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We prove C∞ convergence for suitably normalized solutions of the parabolic com-

plex Monge-Ampère equation on compact Hermitian manifolds. This provides a

parabolic proof of a recent result of Tosatti-Weinkove.

Additionally, let X = M × E where M is an m-dimensional Kähler manifold

with negative first Chern class and E is an n-dimensional complex torus. We

obtain C∞ convergence of the normalized Kähler-Ricci flow on X to a Kähler-

Einstein metric on M . This strengthens a convergence result of Song-Weinkove

and confirms their conjecture.
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Chapter 1

Introduction

In 1981, Hamilton introduced the Ricci flow

∂

∂t
gij = −2Rij (1.1)

to classify three-manifolds with positive Ricci curvature and four-manifolds with

positive curvature operator [29, 30]. Later, Hamilton proposed a program to prove

the Poincaré and Geometrization conjectures via the Ricci flow with surgery [31].

Building on Hamilton’s program, Perelman developed several new and powerful

tools which he used to solve these two famous conjectures [39, 40, 41]. Since then,

the Ricci flow has become one of the most important objects of study in geometric

analysis.

Considering the Ricci flow starting at a Kähler metric ω0 on a complex manifold,

the Ricci flow can be written in terms of (1, 1)-forms as

∂

∂t
ω = −Ric(ω), ω|t=0 = ω0 (1.2)

and is known as the Kähler-Ricci flow. The problem of finding a unique Kähler

metric whose Ricci form represents the first Chern class was known as the Calabi

conjecture. Calabi reduced the problem to finding a unique solution to the complex

Monge-Ampère equation

log

(
ω0 +

√
−1∂∂̄ϕ

)n
ωn0

= F, ω0 +
√
−1∂∂̄ϕ > 0, (1.3)

1



2

and showed that if a solution ϕ exists, it is unique up to the addition of a constant

[4].

To prove the conjecture, Yau developed a priori estimates for a solution of the

complex Monge-Ampère equation (1.3). Independently, both Yau [81] and Aubin

[1] proved the existence of a unique Kähler-Einstein metric on a manifold with

negative first Chern class. Using the estimates of Yau and Aubin, Cao showed that

the Kähler-Ricci flow produces the unique Kähler-Einstein metric on a manifold

with zero and negative first Chern class [6].

The Kähler-Ricci flow has since become a major field of study in geometric

analysis. The existence of a Kähler-Einstein metric on a manifold with positive

first Chern class is still an open question which has been related to algebraic

stability [2, 5, 9, 15, 38, 43, 44, 45, 46, 47, 48, 50, 52, 68, 70, 73, 74, 82, 83]. There

have also been studies on extending the flow to the more general Hermitian setting

[22, 36, 65, 66, 67, 21, 77]. In particular, chapter 2 contains a reprinting of [22]

and the proof of the following theorem:

Theorem 1.0.1. Let (M, g) be a compact Hermitian manifold of complex dimen-

sion n with Vol(M) =
∫
ωn = 1. Let F be a smooth function on M . There exists

a smooth solution ϕ to the parabolic complex Monge-Ampère equation (2.1) for all

time. Let

ϕ̃ = ϕ−
∫
M

ϕ ωn. (1.4)

Then ϕ̃ converges in C∞ to a smooth function ϕ̃∞. Moreover, there exists a unique

real number b such that the pair (b, ϕ̃∞) is the unique solution to (2.3).

Very recently, the Kähler-Ricci flow has been conjectured by Song and Tian to

behave as an analytic version of the Minimal Model Program in algebgraic geom-

etry (please see chapter 3 for a larger discussion on the Minimal Model Program).

Much work has been done on this subject [18, 19, 20, 23, 55, 56, 57, 58, 60, 61, 62,

59, 64], and in particular chapter 3 contains a reprinting of [23] and the proof of

the following theorem:

Theorem 1.0.2. Let (M, gM) be an m complex dimensional Kähler manifold with

negative first Chern class where gM is its Kähler-Einstein metric. Let (E, gE) be an
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n dimensional complex torus with flat metric gE. Let g0 be any Hermitian metric

on X = M × E and ω0 its associated (1, 1) form. Let ω(t) be the solution to the

normalized Kähler-Ricci flow

∂

∂t
ω = −Ric(ω)− ω (1.5)

with initial Kähler metric ω(0) = ω0. Then

(a) ω (t) converges to π∗MωM in C∞ (X,ω0) as t→∞.

(b) For any z ∈M , let E(z) = π−1
M (z) denote the fiber above z. Then

etω (t) |E(z) → ωflat|E(z) in C∞ (E(z), ωE) as t → ∞, where ωflat is a (1, 1)-

form on X with [ωflat] = [ω0] whose restriction to each fiber is a flat Kähler

metric.

Chapter 4 discusses potential future projects leading from the contents of chap-

ter 2, chapter 3, and [77].



Chapter 2

Convergence of the parabolic

complex Monge-Ampère equation

on compact Hermitian manifolds

2.1 Introduction

Let (M, g) be a compact Hermitian manifold of complex dimension n and ω be

the real (1, 1) form ω =
√
−1
∑

i,j gij̄dz
i ∧ dz j̄. Let F be a smooth function on M .

We consider the parabolic complex Monge-Ampère equation

∂ϕ

∂t
= log

det (gij̄ + ∂i∂j̄ϕ)

det gij̄
− F, gij̄ + ∂i∂j̄ϕ > 0 (2.1)

with initial condition ϕ(x, 0) = 0.

The study of this type of Monge-Ampère equation originated in proving the

Calabi conjecture. The proof of the conjecture reduced to assuming that ω is

Kähler and finding a unique solution to the elliptic Monge-Ampère equation

log
det (gij̄ + ∂i∂j̄ϕ)

det gij̄
= F, gij̄ + ∂i∂j̄ϕ > 0. (2.2)

Calabi showed that if a solution to (2.2) exists, it is unique up to adding a constant

to ϕ [4]. Yau used the continuity method to show that if∫
M

eFωn =

∫
M

ωn

4
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then (2.2) admits a smooth solution [81]. The proof of Yau required a priori C∞

estimates for ϕ.

Cao used Yau’s estimates to show that in the Kähler case, (2.1) has a smooth

solution for all time that converges to the unique solution of (2.2) [6].

Since not every complex manifold admits a Kähler metric, one can naturally

study the Monge-Ampère equations (2.1) and (2.2) on a general Hermitian man-

ifold. Fu and Yau discussed physical motivation for studying non-Kähler metrics

in a recent paper [21].

Cherrier studied (2.2) in the general Hermitian setting in the eighties, and

showed that in complex dimension 2 or when ω is balanced (i.e. d(ωn−1) = 0),

there exists a unique normalization of F such that (2.2) has a unique solution

[11]. Precisely, Cherrier proved that under the above conditions, given a smooth

function F on M , there exists a unique real number b and a unique function ϕ

solving the Monge-Ampère equation

log
det(gij̄ + ∂i∂j̄ϕ)

det gij̄
= F + b, gij̄ + ∂i∂j̄ϕ > 0 (2.3)

such that
∫
M
ϕ ωn = 0.

Recently, Guan and Li proved that (2.2) has a solution on a Hermitian manifold

with the added condition

∂∂̄ωk = 0

for k = 1, 2. They applied this result to finding geodesics in the space of Hermitian

metrics. Related work can be found in [3], [8], [10], [14], [27], [28], [37], [49], and

[51].

Tosatti and Weinkove gave an alternate proof of Cherrier’s result in [75]. In a

very recent paper [76], they showed that the balanced condition is not necessary

and the result holds on a general Hermitian manifold. Dinew and Kolodziej studied

(2.2) in the Hermitian setting with weaker conditions on the regularity of F [13].

In this chapter we prove the following theorem.

Theorem 2.1.1. Let (M, g) be a compact Hermitian manifold of complex dimen-

sion n with Vol(M) =
∫
ωn = 1. Let F be a smooth function on M . There exists
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a smooth solution ϕ to the parabolic complex Monge-Ampère equation (2.1) for all

time. Let

ϕ̃ = ϕ−
∫
M

ϕ ωn. (2.4)

Then ϕ̃ converges in C∞ to a smooth function ϕ̃∞. Moreover, there exists a unique

real number b such that the pair (b, ϕ̃∞) is the unique solution to (2.3).

We remark that Theorem 2.1.1 gives a parabolic proof of the result due to

Tosatti and Weinkove in [76].

The flow (2.1) could be considered as an analogue to Kähler-Ricci flow for

Hermitian manifolds. In the special case that −
√
−1∂∂̄ log det g =

√
−1∂∂̄F (such

an F always exists under the topological condition cBC1 (M) = 0, for example) then

taking
√
−1∂∂̄ of the flow (2.1) yields

∂ω′

∂t
=
√
−1∂∂̄ log det g′

with initial condition ω′(0) = ω. In general, the right hand side is the first Chern

form, but if we assume Kähler, it becomes −Ric(ω′).

When (M, g) is Kähler, Székelyhidi and Tosatti showed that a weak plurisub-

harmonic solution to (2.2) is smooth using the parabolic flow (2.1) [69]. Their

result suggests that the flow could be used to prove a similar result in the Hermi-

tian case. In a recent paper [67], Streets and Tian consider a different parabolic

flow on Hermitian manifolds and suggest geometric applications for the flow.

We now give an outline of the proof of the main theorem and discuss how it

differs from previous results. In sections 2.2 through 2.5, we build up theorems

that eventually show that ϕ is smooth. Like in Yau’s proof, we derive lower order

estimates and then apply Schauder estimates to attain higher regularity for the

solution.

In section 2.2 we use the maximum principle to show that the time derivative

of ϕ is uniformly bounded. We define the normalization

ϕ̃ = ϕ−
∫
M

ϕ ωn.

We chose to assume that the volume of M is one to simplify the notation of this

normalization and the following calculations. Then using the zeroth order estimate

from [76], we prove that ϕ̃ is uniformly bounded.
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Section 2.3 contains a proof of the second order estimate. Specifically, we derive

that

trg g
′ ≤ C1e

C2(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃)e

(
e
A(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃)−eA(supM×[0,T ) ϕ̃−ϕ̃)

)

(2.5)

where [0, T ) is the maximum interval of existence for ϕ and C1, C2, and A are

uniform constants. This estimate is not as sharp as the estimate

trg g
′ ≤ Ce

(
eA(supM ϕ−infM ϕ)−eA(supM ϕ−ϕ)

)

from Guan and Li or the estimate

trg g
′ ≤ CeA(ϕ−infM ϕ)

from Tosatti and Weinkove in the case n = 2 or ω balanced. Cherrier also produced

a different estimate. These estimates are from the elliptic case, but they suggest

that (2.5) could be improved. The proof of (2.5) follows along the method of

Tosatti and Weinkove in [75], but there are extra terms to control that arrive in

the parabolic case.

In section 2.4, we derive a Hölder estimate for the time dependent metric g′ij̄.

This estimate provides higher regularity using a method of Evans [16] and Krylov

[32]. To prove the Hölder estimate, we apply a theorem of Lieberman [34], a

parabolic analogue of an inequality from Trudinger [78]. The method follows closely

with the proof of the analogous estimate in [75], but differs in controlling the extra

terms that arise from the time dependence of ϕ.

We show that ϕ is smooth and also prove the long time existence of the flow

(2.1) in section 2.5. The proof uses a standard bootstrapping argument.

Section 2.6 uses analogues of lemmas from Li and Yau [33] to prove a Harnack

inequality for the equation
∂u

∂t
= g′ij̄∂i∂j̄u

where g′ij̄∂i∂j̄ is the complex Laplacian with respect to g′. This differs from the

equation (
4− q(x, t)− ∂

∂t

)
u(x, t) = 0
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considered by Li and Yau, where 4 is the Laplace-Beltrami operator.

In Section 2.7, we apply these lemmas to show that time derivative of ϕ̃ decays

exponentially. Precisely, we show that∣∣∣∣∂ϕ̃∂t
∣∣∣∣ ≤ Ce−ηt

for some η > 0. From here we show that ϕ̃ converges to a smooth function ϕ̃∞ as

t tends to infinity. In fact, the convergence occurs in C∞ and ϕ̃∞ is part of the

unique pair (b, ϕ̃∞) solving the elliptic Monge-Ampère equation

log
det(gij̄ + ∂i∂j̄ϕ̃∞)

det gij̄
= F + b

where

b =

∫
M

(
log

det(gij̄ + ∂i∂j̄ϕ̃∞)

det gij̄
− F

)
ωn.

This provides an alternate proof of the main theorem in [76].

2.2 Preliminary estimates

By standard parabolic theory, there exists a unique smooth solution ϕ to (2.1)

on a maximal time interval [0, T ), where 0 < T ≤ ∞.

We show that the time derivatives of ϕ and its normalization ϕ̃ are bounded.

This fact will be used in the second order estimate.

Lemma 2.2.1. For ϕ a solution of (2.1) and ϕ̃ as in (2.4),∣∣∣∣∂ϕ∂t
∣∣∣∣ ≤ C,

∣∣∣∣∂ϕ̃∂t
∣∣∣∣ ≤ C (2.6)

where C depends only on the initial data.

Proof. Differentiating (2.1) with respect to t gives

∂ϕt
∂t

= g′ij̄∂i∂j̄ϕt, (2.7)

where ϕt = ∂ϕ
∂t

. So by the maximum principle,∣∣∣∣∂ϕ∂t (x, t)

∣∣∣∣ ≤ C sup
x∈M

∣∣∣∣∂ϕ∂t (x, 0)

∣∣∣∣ . (2.8)
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From the definition of ϕ̃,∣∣∣∣∂ϕ̃∂t
∣∣∣∣ ≤ ∣∣∣∣∂ϕ∂t

∣∣∣∣+

∫ ∣∣∣∣∂ϕ∂t
∣∣∣∣ωn ≤ 2C. (2.9)

We show that ϕ̃ is bounded in M × [0, T ) using the main theorem of [76].

