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Spatiotemporal Crossover between Low- and High-Temperature Dynamical Regimes
in the Quantum Heisenberg Magnet

Maxime Dupont, Nicholas E. Sherman, and Joel E. Moore
Department of Physics, University of California, Berkeley, California 94720, USA and

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

The stranglehold of low temperatures on fascinating quantum phenomena in one-dimensional quantum mag-
nets has been challenged recently by the discovery of anomalous spin transport at high temperatures. Whereas
both regimes have been investigated separately, no study has attempted to reconcile them. For instance, the
paradigmatic quantum Heisenberg spin-1/2 chain falls at low temperature within the Tomonaga-Luttinger liquid
framework, while its high-temperature dynamics is superdiffusive and relates to the Kardar-Parisi-Zhang uni-
versality class in 1 + 1 dimensions. This Letter aims at reconciling the two regimes. Building on large-scale
matrix product state simulations, we find that they are connected by a temperature-dependent spatiotemporal
crossover. As the temperature 𝑇 is reduced, we show that the onset of superdiffusion takes place at longer length
and timescales ∝ 1/𝑇 . This prediction has direct consequences for experiments including nuclear magnetic
resonance: it is consistent with earlier measurements on the nearly ideal Heisenberg 𝑆 = 1/2 chain compound
Sr2CuO3, yet calls for new and dedicated experiments.

Introduction.— At low temperatures, reduced spatial dimen-
sionality greatly enhances quantum fluctuations in physical
systems, giving rise to exotic properties. In that regard, one-
dimensional (1D) quantum many-body systems have always
been influential and generically fall into two classes [1, 2]:
on the one hand, gapless low-energy excitations described in
the framework of Tomonaga-Luttinger liquid (TLL), and on
the other, a gapped behavior. Theoretical predictions have
been intensively checked by experiments in various contexts,
ranging from ultracold atom setups to quantum magnets [3, 4].

At energy ~𝜔 � 𝑘B𝑇 , the physics is usually thought of in
terms of thermal rather than quantum effects. This regime
had not been thought to hold phenomena as compelling as
its low-temperature counterpart until very recently. Indeed,
recent theoretical progress suggests that the equilibrium and
out-of-equilibrium dynamics of some 1D quantum systems can
exhibit peculiar behaviors and contain information about the
intrinsic quantum features, even at very high temperatures [5–
7].

While such many-particle systems are governed at the mi-
croscopic level by the Schrödinger equation, they display in
the long-time and long-wavelength limits an emergent coarse-
grained hydrodynamic behavior. An analogy can be made
with classical fluid dynamics: one does not describe individual
particles with Newton’s laws of motion but relies instead on
phenomenological continuous differential equations, ideally
more amenable. The derivation of hydrodynamic equations is
based essentially on continuity equations of conserved quanti-
ties (e.g., mass, energy, etc.), assuming local equilibrium [8].

Quantum systems also possess conservation laws, and de-
pending on those, one expects the emergence of different kinds
of coarse-grained hydrodynamic descriptions. Singularly in
1D, a class of quantum systems—known as integrable—has
an infinite set of nontrivial conserved quantities that can lead
to anomalous dynamical behaviors [5–7, 9–34].

Integrable systems are typically described by very fine-
tuned models but some of them can be reliably realized in
the lab (e.g., the Lieb-Liniger model representing a gas of

one-dimensional bosons with contact repulsion [35, 36]) and
found with high fidelity in nature (e.g., the spin-1/2 Heisen-
berg chain of magnetic moments coupled by a nearest-neighbor
exchange interaction [2]). In that context, some of the theoret-
ical predictions have been successfully tested on 1D cloud of
trapped 87Rb [37, 38] and 7Li [39] atoms for out-of-equilibrium
dynamics and by neutron scattering on the quantum magnet
KCuF3 at thermal equilibrium [34].

In the case of quantum magnets, it has been numerically con-
jectured, based on microscopic simulations, that in the limit of
infinite temperature, the spin dynamics of the 𝑆 = 1/2 Heisen-
berg chain is anomalous and belongs to the Kardar-Parisi-
Zhang (KPZ) universality class in 1+1 dimensions [20, 40]. It
is characterized by a dynamical exponent 𝑧 = 3/2, controlling
the length-time scaling of the dynamical properties. This expo-
nent has been recently observed in the high-temperature neu-
tron spectrum of KCuF3 [34], which is directly proportional to
the dynamical structure factor, probing spin-spin correlations.

Here, we seek to reconcile the low-temperature physics of
the 𝑆 = 1/2 Heisenberg chain, falling within the gapless TLL
category, with the recently found infinite-temperature KPZ
hydrodynamics. Whereas both regimes have been studied in-
dependently, no work has attempted to bring them together.
In this Letter, we precisely define the long-time and long-
wavelength limits for the emergence of anomalous dynamics
versus the temperature. We find that these limits define a
spatiotemporal crossover beyond which hydrodynamics take
place. As the temperature is lowered, the crossover is pushed
toward infinity and eventually disappears at exactly zero tem-
perature, see Fig. 1. This scenario allows one to recover the
well-known zero temperature results where KPZ hydrodynam-
ics is absent. Moreover, because experimental dynamical con-
densed matter probes such as neutron scattering or nuclear
magnetic resonance (NMR) work for all practical purposes at
a finite frequency and finite temperatures, it is paramount to
better understand and quantitatively define the theoretical lim-
its. We discuss the implication of our results for experiments
and confront our findings to earlier high-temperature NMR ex-
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FIG. 1. Log-scale intensity plot of the Euclidean norm of the spin-
spin correlation (2) at 𝑇 = 0.25. Simulation obtained for 𝐿 = 256
with 𝜒 = 1024. The goal of this Letter is to determine and study the
superdiffusive region delimited by the spatiotemporal crossover 𝑡★ of
Eq. (3) versus the temperature (white circles and dashed white line).
As the temperature is decreased, we find that the superdiffusive region
is shifted vertically to longer and longer times by a factor ∝ 1/𝑇 , and
eventually disappears at exactly zero temperature.

periments on the nearly ideal Heisenberg spin-1/2 compound
Sr2CuO3 [41].

Model and method.— The 1D spin-1/2 Heisenberg model
is described by the lattice Hamiltonian,

Ĥ = 𝐽
∑︁

𝑗
�̂� 𝑗 · �̂� 𝑗+1, (1)

with �̂� 𝑗 = (𝑆𝑥𝑗 , 𝑆𝑦𝑗 , 𝑆𝑧𝑗 ) and 𝐽 > 0 the nearest-neighbor antifer-
romagnetic exchange. To investigate the thermal equilibrium
spin dynamics, we consider the time-dependent spin-spin cor-
relation function

𝐶
(
𝑇, 𝑥, 𝑡

)
= tr

[
�̂�𝑥

(
𝑡
) · �̂�0

(
0
)
�̂�𝑇

] ∈ C, (2)

with �̂�𝑇 = e−Ĥ/𝑘B𝑇 /tr(e−Ĥ/𝑘B𝑇 ) as the thermal density matrix
of the system at temperature 𝑇 and �̂� 𝑗

(
𝑡
)
= e𝑖Ĥ𝑡/~ �̂� 𝑗e−𝑖Ĥ𝑡/~

as the time-dependent spin operator in the Heisenberg picture.
We set 𝐽 = 𝑘B = ~ = 1 in the following. We compute the cor-
relation function (2) based on a numerical matrix product state
(MPS) approach [42, 43], where we represent the mixed state
as a pure state in an enlarged Hilbert space [44, 45]. We use
the time-evolving block decimation algorithm [46] along with
a fourth-order Trotter decomposition [47] to handle the expo-
nential operators [48]. To ensure convergence of the numerical
data, we study in the Supplemental Material the effect of the
bond dimension 𝜒 of the MPS, which is the control parameter
of the simulations (larger is better, but computationally more
expensive) [49].

At fixed distance 𝑥 and temperature 𝑇 , the hydrodynamics
regime is characterized by an algebraic decay of the Euclidean
norm of the spin-spin correlation (2) function at long time,��𝐶 (

𝑇, 𝑥, 𝑡
) �� ∝ 𝑡−1/𝑧 for 𝑡 & 𝑡★

(
𝑥, 𝑇

)
, (3)
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FIG. 2. Time dependence of the norm of the spin-spin correlation (2)
at 𝑥 = 0 for various temperatures𝑇 . Simulations obtained for 𝐿 = 256
with 𝜒 = 1024. At long time, it displays an algebraic decay with
time, according to Eq. (3). It is well fitted by the form Υ(𝑇) 𝑡−2/3
with Υ(𝑇), a temperature-dependent prefactor decreasing with the
temperature reported in Fig. 3(b). The deviation from the genuine
power law at long time is the result of the bond dimension being too
small [49].

with 𝑧 as the dynamical exponent. The long-time limit is
denoted by the crossover time 𝑡★, which we aim to identify,
see Fig. 1. Depending on the microscopic model, three values
for the exponent 𝑧 have been reported for 1D quantum magnets:
𝑧 = 3/2 corresponding to superdiffusion, 𝑧 = 1 for ballistic,
and 𝑧 = 2 for diffusion [24, 25]. Superdiffusion is expected for
the isotropic spin-1/2 Heisenberg model of Eq. (1).

