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ABSTRACT OF THE DISSERTATION

RNA Splicing Regulation In Cardiac Development and Disease

By
Chen Gao
Doctor of Philosophy in Molecular Biology
Univergity of California, Los Angeles, 2014

Professor Yibin Wang, Chair

During cardiac development and pathological remadethere is a transcriptome
maturation and remodeling event well establishadaatscription level. However,
with high-throughput sequencing technology, we alde to obtain a more
comprehensive understanding of the real transenptoomplexity at single base
resolution. In order to understand the cardiac scaptome complexity and
dynamics during normal and disease conditions, wdopned deep RNA-
Sequencing on pressured overload induced mousagfdiearts and compared
with sham operated control hearts. From this studg, have identified a
significant number of genes undergo alternativees during heart disease. We
have also provided evidence there is a large numbgreviously un-annotated
novel splicing variants, IncRNA and novel transtajusters, some of these could

have potential impact on cardiac disease.



From the sequencing analysis, we chose to carrgetailed characterization of a
novel cardiac specific splicing variant in PKCBoth biochemistry and cell
studies suggested this novel splicing variant hagifeeant higher auto-
phosphorylation level at baseline but has diffegativation profile responding to
hypertrophic stimuli. This is potentially due tagmovel PKG@ splicing variant
has unique interacting partner and downstream ttavyje further demonstrated
that, the alternative splicing of this novel P&Gvariant is, at least partially
regulated by RBFox1.

RNA splicing contributes significantly to total trecriptome complexity but its
functional role and regulation in cardiac developtrend diseases remain poorly
understood. Based on total transcriptome analysges,identified a significant
number of alternative RNA splicing events in motakng hearts that resembled
the pattern in fetal hearts. A muscle specificasof of an RNA splicing regulator
RBFox1 (A2BP1) is induced during cardiac developmenactivation of
zZzRBFox1 gene in zebrafish led to lethal phenotypsoaiated with impaired
cardiac function. RBFox1 regulates alternative cipdj of transcription factor
MEF2s, producing splicing variants with distincariscriptional activities and
different impact on cardiac development. RBFox1regpion is diminished in
mouse and human failing hearts. Restoring RBFoxfression significantly
attenuates hypertrophy and heart failure inducegi@gsure-overload in mice.
Therefore, RBFox1-MEF2 represents a previously aratterized regulatory
circuit in cardiac transcriptional network with impant impact on both cardiac

development and diseases.
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Chapter One

I ntr oduction



Cardiac Development and Pathological Remodeling

Early cardiac development contains a series ofiggcorchestrated molecular
and morphogenetic events that ultimately lead tduractional mature four-
chamber heart(Deepak Srivastava 2000, Olson 2a&#hn& Kobylinska 2013,
Rana, Christoffels et al. 2013). Using genetic dofskinction studies in model
system, we are able to understand the major maleewkents that are critical for
early cardiac development.

Previous study has demonstrated that tissue specanscription factors play
critical roles controlling the cardiac cell fate cdgon differentiated from
mesodermal stem cells. During this transition, Nkx@as been identified as the
earliest molecular marker that defines the cardmeytes lineage(Harvey 1996),
which directly leads to the activation of MEF2 geft@ajewski, Kim et al. 1998).
Another transcription factor that should be mergwrhere is the zinc-finger
transcription factor of the GATA family(Durocher, h&ron et al. 1997,
Turbendian, Gordillo et al. 2013), together with KEE family transcription
factors, they activate cardiac gene expressiomdueiarly cardiomyocytes fate
determination.

Earlier study has also identified key transcriptfagtors regulating left and right
ventricles development. The basic helix-loop-h€b¥iLH) transcription factors
dHAND1/HAND2 and MEF2 seem to be critical for badéft and right ventricle
development(Srivastava, Cserjesi et al. 1995, &ohwarz et al. 1997, Srivastava

1997), the left and right ventricle also expressncher specific transcription



factors. While the Versican has been demonstratdthve a critical role during

left ventricle development(Henderson and Copp 198@atvedt, Yamamura et

al. 1998), the TBX proteins, on the other hand,msde be more important

regulating right ventricle development(Greulich,dauet al. 2011).

In addition to transcription factor expression aedulation, the fetal heart is also
different from the mature adult heart in other @&spd@he cardiac metabolism
before birth relies on using carbohydrate as engrgyision, however, the

oxidation of fatty acids turned into the predomintorm of metabolism in adult

heart(Taegtmeyer, Sen et al. 2010).

Interestingly, during cardiac stress, there is aadeling event occurs at
metabolic level. A variety of pathological condi® including cardiac

hypertrophy and heart failure can trigger the swdsheart changing the major
energy substrate back into glucose(Taegtmeyeretain 2010).

In addition to the change of metabolism, at gengression level, the stressed
heart also returns to “ fetal gene program”(BarBavidson et al. 2008,

Kuwahara, Nishikimi et al. 2012). During the fetgne reprogramming, genes
are abundantly expressed in fetal ventricles aiedeced, including: atrial and

brain natriuretic peptide; fetal isoforms of cowtii@ proteins (skeletal a-actin and
b-myosin heavy chain), fetal type cardiac ion cl@sn(hyperpolarization-

activated cyclic nucleotide-gated channel and et@alcium channel) as well as
some smooth muscle genes.

Current Progressin Cardiac Transcriptome Analysis



During the past decade, microarray and proteomigias have provided a wealth
of knowledge on cardiac transcriptome complexityirty cardiac development
and pathological remodeling.

Firstly, we have demonstrated that cardiac trapgmme maturation and
pathological remodeling is regulated at gene exjwadevel by key transcription
factors, including the Nkx2.5, MEF2,GATA and TBXgteins that are mentioned
in the previous section.

Secondly, proteomics study has also revealed thetitnal impact of signaling
pathway during cardiac development and disease. G@ndhe most well
established pathway-MAPK (mitogen-activated protdimase) has been proved
to play a critical role mediating cardiomyocytespéstrophy response both in
vitro cultured cardiomyocytes and in intact heaifhis pathway is regulated
through phosphorylation of the key components, udiclg p38, ERK and
Akt(Sharma GD 2002, Kilic, Velic et al. 2005).

Histone modification is another important pathwayedmting cardiac
hypertrophy. Overexpression of histone acetyltranasies-CBP/p300 is sufficient
to induced cardiac hypertrophy and remodeling irmndgenic mouse
models(Gusterson, Jazrawi et al. 2003, Yanazumegdtava et al. 2003). In
addition to histone acetyltransfereases, there adse more than one dozen
individual HDACs mediating cardiomyocytes hypertigp response. By
interacting with MEF2 transcription factors, the BODs can both activate or
suppress cardiomyocytes hypertrophy response(Liindey et al. 2000, Zhang,

McKinsey et al. 2002, Chang, McKinsey et al. 2004).



Lastly, the microRNA has been studied extensivela aovel regulator in cardiac
hypertrophy and heart failure. With miRNA microarrapproach, a significant
number of mMiIRNAs have been identified to assoardth cardiac stress(Orenes-
Pifiero, Montoro-Garcia et al. 2013). Among thenR+82 has been suggested to
induce hypertrophy response in vitro cultured cardiocytes, and loss of miR22
also repressed Calcineurin-induced cardiac hygary@iuang, Chen et al. 2013).
Another good example is miR-212 and miR-132. Byedly targeting the anti-
hypertrophic and pro-autophagic FoxO3 transcriptfantors, these two miR
further activate hypertrophic Calcineurin/NFAT siing pathway in
cardiomyocytes(Ucar, Gupta et al. 2012).

In summary, with gene expression microarray, miRroarray and proteomics
studies, the complexity of cardiac transcriptome baen expanded significantly.
During cardiac development and pathological remaodel the histone
modification enzymes regulate chromatin status; kbg transcription factors
regulate total gene expression level, the miR @rrtlegulates gene expression at
post-transcriptional level and the complexity @nscriptome is further expanded
by the stress signaling pathways that modify prsteit post-translational level.
However, with the appearance of deep RNA-sequen@ng understanding of
transcriptome has reached single exon resolution.

Expanding Transcriptome Complexity by Deep RNA Sequencing

For a long time, our understanding of transcriptamdéimited by biased gene
prediction and EST evidence. However, the developmaef deep RNA-

Sequencing technology has, for the first time, ada@ the complex landscape and



dynamics of the transcriptome at a much higherlle¥@ccuracy. In contrast to
traditional sequencing technology and microarraydgt deep RNA-Sequencing
allows us to zoom into the transcriptome at singgese-pair-resolution and de
novo annotate transcripts(Birol 2009, Wang, Gensétial. 2009, Au, Jiang et al.
2010, Adamidi 2011). With these advantages, moré mmore studies have
provided a more comprehensive understanding oke¢rgitome including both
large and small RNAs, novel transcripts from undateal genes and splicing
isoforms(Martin and Wang 2011).

In order to obtain a more comprehensive understgnddf the cardiac
transcriptome complexity, especially the dynamitcsardiac transcriptome under
normal and pathological conditions, we have pertmndeep RNA-Sequencing
on pressure-overload induced early stage hypenraptd end stage failing hearts
and compared with sham operated control hearts(Gsm et al. 2011). In
addition to total gene expression analysis, we hale developed new
bioinformatics tools that identified large amount differentially expressed
transcript isoforms; novel spliced exons, novet¢ralative terminal exons, novel
transcript clusters as well as long noncoding RNAeas. Our study, together with
a following study also using deep RNA-Sequencinthtelogy(Hong Ki Song
2012), has significantly expanded our understandofgthe total cardiac
transcriptome complexity under different physiotadiand pathological stages.
PKCa-NE--- A Cardiac Specific Novel PKCe Splicing Variant

Among the discoveries we made during this deep eseming effort, we are

particularly interested in a novel exon in P&C



The protein kinase C (PKC) family is a critical véagor of cardiac signal
transduction. Based on their activation mechantbm PKC family members are
divided into conventional PKC isozymes including ®K which respond to
Calcium and lipid activation; while the novel angmcal isozymes are Calcium
independent but can be activated by lipid(Eric €hili 2008, Steinberg 2008).
Earlier studies have demonstrated a critical rdlePECao. mediating cardiac
function and cardiomyocytes contractility. In vitstudy using human ventricular
cardiomyocytes suggested P&Qranslocation from cytosol to the contractile
system plays an important role maintaining the amtile force of
cardiomyocytes by phosphorylating its downstreangeiz—cardiac Troponin |
(Tnl)(Molnar, Borbély et al. 2009), in vivo pharnwdagical inhibition of PKG&
using ruboxistaurin has been demonstrated to hatsganizing effect on heart
failure post myocardial infarction injury, poterlya by regulating cardiac
contractility, myocyte cellular contractility, Calen transient and sarcoplasmic
reticulum Calcium load(Hambleton, Hahn et al. 200&;, Chen et al. 2009,
Ladage, Tilemann et al. 2011). The regulatory meisina of PKGx is also well
established. The newly synthesized PKC has an opefiormation that allows the
PDK-1 to phosphorylate its priming phosphorylatsite, in order to be further
activated, the cPKC, including PKCneeds two additional phosphorylation
events, one in turn motif and the other in hydrdpbomotif. These
autophosphorylation events are critical for RK&xtivity by affecting the enzyme
thermal stability, detergent solubility as well aprotease/phosphatase

susceptibility(Edwards and Newton 1997, Steinb&@3).



Our study, however, has identified a novel regulatmechanism of PK& at
alternative splicing level. Based on our deep RNe&HEencing analysis, we have
found a previously un-annotated novel exon of lBKSerted right in front of the
original protein turn motif, and will have a sigo#nt impact on the protein
structure based on protein structure predictiorvitro and in vivo studies have
shown the insertion of novel exon in PK@enerated a significant higher level of
autophosphorylation at turn motif. SurprisinglyjstiPKCo-NE ( Novel Exon)
also has very unique activation profile in cultureadiomyocytes upon PMA (
phorbol 12-myristate 13-acetate), Isoproterenol Andiotensin Il stimulation.
Moreover, in contrast to PKICWT, the PKGx-NE failed to phosphorylate classic
PKCa downsteam target-Tnl upon Angiotensin Il treatmémbrder to determine
the binding partner and downstream target of BHNME, we performed immuno-
precipitation study followed by mass spectrometngerestingly, comparing to
PKCo-WT, the PKG-NE has its unique interacting partners, includiey
components of protein translation machinery—eEF1A¥e have further
demonstrated that eEF1Al is indeed interacting WRKCo-NE based on
immune-precipitation study in cultured cardiomyasjtand can be potentially
phosphorylated by PK&NE. Lastly, we investigated the regulatory mechkani
of PKCa novel exon alternative splicing. Based on bioinfatics analysis, this
highly conserved novel exon also shares conserlackifg cis-regulatory
elements across different species. Within the awesecis-regulatory elements,

we have identified two putative RBFox1 binding nmtBoth in vivo and in vitro



minigene reporter analysis have provided evidehae RBFox1 indeed regulates
the PKGx novel exon splicing directly.

In summary, our deep RNA-sequencing analysis hastifted a previously un-
annotated cardiac specific splicing event of RBKE&unctional characterization
suggested the insertion of this novel exon coulklhasignificant impact on the
enzyme activation responding to hypertrophic stipthle insertion of the novel
exon can also affect the enzyme activity towardsvrddream target, thus
providing a novel regulatory mechanism for this Iwedtablish cardiac signal
regulator.

Cardiac Genes Undergo Extensive Alternative Splicing

In addition to the novel splicing variant of PKkCour deep RNA-Sequencing
study has also identified a significant number @nes undergo alternative
splicing during cardiac hypertrophy and failure gamng to sham operated
hearts(Lee, Gao et al. 2011).

Alternative splicing plays an important role redirlg cardiac gene expression.
One extreme example of alternative splicing isnTifihis extremely large protein
has been identified to have multiple splicing vaisathat are differentially
expressed during cardiac development and diseas&We2010). Recent study
has further identified a splicing regulator-RBM2@at is responsible for
regulating Titin alternative splicing(Guo, Schaétral. 2012).

Another gene that also undergoes extensive alteenatplicing is VEGF
(Vascular Endothelial Growth Factor). This key ragor of angiogenesis

contains eight exons. Alternative splicing of VEQ@€nerates a variety of



isoforms that are different in both structure andction, leading to either pro-
angiogenic activity or anti-angiogenic activity(¢iger, Gospodarowicz et al.
1989, Jingjing, Xue et al. 1999, Manetti, Guiduetial. 2011). Further study has
also identified the regulator—SC35 for VEGF altéwe splicing. This SR
protein splicing regulator, by interacting with risription factor, regulates the
ratio of pro-angiogenic and anti-angiogenic VEGHcapg variants expression, at
least in p53 deficient tumor cells(Merdzhanova, Gaiwal. 2010).

Cardiac channel proteins are also regulated atnalige splicing level during
both cardiac transcriptome maturation and patho&gemodeling. One example
that has been studied extensively is SCN5A. Thikuso channel protein showed
abnormal splicing pattern under a variety of patbmal conditions, including
myotonic  dystrophy type 1 (DM1l) and heart failusseciated
arrhythmia.(Wahbi, Algalarrondo et al. , Murphy, dfeGrady et al. 2012, Jr
2013) The abnormal splicing pattern of SCN5A in lannheart failure has been
suggested to be regulated by LUC7L3 and RBM25(Gaolzudley Jr 2013).

Our study, on the other hand, for the first timgeaded a global alternative
splicing events associated with both cardiac hypphty and heart failure.
According to our deep RNA-Sequencing analysis ilnfa murine heart induced
by pressure-overload, there are a total of 781fbiists expressing in heart being
detected. We have also identified 1087 genes wghifecant isoform-specific
expression changes, and a total of 720 isoform&7 genes are differentially
expressed between normal and diseased hearts. Seshbwed more genes

undergo alternative splicing during heart failurdage comparing to

10



hypertrophy(Lee, Gao et al. 2011). The scale @fratitive splicing in heart under
disease is also reviewed in our and others reews(Chen Gao 2012, Lara-
Pezzi, Gbmez-Salinero et al. 2013, Zhang and Sl\8)2

RBFox1 Mediated RNA Splicing Regulation During Cardiac Development and
Disease

In my thesis study, we have identified a cardiadcked splicing regulator—
RBFox1 playing a critical role mediating cardiaanscriptome maturation and
pathological remodeling. Bioinformatics analysi®wied RBFox1 binding motif
is highly enriched in the alternative splicing etgeassociated with heart failure.
The expression level of RBFox1 is dynamically re¢ged during both cardiac
development and pathological remodeling at both ARINd protein levels. As a
conserved splicing regulator, RBFox1 plays a d@itiole in zebrafish cardiac
development and function demonstrated in RBFox1phmamt embryos. Further,
we have identified a downstream target—MEF2 fartolpe directly regulated by
RBFox1. The conserved splicing event of MEF2 getieera mutually exclusive
adult VS fetal splicing variant. RNA-Sequencing lggs combined with in vitro
luciferase reporter assay suggested different M&#i2ing variants have distinct
transcription factor activities. Lastly, we haverdmstrated that RBFox1 also has
important role mediating cardiac hypertrophy resgsonOverexpression of
RBFox1 is sufficient to attenuate hypertrophy ressoinduced by PE treatment
in vitro cultured cardiomyocytes; in vivo, cardiapecific overexpression of
RBFox1 is also sufficient to preserve mice cardfanction post pressure-

overload induced heart failure.

11



Thesis Project and Goals

This Chapter has provided introduction of my thegisjects, including the
background of the heart failure and research tihaisplay important roles for my
study. The following chapters will be as follow: &ter Two: Global
Transcriptome Analysis in Pressure-Overload Indud&éouse Failing Heart,
including a new method paper published in CircalatResearch in 2012, which
summarized my major findings in transcriptome carty in mouse normal and
failing heart using RNA-Sequencing technique. Céapthree: Functional
Characterization of a Novel Exon in PK@n Heart, gives an example of cardiac
transcriptome complexity, where we have identifeegreviously un-annotated
exon in PKG:, and demonstrated the insertion of this novel ezan have a
major functional impact on the original protein; &er Four: Cardiac Genes
Undergo Extensive Alternative Splicing, includingewview that | wrote with Dr.
Yibin Wang on our findings in RNA-Sequencing andaarch from other groups
on how extensive cardiac genes undergo alternaplieing during normal and
pathological states; providing a strong rationale s to further dissecting the
molecular mechanism regulating alternative splicingheart. Chapter Five:
RBFox1 Mediated Alternative RNA Splicing Regulat&evelopment and
Function in Heart. This is the major component of tinesis project, where we
have identified a cardiac splicing regulator—RBFol{ regulating the mutually
exclusive alternative splicing of MEF2 family memferegulating both cardiac
development and function. Chapter Six is conclugiad closing remarks, with

discussion of future directions in my projects #merapeutic value of my study.
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Figure 1. Graphic Abstract: Alternative Splicing and Cardiac Transcriptome

Complexity
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Chapter Two

Global Transcriptome Analysisin Pressure-

Overload Induced Mouse Failing Heart
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I ntroduction:

The development of RNA-Sequencing technology hiasvald us to look at gene
expression at single base resolution, which pralide novel insights into
mammalian transcriptome. Previous study has idedtiextensive alternative
splicing events and novel transcripts clusters iammalian transcriptome.
Although it has been suggested that cardiac gelseshave alternative splicing
events, including CamKinase, Tnnt and Titin, thalscof alternative splicing
events in heart under normal and disease condigorains unexplored. In our
RNA-Seq effort, we used transaortic constrictiolAC) to induce either early
stage hypertrophy or late stage heart failure asdpared with sham operated
control hearts. We have developed two different hmes$ including guided
transcriptome reconstruction and de novo reconsbru¢o reconstruct transcript
isoforms. In summary, we have identified 1435 geséswed differential
expression between failing and normal hearts; we ltetected a total of 7811
isoforms expressed in at least one sample, amasg tla total of 720 isoforms in
475 genes were identified to be differentially eegzed in different samples. We
have also identified a total of 1873 novel exongexponding to different types
of alternative splicing events. Lastly, 1884 nowuehnscript clusters were
identified in our sequencing data that do not agefith any previous Ensemble
genes, which have potential functional impact ordieg disease based on their
differential expression pattern between normal tmichg hearts. Together, this

deep RNA-Sequencing study has provided us novelhts into cardiac
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transcriptome complexity during normal and diseeseditions, which also set

foundation for our future analysis on single spigcregulator and splicing event.
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Analysis of Transcriptome Complexity Through RNA
Sequencing in Normal and Failing Murine Hearts

Jae-Hyung Lee, Chen Gao, Guangdun Peng, Christopher Greer, Shuxun Ren, Yibin Wang, Xinshu Xiao

Rationale: Accurate and comprehensive de novo transcriptome profiling in heart is a central issue to better
understand cardiac physiology and diseases. Although significant progress has been made in genome-wide
profiling for quantitative changes in cardiac gene expression, current knowledge offers limited insights to the
total complexity in cardiac transcriptome at individual exon level.

Objective: To develop more robust bioinformatic approaches to analyze high-throughput RNA sequencing
(RNA-Seq) data, with the focus on the investigation of transcriptome complexity at individual exon and

transcript levels.

Methods and Resulfs: Tn addition to overall gene expression analysis, the methods developed in this study were
used to analyze RNA-Seq data with respect to individual transcript isoforms, novel spliced exons, novel
alternative terminal exons, novel transcript clusters (ie, novel genes), and long noncoding RNA genes. We applied
these approaches to RNA-Seq data obtained from mouse hearts after pressure-overload—induced by transaortic
constriction. Based on experimental validations, analyses of the features of the identified exons/transcripts, and
expression analyses including previously published RNA-Seq data, we demonstrate that the methods are highly
effective in detecting and quantifying individual exons and transcripts. Novel insights inferred from the examined
aspects of the cardiac transcriptome open ways to further experimental investigations.

Conclusions: Our work provided a comprehensive set of methods to analyze mouse cardiac transcriptome
complexity at individual exon and transcript levels. Applications of the methods may infer important new insights
to gene regulation in normal and disease hearts in terms of exon utilization and potential involvement of novel
components of cardiac transcriptome. (Circ Res. 2011;109:1332-1341.)

Key Words: RNA-Seq m transcriptome profiling m hypertrophy m heart failure

R egulation of gene expression has a critical role in normal
cardiac function and pathogenesis of heart failure. A
global change in cardiac transcriptome from normal to one
with characteristics of “fetal-like” profile is a major part of
the pathological remodeling in failing hearts.'* Although
much insight has been learnt from transcriptome profiling
studies using microarray technologies, limitations in coverage
and sensitivity still leave a significant part of the cardiac
transcriptome landscape unexplored, especially concerning
expression and variation at single exon resolution. Recent
advances in high-throughput sequencing technologies are
enabling a new way to study transcriptomes: massively
parallel sequencing of short reads derived from mRNAs
(RNA-Seq).#5 Compared with microarray technologies,
RNA-Seq was shown to enable more accurate quantification
of gene expression levels.®’ More importantly, RNA-Seq
does not require a priori annotation of gene and transcript

structures. [t allows not only in-depth studies of expression
changes in known genes and alternative isoforms but also
unbiased characterization of novel exons and novel transcript
clusters. It also enables investigation of long noncoding RNA
(IncRNA) genes, which are not usually targeted by alternative
transcriptome profiling methods, such as microarrays. Thus,
RNA-Seq opens the way to de novo transcriptome recon-
struction and discovery of novel transcripts of any mamma-
lian cell. Indeed, recent reports using RNA-Seq to profile
transcriptome in mouse heart have revealed interesting new
insights in cardiac transcriptional and signaling networks in
genetic models of heart failure.’-10

In the present study, we developed bioinformatic methods
to identify transcript structures and analyze transcriptome
complexities with a particular emphasis on quantification of
RNA splicing variants at single exon resolution using RNA-
Seq data of normal and failing murine hearts. The methods
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take full advantage of the strength of RNA-Seq. We show that
they allowed in-depth profiling and quantification of alterna-
tive mRNA structures, novel exons, novel transcript clusters
(NTCs) and long noncoding RNA genes. The results open
ways to direct experimental investigation of these novel
transcriptome features and highlight the power of RNA-Seq
to provide a comprehensive bioinformatic delineation of
disease-specific transcriptomes.

Methods

RNA-Seq Data Generation and Mapping
An expanded Methods section is available in the Data Supplement at
http://circres ahajournals.org.

Left ventricular tissues were collected from male C57BL/6 mice
after 1 week (hypertrophy stage, HY) and 8 weeks after transaortic
constriction (TAC) procedure (heart failure stage, HF) and their
corresponding sham controls (sham-HY, sham-HF) (Online Supple-
ment and Online Table I). To conduct RNA-Seq analysis, total RNAs
from 6 TAC and sham-operated mice at the HY stage and 4 TAC and
corresponding sham mice at the HF stage were obtained. Paired-end
RNA-Seq reads (2X72nt or 2X76nt long) were mapped to the mouse
Ensembl transcript sequences (release 56), using Bowtie!* and
BLAT.*? Mapping was first carried out for individual reads without
considering the read-pairing information. Next, all read pairs were
inspected for correct pairing by considering whether they map to the
same chromosome, potentially in the same gene and with correct
orientation relative to each other (Online Supplement). The pair of
reads was considered as uniquely mapped if and only if 1 unique pair
of mapped locations was identified.