Lemma 2.2.2. For ϕ a solution to (2.1) and ϕ̃ the normalized solution, there

exists a uniform constant C such that

sup
M×[0,T )

|ϕ̃| ≤ C

where [0, T ) is the maximum interval of existence for ϕ.

Proof. We can rearrange (2.1) to

log
det g′ij̄
det gij̄

= F − ∂ϕ

∂t
(2.10)

Since
∣∣∂ϕ
∂t

∣∣ is bounded by Lemma 2.2.1, this is equivalent to the complex Monge-

Ampère equation of the main theorem in [76]. This implies that

sup
M

ϕ(., t)− inf
M
ϕ(., t) ≤ C (2.11)

for some C depending only on (M, g) and F .

Fix (x, t) in M × [0, T ). Since
∫
M
ϕ̃ ωn = 0, there exists (y, t) such that

ϕ̃(y, t) = 0. Then

|ϕ̃(x, t)| = |ϕ̃(x, t)− ϕ̃(y, t)| = |ϕ(x, t)− ϕ(y, t)| ≤ C. (2.12)

Thus ϕ̃ is a bounded function on M × [0, T ).

2.3 The second order estimate

In this section 4 = gij̄∂i∂j̄ will denote the complex Laplacian corresponding to

g. Similarly, write 4′ = g′ij̄∂i∂j̄ for the complex Laplacian for the time dependent

metric g′. We prove an estimate on trg g
′ = gij̄g′ij̄ = n+4ϕ̃.
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Lemma 2.3.1. For ϕ a solution to (2.1) and ϕ̃ the normalized solution, we have

the following estimate

trg g
′ ≤ C1e

C2(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃)e

(
e
A(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃)−eA(supM×[0,T ) ϕ̃−ϕ̃)

)

where [0, T ) is the maximum interval of existence for ϕ and C1, C2, and A are

uniform constants. Hence there exists a uniform constant C such that trg g
′ ≤ C

and also
1

C
g ≤ g′ ≤ Cg.

Proof. This proof follows along with the notation and method featured in [75]. For

brevity we omit some of the calculations and refer the reader to [75] and [24]. Let

E1 and E2 denote error terms of the form

|E1| ≤ C1 trg′ g

|E2| ≤ C2(trg′ g)(trg g
′)

where C1 and C2 are constants depending only on the initial data. We call such

a constant depending only on (M, g) and supM F a uniform constant. We remark

that by the flow equation (2.1) and estimate (2.6), an error term of type E1 is

also of type E2 and a uniform constant is of type E1. In general, C will denote a

uniform constant whose definition may change from line to line. For a function ϕ

on M , we write ϕi for the ordinary derivative

ϕi = ∂iϕ.

Similarly, ϕt will denote the time derivative of ϕ. If f is a function on M , we write

∂f for the vector of ordinary derivatives of f .

We define the quantity

Q = log trg g
′ + eA(supM×[0,T ) ϕ̃−ϕ̃) (2.13)

We note that the form of Q differs here than in [75] and Yau’s estimate [81] and

Aubin’s estimate [1]. They consider a quantity of the form log trg g
′ − Aϕ. The

exponential in the definition of Q helps to control a difficult term in the analysis.
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Fix t′ ∈ [0, T ). Then let (x0, t0) be the point in M × [0, t′] where Q attains its

maximum. Notice that if t0 = 0 the result is immediate, so we assume t0 > 0. To

start the proof, we need to perform a change of coordinates made possible by the

following lemma from [24].

Lemma 2.3.2. There exists a holomorphic coordinate system centered at x0 such

that for all i and j,

gij̄(x0) = δij, ∂jgīi(x0) = 0, (2.14)

and also such that the matrix ϕij̄(x0, t0) is diagonal.

Applying 4′ − ∂
∂t

to Q,(
4′ − ∂

∂t

)
Q =

4′ trg g′

trg g′
−
|∂ trg g

′|2g′
(trg g′)2

−
4∂ϕ

∂t

trg g′
+ A

∂ϕ̃

∂t
eA(supM×[0,T ) ϕ̃−ϕ̃)

+4′eA(supM×[0,T ) ϕ̃−ϕ̃). (2.15)

First we will control the first and third terms in (2.15) simultaneously. We apply

the complex Laplacian 4 to the complex Monge-Ampère equation:

4∂ϕ
∂t

= −gkl̄g′pj̄g′iq̄∂kg′pq̄∂l̄g′ij̄ + gkl̄g′ij̄∂k∂l̄g
′
ij̄ + gkl̄gpj̄giq̄∂kgpq̄∂l̄gij̄

− gkl̄gij̄∂k∂l̄gij̄ −4F

=
∑
i,k

g′īiϕīikk̄ −
∑
i,j,k

g′īig′jj̄∂kg
′
ij̄∂k̄g

′
jī + E1. (2.16)

For the first term in (2.15), following a calculation in [75] (see equation (2.6) in

[75]) gives

4′ trg g′ =
∑
i,k

g′īiϕīikk̄ − 2 Re

(∑
i,j,k

g′īi∂īgjk̄ϕkj̄i

)
+ E2. (2.17)

We will now handle the 2 Re
(∑

i,j,k g
′īi∂īgjk̄ϕkj̄i

)
term in (2.17) using a trick from

[24]. Using Lemma 2.3.2, at the point (x0, t0),∑
i,j,k

g′īi∂īgjk̄ϕkj̄i =
∑
i

∑
j 6=k

g′īi∂īgjk̄∂kg
′
ij̄ + E1. (2.18)
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Hence, ∣∣∣∣∣2 Re

(∑
i,j,k

g′īi∂īgjk̄ϕkj̄i

)∣∣∣∣∣ ≤∑
i

∑
j 6=k

g′īig′jj̄∂kg
′
ij̄∂k̄g

′
jī

+
∑
i

∑
j 6=k

g′īig′jj̄∂īgjk̄∂igkj̄ + E1

≤
∑
i

∑
j 6=k

g′īig′jj̄∂kg
′
ij̄∂k̄g

′
jī + E2. (2.19)

Putting together (2.16), (2.17), and (2.19) gives

4′ trg g′ −4
dϕ

dt
≥
∑
i,j

g′īig′jj̄∂jg
′
ij̄∂j̄g

′
jī + E2. (2.20)

Now we will control the
|∂ trg g′|2g′
(trg g′)2 term in (2.15). By Lemma 2.3.2 we have at

(x0, t0),

∂i trg g
′ = ∂i4ϕ = ∂i

∑
j

ϕjj̄ =
∑
j

∂jϕij̄ =
∑
j

∂jg
′
ij̄ −

∑
j

∂jgij̄. (2.21)

So

|∂ trg g
′|2g′

trg g′
=

1

trgg′

∑
i,j,k

g′īi∂jg
′
ij̄∂k̄g

′
kī −

2

trgg′
Re

(∑
i,j,k

g′īi∂jgij̄∂k̄g
′
kī

)
+ E1. (2.22)

As in Yau’s second order estimate, we use Cauchy-Schwarz on the first term in

(2.22) (see [75] equation (2.15) for the exact calculation).

1

trgg′

∑
i,j,k

g′īi∂jg
′
ij̄∂k̄g

′
kī ≤

∑
i,j

g′īig′jj̄∂jg
′
ij̄∂j̄g

′
jī. (2.23)

To deal with the second term in (2.22), since (x0, t0) is the maximum point of Q,

∂īQ = 0 implies
1

trg g′

∑
k

∂īg
′
kk̄ = A∂īϕe

A(supM×[0,T ) ϕ̃−ϕ̃). (2.24)
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Using equations (2.24) and (2.21) we can bound the difficult term:∣∣∣∣∣ 2

trg g′
Re

(∑
i,j,k

g′īi∂jgij̄∂k̄g
′
kī

)∣∣∣∣∣
=

∣∣∣∣∣ A

trg g′
eA(supM×[0,T ) ϕ̃−ϕ̃)2 Re

(∑
i,j,k

g′īi∂jgij̄∂īϕ

)∣∣∣∣∣+ E1

≤ A2|∂ϕ|2g′eA(supM×[0,T ) ϕ̃−ϕ̃) +
C(trg′ g)

(trg g′)2
eA(supM×[0,T ) ϕ̃−ϕ̃) + E1

≤ A2|∂ϕ|2g′eA(supM×[0,T ) ϕ̃−ϕ̃) + C(trg′ g)eA(supM×[0,T ) ϕ̃−ϕ̃) + E1, (2.25)

where for the last inequality we used the fact that trg g
′ is bounded from below

away from zero by the flow equation (2.1) and estimate (2.6).

Plugging (2.23) and (2.25) into (2.22) gives

|∂ trg g
′|2g′

(trg g′)2
≤ 1

(trgg′)2

∑
i,j

g′īig′jj̄∂jg
′
ij̄∂j̄g

′
jī + A2|∂ϕ|2g′eA(supM×[0,T ) ϕ̃−ϕ̃)

+ C(trg′ g)eA(supM×[0,T ) ϕ̃−ϕ̃) + E1. (2.26)

By combining (2.20) and (2.26) with (2.15) at the point (x0, t0), we get the in-

equality

0 ≥ 1

trgg′

(∑
i,j

g′īig′jj̄∂jg
′
ij̄∂j̄g

′
jī + E2

)
− 1

trg g′

∑
i,j

g′īig′jj̄∂jg
′
ij̄∂j̄g

′
jī

− A2|∂ϕ|2g′eA(supM×[0,T ) ϕ̃−ϕ̃) − trg′ ge
A(supM×[0,T ) ϕ̃−ϕ̃) + E1

+ A
∂ϕ̃

∂t
eA(supM×[0,T ) ϕ̃−ϕ̃) +

(
−An+ A trg′ g + A2 |∂ϕ|2g′

)
eA(supM×[0,T ) ϕ̃−ϕ̃)

≥ −A(C + n)eA(supM×[0,T ) ϕ̃−ϕ̃) + (A− 1) trg′ ge
A(supM×[0,T ) ϕ̃−ϕ̃) − C1 trg′ g

≥ −A(C + n)eA(supM×[0,T ) ϕ̃−ϕ̃) + (A− 1− C1) trg′ g. (2.27)

Taking A large enough so that

(A− 1− C1) > 0

implies that at (x0, t0),

trg′ g(x0, t0) ≤ CeA(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃). (2.28)
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Then

trg g
′(x0, t0) ≤ 1

(n− 1)!
(trg′ g)n−1 det g′

det g

=
1

(n− 1)!
(trg′ g)n−1 eF−

∂ϕ
∂t

≤ CeA(n−1)(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃). (2.29)

For all (x, t) in M × [0, t′],

log trg g
′(x, t) + eA(supM×[0,T ) ϕ̃−ϕ̃(x,t))

≤ log
(
CeA(n−1)(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃)

)
+ eA(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃)

and so

trg g
′ ≤ C1e

C2(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃)e

(
e
A(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃)−eA(supM×[0,T ) ϕ̃−ϕ̃)

)
.

(2.30)

2.4 The Hölder estimate for the metric

The estimate in this section is local, so it suffices to work in a domain in Cn.

To fix some notation, define the parabolic distance function between two points

(x, t1) and (y, t2) in Cn × [0, T ) to be |(x, t1)− (y, t2)| = max(|x− y|, |t1 − t2|1/2).

For a domain Ω ∈ Cn× [0, T ) and a real number α ∈ (0, 1), define for a function

ϕ on Cn × [0, T ),

[ϕ]α,(x0,t0) = sup
(x,t)∈Ω\{(x0,t0)}

|ϕ(x, t)− ϕ(x0, t0)|
|(x, t)− (x0, t0)|α

and

[ϕ]α,Ω = sup
(x,t)∈Ω

[ϕ]α,(x,t). (2.31)

We will show that

[g′ij̄]α,Ω ≤ C

for an appropriate choice of Ω. The smoothness of ϕ and ϕ̃ will follow. Given

the Hölder bound for the metric and the second order estimate for ϕ̃, we can

differentiate the flow and apply Schauder estimates to achieve higher regularity.
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Lemma 2.4.1. Let ϕ be a solution to the flow (2.1) and g′ij̄ = gij̄ +ϕij̄. Fix ε > 0.

Then there exists α ∈ (0, 1) and a constant C depending only on the initial data

and ε such that

[g′ij̄]α,Ω ≤ C (2.32)

where Ω = M × [ε, T ).

We apply a method due to Evans [16] and Krylov [32]. The proof itself is

essentially contained in [34] and [25], but only in the case where the manifold is

Rn. Hence we produce a self-contained proof in the notation of this problem. The

method of this proof follows closely with the analogous estimate in [75] and [54].

The main issue is applying the correct Harnack inequality to get the estimate.

Proof. Let B ∈ Cn be an open ball about the origin. Fix a point t0 ∈ [ε, T ).

To prove (2.32) it suffices to show that for sufficiently small R > 0 there exists a

uniform C and δ > 0 such that

n∑
i=1

oscQ(R)(ϕγiγ̄i) + oscQ(R)(ϕt) ≤ CRδ

where {γi} is a basis for Cn and Q(R) is the parabolic cylinder

Q(R) = {(x, t) ∈ B × [0, T )||x| ≤ R, t0 −R2 ≤ t ≤ t0}.