Autocorrelation.— We first consider the autocorrelation
function (𝑥 = 0) versus time for different temperatures, as
plotted in Fig. 2. Two regimes are clearly visible, delimited
by the crossover time 𝑡★(𝑥 = 0, 𝑇) [49]. Beyond the crossover
time and for all temperatures, one finds the expected power-
law decay ∝ 𝑡−2/3 of superdiffusive hydrodynamics. Note that
the rapid change of slope from the genuine power-law, at the
longest times displayed, is the result of the bond dimension
being too small and not a physical effect [49].

With high-temperature physics beyond 𝑡★, one can suspect
low-temperature features at shorter times. For instance, the
oscillating behavior observed in the norm of the autocor-
relation is reminiscent of a change of sign in the real and
imaginary part [49], signaling antiferromagnetic correlations
as the temperature is lowered. The long-time asymptotic of
𝐶 (𝑇 = 0, 𝑥 = 0, 𝑡) has been studied at exactly zero tempera-
ture [50, 51]. It is composed by several power-law decaying
contributions with the slowest one being ∝ 𝑡−1 (up to logarith-
mic corrections inherent to the isotropic spin-1/2 Heisenberg
antiferromagnet [49, 52–59]). We cannot identify this regime
in Fig. 2, which we attribute to insufficiently low temperatures;
see the Supplemental Material for additional data [49].

We now turn our attention to the temperature dependence of
the crossover time 𝑡★(𝑥 = 0, 𝑇). It is plotted in Fig. 3(a)
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FIG. 3. The data points are extracted from Fig. 2. (a) Temperature
dependence of the crossover timescale 𝑡★

(
𝑥 = 0, 𝑇

)
beyond which the

algebraic decay ∝ 𝑡−2/3 for superdiffusive hydrodynamics emerges,
see Eq. (3). It shows a linear dependence with the inverse temperature
(dashed line). (b) Temperature dependence of the prefactor Υ(𝑇) of
the algebraic decay∝ 𝑡−2/3 for superdiffusive hydrodynamics. At low
temperatures 𝑇 . 1, it follows a quadratic dependence ∝ 𝑇2 (dashed
line).

versus the inverse temperature and shows a linear depen-
dence. It can be understood as follows. It is well known
that a finite temperature induces a thermal correlation length
b which diverges as 𝑇 → 0 as ∝ 𝑢/𝑇 (up to logarithmic cor-
rections [49, 53]) with 𝑢 the velocity of low-energy excitations
in the spin-1/2 chain. Moreover, the dynamical correlation
function (2) can also be thought of as measuring the spreading
of a spin excitation. In this picture, the system behaves like
a TLL for 𝑡 . b/𝑢, which can be identified as the crossover
time 𝑡★(𝑥 = 0, 𝑇) ∝ 1/𝑇 . Hence, the onset of superdiffusive
hydrodynamics simply takes place as the low-energy physics
gets suppressed by the finite temperature. It is only at zero
temperature that the system is strictly critical and thus does
not display any sign of anomalous high-energy dynamics. In
addition to the linear dependence with ∝ 1/𝑇 , there is an 𝑂 (1)
constant in Fig. 3(a) that coincides with the very short-time
dynamics where |𝐶 (𝑇, 𝑥 = 0, 𝑡 ' 0) | ' 0.75.

At infinite temperature, it has been established that the dy-
namics belong to the 1 + 1 KPZ universality class [20, 40],
as it shows the same scaling laws as appear in the KPZ equa-
tion itself: 𝜕𝑡ℎ = 1

2_
(
𝜕𝑥ℎ

)2 + a𝜕2
𝑥ℎ + √

𝜎[ with ℎ ≡ ℎ(𝑥, 𝑡),
[ ≡ [(𝑥, 𝑡) a normalized Gaussian white noise, and _, a, and
𝜎 parameters. It is a Langevin equation, with no quantum
roots—and which makes the observation of its physics in a
quantum magnet rather puzzling. In the right limits, the noise-
averaged slope correlations behave as [60, 61]

𝐶KPZ
(
𝑥, 𝑡

) ' 𝜒s
(
_KPZ𝑡

)−2/3
𝑓KPZ

[
𝑥
(
_KPZ𝑡

)−2/3]
, (4)

with 𝜒s = 𝜎/2a as the static spin susceptibility [49], _KPZ =√
2_, and 𝑓KPZ as the KPZ scaling function [62]. The numeri-

cal observation of the scaling (4) for the Heisenberg spin chain
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FIG. 4. (a) Time dependence of the norm of the spin-spin correla-
tion (2) at 𝑇 = 0.25 for various distances 𝑥. Simulations obtained for
𝐿 = 256 with 𝜒 = 1024. The curves have been shifted vertically for
visibility. At long time, it displays an algebraic decay with time, ac-
cording to Eq. (3), well fitted by the form∝ 𝑡−2/3. The deviation from
the genuine power law at long time is the result of the bond dimension
being too small [49]. (b) Spatial dependence of the crossover time
𝑡★(𝑥, 𝑇) beyond which the algebraic decay ∝ 𝑡−2/3 for superdiffusive
hydrodynamics emerges, see Eq. (3). The dashed lines are fits of the
form 𝐴 + 𝐵|𝑥 |3/2 with 𝐴 ≡ 𝑡★(0, 𝑇) and 𝐵 = 0.17(3) found to be
temperature independent [49].

through the spin-spin correlation (2) served as a conjecture re-
garding the nature of its dynamics [20]. A theoretical scenario
for how KPZ hydrodynamics emerges in the Heisenberg chain
has been advanced [30]. A relation between the parameters
of the KPZ equation with those of the microscopic quantum
model has been proposed [26]. Here, by identifying the pref-
actor of 𝐶KPZ (𝑥 = 0, 𝑡) in Eq. (4) with the prefactor Υ(𝑇) of
the power-law decay ∝ 𝑡−2/3 shown in Fig. 3(b), we are able to
report on the temperature dependence of the parameters. The
high-temperature data points are compatible with Ref. 26. In
addition, for 𝑇 . 1, we find that Υ(𝑇) = 0.13(1)𝑇2, and there-
fore that 𝜒s_

−2/3
KPZ 𝑓KPZ (0) ∝ 𝑇2. We argue in the following that

this behavior is compatible with earlier NMR experiments on
Sr2CuO3 [41, 49].

The definition of the crossover time 𝑡★ in Eq. (3) for the
onset of superdiffusion is related to the power-law dependence
∝ 𝑡−2/3 and not 𝑓KPZ of Eq. (4). It is well known that unam-
biguously identifying the scaling function from microscopic
simulations with 𝑓KPZ requires great numerical precision and
long-time data for all distances 𝑥 [20]. This is beyond the
capability of our simulations at low temperatures. Instead, we
consider the spatial dependence of 𝑡★ for |𝑥 | > 0.

Spatiotemporal crossover.— The time-dependent spin-spin
correlation function (2) is associated with a light-cone struc-
ture and we therefore expect 𝑡★(𝑥, 𝑇) to be an increasing func-
tion with the distance |𝑥 |. It is verified in Fig. 4(a) where we
plot its time dependence at fixed temperature (𝑇 = 0.25). As
|𝑥 | increases, the onset of superdiffusion takes place at longer
and longer times, and we display the crossover timescale in
Fig. 4(b) for different temperatures. Because we can only re-
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liably estimate it for |𝑥 | . 30, it is difficult to draw a definite
conclusion on its scaling. Nevertheless it is compatible with a
superdiffusive length-time scaling of the form,

𝑡★
(
𝑥, 𝑇

)
= 0.4(9) + 6.8(4)

𝑇
+ 0.17(3)

�� 𝑥 ��3/2, (5)

with the first two terms obtained from the 𝑡★(𝑥 = 0, 𝑇) data,
see Fig. 3(a). The prefactor of |𝑥 |3/2 is found independent of
the temperature [49]. The reported numerical parameters are
obtained by least-square fitting. The spatiotemporal crossover
time (5) is plotted on top of the norm of the spin-spin corre-
lation in Fig. 1 for 𝑇 = 0.25. Note that based on this picture,
we expect logarithmic corrections for the temperature depen-
dence, but they are not detectable from our simulations [63].

Experimental consequences.— Although we have focused
on the norm of the spin-spin correlation (2), we find that
|ℑ𝔪𝐶 (𝑇, 𝑥, 𝑡) | � |ℜ𝔢𝐶 (𝑇, 𝑥, 𝑡) | for 𝑡 & 𝑡★, and that the su-
perdiffusive power law ∝ 𝑡−2/3 only holds for the real part [49],
which therefore hosts the relevant high-temperature physics.
For instance, superdiffusion was observed in KCuF3 by neu-
tron scattering in the limit of small momentum and vanishing
frequency [34], which probes the Fourier transform to momen-
tum and frequency spaces of 𝐶 (𝑇, 𝑥, 𝑡).