Analysis of Gene and Transeript

Isoform Expression

Levels of gene and exon expression were quantified using the RPKM
measure'® and a minimum RPKM value of 3 (=1 copy per cell) is
required for expressed genes/isoforms (see Results for justification
of this cotoff). Gene expression differences were evalvated using
Fisher’s exact test after normalizing by the total number of mapped
reads in each lane using the upper-quartile normalization method.!*
The tesulted probability values were corrected through the Benja-
mini and Hochberg method. Differentially expressed genes were
defined as those with changes of at least 1.5-fold between a pair of
samples at a false discovery rate (FDR) of 5% for genes expressed at
=3 RPKM in =1 sample. The Cufflinks software (v 0.9.2)!> was
used to estimate expression levels of individual isoforms of an
Ensembl gene, which allowed identification of isoform-specific
expression changes due to alternative transcription start site (ATSS)
or alternative splicing (AS). To further assess overall isoform
expression dissimilarity in 2 samples (A and B), a dissimilarity score
was defined based on the Morisita-Horn similarity index as follows:

2> PAYPB)
T SEa B

dissimilary score=
where P{A) and P{B) represent the expression of isoform i normal-
ized by overall gene expression in the sample A or B. We only
considered genes expressed at =3 RPKM in this analysis.

Transcriptome Reconstruction

‘We developed 2 different methods for the reconstroction of transcript
isoforms: (1) guided transcriptome reconstruction: a method to
reconstruct isoforms and discover novel exons within known genes;
and (2) de novo reconstruction: a method to reconstruct completely
new isoforms independent of known gene annotations. Details of the
2 approaches are presented in the Online Supplement. Briefly, the
following steps are common to both approaches: (1) define expressed
sequence fragments (seq-frags); (2) identify connections between
seq-frags based on reads mapped to spliced junctions; (3) generate a
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Non-standard Abbreviations and Acronyms

AS alternative splicing

ATSS alternative transcription start site

HF heart failure

HY hypertrophy

IncRNA long noncoding RNA

NTC novel transcript cluster

RNA-Seq  RNA sequencing

RPKM reads per kilobase of exon per million mapped reads
sham-HY  corresponding sham control for hypertrophy
sham-HF  corresponding sham control for heart failure

directed graph using seq-frags and their connections for each gene or
each chromosome; and (4) construct the isoforms by finding all
possible paths in the graph. In guided transcriptome reconstruction,
novel seq-frags can represent novel exons or extended regions of
known exons. Identification of exon boundaries (novel or known)
depends on the presence of reads mapped to spliced junctions. Thus,
to reduce possible false-positive isoforms, we required at least 2
junction reads as evidence of a splicing event. In de novo recon-
stiuction, NTCs were identified in intergenic regions and clustered
together on each chromosome. The boundaries of NTCs were
decided by confirming the absence of spliced junctions or expressed
seq-frags. Filters for minimum expression levels of seq-frags and
canonical splicing signals were applied. The coding potential of
NTCs was evalvated using the Coding Potential Calculator
software.

Statistical and Computational Methods

For gene expression analysis, the statistical significance was as-
sessed by Fisher’s exact test as described above. Pearson correlation
coefficients for gene expression validation were calculated in R. For
GO analysis, empirical probability values were estimated based on
10 000 randomized simulations (Online Supplement), and the Bon-
ferroni cutoff was vsed to determine significant probability values.
All other computational procedures including transeript isoform
reconstructions were carried out using in-house programs written in
Python, Perl, and R.

Results
Mapping of RNA-Seq Reads

We obtained a total of 168 million pairs of reads using the
standard paired-end RNA-Seq protocol on the [llumina GA IT
sequencer. Table 1 shows the number of reads in each
TAC/sham group and the mapping results. Our mapping
procedure (Figure 1) ensures that reads generated by both
known genes and novel transcribed regions were identifiable.
In addition, it enabled detection of novel and known spliced
junctions that connect 2 or more exons intervened by long
introns. The usage of paired-end sequencing brings the
advantage of improved mapping performance. We estimated
that 4% of all the original reads were mapped nonuniquely as
singletons but uniquely as pairs. Ambiguous mapping results
can be removed by examining the pairing of reads. For
example, 12% of all reads were categorized as unmapped in
the paired-end mode but mapped uniquely as singletons
(possible mapping errors in the single-end mode). Only pairs
of reads that mapped uniquely to the transcriptome and/or the
genome were retained for further analyses (Figure 1). Among
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Table 1. Number of RNA-Seq Reads Obtained for Each Type of Sample and Mapping Results
No. of Reads HY Sham-HY HF Sham-HF Total
Total 83718570 83009180 100 602 620 66 442 422 336772792
Unmapped 15325416 12 007 844 36 768 368 23961 060 88 062 688
Nonuniquely paired 10483514 11 559 470 6 689 996 5398104 34121 084
Wrong pairing 6405 098 6194 896 6470 068 4 359 302 23429 364
Total uniquely paired 51504 542 53 246 970 50674 188 34 723 956 191 049 656
(ie, final mapped)
Mapped within exons 37 882 946 (73%) 39198116 (73%) 32479491 (64%) 22977952 (66%) 132538 505 (70%)
Mapped to exon-exon 9570 514 (19%) 9977970 (19%) 10 627 444 (21%) 7442 858 (21%) 37 618 786 (20%)
junctions
Mapped to infrons 1619 022 (3%) 1 555 896 (3%) 3058 379 (6%) 1688 736 (5%) 7922 033 (4%)
Mapped to intergenic 2432 060 (5%) 2514 988 (5%) 4508 874 (9%) 2614 410 (8%) 12 070 332 (6%)

regions

HY indicates hypertrophy; HF, heart failure.

Percentages shown are relative to the number of final mapped reads.

“Unmapped” reads refer to those that were not mappable to the genome or transcriptome using the defined mismatch thresholds (Online
Supplement). “Nonuniguely paired” means that the pair of reads mapped nonuniquely as a pair. “Wrong pairing” means that the pair of reads

did not pass the filters for correct pairing (Online Supplement).

the 168 million pairs of reads obtained in our study, about 95
million (57%) were uniquely mapped in total, which covered
72% of the known exon-exon junctions, 82% of exon bodies
and 77% of known genes.

Analysis of Gene Expression Levels

Through RNA-Seq

RNA-Seq has been demonstrated to be an effective approach
for gene expression profiling in mouse heart.”-® One advan-
tage of this method is its ability to provide quantitative
read-out of the mRNA expression levels in 1 sample, in
contrast to microarrays that just permit comparative analyses
without absolute expression values. Consistent with the
previous studies,™ we also observed a wide dynamic range

l All sequencing reads
Map to transcriptome
{Bowtie)

Unmapped

Map to mouse Discard
genome (Blat) Junmapped

Mapped

Mapped|

Check for paiting of read pairs,
uniqueness and mapping quality

Uniquely mapped read pairs

./[/l\]\‘

Guided Ds nove
Alternative transcriptome reconstruction Long

expression i reconstruction | | and analysis of | | non-coding
analysis analysis and analysis of | | novel transcript RNAs

novel excns clusters

Figure 1. Overview of the methods and procedures to ana-
lyze RNA-Seq data.

of expression values varying from about 1 copy per cell (3
RPKM) for the Ankrdi2 gene to 8,048 copies per cell for the
mi-Col gene in the sham hearts. In this work, we use 3
RPKM as the minimum cutoff to filter for expressed genes'®
considering its biological relevance and the fact that some
genes (eg, Kcnd2, Kend3) with heart-related function are
expressed at about 3 RPKM in shams. Other RNA-Seq
studies also showed that low abundant transcripts expressed
at about 1 copy per cell include transcriptional factors and
other functionally important genes for cardiac regulation.’
In addition, in a PubMed search of published abstracts, we
found that genes with =3 RPKM expression levels are about
twice as often associated with the keywords “heart” and
“cardiac™ than those expressed at <.3 RPKM. Altogether,
0833 genes (29% of all Ensembl genes) are expressed at =3
RPKM in at least 1 sample in our study.

Another advantage of the RNA-Seq method over microar-
rays is the improved quantification of differential gene
expression between samples.” We validated expression
changes of 42 genes using real-time PCR (Online Figure [
and Online Table IT). This validation demonstrated that the
results from RNA-Seq and real-time PCR are highly concor-
dant (r=0.90, Pearson correlation). To establish biologically
meaningful criteria to determine significant differential gene
expression, we examined the levels of genes known to be
altered in failing hearts, including Myh7, Egrl, Nppb, Pin,
and Actb. We confirmed that all the above genes had
expression changes of at least 1.5-fold between the HF and
sham-HF samples in the real-time PCR or RNA-Seq. Thus,
we used the following criteria to identify differentially
expressed genes: (1) gene expression level =3 RPKM in
either sham or HY/HF or both; (2) change in expression level
=1.5 fold; and (3) Fisher’'s exact test (see Methods) FDR
<5%. Altogether, 97 and 1435 genes passed the above filters
between sham-HY and HY, sham-HF and HF, respectively
(Online Table I1I). The number of genes and their magnitudes
of changes are larger at the HF stage, consistent with the
expected higher degrees of cardiac remodeling in HF contrib-
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uted by vascular remodeling, inflammatory response and
fibrosis in the myocardium. In addition to the well-known HF
or HY-related genes, we found genes with significant alter-
ation in expression but that have never been implicated in
heart failure or cardiac hypertrophy, such as Prel, E2f1,
Birce5, Iggap3, Cdc20, and Cdca8. Our results suggest that
RNA-Seq may provide novel insights in overall gene expres-
sion as demonstrated previously. ™

Analysis of Alternative Transcript Isoforms
Through RNA-Seq

One of the main voids in our current knowledge of cardiac
transcriptome is the genome-wide profile of mRNA splicing
variants, a very challenging task not readily accomplishable
by most microarray platforms. For this purpose, we used the
package Cufflinks,?* which was shown to effectively capture
isoform-specific expression and alteration in RNA-Seq data.
Although Cufflinks has a number of modules for different
purposes, we focused on its usage to infer expression levels
and differential expression of individual transcript isoforms.
As inputs to Cufflinks, we used our read mapping results
described above and the set of Ensembl-defined genes and
their spliced variants. The novel exons and NTCs identified in
our study were not included becanse the nature of the short
sequencing reads limits the accuracy in predicting complete
structures of spliced variants that are needed to estimate their
expression levels.

‘We first examined the absolute isoform expression estimated
by Cuftlinks. For genes with multiple transcript isoforms, we
detected a total of 7811 isoforms with expression level =3
RPKM in at least 1 sample. The most abundant isoform was
from the gene Myf2 (Myosin regulatory light chain 2) in the
sham-HF sample. The isoforms of other heart-related transeripts
such as Actcl, Afp2a2, Myho, Trnt2, and Tpmli were also highly
expressed. We observed spliced variants for numerous genes
(eg, Ap2a2, Cacnalc, Slcb6a8, and Ank2) known to undergo
alternative splicing in cardiac tissues.” For the gene Camk2, we
confirmed that its neuronal-specific isoform is much less ex-
pressed than the heart-specific isoforms (2.96 versus 22.11
RPKM) in the sham-HF sample. These findings suggest that
RINA-Seq can readily detect isoforms of a gene due to alternative
RNA splicing.

We next analyzed the differential expression patterns of
individual transcript isoforms. Cufflinks analysis identified
1087 genes (mostly protein-coding genes) with significant
isoform-specific expression changes (q-value <C0.05) due to
ATSS or AS or beth (Figure 2A and Online Table IV). As
examples, Figure 2B shows 2 genes (with ATSS and AS,
respectively), their reads distributions, and RT-PCR valida-
tion results. If the same criteria were applied as for determin-
ing differential gene expression (q-value <<0.03, fold change
=1.5, and expression level =3 RPKM), a total of 720
isoforms in 475 genes were identified as differentially ex-
pressed. Overall, genes with ATSS and AS are both enriched
in biological processes related to muscle function and ATP
synthesis (Online Table V).

Similar to our findings in overall gene expression changes,
more genes were found to have altered isoform expression in
the HF stage than the HY stage. To further compare the 2
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stages, we calculated a dissimilarity score that quantifies the
overall isoform difference of a gene between a pair of
samples (Methods). This measure is independent of gene
expression levels. Figure 2C shows that most genes have
similar scores between the HY and HF stages (data distrib-
uted close to the diagonal line). However, a significant
number of genes (n>250) have dissimilarity scores differing
by more than 0.2, suggesting a significant change in isoform
usage at different stages of heart failure. Interestingly, among
these genes, many (eg, Garnll, Sipal, Rgsi2, Rin2, and
Rabgapl) are known to be involved in processes well-studied
in heart failure. In addition, genes involved in chromatin and
histone modifications (such as Hdac7, Ezhi, and Aof2) also
demeonstrated stage-specific isoform expression changes.
Therefore, the quantitative gene isoform analysis suggests a
global change in exon utilization due to alternative RNA
splicing that can potentially affect functionally important
genes in failing hearts.

Guided Transcriptome Reconstruction for Novel
Transcripts of Known Genes

Another major advantage of the RNA-Seq approach is the
capability to discover previously unknown transcript iso-
forms. We thus developed a guided transcriptome reconstric-
tion method to enable identification of novel isoforms in
known genes (Online Supplement). In this method, RNA-Seq
reads that mapped inside or in the vicinity of Ensembl genes
were examined. Reads that do not support the known En-
sembl transcript structures (eg, those in the intronic regions)
may suggest existence of novel transcripts. However, such
reads may also arise from other sources such as incompletely
processed transcripts, degradation intermediates of introns, ot
mapping errors. To reduce false-positives, we implemented 2
additional requirements to define novel transcripts. First, we
applied stringent filters for expression levels of the novel
fragments (details in Online Supplement). Second, because
novel exons should be spliced to other exons, we required the
existence of at least 2 spliced junction reads flanking each end of
the novel exon. When the detected novel fragments were
identified to be extensions of known internal exons or terminal
exons, they would indicate new exon splicing pattern, or
alternative transcriptional initiation or termination events.

For the 10 061 multi-exon genes (defined by Ensembl
and/or our isoform reconstruction) with an expression level of
=3 RPKM, 5112 (51%) were detected with novel isoforms
(with novel exons or novel splicing patterns among known
exons) as a result of alternative splicing, 1651 (16%) as a
result of alternative initiation or termination, and 830 (8%)
with both types of novel isoforms. Novel transcript structures
were identified across a broad range of expression levels
(Online Figure II), with more isoforms detected for higher
expressed genes (most likely due to higher read coverage).
Therefore, our findings suggest a significant deficiency in
the current mouse transcriptome annotation (Ensembl v 56
used in this analysis) and deep RNA-Seq combined with
guided transcriptome reconstruction can provide a much
more comprehensive profile of the total complexity in
transcript structures.
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Figure 2. Expression and isoform changes of known genes in heart failure. A, Number of genes with expression changes of alter-
native isoforms due to alternative transcription start sites (ATSS) or alternative splicing (AS). Left panel: genes classified into HY and
HF stages; right panel: genes classified into the ATSS and AS categories. B, Read distribution for 2 genes with differential isoform
expression due to ATSS (Rcanf) or AS (Eif4h) and the corresponding RT-PCR validation results (with primer locations illustrated by
small arrows). Arcs represent reads mapped to exon-exon junctions. Ensembl-annotated isoforms are illustrated below read distribu-
tions. In the Eif4h gene, the skipped exon is highlighted by a dotted box. C, Distribution of dissimilarity scores to quantify the overall
isoform difference of genes in the 2 stages relative to their sham samples.

Evaluation of Novel Spliced Exons Identified by
Guided Transcriptome Reconstruction

Although a large number of genes were identified with novel
spliced variants, it is possible that many of them were resulted
from random errors or noise in the process of splicing or
transcription detected by the highly sensitive RNA-Seq
method. Thus, we analyzed in detail the novel exons in the
spliced variants to determine if our method leads to findings
with potential biological significance. A total of 1873 novel
exons were identified corresponding to different types of
alternative splicing events (Table 2 and Online Table VI).
Because the Ensembl v 56 database was used as a reference
to define known genes and exons and updated databases now
exist, we examined whether the above novel exons are annotated

as known exons in the new Ensembl v 61 database (April 2011),
or the UCSC, RefSeq databases. Indeed, 26% of the novel
spliced exons identified from our original analysis are now
“known” to one or more of the above databases (Table 2). This
serves as a validation of our approach for identifying the novel
exons and we refer to those exons that remain to be not
annotated in the above databases (1384 in total) as “‘updated
novel exons.” We validated 29 of the randomly selected updated
novel exons through RT-PCR and the expression of 97% of
them was confirmed (Online Table VII).

To provide further evaluation on the identified “updated
novel exons,” we performed additional bioinformatic analy-
ses on these novel exons that were alternatively skipped, the
most common type of alternatively spliced exons. We first
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Table 2. Novel Alternative Splicing Events Identified in
Ensembl Genes and Novel Transcript Clusters

AS Events SE* R ASEE  AJES  MXE|
Original novel exons in ENSG 968 691 268 332 15
Percentage of total (1873) 52% 3% 14% 18% <1%
Updated novel exons in ENSG 623 629 197 235 8
Percentage of total (1384) 45% 45% 14% 17%  <1%
Novel AS exons in NTCs 223 0 138 109 7
Percentage of total (421) 53% 0 33% 26% 1%

Exons are categorized according to the type of alternative splicing (AS) events,
“Original” indicates novel exons identified relative to Ensembl v 56. “Updated”
indicates novel exons identified refative to the most recent databases including
Ensembl v 61, UCSC KnownGenes, and RefSeq genes. Note that 1 exon may be
associated with muliple types of AS. Such exons are counted into all applicable
types. Thus, the percent values for all categories may not sum to 100%. ENSG
indicates Ensembl genes; NTC, novel transcript clusters.

*SE: Skipped exon.

1RI: Retained intron.

1TASE: Alternative 5° splice site exon.

§AJE: Alternative 3° splice site exon.

|[MXE: Mutually exclusive exon.

examined whether the novel exons have features that resem-
ble those of known skipped exons. The following features
were considered: evolutionary conservation, expression level,
exon length, and splice site strength. The conservation level and
expression level of the novel exons, although lower than those of
the known skipped exons, are significantly higher than intronic
regions with matched GC content and length (Figure 3A and
3B). About 54% of the novel skipped exons have a length that is
multiples of 3, significantly higher than expected (probability
value=3.1e-07, 5 test). This observation implies the existence
of strong selection on the alternative protein products derived
from these exons. Approximately 96% of the novel skipped
exons are flanked by GT-AG in the immediate intronic regions,
representing consensus splice site sequences. Figure 3C shows
the result of principal component analysis of the above features
in the novel and the known exon populations, respectively,
which suggests that the 2 groups of exons are largely similar.
The similarities of the novel exons to the known alternative
exons suggest that they are likely authentic exons with biological
function.

To further evaluate their biological significance, we then
analyzed the expression patterns of the novel exons in more
detail. If a novel exon exists due to monfunctional random
splicing noise, its absolute expression level is most likely low
and similar across different samples. However, we found about
72% of the novel exons had an expression level of =3 RPKM in
at least 1 of the samples used in our study. [n examining the
expression difference of the novel exons in the HY/HF and sham
controls, we observed that a substantial fraction (682 exons, 68%
of all with =3 RPKM in absolute expression) had an expression
difference of at least 1.5-fold (10 examples shown in Figure 3D,
left panel). Furthermore, we computed the expression of the
novel exons in other mouse tissues or cell types based on
available RNA-Seq data.'>1718 [nterestingly, many novel exons
with relatively low abundance in the mouse heart had much
higher expression levels in one or more of other tissues (Online
Figure III; examples in Figure 313). Thus, our result suggests that
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the novel exons identified by RINA-Seq even with low expres-
sion level in heart may be authentic exons with biological roles
in other tissues.

Finally, we analyzed the impact of these novel exons on the
predicted protein products. A large fraction (60%) of them will
infroduce prematire termination codons or are expected to
induce nonsense-mediated decay, suggesting that many novel
exons may have a major impact on the final protein expression
(Online Supplement). Furthermore, we found evidence of trans-
lation for 174 of the detected novel exons in public proteomic
databases, suggesting that these exons may contribute to the
overall complexity of the proteome (Online Supplement).

Alternative Initiation and Termination Events

On the basis of the reconstructed transcript structures, we
identified novel alternative 5" terminal exons that differ from
the Ensembl annotations. Two different categories of such
events were defined: (1) 5" terminal exon overlapping the
annotated first exon but with extended regions or alternative
splice sites supported by junction reads and (2) 5" terminal
exon not overlapping any annotated exon and occurring
upstream of the annotated 5' start sites. To be conservative
and avoid the complication of incomplete transeript recon-
struction, we excluded 53’ terminal exons whose start sites are
downstream of the annotated 5’ start sites. Similar analyses
were carried out to identify alternative 3" terminal exons.
Altogether, we identified 1613 exons (in 1535 genes ex-
pressed at =3 RPKM) with novel alternative initiation or
termination events that are not annotated in the most recent
databases including UCSC, RefSeq and Ensembl (v 61)
(Online Tables VIII and IX). Figure 4 shows 2 examples of
such events. Among these exons, about 469 differ in expres-
sion by at least 1.5-fold between HY and sham or HF and
sham. In addition, the corresponding genes significantly
overlap the list of differentially expressed genes (162 genes in
common, P=4.2e-13). Interestingly, 39% of the alternative 3’
terminal exons contain predicted target sites of known miR-
NAs expressed in mouse heart (Online Supplement), suggest-
ing that the alternative terminal events may be functionally
involved in gene regulation.

Methods to Identify and Evaluate Novel
Transcript Clusters

In addition to the guided transcriptome reconstruction, we
also conducted de novo transcript identification for those
reads that match to genomic regions with no annotated genes
(Methods). We focused on NTCs corresponding to genes with
multiple exons only. We refer to an NTC as a cluster of all
possible transcript isoforms. [t is possible that an NTC
contains false-positive isoforms because the nature of the
short reads in RNA-Seq does not allow identification of
complete transcript structures. In addition, complete profile
of all isoforms may not be identifiable due to low read
coverage. Nevertheless, each NTC suggests the possible
existence of a novel gene with multiple transcript isoforms.

Using these criteria, 1884 NTCs were identified that do not
overlap any Ensembl genes (v 56), all of which were
multi-exon transcripts (Online Table X). Among the 5869
exons within these clusters, 8% had spliced junction reads
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Figure 3. Novel exons in known genes identified through RNA-Seq. A, Cumulative distribution functions of conservation levels of
novel skipped exons, introns, known skipped exons, and constitutive exons. B, Cumulative distribution functions of expression levels of
the same exons/introns in A. C, Principal component analysis (PCA) and clustering of novel (NSE) and known skipped exons (SE),
based on their expression level, exon length, and splice site strength. Conservation level (cons) of the exonic regions is represented in
varying shades of colors. The representative ellipses for novel and known skipped exons were obtained by fitting the principal compo-
nents with Gaussian distributions (Online Supplement). D, Heatmaps of expression levels (log,RPKM; reads per kb of exon per million
mapped reads) of novel skipped exons. Left panel: 10 example novel exons with differential expression in HY or HF compared with
sham controls. Right panel: 10 example novel exons lowly expressed in our data, but highly expressed in one or more of the other
published mouse RNA-Seq data sets. C57BL_6J and Cast/Eij are mouse strains used in.'” E15 indicates embryonic day 15 (E15) whole
brain; PFC, adult male and female medial prefrontal cortex; POA, adult male and female preoptic area.!” Brain, liver, and skeletal mus-
cle data from Mortazavi et al.’3 ESC indicates embryonic stem cells; MLF, lung fibroblasts; and NPC, neural progenitor cells.®

suggesting alternative splicing, with the most prevalent type
being alternatively skipped exons (Table 2). Of all NTCs, 863
(46%) are now annotated as known genes in the most recent
databases of UCSC, Refseq and Ensembl (v 61), supporting
the validity of our method in identifying novel genes. We
validated the expression patterns of 7 NTCs (3 newly anno-
tated and 4 remain novel) using real-time PCR in the same
mouse samples as used for RNA-Seq (Online Figure I and
Online Table II). The results confirmed the expression of all
7 NTCs and also showed that RNA-Seq and real-time PCR
gave highly consistent measures in gene expression changes
(r=0.87, Pearson correlation).

Next, we focused on the 1021 NTCs that are still not
annotated in the newest databases. To infer biological signifi-
cance, we analyzed their expression patterns in our samples and
the other mouse RNA-Seq data sets mentioned above.!17.18
Remarkably, many of these NTCs with low abundance in the
heart had much higher expression levels in other tissues (exam-
ples shown in Figure 5A). A total of 199 NTCs passed the
minimum expression level cutoff of 3 RPKM in at least 1
sample. When examined for differential expression using the
same criteria as for known genes, 195 NTCs were differentially
expressed between at least 1 pair of samples (34 between
HF/HY and sham controls). In addition, we found that the NTCs
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Figure 4. Examples of novel alternative terminal exons iden-
tified through RNA-Seq. Read distribution plots defined simi-
larly as in Figure 2. Novel terminal exons are highlighted in dot-
ted boxes. The Ensembl-annotated isoforms (Ensembl) and the
novel isoforms (Novel) reconstructed from RNA-Seq are shown.
A, Novel alternative 3’ terminal exon in the gene Det?. B, Novel
alternative 5’ initiation exon in the gene Fes.

may be more tissue-specific than annotated genes evaluated by
an entropy-based tissue specificity index (Online Supplement
and Figure 5B). These results suggest that many NTCs may be
actively regulated and may have functional ramifications in
specific tissues.

We next classified the NTCs into coding and noncoding
clusters. Among all 1021 NTCs, 105 clusters (containing 315
possible transcript isoforms) were found to have significant
coding potential.1¢ Interestingly, the coding clusters had
significantly higher expression and conservation levels than
the noncoding clusters (Online Figure IV), consistent with the
existence of stronger selection pressure on protein-coding
sequences as observed in known genes. Indeed, we found that
46% (48 of 105) of the putatively coding NTCs had sequence
matches in public proteomic databases (Online Supplement).
These results suggest that our de novo transcript identifica-
tion method can effectively identify novel transcripts from
RNA-Seq data sets, and the novel genes identified in heart
contribute to the total complexity of cardiac transcriptome
and proteome.