We rewrite the flow as
∂ϕ

∂t
= log det g′ij̄ +H (2.33)

where H = − log det gij̄ − F . We define the operator Φ on a matrix A by

Φ(A) = log detA,

then (2.33) becomes
∂ϕ

∂t
= Φ(g′) +H. (2.34)

By the concavity of Φ, for all (x, t1) and (y, t2) in B × [0, T ),∑ ∂Φ

∂aij̄
(g′(y, t2))

(
g′ij̄(x, t1)− g′ij̄(y, t2)

)
≥ ∂ϕ

∂t
(x, t1)− ∂ϕ

∂t
(y, t2)−H(x) +H(y).
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The Mean Value Theorem applied to H shows that

∂ϕ

∂t
(x, t1)− ∂ϕ

∂t
(y, t2)+

∑ ∂Φ

∂aij̄
(g′(y, t2))

(
g′ij̄(y, t2)− g′ij̄(x, t1)

)
≤ C|x−y|. (2.35)

Now we must recall a lemma from linear algebra.

Lemma 2.4.2. There exists a finite number N of unit vectors γν = (γν1, . . . , γνn) ∈
Cn and real-valued functions βν on B × [0, T ), for ν = 1, 2, . . . , N with

(i) 0 < C1 ≤ βν ≤ C2

(ii) γ1, . . . , γN containing an orthonormal basis of Cn

such that
∂Φ

∂aij̄
(g′(y, t2)) =

N∑
ν=1

βν(y, t2)γνiγνj.

We define for ν = 1, . . . , N ,

wν = ∂γν∂γ̄νϕ =
n∑

i,j=1

γνiγνjϕij̄.

We write w0 = −∂ϕ
∂t

and β0 = 1. Then using the linear algebra lemma, (2.35) can

be rewritten as

N∑
ν=0

βν(y, t2) (wν(y, t2)− wν(x, t1)) ≤ C|x− y|. (2.36)

Letting γ be an arbitrary unit vector in Cn, we differentiate the flow (2.1) along γ

and γ̄:

∂ϕγγ̄
∂t

=
∂2Φ

∂aij̄∂akl̄
(g′)g′ij̄γg

′
kl̄γ̄ +

∂Φ

∂aij̄
(g′)g′ij̄γγ̄ +Hγγ̄

≤ g′ij̄g′ij̄γγ̄ +Hγγ̄ (2.37)

where on the last line we used the concavity of Φ and the fact that ∂Φ
∂aij̄

(g′) = g′ij̄.

Applying ∂
∂t

to (2.34) gives
∂ϕt
∂t

= g′ij̄ϕij̄t. (2.38)

From (2.37) and (2.38) we have a bounded function h (depending on g′ij̄ which is

bounded by Theorem 3.1) such that

−∂wν
∂t

+ g′ij̄∂i∂j̄wν ≥ h. (2.39)
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Recall that t0 is a fixed point in [ε, T ). Pick R > 0 small enough such that

t0 − 5R2 > t0/2. We define another parabolic cylinder

Θ(R) = {(x, t) ∈ B × [0, T )||x| < R, t0 − 5R2 ≤ t ≤ t0 − 4R2}.

For s = 1, 2 and ν = 0, 1, . . . , N , let

Msν = sup
Q(sR)

wν , msν = inf
Q(sR)

wν ,

and

ψ(sR) =
N∑
ν=0

(Msν −msν) .

We let l be an integer such that 0 ≤ l ≤ N and v = M2l − wl. To continue we

need Theorem 7.37 from [34]. We say that v ∈ W 2,1
2n+1 if vx, vij, vij̄, vīj̄, and vt are

in L2n+1. We restate the theorem as follows.

Lemma 2.4.3. Suppose that v(x, t) ∈ W 2,1
2n+1 satisfies

−∂v
∂t

+ g′ij̄∂i∂j̄v ≤ f

and v ≥ 0 on Q(4R). Then there exists a constant C and a p > 0 depending only

on the bounds of g′ij̄ and the eigenvalues of g′ij̄ such that

1

R2n+2

(∫
Θ(R)

vp
)1/p

≤ C

(
inf
Q(R)

v +R
2n

2n+1 ||f ||n+1

)
.

Since v satisfies −∂v
∂t

+ g′ij̄∂i∂j̄v ≤ −h, we can apply the Harnack inequality to

get

1

R2n+2

(∫
Θ(R)

(M2l − wl)p
)1/p

≤ C
(
M2l −Ml +R

2n
2n+1

)
. (2.40)

For every (x, t1) and (y, t2) in Q(2R), (2.36) gives

βl(y, t2) (wl(y, t2)− wl(x, t1)) ≤ CR +
∑
ν 6=l

βν (wν(x, t1)− wν(y, t2)) .

The definition of m2l allows us to choose (x, t1) in Q(2R) such that wl(x, t1) ≤
m2l + ε. Since ε is arbitrary,

wl(y, t2)−m2l ≤ CR + C2

∑
ν 6=l

(M2ν − wν(y, t2)) .
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After integrating over Θ(R) and applying (2.40), we have

1

R2n+2

(∫
Θ(R)

(wl −m2l)
p

)1/p

≤ 1

R2n+2

(∫
Θ(R)

(
CR + C2

∑
ν 6=l

(M2ν − wν)

)p)1/p

≤ C3R + C4

∑
ν 6=l

1

R2n+2

(∫
Θ(R)

(M2ν − wν)p
)1/p

≤ C5

∑
ν 6=l

(M2ν −Mν) + C6R
2n

2n+1 (2.41)

where on the last line we used the fact that R < 1 is small. Adding (2.40) and

(2.41) yields

M2l −m2l ≤ C7

N∑
ν=0

(M2ν −Mν) + C8R
2n

2n+1

≤ C7

N∑
ν=0

(M2ν −Mν +mν −m2ν) + C8R
2n

2n+1

= C7 (ψ(2R)− ψ(R)) + C8R
2n

2n+1 .

Summing over l shows that

ψ(2R) ≤ C9 (ψ(2R)− ψ(R)) + C10R
2n

2n+1

and thus for some 0 < λ < 1,

ψ(R) ≤ λψ(2R) + C11R
2n

2n+1 .

Applying a standard iteration argument (see Chapter 8 in [25]) shows that

ψ(R) ≤ CRδ

for some δ > 0, completing the proof.

2.5 Long time existence and smoothness of the

normalized solution

In this section we show that the solution ϕ and its normalization ϕ̃ are smooth

and exist for all time, hence proving part of Theorem 2.1.1. The proof uses a

standard bootstrapping argument.
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Lemma 2.5.1. Let (M, g) be a Hermitian manifold and F a smooth function on

M . Let ϕ be a solution to the flow

∂ϕ

∂t
= log

det(gij̄ + ϕij̄)

det(gij̄)
− F

and let ϕ̃ = ϕ −
∫
M
ϕ ωn. Then there are uniform C∞ estimates for ϕ̃ on [0, T ).

Moreover, T =∞.

Proof. Differentiating the flow with respect to zk gives

∂ϕk
∂t

= g′ij̄∂i∂j̄ϕk − Fk −
∂

∂zk
log det gij̄. (2.42)

Lemma 2.3.1 implies that the above equation is uniformly parabolic. Lemma

2.4.1 shows that the coefficients in the above equation are Hölder continuous with

exponent α. Using the Schauder estimate (see Theorem 4.9 in [34], for example)

gives a uniform parabolic C2+α bound on ϕk. Similarly, one obtains a uniform

parabolic C2+α estimate for ϕk̄.

But the better differentiability of ϕ allows us to differentiate the flow again

and obtain a uniformly parabolic equation with Hölder continuous coefficients.

The Schauder estimate will give a uniform parabolic C2+α estimate on ϕkl, ϕkl̄,

and ϕk̄l̄. Repeated application shows that ϕ̃ is uniformly bounded in C∞. Hence

ϕ̃ and thus ϕ are smooth. We note that ϕ is not necessarily bounded in C0. The

above iterations only provide regularity for the derivatives of ϕ.

To see that T =∞, suppose that for T <∞, [0, T ) is the maximal interval for

the existence of the solution. Since ϕ̃ is smooth, we can apply short time existence

to extend the flow for ϕ̃ to [0, T + ε), a contradiction.

2.6 The Harnack inequality

We begin this section by proving lemmas analogous to those of Li and Yau [33]

for the equation ∂u
∂t

= g′ij̄∂i∂j̄u for a positive function u on a Hermitian manifold

(see [80] for the proof of these lemmas in the Kähler case). The lemmas lead to
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a Harnack inequality, which in turn shows that the time derivative of ϕ̃ decays

exponentially. This allows us to prove the convergence of ϕ̃ as t tends to infinity.

In this section, we again use the notation ut = ∂u
∂t

and ui = ∂iu for the ordinary

derivatives of a function u on M .

Let u be a positive function on M . Consider the heat type equation

ut = g′ij̄uij̄

where g′ij̄ denotes the time dependent metric gij̄ + ϕij̄. Define ϕ̃ = ϕ−
∫
M
ϕωn.

Define f = log u and F = t(|∂f |2 − αft) where 1 < α < 2. We remark that

this F is different from the one in equation (2.1). Then

g′ij̄fij̄ − ft = −|∂f |2

where ∂f is the vector containing the ordinary derivatives of f and

|∂f |2 = g′ij̄∂if∂j̄f.

Also write

〈X, Y 〉 = g′ij̄XiYj̄

for the inner product of two vectors X and Y with respect to g′ij̄.

We now prove an estimate that will be useful in applying the maximum principle

to F .

Lemma 2.6.1. There exist constants C1 and C2 depending only on the bounds of

the metric g′ such that for t > 0,

g′kl̄Fkl̄ − Ft ≥
t

2n

(
|∂f |2 − ft

)2 − 2 Re 〈∂f, ∂F 〉 −
(
|∂f |2 − αft

)
− C1t|∂f |2 − C2t.

Proof. First calculate F = −tg′ij̄fij̄ − t(α− 1)ft. Then

(g′ij̄fij̄)t =
1

t2
F − 1

t
Ft − (α− 1)ftt (2.43)

and

Ft = |∂f |2 − αft + t

(
g′ij̄ftifj̄ + g′ij̄fiftj̄ +

(
∂

∂t
g′ij̄
)
fifj̄ − αftt

)
= |∂f |2 − αft + 2tRe 〈∂f, ∂(ft)〉+ t

(
∂

∂t
g′ij̄
)
fifj̄ − αtftt. (2.44)
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We calculate g′kl̄Fkl̄ to get the desired estimate.

g′kl̄Fkl̄ = tg′kl̄
[ (
g′ij̄
)
kl̄
fifj̄ +

(
g′ij̄
)
k
fil̄fj̄ +

(
g′ij̄
)
k
fifj̄ l̄ +

(
g′ij̄
)
l̄
fikfj̄ + g′ij̄fikl̄fj̄

+ g′ij̄fikfj̄ l̄ +
(
g′ij̄
)
l̄
fifj̄k + g′ij̄fil̄fj̄k + g′ij̄fifj̄kl̄ − αftkl̄

]
. (2.45)

Now we control all of the above terms using the bounds on the metric obtained in

Lemma 2.3.1 and the higher order bounds from Lemma 2.5.1. For the first term

of (2.45), ∣∣∣tg′kl̄ (g′ij̄)
kl̄
fifj̄

∣∣∣ ≤ C1t|∂f |2.

Let ε > 0. We bound the second and third terms of (2.45) with the inequalities∣∣∣tg′kl̄ (g′ij̄)
k
fil̄fj̄

∣∣∣ ≤ t

ε
|∂f |2 + tε|∂∂̄f |2

and ∣∣∣tg′kl̄ (g′ij̄)
k
fifj̄ l̄

∣∣∣ ≤ t

ε
|∂f |2 + tε|D2f |2

where

|∂∂̄f |2 = g′kl̄g′ij̄fil̄fj̄k, |D2f |2 = g′kl̄g′ij̄fikfj̄ l̄.

Term six is equal to t|D2f |2 and term eight equals t|∂∂̄f |2. The fifth and ninth

terms of (2.45) combine to give

tg′kl̄g′ij̄fikl̄fj̄ + tg′kl̄g′ij̄fifj̄kl̄ = 2tRe
〈
∂f, ∂(g′kl̄fkl̄)

〉
− tg′ij̄

(
g′kl̄
)
i
fkl̄fj̄.

− tg′ij̄
(
g′kl̄
)
j̄
fifkl̄

≥ 2tRe
〈
∂f, ∂(g′kl̄fkl̄)

〉
− t

ε
|∂f |2 − tε|∂∂̄f |2.

We use the definition of F to show

tg′kl̄g′ij̄fikl̄fj̄ + tg′kl̄g′ij̄fifj̄kl̄

≥ −2 Re 〈∂f, ∂F 〉 − 2t(α− 1) Re 〈∂f, ∂ (ft)〉 −
t

ε
|∂f |2

− tε|∂∂̄f |2. (2.46)
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Applying equation (2.44) to (2.46) gives

tg′kl̄g′ij̄fikl̄fj̄ + tg′kl̄g′ij̄fifj̄kl̄

≥ −2 Re 〈∂f, ∂F 〉 − (α− 1)Ft + (α− 1)
(
|∂f |2 − αft

)
+ t(α− 1)

(
∂

∂t
g′ij̄
)
fifj̄ − tα(α− 1)ftt −

t

ε
|∂f |2 − tε|∂∂̄f |2

≥ −2 Re 〈∂f, ∂F 〉 − (α− 1)Ft + (α− 1)
(
|∂f |2 − αft

)
− C2t|∂f |2 − tα(α− 1)ftt −

t

ε
|∂f |2 − tε|∂∂̄f |2.

