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Abstract 

Past efforts to identify areas having higher than average indoor radon concentrations by 
examining the statistical relationship between local mean concentrations and physical pa­
rameters such as the soil radium concentration' have been hampered by the noise in local 
means caused by the small number of homes monitored in some or most areas, In the 
present paper, indoor radon data from a survey in Minnesota are analyzed in such a way as 
to minimize the effect of finite sample size within counties, in order to determine the true 
county-to-county variation of indoor radon concentrations in the state and the extent to 
which this variation is explained by the variation in surficial radium concentration among 
counties, The analysis uses hierarchical modeling, in which some parameters of interest 
(such as county geometric mean (GM) radon concentrations) are assumed to be drawn 
from a single population, for which the distributional parameters are estimated from the 
data. Extensions of this technique, known as a random effects regression and mixed effects 
regression, are used to determine the relationship between predictive variables and indoor 
radon concentrations; the results are ,used to refine the predictions of each county's radon 
levels, resulting in a great decrease in uncertainty. The true county-to-county variation of 
GM radon levels is found to be substantially less than the county-to-county variation of the 
observed GMs, much of which is due to the small sample size in each county. The variation 
in the logarithm of surficial radium content is shown to explain approximately 80% of the 
variation of the logarithm of GM radon concentration among counties. The influences of 
housing and measurement factors, such as whether the monitored home has a basement 
and whether the measurement was made in a basement, are also discussed. This approach 
offers a self-consistent statistical method for predicting the mean values of indoor radon 
concentrations or other geographically distributed environmental parameters. 





Introduction 

The ability to characterize the distribution of indoor radon concentrations within relatively 
small areas (such as counties) would greatly increase the efficiency of programs to identify 
individual homes having radon concentrations much greater than the norm. Examination 
of early data from the United States demonstrated substantial variability of concentration 
distributions from one area to another [Nero et al. 1986]. Later analysis suggested that most 
of the U.S. data are consistent with a picture wherein the overall U.S. distribution of indoor 
radon concentrations is a mixture of subsidiary local distributions that are approximately 
lognormal [Nero et al. 1990]. Within the U.S., the variation in the geometric means (GMs) 
among county-sized areas is generally much greater than the variation of geometric standard 
deviations (GSDs), so that most high-radon homes are located in areas with relatively high 
GMs. Identifying such areas is thus a useful step towards focusing efforts to locate individual 
homes with indoor radon levels much higher than average. 

In 1987-88, the Minnesota Department of Health conducted a radon survey as part 
of U.S. Environmental Protection Agency's State/EPA Residential Radon Survey (SRRS) 
program [Tate et al. 1988, White et al. 1992, Alexander et al. 1994]. The results indicate 
that indoor radon levels in Minnesota tend to be higher than is typical in the U.S., and that 
there is significant variation of radon concentrations among the counties in the state. Earlier 
analysis [Nero et al. 1994] using ordinary regression techniques indicated that much of the 
variation in county GM indoor radon concentration could be predicted from soil radium 
data extracted from the National Uranium Resource Evaluation (NURE). That analysis, 
as well as accurate prediction of individual county GMs, was hampered by the statistical 
noise due to small sample sizes for most counties. 

The present paper develops a more complete statistical approach, again using the SRRS 
survey data from Minnesota as a demonstration. The analysis is performed in several parts, 
with the goal of introducing the use of random effects regressions as a way of determining 
the underlying true distribution of county radon concentrations by removing (or at least 
minimizing) effects of finite sample size. 

The Minnesota data include measurements made in a stratified random sample of 919 
owner-occupied ground-contact homes in Minnesota, performed with a "screening" protocol: 
a two- to four-day, winter charcoal-canister measurement was taken, normally in the lowest 
level of each home. In addition to the measured radon concentration, data on each home 
include: the county in which the home sits, whether or not the home has a basement, 
whether the home was "single-family" (as opposed to a duplex, condominium, etc.), what 
room the measurement was made in (family room, dining room, etc), and on what floor of 
the home the measurement was made. The survey was conducted primarily with the goal 
of determining the overall screening radon distribution in the state. These data can also be 
used to investigate methodologies for predicting the radon distributions for smaller areas, 
such as counties, in order to locate particularly high-radon areas. We use the screening 
data because they are available and can be expected to exhibit roughly the same spatial 
distribution as would data from long-term monitoring in living areas. Locating areas that 
have generally high long-term living-area radon concentrations would require long-term 
measurement data, either to supplant or to normalize the screening data. 

