high-
quality solution concepts custom designed to meet important unmet needs.

Secondly, integrating human-centered design considerations into the curriculum ensures that real
(not contrived) unmet needs are identified, articulated, and addressed. The voice of the user is
essential to both meaningful engineering, but also in motivating even first-time practitioners of
the engineering design process. Meaningful health care impact can stem from even
undergraduate courses. Over the last decade plus, we have both been engaged with UC Berkeley
Bioengineering seniors in a first course on engineering design, that integrates clinical and patient
stakeholders. Educating clear thinkers and leaders to meet the health care challenges of both
today and tomorrow is a priority course objective. As a corollary to that objective, startup
companies can and do form. One outsized example of impact is Eko Devices, a startup that
launched from our 1-semester Bioengineering design course and now has multiple FDA-
approved biomedical products in use at hundreds of hospitals (https://www.ekohealth.com/).
Springing from a first-design course for college seniors, unmet needs regarding objective
analysis of heart sounds was identified by novice engineering designers working with clinicians.
In terms of pedagogy, multidisciplinary teams use a ‘total design’ approach, versus teams of
experts in similar specialty areas which use a ‘partial design’ approach.

Human-centered design is adaptable, again educating practitioners who can adapt to emerging
challenges, and successfully applying the engineering design process. The COVID-19 pandemic
has demonstrated the value of such approaches. In a striking example, our Fall 2020
Bioengineering design course pivoted to identify and address respiratory personal protective
equipment (PPE) needs across diverse medically relevant stakeholders. Collaborating with
optometrists at UC Berkeley’s School of Optometry and dental hygienist members of the
For Review Only

American Dental Hygienists Association, novice designers devised approaches to limit fogging of eyeglasses during examinations while donning respiratory PPE (and other optical ocular components). Collaborating with resuscitation teams in emergency departments (University of Pennsylvania), novice designers developed means for seamless verbal communication while wearing respirators and requiring hands-free, sterile functionality. Collaborating with medical volunteers at a tent encampment for asylum-seekers in Matamoros, Mexico, novice designers integrated desiccants into N95 respirators to reduce humidity – and discomfort – for medical personnel wearing respirators for extended periods. All activities engaged with stakeholders fully remote, and utilized remote making and testing emphasizing the power and potential of total design, even with teams that are geographically dispersed.

Thirdly, and highly relevant to geriatric engineering, is adoption of a version of engineering design that not only is human-centered in nature, but places tremendous value on solution outcomes beneficial to all stakeholders. This ethos is exemplified by ‘universal design’ and ‘design for all’, which applies the engineering design process to arrive at solutions that are ‘barrier-free’ for all users, regardless of abilities. A set of principles adapted from M.F. Story guide how to foster solutions with universal applicability, comprising roughly: (1) equitable use, (2) flexibility in use, (3) simple and intuitive use, (4) perceptible information, (5) tolerance for error, (6) low physical effort, and (7) size and space for approach and use. Entire technical conferences and pedagogical research themes exist to address aging-focused engineering design, including the “Universal Design & Higher Education in Transformation Congress” (https://www.udheit2018.com/). Certainly, architecture and the built environment have pioneered older adult-focused design, but the bioengineering, mechanical engineering, and computer science & electrical engineering disciplines are also now engaged, albeit most often not
through full degree programs (i.e., European Alliance for Innovation’s GOODTECHS). Clearly, universal design principles are directly relevant to geriatric engineering.

There is great hope for technology to help older adults maintain independence and overcome social isolation. There are early examples of success such as simplified computer tablets modeled on phones or televisions (GrandPad, 12 the Norwegian Komp13), electronic pets (robotic seal pup Paro or the robot Pepper14,15), electronic devices and robot virtual assistants for reminders of appointments and/or medications16, robots and devices able to lead older adults through daily balance and exercise tasks and/or become a dance partner or robotic walkers17,18, activity detectors and sensors19, and top of the range hearing aids with fall detection capability20,21. But, there are also unmet daily life challenges for older adults that could be addressed using lower technology solutions as has been demonstrated for assistive devices for walking, for entering and exiting cars, for stairclimbing, for dinnerware and eating utensils for patients with tremors, among others. Input from patients and allied health care professionals are needed to identify the needs but engineering expertise is also needed to create solutions. Currently, health care professionals and engineers live and train with little knowledge of the other. This must change to more successfully address the challenges that many older adults face in their daily lives. To better address the needs of older adults, the time is right for geriatric engineering programs.