Another promising experimental technique for investigat-
ing high-temperature hydrodynamics is NMR, which has been
successfully used to characterize the low-temperature TLL
regime in numerous spin compounds [59, 64–71]. Nuclear
spins are polarized via a static magnetic field (ideally weak)
and then perturbed by an electromagnetic pulse of frequency
𝜔0, chosen to target specific nuclei as per the Zeeman split-
ting. Following the perturbation, the nuclear spins relax
over time with an energy transfer to the electrons. When
the nuclear and electronic spins belong to the same atom,
the relaxation rate is related to the autocorrelation function,
1/𝑇1 ∼

∫ 1/𝜔0
0 ℜ𝔢𝐶 (𝑇, 𝑥 = 0, 𝑡) d𝑡 [72–74]. With 𝜔0 of

the order of a few mK, it usually leads to a frequency-
independent 1/𝑇1 as long as the correlation decays quickly
enough. Here, the hydrodynamics regime should lead instead
to 1/𝑇1 ∝ 𝜔1/𝑧−1

0 and give access to 𝑧 in the right frequency
regime. According to Eq. (5), the corresponding crossover
frequency scale 𝜔★ ∼ 1/𝑡★ goes as ∝ 𝑇 , and superdiffusion
will be visible if 𝜔0 � 𝜔★ ∼ 𝑇 . Considering the experimental
range of𝜔0, this condition is fulfilled even at low temperatures,
where measurements are often less noisy and less subject to
spoiling effects such as phonons.

Thus, the existence of a finite spatiotemporal crossover
𝑡★(𝑥, 𝑇) in the form of Eq. (5) confirms that superdiffusive
hydrodynamics is within the experimentally relevant window
of parameters with respect to temperatures, time and length
scales for quantities involving ℜ𝔢𝐶 (𝑇, 𝑥, 𝑡).

In fact, a power-law behavior of the form 1/𝑇1 ∝ 𝜔−𝛼
0 has

been reported in the nearly ideal spin-1/2 Heisenberg antifer-
romagnet Sr2CuO3 (𝐽 ' 2200 K) at 𝑇 = 295 K a couple of
decades ago [41]. NMR was performed on the 17O, coupled
symmetrically to the Cu2+ carrying the relevant electronic spin,
which filtered out the 𝑞 = ±𝜋 contributions in the 1/𝑇1 due to

form factors, but not the long-wavelength modes 𝑞 = 0 holding
hydrodynamics. Although the measurement accuracy was not
sufficiently precise to extract the exponent 𝛼, the results are
compatible with 𝛼 ≈ 0.33, which corresponds to 𝑧 = 3/2 [49].
In addition, the authors find that at fixed frequency, the NMR
relaxation rate may be approximated by an empirical form
1/𝑇1𝑇 ≈ 𝑎 + 𝑏𝑇 for 𝑇 � 𝐽 with 𝑎 and 𝑏 fitting constants.
When dropping 𝑎, this is compatible with Υ(𝑇) ∝ 𝑇2 reported
in Fig. 3(b) [49], which relates to the temperature dependence
of the parameters of the KPZ equation.

Today’s theoretical understanding of the dynamics of 1D
quantum systems and our results call for new NMR experi-
ments on spin chains at high temperatures. It would provide
a complementary probe to neutron scattering [34] to access
anomalous spin transport in quantum materials.

Conclusion.— Building on large-scale MPS calculations, we
reconciled the well-established low-temperature dynamics of
the quantum Heisenberg spin-1/2 chain with the recently pre-
dicted high-temperature superdiffusive regime related to KPZ
hydrodynamics. We have found that both coexist, and the tran-
sition from one to the other takes the form of a spatiotemporal
crossover. The crossover is controlled by the temperature: as
the temperature is lowered, the growing quantum correlations
between degrees of freedom push the onset of superdiffusion
to longer length and timescales as ∝ 1/𝑇 . We also reported
on the temperature dependence of the parameters of the KPZ
equation, which should provide useful guidance in relating
them to the microscopic parameters of the quantum model.
We also showed that only the real part of the spin-spin corre-
lations holds the superdiffusive hydrodynamics. Finally, we
discussed the experimental consequences of our results for
condensed matter probes. We motivated NMR experiments
as a great way to measure spin transport in quantum mate-
rials and showed that earlier results are compatible with the
current theoretical understanding yet calling for new experi-
ments in quantum spin chains. Because NMR requires the
use of a static magnetic field to polarize the nuclear spins,
it would be insightful to study the effect of this perturbation
on the dynamics of the 𝑆 = 1/2 Heisenberg chain studied in
this Letter. We believe that it would induce another crossover
from superdiffusion to ballistic dynamics, which needs to be
characterized.

We gratefully acknowledge G.E. Granroth, S.E. Nagler,
A. Scheie, M.B. Stone, and D.A. Tennant for collabora-
tions on related works. We acknowledge discussions with
S. Brown. M.D. acknowledges discussions with J. De Nardis,
S. Gopalakrishnan, and R. Vasseur. M.D. was supported by
the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering
Division under Award No. DE-AC02-05-CH11231 through
the Scientific Discovery through Advanced Computing (Sci-
DAC) program (KC23DAC Topological and Correlated Matter
via Tensor Networks and Quantum Monte Carlo). N.S. and
J.E.M. were supported by the U.S. Department of Energy, Of-
fice of Science, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division under Award No. DE-



5

AC02-05-CH11231 through the Theory Institute for Molec-
ular Spectroscopy (TIMES). J.E.M. was also supported by a
Simons Investigatorship. This research used the Lawrencium
computational cluster resource provided by the IT Division
at the Lawrence Berkeley National Laboratory (supported by
the Director, Office of Science, Office of Basic Energy Sci-
ences, of the U.S. Department of Energy under Award No.
DE-AC02-05CH11231). This research also used resources
of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User
Facility operated under Award No. DE-AC02-05CH11231.

[1] F. D. M. Haldane, “Nonlinear field theory of large-spin Heisen-
berg antiferromagnets: Semiclassically quantized solitons of
the one-dimensional easy-axis néel state,” Phys. Rev. Lett. 50,
1153–1156 (1983).

[2] Thierry Giamarchi, Quantum physics in one dimension, Vol.
121 (Clarendon press, Oxford, 2003).

[3] T. Giamarchi, “Some experimental tests of tomonaga–luttinger
liquids,” Int. J. Mod. Phys. B 26, 1244004 (2012).

[4] Keola Wierschem and Pinaki Sengupta, “Characterizing the hal-
dane phase in quasi-one-dimensional spin-1 Heisenberg antifer-
romagnets,” Mod. Phys. Lett. B 28, 1430017 (2014).

[5] Bruno Bertini, Mario Collura, Jacopo De Nardis, and Maurizio
Fagotti, “Transport in out-of-equilibrium 𝑋𝑋𝑍 chains: Exact
profiles of charges and currents,” Phys. Rev. Lett. 117, 207201
(2016).

[6] Olalla A. Castro-Alvaredo, Benjamin Doyon, and Takato
Yoshimura, “Emergent hydrodynamics in integrable quantum
systems out of equilibrium,” Phys. Rev. X 6, 041065 (2016).

[7] Vir B. Bulchandani, Romain Vasseur, Christoph Karrasch, and
Joel E. Moore, “Bethe-boltzmann hydrodynamics and spin
transport in the XXZ chain,” Phys. Rev. B 97, 045407 (2018).

[8] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed.
(Butterworth-Heinemann, Oxford, 1987).

[9] X. Zotos, F. Naef, and P. Prelovsek, “Transport and conservation
laws,” Phys. Rev. B 55, 11029–11032 (1997).

[10] J. Sirker, “Spin diffusion and the anisotropic spin- 1
2 Heisenberg

chain,” Phys. Rev. B 73, 224424 (2006).
[11] J. Sirker, R. G. Pereira, and I. Affleck, “Conservation laws, in-

tegrability, and transport in one-dimensional quantum systems,”
Phys. Rev. B 83, 035115 (2011).

[12] Tomaž Prosen, “Open 𝑋𝑋𝑍 spin chain: Nonequilibrium steady
state and a strict bound on ballistic transport,” Phys. Rev. Lett.
106, 217206 (2011).

[13] Marko Žnidarič, “Spin transport in a one-dimensional
anisotropic Heisenberg model,” Phys. Rev. Lett. 106, 220601
(2011).

[14] C. Karrasch, J. Hauschild, S. Langer, and F. Heidrich-Meisner,
“Drude weight of the spin- 1

2 XXZ chain: Density matrix renor-
malization group versus exact diagonalization,” Phys. Rev. B 87,
245128 (2013).

[15] E. Ilievski, J. De Nardis, B. Wouters, J.-S. Caux, F. H. L. Essler,
and T. Prosen, “Complete generalized gibbs ensembles in an
interacting theory,” Phys. Rev. Lett. 115, 157201 (2015).