Inference of Potential Function of Novel
Transcript Clusters

Functionally related genes involved in the same biological
pathways or protein interaction networks are often regulated
by similar transcription factors or other gene regulators. Thus,
one approach to infer the potential function of novel genes is
by determining whether their expression patterns correlate
with those of known genes of certain function, based on
coexpression analysis.!® Note that such analyses only provide
tentative functional indications of a gene. However, they may
help to formulate hypotheses for further experimental studies.
We applied this scheme to examine the potential functions of
NTCs. Using the WGCNA method,® we constructed coex-
pression networks encompassing all known genes and 98
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NTCs discovered in the heart samples (=3 RPKM). We
identified 52 network modules in total and focused on 20 that
are enriched with differentially expressed genes between
HY/HF and the corresponding shams. Genes in these modules
are significantly associated with GO categories related to
heart and muscle functions (Online Table XI). A total of 58
NTCs were included in the 20 significant modules. Among
them, we analyzed the 10 most highly connected NTCs (ie,
with highest connectivity) in each module that had at least 10
neighboring known genes. Fifteen NTCs from 6 modules
were chosen in this way (example shown in Figure 6A). A
complete list of GO categories related to each of the 15 NTCs
is included in Online Table XII.

Long Noncoding RNA Genes

Among the novel multi-exon transcript clusters, a large
fraction (81%) had low coding potential (Online Table X) and
thus most likely belongs to the category of IncRNA genes.
LncRNAs were recently recognized to have diverse functions
in gene regulation and may contribute to disease etiology.!
To assess the expression of IncRNAs in mouse heart failure,
we combined our noncoding NTCs with the Ensembl and
other mouse IncRNA data sets!$22 to constitute a comprehen-
sive repository of 5767 IncRNAs. A total of 703 IncRNAs
were expressed at levels =3 RPKM in our RNA-Seq data of
atleast 1 sample. Interestingly, for IncRNAs expressed below
3 RPKM, 62% of them had an expression level of at least 3
RPKM in 1 or more of the publicly available mouse RNA-
Seq data.'®17.18 Figure 5B shows that IncRNAs have higher
tissue specificity in their expression than protein-coding
genes on average. Among all expressed IncRNAs (=3 RPKM
in =1 of our samples), 15 and 135 are differentially expressed
(=1.5-fold change, FDR <5%) between HY and sham-HY
and between HF and sham-HF, respectively. Intriguingly, the
well-known H19 gene demonstrated significant upregulation
in the HF stage compared with the corresponding sham
controls (Figure 6B). This gene is highly expressed during
embryogenesis and was shown to have tumor-suppressor
activity.?®> However, its role in heart failure is not yet clear.

Discussion
Accurate and de novo transcriptome profiling is a central
issue in disease research. We describe methods and applica-
tions of transcriptome analysis through RNA-Seq in normal
and failing murine hearts. As clearly demonstrated by Matk-
ovich et al,” RNA-Seq has both accuracy and sensitivity to
detect transcripts with low abundance (such as those encod-
ing transcription factors), so new gene expression networks
associated with heart failure can be established (such as
transcriptional networks). Our work highlights the power of
RNA-Seq in de novo transcriptome profiling given its accu-
racy and the independence of a priori knowledge of tran-
scripts to be analyzed. We used newly developed bioinfor-
matic tools, namely a combination of guided transcriptome
reconstruction and de novo reconstruction approaches, to
identify novel exons and transcripts in normal and diseased
mouse hearts. As demonstrated by our validation studies, the
vast majority of the identified novel exons or transcripts are
confirmed by RT-PCR for their expression in heart. We
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Figure 5. Analysis of novel transcript clusters (NTCs) and
long noncoding RNA (IncRNA) genes identified through
RNA-Seq. A, Heatmap of expression levels (log,RPKM) of 12
example NTCs in our data and other published RNA-Seq data
sets; see Figure 3 for details of the published data sets. B,
Cumulative distribution functions of the tissue-specificity index
of NTCs, all novel and known IncRNA genes and Ensembl
protein-coding genes.

showed that the sequence and conservation features of the
novel exons are generally similar to those of the known
alternatively spliced exons. In addition, both novel exons and
NTCs were found to be expressed in a tissue-specific manner.
These properties suggest the potential functional significance
of the novel isoforms and novel transcripts. They also suggest
that the RNA-Seq technology, combined with bioinformatic
analysis, is a sensitive tool to comprehensively profile the
transcriptome complexity at individual exon resolution.

It is somewhat unexpected to us that cardiac transcriptome
encompasses such a large number of novel transcripts and
exons with potential biological significance that have never
been annotated despite extensive genome-wide profiling of
cardiac transcriptome in the past decade. These findings open
the way to further experimental investigations of their rele-
vance in the pathogenesis of heart failure. Yet, our study does
have limitations. Because the findings are mainly based on
bioinformatic observations, their functional relevance would
need to be further established at molecular and cellular levels
experimentally. In addition, the poly-A selection procedure
during RNA-Seq library preparation may introduce a posi-
tional bias in the coverage of the entire transcript (favoring
the 3" end) and not all expressed RNAs can be included in the
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Figure 6. Novel transcript clusters (NTCs) and long noncod-
ing RNA (IncRNA) genes potentially involved in disease
mechanisms. A, An example NTC and its neighboring genes in
the gene coexpression networks. Nongray nodes correspond to
genes that are associated with GO categories enriched among
all the neighboring genes of the NTC. Otherwise, the nodes are
denoted in gray. B, Read distributions of a differentially
expressed IncRNA gene (H79) in HF and sham RNA-Seq data.

library. In this study, we focused on pressure-overload—
induced heart failure, and whether the findings are general to
other types of heart failure models is unclear. Nevertheless,
our analyses revealed previously uncharacterized complexity
in the cardiac transcriptome as well as their dynamic changes
during heart failure. This study highlights the need to use both
RNA-Seq and bioinformatic tools to reevaluate cardiac tran-
scriptome in other heart disease models as well as in human
heart failure. Because the bioinformatic approaches devel-
oped in our study are generally applicable to any RNA-Seq
data sets, we suggest that application of these new tools will
vastly expand our current knowledge of transcriptome archi-
tecture and dynamics in general.
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Novelty and Significance

What Is Known?

e Accurate and de novo transcriptome profiling is a central issue in
studying the mechanisms of cardiovascular development and
diseases.

Understanding of the global cardiac transcriptome landscape is
currently limited concerning expression and variation at single
exon resolution.

Whole-transcriptome  sequencing (RNA-Seq) offers a new way to
study franscriptomes.

What New Information Does This Article Contribute?

We present bioinformatic methods to identify transcript structures
and to analyze transcriptome complexities with a particular
emphasis on quantification of RNA splicing variants at single exon
resolution using RNA-Seq data of normal and failing murine
hearts.

We validate the effectiveness and accuracy of our bicinformatic
approaches, based on experimental confirmation and cross-
database analyses.

¢ We show that the bivinformatic analyses of RNA-Seq allow in-depth
profiling and quantification of alternative mRNA structures, novel

exons, novel ranscript clusters and long noncoding RNA genes in
mouse heart.

Transcriptome profiling offers detailed insight in understanding
gene regulation in health and diseases. Previous technologies
{eg, microarrays) for this purpose are limited in coverage and
sensitivity. RNA-Seq using massively parallel next-generation
sequencing platforms can potentially enable de novo and
unbiased characterization of the franscriptome at individual exon
resolution. However, as a result of the massive amount of raw
data, RNA-Seq poses new challenges to data analysis and
interpretation. We present bicinformatic methods that enable
effective analysis of RNA-Seq data either integrating or inde-
pendent of known gene annotations. We demonstrate that such
analyses can provide a more comprehensive profile of the
mouse cardiac transcriptome. Indeed, a large number of novel
transcripts and exons with potential biclogical significance were
found from this study that had never been annotated previously.
These findings open the way to further experimental investiga-
tions of their relevance in the pathogenesis of heart failure. Qur
study highlights the need to use both RNA-Seq and bicinformatic
tools to achieve comprehensive evaluation of cardiac transcrip-
tome in heart disease models as well as in human heart failure.
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Detailed Methods

RNA purification, library preparation and Illumina sequencing

Left ventricular tissues were collected from male C57BL/6 mice after 1 week (hypertrophy stage,
HY) and 8 weeks post trans-aortic constriction (TAC) procedure (heart failure stage, HF), respectively,
and their corresponding Sham controls (Sham-HY, Sham-HF). Doppler velocity measurements of right
and left carotid arteries were obtained from TACed mice in order to ensure consistent pressure-gradient
generated by the procedure. A 6 to 10 fold change in velocity ratio between right and left carotid arteries
after TAC was required for a successful TAC. To conduct RNA-Seq analysis, total RNAs from six TAC
and Sham-operated mice at the HY stage and four TAC and corresponding Sham mice at the HF stage
were obtained. The hypertrophy and heart failure status of the TAC treated animals was established based
on a significant increase in heart weight and a significant reduction in ejection fractions measured by
echocardiogram ', Consistent with the literature *, at 1-week post TAC, cardiac hypertrophy was
detected while cardiac function was preserved. In contrast, at 8 weeks post-TAC, the mice demonstrated
both hypertrophy and heart failure phenotypes (Online Table I).

Total RNA was isolated using the mirVana kit (Applied Biosystems), according to the
manufacturer’s instructions. We used the standard Illumina protocol to prepare libraries for RNA-Seq
(http://www.illumina.com/support/documentation.ilmn). Briefly, 10pg total RNA was first processed via
poly-A selection and fragmentation. We generated first-strand cDNA using random hexamer-primed
reverse transcription and subsequently used it to generate second-strand cDNA using RNase H and DNA
polymerase. Sequencing adapters were ligated using the Illumina Paired-End sample prep kit. Fragments
of ~200 bp were isolated by gel electrophoresis, amplified by 15 cycles of PCR and sequenced on the
Illumina Genome Analyzer I in the paired-end sequencing mode (2x72 bp or 2x76 bp reads).

Real-time PCR validation of gene expression

Total RNA was isolated from mouse Sham, hypertrophy and heart failure left ventricles using
Trizol (Invitrogen) according to the manufacturer’s protocol. For reverse transcription, 1ug of total RNA
was used to generate first strand cDNA with Oligo-dT primer. Real-time PCR was performed using the
SYBR Green Mix (Bio-Rad) on the CFX96 Real-time System (Bio-Rad).

RT-PCR validation of novel exons
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cDNA libraries prepared from mouse Sham, hypertrophy and heart failure left ventricles were
used to carry out PCR with primers targeting the two flanking constitutive exons of the novel exon. PCR
was performed with Taq DNA polymerase (Invitrogen) using a C1000 Thermal Cycler (Bio-Rad). The
sizes of the PCR products were confirmed using 4% Agarose gels. Subsequently, bands on the gel
corresponding to the spliced inclusion form of the novel exons were purified using QIAquick Gel
Extraction Kit (Qiagen) and sent to UCLA core facility for direct DNA sequencing.

Mapping of the RNA-Seq reads

In total, we obtained 168 million pairs of reads (2x72 or 2x76 bp in length) using the lllumina GA
II sequencer. We mapped the reads to the reference genome and transcriptome using a two-step mapping
strategy. In the first step, the reads were mapped to 49,039 Ensembl transcript sequences (release 56,
September 2009) ° using Bowtie ¢ allowing up to 3 mismatches (~4% of total length). In the second step,
we aligned the unmapped reads from the first step to the mouse genome (mm9) using BLAT 7 with the
options: -stepSize=8, -fine. The output alignments were filtered to allow up to 5 mismatches, (~7% of
total length). BLAT enabled identification of novel or known spliced junctions that connect two or more
exons intervened by long introns. The above two steps were carried out for individual reads without
considering the read-pairing information. Next, all read pairs were inspected to determine whether the
mapped results support correct pairing of the reads according to the following criteria: 1) the pair of reads
should be mapped to the same chromosome (study of trans-splicing across chromosomes is beyond the
scope of this work); 2) the two reads of a pair should be mapped to opposite strands of the chromosome;
3) If one read in a pair is mapped to a gene, the other one should be mapped to the same gene or to an
intergenic region. (Possible trans-splicing across Ensembl-annotated genes is ignored.) Since each read in
a pair may map to multiple locations in the genome, all possible combinations of their mappings were
examined for correct pairing. The pair of reads is considered as uniquely mapped if and only if one
unique pair of mapped locations was identified. Altogether, about 95 million pairs of reads were uniquely
mapped and used for further analyses (Table 1).

Expression measurement and analysis of differential gene expression

To measure expression levels of genes and exons, we used the variable RPKM (reads per kilobase
of exon per million mapped reads) defined by Mortazavi et al. *. Analysis of differential gene expression
was carried out for HY vs. Sham-HY or HF vs. Sham-HF, respectively. The number of uniquely mapped
read-pairs for each gene in cach sample was recorded. The total number of mapped reads in each lane was
normalized using the upper-quartile normalization method °. Fisher's exact test was then performed using
the above read counts for each gene. The resulted p-values were corrected via the Benjamini and
Hochberg method as implemented in R. Finally, differentially expressed genes were defined as those with
changes of at least 1.5-fold between a pair of samples at a false discovery rate (FDR) of 5% for genes
expressed at > 3 RPKM in > 1 sample. Online Table III lists all genes differentially expressed between
HY and Sham-HY or HF and Sham-HF.

Gene ontology (GO) enrichment analysis

The GO terms of each gene were obtained from the Ensembl database. To identify GO categories
that are enriched in a specific set of genes (e.g., those that are differentially expressed in heart failure), the
number of genes in the set with a particular GO term was compared to that in a control gene set. The
control gene set was constructed so that the randomly picked controls and the test genes have one-to-one
matched transcript length. Based on 10,000 randomly selected control sets, a p-value for enrichment of
each GO category in the test gene set was calculated as the fraction of times that 7., was lower than or
equal to Foonpon Whete Fi, and F,,,, denote, respectively, the fraction of genes in the test set or a random
control set associated with the current GO category. A p-value cutoff (1/total number of GO terms
considered) was applied to choose significantly enriched GO terms.

Analysis of differential isoform expression and dissimilarity

38



To estimate the expression level of each isoform of the Ensembl genes, we used the Cufflinks
software (v0.9.2) '* where the gene structures were defined according to Ensembl v56 annotations. We
used the “cuffdiff” module to estimates isoform expression levels of cach gene and test whether the
isoforms are differentially expressed between two samples. Based on the outputs from “cuffdiff”, we
identified genes with significant isoform expression changes (p < 0.05) due to alternative transcription
start site (ATSS) or alternative splicing (AS) comparing HY and Sham-HY or HF and Sham-HF (Figure
2A and Online Table IV). To further assess overall isoform expression dissimilarity in two samples (A
and B), a dissimilarity score was defined based on the Morisita-Horn similarity index as follows:

2Y P(APB)
loeg t—
SIP A+ P(B)]

dissimilary score =

where P.(A) and P.(B) represent the expression of isoform 7 normalized by overall gene expression in
the sample A or B. We only considered highly expressed genes (RPKM > 3) in this analysis. A total of
265 genes had dissimilarity scores differing by more than 0.2 between two different heart failure stages
(Figure 2C).

Guided transcriptome reconstruction

We developed a method to reconstruct alternative isoforms and discover novel isoforms of known
genes. In the first step, we defined novel expressed sequence fragments (seq-frags) in each gene by 1)
identifying the expressed blocks which are connected to known exons by junction reads or 2) extending
expressed regions from the known exon boundaries. To define a seq-frag, we imposed a minimum
expression level cutoff to control for background noise. For each gene, the expression levels in the
intronic regions were fitted by a binomial distribution and the expression level cutoff was determined as
the value at the 95% of the cumulative distribution. Another expression level cutoff was defined as 10%
of the average expression of all Ensembl exons in the gene. The smaller value of the two cutoffs was
chosen as the final cutoff to define novel seq-frags. To reduce possible false positive isoforms, we
required at least 2 spliced junction reads originating from each end of a seq-frag.

We then constructed a directed graph in which known exons or novel seq-frags defined above
were considered as nodes and their connections represented by spliced junction reads as edges of the
graph. All possible paths of the graph were then determined originating from the root node (the 5'-most
known exon or seq-frag of the gene). Note that isoforms constructed in this way may contain false
positives since not all possible paths of the graph may correspond to an actual expressed isoform. Further
filtering may be applied to reduce false positives, such as by calculating the likelihood of a path being an
authentic isoform using the pairing information of the paired-end reads. However, since our main goal is
to identify as many novel exons as possible, we did not implement such filtering steps in order to avoid
loss of authentic novel exons.

Analysis of the features of novel exons

To calculate the conservation levels of novel exons, we used the PhastCons scores for the
multiple alignments of 30 vertebrate genomes (with mouse as the reference) in the UCSC genome
database '™ "%, The conservation scores for individual exons or ifitrons were calculated by taking the
average PhastCons score per base in the region. The 5' and 3' splice site strength were evaluated using the
MaxEnt method . Three features (splice site strength, expression level and exon length) were included in
the principal component analysis (PCA). In Figure 3C, the representative ellipses for novel skipped exon
and known skipped exon were obtained by fitting the principal components with a Gaussian distribution.
The central points and rotation angles of the ellipses were calculated based on the average and standard
deviation of the fitted distributions.
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Prediction of miRNA target sites in alternative termination exons

We downloaded the 46-way multiz alighments from the UCSC browser and prepared the multiple
sequence alignments for 23 species for the alternative termination exons as needed by the TargetScan
programs ">, Targetscan predicted the miRNA target sites by considering the context features and
conservation levels of the putative target sites in different species. A total of 892 alternative termination
exons had predicted miRNA target sites for which the context score is less than -0.2 or the target site is
conserved, when all known mouse miRNAs were included in the analysis. Furthermore, we collected 102
miRNAs that are known to be expressed in mouse heart "%, About 39% of the alternative termination
exons had predicted target sites for the miRNAs expressed in heart.

RNA-Seq data of other mouse tissues

To validate the expression of novel exons or novel transcript clusters (NTCs) in other tissues or
cell types, we collected publically available RNA-Seq datasets (for 12 tissues/cell types) from the NCBI
Short Read Archive (SRA) (IDs: SRP000198, SRA021498, SRA012498). All reads were preprocessed
and mapped to the reference sequences as described in the above section for read mapping. Gene and
exon expression levels were analyzed in the same way as described above.

Identification of potential NMD targets and protein domain analysis

To investigate the impact of novel exons on gene expression, we focused on questions including
whether in-frame premature termination codons (PTCs) are introduced, whether nonsense-mediated decay
(NMD) of the mRNA may be activated or truncated/defective proteins may be generated. Briefly, the
novel exons were introduced into all known Ensembl transcripts of the corresponding gene to determine
whether a PTC can be generated. If a PTC resides more than 55 nucleotides upstream of the 3'-most exon-
exon junction, the gene or transcript is classified as a potential target of the NMD pathway. For protein
domain analysis, we predicted functional domains in translated amino acid sequences of all transcripts
using the Pfam server . We examined the protein domain organizations prior to and following
introduction of a novel exon into the transcript.

Construction of NTCs in intergenic regions (de noveo reconstruction)

To identify NTCs, all reads mapped to intergenic regions were collected and sorted according to
chromosomes. Since we only focused on multi-exon NTCs in this study, we first inspected spliced
junction reads to find evidence of splicing. Only junction reads corresponding to the canonical splice site
signals (GT-AG, GC-AG and AT-AC) in either strand were included for subsequent analyses. Extending
from the identified exon junctions, we searched for expressed seq-frags by checking for mapped reads in
the neighborhood. The boundaries of expressed seq-frags were defined if 1) another exon junction is
observed, or 2) expression level tapered off. Seq-frag definition and isoform reconstruction were
conducted similarly as in the guided transcriptome reconstruction. Finally, the novel transcript isoforms
were clustered together to generate NTCs.

The NTCs were classified into coding and non-coding clusters using the Coding Potential
Calculator (CPC) software *°. This method assesses coding capability using the support vector machine
algorithm. We evaluated all isoforms in a NTC and classified the NTC as coding if at least one transcript
isoform is predicted as coding.

Tissue specificity index
To characterize the tissue-specific expression of NTCs and long non-coding RNAs (IncRNAs),

we defined a tissue specificity index for each gene, T(G), as follows:

1GY=1-H(G)
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H(G) =~ Y, plg)log, p(g)

-1

where # is the total number of tissues and p(g,) represents the expression level (RPKM) of gene g
normalized by the sum of expression levels of all genes in tissue 7. H((7) was normalized by the total
number of tissues (i.e., divided by log, n) so that its value is between 0 and 1. In this definition, larger
7(G) values correspond to more significant tissue specificity.

Comparison of novel exons and NTCs to the proteomics database

To check whether novel exons or NTCs could be translated or not, we compared the amino acid
sequences of novel exons and NTCs with known proteomics data in the “PRIDE” database *'. This
database is a centralized, standards compliant, public data repository for proteomics data. For both novel
exons and NTCs, we performed Blastx of the translated novel sequences against expressed protein
sequences in the database with an E-value cutoff of 1e-10. After getting all alignments between the novel
exons or transcripts and protein sequences, we calculated the overall identity percentage (%id) for the
alignments. Since the novel sequences may have sequence similarity to known protein-coding genes, the
presence of alignments passing the E-value cutoff may not suggest that they are protein-coding. To
resolve this problem, we carried out another round of Blastx of the novel sequences against known
protein sequences (combining UCSC genes, Refseq and ensembl v61 proteins). We considered the novel
sequences as putatively protein-coding only ifits %eid against the PRIDE database was greater than that
against the known protein sequences. In total, we identified 174 novel exons and 48 NTCs (out of the 105
predicted as coding) that may code for proteins. Among the putatively translated novel exons and NTCs,
40 and 27, respectively, had expression level difference of at least 2-fold in the HF or HY (or both)
sample compared to the Sham controls.

Co-expression network analysis

In total, 10,091 known genes and 98 novel transcript clusters (required to have RPKM>3) were
included in the co-expression network analysis. The expression levels of each gene in 8 samples (2
technical replicates for HY, HF and each Sham sample) were calculated. Network construction and
module detection were performed using the WGCNA package implemented in R ». Following
recommended procedures and parameters to threshold the hierarchical clustering tree, we detected 52
modules in total, among which 20 (Online Table XI) were enriched with differentially expressed genes
between HY and Sham-HY or HF and Sham-HF. We thus focused on the 20 modules in the functional
analysis. In ecach module, the 10 most highly connected NTCs were identified, cach of which was
required to have at least 10 neighboring known genes. In this way, 15 NTCs were chosen and their
neighboring genes were subject to GO analysis (Online Table XII).

Graphical representations and bicinformatic analysis

The proportional Venn diagrams were produced via the BioVenn website *. Read distribution
plots and cumulative distribution functions were generated using custom scripts in R. Heatmaps (Figures
3D and 5A) were drawn using the MeV software package *'. Network representations in Figure 6A was
generated using Cytoscape >, All bioinformatic analyses including statistical tests were performed using
in-house scripts written in Python, Perl or R.

Supplemental Results
Impact of novel exons on gene expression
To investigate the impact of novel exons on gene expression, we focused on questions including

whether in-frame premature termination codons (PTCs) are introduced, whether nonsense-mediated decay
(NMD) of the mRNA may be activated or truncated/defective proteins may be generated. We found that
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825 novel exons in 558 genes can generate PTC-harboring transcripts. Among the 392 exons that do not
lead to introduction of PTCs, 201 were located in the UTR regions and none of those in the coding
regions affected known protein domains as annotated in the Pfam database *°. Thus, there might exist
selection pressure to protect a gene's protein-coding potential from being disrupted by these exons. On the
other hand, 117 (14%) of the PTC-inducing novel exons disrupted the predicted protein domain
organizations of the gene, mostly by generating truncated proteins. Some of these genes are known to
have important functions in the heart, including cytoskeleton-related genes (Myol9, Myh7b, Snapcd,
Spnal and Spnb2), kinase genes (Mark4, Bik, Prica and Ripkl) and RNA binding proteins (Tial, Myef2
and Spen). Interestingly, the majority (95 out of 117) of exons with the potential to generate truncated
proteins are predicted to trigger the NMD pathway ***”. In contrast, 468 (57%) of all the PTC-inducing
novel exons can activate this pathway. Thus, as a surveillance mechanism, NMD is preferably used to
prevent production of defective protein products.
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Online Figure I. Real-time PCR validation of gene expression levels estimated by
RNA-Seq. X-axis: AACt values from real-time PCR comparing HY or HF and their corre-
sponding sham controls normalized by the expression level of Gapdh. Y-axis: log,(fold-
change) between HY or HF and their corresponding sham controls estimated via RNA-
Seq. Pearson correlation coefficient (R) based on all genes is shown in black. Blue dots
and text correspond to known Ensembl genes, red dots and text correspond to novel
transcript clusters identified in our study.
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Online Figure Il. Distributions of novel isoforms as a function of gene expression
levels. Percent of Ensembl genes with novel iscforms detected by the guided transcriptome
reconstruction, Genes were ranked according to their expression levels (low to high, x-axis:
percentile of the gene in the ranking of all genes). To show the entire spectrum of gene
expression levels, we included all genes expressed above 0 RPKM,
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Online Figure Ill. Expression levels of novel exons. Cumulative distribution functions
of expression levels of novel exons in the heart samples in our study (blue) and the maxi-
mum expression (max. exp.) level of the novel exons (red) across all available RNA-Seq
data as shown in Figure 3D.
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Online Figure IV. Conservation and expression levels of novel transcript clusters.
Cumulative distribution functions of conservation and expression levels of coding or
non-coding NTCs in our study, known protein-coding genes, and random intronic
regions.
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Online Tables

Online Table I. Phenotypes of 1-week and 8-week post-TAC mice and corresponding Sham

controls. BW: body weight, HW: heart weight, EF: gjection fraction, HR: heart rate.