The final term of (2.45) becomes, using (2.43)

−αtg′kl̄ftkl̄ = αt

(
∂

∂t
g′kl̄
)
fkl̄ − αt

∂

∂t

(
g′kl̄fkl̄

)
≥ −Ct

ε
− tε|∂∂̄f |2 − α

t
F + αFt + tα(α− 1)ftt.

We put all of the above in to (2.45), which shows that

g′kl̄Fkl̄ ≥ Ft − 2 Re 〈∂f, ∂F 〉 −
(
|∂f |2 − αft

)
+ t(1− 4ε)|∂∂̄f |2

+ t(1− 2ε)|D2f |2 − t
(
C1 + C2 +

6

ε

)
|∂f |2 − Ct

ε
.

Taking ε sufficiently small and applying the arithmetic-geometric mean inequality

|∂∂̄f |2 ≥ 1

n

(
g′kl̄fkl̄

)2

=
1

n

(
|∂f |2 − ft

)2
,

we see that

g′kl̄Fkl̄ − Ft ≥
t

2n

(
|∂f |2 − ft

)2 − 2 Re 〈∂f, ∂F 〉 −
(
|∂f |2 − αft

)
− Ct|∂f |2 − Ct.

Using the previous lemma, we derive an estimate which will be used to prove

the Harnack inequality.

Lemma 2.6.2. There exist constants C1 and C2 depending only on the bounds of

the metric g′ such that for t > 0,

|∂f |2 − αft ≤ C1 +
C2

t
.
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Proof. Fix T > 0 and let (x0, t0) in M × [0, T ] be where F attains its maximum.

Note that we can take t0 > 0. Then at (x0, t0), from the previous lemma,

t0
2n

(
|∂f |2 − ft

)2 −
(
|∂f |2 − αft

)
≤ C1t0|∂f |2 + C2t0. (2.47)

First we assume that ft(x0, t0) ≥ 0, then the α in the above inequality can be

dropped to give

t0
2n

(
|∂f |2 − ft

)2 −
(
|∂f |2 − ft

)
≤ C1t0|∂f |2 + C2t0.

We factor the above to get

1

2n

(
|∂f |2 − ft

)(
|∂f |2 − ft −

2n

t0

)
≤ C1|∂f |2 + C2.

Hence,

|∂f |2 − ft ≤ C3|∂f |+ C4 +
C5

t0
.

There exists a constant C6 such that

C3|∂f | ≤
(

1− 1

α

)
|∂f |2 + C6.

We plug this in to the previous inequality, showing that

1

α
|∂f |2 − ft ≤ C7 +

C5

t0
. (2.48)

At the point (x0, t0), we have

F (x0, t0) = t0
(
|∂f |2(x0, t0)− αft(x0, t0)

)
≤ C8t0 + C5.

Hence for all x in M ,

F (x, T ) ≤ F (x0, t0) ≤ C8t0 + C5r ≤ C8T + C5

completing the proof for this case.

Now we consider the case where ft(x0, t0) < 0. Using (2.47) at the point (x0, t0),

t0
2n
|∂f |4 − |∂f |2 ≤ C1t0|∂f |2 + C2t0 − αft.

We factor the above to get

|∂f |2
(

1

2n
|∂f |2 − 1

t0
− C1

)
≤ C2 −

α

t0
ft.
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Hence,

|∂f |2 ≤ C3 +
C4

t0
− 1

2
ft. (2.49)

We use (2.47) again and the condition that ft(x0, t0) < 0 to see that

t0
2n
f 2
t + αft ≤ C1t0|∂f |2 + |∂f |2 + C2t0.

By factoring the above, we show that

1

2n
(−ft)

(
−ft −

2nα

t0

)
≤ C1|∂f |2 +

1

t0
|∂f |2 + C2.

And so

−ft ≤ C5 +
C6

t0
+

1

2
|∂f |2. (2.50)

We plug (2.50) in to (2.49), arriving at

|∂f |2 ≤ C3 +
C4

t0
+
C5

2
+
C6

2t0
+

1

4
|∂f |2.

This provides the following estimate for |∂f |2:

|∂f |2 ≤ C7 +
C8

t0
. (2.51)

Similarly, we can show that

−αft ≤ C9 +
C10

t0
. (2.52)

We add (2.51) and (2.52) to obtain the estimate

|∂f |2 − αft ≤ C11 +
C12

t0
.

Repeating the argument after (2.48) completes this case and hence the proof.

We use the previous lemma to derive a Harnack inequality similar to that of

Li and Yau in the case of a Hermitian manifold.

Lemma 2.6.3. For 0 < t1 < t2,

sup
x∈M

u(x, t1) ≤ inf
x∈M

u(x, t2)

(
t2
t1

)C2

exp

(
C3

t2 − t1
+ C1(t2 − t1)

)
where C1, C2 and C3 are constants depending only on the bounds of the metric g′.
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Proof. Let x, y ∈M , and define γ to be the minimal geodesic (with respect to the

initial metric gij̄) with γ(0) = y and γ(1) = x. Define a path ζ : [0, 1]→M×[t1, t2]

by ζ(s) = (γ(s), (1− s)t2 + st1). Then using Lemma 2.6.2,

log
u(x, t1)

u(y, t2)
=

∫ 1

0

d

ds
f(ζ(s)) ds

=

∫ 1

0

(〈γ̇, 2∂f〉 − (t2 − t1)ft) ds

≤
∫ 1

0

−t2 − t1
α

(
|∂f | − α|γ̇|

(t2 − t1)

)2

+
α|γ̇|2

(t2 − t1)

+ C1(t2 − t1) + C2
t2 − t1
t

ds

≤
∫ 1

0

C19

t2 − t1
+ C17(t2 − t1) + C18

t2 − t1
t

ds

=
C3

t2 − t1
+ C1(t2 − t1) + C2 log

(
t2
t1

)
Exponentiating both sides completes the proof.

2.7 Convergence of the flow

With the Harnack inequality, we complete the proof of the main theorem by

showing the convergence of ϕ̃ (cf. [6]).

Proof. Define u = ∂ϕ
∂t

. Then
∂u

∂t
= g′ij̄∂i∂j̄u.

Let m be a positive integer and define

ξm(x, t) = sup
y∈M

u(y,m− 1)− u(x,m− 1 + t)

ψm(x, t) = u(x,m− 1 + t)− inf
y∈M

u(y,m− 1).

These functions satisfy the heat type equations

∂ξm
∂t

= g′ij̄(m− 1 + t)∂i∂j̄ξm

∂ψm
∂t

= g′ij̄(m− 1 + t)∂i∂j̄ψm.
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First consider the case where u(x,m− 1) is not constant. Then ξm is positive

for some x in M at time t = 0. By the maximum principle, ξm must be positive

for all x in M when t > 0. Similarly, ψm is positive everywhere when t > 0. Hence

we can apply Lemma 2.6.3 with t1 = 1
2

and t2 = 1 to get

sup
x∈M

u(x,m− 1)− inf
x∈M

u

(
x,m− 1

2

)
≤ C

(
sup
x∈M

u(x,m− 1)− sup
x∈M

u(x,m)

)

sup
x∈M

u

(
x,m− 1

2

)
− inf

x∈M
u (x,m− 1) ≤ C

(
inf
x∈M

u(x,m)− inf
x∈M

u(x,m− 1)

)
.

We define the oscillation θ(t) = supx∈M u(x, t)− infx∈M u(x, t). Adding the above

inequalities gives

θ(m− 1) + θ

(
m− 1

2

)
≤ C (θ(m− 1)− θ(m)) .

Rearranging and setting δ = C−1
C

< 1 yields

θ(m) ≤ δθ(m− 1).

By induction,

θ(t) ≤ Ce−ηt

where η = − log δ. Note that if u(x,m− 1) is constant, this inequality is still true.

Fix (x, t) in M × [0,∞). Since∫
M

∂ϕ̃

∂t
ωn = 0,

there exists a point y in M such that ∂ϕ̃
∂t

(y, t) = 0.∣∣∣∣∂ϕ̃∂t (x, t)

∣∣∣∣ =

∣∣∣∣∂ϕ̃∂t (x, t)− ∂ϕ̃

∂t
(y, t)

∣∣∣∣
=

∣∣∣∣∂ϕ∂t (x, t)− ∂ϕ

∂t
(y, t)

∣∣∣∣
≤ Ce−ηt.

Consider the quantity Q2 = ϕ̃+ C
η
e−ηt. Then by construction,

∂Q2

∂t
≤ 0.
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Since Q2 is bounded and monotonically decreasing, it tends to a limit as t → ∞,

call it ϕ̃∞. But

lim
t→∞

ϕ̃ = lim
t→∞

Q2 − lim
t→∞

C

η
e−ηt = ϕ̃∞.

To show that the convergence of ϕ̃ to ϕ̃∞ is actually C∞, suppose not. Then

there exists a time sequence tm → ∞ such that for some ε > 0 and some integer

k,

||ϕ̃(x, tm)− ϕ̃∞||Ck > ε, ∀m. (2.53)

However, since ϕ̃ is bounded in C∞ there exists a subsequence tmj →∞ such that

ϕ̃(x, tmj) → ϕ̃′∞ as j → ∞ for some smooth function ϕ̃′∞. By (2.53), ϕ̃′∞ 6= ϕ̃∞.

This is a contradiction, since ϕ̃ → ϕ̃∞ pointwise. Hence the convergence of ϕ̃ to

ϕ̃∞ is C∞.

We observe that ϕ̃ solves the parabolic flow

∂ϕ̃

∂t
= log

det(gij̄ + ∂i∂j̄ϕ̃)

det gij̄
− F −

∫
M

∂ϕ

∂t
ωn.

Taking t to infinity, we see that ϕ̃∞ solves the elliptic Monge-Ampère equation

log
det(gij̄ + ∂i∂j̄ϕ̃∞)

det gij̄
= F + b

where

b =

∫
M

(
log

det(gij̄ + ∂i∂j̄ϕ̃∞)

det gij̄
− F

)
ωn.

This combined with Lemma 2.5.1 completes the proof of Theorem 2.1.1, and also

provides a parabolic proof of the main theorem in [76].

Chapter 2, in full, is a reprint of the material as it appears in Communications

in Analysis and Geometry volume 19, no. 2, 2011. Gill, Matthew, International

Press 2011. The disseratation author was the author of this paper.



Chapter 3

Collapsing of products along the

Kähler-Ricci flow

3.1 Introduction

Let M be an m-dimensional Kähler manifold with negative first Chern class

and let E be an n-dimensional complex torus. Independently from Yau and Aubin,

there exists a unique Kähler-Einstein metric gM on M [81, 1]. Fix a flat metric gE

on E. Recall that we can associate a (1, 1)-form ω to a Kähler metric g by defining

ω =

√
−1

2π
gij̄dz

i ∧ dz j̄. (3.1)

Throughout this paper, we will relate Kähler metrics g, gM , . . . with their Kähler

forms ω, ωM , . . . using the obvious notation. We will also refer to ω as a Kähler

metric since ω and g uniquely determine each other. Additionally, a uniform

constant C,C ′, . . . will be a constant depending only on the initial data whose

definition my change from line to line.

Let X = M × E and define projection maps πM : X → M and πE : X → E.

Let ω0 be any Kähler metric on X and consider the normalized Kähler-Ricci flow

∂

∂t
ω = −Ric (ω)− ω, ωt=0 = ω0. (3.2)

Observe that

Ric (π∗MωM + π∗EωE) = −π∗MωM .

28
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Hence c1 (X) = −[π∗MωM ] ≤ 0 and the flow (3.2) exists for all time by the work

of Tsuji [79] and Tian-Zhang [72]. Notice that in general ω0 is not a product. In

the case when ω0 is a product, the work of Cao shows that the flow exists for all

time and converges smoothly to a Kähler-Einstein metric on M [6]. We prove the

following theorem.

Theorem 3.1.1. Let ω(t) be the solution to the normalized Kähler-Ricci flow (3.2)

with initial Kähler metric ω0 on X = M × E. Then

(a) ω (t) converges to π∗MωM in C∞ (X,ω0) as t→∞.

(b) For any z ∈M , let E(z) = π−1
M (z) denote the fiber above z. Then

etω (t) |E(z) → ωflat|E(z) in C∞ (E(z), ωE) as t → ∞, where ωflat is a (1, 1)-

form on X with [ωflat] = [ω0] whose restriction to each fiber is a flat Kähler

metric.

We remark that this theorem holds for any compact Kähler manifold that ad-

mits a flat metric, which includes certain quotients of complex tori. This theorem

strengthens a convergence result of Song and Weinkove and confirms their conjec-

ture [62]. They prove that when m = n = 1, the convergence in (a) takes place in

Cβ(X,ω0) for any β between 0 and 1, and that the convergence in (b) takes place

in C0 (E(z), ωE). They conjecture that the convergence in this case is in fact C∞.

This problem originates from the work of Song and Tian [56]. They considered the

normalized Kähler-Ricci flow on an elliptic surface f : X → Σ where some of the

fibers may be singular. It was shown that the solution of the flow converges to a

generalized Kähler-Einstein metric on the base Σ in C1,1. This result was general-

ized to the fibration f : X → Xcan where X is a nonsingular algebraic variety with

semi-ample canonical bundle and Xcan is its canonical model [57]. Theorem 3.1.1

is a step towards strengthening this convergence result to C∞. We remark that

Gross, Tosatti and Zhang have studied a similar manifold as in Theorem 1.1, but

considered the case where the Kähler class of the metric tends to the boundary of

the Kähler cone instead of evolving by the Kähler-Ricci flow [26]. Fong and Zhang

have examined the rate of collapse of the fibers of a similar manifold along the

Kähler-Ricci flow in a recent preprint [20].
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Theorem 3.1.1 is related to viewing the Kähler-Ricci flow with surgery as an

analytic Minimal Model Program (MMP) as conjectured by Song and Tian and

proved in the weak sense [58]. The idea of the MMP is that after several blow-

downs and flips, a projective algebraic variety becomes either a minimal model or

a Mori fiber space (an algebraic fibration f : X → B where the generic fibers are

Fano). Recent results due to Song and Weinkove show that the Kähler-Ricci flow

performs blow-downs as canonical surgical contractions in complex dimension 2 [60]

and in the case of the blow-up of orbifold points [61]. Song and Yuan have given

an example of the flow performing a flip [64]. Specific examples of collapsing along

the flow have been investigated by Song and Weinkove in the case of a Hirzebruch

surface [59] and by Fong in the case of a projective bundle over a Kähler-Einstein

manifold [18].