A population-based stratification scheme was used to choose the number of participants 
per county. Adjustments were made to increase the sampling rate of expected high-radon 
counties and of low-population counties [Wirth 1992], but the distribution of measurements 

1 



by county is extremely uneven: some counties had over 100 measurements, while other 
counties had few or none at all. Thus any attempt to use the data to determine parameters 
describing county radon concentrations-such as the geometric mean radon concentration 
for each county-must contend with the effects of finite sample size. The "noise" due to 
finite sample size also confounds analysis to find the relationship between county radon 
concentrations and physical factors such as geologic or soil information. 

In this paper, we use the survey data to answer several questions: 

1. What is the best estimate and uncertainty of each county's true geometric mean of 
radon screening measurements? By "true GM", we mean the GM that would have 
been obtained if every eligible home in the county had been measured with the survey's 
protocol, and if measurement error due to background subtraction (discussed below) 
were eliminated. 

2. How much of the county-to-county variation can be explained by the variation in 
surficial radium concentration, as indicated by the uranium data from the National 
Uranium Resouce Evaluation? 

3. Some of the observed variation between county radon concentrations is probably due 
to differences in known house construction parameters and differences in measurement 
procedures (such as whether the home has a basement, and whether the measurement 
was made in a basement). How can we discover the county-to-county variation that 
remains when these effects are removed? 

We use regression techniques known as "random effects regression" and "mixed effects 
regression" to answer these questions. Although such techniques have been used in other 
fields for at least 15 years, we are not aware of their previous use in characterizing radon 
distributions or other environmental parameters. The procedures applied here are partic­
ularly useful when attempting to estimate parameters (such as county geometric means) 
based on sparse data. 

A complete discussion of the mathematical details of hierarchical models and random 
effects regression is beyond the scope of this paper. Discussions of these techniques can 
be found in several of the references [Lindley et al. 1972, Rubin 1980, Bryk et al. 1992, 
Gelman et al. 1995]. Since these methods have not yet become as ubiquitous as more fa­
miliar tools such as conventional regressions, we discuss them l;>riefly here in the context of 
the current problem, rather than simply presenting the results. 

The Minnesota Screening Data. 

Figure 1 shows a histogram of the radon concentrations reported from the state radon 
survey [Wirth 1992]' weighted according to the sampling weights reported in the data set. A 
lognormal curve with GM = 132 Bqjm3 (3.6 pCijL) and GSD= 2.18 has been superimposed 
on the data. The observed radon distribution in the state as a whole is nearly consistent 
with a lognormal distribution. The important exception for our purposes is the presence of 
a few too many extremely low radon concentrations (affecting the lowest bin in the linear 
plot of Fig. 1), which for example skews the calculation of geometric mean concentrations. 
Indeed, some of the reported radon concentrations are zero; in other state surveys, using 
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similar protocols, negative radon concentrations have been reported. The distribution above 
about 40 Bq/m3appears almost perfectly lognormal. 

The excess of low radon concentration measurements is consistent with being due to sta­
tistical errors in background subtraction: in determining radon levels, an expected number 
of background counts is subtracted from the observed number of total radioactive decays. 
The number of radioactive decays exceeding the assumed background count is ascribed to 
radon. Since the actual number of background counts varies statistically around the ex­
pected number, the number of counts attributed to radon (and thus the calculated radon 
concentration) can differ from the actual number by a small amount (typically equivalent to 
a few Bq/m3). This effect is miniscule for moderate or high radon concentrations, but can 
have a large relative effect when the actual radon concentration is small; indeed, as noted, 
it can lead to negative reported concentrations. 

When the reported value is extremely small, it is almost certain that the true value is 
higher than the reported value; however, the exact magnitude of this effect is unknown. 
We cannot simply discard the problematic points, since the low reported values really do 
indicate the presence of low-radon homes, although the exact values of the measurements are 
incorrect. If we were interested only in estimating distribution parameters for aggregated 
data, such as the geometric mean and geometric standard deviation, we could use a censored 
maximum likelihood estimate [Harter et al. 1966] with a censoring threshold set high enough 
to exclude the problematic points-that is, at 5 to 10 Bq/m3. However, in the present paper 
we wish to perform analyses at the level of individual homes rather than county aggregates, 
so distribution estimates· are not sufficient. 