We have learned that we cannot recruit or graduate adequate numbers of geriatric-trained health care professionals to provide medical care for all older adults and that geriatric knowledge must be integrated into all adult health care professional training curriculums.22,23 We similarly predict that we would not be able to produce enough graduates of geriatric engineering programs such as described by Lubiner6 to meet either current or future needs. We propose that the focus be on interdisciplinary efforts and expansion of our joint programs and efforts. We should
leverage expertise from each field and provide an introduction to geriatric concepts to students of engineering at every level and provide an introduction to engineering concepts to health professional students at every level to create a collaborative future that promotes independence and improved functioning for older adults. In closing, it is time to formally recognize engineering as a key part of the approach to improving the lives of older adults and to increase our collaborations.

ACKNOWLEDGMENTS. The authors wish to acknowledge the many older adults, colleagues and students who have participated in the bioengineering design courses at UC Berkeley (https://bioeng.berkeley.edu/undergrad/design-in-bioe) and helped to shape our views and open our eyes to what is possible.

REFERENCES

2. *Interdisciplinary Care for Older Adults with Complex Needs: American Geriatrics Society Position Statement*; 2006; vol54.

7. Sandholdt, C.; Cunningham, J.; Westendorp, R. Towards Inclusive Healthcare Delivery:

23. *National and Regional Projections of Supply and Demand for Geriatricians: 2013-2025*;
Figure 1. A conceptual model with a role for Engineering joining the multiple disciplines involved in improving the health and function of older adults

Conflict of Interest Checklist:

<table>
<thead>
<tr>
<th>Elements of Financial/Personal Conflicts</th>
<th>Author 1</th>
<th>Author 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amy E Herr</td>
<td>Janice B Schwartz</td>
</tr>
<tr>
<td>Employment or Affiliation</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Grants/Funds</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Honoraria</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Speaker Forum</td>
<td>Consultant</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Author Contributions: Indicate authors’ role in study concept and design, acquisition of subjects and/or data, analysis and interpretation of data, and preparation of manuscript.

Amy E. Herr, conceived, wrote, reviewed, edited the manuscript in collaboration with Janice B. Schwartz who also conceived, wrote, reviewed and edited the manuscript.

Sponsor’s Role: Undergraduate team-based bioengineering activities at UC Berkeley described here were supported the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health under award number R25EB013068 (to AEH).
Figure 1. A conceptual model with a role for Engineering joining the multiple disciplines involved in improving the health and function of older adults

338x190mm (144 x 144 DPI)
Something old and something new: the time is right for geriatric engineering programs

Amy E. Herr, MS, PhD1,2, and Janice B Schwartz, MD3

1Department of Bioengineering, University of California, Berkeley, Berkeley, CA; UC Berkeley – UCSF Graduate Program in Bioengineering, Berkeley, CA; 3Department of Medicine, UC San Francisco, San Francisco, CA

Corresponding Author:
Janice B. Schwartz, MD
UCSF Division of Geriatrics, Box 1265
490 Illinois Street, Floor 08
San Francisco, CA 94143-1265
Cell: 415.519.3161
@JaniceBSchwartz1

Alternate Corresponding Author:
Email address: amy e. herr <aeh@berkeley.edu>

Abstract word count: N.A.
Main text word count: 1488
Short running title: Adding engineering to the geriatric team
The fields of geriatric medicine and gerontology take pride in the multidisciplinary/interdisciplinary team approach to caring for and exploring ways to improve the lives of older adults. These teams often include health care professionals such as physicians, nurses, nurse practitioners, physician assistants, dentists, ophthalmologists, opticians, audiologists, physical and occupational therapists, pharmacists, podiatrists, and social workers. Often the challenges addressed by these teams involve physical or functional needs that benefit from innovation in assistive devices, accessible technology, and environmental adaptations. Yet, rarely are engineers or even the older adults themselves formally included as team members. It is time to update older concepts of the multidisciplinary geriatric team to a new model that includes geriatric engineering programs.

Adding geriatric engineering creates Herein lies a powerful new opportunity for contemporary health care education curriculum to more effectively and efficiently address the unmet needs of older adults today, as well as (perhaps even more importantly) educate next generations of leaders in adaptable design thinking approaches. The incorporation of design thinking frameworks into the fields of gerontology and geriatric medicine will equip us with leaders who are adept at continually evolving our understanding of aging, so as to identify and address not just today’s needs, but also to address the emerging needs of tomorrow.