Group BW (g) HW (mg) HW/BW %EF HR (bpm)
TAC
30.9+0.58 147 £ 14.6 4.74 £0.27 55.39+3.90 506.3 £ 55.1
(1 week)

Sham 32.8+1.43 138 £1.1 422+0.22 55.35+6.81 532.0+47.4
t-test p=0.06 p=0.008 p=10.025 p=0.99 p=051
Group BW (g) HW (mg) HW/BW %EF HR (bpm)

TAC
31.6+1.47 245+22.4 777 £1.09 26.59 £ 6.18 4893 +41.9
(8 week)
Sham 33.5+2.21 172+ 33 513+091 52.61 £3.72 467.7 £ 32.5
f-test p=023 p=0017 p=10.019 p=0.00036 p=0.352

Online Table II. Primer sequences used for validation of expression of known genes and novel

genes.

Gene Primerl Primer2
A2bpl GTGGTTATGCTGCGTACCG GGAGCAAGTGTGTGGTGGTA
Actb AGCCATGTACGTAGCCATCC GCTGTGGTGGTGAAGCTGTA
Angptl4 ACGCTTATGAGCTACGGGCTCCA | GCCTTGGGTGCAGCAACGCT
Cfd GTGGAACCCGGCACGCTCTG TGCCGGAGTCTCCCCTGCAA
Clip2 TACGGCACGGATCGTITCGCG AGCGGTCACAAAGGCCGTGT
Col6al CCGGCGCAATTTCACGGCAG TCCTCTGGCAGCCTGGCACT
Cugbpl GTTCCAAGGACCTGGTCTGA CCAGGGAGGACCTTCATGTT
Cugbp2 TCGGAAAAGGAGCTGAAAGA GCCTCAAGTGCAGCTTTTCT
Ddx23 CAAGGACCGAAAAAGATCCA GTCGCTTGTCTCCATGTTCA
Egrl AGCGAACAACCCTATGAGCACC ATGGGAGGCAACCGAGTCGTTT
Fos CACTGCCCGAGCTGGTGCATT ACACAGACCAGGCCTTGACTCAC
Hnrnpal TGGAAGCAATTTITGGAGGTGG GGTTCCGTGGTTTAGCAAAGT
Hnrnpa2bl AAGAAATGCAGGAAGTCCAAAGT | CTC CTCCATAACCAGGGCTAC
Hnrnpe CCTCCTCCTCCTCCTATTGC TTGGAAGAAGATCCCCTTTG
Hnrnpd GATCCTAAAAGGGCCAAAGC ACCTCACCAAAACCACCAAA
Hnrnpf GGCATCTGTGGTGGTTCTTT TGCAGTCGGAGAGGAAGTIT
Hnrnpu GTCTCCTCAGCCACCTGTTG TTGCCTTTTGACACACCGTA
Hnrpdl CAAACTGGATGGCAAATTGA CTCTCCAAAGGCTCCAAAAT
Inmt ACTACAGCTTCCACTCTGGCCCT GCCCCCTACACCTCCTGTAGAG
Junb CCGAGAAAGCAGGCGCACCA GCGTCCTCGGGAGCTGGAGA
Lsm7 ACCATTCGGGTGAAGTTCCAGG GAGTGTCCTCCGTCAGCTTGTA
Mbnl2 GCCGCTGTTCAAGAGAGAAC GGCGTTCCTGGAAACATAAA
Mirpl42 CGCGGTGAGTAGCCGTGGAG GGCGAGGTCCACCTGGCAAT
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Mybpc2

GCCACTGCGGTCCCAAGTCC

AGGTGGGGCCTCTTTIGGGGG

Myh7 TGAGGAGGCGGAGGAGCAGG CACGGGCACCCTTGGAGCTG
Nppb AGGGAGAACACGGCATCATT GACAGCACCTTCAGGAGAT
Ptbpl AGCAGAGACTACACTCGACCT GCTCCTGCATACGGAGAGG
Rbm17 TCTGCAGGGGAAGTTCTGAT GGGTCTGGTCGTCTTGAAAA
Rbm9 AACCAGGAGCCAACAACAAC ACTCCCGTAGAGGGTCAGGT
Rbmx ACTTITGAAAGCCCAGCAGA GGTTCCTCCACTTCCTCCTIC
Rnpsl GAAGAGACGCAGTGCTTCAA CGGAGGAGCTGCTAGAACTG
Rip4 AGCAGACAGTGCTTGGCAGGTTC | CGTGCCTGGCCCTGCGATTT
Scndb GGGCACTGGGCTTTTGGGTCT GGTGCAGGGCAGCAGGATCG
Strsl CACTGGTGTCGTGGAGTITTG GGCTICTGCTACGACTACGG
Sfrs3 TGGAACTGTCGAATGGTGAA GACGCTGAAAGGGCTAGTTG
Sfrs4 AAAAGCTGGACGGAACTGAA CTCTTCGAATGGCTGCTTTT
Strss TGCTCCACCTGTAAGAACAGAA GTGCATCCGCAAAGGTTACT
Strs7 ATCGCTATAGCCGACGAAGA CGAGGAGATGCTGATCTTGA
Tmem82 GGGGCCCTTGGAGTCTCGGT TCCCGGAACCCTTGCCCAGA
U2afl GAGATGAACGTCTGCGACAA ATCGGCTGTCCATTAAACCA
U2af2 ACTCCTGATGGTCTGGCTGT TCAGTAATGCCAAAAGGGATG
Vim CCAGAGACCCCAGCGCTCCT GCCGGAGCCACCGAACATCC
chr11:62416331-

62418311+ CTGGGGTGAGGAGTGGTCTA AGCTCAACGAGCGAGAAGAG
chr8:94498099-

94515675- GATTTCCAGCCTGCTICTTG CGGTTGTGTGAGCTCCTTTT
chr19:28845241-

28862777+ GAGTICTGTICAAGGGGATCG CGTCCAGTGAAACTGCAAAA
chrl:188411121-

188439353+ GTGGCTGCTGAGGTCAGACT AACAGGAAACGTGGAGTCGT
chr6:134879119-

134901898+ TGTGGAAGGGGGAGATACAG GAGATGCAGTCCGGTAGAGC
chr17:35133686-

35137288- CCTCTGGAGAAAAGGTGCTG GAGTATGACCAGGCCCAAGA
chr13:103119664-

103127036+ GAAGTGCATTGAGGCTGTGA CCCATTTGACGACATGATGA

Online Table III. List of differentially expressed genes. All differentially expressed genes between HY

or HF and the corresponding shams were listed with fold-change values. “- denotes not differentially
expressed. UP: up-regulated; DN: down-regulated.
Online Table I1I is supplied as an Excel datasheet.

Online Table IV. List of genes with differential isoform expression due to alternative splicing (AS)

or alternative transcription start sites (ATSS). N: not differentially expressed; Y: differentially

expressed.

Online Table IV is supplied as an Excel datasheet.

Online Table V. GO categories of genes with differential isoform expression due to alternative
transcription start sites (ATSS) or alternative splicing (AS). Only genes whose differential

expressions are common to the HY and HF stages were analyzed. Red color: related to muscle function,
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blue color: related to ATP synthesis process.

GO ID | P-value | Description
GO terms enriched in genes with ATSS difference
GO:0015986 < 0.0001 ATP synthesis coupled proton transport
proton-transporting ATP synthase complex, coupling factor
G0:0045263 < 0.0001 F(o)
mitochondrial proton-transporting ATP synthase complex,
G0O:0000276 << 0.0001 coupling factor F(o)
GO:0005739 <0.0001 mitochondrion
GO:0055010 < 0.0001 ventricular cardiac muscle morphogenesis
GO:0055003 < 0.0001 cardiac myofibril assembly
GO:0060048 <0.0001 cardiac muscle contraction
GO:0016459 0.0003 myosin complex
GO:0060047 0.0006 heart contraction
GO:0045214 0.0008 sarcomere organization
GO:0015986 0.0001 ATP synthesis coupled proton transport
GO terms enriched in genes with AS difference
GO:0008746 <0.0001 NAD(P) transhydrogenase activity
G0O:0032781 < 0.0001 positive regulation of ATPase activity
regulation of excitatory postsynaptic membrane potential
G0O:0014853 < 0.0001 involved in skeletal muscle contraction
G0:0030018 <0.0001 Z disc
G0O:0030017 <0.0001 sarcomere
GO:0005862 < 0.0001 muscle thin filament tropomyosin
GO:0045214 0.0004 sarcomere organization
GO:0008016 0.0019 regulation of heart contraction
G0O:0005861 0.002 troponin complex
G0:0055010 0.0021 ventricular cardiac muscle morphogenesis

Online Table VI. List of novel alternative splicing events identified in Ensembl genes. Genomic
coordinates shown according to the mm9 mouse genome assembly. SE: skipped exon; RI: retained intron;
A3E: alternative 3'ss exon; ASE: alternative 5'ss exon; MXE: mutually exclusive exon.

Online Table VIis supplied as an Excel datasheet.

Online Table VII. Primer sequences used for validation of novel alternatively spliced exons. “Y” in
confirmation column means expression of the novel exon was confirmed. Genomic coordinates shown
according to the mm9 mouse genome assembly.

Ensembl 1D Gene Confir- | Novel exon Primerl Primer2
symbol mation | coordinate
ENSMUSGO00 | Ash2l Y chr8:26940847:- CCCAAGTTTG | CCAAAGGAT
000031575 _chr8:26940864:- GACTTTTGGA | AGCCATGAG
GA
ENSMUSGO00 | Atp2bl Y chr10:98481912:+ chr | GTGGCCAGA | GGAGGGTTG
000019943 10:98481998:+ TCTTGTGGTT | TCGCCTTAGA
T G
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ENSMUSGO00 | Camk2g chr14:21560600:- GGTCTACGGT | TAGGTGCAC
000021820 chr14:21560713:- GGCATCCAT | GCTGGAACTC
ENSMUSG00 | Csdel chr3:102840498:+ chr | TCCTTTGGAA | AACCCCAGTT
000068823 3:102840644:+ CTTGTGCTGA | TCACGAAGT
G
ENSMUSG00 | Hdac7 chr15:97631505:- GGACGTTIGT | TGCACCACTG
000022475 _chr15:97631760:- GATGCTACCC | TCTTCCACTC
ENSMUSGO0 | Lyst chr13:13779100:+ chr | GAGTTCTCCA | TCTTGGCTCA
000019726 13:13779255:+ GGCTGCTTIG | TCCTCCTCTG
ENSMUSGO00 | Mef2d chr3:87947272:+ chr3 | CTTCGCGTAA | AGGAGCCTC
000001419 87947421+ CCGAGGATT | ACACTGTGCT
C
ENSMUSGO00 | Nrgl chr8:32929525:- CCAGAGAAA | GGCCTICTICIT
000062991 _chr8:32929666:- CCCCTGACTC | CTTCCACAAA
C
ENSMUSG00 | Nsdl chr13:55413307:+ chr | GCGAAGTCA | CGAGCTTGG
000021488 13:55413344:+ CCAAGGAAA | AAATGAAAA
GA GC
ENSMUSGO0 | Ppplrl2a chr10:107712814:+ ¢ | TGAAATGGA | AAGTCCTGCT
000019907 hr10:107712944:+ AGAAGAGCT | GCTTTGCTTC
CAAA
ENSMUSGO0 | Ppplrl2a chr10:107686012:+ ¢ | AAAGCCCAT | GCACCGTAA
000019907 hr10:107686125:+ GGCTTCTGTA | CTGCCAGTCT
A T
ENSMUSGO0 | Ppplr9a chr6:5033041:+_chré: | TGAAATGGA | TGACAGTCTC
000032827 5033106:+ AGAAGAGCT | CCGTGAGTIC
CAAA
ENSMUSGO0 | Prkca chr11:107806871:- AGAGCATGC | GGGAGGCAT
000050965 _¢hr11:107806918:- CTTCTTCAGG | TTGATCTTTC
A A
ENSMUSGO00 | Rbm24 chr13:46517645:+ chr | AGCTTCACCC | ATGCTGCATA
000038132 13:46517757:+ AGCCCTTATC | GGGGTACTG
G
ENSMUSGO00 | Slc27al chr8:74094095:+ chr8 | TTCTCGGAGT | TGCAGACGA
000031808 174094211+ CTGGAATGCT | TACGCAGAA
AG
ENSMUSGO00 | Slc37a4 chr9:44209790:+ chr9 | GCAGCATCC | ATTGGCCATA
000032114 144209852+ ATGTTCCTCT | AGTCCCACA
T A
ENSMUSGO0 | Socs7 chr11:97238809:+ chr | ACGCTGCCTA | CTACTTCAGG
000038485 11:97239000:+ CATCTGTCCT | GGCTTCACCA
ENSMUSGO00 | Ubr3 chr2:69809459:+ chr2 | GCTCTGACGC | TGTGGTTAAC
000044308 169809491 :+ TTTGGACTCT | TGGGGAGAG
G
ENSMUSGO00 | Usp36 chr11:118147968:- CTCTACACTT | GAAGCACCTT
000033909 _chr11:118148085:- GGCGGTGTT | CTTGGCAGA
G G
ENSMUSG00 | Huorpll chr17:80444280:- ATATGCAAG | TAAAGGCAG
000024095 _chr17:80444362:- GCCAACTCGT | TAGCGGACC
C AT
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ENSMUSGO00 | Iwsl chr18:32253193:+ chr | ACCTGGAGA | TCGATGCTGA

000024384 18:32253351:+ TCCTGGCTTC | TTTTCACTGC
T

ENSMUSG00 | Jmjdla chr6:71566812:- TGGAGCTGT | CATCCTTGAG

000053470 _chr6:71566864:- AAAACGCAA | GAAGTTTTGC
GT T

ENSMUSG00 | M3 chr5:24836194:- CCTGGAACTC | TGCTCCATCT

000038056 _chr5:24836241:- AGGGTACTG | GTGACCATIT
C

ENSMUSGO00 | Myol9 chr11:84720256:+ chr | CTGAGAAGG | GGCCTCAGA

0000203527 11:84720373:+ CTCGGACCTC | CCACAGTTAG

C

ENSMUSG00 | Slk chr19:47715345:+ chr | GAAAAATGC | CGGACTCCCC

000025060 19:47715419:+ CACCTGTTGG | AGTCATTTITA
T

ENSMUSG00 | Ank2 chr3:126689503:- CCTGAGACA | GGATCTTCCT

000032826 _chr3:126689556:- ATGACGGAG | CCCTCCAGAC
GT

ENSMUSG00 | Ank2 chr3:126673921:- CGTGGCTICTT | GAAACTGAG

000032826 _chr3:126673956:- TCTTCCAGTC | CTCCCGAAG

GT

ENSMUSG00 | Ank2 chr3:126629721:- CCTTCCTTCA | AGTGGGTTTG

000032826 _chr3:126629812:- GCCAAAGAT | TGGTITICTGG
G

ENSMUSGO00 | Acin4 chr7:29680140:- CAATGGAGC | GTCACGAGG

000054808 _chr7:29680205:- ATATCCGTGT | CCACTATGGT
G T

Online Table VIIL Novel alternative terminal exons identified in Ensembl genes and categorization of
different types of exons. See main text for the definitions of the types of novel terminal exons. "Original":
terminal exons identified relative to Ensembl v56. "Updated”: terminal exons identified relative to the
most recent databases including Ensembl v61, UCSC KnownGenes and RefSeq genes.

Types of novel terminal exons 5" type (1) 5' type (2) 3' type (1) 3' type (2)
Original terminal exons 963 129 1,684 57
% of total (2,833) 34% 5% 59% 2%
Updated terminal exons 757 91 1,554 51
% of total (2,453) 31% 4% 63% 2%

Online Table IX. List of novel alternative terminal exons. Genomic coordinates shown according to
the mm9 mouse genome assembly. See main text for the definition of different types of exons.
Online Table IX is supplied as an Excel datasheet.

Online Table X. List of novel transcript clusters. All novel transcript clusters were listed with
expression level (RPKM) in different samples (HY, Sham-HY, HF and Sham-HF), coding potential (Y:
coding, N: non-coding).

Online Table X is supplied as an Excel datasheet.
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Online Table XI. Twenty significant modules in the co-expression network enriched with
differentially expressed genes. Number of known genes (KG), novel transcript clusters (NTC), and
differentially expressed (DG) genes are listed with enriched GO terms.

module KG |NTC |DG | enriched GO 1D P-value description
salmon 160 0 50 Sham-HF GO:0007264 0.0003 small GTPase
mediated signal
transduction
GO:0005743 0.0004 mitochondrial inner
membrane
GO:0050873 0.0007 brown fat cell
differentiation
GO:0030286 0.0013 dynein complex
GO:0007264 0.0003 small GTPase
mediated signal
transduction
midnightbl | 149 3 52 Sham-HF GO:0016790 <0.0001 thiolester hydrolase
ue activity
GO:0005739 < 0.0001 mitochondrion
G0O:0016874 0.0005 ligase activity
GO:0005759 0.001 mitochondrial matrix
darkgrey 63 2 33 Sham-HF GO:0005739 0.0001 mitochondrion
GO:0009055 0.0002 electron carrier
activity
GO:0055114 0.0007 oxidation reduction
G0O:0016491 0.0011 oxidoreductase
activity
GO:0022900 0.0013 electron transport
chain
GO:0000166 0.0031 nucleotide binding
lightcyan 149 2 58 Sham-HF GO:0006810 < 0.0001 transport
GO:0005743 <0.0001 mitochondrial inner
membrane
GO:0005739 < (0.0001 mitochondrion
GO:0070469 0.0001 respiratory chain
GO:0022900 0.0001 electron transport
chain
GO:0051291 0.0004 protein
heterooligomerization
GO:0005759 0.0009 mitochondrial matrix
purple 562 10 164 | HF GO:0008360 < 0.0001 regulation of cell
shape
GO:0017124 < 0.0001 SH3 domain binding
GO:0070059 <0.0001 apoptosis in response
to endoplasmic
reticulum stress
GO:0007015 < 0.0001 actin filament
organization
GO:0005515 < 0.0001 protein binding

52




GO:0005737 <0.0001 cytoplasm
G0O:0003779 <0.0001 actin binding
saddlebro | 37 0 8 Sham-HF G0O:0005739 < 0.0001 mitochondrion
wn GO:0055114 0.0011 oxidation reduction
GO:0008152 0.0015 metabolic process
GO:0016491 0.0027 oxidoreductase
activity
darkturquo | 77 1 32 Sham-HF G0O:0008152 < 0.0001 metabolic process
ise G0O:0005739 < 0.0001 mitochondrion
GO:0005759 0.0001 mitochondrial matrix
G0O:0003824 [ 0.0005 catalytic activity
GO:0005743 | 0.0012 mitochondrial inner
membrane
G0O:0031072 | 0.002 heat shock protein
binding
darkred 87 1 17 Sham-HF G0:0005739 0.0002 mitochondrion
G0:0000166 0.0003 nucleotide binding
GO:0007179 0.0015 transforming growth
factor beta receptor
signaling pathway
red 675 10 271 | HY, HF GO:0005587 <0.0001 collagen type IV
GO:0005515 [ <0.0001 protein binding
GO:0005737 <0.0001 cytoplasm
G0O:0043277 <0.0001 apoptotic cell
clearance
GO:0005739 0.0001 mitochondrion
G0O:0016020 0.0002 membrang
GO:0005856 [ 0.0003 cytoskeleton
brown 745 10 419 | HY, HF, GO:0000120 < 0.0001 RNA polymerase 1
Sham-HF transcription factor
complex
GO:0050840 <0.0001 extracellular matrix
binding
GO:0001568 <0.0001 blood vessel
development
G0:0005604 < 0.0001 basement membrane
G0:0051301 <0.0001 cell division
GO:0005581 <0.0001 collagen
GO:0005515 [ <0.0001 protein binding
cyan 157 0 50 Sham-HF GO:0005743 < 0.0001 mitochondrial inner
membrane
G0O:0003824 < 0.0001 catalytic activity
GO:0005739 | <0.0001 mitochondrion
GO:0008016 | 0.0001 regulation of heart
contraction
G0O:0046716 0.0002 muscle maintenance
G0O:0070469 0.0005 respiratory chain
G0O:0007050 [ 0.0006 cell cycle arrest
mediumpu | 27 1 2 HY GO:0045121 0.0004 membrane raft
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rple3

darkorang | 49 8 HY, Sham- | GO:0006464 0.0029 protein modification
€ HY Process
GO:0008134 0.0031 transcription factor
binding
grey60 148 62 Sham-HF GO:0005743 <0.0001 mitochondrial inner
membrane
GO:0005759 < 0.0001 mitochondrial matrix
GO:0005739 <0.0001 mitochondrion
GO:0042645 0.0002 mitochondrial
nucleoid
GO:0046872 0.0003 metal ion binding
G0O:0008270 0.0008 zinc ion binding
GO:0006915 0.001 apoptosis
turquoise | 956 9 Sham-HY | GO:0006974 < 0.0001 response to DNA
damage stimulus
GO:0030529 < 0.0001 ribonucleoprotein
complex
G0:0003723 | <0.0001 RNA binding
GO:0003674 < 0.0001 molecular function
GO:0005515 < 0.0001 protein binding
GO:0042765 < 0.0001 GPI-anchor
transamidase
complex
GO:0005737 < 0.0001 cytoplasm
greenyello | 500 72 Sham-HF GO:0006810 < 0.0001 transport
A GO:0005515 < 0.0001 protein binding
GO:0005743 < 0.0001 mitochondrial inner
membrane
G0:0005739 < 0.0001 mitochondrion
GO:0015909 < 0.0001 long-chain fatty acid
transport
GO:0022900 < 0.0001 electron transport
chain
GO:0004129 < 0.0001 cytochrome-c oxidase
activity
lightgreen | 141 44 Sham-HF GO:0005743 < 0.0001 mitochondrial inner
membrane
GO:0005739 < 0.0001 mitochondrion
G0O:0032981 0.0001 mitochondrial
respiratory chain
complex I agsembly
GO:0000287 0.0002 magnesium ion
binding
GO:0022900 0.0002 electron transport
chain
GO:0070469 0.0009 respiratory chain
tan 246 84 Sham-HF GO:0005739 < 0.0001 mitochondrion
GO:0016772 0.0001 transferase activity,
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transferring
phosphorus-
containing groups
G0O:0007031 0.0002 peroxisome
organization
G0:0003823 0.0003 antigen binding
G0:0042593 0.001 glucose homeostasis
sienna3 30 1 5 HY, Sham- | GO:0000166 0.0026 nucleotide binding
HY G0:0005794 | 0.0027 Golgi apparatus

thistlel 20

5 Sham-HF

No enriched GO terms

Online Table XII. Fifteen highly connected NTCs with neighboring genes and enriched GO terms.