Since incorrect extremely low values can cause problems, especially when logarithmically 
transformed, we have adjusted all of the low values upwards slightly, with the extremely 
low values brought up the most and the values above 50 Bq/m3essentially unaffected. 

The empirical adjustment we used to convert the reported radon concentration CR~as 
to a new value CR;w was 

cmeas 
cnew = Rn + 

Rn 2 
(cmeas )2 

Rn +D2 
4 

(1) 

with D = 9.25 Bq/m3(0.25 pCi/L), which was found to make the entire distribution appear 
nearly lognormal even for low radon levels. We do not claim that this equation has any 
underlying physical validity-it is merely a convenient one-parameter correction that adjusts 
very low values upwards very slightly in absolute terms, while leaving higher values virtually 
unchanged: a measured value of 0.00 Bq/m3is converted to 9.25 Bq/m3, while a measured 
value of 20 Bq/m3is converted to 23.6 Bq/m3. Only a few measurements are affected 
substantially: of the 919 reported values, only 13 are below 20 Bq/m3. In this paper 
all of our discussion of observed radon concentrations refers to the adjusted values CR;w , 
hereafter referred to simply as CRn , rather than the measured values. The results presented 
here are quite insensitive to the exact value of D, as long as it is above about 5 Bq/m3. 
We note that minimum values of 5 to 10 Bq/m3are roughly consistent with observations of 
mean outdoor concentrations [Gesell 1983], and so are reasonable lower bounds for actual 
indoor radon concentrations. In addition, county GMs calculated with the adjusted values 
of CRn are in good agreement with the censored maximum likelihood estimates for the 
counties. 

In addition to the statewide distribution of radon measurements being nearly lognormal 
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(except for the very low radon measurements, as discussed above), the observed distribu­
tions within the individual well-sampled counties are also approximately lognormal. Also, 
it has previously been noted that radon distributions in county-sized areas tend to be ap­
proximately lognormally distributed [Nero et al. 1986, Dudney et al. 1992]. For the present 
paper, therefore, we have chosen to model the within-county distribution of radon mea­
surements as lognormal. Lognormal distributions do not always fit the extreme high tail 
of.radon measurements perfectly [Cohen 1985; White et al. 1992, Janssen et al. 1992], so 
using the parameter estimates from the present paper to estimate the fraction of homes in 
a given county that would have extremely high screening measurements could conceivably 
lead to substantially incorrect inference. However, if such problems occur at all, they do 
so only for the very high tail of radon measurements, so that lognormal parameters do 
adequately summarize the distribution of the vast majority of homes [White et al. 1992, 
Janssen et al. 1992]. 

In order to characterize a lognormal distribution, both the GM of the distribution and 
the geometric standard deviation l (GSD) must be known. In Minnesota, all of the counties 
with more than 20 observations have observed GSDs between 1.8 and 2.35. The data 
as a whole are nearly consistent with the hypothesis that all of the counties have the 
same true GSD (equal to about 2.1). In this paper, we make the simplifying assumption 
that the true GSD for homes with a given set of explanatory variables is the same for all 
counties. In the following section, this is equivalent to the assumption that all counties 
have the same true GSD. In later sections, the assumption is modified to include different 
housing and measurement characteristics, but we still assume that the GSD conditional 
on those characteristics is the same for all counties. The predictions for the county GMs, 
the parameter that interests us most, are not strongly dependent on the true values of the 
GSDs. Since it does appear that the true county GMs are all close to one another, slight 
variations of the GSD among counties will have only minor influence on the predicted GMs. 

Because the radon measurements within each county appear to be approximately lognor­
mally distributed, it is often convenient to perform calculations with the natural logarithm 
of the radon measurement, eRn , rather than with the observed value itself. Although we 
often transform to log space to perform the calculations, we will usually report results in 
untransformed rather than log space. 

Calculation of Posterior Estimates for the County G Ms. 

For simplicity, in this section we ignore the explanatory variables related to soil radium 
concentration and to housing type, and discuss only the county geometric mean radon 
concentrations; use of the explanatory variables will be discussed in the next section. 