In this Issue, Lubiner describes inception and maturation of one such geriatric engineering program. In addition to providing important context on the scope and scale of the geriatric engineering sub-discipline, the article shows the rich diversity of curriculum that brings medicine, geriatric medicine, engineering, and older persons together, moving beyond the more familiar combined MD/PhD degree programs. In addition to outlining learnings in development and launch of the geriatric engineering program at the author’s institution, we see the article as
an opportunity from which interested readers may launch into broader learning about program
objectives, design pedagogy at the interface of fields, and assessment and improvement metrics
to allow for the evaluation, evolution, and dissemination of such programs.

The power of integrating gerontology and geriatric medicine with engineering is that – in a
manner nearly analogous to role of the scientific method in basic research – the engineering
design process provides a systematic and disciplined method by which engineers rigorously
elucidate gaps (‘unmet needs’) and confidently create knowledge to bridge those gaps. At its
simplest level, the engineering design processes comprises a sequence of reinforcing stages: (1)
needs finding, (2) benchmarking and setting target performance specifications, (3) concept
generation and ideation, (4) concept down-selection, (5) prototyping and testing of top solution
concepts, (6) refinement and setting of final performance specifications, and (7) integrating the
matured solution concept into the user environment. Drilling into each of these stages,
curriculum is used to introduce powerful approaches, suites of structured methods, and well-
defined tools. At the intersection of aging and wellness, there is tremendous potential for
advancements big and small. 7

Several key elements increase the likelihood for impactful outcomes from use of the engineering
design process, even for novice adopters and college students. First is the iterative (not linear)
use of the staged design process, with frequent looping between stages to integrate new learnings
dynamically. The iterative process can be both intimidating and even frustrating to new adopters,
making a well-structured educational environment the perfect place to introduce and then gain
experience with the engineering design. Gaining practical experience mitigates misconceptions
common among novices that iteration indicates failure. The need for iteration is, more
accurately, the process of acquiring knowledge and integrating new understanding to yield high-quality solution concepts custom designed to meet important unmet needs.

Secondly, integrating human-centered design considerations into the curriculum ensures that real (not contrived) unmet needs are identified, articulated, and addressed. The voice of the user is essential to both meaningful engineering, but also in motivating even first-time practitioners of the engineering design process. Meaningful health care impact can stem from even undergraduate courses. Over the last decade plus, we have both been engaged with UC Berkeley Bioengineering seniors in a first course on engineering design, that integrates clinical and patient stakeholders. Educating clear thinkers and leaders to meet the health care challenges of both today and tomorrow is a priority course objective. As a corollary to that objective, startup companies can and do form. One outsized example of impact is Eko Devices, a startup that launched from our 1-semester Bioengineering design course and now has multiple FDA-approved biomedical products in use at hundreds of hospitals (https://www.ekohealth.com/).

Springing from a first-design course for college seniors, unmet needs regarding objective analysis of heart sounds was identified by novice engineering designers working with clinicians. In terms of pedagogy, multidisciplinary teams use a ‘total design’ approach, versus teams of experts in similar specialty areas which use a ‘partial design’ approach.

Human-centered design is adaptable, again educating practitioners who can adapt to emerging challenges, and successfully applying the engineering design process. The COVID-19 pandemic has demonstrated the value of such approaches. In a striking example, our Fall 2020 Bioengineering design course pivoted to identify and address respiratory personal protective equipment (PPE) needs across diverse medically relevant stakeholders. Collaborating with optometrists at UC Berkeley’s School of Optometry and dental hygienist members of the
American Dental Hygienists Association, novice designers devised approaches to limit fogging of eyeglasses during examinations while donning respiratory PPE (and other optical ocular components). Collaborating with resuscitation teams in emergency departments (University of Pennsylvania), novice designers developed means for seamless verbal communication while wearing respirators and requiring hands-free, sterile functionality. Collaborating with medical volunteers at a tent encampment for asylum-seekers in Matamoros, Mexico, novice designers integrated desiccants into N95 respirators to reduce humidity – and discomfort – for medical personnel wearing respirators for extended periods. All activities engaged with stakeholders fully remote, and utilized remote making and testing emphasizing the power and potential of total design, even with teams that are geographically dispersed.