NTC

module

Ensembl gene

GO ID

chr19:2884524
1-28862777+

brown

Ace,Col4al Igtbp

7,Zyx, Tubb5,Pam,
Cdo,Islr, Tnfrsfl12a
LPikp,Myhl0,Gpx
3,Palm?2

G0:0006518,G0:0051289,G0:0008360,G0:00017
25,G0:0005615,G0:0005200,G0O:0007155,GO:000
5576,G0O:0001666

chrl17:8655504
9-86567124-

greenyell
ow

Mmp15,Cox5b,Tc
ap,Tob2,Cox6c,A
pba3,Slc41al,Uqc
1,Got2, Unc84b,Va
pb,Ndufb7 Artl,B
sg,Cox6a2,Ndufa7
My13, Sympk,Gps
m1 Fkrp,Mrpl55,
Kenh2, Ankl

G0:0004129,G0O:0005743,G0O:0005739,GO:00704
69,G0:0060048,G0:0022900,G0:0016529,G0O:000
8137,G0O:0010468,G0:0016020

chr14:5561338
3-55624058+

greenyell
ow

Cox3b,Tcap,Tob2,
Cox6¢,Nfe2ll,Ap
ba3,Slc41al,Uqer,
Unc84b,Ndufb7,D
bp,Bsg,Myl13,Nduf
a7,Cox6a2,Sympk
,Gpsm 1,Fkrp,Mipl
55,Ank1

G0:0004129,G0O:0005743,G0:0005739,G0O:00704
69,G0:0060048,G0:0022900,G0:0010468,G0O:000
8137,G0:0016020,G0:0046983

chr13:9431839
5-94333316-

lightgree
n

Trip10,Pcytla,Nd

ufb9,Psap,Cdh4, M
n2,Gramd4,S1c25
all,Tmem38a,Slc

25a3,Nme4,Duspl
8

G0:0005743,G0:0005739,G0O:0005758,GO:00066
26,G0:0008289,G0:0005764,G0:0016020

chr3:53529326-
53539395+

purple

Ltbp4,Finc,Sorbs3
JPlxndl, Atp5f1,D1
d, Trim47,Cd74,Qs

G0:0005925,G0:0005737,G0O:0003779,GO:00058
56,G0:0007266,G0:0045454,GO:0005515
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ox1,Laspl,D17Ws
ul04e,Cdc42epl,
Bearl, BC060632,
Prnp,Plekhol, Arh
gdia,Tmsb10,Mfg
¢8,Nampt

chr13:1031196
64-103127036+

purple

Ltbp4,Pnpla8,Flnc
,Sorbs3,Capg, Tri

m47,Laspl,D17W
sulOde,Cdc42epl,
Bcarl,Nbl1,Plekh
ol,Mfge8, Tmsb10
,Nampt,Olfmi2b

GO:0003779,G0:0005925,G0O:0005856,G0O:00057
37,G0:0005576,G0O:0045786

chr2:77148133-
77155244-

purple

Flnc,Sorbs3, Tnfrsf
1a,Cd74,Bakl,Bca
r1,Pmp,Mfge8, Tm
sb10

G0O:0045121,G0O:0006952,GO:0005925,GO:00082
83,G0:0005856,G0:0043066,GO:0007155

chr5:11475445
3-114755202-

purple

Capg,Ptbp2, Trim4
7.Esrrg,Nbl1,Plek
hol,Mcm?2 Maff

GO:0045786,G0:0007049,G0O:0005634

chr3:63213781-
63287912-

red

Efhd2 Fstl3,Serpin
el,Spry4,Dynll1,H
sd12,Csrpl,Spna2,
Tin1,Col18al,Igtb
p4.Fth1,Gnb211,C
ol4a2,Serpinhl,Pk
d1,Ehd4 Ndufs1,G
pr124,2010111101
Rik,Slc25a25, Xirp
1,Csrp3,Rhoc,Scar
12,Ltbp3,Dlg5,Vac
14,Vim,Pcolce,Pe
ci,Tubb2a,Nr4al,I
tgas,Cd36,Axl, Act
n4,Clu,Cttn,Fam1
76b

G0:0005916,G0:0005515,G0O:0005488,GO:00070
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Summary:

During our previous RNA-Sequencing study in mousemal and failing hearts,
we have identified 1000+ previously un-annotatedeh@exons based on different
splicing events. Among these, we have identifietbael exon in PKG, which
inserted right before the Turn motif---PIKENE ( Novel Exon). This novel exon
is a cardiac and skeletal muscle specific alteveasiplicing event, which is at
least partially, regulated by RBFox1 based on othivo and in vitro analysis.
At baseline, the PK&NE showed a significant higher phosphorylationelev
comparing to PKG-WT. However, this novel isoform has different respe
towards cardiac hypertrophy stress in vitro, inoigdPMA, Iso and Angll, and
has different kinase activity towards classic RK@wnstream targets, including
Tnl. Based on our mass specectrometry analysishave identified a unique
interacting partner for PK&NE—eEF1Al. In vitro immune-precipitation
analysis demonstrated that PK®GIE interacts with eEF1A1 and phosphorylates

this protein.
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I ntroduction:

The protein kinase C (PKC) family is a critical véagor of cardiac signal
transduction. Based on their activation mechantbm PKC family members are
divided into conventional PKC isozymes including ®K which respond to
Calcium and lipid activation; while the novel angmcal isozymes are Calcium
independent but can be activated by lipid(Eric €hili 2008, Steinberg 2008).
Among the PKC family members, PkChas been suggested to be the dominant
iIsozyme expressing in mouse and rabbit heart(Rihgng et al. 1997, Pass, Gao
et al. 2001), and its expression is dynamicallyutaigd during pathological
conditions(Hamplova B 2010). Earlier studies hagmdnstrated a critical role of
PKCa mediating cardiac function and cardiomyocytes i@mtility. In vitro study
using human ventricular cardiomyocytes suggestedCdPKranslocation from
cytosol to the contractile system plays an impdrtasie maintaining the
contractile force of cardiomyocytes by phosphorglatits downstream target—
cardiac Troponin | (Tnl)(Molnér, Borbély et al. Z)Qin vivo pharmacological
inhibition of PKGx using ruboxistaurin has been demonstrated to have
antagonizing effect on heart failure post myocdrufigarction injury, potentially
by regulating cardiac contractility, myocyte cedlul contractility, Calcium
transients and sarcoplasmic reticulum Calcium Idad{bleton, Hahn et al. 20086,
Liu, Chen et al. 2009, Ladage, Tilemann et al. 20Hurther study using
transgenic animal models also provided a regulatogchanism of PK& in
cardiomyocytes hypertrophy via regulating systal diastolic function through

BAR pathway(Hahn, Marreez et al. 2003).
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The regulatory mechanism of PkGs also well established at post-translational
modification level. The newly synthesized PKC hasopen conformation that
allows the PDK-1 to phosphorylate its priming phosylation site, in order to be
further activated, the cPKC, including PKC needs two additional
phosphorylation events, one in turn motif and thieeo in hydrophobic motif.
These auto-phosphorylation events are criticaPiCa activity by affecting the
enzyme thermal stability, detergent solubility asllwas protease/phosphatase
susceptibility(Edwards and Newton 1997, Steinb&@3).

Interestingly, our earlier study based on deep Rfd4uencing on pressure-
overload induced mouse failing heart and sham tgeramormal heart has
identified a previously un-annotated novel exoPlCo(Lee, Gao et al. 2011).
Indeed, a significant number of cardiac genes \galalternative splicing during
cardiac development and disease. Including thet grastein Titin, which has
been proved to be regulated by a splicing regulia@20(Wei Guo 2010, Guo,
Schafer et al. 2012, Li, Guo et al. 2012) and SC(\'8&hbi, Algalarrondo et al. ,
Murphy, Moon-Grady et al. 2012, Jr 2013). Despiglier studies focusing on
PKCa regulation at total gene expression and phospatoyl level, the
alternative splicing regulation of PKGremains to be explored.

Our RNA-Sequencing study, however, has identifiednavel regulatory
mechanism of PK& at alternative splicing level. Based on our dedpAR
Sequencing analysis, we have found a previousharuretated novel exon of
PKCa inserted right in front of the original proteinrtumotif, and will have a

significant impact on the protein structure basegtein structure prediction. In
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vitro and in vivo studies have shown the insertminnovel exon in PKG
generated a significant higher level of auto-phosglation at turn motif at
baseline. Surprisingly, this PKENE (Novel Exon) also has very unique
activation profile in cultured cardiomyocytes upBMA ( phorbol 12-myristate
13-acetate), Isoproterenol and Angiotensin |l statian. Moreover, in contrast to
PKCa-WT, the PKG@-NE failed to phosphorylate classic PKGlownsteam
target-Tnl upon Angiotensin Il treatment. In order determine the binding
partner and downstream target of RIKNE, we performed immuno-precipitation
study followed by mass spectrometry. Interestinggmparing to PKG-WT, the
PKCo-NE has its unique interacting partners, includikgy components of
protein translation machinery—eEF1Al. We have tnrtldemonstrated that
eEF1A1 is indeed interacting with PIKENE based on immune-precipitation
study in cultured cardiomyocytes; and can be pa@iytphosphorylated by
PKCo-NE. Lastly, we investigated the regulatory mechkaniof PKQt novel
exon alternative splicing. Based on bioinformatoslysis, this highly conserved
novel exon also shares conserved flanking cis-e¢gryt elements across different
species. Within the conserved cis-regulatory eldémene have identified two
putative RBFox1 binding motifs. Both in vivo and witro minigene reporter
analysis have provided evidence that RBFox1 indegdlates the PK& novel
exon splicing directly.

In summary, our deep RNA-sequencing analysis hastifted a previously un-
annotated cardiac specific splicing event of RBKE&unctional characterization

suggested the insertion of this novel exon coulklheasignificant impact on the
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enzyme activation responding to hypertrophic stirand its downstream target,
thus providing a novel regulatory mechanism fos thell establish cardiac signal

regulator.

Results:

PK Ca Novel Exon is A Cardiac And Skeletal M uscle Specific Splicing Event

One advantage of deep RNA-Seq approach is thatlows us to discover
previously unknown transcript isoforms. Using thelidgd transcriptome
reconstruction method that we developed in thisuseqging project, we have
identified a total of 1873 novel exons correspogdio different types of
alternative splicing events. Among them, we haveseh novel exon in PK&Cas
example and carried out further functional chamaéon. Bioinformatics
analysis showed this novel exon is highly consea@dss different species (data
not shown). Semi-quantitative RT-PCR among diffengouse tissues showed
this novel exon is a cardiac and skeletal musaeifip alternative splicing event
(Figure 3.1A). This novel exon inserted right in front of thert motif Figure
3.1B). This 48bp novel exon will not disrupt the reaglimame of the original
PKCa, but the insertion of this novel exon will generdifferent protein structure
that will likely interrupt the lipid or Calcium smgling response of PK&C(Figure
3.1C).

PK Ca-Novel Exon Alternative Splicing | s Regulated By RBFox1

Using bioinformatics analysis, we have analyzed dbquence of PK& novel

exon and the conserved cis-regulatory elementgifigrthe novel exon. Based on
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the sequence information, we have identified twiafive RBFox1 binding motifs
right next to PKG@G novel exon Figure 3.2A). To investigate the alternative
splicing regulation of this PK& novel exon, we used H9C2 cells as in vivo
system and carried out gain-of-function analysigse®xpression of RBFox1 is
sufficient to promote the inclusion of Pi&k(hovel exon based on real-time PCR
analysis (Figure 3.2B ). To further determine the direct regulatory meatbm of
this novel exon, we constructed minigene reponts different cis-regulatory
elements using a previously described fluorescepbnter constructHigure
3.2C). In NIH3T3 cells, we have demonstrated the feltigth minigene reporter
contains the necessary component for its cardidicirsp specificity Figure
3.2D). Using gain-of-function analysis, we have furthéemonstrated that
overexpression of RBFox1 in NIH3T3 cells could paieninclusion of this novel
exon in full-length minigene reporter and the marig reporter containing at least
one RBFox1 binding motif, providing evidence thaHM®x1 is indeed a direct
trans-activating regulator for the Plkkhovel exon alternative splicingrigure
3.2E).

PK Ca-NE has Higher Phosphorvylation Activity At Basgline

Because the insertion of the novel exon locatdst iilg front of the PK@ turn
motif (Figure 3.1B), we set to determine whether this novel exon halve any
impact on PK@ phosphorylation. Using radiolabeled recombinantCBRNT
and PK@—-NE, we have identified that the PIKENE has a significant higher
auto-phosphorylation level comparing to WT-PKQFigure 3.3A). Using

HEK293 cells, we further carried out in vivo gaififonction analysis showing

68



overexpression of PK&NE has a higher phosphorylation activity on th& 6RBe
comparing to WT-PKG at baseline Kigure 3.3B). This could because the
insertion of the novel exon changed the originalCBKstructure, making it easier
to be phosphorylated at this site; or the insertbthe novel exon generated a
novel phosphorylation site that can also be reamghiby the p-638 PK&
antibody.

PKCa-NE Failed To Respond To PMA Stimulation in Neonatal

Cardiomyocytes

In order to further investigate the functional impaf the novel exon insertion
into PKCa, we tested the PK&GNE response to different hypertrophic stimuli in
vitro cultured rat neonatal ventricular cardiomy®sy Using adenovirus mediated
gene delivery, we overexpressed either FLAG-BRET or FLAG-PKGCa-NE in
cardiomyocytes, short-term treatment with PMA sssbdly induced FLAG-
PKCo-WT translocation from cytosol to plasma membrame @eri-nuclei region
(Figure 3.4A), however, FLAG-PKG@G-NE failed to respond to PMA stimulation
and remained majorly in the cytosol fraction. Poengi study has suggested PMA
treatment would also cause PKGlegradation, our result showed that FLAG-
PKCa-NE does not degrade even after long time PMA ftineat, opposing to the

FLAG-PKCo-WT (Figure 3.4B).

PK Ca-NE has Different Activation Profile Upon | SO and Angll Stimulation

and Does Not Phosphorylate Classic PK Ca Substrate
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To determine the kinase activity and substrateepeeice of PKG-NE, we also
tested PK@G-NE kinase activity towards classic PKGubstrate both in vitro and
in vivo. We chose radiolabeled CREB peptide asd been previously suggested
to be a downstream target for PKCUpon PMA stimulation, in vitro purified
PKCo-WT successfully phosphorylated radiolabeled CREftide, however,
PKCo-NE failed to phosphorylate this classic PiKGubstrate under both
baseline and PMA stimulatioifrigur e 3.5A).

Using cultured cardiomyocytes, we also tested wdretRKGx-NE could
phosphorylate endogenous P#&GCsubstrate. Upon isoproterenol stimulation,
PKCo-WT is activated through phosphorylation on S65& wihile the PKG-NE

is activated through phosphorylation on T638 skgfre 3.5B), suggesting a
different activation profile between WT and NE P#&Qupon isoproterenol
treatment. Lastly, we tested PKONE response to Angiotensin Il in
cardiomyocytes. According td-igure 3.5C, Angiotensin Il treatment also
activates PKG-WT via phosphorylation on S657 site, while actingtPKCo-
NE via phosphorylation on T638 site. InterestingBKCa-WT successfully
phosphorylated endogenous downstream target—Tmi, tiig target is not
phosphorylated by PK&NE (Figure 3.5C).

Both PK Ca-WT and PK Ca-NE Induced Hypertrophy Responsein NRVM

Previous study has suggested a critical role of &Kfediating hypertrophy
response in both cultured cardiomyocytes and imcintheart. To test the

functional impact of novel exon insertion in PKCon cardiomyocytes
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hypertrophy, we overexpressed individual RKCisoforms in cultured
cardiomyocytes and investigated the cardiomyocytgpertrophy response.
Comparing to mock infected cardiomyocytes, overegping PKG-WT in
NRVM induced hypertrophy response based on incceask size. Surprisingly,
overexpressing PK&NE stimulated cardiomyocytes hypertrophy resposse
had an even more significant increase of cell siamparing to PKG-WT
(Figure 3.6A). We further tested the hypertrophy marker gengression level
among mock, PKG-WT and PKG-NE infected cardiomyocytes. Interestingly,
both PKGx-WT and PKGi-NE induced expression of ANF afiMHC to the
same level Kigure 3.6B). Taken together, these data provided evidence tha
PKCa-NE has different activation profile upon hypertinap stress stimulation,

and potentially has different downstream targetksiateracting partners.

Mass Spectrometry Analysis ldentified Novel Interacting Partners for

PKCa-NE

In order to identify the novel interacting partnergh PKCo-NE, we performed
immune-precipitation followed by Mass spectrometRL,AG-PKCo-WT and
FLAG-PKCa-NE were individually overexpressed in neonataldmanyocytes
and precipitated with FLAG antibody (FiguBerA). Interestingly, the PK&-WT
and PKG-NE have different interacting partners accordm@yass Spectrometry
results. While PKG-WT majorly interacted with previously identifiedhaperon

proteins including Hsp70 and Hsp90, PKGIE has been demonstrated to
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interacte with additional partners, including kegulators for protein synthesis --
eEF1A1Figure3.7B).

eEF1A1 is A Novel PKCa-NE Interacting Partner and is Potentially

Phosphorylated by PK Ca-NE

In order to evaluate whether eEF1A1l is indeed auigng with PKG@-NE, we
performed immune-precipitation in NRVM by overexgsing FLAG-PK@-NE
and compared with FLAG-PK&GWT. We confirmed our Mass spectrometry
result by showing eEF1A1 is interacting with onlg{@u-NE but not PKG-WT

in NRVM (Figure 3.8A). To further demonstrate this interaction is specwe
generated a mutant construct by replacing the nexeh insertion into alanine
mutant. Interestingly, in HEK293 cells, PKSNT did not interact with eEF1A1,
further, PKGx-NE-Ala mutant failed to interact with eEF1A1 aslisuggesting
that it is the unique sequence of the novel exaseriton that is required for the
interaction. To further demonstrate that eEF1Aa potential downstream target,
we probed the blot with phosphor-PKCsubstrate antibodyFigure 3.8B
demonstrated that, PKGENE interacted with eEF1A1l specifically, and this
interaction also leads to eEF1A1 phosphorylation.

Discussion:

In this study, we have identified a cardiac andetlé muscle specific splicing
variant for PK@, the insertion of this novel exon locates righfromt of the turn
motif and will have a potential functional impact the original protein structure.
In vitro biochemistry characterization and in vieell study has demonstrated this

novel splicing variant of PK& ---PKCa-NE has a significant higher auto-
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phosphorylation level at baseline. PKGIE also has a different activation profile
in cultured cardiomyocytes upon PMA, Angll and I8@atment, potentially due
to its unique interacting partners and downstreabsisates as suggested by mass
spectrometry study.

Moreover, we have also provided evidence basedodh im vivo and in vitro
study that this alternative splicing event in RK(S at least partially regulated by
RBFox1.

A New Layer of Cardiac Transcriptome Complexity

During the past decade, with deep RNA-Sequencirgpn@ogy, we have
obtained a more comprehensive understanding of naiaimiranscriptome at the
level of single base resolution. Comparing to prasi microarray study, more
transcriptome components have been establisheck tturictionally important,
including alternative splicing, microRNA, IncRNA,IRNA, novel transcript
clusters(Lappalainen, Sammeth et al. 2013, Sevettgeira et al. 2013, Sun,
You et al. 2013, Weikard, Hadlich et al. 2013).

In order to provide a more comprehensive undergstgnof the cardiac
transcriptome, as well as the dynamics of cardi@escriptome under normal and
pathological conditions, we performed an earlierdgtusing RNA-sequencing
technology to determine the transcriptome compjexit pressure-overload
induced mouse hypertrophy and failing hearts, amdpared with sham-operated
control hearts(Lee, Gao et al. 2011). From thigtwe have confirmed previous
study showing there are a significant number ofegedifferentially expressed

between diseased and normal hearts. We have adsnifidd more than one
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thousand genes showing differential alternativacsg between failing and

normal hearts. Interestingly, taking advantage ®fndvo annotation feature of
RNA-sequencing(Adamidi 2011), we have further idfead a significant number

of INcRNA and novel transcript clusters with dynaneixpression profile tightly

associated with cardiac disease. Lastly, we haeetiiied a large amount of
previously un-annotated novel splicing variantswideer, majority of these novel
splicing variants are expressed at relatively lewel. Thus, the functional impact
of these novel splicing variants remains to be @qal.

In this study, we used the novel splicing varianPKCo, as example and carried
out detailed biochemistry and cell study. Our datavided strong evidence that
this novel splicing variant is dynamically expresghiring cardiac development
and pathological conditions (data-not-shown). Italso a tightly regulated

alternative splicing event carried out by cardiax akeletal muscle enriched
splicing regulator—RBFox1 Figure 3.3). Both biochemistry and cell study
suggested this novel splicing variant also hasekfit maturation and activation
profile comparing to original PK& post hypertrophy stimulation.

Thus, our study has provided evidence that thexestllt a significant number of

previously uncharacterized functional components cardiac transcriptome,
including novel splicing variants. These novel gply variants will lead to novel

protein products that might have distinct function@act during cardiac normal
and pathological conditions. Future study on thasger-explored novel splicing
variants, including using large scale proteomiaglgtto identify the absolute

expression level of these novel splicing variantgratein level, would provide us
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a more comprehensive understanding of the carthasdriptome complexity and
the dynamics of cardiac transcriptome during dewmlent and disease
progression.

A Novel Regulatory M echanism of PKCa,

Among the PKC kinase family members, RiKGs the dominant isozyme
expressed in heart(Steinberg 2008). Previous suti®e majorly focusing on
regulating this kinase at total expression leval ghosphorylation level(Bayer
AL 2003, Koide, Tamura et al. 2003, Steinberg 20B@&mplova B 2010),
including an up-regulation of this kinase duringpostrophy and failing heart, as
well as a series of phosphorylation events in dath motif and hydrophobic
motif that ultimately activate PK& Upon activation, the translocation of PKC
is also tightly regulated in order for the kinasephosphorylate its downstream
substrate, including cardiac troponin I(Rybin, Xuat 1999, Itoh, Ding et al.
2005, Chakraborti, Roy et al. 2013).

Our study, on the other hand, has provided a noaglilatory mechanism of
PKCa at alternative splicing level. The insertion oisth8bp novel exon will not
disrupt the protein reading frame, but rather clearthe protein structure close to
the turn motif phosphorylation sité&igure 3.1C). In vitro biochemistry and in
vivo cardiomyocytes study both suggested this nepdiking variant of PKG
has distinct activation and maturation profile camipg to WT PK@, based on
its auto-phosphorylation activity as well as itsopphorylation and translocation

profile in response to hypertrophy stimigure 3.4-5).
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In summary, our results showed, in addition toett#ht isozymes in PKC family
having different roles and activation profile dyrinardiomyocytes hypertrophy,
the splicing variants in PKd& can also have distinct activation profile during
maturation. This splicing variant is cardiac spec{Figure 3.1A) and is tightly
regulated during cardiac development and pathcdbgemodeling. Further study
on this novel exon will provide novel insights oK@ regulation and its
functional impact during cardiac pathological remloy.

In order to further dissect the functional diffecenbetween PK&NE and
PKCo-WT, future study can focus on analyzing crystalicture of PKG-NE
and PKG@-WT and compare their different response towardi@a signaling
and lipid signaling. Although biochemistry studydacell study have both pointed
out a significant higher auto-phosphorylation leesEPKCa-NE at baseline, this
could due to the insertion of the novel exon augetenthe turn motif
phosphorylation, or it can be contributed by théeptial phosphorylation site in
novel exon itself. Additional study generating pblosrylation dead mutant in
PKCa-NE novel exon will provide a better understanding the kinase
phosphorylation profile.

A New Hypertrophy Pathway in Cardiomyocytes

According to previous study, PKCis the dominant isozyme among PKC kinase
family in mediating cardiomyocytes contractility dan hypertrophic
response(Hahn, Marreez et al. 2003, Liu, Chen .eR@09). This kinase is the
dominant kinase expressed in adult cardiomyocyted #s expression is

dynamically regulated wunder different physiologicadnd pathological
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conditions(Rybin, Xu et al. 1999, Hamplova B 201Dhe PKGx also stands in
the center of multiple signaling pathways, inclgliMAPK kinase, ROS and
Calcinuerin pathways(De Windt, Lim et al. 2000, hitoDing et al. 2005,
Chakraborti, Roy et al. 2013). Thus, a lot of phacological inhibitors have been
developed for PK@, inhibiting both kinase activity and its downstreaignaling
pathways(Hambleton, Hahn et al. 2006, Eric Chru@008, Ladage, Tilemann et
al. 2011, Haarberg, Li et al. 2013).

This study, on the other hand, characterized iaidatnovel splicing variant of
PKCa specifically expressed in cardiac and skeletal aeug=igure 3.1A). In
order to provide a molecular mechanism underlying differential activation
profile between PK@G-NE and PKG-WT upon hypertrophic stimuli, we
performed mass spectrometry study following -cardiooytes immune-
precipitation Figure 3.7A). Surprisingly, the PK@G-NE indeed has unique
interacting partners, including key componentsristgin translation machinery—
eEF1A1 Figure 3.7B). Further in vivo study using both cardiomyocytesd
HEK293 cells demonstrated that, not only eEF1AJkedinteracts with PK&
NE, it can also be potentially phosphorylated by®&1 (Figure 3.8). These
evidence suggested, in addition to the well charasd original PKG-WT, we
have established a novel PKGplicing variant that have distinct interacting
partner and downstream target. Considering therngpdy response induced by
PKCa-NE (Figure 3.6) and different activation profile of this PKENE
responding to ISO and Angll stimulation, PKGIE can also have significant

value as a therapeutic target in heart failure @ardiac hypertrophy. Apparently,
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this PKGx-NE has its unique downstream pathway involvingtgiro synthesis
machinery, targeting this novel pathway could pdevialternative therapy for
cardiac hypertrophy.

Future study in this part involves fine mappingtié interaction site between
PKCo-NE and eEF1Al. Both cardiomyocytes and HEK293scetlidy supported
the interaction between PKENE and eEF1AL. It is not clear, however, whether
it is the novel exon provides interacting surfagthveEF1A1, or the insertion of
the novel exon changes the original protein stmecttherefore generates a novel
interaction site within the original protein. Addmal study will focus on
generating alanine mutant insertion into this nosebn and mapping the real
interaction site between PKENE and eEF1Al. Another question is, whether
eEF1Al is indeed phosphorylated by RKNE specifically, and whether this
phosphorylation event is required for the inte@cttiBased on literature search,
we indeed found a perfect phosphorylation siteERPA1 that can be potentially
phosphorylated by PK&GNE—Ser 52 site. Further study will include mutgtin
this particular site in eEF1Al and carry out furtibmmune-precipitation assay.
This will provide us a more detailed molecular magkm on how this PK&NE
interacts and regulates eEF1A1. The mapping ointleeaction site on PK&NE
would also provide insights on inhibitor design.

Experimental Procedure and Methods:

Reagents:

PMA (Phorbal 12-myristate 13-acetate) was purchaeth Sigma-Aldrich

(P8139). Cardiomyocytes was treated with PMA fomB80or 8hr as previously
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described(Kirchhefer, Heinick et al. 2013). Angieg® |l was purchased from
Sigma-Aldrich  (A2900) and cardiomyocytes were ftedatas previously
described(Herrera, Silva et al. 2010). Isoproterevess purchased from Sigma-
Aldrich  (16504) and cardiomyocytes were treated gsreviously
described(Chakraborti, Roy et al. 2013).

Molecular Cloning and Minigene Reporter:

The pShuttle-CMV vector was linearized using Hihdid Kpnl. PKCa-WT and
PKCa-NE was amplified using primers with the sam&riction site (sed@able
1). Following PCR, the product was purified and dige with Hindlll and Kpnl
before ligated into the linearized pShuttle-CMV tegc

Minigene reporter with fluorescent was a kind §ietm Dr. DL Black in UCLA.
The minigene reporter was constructed as previoudgscribed(Zheng,
Damoiseaux et al. 2013) using primers included able 1. NIH3T3 cells were
transfected with individual minigene reporter alooe in combination with
RBFox1 expression vector. 48hr post transfectiails overe visualized under
fluorescent microscopy to determine GFP/RFP exmmedsvel.

Adenovirus:

Adenovirus for FLAG-PK@G-WT and FLAG-PKG-NE were prepared using
AdEasy Adenoviral Vector System (Stratagene) adogrdo manufacturer’s
protocol. The generation of pShuttle vectors andisvipreparation has been
described earlier(Lu, Ren et al. 2007).