After performing blow-downs and flips, the Kähler-Ricci flow is conjectured to

produce either a minimal model or a Mori fiber space. If we continue the flow on

a Mori fiber space, the flow is expected to collapse the fibers in finite time. An

example of this was examined by Song, Székelyhidi and Weinkove [55]. The rate of

collapse of the diameter was improved by Fong under an assumption on the Ricci

curvature [19]. If we continue the flow on a minimal model, the flow exists for all

time because the canonical class is nef. In this case, the rescaled flow may collapse

in infinite time. This is the case considered in [56, 57, 62, 20] and in this paper.

In section 2, we derive several estimates following [62]. Section 3 contains

new higher order estimates for the case of a degenerating metric using only the

maximum principle. If the metric is not degenerating, then the work in section 3

most likely gives an alternate proof of the results in [63]. For other examples of

where higher order estimates were obtained using only the maximum principle, see

[7, 12, 35]. In section 4, we obtain the convergence of ω, completing the proof of

the main theorem.
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3.2 Estimates

First we establish reference metrics and reduce the flow to a parabolic complex

Monge-Ampère equation. The Kähler class of ω evolves as

[ω(t)] = e−t[ω0] +
(
1− e−t

)
[ωM ].

This can be verified by substituting in to the normalized Kähler-Ricci flow. Note

that we have written ωM in place of π∗MωM to simplify notation and we will continue

to do so for the remainder of this paper.

We define a family of reference metrics ω̂t in the class of ω(t) by

ω̂t = e−tω0 +
(
1− e−t

)
ωM .

Pick a smooth volume form Ω on X such that
√
−1

2π
∂∂̄ log Ω = ωM ,

∫
X

Ω =
(
m+n
m

) ∫
X

ωmM ∧ ωn0 . (3.3)

This is possible since ωM represents the negative of the first Chern class of X.

Consider the parabolic complex Monge-Ampère equation

∂

∂t
ϕ = log

ent
(
ω̂t +

√
−1

2π
∂∂̄ϕ

)m+n

Ω
− ϕ, ω̂t +

√
−1

2π
∂∂̄ϕ > 0, ϕt=0 = 0. (3.4)

Then the solution ϕ to (3.4) exists for all time and ω(t) = ω̂t +
√
−1

2π
∂∂̄ϕ solves the

normalized Kähler-Ricci flow (3.2).

We derive uniform estimates for the Kähler potential ϕ. The result of Lemma

3.2.1 and Lemma 3.2.2 were proved in more general settings in the work of Song

and Tian [56]. See also [20] in the case of a holomorphic submersion X → Σ.

Following the notation in [62], we provide a proof for the reader’s convenience.

Lemma 3.2.1. There exists C > 0 such that X × [0,∞),

(a) |ϕ| ≤ C.

(b) |ϕ̇| ≤ C.

(c) 1
C
ω̂m+n
t ≤ ωm+n ≤ Cω̂m+n

t .
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Proof. We begin by calculating

entω̂m+n
t = e−mtωm+n

0 +
(
m+n

1

)
e−(m−1)

(
1− e−t

)
ωm+n−1

0 ∧ ωM + . . .

+
(
m+n
m

) (
1− e−t

)m
ωn0 ∧ ωmM . (3.5)

This equation implies that

1

C
Ω ≤ entω̂m+n

t ≤ CΩ. (3.6)

To obtain the upper bound for ϕ, assume that ϕ attains a maximum at a point

(z0, t0) with t0 > 0. At that point, the maximum principle implies

0 ≤ ∂

∂t
ϕ ≤ log

entω̂m+n
t

Ω
− ϕ ≤ logC − ϕ. (3.7)

Thus we find ϕ ≤ logC, giving the upper bound. Similarly, we obtain a lower

bound giving (a).

To prove (b), we calculate the evolution equation of ϕ̇ to be(
∂

∂t
−∆

)
ϕ̇ = trω (ωM − ω̂t) + n− ϕ̇. (3.8)

Note that by the definition of ω̂t there exists a constant C0 > 1 such that ωM ≤
C0ω̂t (however it is not true that there exists C0 > 0 such that 1

C0
ω̂t ≤ ωM since

ωM is degenerate). Then at the maximum of the quantity Q1 = ϕ̇− (C0 − 1)ϕ,

0 ≤
(
∂

∂t
−∆

)
Q1 = trω (ωM − ω̂t) + n− ϕ̇− (C0 − 1) ϕ̇+ (C0 − 1) ∆ϕ

≤ (C0 − 1) trω ω̂t + n− C0ϕ̇+ (C0 − 1) trω (ω − ω̂t)

≤ n+ (C0 − 1) (m+ n)− C0ϕ̇. (3.9)

Hence Q1 is bounded above, and so is ϕ̇ by (a).

To obtain the lower bound for ϕ̇, we define the quantity Q2 = ϕ̇ + (m+ 1)ϕ.

Working at a point where Q2 achieves a minimum,

0 ≥
(
∂

∂t
−∆

)
Q2 = trω (ωM − ω̂t) + n− ϕ̇+ (1 +m) ϕ̇− (m+ 1) trω (ω − ω̂t)

≥ m (trω ω̂t + ϕ̇− (m+ n+ 1)) . (3.10)
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Using the arithmetic-geometric mean inequality and (3.6),

e−
(ϕ̇+ϕ)
m+n =

(
Ω

entωm+n

) 1
m+n

≤ C

(
ω̂m+n
t

ωm+n

) 1
m+n

≤ C trω ω̂t ≤ C − ϕ̇. (3.11)

This gives a uniform lower bound for ϕ̇ at (z0, t0), and hence a uniform lower bound

for ϕ̇.

Finally, for (c), using (a), (b) and (3.4) we have

1

C
≤ entωm+n

Ω
≤ C, (3.12)

completing the proof of the lemma.

Recall that we say two metrics ω1 and ω2 are uniformly equivalent if there exists

a constant C > 0 such that 1
C
ω2 ≤ ω1 ≤ Cω2. We now show that ω is uniformly

equivalent to ω̂t. Although the following lemma is known in more generality (see

[56], [20]), we provide a proof for the reader’s convenience. We introduce another

family of reference metrics

ω̃t = ωM + e−tωE. (3.13)

By writing ω̃0 = ωM + ωE and ω̃t = e−tω̃0 + (1− e−t)ωM , it is easy to see that ω̂t

and ω̃t are uniformly equivalent. We choose ω̃t so that its curvature tensor vanishes

on E which will be useful for the remainder of this paper.

Lemma 3.2.2. The metrics ω and ω̃t are uniformly equivalent, i.e. there exists

C > 0 such that on X × [0,∞),

1

C
ω̃t ≤ ω ≤ Cω̃t. (3.14)

We remark that since ω̂t is uniformly equivalent to ω̃t, we also have the following

corollary.

Corollary 3.2.3. The metrics ω and ω̂t are uniformly equivalent.

Now we will prove the above lemma using a method similar to Song and

Weinkove. The main difference in the proof is that we need to be careful with

the curvature tensor of ω̃t due to the increase in dimension.
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Proof. By Lemma 3.2.1 part (c), the lemma will follow by bounding trω̃t ω from

above. We begin with the evolution equation for the quantity log trω̃t ω from [62].

This is analogous to Cao’s [6] second order estimate, which is the parabolic version

of an elliptic estimate from Yau [81] and Aubin [1]:(
∂

∂t
−∆

)
log trω̃t ω ≤ −

1

trω̃t ω
g l̄kR(g̃t)kl̄

j̄igij̄. (3.15)

To control the Riemann curvature tensor of g̃, we choose product normal coor-

dinates for gM and gE. In these coordinates,

R(g̃t)kl̄ij̄ =

{
R(gM)kl̄ij̄ : 1 ≤ i, j, k, l ≤ m

0 : else
(3.16)

We recall that an inequality of tensors Tkl̄ij̄ ≤ Skl̄ij̄ in the Griffiths sense is defined

as follows. For any vectors X and Y of type T 1,0, we have Tkl̄ij̄X
kX lY iY j ≤

Skl̄ij̄X
kX lY iY j. Since Rm(gM) (the Riemann curvature tensor of gM , Rkl̄ij̄) is a

fixed tensor on M , for every X and Y on M ,∣∣∣R(gM)kl̄ij̄X
kX lY iY j

∣∣∣2
gM
≤ |Rm(gM)|2gM |X|

2
gM
|Y |2gM . (3.17)

This gives the following inequality in the Griffiths sense

−R(gM)kl̄ij̄ ≤ C1(gM)kl̄(gM)ij̄. (3.18)

Applying (3.16) and (3.18) to (3.15) gives(
∂

∂t
−∆

)
log trω̃t ω ≤

1

trω̃t ω

m∑
i,j,l,k,p,q=1

C1g
l̄kgij̄ g̃

q̄i
t g̃

j̄p
t (gM)kl̄(gM)pq̄

= C1
1

trω̃t ω
(trω ωM)

m∑
i=1

gīi

≤ C1
1

trω̃t ω
(trω ωM) (trω̃t ω)

= C1 trω ωM . (3.19)

Recall that there exists C0 > 1 such that ωM ≤ C0ω̂t. Now we define the
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quantity Q3 = log trω̃t ω − (C0C1 + 1)ϕ. Then at the maximum of Q3,(
∂

∂t
−∆

)
Q3 ≤ C1 trω ωM − (C0C1 + 1)ϕ̇+ (C0C1 + 1) trω (ω − ω̂t)

≤ (C0C1 + 1)(m+ n)− (C0C1 + 1)ϕ̇− trω ω̂t

≤ C − 1

C
trω̃t ω. (3.20)

To get the last line we use the fact that ϕ̇ is bounded from Lemma 3.2.1 part (b),

that ω̃t and ω̂t are uniformly equivalent, and Lemma 3.2.1 part (c). Using Lemma

3.2.1 part (a) and the maximum principle shows that Q3 is bounded, hence so is

trω̃t ω.

By choosing product normal coordinates for gM and gE, ∂k(g̃t)ij̄ = 0 for all i,

j and k and for all t ≥ 0. This implies that the Christoffel symbols for ω̃t do not

depend on t, hence we may write ∇̃ for both ∇g̃t and ∇g̃0 without ambiguity. This

also implies that the curvature tensor R(g̃t)ij̄k
l does not depend on time. Using

these facts, we prove the following lemma which we will make heavy use of for the

remainder of the paper. We remark that the proof of the following lemma uses the

product structure of the manifold in a very strong way.

Lemma 3.2.4. Let Rm(g̃0) denote the Riemann curvature tensor of g̃0, R(g̃0)ij̄k
l.

Then there exists a uniform C(k) > 0 for k = 0, 1, 2, . . . such that on X × [0,∞),

|∇̃k
R Rm(g̃0)|2 ≤ C(k), (3.21)

where | · | denotes the norm with respect to g(t) and where ∇̃R is the covariant

derivative with respect to g̃0 as a Riemannian metric.

Proof. Recall that g̃t is a product metric on X = M × E. Using the fact that

Rm(g̃t) does not depend on time and Lemma 3.2.2,

|∇̃k
R Rm(g̃0)|2 = |∇k

g̃t,R Rm(g̃t)|2g ≤ C|∇k
g̃t,R Rm(g̃t)|2g̃t . (3.22)

Then because gE is a flat metric on E,

|∇̃k
R Rm(g̃0)|2 ≤ C|∇k

g̃t,R Rm(g̃t)|2g̃t = C|∇k
gM ,R Rm(gM)|2gM ≤ C(k). (3.23)
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We will now bound the first derivative of the metric ω following the method of

[62].

Lemma 3.2.5. There exists a uniform C > 0 such that on X × [0,∞),

S := |∇̃g|2 ≤ C and |∇̃g|2g̃0
≤ C (3.24)

where | · | and | · |g̃0 denote the norms with respect to g(t) and g̃0 respectively.

Moreover, (
∂

∂t
−∆

)
S ≤ −1

2
|Rm(g)|2 + C ′ (3.25)

for some uniform C ′ > 0 and where Rm(g) denotes the Riemann curvature tensor

of g, Rij̄k
l.

Proof. We will derive the evolution equation of S using a formula of Phong-Sesum-

Sturm [43]. We follow the notation of [43, 62]. Let Ψk
ij = Γkij − Γ̃kij = g l̄k∇̃igjl̄,

where Γ and Γ̃ are the Christoffel symbols for g(t) and g̃0 respectively. Then we

have

S = |Ψ|2 = gj̄ig l̄kgpq̄Ψ
p
ikΨ

q
jl. (3.26)

Before computing the evolution equation of S, we need the evolution equation of

Ψk
ij.