We wish to use the observed county GMs to try to predict the true county GMs (of 
"screening" radon concentrations). One simple and traditional approach is to use the ob­
served GM as a direct prediction of the true GM (that is, to take GMpred = GMobs), but 
this approach has at least one serious drawback: it leads to a distribution of predicted 
county GMs that is far broader than the true distribution is likely to be. The distribution 
of observed GMs is almost certain to be much wider than the distribution of true GMs, 
because of the effect of finite sample size----given the small number of observations in most 

IThe logarithm of the geometric standard deviation of a set of measurements is equal to the standard 
deviation of the logarithms of the measurements. 

4 



counties, some high-radon counties will happen to yield observed GMs even higher than 
their true GMs, and some low-radon counties will happen to yield GMs even lower than 
their true GMs. Imagine, for example, the effect of finite sample size on a group of counties 
with exactly the same true GM: the measured GMs will be spread about the true GM, with 
the degree of spread depending on the number of observations in each county. 

All of our questions about the true county GMs and the overall distribution of county 
GMs would be easily answered if a large amount of data were available for each county. In 
the present case, however, only a few of the counties are so heavily sampled that we already 
have a precise estimate of the true GM of radon concentrations in the county: about twenty 
observations are needed to determine a county GM with a standard error of twenty percent, 
while the median number of observations per county in Minnesota is only five. Much of 
the variation in observed county radon levels is certainly due to the effects of the small 
sample size in most counties. For example, consider Lac Qui Parle County: this county 
has only two observations, and the GM of the observations is about 500 Bq/m3. This 
GM is considerably higher than the GMs of well-sampled counties (e.g. those with more 
than fifteen observations), all of which lie between 75 and 150 Bq/m3. It seems likely that 
the true GM of Lac Qui Parle County is considerably lower than 500 Bq/m3, and that the 
monitored homes from that county simply happened to have unusually high radon levels (at 
least over the days they were tested). How, then, can we obtain statistically well-founded 
predictions of the actual county GMs that adjust for the variation due to finite sample size? 

A reasonable answer to this question is provided by a hierarchical model: we assume 
the true county GMs are drawn from some distribution of "possible" county GMs, and that 
the param~ters of this distribution can be estimated from the data. For instance, suppose 
we knew the true GM for 86 counties, randomly selected from the 87 counties in Min­
nesota. Furthermore, suppose these 86 values were found to be approximately lognormally 
distributed with a geometric mean of 145 Bq/m3and a geometric standard deviation of 1.4. 
Then, even if we had p.o observations from the missing county, it would be reasonable to 
guess that its true GM is likely to fall between 75 Bq/m3and 285 Bq/m3(two GSDs below 
and above the GM of the county GMs, respectively) with about 95% certainty. 

In the hypothetical situation described here, we have substantial knowledge of the range 
in which the missing county's true GM is likely to fall even though we have no measurements 
at all from that county. This conclusion relies on the plausible assumption that the GM of 
the missing county is drawn from the same distribution as the GMs of the known counties; 
we would certainly be surprised if the GM of the missing county were later found to be, say, 
800 Bq/m30r 1 Bq/m3. In conventional statistical notation, with B representing the true 
value of the logarithm of the county's geometric mean radon concentration, such knowledge 
of the distribution from which the missing county's 10g(GM) is drawn would be written: 

(2) 

indicating that the probability of obtaining a particular value of B is normally distributed 
about J.L [equal to log(145 Bq/m3) in the current example] with standard deviation (J [equal 
to log(1.4) in the current example]. In such a case, in which the distribution from which the 
missing county's GM is drawn is known, p(B) is known as an informative prior distribution.2 

2The case of u 2 
-t 00, corresponding to a distribution of county GMs that has infinite variance, would 

be a nonin/ormative prior distribution, indicating total ignorance of the likely range containing the missing 
county's true log(GM). 
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We wish to avoid the misconception that the assumption of a distribution from which 
parameters are drawn is equivalent to the assumption that the variation between counties 
is "random" rather than having some physical explanation-in fact all it means is that 
explanatory variables useful to predict the exact values are unknown for purposes of the 
present analysis. 