[16] Jacopo De Nardis, Denis Bernard, and Benjamin Doyon, “Hy-
drodynamic diffusion in integrable systems,” Phys. Rev. Lett.
121, 160603 (2018).

[17] Sarang Gopalakrishnan, David A. Huse, Vedika Khemani, and

Romain Vasseur, “Hydrodynamics of operator spreading and
quasiparticle diffusion in interacting integrable systems,” Phys.
Rev. B 98, 220303(R) (2018).

[18] Jacopo De Nardis, Denis Bernard, and Benjamin Doyon, “Diffu-
sion in generalized hydrodynamics and quasiparticle scattering,”
SciPost Phys. 6, 49 (2019).

[19] Utkarsh Agrawal, Sarang Gopalakrishnan, and Romain
Vasseur, “Generalized hydrodynamics, quasiparticle diffusion,
and anomalous local relaxation in random integrable spin
chains,” Phys. Rev. B 99, 174203 (2019).

[20] Marko Ljubotina, Marko Žnidarič, and Toma ž Prosen, “Kardar-
Parisi-Zhang physics in the quantum Heisenberg magnet,” Phys.
Rev. Lett. 122, 210602 (2019).

[21] Jacopo De Nardis, Marko Medenjak, Christoph Karrasch, and
Enej Ilievski, “Anomalous spin diffusion in one-dimensional
antiferromagnets,” Phys. Rev. Lett. 123, 186601 (2019).

[22] Sarang Gopalakrishnan and Romain Vasseur, “Kinetic theory
of spin diffusion and superdiffusion in 𝑋𝑋𝑍 spin chains,” Phys.
Rev. Lett. 122, 127202 (2019).

[23] Sarang Gopalakrishnan, Romain Vasseur, and Brayden Ware,
“Anomalous relaxation and the high-temperature structure fac-
tor of XXZ spin chains,” Proc. Natl. Acad. Sci. 116, 16250–
16255 (2019).

[24] Maxime Dupont and Joel E. Moore, “Universal spin dynamics in
infinite-temperature one-dimensional quantum magnets,” Phys.
Rev. B 101, 121106(R) (2020).

[25] Jacopo De Nardis, Marko Medenjak, Christoph Karrasch,
and Enej Ilievski, “Universality classes of spin transport in
one-dimensional isotropic magnets: The onset of logarithmic
anomalies,” Phys. Rev. Lett. 124, 210605 (2020).

[26] Jacopo De Nardis, Sarang Gopalakrishnan, Enej Ilievski, and
Romain Vasseur, “Superdiffusion from emergent classical soli-
tons in quantum spin chains,” Phys. Rev. Lett. 125, 070601
(2020).

[27] Aaron J. Friedman, Sarang Gopalakrishnan, and Romain
Vasseur, “Diffusive hydrodynamics from integrability break-
ing,” Phys. Rev. B 101, 180302(R) (2020).

[28] Utkarsh Agrawal, Sarang Gopalakrishnan, Romain Vasseur, and
Brayden Ware, “Anomalous low-frequency conductivity in easy-
plane XXZ spin chains,” Phys. Rev. B 101, 224415 (2020).

[29] Enej Ilievski, Jacopo De Nardis, Sarang Gopalakrishnan, Ro-
main Vasseur, and Brayden Ware, “Superuniversality of su-
perdiffusion,” Phys. Rev. X 11, 031023 (2021).

[30] Vir B. Bulchandani, “Kardar-Parisi-Zhang universality from
soft gauge modes,” Phys. Rev. B 101, 041411(R) (2020).

[31] B. Bertini, F. Heidrich-Meisner, C. Karrasch, T. Prosen,
R. Steinigeweg, and M. Žnidarič, “Finite-temperature trans-
port in one-dimensional quantum lattice models,” Rev. Mod.
Phys. 93, 025003 (2021).

[32] Javier Lopez-Piqueres, Brayden Ware, Sarang Gopalakrishnan,
and Romain Vasseur, “Hydrodynamics of nonintegrable sys-
tems from a relaxation-time approximation,” Phys. Rev. B 103,
L060302 (2021).

[33] Jacopo De Nardis, Sarang Gopalakrishnan, Romain Vasseur,
and Brayden Ware, “Stability of superdiffusion in nearly inte-
grable spin chains,” Phys. Rev. Lett. 127, 057201 (2021).

[34] A. Scheie, N. E. Sherman, M. Dupont, S. E. Nagler, M. B. Stone,
G. E. Granroth, J. E. Moore, and D. A. Tennant, “Detection of
kardar–parisi–zhang hydrodynamics in a quantum heisenberg
spin-1/2 chain,” Nature Physics 17, 726–730 (2021).

[35] Elliott H. Lieb and Werner Liniger, “Exact analysis of an inter-
acting bose gas. i. the general solution and the ground state,”
Phys. Rev. 130, 1605–1616 (1963).

[36] Elliott H. Lieb, “Exact analysis of an interacting bose gas. ii. the

http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/ 10.1142/S0217979212440043
http://dx.doi.org/10.1142/S0217984914300178
http://dx.doi.org/10.1103/PhysRevLett.117.207201
http://dx.doi.org/10.1103/PhysRevLett.117.207201
http://dx.doi.org/10.1103/PhysRevX.6.041065
http://dx.doi.org/ 10.1103/PhysRevB.97.045407
http://dx.doi.org/10.1103/PhysRevB.55.11029
http://dx.doi.org/10.1103/PhysRevB.73.224424
http://dx.doi.org/10.1103/PhysRevB.83.035115
http://dx.doi.org/10.1103/PhysRevLett.106.217206
http://dx.doi.org/10.1103/PhysRevLett.106.217206
http://dx.doi.org/10.1103/PhysRevLett.106.220601
http://dx.doi.org/10.1103/PhysRevLett.106.220601
http://dx.doi.org/10.1103/PhysRevB.87.245128
http://dx.doi.org/10.1103/PhysRevB.87.245128
http://dx.doi.org/10.1103/PhysRevLett.115.157201
http://dx.doi.org/ 10.1103/PhysRevLett.121.160603
http://dx.doi.org/ 10.1103/PhysRevLett.121.160603
http://dx.doi.org/10.1103/PhysRevB.98.220303
http://dx.doi.org/10.1103/PhysRevB.98.220303
http://dx.doi.org/10.21468/SciPostPhys.6.4.049
http://dx.doi.org/ 10.1103/PhysRevB.99.174203
http://dx.doi.org/10.1103/PhysRevLett.122.210602
http://dx.doi.org/10.1103/PhysRevLett.122.210602
http://dx.doi.org/ 10.1103/PhysRevLett.123.186601
http://dx.doi.org/10.1103/PhysRevLett.122.127202
http://dx.doi.org/10.1103/PhysRevLett.122.127202
http://dx.doi.org/10.1073/pnas.1906914116
http://dx.doi.org/10.1073/pnas.1906914116
http://dx.doi.org/10.1103/PhysRevB.101.121106
http://dx.doi.org/10.1103/PhysRevB.101.121106
http://dx.doi.org/10.1103/PhysRevLett.124.210605
http://dx.doi.org/ 10.1103/PhysRevLett.125.070601
http://dx.doi.org/ 10.1103/PhysRevLett.125.070601
http://dx.doi.org/10.1103/PhysRevB.101.180302
http://dx.doi.org/10.1103/PhysRevB.101.224415
http://dx.doi.org/10.1103/PhysRevX.11.031023
http://dx.doi.org/10.1103/PhysRevB.101.041411
http://dx.doi.org/10.1103/RevModPhys.93.025003
http://dx.doi.org/10.1103/RevModPhys.93.025003
http://dx.doi.org/10.1103/PhysRevB.103.L060302
http://dx.doi.org/10.1103/PhysRevB.103.L060302
http://dx.doi.org/ 10.1103/PhysRevLett.127.057201
http://dx.doi.org/ 10.1038/s41567-021-01191-6
http://dx.doi.org/10.1103/PhysRev.130.1605


6

excitation spectrum,” Phys. Rev. 130, 1616–1624 (1963).
[37] M. Schemmer, I. Bouchoule, B. Doyon, and J. Dubail, “Gen-

eralized hydrodynamics on an atom chip,” Phys. Rev. Lett. 122,
090601 (2019).

[38] Neel Malvania, Yicheng Zhang, Yuan Le, Jerome Dubail, Mar-
cos Rigol, and David S. Weiss, “Generalized hydrodynamics in
strongly interacting 1d bose gases,” arXiv:2009.06651 (2020).

[39] Paul Niklas Jepsen, Jesse Amato-Grill, Ivana Dimitrova,
Wen Wei Ho, Eugene Demler, and Wolfgang Ketterle, “Spin
transport in a tunable Heisenberg model realized with ultracold
atoms,” Nature 588, 403–407 (2020).