∂

∂t
Ψk
ij =

∂

∂t

(
g l̄k∂igjl − g̃ l̄k∂ig̃jl̄

)
= g l̄k∂i

(
−Rjl̄ − gjl̄

)
= −∇iRj

k. (3.27)

We also compute the rough Laplacian of Ψk
ij:

∆Ψk
ij = gq̄p∇p∇q̄Ψ

k
ij = ∇q̄

(
R(g̃0)iq̄j

k −Riq̄j
k
)

= ∇q̄R(g̃0)iq̄j
k −∇iRj

k. (3.28)

Hence we have (
∂

∂t
−∆

)
Ψk
ij = −∇q̄R(g̃0)iq̄j

k. (3.29)

Now we calculate the evolution of S.

∂

∂t
S =

∂

∂t

(
gj̄ig l̄kgpq̄Ψ

p
ikΨ

q
jl

)
= −

(
−Rj̄i − gj̄i

)
g l̄kgpq̄Ψ

p
ikΨ

q
jl − g

j̄i
(
−Rl̄k − g l̄k

)
gpq̄Ψ

p
ikΨ

q
jl

+ gj̄ig l̄k (−Rpq̄ − gpq̄) Ψp
ikΨ

q
jl

+ 2 Re
(
gj̄ig l̄kgpq̄ (∆Ψp

ik −∇
s̄R(g̃0)is̄k

p) Ψq
jl

)
(3.30)
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Taking the Laplacian of S,

∆S = |∇Ψ|2 + |∇̄Ψ|2 + gj̄ig l̄kgpq̄

(
(∆Ψp

ik) Ψq
jl + Ψp

ik

(
∆̄Ψq

jl

))
. (3.31)

We have the following commutation formula:(
∆̄Ψq

jl

)
= ∆Ψq

jl +Rj
rΨq

rl +Rl
rΨq

jr −Rr
qΨr

jl. (3.32)

Substituting (3.32) into (3.31) and combining with (3.30), we obtain(
∂

∂t
−∆

)
S = S − |∇Ψ|2 − |∇̄Ψ|2 − 2 Re

(
gj̄ig l̄kgpq̄∇s̄R(g̃0)is̄k

pΨq
jl

)
(3.33)

Now we need to control the final term in (3.33) to complete the proof. By choosing

normal coordinates for g̃0,

2 Re
(
gj̄ig l̄kgpq̄∇s̄R(g̃0)is̄k

pΨq
jl

)
= 2 Re

(
gj̄ig l̄kgpq̄g

s̄r
(
∇̃rR(g̃0)is̄k

p −Ψa
irR(g̃0)as̄k

p

−Ψa
krR(g̃0)is̄a

p + Ψp
arR(g̃0)is̄k

a
)

Ψq
jl

)
. (3.34)

We bound the first term in (3.34) using Lemma 3.2.4:∣∣∣2 Re
(
gj̄ig l̄kgpq̄g

s̄r∇̃rR(g̃0)is̄k
pΨq

jl

)∣∣∣ ≤ C|∇̃Rm(g̃0)|2 + CS ≤ C + CS. (3.35)

Similarly for the remaining terms in (3.34),∣∣∣2 Re
(
gj̄ig l̄kgpq̄g

s̄rR(g̃0)as̄k
pΨa

irΨ
q
jl

)∣∣∣ ≤ C|Rm(g̃0)|2S ≤ CS. (3.36)

Using (3.34), (3.35) and (3.36), we obtain the estimate∣∣∣2 Re
(
gj̄ig l̄kgpq̄∇s̄R(g̃0)is̄k

pΨq
jl

)∣∣∣ ≤ C ′ + CS. (3.37)

We combine (3.37) with (3.33) to obtain(
∂

∂t
−∆

)
S ≤ C ′ + CS − |∇Ψ|2 − |∇̄Ψ|2. (3.38)

Define the quantity Q4 = S +A trω̃t ω where A is a large constant to be deter-

mined later. The evolution equation of trω̃t ω is (see [62]),(
∂

∂t
−∆

)
trω̃t ω = − trω̃t ω − g l̄kR(g̃t)kl̄

j̄igij̄ − g l̄kg̃j̄it gq̄p∇̃igkq̄∇̃j̄gpl̄

≤ −g l̄kR(g̃t)kl̄
j̄igij̄ − g l̄kg̃j̄it gq̄p∇̃igkq̄∇̃j̄gpl̄. (3.39)
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Using (3.39) and (3.38) we have(
∂

∂t
−∆

)
Q4 ≤ C ′+CS−|∇Ψ|2−|∇̄Ψ|2−Ag l̄kR(g̃t)kl̄

j̄igij̄−Ag l̄kg̃j̄it gq̄p∇̃igkq̄∇̃j̄gpl̄.

(3.40)

To handle the fourth term in (3.40), we again work in product normal coordinates

for gM and gE. Using the same argument to control the curvature as in Lemma

3.2.2 and the fact that g and g̃t are uniformly equivalent,∣∣∣g l̄kR(g̃t)kl̄
j̄igij̄

∣∣∣ ≤ C ′′(trω ω̃t)(trω̃t ω) ≤ C ′′. (3.41)

We combine (3.40), (3.41) and again use the uniform equivalence of g and g̃t, giving(
∂

∂t
−∆

)
Q4 ≤ C ′ + CS − |∇Ψ|2 − |∇̄Ψ|2 + AC ′′ − A

C ′′′
S

≤ −S − |∇̄Ψ|2 + C (3.42)

where on the last line we choose A large enough so that C−A/C ′′′ ≤ −1 and throw

away the term |∇Ψ|2. Also ignoring the term |∇̄Ψ|2 gives an upper bound for Q4

by the maximum principle. Using Lemma 3.2.2 then shows that S is bounded

above as well. Since g ≤ Cg̃0 we also have an upper bound for |∇̃g|2g̃0
.

Now we derive (3.25). Notice that by definition |∇̄Ψ|2 = |Rm(g) − Rm(g̃0)|2

where we use Rm(g̃0) for the Riemann curvature tensor of g̃0, R(g̃0)ij̄k
l. By Lemma

3.2.4,

|Rm(g)|2 ≤ 2|Rm(g)− Rm(g̃0)|2 + 2|Rm(g̃0)|2 ≤ 2|∇̄Ψ|2 + C. (3.43)

Substituting (3.43) into (3.42) along with the bound on S gives (3.25).

Following [62], we bound the curvature tensor of g.

Lemma 3.2.6. There exists a uniform C > 0 such that on X × [0,∞),

|Rm(g)|2 ≤ C. (3.44)

Proof. We have the following evolution equation for curvature along the Kähler-

Ricci flow (see [62]):(
∂

∂t
−∆

)
|Rm(g)| ≤ C0

2
|Rm(g)|2 − 1

2
|Rm(g)|. (3.45)
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Define the quantity Q = |Rm(g)| + (C0 + 1)S. Then using (3.25), (3.45) and the

maximum principle, we have the estimate(
∂

∂t
−∆

)
Q ≤ −1

2
|Rm(g)|2 + C, (3.46)

obtaining a bound for |Rm(g)|2.

Using Shi’s derivative estimates, we obtain bounds for the derivatives of cur-

vature. For a proof of the following lemma, please see [53] (or [62] Theorem 2.15).

Lemma 3.2.7. There exists uniform C(k) for k = 0, 1, 2, . . . such that on X ×
[0,∞),

|∇k
R Rm(g)|2 ≤ C(k), (3.47)

where ∇R is the covariant derivative with respect to g as a Riemannian metric.

3.3 Higher order estimates for the metric ω(t)

We will now use the curvature bounds and the maximum principle to obtain

higher order estimates for g. Examples of higher order estimates using similar

quantities and the maximum principle can be found in [7, 12, 35].

Lemma 3.3.1. There exists uniform C(k) > 0 for k = 0, 1, 2, . . . such that on

X × [0,∞),

|∇̃kg|2 ≤ C(k). (3.48)

Proof. We observe that a uniform bound on |∇̃Ψ|2 will give a uniform bound on

|∇̃∇̃g|2. We begin by calculating

∂

∂t
|∇̃Ψ|2 =

∂

∂t

(
gs̄rgj̄ig l̄kgpq̄∇̃rΨ

p
ik∇̃sΨ

q
jl

)
= − (−Rs̄r − gs̄r) gj̄ig l̄kgpq̄∇̃rΨ

p
ik∇̃sΨ

q
jl

− gs̄r
(
−Rj̄i − gj̄i

)
g l̄kgpq̄∇̃rΨ

p
ik∇̃sΨ

q
jl

− gs̄rgj̄i
(
−Rl̄k − g l̄k

)
gpq̄∇̃rΨ

p
ik∇̃sΨ

q
jl

+ gs̄rgj̄ig l̄k (−Rpq̄ − gpq̄) ∇̃rΨ
p
ik∇̃sΨ

q
jl

+ 2 Re
(
gs̄rgj̄ig l̄kgpq̄∇̃r

(
∆Ψp

ik −∇
b̄R(g̃0)ib̄k

p
)
∇̃sΨ

q
jl

)
. (3.49)
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Applying the Laplacian to |∇̃Ψ|2,

∆|∇̃Ψ|2 = |∇∇̃Ψ|2

+ |∇̄∇̃Ψ|2 + gs̄rgj̄ig l̄kgpq̄

((
∆∇̃rΨ

p
ik

)
∇̃sΨ

q
jl + ∇̃rΨ

p
ik

(
∆̄∇̃sΨ

q
jl

))
= |∇∇̃Ψ|2 + |∇̄∇̃Ψ|2 + 2 Re

(
gs̄rgj̄ig l̄kgpq̄

(
∆∇̃rΨ

p
ik

)
∇̃sΨ

q
jl

)
+Rs̄rgj̄ig l̄kgpq̄∇̃rΨ

p
ik∇̃sΨ

q
jl + gs̄rRj̄ig l̄kgpq̄∇̃rΨ

p
ik∇̃sΨ

q
jl

+ gs̄rgj̄iRl̄kgpq̄∇̃rΨ
p
ik∇̃sΨ

q
jl − g

s̄rgj̄ig l̄kRpq̄∇̃rΨ
p
ik∇̃sΨ

q
jl, (3.50)

where on the last line we use a commutation formula similar to (3.32). Putting

together (3.49) and (3.50), we obtain the evolution equation(
∂

∂t
−∆

)
|∇̃Ψ|2 = 2|∇̃Ψ|2 − |∇∇̃Ψ|2 − |∇̄∇̃Ψ|2

− 2 Re
(
gs̄rgj̄ig l̄kgpq̄∇̃r∇b̄R(g̃0)ib̄k

p∇̃sΨ
q
jl

)
+ 2 Re

(
gs̄rgj̄ig l̄kgpq̄

(
∇̃r∆−∆∇̃r

)
Ψp
ik∇̃sΨ

q
jl

)
. (3.51)

Choose coordinates so that g̃0 is the identity and ∂ig̃0 = 0 and ∂i1∂i2 g̃0 = 0 at a

point as in [70]. To deal with the fourth term in (3.51), we calculate

∇̃r∇b̄R(g̃0)ib̄k
p = ∇̃rg

b̄a
(
∇̃aR(g̃0)ib̄k

p −Ψα
iaR(g̃0)αb̄k

p −Ψα
kaR(g̃0)ib̄α

p

+ Ψp
αaR(g̃0)ib̄k

α
)

+ gb̄a
(
∇̃r∇̃aR(g̃0)ib̄k

p − ∇̃rΨ
α
iaR(g̃0)αb̄k

p

−Ψα
ia∇̃rR(g̃0)αb̄k

p − ∇̃rΨ
α
kaR(g̃0)ib̄α

p −Ψα
ka∇̃rR(g̃0)ib̄α

p

+ ∇̃rΨ
p
αaR(g̃0)ib̄k

α + Ψp
αa∇̃rR(g̃0)ib̄k

α
)
. (3.52)

We now bound all of the terms arising from (3.52) using Lemmas 3.2.4 and 3.2.5.