Cdl Culture, Transfection and Western Blot:
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HEK?293 cells and NIH3T3 cells were cultured in Dedbo’s modified Eagle’s
medium (Invitrogen) with 10% FBS at 37C and 5% C&2ording to standard
ATCC protocol. Cells were transfected with pShu@RlV-FLAG-PKCao-WT
construct or pShuttle-CMV-FLAG-PK&NE construct using Lipofectamine
2000 reagent (Invitrogen) according to manufactargrotocol. 48hrs post
transfection, cells were harvested for protein aotton. Western Blot was
performed using Novex NuPAGE Gel Electrophoresist&ns (Invitrogen)
according to manufacturer’s protocol. 40ug proteias used per sample. The
auto-phosphorylation level of PKCs determined by anti-PK&C(Phospho T638)
and anti-PKG. (phosphor S657+Y658) (Abcam), or anti-P&KQCell Signaling).
B-Actin (Santa Cruz Biotechnology) is used as thiermal loading control.

NRVM (Neonatal Rat Ventricular Myocytes) was iseldtfrom pl neonatal rat
and plated on Gelatin (Sigma-Aldrich) coated 6-vdgdh. Cells were maintained
in Dulbecco’s modified Eagle’s medium (Invitrogemith 1% ITS solution (BD
Biosciences) 24hr before adenovirus infection. elkere collected 48hr post
infection, and protein was isolated for Western tBdmalysis using Phospho-
Troponin | (Cardiac Ser 23/24) (Cell Signaling) anponin | Antibody ( Cell
Signaling).

Real-time PCR:

RNA was isolated from cells using 1ml Trizol Reagéimvitrogen) according to
manufacturer’s protocol. cDNA was synthesized frofdug RNA using random

Hexamer and SuperScript Il RT ( Invitrogen) accogdito manufacturer's
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protocol. 0.5ul cDNA was used per 20ul real-timeRP{&action using SYBR
Green supermix ( Bio-Rad) with primers specific RiKCo-WT or PKCo-NE.

I mmuno-fluor escence:

NRVM was plated on glass-bottom dish (in vitro stic) and infected with
FLAG-PKCo-WT or FLAG-PKCu-NE. 24hr post infection, cells were treated
with PMA. 30min post PMA treatment, NRVM was fixed4% Formaldehyde at
room temperature for 15min, followed by 3 times lwasth ice-cold PBS. Cells
was blocked with blocking buffer ( 1*PBS/5% norngalat serum/0.3% Triton X-
100) at room temperature for 1lhr before incubatmth FLAG antibody (
SigmaAldrech) at 4 degree overnight. After washtetls with ice cold PBS 3
times, cells were further incubated with secondalgxa Fluor 488 goat anti
mouse antibody (Invitrogen) at room temperature Xbor. Cells were further
washed with ice-cold PBS before confocal microscapalysis.

I mmuno-precipitation:

NRVM was infected with FLAG-PKG-WT or FLAG-PKGCa-NE individually.
48hr post infection, cells were collected with gintlysis buffer ( 20mM Tris
pH8.0; 137mM NaCl, 0.5%NP-40; 2mM EDTA; PMSF;praeainhibitor
cocktail tablet). 1ug protein was pre-cleared wilrmal serum on ice for 1hr
before adding 50ul Anti-FLAG M2 affinity gel (Sigm@&drich A2220) and
incubate at 4 degree overnight. The affinity gebwashed with washing buffer
(10mM Tris pH7.4, 1ImM EDTA; 1mM EGTA;150mM NaCl,5%NP40;PMSF;
protease inhibitor cocktail) for a total of 6 timégfore elution with FLAG

peptide ( Sigma-Aldrich F4799) according to mantifeer’s protocol. After
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elution, samples were denatured using NUPAGE LDS8pEaBuffer (Invitrogen).
The SDS-PAGE was visualized by incubating with @ri&tain (Bio-Rad) at
room temperature for 2hrs; or directly proceedshwitestern Blot followed by
detection using eEF1A1 antibody (Abcam).

M ass spectrometry:

Mass spectrometry was performed as previously bhesi{t u, Sun et al. 2009).
Generally, proteins were digested with trypsin andlyzed by LC/MS/MS on a
Thermo LTQ Orbitra mass spectrometer with an EkgigéanoLC pump. The
peptides were loaded onto a C18 reverse-[hase @¥tdvzater in CAN. Peptides
were eluted from the column at a flow rate of 22@m, using a linear gradient
from 5% B to 50% B over 90 minutes, then to 95%wvBrdb minutes, and finally
keeping constant 95% B for 5 minutes. Spectra waetrpiired in data-dependent
mode with the Orbitrap used for mass spectromeatans and LTQ for tandem
mass spectrometry. Peptides were identified bycheay the spectra against the
rat International Protein Index using the SEQUE®Dr@hm integrated into the
BioWorks software package.

Statistics:

2-tailed Student’s t test was performed to deteentie significance of difference
between RBFox1l overexpressing H9C2 and control H8EI%s to determine

PKCa alternative splicing profile. P<0.05 is considesgghificant.
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Table3.1: List of Primers

Primer Name

Sequence

Prkao Kpnl F ATTAGGTACCATGGCTGACGTTTACCCGGCCAAC

Prkca  FLAG| TTATAAGCTTTCACTTATCGTCGTCATCCTTGTAATCTAC
Hindlll R TGCACTTTGCAAGATT

mPrkca RT-F CCAAGCGGCTGGGCTGCGGG

mPrkca NE RT-

CTGAAGCCAGTGCATTTTGGT

R
mPrkca RT-R | GTCAAAGTTTTCTGCTCCTTT
rPrkca RT-F CGTTCGATGGCGAAGACGAA
rPrkca NER CCACTGAAGCCAGTGCATTTT
rPrkca WTR | CTTTGCCGCACACTTTGGGC

Prkca EcoRI F1

ATTAGAATTCATGTGACATGCATGTGTAAA

Prkca BamHlI
R1

TTAAGGATCCGGCCAGTGGCAGACACAGGCT

Prkca EcoRI F2

ATTAGAATTCCATACAGCCGTTCCTGATTC

Prkca BamHIl TTAAGGATCCTCTGCCCTTTCCATGAAGGT
R2

Prkca BamHIl TTAAGGATCCAGGGAAGGTCTTGATGCACGA
R3

Prkca BamHIl TTAAGGATCCGATGAGGGCAAGCAGCTGCAC
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R4

Prkca BamHIl TTAAGGATCCCGGTTAATGGTGAAAAGTGAGG

R5

Prkca BamHI | TTAAGGATCCGCTTAGTCACTCAAGGTTCTGCT

R6

84




Figure L egend:

Figure 1: PKCa-Nove Exon isa cardiac specific alternative splicing event

A) Different tissues from adult mouse were collected BNA was extracted.

B)

Semi-quantitative RT-PCR was performed to deterr®K€a novel exon
existence among different tissues. GAPDH is usadtamal control.

Schematic view of novel exon insertion in P&C

C) Protein structure prediction of PKEWNT and PK@-NE. Predicted by

SWISS-MODEL.

Figure 2: PKCa-NE alternative splicing isregulated by RBFox1

A)

B)

C)

D)

E)

Gene structure of PKE&NE with flanking cis-regualtory elements

generated by UCSC genome browser. RBFox1 and A3FI&kding

motif is indicated.

In vivo PKCa-NE splicing analysis. HOC2 cells were infectedhwitde-
FLAG-RBFox1 and compared with mock infected ceReal-time PCR
was performed to determine the ratio between &XCT vs PKGx-NE.
n=3 each sample, 3<0.05

Schematic view of different versions of PEKMIE minigene reporter
PKCo-NE minigene reporter alternative splicing in NIHBTcells.
NIH3T3 cells were transfected with individual PK@IE minigene

reporter. 48hr post transfection, cells were vigeal under fluorescent

microscope.
In vitro PKCa-NE alternative splicing regulation. NIH3T3 cellserg

transfected with individual PK&NE minigene reporter alone or in
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combination with FLAG-RBFox1 expression vector aslicated. 48hr
post transfection, cells were visualized underrigoent microscope.
Figure 3: PKCa-NE has higher auto-phosphorylation level at baseline

A) FLAG-PKCa-WT and FLAG-PK@-NE were overexpressed in HEK293
cells and purified using FLAG antibody immune-ppetztion. Purified
protein was radio-labeled and visualized under phosimager.

B) PKCa-WT and PK@-NE were overexpressed in HEK293 cells. 48hr post
transfection, cells were harvested and Western B¢ performed to
determine the phosphorylation level of Pé&@VT and PKGi-NE using
phosphor-PK@ antibodies. B-Actin is used as loading control.
Quantification represents ratio between p-638 BRKE total PK(..

Figure 4: PKCa-NE has different response to PMA treatment in neonatal
cardiomyocytes

A) PKCa-NE translocation upon PMA treatment. NRVM was atéel with
FLAG-PKCo-WT and FLAG-PK@-NE adenovirus individually. Cells
were treated with PMA for 30min and compared witmtcol NRVM.
Immuno-fluorescent was performed using FLAG antibognd
translocation was visualized under confocal micopgc

B) PKCa-NE degradation upon PMA treatment. NRVM was irdgelctvith
FLAG-PKCo-WT and FLAG-PKG-NE adenovirus individually. 24hr
post infection, cells were treated with PMA for 8md compared with
control NRVM. Western Blot was performed to deterenitotal protein

level of PKGx-WT and PKG@-NE.
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Figure 5 PKCa-NE has different substrate and activation profile upon

Angll and I SO treatment.

A)

B)

C)

PKCo-NE fails to phosphorylate classic PKGubstrate in vitro. FLAG-
PKCa-WT and FLAG-PKG-NE was expressed in HEK293 cells
individually and purified by FLAG antibody immuneeqgipitation. The
purified protein was incubated with 35S labeled GRieptide with PMA
treatment and compared with control protein lysa@REB peptide was
visualized using phosphor-imager to determine BKNE kinase activity.
PKCa-NE activation profile upon ISO treatment. NRVM wasected
with FLAG-PKCo-WT and compared with FLAG-PK&GNE and mock-
infected cells. 24hr post infection, cells wereateel with ISO for 8hr.
Western Blot was performed to analyze activatioofijg of PKCo-WT
and PKG-NE using phosphor-PKé&antibody. Actin was used as loading
control.

PKCa-NE activation profile upon Angll treatment. NRVMaw infected
with FLAG-PKCa-WT and FLAG-PK@-NE adenovirus. 24hr post
infection, cells were treated with Angll for 30mand compared with
control cells. PK@-NE activation was determined using phosphor-BKC
antibodies. PKG-NE kinase activity was determined using p-Tnl

antibody.

Figure 6. PKCa-WT and PKCa-NE both induced cardiomyocytes

hypertrophy
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A) NRVM was infected with FLAG-PKG-WT or FLAG-PKCua-NE
individually. 48hr post transfection, cells wereswalized under bight
field microscope to analyze cell size.

B) FLAG-PKCo-WT and FLAG-PKG-NE were overexpressed in NRVM.
48hr post infection, cells were harvested and ties- PCR was
performed to determine the hypertrophy responsgguNF anddMHC
markers. n=3 each sample p&0.05.

Figure 7: Identification of PK Ca-NE interaction partner

A) Mass spectrometry analysis of PKGVT and PK@-NE interacting
partners FLAG-PKCo-WT and FLAG-PKGi-NE were overexpressed in
NRVM via adenovirus. 48hr post infection, cells wenarvested and
immune-precipitation was performed using FLAG antip. SDS-PAGE
was visualized using Oriole Stain. Protein sampilese processed as
indicated.

B) Protein ID identified to be interacting with PKSNT and PKCGi-NE
according to mass spectrometry.

Figure 8: eEF1Al interactswith PKCa-NE

A) eEF1ALl interacts with PK&NE in NRVM. NRVM was infected with
FLAG-PKCo-WT and FLAG-PK@-NE. 48hr post infection, cells were
harvested and immune-precipitation was performedngusFLAG
antibody. Western Bot was performed to determinE1#€fl interaction

with PKCo.-NE.
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B) eEF1A1 is potentially phosphorylated by P&GIE. HEK293 cells were
transfected with FLAG-PK&WT and FLAG-PKG-NE. 48hr post
transfection, cells were collected and immune-ittion was
performed using FLAG antibody. Western Blot wasdutgedetermine the
phosphorylation of eEF1A1 using phosphor-RK€lbstrate antibody.
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Figure 3: Graphic Abstract
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Figure3.1: PKCa-NE isacardiac and skeletal muscle specific alternative

splicing event
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Figure 3.2 PKCa-NE alternative splicing isregulated by RBFox1
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Figure 3.3 PKCa-NE has higher auto-phosphorylation level at baseline
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Figure 3.4 PKCa-NE hasdifferent activation profile responding to PMA

stimulation
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Figure 3.5 PKCa-NE has different activation in responseto | SO and Angl|

treatment in NRVM
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Figure 3.6 PKCa-WT and PKCa-NE both induced hypertrophy responsein

cardiomyocytes
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Figure 3.7 Mass spectrometry identified novel interaction partnersfor

PKCa-NE
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Figure 3.8 PKCa-NE interacts and potentially phosphorylates eEF1A1
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Chapter Four

Cardiac Genes Undergo Extensive Alternative

Splicing
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I ntroduction:

In the eukaryotic transcriptome, both the numbdrgemes and different RNA
species produced by each gene contribute to thelbeemplexity. These RNA
species are generated by the utilization of diffeteanscriptional initiation or
termination sites, or more commonly, from differenessenger RNA (mMRNA)
splicing events. Among the 30,000+ genes in huneroe, it is estimated that
more than 95% of them can generate more than ame g®duct via alternative
RNA splicing. The protein products generated froiffecent RNA splicing
variants can have different intracellular locali@ai activities, or tissue-
distribution. Therefore, alternative RNA splicing an important molecular
process that contributes to the overall complexfythe genome and the
functional specificity and diversity among diffeterell types. In this review, we
have discussed current efforts to unravel the éalinplexity of the cardiac
transcriptome using a deep-sequencing approachhightighted the potential of
this technology to uncover the global impact of RNgplicing on the

transcriptome during development and diseasesedfi¢lart.
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1 Alternative RNA splicing

The complexity of the eukaryotic transcriptome
was first fully revealed at the genome scale with
single-base resolution by a powerful deep RNA-
sequencing (RNA-seq) technology, using next gen-
cration sequencers and newly developed bioinfor-
matic tools (Bland et al., 2010; Hallegger et af ., 2010).
It is estimated that transcripts from ~95% of multi-
exon genes undergo alternative splicing and that there
are ~100000 intermediate to high abundance alterna-
tive splicing events in major human tissues (Pan
et al., 2008). RNA splicing is a ubiquitous post-
transcriptional process in all eukaryotes. It involves
removing intronic sequences from pre-messenger
RNA (pre-mRNA) and linking exons to generate
mature mRNA for translation (Chen and Manley,
2009). RNA splicing for constitutively spliced exons
is carried out by a defined molecular machinery in-
volving cis-acting regulatory sequences (splice sites)
located at exon-intron boundaries, as well as
trans-acting factors as part of the spliceosome (de la
Grange et al., 2010). However, in many cases, the
splice sites are altered, leading to different exon sizes
in the final transcripts. Altematively, certain exons
can be differentially included or excluded in the final
transcripts due to exon skipping. These non-
constitutive RNA splicing activities are collectively
called altemative RNA splicing. Through these dif-
ferent kinds of alternative pre-mRNA processing,
individual eukaryotic genes can produce multiple
mRNA and protein isoforms that may have related,
distinct or even opposing functions (Wang et ai., 2008;
Buljan et af., 2012). Therefore, alternative RNA
splicing is an important molecular step that contrib-
utes to the total complexity of the transcriptome and
proteome.
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2 Regulation of alternative RNA splicing

Alternative RNA splicing is a highly regulated
process mediated by cis-regulatory enhancers and
silencers in pre-mRNA and trans-acting splicing
factors, including heterogeneous nuclear ribonucleo-
protein (hnRNP) and serine-arginine rich proteins
(SR proteins). The molecular nature of these regula-
tory elements 1is yet to be fully uncovered and under-
stood. Tissue specific alternative splicing 1s usually
regulated by a combination of tissue-specific and
ubiquitously expressed splicing factors (Pan et al.,
2008; Sultan et al., 2008; Chen and Manley, 2009;
Bland et al., 2010) and has been demonstrated to play
an important role in regulation of tissue-specific
protein interaction networks (Buljan et al., 2012). In
addition, mis-regulated alternative RNA splicing
events have a significant role in human diseases, cell
cycle, and cell death (Hallegger et ol., 2010, Gang et
al., 2011; Honda et al., 2012; Raghavachari, 2012;
Yae et al., 2012). For example, a specific isoform of
pyruvate kinase resulting from hnRNP-mediated
mRNA alternative splicing is required for tumor cell
proliferation (David et al., 2010).

3 Alternative RNA splicing in cardiac

diseases

Tt 1s well established that alternative splicing of
mRNA is tightly associated with the development of
heart failure. Structural proteins, such as cardiac
troponin T, or important signaling molecules, such as
Ca*"/calmodulin-dependent protein kinase (CaM
kinase), are subjected to alternative splicing in
heart diseases (Ramchatesingh et al., 1995; Ding et
al., 2004, Xu et al., 2005). Moreover, depletion of
critical splicing regulators, including SC35 and
RBM20, has been found to cause dilated cardio-
myopathy in mouse and rat (Ding et ai., 2004; Guo et
al., 2012, Linke and Bucker, 2012; Refaat et al,
2012). In addition to classic SR and hnRNP proteins,
CUG-BP1 and ETR-like factors (CELF)/Bruno-like
family of RNA binding proteins and muscleblind-like
proteins (MBNL proteins) have also been found to
regulate both cardiac development and function (Warf
and Berglund, 2007; Kalsotra et al., 2010; Koshelev
et al., 2010; Dasgupta and Ladd, 2012). Therefore,
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alternative RNA splicing is essential for normal car-
diac function and mis-regulated RNA splicing may
have an important role in the pathogenesis of heart
failure. Yet, little knowledge is available about the
scope of alternative splicing at the whole genome
level in normal and diseased hearts and even less
about the mechanisms underlying the regulation of
mRNA splicing in response to pathological injury in
the heart. Recent studies have begun to fill this critical
gap of information by establishing the total tran-
seriptome, including RNA splicing variants, in nor-
mal and diseased hearts using RNA-seq and extensive
cellular,

bioinformatic, molecular, and functional

analyses (Fig. 1).

4 Experimental approaches for total cardiac
transcriptome analysis

The main tools necessary for total transcriptome
studies include mRNA-seq using next generation
high-throughput sequencing technology, exon as-
sembly using bioinformatic tools, and the validation
of exon boundaries and expression by quantitative
reverse-transcription polymerase chain reaction
(gRT-PCR), urea-polyacrylamide gel electrophoresis
(UREA-PAGE), and capillary electrophoresis.

RNA-seq is a powerful high throughput se-
quencing technology involving the generation of a
quantitative, genome scale, and single base resolu-
tion profile of the transcriptome (Anders et al., 2012,
Lietal, 2012; Sanchez-Pla et al., 2012). The details
of RNA-seq technology can be found in a recent
review (Wang et ol , 2009). In general, the mRNA is
enriched from a sample of interest followed by the
construction of a complementary DNA (cDNA)
library using standard reverse-transcription methods.
High throughput sequencing is performed using one
of several technological platforms, including the
illumina genome analyzer, Applied Biosystems
(ABI) solid sequencing, and life science’s 454 se-
quencing. This is an area of rapid improvement
where speed, fidelity, and read lengths are increasing
dramatically while the overall cost/base is dropping
sharply. High throughput sequencing has become a
routine method for scientific discovery and ad-
vanced clinical diagnosis. Its widespread application
has already revolutionized our experimental
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approaches where visualizing global changes and
regulation in gene expression and transcriptome
remodeling have become a reality. Indeed, RNA-seq
has for the first time made it feasible to catalogue
and appreciate the genome wide landscape of the
whole transcriptome at single base resolution.

The output of the RNA-seq method is hundreds
of millions of RNA sequence reads of about 70 to
100 bases in length. Linking these short reads into a
contiguous transcript relies on a sophisticated
computational algorithm. In general, the program
first needs to map the reads on a particular exon
based on matching sequences between the reads and
genomic sequences, and then the exon-exon bound-
ary 1s mapped based on a predicated cDNA database.
Finally, all reads associated with a particular gene
are combined to generate the total reads for each
exon. Therefore, the final profile of each gene con-
tains total reads of each exon at single base resolu-
tion. These mapping processes are complicated by a
number of issues, including ultra-large datasets and
limitations in computational power, repetitive se-
quences in closely related genes (miss-matching),
incomplete genomic databases, sequencing errors,
and sensitivity vs. fidelity (Mcintyre et al., 2011;
Ozsolak and Milos, 2011). Therefore, to generate a
comprehensive expression profile for each exon, it is
essential to perform the RNA-seq at sufficient depth.
One major advantage of RNA-seq over micro-arrays
is the possibility to identify novel, un-annotated
exons or transcripts (Daines et al., 2011; Lee et al.,
2011; Concha et al., 2012). In a recent study, we
have developed two bioinformatic tools, guided
transcriptome reconstruction and de novo recon-
struction. These tools allow detection of novel exons
in known genes and novel transcript clusters (NTCs)
(Leewtal. 2001y

The quantification and specificity of identified
known or novel exons should be validated by inde-
pendent methods, including gRT-PCR. Different
transcripts resulting from alternative RNA splicing
can be separated by UREA-PAGE and capillary
electrophoresis based on size differences. Given the
fact that the reads generated from RNA-seq are as-
sembled based on computational analysis, an ex-
perimental validation of the findings is always nec-
essary. Indeed, we have identified and confirmed a
significant number of differentially expressed exons
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in normal and diseased hearts by both fluorescent
RT-PCR followed by UREA-PAGE and capillary
electrophoresis, which show a very high correlation
with the bioinformatics prediction (Fig. 2).

5§ Global profiling of alternative RNA splic-
ing in the heart: novel exons

In this study, deep RNA-seq was performed on
mRNA samples prepared from adult mouse hearts in
basal condition and in failing state as a result of
chronic pressure-overload induced by trans-aortic
constriction. This is a well-established model system
to investigate the pathogenesis of cardiac hypertro-
phy and heart failure due to mechanical overload,
mimicking chronic hypertension in humans.

Among the mRNA transcripts annotated from
the RNA-seq data, more than 1000 novel exons were
identified that had not been reported in any pub-
lished databases. From a selected list of 40 novel
exons, 38 (95%) were validated by RT-PCR in
mouse heart tissue and all of them were further
confirmed by direct DNA sequencing to have the
predicted novel exon-exon junctions. The genes
containing these novel exons included established
regulators in cardiac signaling, mitochondria dy-
namics, and gene regulation. Many of the novel
exons are predicted to have major functional impacts
on the parent genes, including mRNA stability,
protein truncation, protein activity, and post-
translation modification. Using semi-qRT-PCR in
human heart failure samples, some of these novel
exons showed differential expression patterns in
normal or diseased hearts, strongly suggesting that
these novel exons may have a functional role in the
disease. Therefore, deep RNA-seq revealed a sig-
nificant number of novel transcripts, which contrib-
ute to overall transcriptome complexity in the heart.

6 Differential alternative splicing as a part of
global transcriptome remodeling in devel-
oping and failing hearts

The onset of heart failure is associated with a
significant change in both the quantity and quality of
the cardiac transcriptome (Barry et al., 2008,
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Margulies et al., 2009). Most studies profiling the
cardiac transcriptome have employed microarray
approaches, which revealed global changes in gene
expression in diseased hearts (Asakura and Kitakaze,
2009; Dewey et al., 2011). The features of transcrip-
tome remodeling and the underlying regulatory
mechanisms have been the focus of extensive inves-
tigation, leading to the identification of a network of
responsible transcription factors and co-factors, in-
cluding myocyte enhancer factor-2 (MEF-2), GATA,
and histone deacetylases (HDACSs) (Edmondson et al.,
1994; Skerjanc et al., 1998; Naya et ai., 2002; Backs
and Olson, 2006). However, the global transcriptome
profile of the alternatively spliced exons in cardiac
development and disease remains to be established.
RNA-seq analyses of cardiac transcriptome
throughout heart development and disease progres-
sion hold great promise to address this question.
Considering the potential impact of differentially
expressed exons on protein function and regulation,
alternative RNA splicing may emerge to be an im-
portant element in the underlying molecular mecha-
nisms of cardiac lineage commitment, maturation,
physiological or pathological responses to stresses.
Studies on alternative RNA splicing events, the
regulators and the functional consequences at the
genome level will open a new frontier for us to ex-
plore the fundamental mechanisms of heart disease
and potential therapeutic intervention.
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Summary

RNA splicing contributes significantly to total frscriptome complexity but its
functional role and regulation in cardiac developirend diseases remain poorly
understood. Based on total transcriptome analysges,identified a significant
number of alternative RNA splicing events in motakng hearts that resembled
the pattern in fetal hearts. A muscle specificasaf of an RNA splicing regulator
RBFox1 (A2BP1) is induced during cardiac developmenactivation of
zRBFox1 gene in zebrafish led to lethal phenotypsoaiated with impaired
cardiac function. RBFox1 regulates alternative cipdj of transcription factor
MEF2s, producing splicing variants with distincariscriptional activities and
different impact on cardiac development. RBFox1regpion is diminished in
mouse and human failing hearts. Restoring RBFoxpression significantly
attenuates hypertrophy and heart failure inducegigsure-overload in mice.
Therefore, RBFox1-MEF2 represents a previously aratterized regulatory
circuit in cardiac transcriptional network with imqpant impact on both cardiac

development and diseases.
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Introduction
Alternative RNA splicing significantly contributes the total complexity of the
transcriptome and helps to define the cellular titfewith an estimated ~100, 000
intermediate to high abundant alternative spliawgnts in major human tissues
(Pan, Shai et al. 20D8RNA splicing is a ubiquitous post-transcriptibpaocess
for all multi-exon genes in eukaryoteshien and Manley 2009Alternative RNA
splicing from individual genes can produce multipteture mMRNA species,
yielding different protein isoforms with relatedjstinct or even opposing
functions (Wang, Sandberg et al. 2008, Buljan, @mhabn et al. 2012).
Alternative RNA splicing is regulated by cis-regoly enhancers and silencers
located within pre-mRNAs interacting with transiagt splicing factors{e la
Grange, Gratadou et al. 2Q1lihcluding heterogeneous nuclear ribonucleopnotei
(hnRNP) and serine-arginine rich proteins (SR pns)éPan, Shai et al. 2008,
Sultan, Schulz et al. 2008, Chen and Manley 2008nd Wang et al. 2010).
Mis-regulated alternative RNA splicing events havsignificant role in human
diseases, affecting cellular processes from ceallecyo cell death (Hallegger,
Llorian et al. 2010, Gang, Hai et al. 2011, Hondalogne et al. 2012, Nalini
Raghavachari 2012, Yae, Tsuchihashi et al. 2012).