[40] Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang, “Dy-
namic scaling of growing interfaces,” Phys. Rev. Lett. 56, 889–
892 (1986).

[41] K. R. Thurber, A. W. Hunt, T. Imai, and F. C. Chou, “17O
NMR study of 𝑞 = 0 spin excitations in a nearly ideal 𝑠 = 1

2
1D Heisenberg antiferromagnet, Sr2CuO3, up to 800 K,” Phys.
Rev. Lett. 87, 247202 (2001).

[42] Ulrich Schollwöck, “The density-matrix renormalization group
in the age of matrix product states,” Ann. Phys. 326, 96 – 192
(2011).

[43] Matthew Fishman, Steven R. White, and E. Miles Stoudenmire,
“The ITensor software library for tensor network calculations,”
arXiv:2007.14822 (2020).

[44] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, “Matrix product
density operators: Simulation of finite-temperature and dissipa-
tive systems,” Phys. Rev. Lett. 93, 207204 (2004).

[45] Michael Zwolak and Guifré Vidal, “Mixed-state dynamics in
one-dimensional quantum lattice systems: A time-dependent
superoperator renormalization algorithm,” Phys. Rev. Lett. 93,
207205 (2004).

[46] Guifré Vidal, “Efficient simulation of one-dimensional quantum
many-body systems,” Phys. Rev. Lett. 93, 040502 (2004).

[47] Naomichi Hatano and Masuo Suzuki, “Finding exponential
product formulas of higher orders,” in Quantum Annealing and
Other Optimization Methods, edited by Arnab Das and Bikas
K. Chakrabarti (Springer Berlin Heidelberg, Berlin, Heidelberg,
2005) pp. 37–68.

[48] We use a Trotter step 𝛿 = 0.1 leading to a negligible discretiza-
tion error 𝑂

(
𝛿5) .

[49] See Supplemental Material for a reanalysis of past NMR experi-
ments on Sr2CuO3 from Ref. 41, compatible with superdiffusion
(𝑧 = 3/2) and with Υ(𝑇) ∼ 𝑇2, details on the convergence with
the system size 𝐿 and the bond dimension 𝜒, a comparison be-
tween the real and imaginary parts of the spin-spin correlation
function, additional zero temperature data and a discussion, data
for the temperature dependence of the thermal correlation length
b, additional data for the temperature dependence of the static
spin susceptibility 𝜒s (𝑇) and the parameter _KPZ (𝑇) of the KPZ
equation, additional data for the spatial dependence ∝ |𝑥 |3/2 of
the crossover time 𝑡★

(
𝑥, 𝑇

)
, and additional information on the

extraction of the crossover time 𝑡★
(
𝑥, 𝑇

)
from the microscopic

simulations, which includes Refs. [26, 41–43, 46, 47, 50, 51, 53–
55, 58, 59, 75] therein.

[50] Rodrigo G. Pereira, Steven R. White, and Ian Affleck, “Ex-
act edge singularities and dynamical correlations in spin-1/2
chains,” Phys. Rev. Lett. 100, 027206 (2008).

[51] Rodrigo G. Pereira, “Long time correlations of nonlinear lut-
tinger liquids,” Int. J. Mod. Phys. B 26, 1244008 (2012).

[52] I Affleck, D Gepner, H J Schulz, and T Ziman, “Critical be-
haviour of spin-s Heisenberg antiferromagnetic chains: analytic
and numerical results,” J. Phys. A 22, 511–529 (1989).

[53] Kiyohide Nomura and Miki Yamada, “Thermal bethe-ansatz
study of the correlation length of the one-dimensional s=1/2

Heisenberg antiferromagnet,” Phys. Rev. B 43, 8217–8223
(1991).

[54] Sebastian Eggert, Ian Affleck, and Minoru Takahashi, “Sus-
ceptibility of the spin 1/2 Heisenberg antiferromagnetic chain,”
Phys. Rev. Lett. 73, 332–335 (1994).

[55] M. Takigawa, O. A. Starykh, A. W. Sandvik, and R. R. P.
Singh, “Nuclear relaxation in the spin-1/2 antiferromagnetic
chain compound Sr2CuO3: Comparison between theories and
experiments,” Phys. Rev. B 56, 13681–13684 (1997).

[56] Ian Affleck, “Exact correlation amplitude for the Heisenberg
antiferromagnetic chain,” J. Phys. A 31, 4573–4581 (1998).

[57] Victor Barzykin, “Temperature-dependent logarithmic correc-
tions in the spin-1/2 Heisenberg chain,” J. Condens. Matter Phys.
12, 2053–2059 (2000).

[58] Victor Barzykin, “NMR relaxation rates in a spin- 1
2 antiferro-

magnetic chain,” Phys. Rev. B 63, 140412(R) (2001).
[59] Maxime Dupont, Sylvain Capponi, and Nicolas Laflorencie,

“Temperature dependence of the NMR relaxation rate 1/𝑇1 for
quantum spin chains,” Phys. Rev. B 94, 144409 (2016).

[60] Herbert Spohn, “Nonlinear fluctuating hydrodynamics for an-
harmonic chains,” J. Stat. Phys. 154, 1191–1227 (2014).

[61] Herbert Spohn, “Fluctuating hydrodynamics approach to equi-
librium time correlations for anharmonic chains,” in Thermal
Transport in Low Dimensions (Springer, 2016) pp. 107–158.

[62] Michael Prähofer and Herbert Spohn, “Exact scaling functions
for one-dimensional stationary KPZ growth,” J. Stat. Phys. 115,
255–279 (2004).

[63] Including first-order log corrections would change Eq. (5) to
𝑡★(𝑥 = 0, 𝑇) = 𝐴 + 𝐵

[
1 + 𝐶

/
ln(𝑇/𝐷)]−1/

𝑇 with fitting pa-
rameters 𝐴, 𝐵, 𝐶, and 𝐷. The limited data of Fig. 3(a) do not
allow us to reliably use this enhance functional form. The spatial
dependence of 𝑡★(𝑥, 𝑇) for 𝑥 ≠ 0 would remain unchanged.

[64] M. Klanjšek, H. Mayaffre, C. Berthier, M. Horvatić, B. Chiari,
O. Piovesana, P. Bouillot, C. Kollath, E. Orignac, R. Citro,
and T. Giamarchi, “Controlling luttinger liquid physics in spin
ladders under a magnetic field,” Phys. Rev. Lett. 101, 137207
(2008).

[65] Pierre Bouillot, Corinna Kollath, Andreas M. Läuchli, Mikhail
Zvonarev, Benedikt Thielemann, Christian Rüegg, Edmond
Orignac, Roberta Citro, Martin Klanjšek, Claude Berthier,
Mladen Horvatić, and Thierry Giamarchi, “Statics and dy-
namics of weakly coupled antiferromagnetic spin- 1

2 ladders in
a magnetic field,” Phys. Rev. B 83, 054407 (2011).

[66] M. Jeong, H. Mayaffre, C. Berthier, D. Schmidiger, A. Zhe-
ludev, and M. Horvatić, “Attractive tomonaga-luttinger liquid
in a quantum spin ladder,” Phys. Rev. Lett. 111, 106404 (2013).

[67] M. Jeong, D. Schmidiger, H. Mayaffre, M. Klanjšek, C. Berthier,
W. Knafo, G. Ballon, B. Vignolle, S. Krämer, A. Zheludev,
and M. Horvatić, “Dichotomy between attractive and repulsive
tomonaga-luttinger liquids in spin ladders,” Phys. Rev. Lett. 117,
106402 (2016).

[68] E. Coira, P. Barmettler, T. Giamarchi, and C. Kollath, “Tem-
perature dependence of the NMR spin-lattice relaxation rate for
spin- 1

2 chains,” Phys. Rev. B 94, 144408 (2016).
[69] Claude Berthier, Mladen Horvatić, Marc-Henri Julien, Hadrien

Mayaffre, and Steffen Krämer, “Nuclear magnetic resonance in
high magnetic field: Application to condensed matter physics,”
2016 Prizes of the French Academy of Sciences /Prix 2016 de
l’Académie des sciences, C. R. Phys. 18, 331–348 (2017).