If we are now given some measurements from the missing county (in the form of a list y), 
Bayes's theorem [Bayes 1763] can be applied to determine a new estimate of the county's 

. true GM. Bayes's theorem states that 

(BI ) = p( B)p(Yle) 
P Y p(y). (3) 

The notation p( ely) reads "the probability of B given y "; in the current context it represents 
the probability that "the true mean is B", given "the set of observations y." In order to apply 
this equation, we must have some way of calculating p(yIB), known as the likelihood. The 
likelihood p(yIB) is the probability that the values y would have been observed, if the true 
value of log(GM) is B. In order to evaluate this likelihood, we require a statistical model for 
the distribution of observations within a county. The value of e that maximizes Equation 3 
can be thought of as a "best guess" at the true value of B. (Note that the denominator of 
Eq. 3 is independent of B; in practice we need not evaluate it, since it merely provides a 
normalization factor.) Generally, we are not interested only in the best guess but also in the 
uncertainty-the range of values of B that are reasonably consistent with the observations 
y and with our prior knowledge of the possible values of B. 

In general, and in the case of the current Minnesota data set, we do not have direct 
knowledge of the true distribution of county GMs. There are only eight Minnesota counties 
for which more than twenty observations were made. Since the distribution within each 
county is approximately lognormal with a GSD of about 2.1, twenty observations are only 
enough to characterize the GM of a county within about 20%. For most Minnesota counties, 
then, the true GM is quite uncertain. 

The observed county GMs, however, are approximately lognotmally distributed, and 
the distribution of measurements within each county is also approximately lognormal. We 
therefore select the following statistical model for the distribution of radon measurements: 

1. The true county GMs are lognormally distributed: the values of log(GM) are drawn 
from a normal distribution with unknown mean f-l and unknown variance 0-2 , as in 
Eq.2. 

2. The observations within a county are also lognormally distributed: the logarithms of 
the observations are drawn from a normal distribution with a mean equal to the true 
value of log( G M) and unknown variance ",2. For the purposes of the present analysis, 
",2 is assumed to be the same for all counties. This is equivalent to the assumption 
that all of the counties have the same GSD. 

The true value of log(GM) for each county is the main parameter of interest. With the 
lognormality assumptions mentioned above, the application of Bayes's theorem (Eq. 3) 
yields a particularly simple result for the prediction of log(GM) for county i: the most 
probable value of the true log(GM) is given by a weighted average between the observed 
value of log( GM) for the county and the 'grand mean' f-l of the distribution from which all of 
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the county log(GM) values are drawn, where the relative weights depend upon the number 
of observations ni in the county, and the variance estimates a 2 and ",2; 

(4) 

Equation 4 provides a point estimate of the true GM, but this estimate is uncertain: the 
probability distribution of the true value about this estimate, given f.L, a2, and nd ",2, is 
described by: 

(5) 

where 
(6) 

Mathematically it's as though we already had some number (equal to ",2 j ( 2) of observations 
of log(CRn) in each county, with the mean of the observations being f.L, before any actual 
observations were made. 

In order to actually perform this adjustment, we need values for f.L, a, and "'. These 
parameters can be estimated from the data. For example, a point estimate for f.L is provided 
by the mean of the observed county log(GM)s, yielding a value f.L ~ 4.96 (in units of 
log(Bqjm3 )). Rough point estimates for the true within-county variance ",2 ~ 0.54 and the 
true between-county variance (J2 ~ 0.11 can be determined from an analysis of variance. In 
untransformed space, these correspond to a within-county GSD of exp( VO.54) = 2.1, and 
a distribution of true county GMs that has a GM of exp(f.L) = 143 Bqjm3and a GSD of 
exp(.Jif.IT) = 1.4. Obtaining point estimates of parameters from the data themselves, and 
then using those estimates through Bayes's theorem to obtain estimates for quantities of 
interest, is sometimes referred to as an "empirical Bayes" method. 

Although use of the point estimates for the model parameters would lead to reasonable 
estimates of the county GMs, the resulting uncertainty estimates would be too small, since 
they would not include the uncertainties in the model parameters themselves. For this 
reason, we do not restrict ourselves to point estimates of the values of the parameters; 
rather, we estimate the distribution of possible (or likely) values for the parameters, then 
draw randomly from that distribution and use the resulting parameters in Eq. 5 to obtain 
an estimate for each county's true log ( GM). Details of this so-called "full Bayes" procedure 
can be found in Gelman et al. 1995. The sampling procedure is repeated many times (1000 
in the current case), with each set of parameters yielding an estimate for each county's 
log(GM); the resulting distribution of 1000 GM estimates for each county is spread over a 
range due to both the uncertainty in the true values of the parameters in the hierarchical 
model and the uncertainty due to the finite number of measurements (which would remain 
even if we knew the exact parameters of the distribution from which the county GMs are 
drawn). We select the mean of the 1000 estimates for each county as our "best guess", or 
posterior estimate, of the county's GM. The procedure described here can be carried out 
directly, or as a special case of a random effects regression, described in the next section. 