Alternative mRNA splicing has been associated wiindiac development
and diseases, affecting structural genes such rdgacaroponin T or signaling

molecules, such as CaM Kinase Il (RamchatesinghleZat al. 1995, Ding, Xu
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et al. 2004, Xu, Yang et al. 2005). Inactivationsplicing regulators SC35 or
RBM20 led to dilated cardiomyopathy in mouse and@o, Schafer et al. 2012,
Linke and Bucker 2012, Refaat, Lubitz et al. 2018).addition, CUG-BP1 and
ETR-like factors (CELF)/Bruno-like family of RNA bding proteins and

muscleblind-like (MBNL) proteins have also been riduto impact on both

cardiac development and function(Warf and Berglg@d7, Kalsotra, Wang et al.
2010, Koshelev, Sarma et al. 2010, Dasgupta and Rad?). However, relative
to the extensive knowledge of transcriptional ragah, little is known about the
global RNA splicing pattern and the functional impaf RNA splicing in heart

during cardiac development and disease progression.

Induced fetal gene expression is a common featoserved in
pathologically stressed heart and is serving act¥e molecular biomarkers for
heart diseasé®Ison 2006, Barry, Davidson et al. 2008, Kuwah&lighikimi et
al. 2012). This so called “fetal gene expression program” riesteéd in the
diseased heart is dictated by a network of trapgon factors, including many
key players also implicated in cardiac differentiatand maturation, such as
MEF2s and GATA4 I(ee, Gao et al. 2011 Although alternative RNA splicing
events have been widely observed among many cagkaes, changes of
alternative RNA splicing observed in the failingahis have not been noted to
have any significant association with the changbserved during cardiac
development (Gao and Dudley Jr , Guo, Schafer.e2@d2). Thus, there is no
evidence indicating that alternative RNA spliciregulation in cardiac diseases

and development are related at mechanisticallymetional levels.
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Using deep RNA-seq approach, we characterized taediac
transcriptome at single exon resolution from RNApé&es prepared from adult
mouse hearts at basal and in trans-aortic constidfTAC)-induced failing
state(Lee, Gao et al. 2011). By comparing the sigattern in failing vs.
neonatal hearts, we found a fetal-like RNA splicpaftern in diseased hearts,
affecting many cardiac genes including all membefsthe MEF2 family
transcription factors. We discovered a muscle ifipeisoform of the splicing
regulator RBFox1 (A2BP1) as a direct trans-actegufator for MEF2 alternative
splicing. RBFox1 was significantly induced duringrdiac development and
inactivation of RBFox1 in zebrafish led to abnornrEF2 alternative splicing
and impaired cardiac development and function. \W¢hér demonstrated that
MEF2 isoforms resulted from RBFox1 mediated altémea RNA splicing
possessed distinct transcriptional activities ammd vivo function during
development. Finally, loss of RBFox1 was observechbuse and human failing
hearts, and restoring RBFox1 expression in vivegmed cardiac function and
suppressed cardiac hypertrophy in response toyreesserload. Therefore, our
study has established RBFox1/MEF2 as an unchaizaiecommon molecular
mechanism of RNA splicing regulation in both cacdievelopment and diseases.
This novel regulatory circuit has a significant msp on transcriptome maturation

and pathological re-programming in heart.
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Results:

A Common Pattern of Alternative RNA Splicing Associated with Cardiac

Postnatal Development and Heart Failure

Alternative RNA splicing is a common phenomenonersied in many cardiac
genes during development or disease progression @ad Dudley Jr , Guo,
Schafer et al. 2012). Using deep RNA-seq, we hdeatified transcriptome-
wide alternative splicing events associated withspure-overload induced heart
failure in mice(Lee, Gao et al. 2011). Among theres being alternatively
spliced, we compared their relative expression &gl-time RT-PCR in the
ventricular samples of one day old neonates, 5 mofd adult sham operated
mice and age matched mice 8 weeks after transzammistriction(Lee, Gao et al.
2011) Gupplemental Figure 5.1). From all 30 selected exonSupplemental
Table 1, Supplemental Figure 5.2), changes of exon utilization observed in the
adult failing hearts resembled the pattern obseiwable neonatal heart&igure
5.1A). This suggests that the alternative RNA splicpadtern observed in the
adult failing heart shares characteristic featwks fetal heart, and this “fetal-
like” reprogramming in RNA splicing is also part tife transcriptome changes

following pathological stress.

The genes affected by alternative RNA splicingudel all members of the MEF2
family, Mef2a, Mef2c and Mef2d, transcription factomplicated in both cardiac
development and pathological reprogramming (Linhv&rz et al. 1997, Lu,

McKinsey et al. 2000). As shown kgure 5.1B, MEF2s share a common gene
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structure where one of the two exons (a vs. b)3the MADS/MEF2 domain
coding sequences is selectively included in theumeatranscripts due to a
mutually exclusive RNA splicing event(Bachinskirig et al. 2010). The
relative expression ratio between exon b vs. exocomaining MEF2s was
significantly induced during cardiac developmentmiouse and humarkigure

5.1C-D), and this ratio was also significant reversedath mouse and human
failing hearts Figure 5.1C-D). Therefore, the fetal-ike RNA splicing
reprogramming is a conserved process in diseasadshaffecting many genes,

including all members of the MEF2 family.

RBFox1 is a Candidate Trans-acting RNA Splicing Requlator in Cardiac

Development and Heart Failure

The coordinated changes in RNA splicing patteresnaediated by cis-and trans-
acting splicing regulatory elements (McManus anéweley 2011, Witten and
Ule 2011). In search for the putative trans-actexgors participating the fetal-
like RNA splicing regulation, we performedda novo motif discovery analysis
on all the differentially spliced exons observedfailing mouse hearts. By
screening for significantly enriched and evolutiglyaconserved 5-mer binding
motifs in the flanking introns and exonic regioristioe affected exons (Xiao,
Wang et al. 2007) we identified several binding ilscignificantly enriched near
differentially spliced exonsT@ble 5.1). One conserved binding sequence
significantly enriched was GCATG/TGCAT for RBFoxa éplicing regulator

with specific expression pattern in brain and sdédamuscle Jin, Suzuki et al.
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2003. In parallel, we measured the expression levéla panel of 25 known
RNA splicing regulators in normal and pressure-magt induced failing hearts
(Supplement Figure 5.3). Among them, only RBFox1 was significantly down-
regulated in the failing hearts comparing to theuShoperated controls at both
MRNA and protein levelHigure 5.2A-B). These data suggest that RBFox1 is a
candidate trans-acting regulator for alternative ARBplicing in failing heart.
RBFox1 expression was induced in heart during eardiaturation in zebrafish,
mouse and humanFigure 5.2C-F, Supplemental Figure 5.5). Therefore,
RBFox1 has a highly conserved expression pattermglcardiac development
and diseases, correlating well with the observednghs in RNA alternative

splicing.

RBFox1is Essential for Cardiac Development and Function in Zebrafish

To investigate the function of RBFox1 in heart, examined the impact of
RBFox1 inactivation in developing zebrafish embryo&s shown in Figure 3,
RBFox1 morphants developed severe cardiac phenctgracterized by reduced
ejection fraction, lower heart rat&igure 5.3J, K) and presence of pericardial
edema Figure 5.3 A,B), along with collapsed ventricle, enlarged atiag(re
5.3D,E, Supplemental Movie 1,2) as well as defects in circulatioRigure 5.3L,
Supplemental movie 4,5). Injecting zebrafish RBFox1l mMRNA into the
morphants significantly rescued ventricular defd€igure 5.31, Movie 3) and
attenuated the extent of cardiac dysfunction inRiBF~ox1 morphants at 48hpf

(Figure 5.3J,K). Remarkably, overexpression of mouse RBFox1 mRigo
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significantly rescued the cardiac defects obserwvedhe RBFox1 morphants
(Supplemental Figure 5.6), suggesting a conserved role of RBFox1 in heart
development. Finally, in situ hybridization on ewyds at 54hpf using cardiac
chamber specific markers, including amhc, vmhc &lmdchlb, showed less-
defined expression pattern of chamber specific iaargenes in the RBFox1
morphantstigure 5.3M). All these data suggests that RBFox1 is a funelig
conserved RNA splicing regulator essential to ndroaadiac development and

function.

RBFox1 is a Necessary and Sufficient Trans-Acting Regulator for MEF2

Splicingin Heart

MEF2s are transcription factor family implicatednath cardiac development and
pathological remodeling (Lin, Schwarz et al. 199d, McKinsey et al. 2000).
Since MEF2 family members show a conserved altenaplicing pattern as part
of the “fetal like” RNA splicing reprogramming inehart Figure 5.1C), we
investigated whether MEF2s are potential downstrieagets of RBFox1. Indeed,
a consensus RBFox1 binding motif was identifiedrrtea alternatively spliced
exons for all MEF2 genes in fish, mouse and hunmemrome Figure 5.4A). In
addition, changes in MEF2 isoform expression ratas highly correlated with
RBFox1 expression during cardiac development aradt Hailure Figure 5.4B).
To demonstrate the direct impact of RBFox1 expoessin MEF2 alternative
RNA splicing, mouse RBFox1 was expressed in hebrattaentricular myocytes

(NRVM) via an adenoviral vector where the endogen@BFox1 expression was
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low (Figure 5.4C). RBFox1 expression in neonatal myocytes ledigaisicant
induction in the inclusion of MEF2 Exon b to Exomadio (Figure 5.4D,E). In
contrast, using morpholino to inactivate RBFox1 zebrafish embryo, we
observed the cardiac MEF2 b vs. a exon expressitiosrwere significantly
reduced Figure 5.4F). To further establish MEF2 genes as direct dongam
targets of RBFox1 mediated RNA splicing, we utitizan in vitro minigene
reporter system(Boutz, Stoilov et al. 2007), inaigdmouse Mef2a Exon 5b with
the flanking intronic fragment containing the putatRBFox1 binding motif
(Figure 5.4G). Upon co-expressing the reporter with RBFoxHBEK293 cells,
we detected increased Mef2a Exon 5b inclusiigure 5.4G). This induction
was abolished when the putative RBFox1 binding isitthe Mef2a intron was
either mutated or deleted. Similar results wergeoled using a similar minigene
reporter for the mouse Mef2d Exon 4Bupplemental Figure 5.6). Combining
these with the gain and loss of function studiexcdbed earlier, we conclude that
RBFox1 is both a necessary and a sufficient tratiggafactor for the conserved

alternative splicing of MEF2 genes in heart.

Regulatory Cir cuit of RBFox1-M EF2 in Heart

The remarkable conservation of the RBFox1-MEF2sudirwas manifested in
correlated expression and the conserved presenttee d2BFox1 binding motifs
in the MEF2 genes among vertebrates. However, oo gtudy has demonstrated
the functional differences between the two MEFZadsns expressing a vs. b

exons. We first tested the functional impact offR4eExon 4a vs Mef2a-Exon 4b
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isoforms in zebrafish embryos by individually owexpressing these two isoforms
in developing zebrafish embryo. As shown in FighreC, embryos receiving
synthetic Mef2a-E4a RNA displayed severe heartifaiphenotype comparing to
the control embryos, while zebrafish embryos overessing the Mef2a-E4b
gene showed normal cardiac phenotype at comparaekfgession levels.
Similarly, lethal cardiac phenotype was observeenrbryos receiving synthetic
mouse Mef2a-E5a isoform RNA at comparable letegfre 5.5D-E). This data
suggests that different Mef2a splicing variantsendistinct function.

In addition, we simultaneously knocked down RBFad individual Mef2a
splicing variants using targeted morpholifogure 5.6A, Supplemental Figure
5.7). As shown in Figure 3, RBFox1 inactivation inbeafish led to reduced
inclusion of Exon 4b in Mef2a, leading to a sigeafint induction of Mef2a exon
4a vs.4b expression ratio. Double knockdown of ®BF and Mef2a-E4a
isoform significantly rescued the cardiac defectsthe RBFox1 morphants as
measured from the presence of pericardial edembryas viability and normal
circulation Figure 5.6B-C). In contrast, knockdown of RBFox1 in combination
with knockdown of Mef2a-E4b failed to rescue théh#t cardiac phenotype
comparing to RBFox1 morpharfigure 5.6A-B). Therefore, both gain and loss
of function studies of Mef2a isoforms clearly derswate that these splicing
variants have distinct function in cardiac develepm These in vivo evidences
suggest that RBFox1 mediated regulation of the esgion ratio of the MEF2

splicing variants is critical to normal cardiac depment and function.
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M ef2a Splicing Variants Direct Distinct Transcriptional Activity

Our in vivo observation in zebrafish contradictehvan earlier study showing
different Mef2c isoforms generated by this alteiweasplicing event have similar
transcriptional activity based on in vitro lucifseareporter assay(Bachinski, Sirito
et al. 2010). However, the transcriptional actestiof MEF2 splicing variants
have not been studied for the endogenous downsttaagets. To investigate
that, we performed RNA-seq studies in Mef2a-Exonafal Mef2a-Exon-4b
overexpressing zebrafish embryos at 24HghQre 5.7A) at which stage the
deleterious cardiac phenotype has not become agpat@mparing to the control
embryos, we identified a total of 2334 number ohegethat were differentially
expressed in the embryos expressing the two Maf@arnms. Among them, 905
genes were preferentially induced by Mef2a-E4basaf and 209 genes were
preferentially induced by Mef2a-E4a isoform. Mosbtably, several well
established cardiac transcription factors, inclgdikx2.5, Gata4, Thx20 and
Mef2d were preferentially induced by Mef2a-Exon-v& 4a isoform Kigure
5.7B). To validate these observations in zebrafish, specifically expressed
different mouse Mef2a isoforms in NRVM via adenosirvectors. Consistent
with the results from zebrafish, Mef2a-E5b exprasded to significantly higher
induction of cardiac transcription factors, inclugliNkx2.5, Gata4, Tbhx20 and
Mef2d comparing to Mef2a-E5a splicing variant. thermore, using Nkx2.5
promoter driving luciferase reporter, we showed 24cE5b has significantly
higher activity to induce Nkx2.5 transcription thislef2a-Exon-5aKigure 5.7E).

Similar observation was made for Tbhx20 promofarpplemental Figure 5.8).
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Therefore, RBFox1 mediated alternative splicingiiF2 yielded two isoforms
with distinct transcriptional activities towardswdastream genes including some
key cardiac transcription factors. These datarefie molecular basis for the
essential role of RBFox1 and the differential impaicMEF2 isoforms in cardiac

development and function.

RBFox1 Mediated RNA splicing in Cardiac Hypertrophy and Heart Failure

RBFox1 expression was low in neonatal hearts, &evan adult hearts and
significantly reduced again in mouse failing hearEctopic expression of
RBFox1 in NRVM promoted cell size growtlrigure 5.8A) but a significant
suppression of “fetal gene” expressiokigure 5.8B). More importantly,
significant RBFox1 down-regulation was observed muman dilated
cardiomyopathy heart$igure 5.8C) and TAC induced RBFox1 down-regulation
was reversed one day after pressure-overload wasvesl in mice along with
some heart failure marker gen€ésgure 5.8D and Supplement Figure 5.4). In
contrast, modest induction of RBFox1 in adult mohsarts in a cardiac specific
RBFox1 transgenic model did not cause detectaldal Ehenotype with normal
cardiac function Kigure 5.8, F). However, following 6 weeks of pressure-
overload induced by TAC, RBFoxl transgenic mice waktb significantly
preserved function comparing to non-transgenicerhttate controls Kigure
5.8G,H), and significantly attenuated hypertrophy and rhefailure gene

expressionKigure 5.81). Therefore, restoring RBFox1 expression sigaifity
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blunted the deleterious pathological remodelingstiressed hearts at functional

and molecular levels.

Discussion:

In this report, we characterized genome-wide changeRNA splicing in heart
during postnatal development and disease progresstwom our RNA-seq and
extensive validation studies, we uncovered a “fekal’ alternative RNA splicing
program in failing heart for a significant numbdr toanscripts with important
function in heart, including a highly conservecderttive splicing event for all
members of the MEF2 gene family. Based on bothtro andin vivo evidence,
we further established that this alternative spicof MEF2 is regulated by a
tissue-specific splicing regulator--RBFox1.  Usimgebrafish and cultured
myocytes, we demonstrated that RBFox1 mediatedhalige splicing resulted in
two MEF2 isoforms with distinct downstream geneivation profiles. At
functional level, inactivation of RBFox1 causeddiac dysfunction associated
with defects in myocyte maturation that was siguaifitly contributed by specific
induction of the Mef2a splicing defects. Finallgss of RBFox1 is associated
with the onset of heart failure following pressoneerload while restoring
RBFox1 expression in a transgenic model amelior#teddevelopment of heart
failure. Therefore, our study revealed a novellary circuit in transcriptome

programming and reprogramming during cardiac demaknt and disease
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involving RBFox1 mediated alternative splicing oérdiac genes, including

MEF2s.

A Global Alternative Splicing Network Associates with Both Cardiac
Development and Pathological Remodeling

In this study, we identified that the disease asged alternative RNA splicing
pattern resembled what was observed in fetal heaithough a “fetal-like”
transcriptional reprogramming has long been esthddl in diseased hearts, a
“fetal-like” RNA splicing program has not been obsa=l or reported. Although
we cannot confirm all RNA splicing events in fagdifmearts are “fetal like”, the
significant number of genes we have analyzed saudpport the concept that a
“fetal-like” RNA splicing reprogramming is wide-sgad in diseased heart. A
global and coordinated regulation of RNA splicimghoth cardiac development
and diseases implies a potentially common regutatoechanism. However,
comparing to the abundant knowledge of transcmatioegulation, very limited
insights are available to cardiac RNA splicing deagon during development or
diseases. Inactivation of splicing factors, SCBH BM20, has been found to
cause dilated cardiomyopathy in mouse and rat(Gebafer et al. 2012, Linke
and Bucker 2012, Refaat, Lubitz et al. 2012). O#pticing factors shown to play
important roles in cardiac development and functrmmiude CUGBP1 and ETR-
likefactors, CELF/Bruno-like family of RNA bindingroteins, and muscleblind-
like (MBNL) proteins(Warf and Berglund 2007, Kalsmt Wang et al. 2010,

Koshelev, Sarma et al. 2010, Dasgupta and Ladd)28d®ever, these splicing
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regulators do not show tissue specific and dynaxpression pattern related to
cardiac development and diseases. IdentificatioiRBFox1 revealed the first
tissue-specific RNA splicing regulator with an esgsion pattern significantly
correlated with the changes of RNA splicing in teaturing development and
pathogenesis. Our extensive in vitro and in vivmence further established that
RBFox1 is a necessary and sufficient trans-actagglator for MEF2 alternative
splicing. RBFox1 expression is critical to nornsatdiac development and has a
significant impact on the development of cardiapdryrophy and heart failure
under pathological conditions. Therefore, defettRBFox1l mediated RNA
splicing is a newly established molecular compomentiseased hearts. However
the regulatory mechanism for RNA splicing in geherand for RBFox1l
expression and function during heart failure intipafar, is poorly understood

and should be an interesting area for further studi

Alternative Splicing M ediated Transcriptional Regulation

It is known that alternative RNA splicing affectsany genes in heart, including
genes encoding structural proteins, such as cardggonin T, or signaling
molecules, such as €#&almodulin-dependent protein kinase (CaM kinase)
(Ramchatesingh, Zahler et al. 1995, Ding, Xu eR@04, Xu, Yang et al. 2005).
The mutually exclusive alternative splicing of tMEF2 gene for an exon 3’
adjacent to the MEF2 and DNA binding MADS box donsai(encode
MADS/MEF2 domain) has been reported as a highlyseored splicing event

observed in species across vertebrates and sharall MEF2 family members.
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Yet, the functional significance of this MEF2 attative splicing event is not
known.  The domain encoded by the two mutuallglesive exons was never
included in structural studies on MEF2/(j, Dey et al. 201)0 The regulation of
this splicing event has never been studied, neitbar study established for the
first time that RBFox1 is a potent trans-actingulagpr of the alternative splicing
for MEF2 genes, and the expression of the MEFZ2cisgji variants changes
dynamically in developing and diseased heartspWohlg a “fetal-like” RNA
splicing pattern. In addition, with specific gaand loss of function studies, we
demonstrated that the individual MEF2 splicing &ats had significant
differences in transcriptional targets and funaionimpact on cardiac
development, maturation and pathological remodeliffgese studies established
for the first time that a coordinated regulationMEF2 alternative splicing is a
result of RBFox1 mediated RNA splicing and thesply variants of MEF2 have
distinct transcriptional activities that have angigant functional impact on

normal cardiac development and diseases.

A Finetuning Transcriptional & Post-Transcriptional Network Regulating
Cardiomyocytes Differentiation and Maturation

Both genetics analyses and molecular studies hawvmustrated a central role for
transcriptional regulation in cardiomyocyte lineadgtermination and continuing
maturation, involving key transcription factors am@gnome-wide chromatin
remodeling (Qian, Huang et al. 2012, Song, Naml.eR@l2). Our study has

revealed a new dimension in the transcriptome jarogring network involving
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RBFox1 mediated RNA splicing of transcription fasto including MEF2.
Although not an essential pathway for cardiomyochteage determination,
RBFox1 expression is necessary for normal cardeaecldpment and function
beyond the initial commitment. The fact that RBFoafpression is further
induced in adult hearts comparing to the fetal eormatal heart suggests that
RBFox1 mediated RNA splicing plays a necessary tolgefine the cardiac
transcriptome into its matured form. Since MEFfcgpy variants have distinct
downstream transcriptional targets, in additiorthteir total level of expression,
the relative ratio of the MEF2 splicing variantsncdetermine and refine the
transcriptome composition in heart. Therefores iplausible that RBFox1-MEF2
pathway is a fine-tuning regulatory circuit for dec transcriptome maturation in
adult hearts. Finally, our in vivo studies showtdtht restoring RBFox1
expression in mice attenuated pressure-overloadced heart failure and re-
balancing MEF2 splicing variants ratio in zebrafigmbryo also rescued
development defects caused by RBFox1 inactivafitverefore, RBFox1-MEF2
regulatory circuit has a significant contribution tardiac development and

disease progression, and can serve as a new tdthetrapeutic intervention.

135



EXPERIMENTAL PROCEDURES:

Zebrafish

Adult  zebrafish and embryos were maintained as ipusly
described(Vesterfield 199h Embryos for in situ hybridization were raisedtie
presence of 0.2mM 1-phenyl-2-thiourea  to maintain ptical
transparencyf/esterfield 199h The Cmlc:GFP strain used for this study has

been previously describedy Ren et al. 2007

RBFox1 Transgenic Mouse:

Animals in this study were handled in accordanaé wieGuide for the Care and
Use of Laboratory Animals published by the US National Institutes of Health.
The detailed description of the generation of RBFtransgenic mice is provided

in Supplemental Material.

Zebrafish Embryo Morpholino and mRNA injection
Morpholino antisense oligonucleotides (MOs) commatary to the translation
start site and its flanking sequence for zebraR&8Fox1 gene and mRNAs for

Mef2a isforms were used with details describedupfemental Material.

Tissue from human Non-failing and Failing Hearts

The failing heart samples (n=16) were obtained fritv@ left ventricular (LV)

anterior wall during heart transplantation or inméion of an LV assist device

136



(Ref). The non-failing heart samples (NF) (n=8) avebtained from the LV free
wall and procured from National Disease Researdkrdhange (NDRI) and
University of Pennsylvania. NF heart donors hadhistory of macroscopic or
laboratory signs of cardiac diseases. The tissllection was approved by the
UCLA Institutional Review Board #11-001053 and #IB207. Fetal heart
tissue was procured from medical waste (StemExpRiasnond Springs, CA) as

approved by the Stanford Institutional Review Board

Pressure-overload model of HF in mouse

Left ventricle tissues were collected from male BE/B mice 8 weeks post trans-
aortic constriction (TAC) procedure (HF) and 1 dpgst birth (Neonatal)
respectively and their corresponding Sham conslslescribedEe, Gao et al.
2017). Doppler velocity measurement of right and lefirotid arteries were
obtained from TAC treated mice to confirm the cetesicy of the surgery
procedure. The heart failure status of the TAGtee animals was established
based on a significant increase in heart weight anglgnificant reduction in

ejection fractions measured by echocardiography.