[70] Maxime Dupont, Sylvain Capponi, Nicolas Laflorencie, and Ed-
mond Orignac, “Dynamical response and dimensional crossover
for spatially anisotropic antiferromagnets,” Phys. Rev. B 98,
094403 (2018).

http://dx.doi.org/10.1103/PhysRev.130.1616
http://dx.doi.org/10.1103/PhysRevLett.122.090601
http://dx.doi.org/10.1103/PhysRevLett.122.090601
https://arxiv.org/abs/2009.06651
http://dx.doi.org/10.1038/s41586-020-3033-y
http://dx.doi.org/10.1103/PhysRevLett.56.889
http://dx.doi.org/10.1103/PhysRevLett.56.889
http://dx.doi.org/ 10.1103/PhysRevLett.87.247202
http://dx.doi.org/ 10.1103/PhysRevLett.87.247202
http://www.sciencedirect.com/science/article/pii/S0003491610001752
http://www.sciencedirect.com/science/article/pii/S0003491610001752
https://arxiv.org/abs/2007.14822
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/ 10.1103/PhysRevLett.93.207205
http://dx.doi.org/ 10.1103/PhysRevLett.93.207205
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1007/11526216_2
http://dx.doi.org/10.1007/11526216_2
http://dx.doi.org/10.1103/PhysRevLett.100.027206
http://dx.doi.org/ 10.1142/S0217979212440080
http://dx.doi.org/10.1088/0305-4470/22/5/015
http://dx.doi.org/ 10.1103/PhysRevB.43.8217
http://dx.doi.org/ 10.1103/PhysRevB.43.8217
http://dx.doi.org/10.1103/PhysRevLett.73.332
http://dx.doi.org/10.1103/PhysRevB.56.13681
http://dx.doi.org/10.1088/0305-4470/31/20/002
http://dx.doi.org/10.1088/0953-8984/12/9/309
http://dx.doi.org/10.1088/0953-8984/12/9/309
http://dx.doi.org/10.1103/PhysRevB.63.140412
http://dx.doi.org/10.1103/PhysRevB.94.144409
http://dx.doi.org/ 10.1007/s10955-014-0933-y
http://dx.doi.org/10.1007/978-3-319-29261-8_3
http://dx.doi.org/10.1007/978-3-319-29261-8_3
http://dx.doi.org/10.1023/B:JOSS.0000019810.21828.fc
http://dx.doi.org/10.1023/B:JOSS.0000019810.21828.fc
http://dx.doi.org/10.1103/PhysRevLett.101.137207
http://dx.doi.org/10.1103/PhysRevLett.101.137207
http://dx.doi.org/10.1103/PhysRevB.83.054407
http://dx.doi.org/ 10.1103/PhysRevLett.111.106404
http://dx.doi.org/10.1103/PhysRevLett.117.106402
http://dx.doi.org/10.1103/PhysRevLett.117.106402
http://dx.doi.org/10.1103/PhysRevB.94.144408
http://dx.doi.org/https://doi.org/10.1016/j.crhy.2017.09.009
http://dx.doi.org/10.1103/PhysRevB.98.094403
http://dx.doi.org/10.1103/PhysRevB.98.094403


7

[71] Mladen Horvatić, Martin Klanjšek, and Edmond Orignac,
“Direct determination of the tomonaga-luttinger parameter 𝑘
in quasi-one-dimensional spin systems,” Phys. Rev. B 101,
220406(R) (2020).

[72] Anatole Abragam and HY Carr, The principles of nuclear mag-
netism (Clarendon Press, Oxford, UK, 1961).

[73] Mladen Horvatić and Claude Berthier, “NMR Studies of Low-
Dimensional Quantum Antiferromagnets,” in High Magnetic

Fields, Lecture Notes in Physics No. 595, edited by C. Berthier,
L. P. Lévy, and G. Martinez (Springer Berlin Heidelberg, 2002)
pp. 191–210.

[74] Charles P Slichter, Principles of magnetic resonance, Vol. 1
(Springer Science & Business Media, Berlin, Heidelberg, 2013).

[75] Steven R. White, “Density matrix formulation for quantum
renormalization groups,” Phys. Rev. Lett. 69, 2863–2866 (1992).

http://dx.doi.org/ 10.1103/PhysRevB.101.220406
http://dx.doi.org/ 10.1103/PhysRevB.101.220406
http://link.springer.com/chapter/10.1007/3-540-45649-X_7
http://link.springer.com/chapter/10.1007/3-540-45649-X_7
http://dx.doi.org/10.1103/PhysRevLett.69.2863


8

Supplemental Material for “Spatiotemporal Crossover between
Low- and High-Temperature Dynamical Regimes in the Quantum Heisenberg Magnet”

First, we revisit past NMR measurements for the nearly-ideal spin-1/2 Heisenberg chain Sr2CuO3. We
show that these results, which were interpreted in the context of diffusion, are compatible with the
current understanding of the high-temperature dynamics of the one-dimensional 𝑆 = 1/2 Heisenberg
model, which is known to be superdiffusive. Second, we provide additional data to understand the
convergence of the numerical simulation with respect to the control parameter (namely the bond
dimension of the matrix product state 𝜒) and the system size 𝐿. Third, we show that the real part of the
dynamical spin-spin correlation function dominates the imaginary part and that the real part hosts the
characteristic power-law dependence ∝ 𝑡−2/3. Fourth, we present additional numerical results at exactly
zero temperature to connect our low-temperature data to zero temperature dynamics. Fifth, we provide
data on the temperature dependence of the correlation length b of the spin-1/2 Heisenberg chain. Sixth,
we plot the temperature dependence of the static spin susceptibility 𝜒s of the spin-1/2 Heisenberg chain
and discuss further the temperature dependence of the parameters of the KPZ equation. Seventh, we
discuss the spatial dependence ∝ |𝑥 |3/2 of the crossover time 𝑡★

(
𝑥, 𝑇

)
. Finally, we provide information

on how the crossover time 𝑡★
(
𝑥, 𝑇

)
is extracted from the numerical simulations.

I. REVISITING EXPERIMENTAL NMR DATA FOR SR2CUO3

A. Characterizing anomalous spin transport
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FIG. S1. The data reported on this figure is extracted from Fig. 3(d) of Ref. 41. It corresponds to the NMR relaxation rate 1/𝑇1 versus the
strength of the applied external magnetic field 𝐻 for Sr2CuO3 at 𝑇 = 295 K (the exchange coupling is 𝐽 ' 2200 K). The NMR was performed
on the 17O nuclei, coupled symmetrically to the Cu2+ ions carrying the relevant electronic spins 𝑆 = 1/2. As a result, the NMR relaxation rate
1/𝑇1 filters out 𝑞 = ±𝜋 components but conserves nonetheless the long-wavelength modes 𝑞 = 0 holding hydrodynamics. The applied field is
directly proportional to the NMR frequency 𝜔0 as per the Zeeman splitting.

We revisit in Fig. S1 the experimental data of Fig. 3(d) in Ref. 41. In this work, a power-law behavior of the form 1/𝑇1 ∝ 𝐻−𝛼

assuming 𝛼 = 0.5 (corresponding to diffusion) was reported for the nearly ideal spin-1/2 Heisenberg antiferromagnets Sr2CuO3.
Here, in addition to the diffusive behavior, we show the best superdiffusive fit of the form ∝ 𝐻−1/3, which is the expected behavior
for the quantum spin-1/2 Heisenberg chain, based on today’s knowledge. We also show the best constant fit of the form ∝ 𝐻0

corresponding to ballistic transport.
From a purely theoretical perspective, we expect ballistic spin transport in the infinite time limit due to the external magnetic

field. However, the magnetic field being extremely small (14 T) compared to the spin exchange coupling in this compound
(𝐽 ' 2200 K), the crossover might happen beyond the timescale related to the NMR frequency, making the dynamics look
effectively supper-diffusive. The effect of the magnetic field needs to be precisely studied and we leave that for future work. For
instance, for the low-energy physics studied in Refs. 41 and 55, the effect of the magnetic field was irrelevant.

In any case, three data points are not enough to unambiguously identify the correct behavior, calling for new and dedicated
NMR experiments on the issue of anomalous spin transport in one-dimensional spin chains. In particular, we believe that the
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present numerical abilities to efficiently simulate the microscopic dynamics of interacting 1D quantum models could greatly help
in guiding experiments.

B. The behavior Υ(𝑇) ∝ 𝑇2 for 𝑇 � 𝐽 is compatible with experimental observations

We approximate the real part of the spin-spin correlation ℜ𝔢𝐶 (𝑇, 𝑥 = 0, 𝑡) by Υ(𝑇)𝑡−2/3, which is the correct behavior in the
long-time limit, see Fig. 2 in the main text. We get for the NMR relaxation rate,

1
𝑇1

∼
∫ 1/𝜔0

0
ℜ𝔢𝐶 (𝑇, 𝑥 = 0, 𝑡) d𝑡 ∼ Υ(𝑇)𝜔−1/3

0 =⇒ 1
𝑇1

∼ 𝑇2𝜔−1/3
0 for 𝑇 � 𝐽, (S1)

where we found that Υ(𝑇) ∼ 𝑇2 for 𝑇 � 𝐽, see Fig. 3(b) in the main text. As discussed in the main text, Υ(𝑇) relates to the
temperature dependence of the parameters of the KPZ equation: 𝜒s_

−2/3
KPZ 𝑓KPZ (0) ∼ Υ(𝑇).

In Fig. 4(a) of Ref. 41, the authors find that for 𝑇 � 𝐽, the NMR relaxation rate of Sr2CuO3 at fixed frequency 𝜔0 may be
approximated by an empirical form 1/𝑇1 ≈ 𝑎𝑇 + 𝑏𝑇2 for 𝑇 � 𝐽 with 𝑎 and 𝑏 fitting constants. Up to the term with linear
temperature dependence 𝑎𝑇 , this is the behavior obtained in Eq. (S1).