Results for counties with more than five observations are shown in Figure 2, in which the 
posterior estimates of county GM and uncertainty (an error bar containing the middle 50% of 
the posterior estimates for each county's GM when the sampling procedure described above 
is performed 1000 times) are plotted against the GM of the measurements in the county. 
The points are plotted as numbers, with the number being the number of observations in the 
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county. The distribution of posterior estimates of the GMs (shown on the abscissa) is much 
narrower than is the distribution of observed county GMs (on the ordinate), as expected. 
The mean estimate of (]"2 is 0.097, and the mean estimate of /\,2 is 0.570, corresponding to 
a county GSD of 2.13. The mean estimate of f.l is 4.95. 

Lac Qui Parle County, with only two observations yielding an observed GM of 498 
Bq/m3, has a mean posterior estimate of 196 Bq/m3, although the true value may be as 
low as 122 Bq/m30r as high as 303 Bq/m3(the 5 and 95 percent posterior interval limits, 
respectively). The results appear reasonable, although it may be surprising how large the 
effect of finite sample size is estimated to be. 

Interestingly, although Lac Qui Parle County had the highest observed GM (498 Bq/m3), 
it does not have the highest "best guess" GM, losing out to Blue Earth County, which had 
an observed GM of 250 Bq/m3and has a posterior estimate of 210 Bq/m3. This is a 
consequence of the fact that Blue Earth County had many more observations than Lac Qui 
Parle County (14 as opposed to 2). Simply put, the distribution of observed county GMs 
suggests that most true county GMs fall in the range between 75 to 150 Bq/m3, and there 
is more evidence that Blue Earth County falls beyond that range than there is evidence 
that Lac Qui Parle does so. 

The predictions from the model seem reasonable, but that alone is not, of course, suffi­
cient to give us confidence in them. Several validation checks have been carried out. One 
type of check concerns the degree of agreement between the model predictions and the ob­
servations. For example, given the posterior estimates of the county GMs, how often would 
we expect to see an observed GM as high as 500 Bq/m3? To answer this question, we start 
with the posterior estimates for the county GMs, then simulate the sampling procedure (by 
selecting simulated "observations" from each county's assumed distribution) and examine 
the resulting "observations" to see how they compare statistically with the actual observa­
tions. For example, if the mean posterior estimate for each county is assumed to be the true 
value of the county's GM, repeated simulation of the sampling procedure yields at least one 
county with an "observed" county GM higher than 500 Bq/m3about 30% of the time, so 
such a high observation clearly does not violate the conclusions based on the modeL3 In 
other words, even if the mean posterior estimates of the GMs (the highest of which is 210 
Bq/m3) are the true GMs, with the given distribution of sample sizes in each county there 
is about a 30% chance of getting an observed GM over 500 Bq/m3. 

Another type of validation check that we performed was to create a validation data 
set by discarding a random 90% of the data from the four counties with more than 50 
observations. Complete data from all of the other counties, plus the reduced data from 
those four counties, were then used to fit the model again. The predictions for those four 
counties were then compared to the true GMs as known from the complete data for those 
counties. This sampling/predicting procedure was carried out many times. The model 
validated well, in the sense that the true values for the well-sampled counties fell within one 
standard error of the estimate in about 68% of the tests, and within two standard errors in 
about 95% of the tests. 

Several other checks of model fit were made as well; we did not find any significant 
discrepancies between the model and the data. We conducted similar validation checks. on 

3This example was given to illustrate the basic idea of model checking, but in fact more sophisticated 
checks are appropriate; for instance, rather than assuming that the true GMs are given by the mean of the 
posterior estimates, one should simulate the testing procedure for each set of posterior estimates, to include 
the full range of likely values for each county's true GM. 
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the models discussed below. 
Although the statistical model discussed above does validate well and does appear to 

provide better estimates for each county's GM, the estimates are still fairly uncertain, 
especially for the many poorly-sampled counties. In the next section, we discuss the use of 
predictive variables to improve the predictions for the county GMs. 

Regression prediction of the county G Ms. 