Gene expression analysis
Gene expression analysis via RNA-seq, gRT-PCR,itin-&iybridization,
luciferase reporter gene assays were describedetailsl in Supplemental

Material.
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Statistical Analysis

Data are expressed as mearSTDEV. For comparison between two groups,
differences were analyzed by Student's t-test. rRoltiple groups’ comparison,
differences were analyzed by one-way ANOVA.p valdégs05 were considered

as significant.
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FIGURE LEGENDS:

Figure 1: Common Pattern of Alternative RNA Splicing Assded with Cardiac
Development and Heart Failure

(A) Relative expression levels of 30 exons were suead by real-time RT-PCR using
exon specific primers. The RNA samples were obthinem left ventricles of mouse P1
neonatal hearts (Neonatal), 5 month old normaltaldehrts (Adult) and age-matched
pressure-overload induced failing hearts (Failingat) as indicated. The list of
individual exons and the expression levels wetsstthted in Supplemental Figure 2(n=3
for each group). (B) Schematic view of Mef2a gemeucture, alternatively spliced
transcripts including exon 5a or 5b, and Mef2a girotwith functional domains
illustrated. (C)Relative expression ratio of Exorower Exon b in Mef2a, Mef2c and
Mef2d genes in P1 mouse neonatal heart, 5 montlsenadult heart and age matched
pressure-overload induced failing hearts as inditat, p<0.05.(D) Relative expression
ratio of Exon a over Exon b in Mef2a, Mef2c and Rtkfgenes in human fetal hearts
(n=4), non-failing adult hearts (Adult, n=4) andiatid cardiomyopathy hearts (n=4). *,
p<0.05.

Figure 2: RBFox1 is dynamically regulated in Cardiac Development and Heart
Failure.

(A) gRT-PCR for RBFox1 mRNA levels normalized to BBH in Sham operated and 8
weeks post-TAC induced mouse hearts (n=3 eachp<.05.(B) Immunoblot for
RBFox1 protein levels in Sham operated and 8 weeks-TAC induced mouse hearts.
GAPDH was used as loading control. (C) gRT-PCRRB8Fox1 mRNA in P1 neonatal
mouse hearts and 5 monthsold adult mouse heartsp<®.01.(D) Immunoblot for
RBFox1 protein levels in P1 neonatal mouse headssamonths old adult mouse hearts.
(E) gRT-PCR for human RBFox1 mRNA in fetal heardl aault non-failing hearts, (n=4
for each group), **p<0.01. (F) gRT-PCR for zRBFox1 mRNA in zebrafish embryos a
48 hours, 72 hours post fertilization (hpf) and @tins old adult fish. *p<0.05.

Figure 3: RBFox1 is Essential for Cardiac Development and Function

(A-C) Representative images @&@mlc:GFP zebrafish at 48 hour post-fertilization,
injected with vehicle (A), RBFox1-MO alone (B) on icombination with zebrafish
RBFox1 mRNA (C). Inserts are high magnification gea showing pericardial edema
and collapsed heart tube in RBFox1-MO fish. (D-EpRsentative images of the same
zebrafish hearts visualized under fluorescent mmope.(G-1) The M-mode tracing of
zebrafish ventricle obtained from recorded videages (see Supplemental Information)
using LQ program described earlier(Lu, Ren et @073. (J) Quantification of zebrafish
cardiac function measured as ejection fraction fréontrol, RBFox1 morphants and
RBFox1 morphants plus RBFox1 mRNA injected embryds.p<0.01. (K) Average
heart rates of 28hpf Control zebrafish, RBFox1-rhargs and RBFox1-morphants plus
RBFox1 mRNA injected embryos, *H<0.01. (L) Summary of the number of embryos
received morpholino injection. The number of emisrgeveloped abnormal pericardial
edema was recorded. (M) Representative imagesrdfacagene expression pattern in
zebrafish illustrated by whole-mount in situ hylmation for Notchlb, amhc and vmhc
in Control and RBFox1 morphants as indicated. Buearrows indicate atrial-ventricular
septum, and the red dashed lines indicate verarieuld atrial junction.

Figure 4: RBFox1 is a Sufficient and Necessary Trans-Acting Regulator for MEF2
Splicing in Heart.
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(A) Schematic view of conserved RBFox1 binding rimtiMEF2 pre-mRNA sequences
from mouse, human, zebrafish and fugu fish adjatetihe alternatively spliced exons.
Note: During evolution, zebrafish genome contaims separate Mef2c genes, Mef2c-a
and Mef2c-b. (B) Relative expression ratio betw&sion a and Exon b of zMef2a and
zMef2d in zebrafish hearts at 48hpf and 72hpf amtb2ths old adult zebrafish hearts. *
p<0.05. (C) RBFoxl mRNA is efficiently overexpredsen neonatal rat ventricle
cardiomyocytes (NRVM) using adv-RBFox1 vector asaswed by gRT-PCR. (D)
Relative expression ratio between exon-5a (E5)exen-5b of Mef-2a in control and
RBFox1 expressing NRVM,1<0.05. (E) Relative expression ratio between exan-4
(E4) vs. exon -4b of Mef-2d in control and RBFoxdpeessing NRVM,*p<0.05. (F)
Relative expression ratio between exon-a vs. exohNdef-2a and Mef2d in Control and
RBFox1-Morphant zebrafish hearts, px0.05. (G) RBFox1 directly regulates MEF2
alternative splicing. Minigene reporter construotgitaining mouse Mef2a Exon 5b and
adjacent intron fragment containing putative RBFbiiding motif (UGCAUG), mutant
RBFox1 binding motif (UJUCGUA) and deleted RBFoxInding motif are illustrated.
Reporter construct was transfected into HEK293scalbne or in combination with
RBFox1 expressing vector. 48 hours post transfective treated cells were harvested
and semi-quantitative RT-PCR was performed to ddter the relative level of the
transcripts containing exon E5b or excluded exon. EAPDH mRNA level was used as
control. RBFox1 expression was confirmed by immuoblith HDAC?2 used as internal
loading control.

Figure5: Differential Effects of Mef2a Splicing Variantsin Zebrafish Development

(A) Representative image of zebrafish embryos tepbcwith control morpholino
showing normal morphology at 48hpf. (B) Represévgatmage of 48hpf zebrafish
injected with different dosages of zebrafish MefzamRNA transcript as indicated. (C)
Representative image of 48hpf zebrafish injecteth wiifferent dosages of zebrafish
Mef2a-4b mRNA transcript as indicated. (D) Représiéve image of 48hpf zebrafish
injected with different dosages of mouse Mef2a-3aNA transcript as indicated. (E)
Representative image of 48hpf zebrafish injecteat different dosages of mouse Mef2a-
5b mRNA transcript as indicated.

Figure 6: Functional Role of MEF2 Splicing Variantsin RBFox1 Regulated Cardiac
Development.

(A) Representative images of zebrafish at 48h@fcitgd with Control, RBFox1, zMef2a-
4a, zMef2a-4b morpholinos alone or in combinatisnraicated. Enlarged inserts shows
pericardial edema in zRBFox1 morphants and zRBHux$ zMef2a-E4b morphants.
(B) Summary data showing the number of embryosivedeeach type of injection and
the number of embryos developed pericardial edei@a. Representative images of
cardiac gene expression pattern in zebrafish fltesti by whole-mount in situ
hybridization for Notchlb, amhc and vmhc in ContieBFox1 and RBFox1+zMef2a-
E4a morphants as indicated. The red arrows indiatital-ventricular septum, and the
red dashed lines indicate ventricular and atriatjion.

Figure 7:Mef2a Splicing Variants Have Distinct Transcriptional Activity
(A) Schematic view of the experiment design. Zebhakembryos were injected with

individual zebrafish Mef2a splicing variants coniag Exon4a or Exon4b. The embryos
were collected at 24hpf and RNA was extracted fdARSeq. (B)Gene activation profile
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in zebrafish embryos overexpressing zMef2a splicitagiant containing Exon4a or
Exondb. The number on top indicates total numbegesfes in each group representing
genes induced or suppressed by both or eitherirgpli@riants as indicated. (C)Phase-
contrast light microscopic images of NRVM expregsimouse Mef2a-Exon 5a or
Exonb5b. (D)Relative mMRNA levels of Nkx2.5, Gatadx20 and total Mef2d in NRVM
48hr post infection of adenoviral vectors expregsimouse Mef2a-Exon5a or Mef-2a-
Exon5b (n=3 for each sample). p<0.05. (E) Transcriptional activities of Nkx2.5
promoter constructs with different lengths as tlated were measured based on
luciferase activities in NRVM. The locations oftlputative MEF2 binding motifs are
identified at -389 and -169 bp as indicate@<0.05 vs. Control NRVM, #<0.05
between Mef2a-E5a and Mef2a-E5b.

Figure 8:RBFox1 Mediated RNA Splicing in Cardiac Hypertrophy and Heart
Failure

(A) Cellular morphology of NRVM expression RBFox18 ours post adenoviral
infection. (B) p—Myosin heavy chain (MHC) and atrial natriuretic tfac (ANF)
expression in NRVM expressing RBFox1 at 48 hourst pafection. (C) qRT-PCR for
human RBFox1 mRNA in fetal heart and adult nonifigilhearts, (n=4 for each group),
**  p<0.0L.(F)QRT-PCR for human RBFoxl mRNA in non-failing #dbearts and
dilated cardiomyopathy hearts (n=4 for each group)p<0.05. (D) gRT-PCR for
RBFox1 expression in Sham operated, 14day post-Ti4@ay TAC followed by 1-day
dTAC (Experimental Procedure for Details). (E) RBRE@rotein expression in the left
ventricles of transgenic mouse hearts (RBFox1-T&€fpie and after TAC surgery as
detailed in Experimental Procedur@scatenin was used as internal loading control. (F)
Left ventricle (LV) weight/body weight ratio in RB&1 Transgenic mice and non-
transgenic littermates before and after 6-week$AC. *, p<0.05. (G) Representative
M-mode echocardiogram of a RBFox1 transgenic haad non-transgenic littermate
before and after TAC. (H) Cardiac ejection fractafrRBFox1-TG and non-TG control
mice before and after different time period post€TAs indicated. *p<0.05. (1) ANF
and B-MHC expression in RBFox1 transgenic and non-trangg littermate control
hearts before and after TAC.5<0.05

Table 1:Enrichment of RNA splicing factor binding matifs for alternatively spliced
exonsin cardiac transcriptome

Summary of enriched binding motifs among exonseddftially included normal or
failing heart transcriptome identified through RI8A¢g (Lee, Gao et al. 2011). Using de
novo motif discovery, 5-mers that are both evohaiglyconserved and highly enriched
among the exons in the flanking introns and exoegions. Five regions for each exon
are analyzed and annotated: upstream intron f58tr22 (Upln 1st), upstream intron last
250nt (Upln 2nd), downstream intron first 250nt (Dast), downstream intron last 250nt
(Dnin 2nd). RBFox binding motifs are highlightedred.
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Figure 5 Graphic abstract

Graphical Abstract
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Figure 5.1 Fetal like alter native splicing associated with heart disease
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Figure 5.2 RBFox1 expression isdynamically regulated during cardiac

development and disease remodeling
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Figure 5.5 MEF2 splicing variants have differential functional impact on

zebr afish development
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Figure5.6 MEF2 splicingiscritical for RBFox1 mediated splicing regulation

Figure 6
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Figure5.7 MEF2 splicing variants have different transcription activities

Figure 7
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Figure 5.8 Restoring RBFox1 expression is sufficient to preserve cardiac

function in pressure-overload
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Table5.1 Enriched motif in alternative splicing in failing hearts

Table 1
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Table5.1.SList of verified alternative splicing in failing and neonatal hearts

Supplement Table 1

Alternative Splicing Events Candidate Genes

Exon Inclusion on Exclusion
CamK2D : tus1
Cymas Smtn
SlcTal Slmap
Camk2g Synopl
MefZa 2K7
Mafz2C ﬁ?aﬂ
Mef2D Map3k3
Calcineurin Bbpms
Prpf39 CugbpZ
Mbnl2 f
%Iims
Map3k7?
Mef2a
Maf2C
Mef2D
FPalm:z
Bachz
Conel
Daaf
Ptprd
Myo7a
Lyst
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Figure5.1.S Cardiac function analysisfor mouse hearts used for deep RNA-

sequencing
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Figure5.2.S Individual alternative splicing event confirmed in neonatal and

diseased heart
Figure 52
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Figure 5.3.S Expression profile of alternative splicing regulators

Figure 53
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Figure5.4.SHypertrophy marker gene expression of mouse heartsduring

TAC and dTAC experiment
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Figure5.5.S Experimental design for zebrafish cardiac development gene

expression analysis
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Figure 5.6.S RBFox1 morphant phenotype can be rescued by mouse RBFox1

MRNA
Figure S6
A B
REFox1 KO TH T
Carrol
REFox1 MO TH 36
+=mABFox1
mAhA
x o 1]
REFoxi MO = _I | i
HO ..
542
| g:u
™.
REFax! MO Cantral RBFox1  REFe
smREFox] L] MO
+mRBFax1

174



Figure5.7.SMinigenereporter analysis of Mef2d
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Figure5.8.S Mef2a splicing variants can be specifically knocked down in

zebrafish
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Figure 5.9.S Mef2a splicing variants have different activities on Thx20

Luciferease reporter
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Figure5. 10.S Schematic view of MEF2 pre-mRNA sequence
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Chapter Six

Discussion and Future Direction
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Summary

Our study has provided a comprehensive understgraficardiac transcriptome
during maturation and pathological remodeling. Basm: our deep RNA-

sequencing analysis, we have identified previoushannotated splicing events,
IncRNAs and novel transcript clusters. Using RKRE as example, we have
further demonstrated these novel splicing vari@oisld have functional impact
during cardiac pathological remodeling. Lastly, Wwave identified a critical

splicing regulator—RBFox1 that is dynamically regpeld during cardiac
transcriptome maturation and disease remodelingedgblishing a link between
RBFox1 and cardiac transcription factor—MEF2, weséhadentified a novel

cardiac regulatory circuit at alternative spliciegel.

Our study has several folds of significances thiitbe listed in this chapter.
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A comprehensive under standing of the cardiac transcriptome

During the past decades, with microarray studies,have generated detailed
blueprint based on transcription factors duringdi@ar development, including
key transcription factors: MEF2, Nkx2.5, GATA an&X proteins(Lin, Schwarz
et al. 1997, Molkentin, Lin et al. 1997, Gajewskim et al. 1998, Deepak
Srivastava 2000) and the functional impact of theeaescriptional factors have
further been proved in later embryonic stem celldfeentiation into
cardiomyocytes studies(Qian and Srivastava 201.3¥immery et al. 2013).
However, these studies are limited because mi@gacan only provide
information based on EST clones and predicted gexgression, and the
relatively low sensitivity and low throughput of enbarray in detecting gene
expression(Churko, Mantalas et al. 2013, LappatgiBammeth et al. 2013).

Our study, for the first time, explored the reaingexity of cardiac transcriptome
utilizing the high-throughput technology—deep RNAgBencing. During this
sequencing effort, we have obtained a total of B&5,792 reads, among them,
191,049,656 reads can be uniquely mapped to maassctiptome. We have
identified ~1000 previously un-identified novel esodue to different alternative
splicing events. We have also identified >700 InéRNhat are expressed at
significant level in cardiomyocytes. By comparitg tpressure-overload induced
failing hearts with sham operated normal hearts, fuvther demonstrated the
cardiac transcriptome is dynamically regulated. &tran one thousand genes
showed differential gene expression and differénéilernative splicing in

diseased hearts. We also provided evidence, fdirdigime, that IncRNAs could
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have functional impact on cardiac disease basethein expression profile in
diseased heart and normal hearts.

A fine-tuned functional genomicsin heart

Although the concepts of IncRNA and novel trandsripave been established
decades ago, for a long time, these transcriptoongonents have been poorly
studied and considered as transcription by-prodactsanscription noises. One
reason for this is that most INncRNAs and novelcapdj variants are not expressed
at high level, and the tools to study these trapsmne components are not well
established. With the development of high-throudghechnology, especially deep
RNA-Sequencing, investigators were able to zoora these previously under-
appreciated transcriptome components at single bessution. Based on the
deep sequencing effort in mammal and model syst&ms, suggested that, a
significant amount of these uncharacterized trapiscrare highly conserved
across multiple species, and their expressiorglglyi regulated during different
pathological conditions, leading to a new era &uhctional Genomics”.(Birney,
Stamatoyannopoulos et al. 2007, Mortazavi, Williaghal. 2008, Gerstein, Lu et
al. 2010, Muers 2011)

Our study on PK@G-NE further provided strong evidence for the notmin*
Functional Genomics”. Based on in vivo and in vitngnigene reporter analysis,
we have demonstrated this highly conserved noveher PKGx is a cardiac
specific splicing event tightly regulated by sphigi regulator—RBFox1. The

novel splicing variant of PK& has distinct activation and translocation profile

comparing to original PK& upon different hypertrophic stimuli, including PMA
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ISO and Angll. Interestingly, both these two RiKGQranscripts induced
cardiomyocytes hypertrophic response when overssgprein vitro, but through
different pathways. While the original PKCinteracts with classic chaperon
proteins according to our mass spectrometry sttiiynovel transcript—PK&
NE interacts specifically with key components obtein synthesis machinery—
eEF1A1l. In addition, the ratio between these twoCERKranscripts changed
during cardiac transcriptome maturation and patjiodd remodeling.

Taken together, we have used one exampledPK& demonstrate that, the
previously un-annotated splicing variants and InéRNan indeed have unique
functional impact in cardiac function regulationh€el ratio between novel VS
original PKGx splicing variant might have different impact méuhig
cardiomyocytes contractility and hypertrophy resmonEstablishing a link
between PKG-NE and eEF1Al can also have therapeutic valueesigding
inhibitors targeting PK@ activity.

Of course, there are also several limitations in swdy that require further
investigation.

Firstly, we haven't provided protein evidence fdiist novel PK@ splicing
variant. This novel exon is a very short 48bp examj is highly enriched with
potential trypsin digestion sites, making the mgssctrometry analysis difficult.
Potential solution to this problem is to generatkcsg variant specific antibody
based on the protein sequence of the novel exonaarmkntify the existence of

this novel exon at protein level during cardiac unation and disease remodeling.
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Secondly, although biochemistry analysis and im\gain-of-function study both
suggested a significant higher level of RKBE auto-phosphorylation. We have
not provided evidence whether the insertion of tisel exon contains novel
phosphorylation site, or the insertion of novel @xnduces phosphorylation at
turn motif. Future analysis would include genemumutant PK@-NE to replace
the potential phosphorylation sites. This would vie detailed molecular
mechanism underlying the phosphorylation and attimgrofile of PKGx-NE.
Lastly, we have demonstrated PKGIE interacts and potentially phosphorylates
eEF1A1 at least in vitro. But it is not clear whathhe phosphorylation event is
required for the interaction and whether it is threque sequence of the novel
exon that is required for this interaction. In artle carry out a detailed analysis
on this interaction, and to provide insights on rpiecological inhibitor design,
mutation analysis based on potential phosphorylasite on eEF1A1 would be
necessary and helpful.

A fetal-like alternative splicing profile during pathological remodeling

Earlier section mentioned the importance of keydcaiption factors regulating
cardiac development and maturation. Interestinghgvious studies have also
suggested a significant role of these transcriptfactors during cardiac
pathological remodeling. That is, when the matwteltaheart undergoes cardiac
stress, including hypertrophy and pressure-overldhd silent genes are re-
induced, eg. fetal isoform of contractile protesrsd fetal type of cardiac ion

channels plus the previously mentioned transcmpfearctors including Nkx2.5,
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MEF2 ,GATA and TBX proteins (Lynch, Chilibeck et 2006, Kuwahara,
Nishikimi et al. 2012).

However, studies based on this “ fetal gene prognarajorly focused on total
gene expression regulated at transcription leveingRNA-Sequencing together
with real-time PCR analysis, we have revealed,ther first time, that this fetal
reprogramming in heart during cardiac stress i® abgulated at alternative
splicing level. We have demonstrated a significaninber of genes that have
shared alternative splicing pattern in neonatalteeand failing hearts, including
genes that are functional important for heart, &APK, MEF2, Mfn and
CamKinase.

The shared alternative splicing pattern betweereldging and diseased heart
suggested shared molecular regulatory machineryalternative splicing. Our
study has provided evidence that, a cardiac aniétskenuscle enriched splicing
regulator—RBFox1 is at least, partially responsitae the fetal like alternative
splicing in failing heart. Bioinformatics suggest&BFox1 binding motif is
highly enriched among the differentially splicedoeg in diseased hearts. We
have also demonstrated that this splicing reguliédetf is dynamically regulated
during cardiac development and pathological remondelnd directly regulates
one such fetal like alternative splicing event &ilifhg heart—MEF2 mutually
exclusive alternative splicing.

However, a global fetal like alternative splicingofde in failing heart is more
likely to be regulated by multiple players. Our ibformatics study also

suggested there are other binding motifs enriclmetheé alternatively splicing
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events in failing heart. Although RBFox1 is the yosplicing regulator that is
significantly down-regulated in failing hearts coanipg to sham operated hearts
according to our RNA-Sequencing analysis, it is anignt to keep in mind that
many splicing regulators are regulated at poststedional level, including
Cugbpl(Apponi, Corbett et al. 2011, Dasgupta anddL2012). A detailed loss-
of-function study would provide further insights aentification of key splicing
regulators responsible for the fetal like altenwaplicing during cardiac disease.
A novel regulatory circuit between alter native splicing and transcription

As mentioned earlier, the key component of caradlagelopment blueprint is
transcription factors including MEF2. And the fuincial significance of these
transcription factors is also well established nigirtardiac hypertrophy and heart
failure. Our study, however, focused on transcnptoregulation at alternative
splicing level.

The alternative splicing of MEF2 has been docuntesiece last decade as it is a
highly conserved mutually exclusive splicing evtrdt is shared by all the MEF2
family members(Bachinski, Sirito et al. 2010). Bé functional significance of
this alternative splicing event has never beenbéisteed. Based on our gain-of-
function analysis in zebrafish and in vitro cul@ireardiomyocytes, the mutually
exclusive splicing event of MEF2 generates fetal adblt splicing variants that
have distinct transcription factor activities amadget preference. We have further
established a link between splicing regulator-RBF@nd MEF2 alternative
splicing. The expression of RBFox1 is dynamicalggulated during cardiac

transcriptome maturation and pathological remodelRBFox1 further mediates
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MEF2 mutually exclusive alternative splicing, geaterg adult or fetal splicing
variant; different MEF2 splicing variant have diat transcription factor
activities toward different set of genes, and ferthegulate cardiac development
and function during different physiological condits. Our study has established
a novel regulatory circuit in cardiac transcriptorineking alternative splicing and
transcriptional regulation, thus provided a finedd regulatory network at
different levels in cardiac transcriptome.

For the future study, we would like to provide a renadetailed molecular
mechanism underlying differential transcription iates between MEF2
alternative splicing variants. Overexpression of MEsplicing variants induced
different cardiac phenotype in zebrafish, RNA-Seureg study also suggested
different MEF2 splicing variants have differentger preferences. The mutually
exclusive spliced exon locates right next to MAD& kand MEF2 signature,
potentially affects MEF2 binding specificity and-factor interaction(Wu, Dey et
al. 2010). Future analysis based on MEF2 diffespiicing variants ChlP-Seq
analysis and immune-precipitation analysis deteimgithe co-factors interaction
profile between MEF2 splicing variants would yietdd more comprehensive
understanding of this splicing event at molecutael.

A novel therapeutic target in heart disease

Our study has identified a cardiac enriched spliciegulator-RBFox1 to be
dynamically regulated during cardiac transcriptomaturation and pathological
remodeling. Interestingly, the expression levelRBFox1 is tightly regulated

under a variety of pathological conditions. We hasteown that RBFox1
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expression is significantly down-regulated 14 dafger severe TAC surgery, but
is significantly recovered 1 day post TAC removidiis well correlates with our
finding in human samples, where we observed RBFRxytession is significantly
reduced in human dilated cardiomyopathy, but isovered after LVAD
implantation, together with a rescued ejectiontfoac

Knocking down zebrafish RBFox1 caused severe cardévelopmental defects
and heart failure phenotype; while restored expoassef RBFox1 post-TAC is
sufficient to preserve mice cardiac function. Takegether, RBFox1 might serve
as a potential therapeutic target in heart failure.

Our study further demonstrated a critical role oER2 alternative splicing in
RBFox1 mediated cardiac splicing regulation basadoar zebrafish double-
knockdown studies and cardiomyocytes studies. itdniktargeting to either
RBFox1 or MEF2 different splicing variants wouldopide therapeutic value in
both hypertrophy and heart failure.

Future Prospect

Our study had made several interesting discovepesviding a more
comprehensive understanding of the total cardianstriptome complexity.
Firstly, we have identified additional componentcafdiac transcriptome. Future
study in this area will involve carrying out largeale proteomics study to identify
the existence and protein expression level of tiesel transcripts and splicing
variants in normal and diseased hearts. In ordé&teotify the functional impact

of these un-explored novel transcriptome componienkeart, a high-throughput
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RNAIi screening will also reveal their roles medgti cardiomyocytes
contractility and function.

Our finding based on the novel cardiac splicingnéva PKCa also pointed to
potential novel cardiac splicing regulators. Ourdst has demonstrated in vivo
and in vitro that RBFox1 is at least partially rieging PKGx alternative splicing.
However, there are additional highly conservedregilatory motifs adjacent to
PKCa-novel exon. Unbiased study using RNA-immune-priéaiion would
provide additional insights into the cardiac speaplicing regulator candidates.
Lastly, our deep RNA-Sequencing analysis, togethtr high-throughput studies
that reported by other groups, have provided stendence that there are many
components of cardiac transcriptome that contnifguto the total transcriptome
complexity and dynamics during disease. Our studgduPK&-NE as one
example to demonstrate that these previously uactenized components could
indeed functionally important. Future study focgsinon functional
characterization based on the novel transcripttetasand INncCRNA would also
generate additional insights towards a better wwtdieding of the functional

genomics in heatrt.
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