Neglecting the experimental data points for very low temperatures (𝑇 . 100 K), the experimental data of Fig. 4(a) in Ref. 41
is compatible with 1/𝑇1 ∼ 𝑇2. Substituting the real part of the correlator by its asymptotic behavior in Eq. (S1) becomes less and
less valid at very low temperatures: the low-temperature physics of the real part of the correlator, not taken into account in the
approximation of Eq. (S1) becomes dominant over high-temperature superdiffusive regime. In other words, in the time window
𝑡 ∈ [0, 1/𝜔0], the two regimes coexist with the low-temperature one for 𝑡 . 𝑡★ and the high-temperature one for 𝑡 & 𝑡★, with
𝑡★ ∼ 1/𝑇 (see main text). In Eq. (S1), it is assumed that the high-temperature regime is dominant. In this picture, we interpret
the small flattening observed for very low temperatures (𝑇 . 100 K) in Fig. 4(a) of Ref. 41, and which gives rise to the linear
term 𝑎𝑇 , as the onset of low-temperature physics characterized by 1/𝑇1 ' ln−1/2 (𝐽/𝑇 ) [55, 58, 59]. In fact, this logarithmic
divergence was reported in Ref. 55 for the same compound (Sr2CuO3) for temperatures 𝑇/𝐽 . 0.05, corresponding to 𝑇 ' 100
K, i.e., the regime where a linear term 𝑎𝑇 is necessary to fit the experimental 1/𝑇1 data.

For these reasons, we believe that the behavior 1/𝑇1 ∼ 𝑇2 reported in Eq. (S1) is compatible with earlier experimental
measurements on Sr2CuO3 [41], and relates to the temperature dependence of the parameters of the KPZ equation.

II. BOND DIMENSION CONVERGENCE OF THE NUMERICAL SIMULATIONS
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(c)
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∝ t −2/3

FIG. S2. Time dependence of the norm of the spin-spin correlation of Eq. (2) in the main text at 𝑥 = 0 for various values of the bond dimension
𝜒 = 64, 128, 256, 512, and 1024. Simulations obtained for 𝐿 = 256 at three different temperatures (a) 1/𝑇 = 0.5, (b) 1/𝑇 = 2.0, and (c)
1/𝑇 = 6.0. At long time, it displays an algebraic decay ∝ 𝑡−2/3 (dashed black line).

To understand the effect of the finite bond dimension 𝜒 on the numerical simulation, we performed the same calculations for
𝜒 = 64, 128, 256, 512, and 1024 (the larger, the better, and results in the main text correspond to 𝜒 = 1024). As one increases
the bond dimension, the numerical data gets closer and closer to the expected ∝ 𝑡−2/3 power-law dependence at long-time, see
Fig. S2.



10

III. SYSTEM SIZE CONVERGENCE OF THE NUMERICAL SIMULATIONS

By plotting data for increasing system sizes for the spin-spin correlation of Eq. (2) in the main text at 𝑥 = 0, we see in Fig. S3
that finite-size effects only take place at times 𝑡 ≈ 𝐿/2, reminiscent of the light-cone structure (data available for up to 𝐿 = 256).
Data at |𝑥 | > 0 in Fig. 4 of the main text are shown up to |𝑥 | = 25, which is still far away from the system boundary at |𝑥 | = 128.
Therefore, the conclusions drawn in the manuscript are independent of the system size.
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∝ t −2/3
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FIG. S3. Time dependence of the norm of the spin-spin correlation of Eq. (2) in the main text at 𝑥 = 0 for various system sizes 𝐿 = 64, 128,
and 256. Simulations obtained for a bond dimension 𝜒 = 1024 at three different temperatures (a) 1/𝑇 = 0.5, (b) 1/𝑇 = 2.0, and (c) 1/𝑇 = 6.0.
At long time, it displays an algebraic decay ∝ 𝑡−2/3 (dashed black line).

IV. REAL PART VERSUS IMAGINARY PART OF THE DYNAMICAL SPIN-SPIN CORRELATION
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FIG. S4. Time dependence of the real part “ℜ𝔢” and imaginary part “ℑ𝔪” part of the spin-spin correlation of Eq. (2) in the main text at
𝑥 = 0. Simulations obtained for 𝐿 = 256 and 𝜒 = 1024 at three different temperatures (a) 1/𝑇 = 0.5, (b) 1/𝑇 = 2.0, and (c) 1/𝑇 = 6.0.
We observe that the superdiffusive power-law regime ∝ 𝑡−2/3 only holds for the real part (dashed black line) and that in this regime we have
|ℑ𝔪𝐶 (𝑇, 𝑥 = 0, 𝑡) | � |ℜ𝔢𝐶 (𝑇, 𝑥 = 0, 𝑡) |.

While we display the norm of the spin-spin correlation function in the main text, we compute both the real and imaginary
parts. We show them independently in Fig. S4. We observe that the real part hosts the characteristic power-law dependence
∝ 𝑡−2/3, not the imaginary part. In fact, in the hydrodynamics regime, we find that |ℑ𝔪𝐶 (𝑇, 𝑥, 𝑡) | � |ℜ𝔢𝐶 (𝑇, 𝑥, 𝑡) |, meaning
that at long time, the imaginary part plays no role in the superdiffusive dynamics of the spin-1/2 Heisenberg chain.
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V. LOW-TEMPERATURE VERSUS ZERO TEMPERATURE

By plotting the different system sizes for the spin-spin correlation of Eq. (2) in the main text at 𝑥 = 0 and 𝑇 = 0, see Fig. S5(e)
we show that the “flattening” observed at long times is a finite size effect. In Figs. S5(a)–S5(d) we show the effect of the finite
bond dimension, which is qualitatively very small.
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FIG. S5. Time dependence of the norm of the spin-spin correlation of Eq. (2) in the main text at 𝑥 = 0 for various system sizes 𝐿 = 64, 128,
and 256 and bond dimensions 𝜒 = 64, 128, 256, 512, and 1024 at zero temperature (𝑇 = 0). (a) 𝐿 = 64, (b) 𝐿 = 128, (c) 𝐿 = 256, and (d)
𝐿 = 512 for various bond dimensions 𝜒. (e) 𝜒 = 1024 for various system sizes 𝐿. The dashed line is a fit of the form ∝ ln1/2 (𝑡/𝑡0) /𝑡, with
𝑡0 ≈ 0.5 a fitting parameter.

Our data confirm the ∝ 1/𝑡 decay (up to logarithmic corrections) of the 𝑥 = 0 spin-spin correlation at zero temperature for the
spin-1/2 Heisenberg chain [50, 51] in Fig. S5(e). Including logarithmic corrections, the decay follows ∝ ln1/2 (𝑡/𝑡0) /𝑡, with
𝑡0 ≈ 0.5 a fitting parameter.

We also confirm that the finite-temperature data (down to 1/𝑇 = 6.0 in the main text) is actually not small enough to observe
the genuine low-temperature dynamics. We see in Fig. S6 that at least 1/𝑇 & 20.0 is required to have an overlap between
zero-temperature and finite-temperature data in a reasonable time window. This rather slow convergence of the finite-temperature
data onto the zero-temperature ones is also observed for the spatial dependence at 𝑡 = 0 in Fig. S7(a). It is understood from the
absolute value of the thermal correlation length of Eq. (S2).

Note that the numerical simulations for zero temperature 𝑇 = 0 are carried out with a slightly different method than for 𝑇 > 0.
In particular, we do not need to use the trick representing a mixed state as a pure state in an enlarged Hilbert space, the state
at 𝑇 = 0 being a pure state (it is the ground state). The ground state is obtained with the density matrix renormalization group
algorithm [42, 43, 75], and the time evolution is then performed using time-evolving block decimation algorithm [46] along with
a fourth-order Trotter decomposition [47] with step 𝛿 = 0.1 leading to a negligible discretization error 𝑂

(
𝛿5) .
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FIG. S6. Time dependence of the norm of the spin-spin correlation of Eq. (2) in the main text at 𝑥 = 0 for various temperatures 𝑇 . Simulations
obtained for 𝐿 = 256 with 𝜒 = 1024 at finite temperature and for 𝐿 = 512 with 𝜒 = 1024 at zero temperature. Same data as in Fig. 2 of the
main text plus the zero temperature (1/𝑇 = ∞), 1/𝑇 = 8.0, 1/𝑇 = 10.0, 1/𝑇 = 16.0, and , 1/𝑇 = 20.0 data. The dashed line next to the zero
temperature data is a fit of the form ∝ ln1/2 (𝑡/𝑡0) /𝑡, with 𝑡0 ≈ 0.5 a fitting parameter.