Thirdly, and tremendously relevant to geriatric engineering, is adoption of a version of engineering design that not only is human-centered in nature, but places tremendous value on solution outcomes beneficial to all stakeholders. This ethos is exemplified by ‘universal design’ and ‘design for all’, which applies the engineering design process to arrive at solutions that are ‘barrier-free’ for all users, regardless of abilities. A set of principles adapted from M.F. Story guide how to foster solutions with universal applicability, comprising roughly: (1) equitable use, (2) flexibility in use, (3) simple and intuitive use, (4) perceptible information, (5) tolerance for error, (6) low physical effort, and (7) size and space for approach and use. Entire technical conferences and pedagogical research themes exist to address aging-focused engineering design, including the “Universal Design & Higher Education in Transformation Congress” (https://www.udheit2018.com/). Certainly, architecture and the built environment have pioneered older adult-focused design, but the bioengineering, mechanical engineering, and computer science & electrical engineering disciplines are also now engaged, albeit most often not
through full degree programs (i.e., European Alliance for Innovation’s GOODTECHS). Clearly, universal design principles are directly relevant to geriatric engineering.

There is great hope for technology to help older adults maintain independence and overcome social isolation. There are early examples of success such as simplified computer tablets modeled on phones or televisions (GrandPad, the Norwegian Komp, electronic pets (robotic seal pup Paro or the robot Pepper), electronic devices and robot virtual assistants for reminders of appointments and/or medications, robots and devices able to lead older adults through daily balance and exercise tasks and/or become a dance partner or robotic walkers, activity detectors and sensors, and top of the range hearing aids with fall detection capability.

But, there are also unmet daily life challenges for older adults that could be addressed using lower technology solutions as has been demonstrated for assistive devices for walking, for entering and exiting cars, for stairclimbing, for dinnerware and eating utensils for patients with tremors, among others. Input from patients and allied health care professionals are needed to identify the needs but engineering expertise is also needed to create solutions. Currently, health care professionals and engineers live and train with little knowledge of the other. This must change to more successfully address the challenges that many older adults face in their daily lives. To better address the needs of older adults, the time is right for geriatric engineering programs.

We have learned that we cannot recruit or graduate adequate numbers of geriatric-trained health care professionals to provide medical care for all older adults and that geriatric knowledge must be integrated into all adult health care professional training curriculums. We similarly predict that we would not be able to produce enough graduates of geriatric engineering programs
such as described by Lubiner to meet either current or future needs. We propose that the focus be on interdisciplinary efforts and expansion of our joint programs and efforts. We should leverage expertise from each field and provide an introduction to geriatric concepts to students of engineering at every level and provide an introduction to engineering concepts to health professional students at every level to create a collaborative future that promotes independence and improved functioning for older adults. In closing, it is time to formally recognize engineering as a key part of the approach to improving the lives of older adults and to increase our collaborations.

ACKNOWLEDGMENTS. The authors wish to acknowledge the many older adults, colleagues and students who have participated in the bioengineering design courses at UC Berkeley (https://bioeng.berkeley.edu/undergrad/design-in-bioe) and helped to shape our views and open our eyes to what is possible.

REFERENCES

2. *Interdisciplinary Care for Older Adults with Complex Needs: American Geriatrics Society Position Statement*; 2006; vol54.

Figure 1. A conceptual model with a role for Engineering joining the multiple disciplines involved in improving the health and function of older adults.
Conflict of Interest Checklist:

<table>
<thead>
<tr>
<th>Elements of Financial/Personal Conflicts</th>
<th>*Author 1: Amy E Herr</th>
<th>Author 2: Janice B Schwartz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Employment or Affiliation</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Grants/Funds</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Honoraria</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Speaker Forum</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Consultant</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Stocks</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Royalties</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Expert Testimony</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Board Member</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Patents</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Author Contributions: Indicate authors’ role in study concept and design, acquisition of subjects and/or data, analysis and interpretation of data, and preparation of manuscript.

Amy E. Herr, conceived, wrote, reviewed, edited the manuscript in collaboration with Janice B. Schwartz who also conceived, wrote, reviewed and edited the manuscript.

Sponsor’s Role: Undergraduate team-based bioengineering activities at UC Berkeley described here were supported the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health under award number R25EB013068 (to AEH).