For the first term in (3.52),∣∣∣2 Re
(
gs̄rgj̄ig l̄kgpq̄∇̃rg

b̄a∇̃aR(g̃0)ib̄k
p∇̃sΨ

q
jl

)∣∣∣ ≤ C|∇̃g||∇̃Rm(g̃0)||∇̃Ψ|

≤ C|∇̃Ψ|2 + C. (3.53)

We bound the second, and similarly the third and fourth terms in (3.52):∣∣∣2 Re
(
gs̄rgj̄ig l̄kgpq̄∇̃rg

b̄aΨα
iaR(g̃0)αb̄k

p∇̃sΨ
q
jl

)∣∣∣ ≤ C|∇̃g||Rm(g̃0)||∇̃Ψ|

≤ C|∇̃Ψ|2 + C (3.54)
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Calculating similarly for the remaining terms in (3.52), we obtain the following

bound for the fourth term of (3.51):

2 Re
(
gs̄rgj̄ig l̄kgpq̄∇̃r∇b̄R(g̃0)ib̄k

p∇̃sΨ
q
jl

)
≤ C|∇̃Ψ|2 + C. (3.55)

Using the same coordinates as above, we compute the commutation relation for(
∇̃r∆−∆∇̃r

)
Ψp
ik

to handle the last term in (3.51),

∇̃r∆Ψp
ik = ∇̃r

(
gb̄a∇a∇b̄Ψ

p
ik

)
= ∂rg

b̄a
(
∂a∂b̄Ψ

p
ik − Γαia∂b̄Ψ

p
αk − Γαka∂b̄Ψ

p
iα + Γpαa∂b̄Ψ

α
ik

)
+ gb̄a

(
∂r∂a∂b̄Ψ

p
ik − ∂rΓ

α
ia∂b̄Ψ

p
αk − Γαia∂r∂b̄Ψ

p
αk − ∂rΓ

α
ka∂b̄Ψ

p
iα

− Γαka∂r∂b̄Ψ
p
iα + ∂rΓ

p
αa∂b̄Ψ

α
ik + Γpαa∂r∂b̄Ψ

α
ik

)
. (3.56)

∆∇̃rΨ
p
ik = gb̄a∇a∇b̄∇̃rΨ

p
ik

= gb̄a
(
∂r∂a∂b̄Ψ

p
ik − Γβra∂β∂b̄Ψ

p
ik (3.57)

− Γβia∂r∂b̄Ψ
p
βk − Γβka∂r∂b̄Ψ

p
iβ + Γpβa∂r∂b̄Ψ

β
ik

− ∂aR(g̃0)ib̄r
αΨp

αk −R(g̃0)ib̄r
α∂aΨ

p
αk + ΓβiaR(g̃0)βb̄r

αΨp
αk

+ ΓβraR(g̃0)ib̄β
αΨp

αk − ΓαβaR(g̃0)ib̄r
βΨp

αk + ΓβαaR(g̃0)ib̄r
αΨp

βk

+ ΓβkaR(g̃0)ib̄r
αΨp

αβ − ΓpβaR(g̃0)ib̄r
αΨβ

αk − ∂aR(g̃0)kb̄r
αΨp

iα

−R(g̃0)kb̄r
α∂aΨ

p
iα + ΓβkaR(g̃0)βb̄r

αΨp
iα + ΓβraR(g̃0)kb̄β

αΨp
iα

− ΓαβaR(g̃0)kb̄r
βΨp

iα + ΓβiaR(g̃0)kb̄r
αΨp

βα + ΓβαaR(g̃0)kb̄r
pΨp

iβ

− ΓpβaR(g̃0)kb̄r
αΨβ

iα + ∂aR(g̃0)αb̄r
pΨα

ik +R(g̃0)αb̄r
p∂aΨ

α
ik

− ΓβαaR(g̃0)βb̄r
pΨα

ik − ΓβraR(g̃0)αb̄β
pΨα

ik + ΓpβaR(g̃0)αb̄r
βΨp

ik

− ΓβiaR(g̃0)αb̄r
pΨα

βk − ΓβkaR(g̃0)αb̄r
pΨα

iβ + ΓαβaR(g̃0)αb̄r
pΨβ

ik

)
. (3.58)
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Putting these together and making use of our choice of coordinates,(
∇̃r∆−∆∇̃r

)
Ψp
ik = ∇̃rg

b̄a
(
∇̃a(Rib̄k

p −R(g̃0)ib̄k
p)−Ψα

ia(Rαb̄k
p −R(g̃0)αb̄k

p)

−Ψα
ka(Rib̄α

p −R(g̃0)ib̄α
p) + Ψp

αa(Rib̄k
α −R(g̃0)ib̄k

α)
)

+ gb̄a
(
− ∇̃rΨ

α
ia(Rαb̄k

p −R(g̃0)αb̄k
p)

− ∇̃rΨ
α
ka(Rib̄α

p −R(g̃0)ib̄α
p)

+ ∇̃rΨ
p
αa(Rib̄k

α −R(g̃0)ib̄k
α) + Ψβ

ra∇̃β(Rib̄k
p −R(g̃0)ib̄k

p)

+ ∇̃aR(g̃0)ib̄r
αΨp

αk +R(g̃0)ib̄r
α∇̃aΨ

p
αk −Ψβ

iaR(g̃0)βb̄r
αΨp

αk

−Ψβ
raR(g̃0)ib̄β

αΨp
αk + Ψα

βaR(g̃0)ib̄r
βΨp

αk −Ψβ
αaR(g̃0)ib̄r

αΨp
βk

−Ψβ
kaR(g̃0)ib̄r

αΨp
αβ + Ψp

βaR(g̃0)ib̄r
αΨβ

αk + ∇̃aR(g̃0)kb̄r
αΨp

iα

+R(g̃0)kb̄r
α∇̃aΨ

p
iα −Ψβ

kaR(g̃0)βb̄r
αΨp

iα −Ψβ
raR(g̃0)kb̄β

αΨp
iα

+ Ψα
βaR(g̃0)kb̄r

βΨp
iα −Ψβ

iaR(g̃0)kb̄r
αΨp

βα −Ψβ
αaR(g̃0)kb̄r

pΨp
iβ

+ Ψp
βaR(g̃0)kb̄r

αΨβ
iα − ∇̃aR(g̃0)αb̄r

pΨα
ik −R(g̃0)αb̄r

p∇̃aΨ
α
ik

+ Ψβ
αaR(g̃0)βb̄r

pΨα
ik + Ψβ

raR(g̃0)αb̄β
pΨα

ik −Ψp
βaR(g̃0)αb̄r

βΨp
ik

+ Ψβ
iaR(g̃0)αb̄r

pΨα
βk + Ψβ

kaR(g̃0)αb̄r
pΨα

iβ −Ψα
βaR(g̃0)αb̄r

pΨβ
ik

)
.

(3.59)

Using (3.59) and Lemmas 3.2.4, 3.2.5 and 3.2.7, we can bound all the terms re-

sulting from the final term of (3.51). Starting with the first term from (3.59):

2 Re
(
gs̄rgj̄ig l̄kgpq̄∇̃rg

b̄a∇̃aRib̄k
p∇̃sΨ

q
jl

)
≤ C|∇̃g||∇̃Rm(g)||∇̃Ψ|. (3.60)

We bound |∇̃Rm(g)| by observing that(
∇̃a −∇a

)
Ril̄p

r = Ψα
iaRαl̄p

r + Ψα
paRil̄α

r −Ψr
αaRil̄p

α, (3.61)

and so

|∇̃Rm(g)|2 ≤ 2|(∇̃ − ∇) Rm(g)|2 + 2|∇Rm(g)|2

≤ C|Ψ|2 + C|Rm(g)|2 + 2|∇Rm(g)|2

≤ C (3.62)
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where to get the last inequality we use Lemmas 3.2.5 and 3.2.7. Substituting (3.62)

into (3.60) gives the bound

2 Re
(
gs̄rgj̄ig l̄kgpq̄∇̃rg

b̄a∇̃aRib̄k
p∇̃sΨ

q
jl

)
≤ C|∇̃Ψ| ≤ C|∇̃Ψ|2 + C (3.63)

For the second term from (3.59), using Lemmas 3.2.4 and 3.2.5,

2 Re
(
gs̄rgj̄ig l̄kgpq̄∇̃rg

b̄aR(g̃0)ib̄k
p∇̃sΨ

q
jl

)
≤ C|∇̃g||∇̃Rm(g̃0)||∇̃Ψ|

≤ C|∇̃Ψ|2 + C. (3.64)

Similarly, we bound the remaining terms arising from (3.59) and obtain the esti-

mate

|2 Re
(
gs̄rgj̄ig l̄kgpq̄

(
∇̃r∆−∆∇̃r

)
Ψp
ik∇̃sΨ

q
jl

)
| ≤ C|∇̃Ψ|2 + C. (3.65)

Substituting (3.55) and (3.65) into (3.51),(
∂

∂t
−∆

)
|∇̃Ψ|2 ≤ C2|∇̃Ψ|2 + C. (3.66)

By the definition of Ψ,

∇lΨ
k
ij − ∇̃lΨ

k
ij = −Ψα

liΨ
k
αj −Ψα

ljΨ
k
iα + Ψk

lαΨα
ij. (3.67)

Using this with the Lemma 3.2.5, we have

|∇̃Ψ|2 ≤ 2|∇Ψ|2 + 2|∇̃Ψ−∇Ψ|2 ≤ 2|∇Ψ|2 + C. (3.68)

Define the quantity Q1 = |∇̃Ψ|2 + 2(C1 + 1)|Ψ|2. Then using (3.38), (3.66), (3.68)

and Lemma 3.2.5,(
∂

∂t
−∆

)
Q1 ≤ C1|∇̃Ψ|2 + C + 2(C1 + 1)

(
C + C|Ψ|2 − |∇Ψ|2 − |∇̄Ψ|2

)
≤ −|∇̃Ψ|2 + C. (3.69)

This gives a uniform bound for |∇̃Ψ|2 and hence a uniform bound for |∇̃g|2.

Now we may proceed inductively to derive estimates of any order. As in the

case when k = 1, it will suffice to bound |∇̃kΨ|2 by induction. Computing as in

(3.51), the evolution equation of |∇̃kΨ|2 is(
∂

∂t
−∆

)
|∇̃kΨ|2 = (k + 1)|∇̃kΨ|2 − |∇∇̃kΨ|2 − |∇̄∇̃kΨ|2 − 2 Re

〈
∇̃kT, ∇̃kΨ

〉
+ 2 Re

〈(
∇̃k∆−∆∇̃k

)
Ψ, ∇̃kΨ

〉
, (3.70)
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where 〈·, ·〉 denotes the inner product with respect to g and where T is the

tensor T kij = ∇b̄Rib̄j
k. We work in coordinates where g̃0 is the identity and

∂ig̃0 = 0, ∂i1∂i2 g̃0 = 0, . . . , ∂i1∂i2 . . . ∂ik+1
g̃0 = 0 at a point as in [70]. Using these

coordinates, Γ̃ = 0, . . . , ∇̃kΓ̃ = 0 and Γ = Ψ, . . . , ∇̃kΓ = ∇̃kΨ. Proceeding as we

did to obtain (3.55), we bound the fourth term in (3.70) by C|∇̃kΨ|2 +C since all

lower order derivatives of Ψ are bounded by induction. As in (3.59), the final term

is made up of terms involving derivatives of curvature tensors and derivatives of Ψ

of order less than or equal to k. All terms here are good, since a k-th order deriva-

tive of Ψ is what we are estimating, and by induction lower order derivatives of Ψ

are bounded. Derivatives of order less than or equal to k of Rm(g) are bounded

by induction and Lemma 3.2.7 since differentiation with respect to g and g̃0 differ

by terms involving lower order derivatives of Ψ as in (3.62). Any derivatives of

Rm(g̃0) are bounded by Lemma 3.2.4. As above, we obtain the estimate(
∂

∂t
−∆

)
|∇̃kΨ|2 ≤ Ck|∇̃kΨ|2 + C. (3.71)

We define the quantity Qk = |∇̃kΨ|2 + 2(Ck + 1)|∇̃k−1Ψ|2. We have the inequality

|∇̃kΨ|2 ≤ 2|∇∇̃k−1Ψ|2 + 2|(∇− ∇̃)∇̃k−1Ψ|2

≤ 2|∇∇̃k−1Ψ|2 + C (3.72)

since (∇ − ∇̃)∇̃k−1Ψ is made up of terms involving Ψ and ∇̃k−1Ψ and hence is

bounded by the induction hypothesis. Then using this and (3.71), we have(
∂

∂t
−∆

)
Qk ≤ Ck|∇̃kΨ|2 + C + 2(Ck + 1)

(
C − |∇∇̃k−1Ψ|2

)
≤ −|∇̃kΨ|2 + C (3.73)

giving us a bound for |∇̃kΨ|2.

Because of the symmetries of the metric tensor gij̄, we obtain the following

lemma bounding the barred derivatives of the metric.

Lemma 3.3.2. There exists uniform C(k) > 0 for k = 0, 1, 2, . . . such that on

X × [0,∞),

| ¯̃∇kg|2 ≤ C(k). (3.74)
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Using Lemmas 3.3.1 and 3.3.2, we construct estimates for all possible covariant

derivatives of the metric.

Lemma 3.3.3. There exists uniform C(k) > 0 for k = 0, 1, 2, . . . such that on

X × [0,∞),

|∇̃k
Rg|2 ≤ C(k), (3.75)

where ∇̃R is the covariant derivative with respect to g̃0 as a Riemannian metric.

Proof. Let a = (a1, a2, . . . , ak) be a k-tuple with symbolic entries z or z̄. We define

∇̃ai to be the operator ∇̃ if ai = z or ¯̃∇ if ai = z̄. Then we define ∇̃a to be the

operator ∇̃a1 . . . ∇̃ak (if a is a 0-tuple, define ∇̃a to be the identity). To prove the

lemma, it suffices to bound the quantity |∇̃ag|2.

We will proceed by induction on k. The case where k = 1 is handled by Lemmas

3.3.1 and 3.3.2. For the general k we may assume that there exists an index l such

that al = z, otherwise we are done by Lemma 3.3.2. Choose l to be the greatest

index such that al = z and define a′ to be the (l − 1)-tuple containing the first

l − 1 entries of a. If l = k, we observe that a bound on |∇̃ag|2 will follow from a

bound on |∇̃a′Ψ|2.

We will introduce some notation: if A and B are tensors, let A ∗B denote any

linear combination of products of A and B formed by contractions with the metric

g. If l is not equal to k, by commuting the covariant derivatives, we have

∇̃ag = ∇̃a′∇̃ ¯̃∇k−lg

= ∇̃a′
(

¯̃∇∇̃ ¯̃∇k−l−1g + Rm(g̃0) ∗ ¯̃∇k−l−1g
)

= ∇̃a′
(

¯̃∇k−l∇̃g + ¯̃∇k−l−1 Rm(g̃0) ∗ g + . . .+ Rm(g̃0) ∗ ¯̃∇k−l−1g
)
. (3.76)

Hence a bound on |∇̃ag|2 follows from a bound on |∇̃a′ ¯̃∇k−lΨ|2 since the other

terms are bounded by Lemma 3.2.4 and induction. We will now complete the

proof by bounding |∇̃a′Ψ|2 for a general (k − 1)-tuple a′.