VI. TEMPERATURE DEPENDENCE OF THE CORRELATION LENGTH
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FIG. S7. (a) Spatial dependence of the norm of the spin-spin correlation of Eq. (2) in the main text at 𝑡 = 0 for system size 𝐿 = 256 and bond
dimension 𝜒 = 1024. From the lower left corner to the upper right one, the solid lines correspond to the following temperatures: 1/𝑇 = 0.1, 0.2,
0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 8.0, 10.0, 16.0, and 20.0. The dashed line is the zero temperature data (1/𝑇 = ∞). Except for the zero temperature
data which decay as ∝ ln1/2 (𝑥/𝑥0

) /
𝑥, the finite temperature data decay exponentially at long distance 𝑥. A fit of the form ∝ exp

(−𝑥/b) gives
access to the correlation length b. (b) Correlation length b plotted versus the inverse temperature 1/𝑇 . The dashed line is the expression of
Eq. (S2) valid as 𝑇 → 0 and derived in Ref. 53 with 𝑇0 ≈ 2.68.

The thermal correlation length b of the spin-1/2 Heisenberg chain diverges at low temperature as 1/𝑇 , plus additional log
corrections which at first order gives [53],

b ' 1
2𝑇

[
1 + 1

2 ln
(
𝑇
/
𝑇0
) ]−1

, (S2)

with 𝑇0 ≈ 2.68 a nonuniversal constant. Here, we have used the value of 𝑇0 obtained in Ref. 53 computed by the thermal Bethe
ansatz. The agreement in Fig. S7 is extremely good for 1/𝑇 & 5. Yet, for the range of temperatures considered in this work, the
data could be fitted equally well without the log corrections.
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The data of Fig. S7 together with Eq. (S2) shows why one needs to go to extremely low temperatures to observe the genuine
low-temperature physics of the spin-1/2 Heisenberg chain: the prefactor of the temperature dependence of the correlation length
b ' 1/2𝑇 is small. It explains why in the time-dependent data of Fig. S6 it is difficult to observe a good overlap between
zero-temperature and finite-temperature data for the temperatures accessible in this work; this overlap is equally hard to observe
for the spatial dependence in Fig. S7(a).

VII. TEMPERATURE DEPENDENCE OF THE PARAMETERS OF THE KPZ EQUATION
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FIG. S8. (a) Same as Fig. 3(a) in the main text. Temperature dependence of the prefactor Υ(𝑇) of the algebraic decay ∝ 𝑡−2/3 for superdiffusive
hydrodynamics at 𝑥 = 0. At low temperatures 𝑇 . 1, it follows a quadratic dependence ∝ 𝑇2 (dashed line). (b) Temperature dependence of the
static spin susceptibility 𝜒s (𝑇) defined in Eq. (S3). The dashed line is the expression reported in Eq. (S3) valid as 𝑇 → 0 and derived in Ref. 54
with 𝑇 ′

0 ≈ 7.7. (c) By identifying Υ(𝑇) = 𝜒s_
−2/3
KPZ 𝑓KPZ (0), we get 𝑓

−3/2
KPZ (0) × _KPZ (𝑇) = (Υ/𝜒s)−3/2, and plot its temperature dependence.

Based on the reported results for Υ(𝑇) and 𝜒s (𝑇), the dashed line has a dominant ∝ 𝑇−3/2 behavior plus additional log corrections originating
from 𝜒s (𝑇), see Eq. (S4).

By identifying the prefactor of 𝐶KPZ (𝑥 = 0, 𝑡) of Eq. (4) in the main text with the prefactor Υ(𝑇) of the power-law decay
∝ 𝑡−2/3 shown in Fig. S8(a), we find Υ(𝑇) = 0.13(1)𝑇2 for 𝑇 . 1, and therefore that 𝜒s_

−2/3
KPZ 𝑓KPZ (0) ∝ 𝑇2. It is established that

in this temperature range, the static spin susceptibility of the spin-1/2 Heisenberg chain takes the form [54],

𝜒s
(
𝑇
)
=
∑︁

𝑥

〈
�̂�𝑥 · �̂�0

〉
' 3𝑇

𝜋2

[
1 − 1

2 ln
(
𝑇
/
𝑇 ′

0
)
]
, (S3)

with 𝑇 ′
0 ≈ 7.7 a nonuniversal constant obtained in Ref. 54 through Bethe ansatz (there are also higher order log corrections). The

form of Eq. (S3) is verified in Fig. S8(b). Isolating _KPZ, we find that,

_KPZ
(
𝑇
)
=

(
Υ

𝜒s 𝑓KPZ (0)

)−3/2
'



0.13(1)𝑇𝜋2

3 𝑓KPZ (0)

[
1 − 1

2 ln
(
𝑇
/
𝑇 ′

0
)
]−1


−3/2

, (S4)

which we plot in Fig. S8(c). The high-temperature data points are compatible with Ref. 26.

VIII. SPATIAL DEPENDENCE OF THE CROSSOVER TIME

We show in Fig. S9 the temperature dependence of the prefactor of the spatial dependence of 𝑡★
(
𝑥, 𝑇

)
of Eq. (5) in the main

text, i.e., the term ∝ |𝑥 |3/2. It is extracted from a least-square fitting of the data of Fig. 4(b) of the main text. While it fluctuates
slightly from one temperature to the next, there is no clear trend observed, and the data is consistent with a constant prefactor
with value 0.17(3).
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FIG. S9. Temperature dependence of the prefactor of the spatial dependence of 𝑡★
(
𝑥, 𝑇

)
of Eq. (5) in the main text. The prefactor, which is

plotted here, is extracted from a least-square fitting of the data of Fig. 4(b) of the main text. It is roughly independent of temperature with a
value compatible with 0.17(3).

IX. EXTRACTION OF THE CROSSOVER TIME FROM THE MICROSCOPIC SIMULATIONS

There is a degree of appreciation in defining the crossover time 𝑡★
(
𝑇, 𝑥

)
from the numerical simulations, precisely because it

is related to a crossover and not, e.g., a sharp transition. We have defined two quantities to extract 𝑡★
(
𝑇, 𝑥

)
,

RA
(
𝑇, 𝑥, 𝑡

)
=



�����𝐶 (
𝑇, 𝑥, 𝑡

) �� − Υ
(
𝑇, 𝑥

)
𝑡−3/2

�����𝐶 (
𝑇, 𝑥, 𝑡

) ��


𝑡±2

, and RB
(
𝑇, 𝑥, 𝑡

)
=

����ℑ𝔪 𝐶
(
𝑇, 𝑥, 𝑡

)
ℜ𝔢 𝐶

(
𝑇, 𝑥, 𝑡

)
����
𝑡±2

. (S5)

The first one returns the relative difference between the norm of the spin-spin correlation of Eq. (2) in the main text with the
superdiffusive decay Υ

(
𝑇, 𝑥

)
𝑡−3/2. The second one returns the relative weight of the imaginary part ℑ𝔪 versus the real part ℜ𝔢

of the spin-spin correlation of Eq. (2) in the main text. In Eq. (S5), 𝑇 and 𝑥 are set to given values and the quantities are looked at
versus the time 𝑡. The symbol (−)𝑡±2

means that the data at time 𝑡 actually corresponds an average from the range ∈ [𝑡 − 2, 𝑡 + 2].
The effect is to smoothen the local oscillations in 𝐶

(
𝑇, 𝑥, 𝑡

)
, and make the extraction more reliable.
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FIG. S10. Panels (a) and (b) correspond to the quantities RA
(
𝑇, 𝑥 = 0, 𝑡

)
and RB

(
𝑇, 𝑥 = 0, 𝑡

)
of Eq. (S5), respectively. The system size is

𝐿 = 256 and the bond dimension 𝜒 = 1024. From the lower left corner to the upper right one, the solid lines correspond to the following
temperatures: 1/𝑇 = 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0. The intersection of the data with the horizontal dashed line at RA,B

(
𝑇, 𝑥 = 0, 𝑡

)
= 0.1 is

used to extract the crossover time 𝑡★
(
𝑇, 𝑥

)
.

The time at which RA
(
𝑇, 𝑥, 𝑡

)
and RB

(
𝑇, 𝑥, 𝑡

)
hit the value 0.1 is used as the definition of the crossover time 𝑡★

(
𝑇, 𝑥

)
. The

definition of RB
(
𝑇, 𝑥, 𝑡

)
uses the fact that in the hydrodynamics regime we have |ℑ𝔪𝐶 (𝑇, 𝑥, 𝑡) | � |ℜ𝔢𝐶 (𝑇, 𝑥, 𝑡) |. Both quantities
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lead to comparable estimates of 𝑡★
(
𝑇, 𝑥

)
. The error bar reported on 𝑡★

(
𝑇, 𝑥

)
reflects the small difference between the two estimates.

As an example, we show RA
(
𝑇, 𝑥, 𝑡

)
and RB

(
𝑇, 𝑥, 𝑡

)
for 𝑥 = 0 in Fig. S10. The corresponding value 𝑡★

(
𝑇, 𝑥 = 0

)
is reported in

Fig. 3(a) in the main text.
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