It has been noted previously [Nero et al. 1994] that much of the county-to-county varia­
tion in Minnesota's indoor radon levels (as measured by the GM) can be explained by 
variation in surficial radium content as indicated by the aerometric survey conducted as 
part of the National Uranium Resource Evaluation (NURE). The NURE survey generated 
estimates of surficial uranium content along flight lines spaced every 6 to 12 miles across 
the U.S. These data were processed using various extrapolation and smoothing schemes 
[Duval et al. 1989] to produce a nationwide map of surface uranium ·concentration, which 
can be used to estimate the concentration of radium, which is a uranium decay product. 
Previous work [Moed et al. 1985, Revzan et al. 1988, Gundersen et al. 1991, Jackson 1992, 
Nero et al. 1994] has used aerial radiometric survey data to predict distributions of radon 
concentration measurements or to locate areas with high radon "potential". For purposes 
of the present research, we have aggregated the NURE data of Duval et al. 1989 to generate 
average surface uranium· concentration (expressed in equivalent ppm of uranium) by county; 
in Minnesota, the resulting NURE values range from 0.14 ppm to 0.57 ppm, with a median 
of 0.39 ppm. 

Figure 3 plots the GM of the radon concentration measurements in each county versus 
the predicted GM from a conventional weighted linear regression of the logarithm of each 
county's GM on the logarithm of the county-averaged NURE value; conventional error bars 
(1 standard error) are plotted for the observed GMs, based on the approximation that the 
true GSD of each county is 2.1. Only counties with more than five observations are shown, 
to avoid clutter. Note that over 60% of the error bars cross the line indicating agreement 
between prediction and reality-thus the data appear to be nearly (but not quite) consistent 
with the hypothesis that NURE is a perfect predictor of the GM of county radon levels, 
with the residuals being due to the finite sample size in each county. For the log-space 
conventional linear regression the value of R2, a standard measure of model fit, is 0.58 
for the counties shown here. However, this figure substantially underestimates the real 
predictive ability of NURE in this case, since much of the variation between predicted and 
observed GMs is certainly due to small-sample noise rather than differences between the 
true GMs and their predicted values. 

In this section, we discuss a procedure to predict the true county GM using both the 
observations and the fitted results for the county. This procedure provides a method of using 
both observational data and explanatory variables together in a statistically consistent way 
in order to predict each county's true GM. 

The statistical model we wish to apply is defined as follows: 

1. The true values oflog(GM) for each county are drawn from a normal distribution with 
a mean equal to the predicted value of 10g(GM) based on a regression, with unknown 
variance (]"2, so that for county i 

(7) 
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where p(6d = N(O, a 2
); or equivalently, with Oi = log(GMi), 

(8) 

The parameter a2 does not have the same value as the a2 in the previous section 
unless .8NURE == 0, in which case the model reduces to the model in the previous 
section. 

2. We number the 919 radon measurements with the index {j}, and assume that the 
logarithm of observation j within county i is drawn from a normal distribution with a 
mean equal to the county's true 10g(GM), and with an unknown variance 11,2 assumed 
the same for all counties, so that 

(9) 

The parameters .80, .8NURE, a, and 11, are again to be estimated from the data. A large 
value of a2 would indicate that NURE is a poor predictor of true county GMs, while a 
small value of a2 would indicate that the true county GMs are closely grouped around their 
NURE predictions. 

A simple but imperfect estimate of a2 can be obtained as follows: perform a regression 
of observed 10g(GM) on 10g(NURE), then apply the hierarchical model described in the 
previous section to the residuals. This procedure is correct in spirit and provides a quick 
estimate of the true distribution of the residuals. It has the drawback, however, that it is 
slightly over-optimistic, in the sense that it yields confidence intervals that are too narrow, 
since it does not include the uncertainty in the regression coefficients themselves. For the 
current data set, there" are enough different counties that the regression coefficients are fairly 
well determined, so the overcertainty caused by using only the best-fit regression coefficients 
is fairly small. However, rather than present results of such an incomplete analysis, we will 
carry out a procedure, called "random effects regression", that takes into account all sources 
of uncertainty in the model parameters. 