Notice that if every entry of a′ is z or if every entry of a′ is z̄, the proof is

complete by Lemmas 3.3.1 and 3.3.2. Now let r be the greatest index such that

a′r = z̄ and define a′′ to be the (r− 1)-tuple containing the first r− 1 entries of a′.
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If r = k − 1, then

|∇̃a′Ψ|2 = |∇̃a′′ ¯̃∇Ψ|2 = |∇̃a′′(Rm(g)−Rm(g̃0))|2 ≤ |∇̃a′′ Rm(g)|2 + |∇̃a′′(Rm(g̃0)|2.
(3.77)

Notice that the second term in the right hand side of (3.77) is bounded by Lemma

3.2.4. We observe that ∇̃a′′ Rm(g) differs from ∇a′′ Rm(g) only by terms involving

Rm(g), . . . ,∇k−3
R Rm(g) and Ψ, . . . , ∇̃k−3

R Ψ. By induction and Lemma 3.2.7, we

have a bound for ∇̃a′′ Rm(g) and hence

|∇̃a′Ψ|2 ≤ C. (3.78)

If r < l − 1, we commute the covariant derivatives,

∇̃a′Ψ = ∇̃a′′ ¯̃∇∇̃l−1−rΨ

= ∇̃a′′
(
∇̃ ¯̃∇∇̃l−r−2Ψ + Rm(g̃0) ∗ ∇̃l−r−2Ψ

)
= ∇̃a′′

(
∇̃l−r−1 ¯̃∇Ψ + ∇̃l−r−2 Rm(g̃0) ∗Ψ + . . .+ Rm(g̃0) ∗ ∇̃l−r−2Ψ

)
.

(3.79)

Notice that the norm of the first term of (3.79) is bounded as in (3.78) and the

norms of the other terms are bounded by induction and Lemma 3.2.4, completing

the proof.

3.4 Convergence

In this section we will complete the proof of the main theorem by showing that

ω(t) converges smoothly to ωM as t→∞. Fix z ∈M and define a function ρz on

E(z) := π−1
M (z) by

ω0|E(z) +

√
−1

2π
∂∂̄ρz > 0, Ric

(
ω0|E(z) +

√
−1

2π
∂∂̄ρz

)
= 0,

∫
E(z)

ρzω
n
0 = 0.

(3.80)

Note that since ρz varies smoothly with z, we may define a smooth function ρ(z, e)

on X. Then

ωflat := ω0 +

√
−1

2π
∂∂̄ρ (3.81)
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determines a closed (1, 1)-form on X with [ωflat] = [ω0]. Also, ωflat may not be a

metric on X, but ωflat|E(z) is a flat Kähler metric on each fiber.

We will now prove the following estimate for ϕ, which will give us the conver-

gence of ω(t).

Lemma 3.4.1. There exists uniform C > 0 such that on X × [0,∞),

|ϕ| ≤ C(1 + t)e−t. (3.82)

Proof. This proof follows similarly as in [62]. To simplify notation, let bk denote the

binomial coefficient bk =
(
m+n
k

)
. Then using (3.3) and the fact that [ωflat] = [ω0],

Ω = bmω
m
M ∧ ωnflat. (3.83)

We define the quantity Q = ϕ− e−tρ and calculate its evolution

∂

∂t
Q = log

ent
(
ω̂t +

√
−1

2π
∂∂̄ϕ

)m+n

bmωmM ∧ ωnflat
− ϕ+ e−tρ

= log
ent
(
e−tωflat + (1− e−t)ωM +

√
−1∂∂̄Q

)m+n

bmωmM ∧ ωnflat
−Q. (3.84)

Now let Q1 = etQ−At where A is a constant to be determined later. Suppose Q1

attains its maximum at a point (z0, t0) with t0 > 0, then at that point

0 ≤ ∂

∂t
Q1 ≤ et log

ent (e−tωflat + (1− e−t)ωM)
m+n

bmωmM ∧ ωnflat
− A

= et log
ent
(
bme

−nt(1− e−t)mωmM ∧ ωnflat + . . .+ e−(m+n)tωm+n
flat

)
bmωmM ∧ ωnflat

− A

≤ et log
(
1 + C1e

−t + . . .+ Cme
−mt)− A

≤ C − A. (3.85)

If we choose A > C, we obtain a contradiction and hence Q1 must attain its

maximum at t = 0. This gives the estimate ϕ ≤ C (1 + t) e−t, and we can similarly

obtain a lower bound.

We may now complete the proof of the main theorem.
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Proof. Using Lemma 3.3.3, Lemma 3.4.1 and the definition of ω(t), we immediately

see that ω(t)→ ωM in C∞ as t→∞ proving part (a).

We will restrict Lemma 3.2.5 to E(z) using a method similar to that in [74].

Choose complex coordinates xm+1, . . . , xm+n on E so that gE is the identity and

g|E is diagonal with entries λm+1, . . . , λm+n. Then choose complex coordinates

x1, . . . , xm on X such that at a point p the space spanned by ∂
∂x1 |p, . . . , ∂

∂xm
|p is

orthogonal to the space spanned by ∂
∂xm+1 |p, . . . , ∂

∂xm+n |p with respect to g. In this

coordinate system, g is diagonal with entries λ1, . . . , λm+n, and so

∣∣∇Eg|E(z)

∣∣2
g|E(z)

=
m+n∑

i,j,k=m+1

1

λiλjλk
∇̃kgij̄|E(z)∇̃kgij̄|E(z)

≤
m+n∑
i,j,k=1

1

λiλjλk
∇̃kgij̄∇̃kgij̄

= |∇̃g|2 ≤ C. (3.86)

By restricting the uniform equivalence of g and g̃t to E(z), we see that g|E(z) is

uniformly equivalent to e−tgE. Using this fact coupled with (3.86) we estimate the

derivative of etg|E(z).

|∇Ee
tg|E(z)|2gE = e2tgj̄iEg

l̄k
E g

q̄p
E ∇E,i(g|E(z))kq̄∇E,j(g|E(z))lp̄

≤ Ce−t(gE)j̄i(gE)l̄k(gE)q̄p∇E,i(g|E(z))kq̄∇E,j(g|E(z))lp̄

= Ce−t
∣∣∇Eg|E(z)

∣∣2
g|E(z)

≤ C ′e−t. (3.87)

Similarly, we obtain estimates for the k-th order derivative of etg|E(z):

|∇k
Ee

tg|E(z)|2gE ≤ Ce−kt. (3.88)

We constructed gflat to be a flat metric when restricted to the complex torus

E(z), and so it is given by a constant Hermitian metric on Cn. Using a standard

coordinate system for E(z), we see that ∇k
Egflat = 0 for all k, thus

|∇k
E(etg|E(z) − gflat|E(z))|2gE ≤ Ce−kt. (3.89)
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It remains to show that etg|E(z) → gflat|E(z) in C0(E(z)). Define a function ψ

on E(z) by

ψ = e−tϕ|E(z) − ρz. (3.90)

Letting ∆E denote the Laplacian with respect to gE,

∆Eψ = trgE(etg|E(z) − gflat|E(z)). (3.91)

Combining (3.89) with k = 1 and (3.91) gives the estimate

|∇E∆Eψ|2gE ≤ Ce−t. (3.92)

Since
∫
E

∆Eψω
n
E = 0, for each time t there exists a point y(t) in E(z) so that

ψ(y(t), t) = 0. Applying the Mean Value Theorem with (3.92) shows that

|∆Eψ(x, t)|2gE = |∆Eψ(x, t)−∆Eψ(y(t), t)|2gE → 0 (3.93)

as t→∞. (3.89), (3.91) and (3.93) show that etg|E(z) → gflat|E(z) in C∞ on E(z),

completing the proof of the main theorem.

Chapter 3, in full, is currently being prepared for submission for publication

of the material. Gill, Matthew. The dissertation author was the author of this

material.



Chapter 4

Future work

4.1 Evolution by the Chern-Ricci form

Let M be a complex manifold, let (g0)ij̄ be a Hermitian metric on M , and let

ω0 =
√
−1(g0)ij̄dz

i ∧ dz j̄ be the associated (1, 1)-form. Consider the flow, called

the Chern-Ricci flow in [77],

∂

∂t
ω = −Ric(ω), ω|t=0 = ω0 (4.1)

where Ric(ω) is the Chern-Ricci form given in local coordinates by

Ric(ω) = −
√
−1∂∂̄ log det g. (4.2)

We remark that if ω is Kähler, then the Chern-Ricci flow becomes the Kähler-

Ricci flow. Since the Chern-Ricci form is a closed real (1, 1)-form, it gives rise to

a cohomology class denoted cBC1 (M) in the Bott-Chern cohomology group

H1,1
BC(M,R) =

{closed real (1, 1) forms}
{
√
−1∂∂̄ψ, ψ ∈ C∞(M,R)}

. (4.3)

Given the condition cBC1 (M) = 0, we may find a smooth function F such that

√
−1∂∂̄ log det g0 =

√
−1∂∂̄F. (4.4)

If ϕ is the solution to the parabolic complex Monge-Ampère equation

∂

∂t
ϕ = log

det((g0)ij̄ + ∂i∂j̄ϕ)

det(g0)ij̄
− F, (g0)ij̄ + ∂i∂j̄ϕ > 0, ϕ|t=0 = 0, (4.5)

50
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as in Theorem 2.1.1, then ω(t) = ω0 +
√
−1∂∂̄ϕ(t) solves the Chern-Ricci flow

(4.1). This gives the following corollary to Theorem 2.1.1:

Corollary 4.1.1. If cBC1 (M) = 0, then for any Hermitian metric ω0, there exists

a solution ω(t) to the Chern-Ricci flow (4.1) for all time and the metrics ω(t)

converge smoothly as t→∞ to a Hermitian metric ω∞ with Ric(ωinfty) = 0.

In general, the Chern-Ricci flow is more complicated if the first Bott-Chern

class is nonzero. In this case studied by Tosatti and Weinkove [77], we replace g0

in the Monge-Ampère equation by a smoothly varying family of metrics g̃t and also

modify F . They prove a number of interesting results on the Chern-Ricci flow.

First, they show that the Chern-Ricci flow has a unique solution on a maximal

time interval [0, T ), where the higher order estimates of chapter 2 are used in this

proof. Additionally, if we define

αt = ω0 − tRic(ω0) (4.6)

then

T = sup{t ≥ 0|∃ψ ∈ C∞(M), αt +
√
−1∂∂̄ψ > 0}. (4.7)

This is analogous to the result on the maximal time interval for the Kähler-Ricci

flow of Tian-Zhang [72]. In the case of a complex surface, Tosatti and Weinkove

provide several interesting geometric results for the Chern-Ricci flow:

Theorem 4.1.2. (Tosatti-Weinkove) Let M be a compact complex surface, ω0 a

∂∂̄-closed Hermitian metric. Then the Chern-Ricci flow (4.1) exists until either

the volume of M goes to zero, or the volume of a curve of negative self-intersection

goes to zero.

Theorem 4.1.3. (Tosatti-Weinkove) Let M be a compact complex surface, ω0 a

∂∂̄-closed Hermitian metric, and let [0, T ) be the maximual existence time of the

Chern-Ricci flow (4.1). Then

(a) If T =∞, then M is minimal

(b) If T <∞ and Vol(M,ω(t))→ 0 as t→ T−, then M is either birational to a

ruled surface or it is a surface of class VII (and in this case it cannot be an

Inoue surface)
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(c) If T < ∞ and Vol(M,ω(t)) stays positive as t → T−, then M contains

(−1)-curves.

Furthermore, if M is minimal than T = ∞ unless M is CP2, a ruled surface, a

Hopf surface or a surface of class VII with b2 > 0, in which cases (b) holds.

Moreoever, they conjecture that the Chern-Ricci flow on ∂∂̄-closed metrics

behaves like the Kähler-Ricci flow on Kähler surfaces and examine the flow on

comlex manifolds with negative first Chern class and also on Hopf manifolds.

Theorem 2.1.1 and [77] create several potential products in complex geoemtry.

One can construct examples of non-Kähler solutions to the Chern-Ricci flow and

also continue building up the theory of the Chern-Ricci flow as a Hermitian ana-

logue of the Kähler-Ricci flow.

4.2 The Minimal Model Program

As mentioned in the introduction to Chapter 2, there has been a lot of progress

in viewing the Kähler-Ricci flow as an analytic minimal model program with many

questions still unanswered. In the case of collapsing in infinite time, Theorem 3.1.1

provides a start in showing that the fibers collapse smoothly along the Kähler-Ricci

flow. The author plans to extend these convergence results to more general settings,

for example when the canonical class of the base is big and nef. Additionally, one

can examine the case of a holomorphic fibration as considered in [20] or the more

general case considered in [57].

In the case of finite time collapsing, for example on a Mori fiber space (an

algebraic fibration f : X → B where the generic fibers are Fano), less is known

about the smoothness of convergence. On a projective bundle, Song-Székelyhidi-

Weinkove showed that if the initial metric satisfies the condition [ω0]− Tc1(X) =

[π∗ωB] for some Kähler metric ωB on B, then the Pn fibers collapse in finite time un-

der the Kähler-Ricci flow [55]. Moreover, they showed that there is a subsequence

in time {ti} so that (X,ω(ti)) converges to (B, dB) in the Gromov-Hausdorff sense.

Fong improved the rate of collapse under an assumption on the Ricci curvature

[19].
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Perelman has shown that if ω0 represents the first Chern class and the fibers

are Fano (as in a Mori fiber space), the scalar curvature and diameter remain

bounded along the normalized Kähler-Ricci flow [42, 52]. Considering the unnor-

malized Kähler-Ricci flow, this shows that the flow contracts to a point in the

Gromov-Hausdorff sense. Because of this, Perelman’s techniques may be useful in

establishing smooth convegence for the flow.
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