Before embarking on a description of random effects regressions, we first discuss the role 
of "dummy variables" in conventional linear regressions. In statistical regression, a dummy 
variable is used to indicate the presence or absence of a particular characteristic, or that 
the data are included or excluded from a particular class. For example, in the present case 
we create a dummy variable for each county in Minnesota (85 in all, if we include only the 
counties for which there is at least one measurement). Each of the 919 radon measurements 
CRn is therefore associated with 85 dummy explanatory variables, all but one of which takes 
the value of zero; the value unity is assigned to the variable that denotes the county in which 
the measurement was made. 

A conventional linear regression of the values of 10g(CRn) on these 85 dummy ex­
planatory variables alone yields 85 regression coefficients, each of which is the mean of the 
observations of 10g(CRn) in the indicated county. The hierarchical model introduced in 
section 3 can be reproduced by applying Bayes's theorem with the assumption that these 
regression coefficients are measurements with error of underlying "true" parameters, which 
are drawn from a normal distribution. 

The hierarchical regression model introduced in the present section can be applied also, 
and the uncertainties properly estimated, by including another explanatory variable, in 
addition to the county dummy variables; for each of the 919 observations this variable takes 
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the value of NURE averaged over the county that contains the observation. With NURE 
included as an explanatory variable, the values of {8} from Eq. 7, indicate the "true" 
residuals from the NURE regression (i.e. the difference between the true value of log(GMj) 
and the NURE predictions). 

In general, the difference between a county's true log(GM) and the regression prediction 
for the county is referred to the "county effect". Regression coefficients (such as county 
effects) that are assumed to be drawn from a common distribution are usually referred to 
as "random effects"; hence the name "random effects regression." When a model includes 
both conventional regression variables ("fixed effects") and random effects, it is called a 
"mixed effects model". All models discussed hereafter are mixed effects models. As before, 
the assumption that random effects are drawn from a common distribution in no way implies 
that there is no reason that some of the county effects are large while others are small, merely 
that we have no information that allows us to distinguish between them. 

The mathematical details of performing a Bayesian random effects regression (or mixed 
effects regression) are rather involved; the reader is referred to the references for a complete 
discussion [Rubin 1980, Bryk et al. 1992, Zeger et al. 1991, Gelman et al. 1995]. The basic 
ideas, however, are those discussed in the previous section: the conditional distributions 
of the parameters (regression coefficients and variance components) are calculated, and 
parameters are drawn from the calculated distribution. Where appropriate, a hierarchical 
model is assumed (as for the county effects). The procedure is repeated many times in 
order to obtain posterior intervals (conceptually similar to confidence intervals, in that they 
reflect the range in which the true value is likely to fall) on the parameters. 

Using the model described by equations 7 and 9 above, we perform 1000 simulations 
to obtain 1000 estimates for each of the parameters: /30, /3l\'URE, /'1" (J, and each of the 85 
values of 8i. The estimated county effects {8} do double duty: they allow us to predict 
the county GMs, and they also provide a way of measuring the extent to which the other 
explanatory variables allow prediction of indoor radon levels. The extent to which NURE 
is a good predictor of the true county GMs can be gauged from the likely values of (J: if 
(J is small (and thus the county effects are all near zero), then NURE alone is enough to 
predict the GM of radon concentrations in a county from Eq. 7. If (J is large, on the other 
hand, then at least some of the individual county effects are large, and NURE alone is not 
sufficient to obtain a good estimate of the county's true GM. Furthermore, (J can be used 
to define a measure of model fit for the county radon levels that is analogous to R2: as in 
[Bryk et al. 1992], we wish to define an effective R;ff as 

R2 == 1 _ unexp lained. variance oftrue log(GM) values. 
eff . total vanance of true log( G M) values 

(10) 

We do not know either the actual unexplained variance or the total true variance, but 
we do have estimates of each: we obtain estimates of (J2 from random effects regressions 
performed with and without NURE (or other explanatory variables), in both cases including 
the county dummy variables. The best estimate of (J2 when only the county dummy variables 
are included provides us with an estimate of the true total variance of the county GMs, 
while the best estimate of (J2 when both dummy variables and other variables are included 
provides us with an estimate of the unexplained variance. As long as only county-level 
variables are included, the estimate of R;ff obtained this way will behave similarly to the 
conventional measure of R2, in the sense that it will always increase (or remain constant) as 
additional variables are added. However, if the model contains individual-house variables, 
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then the value of R~ff can actually decrease as additional variables are added. An interesting 
and informative example is considered in the next section. 

For the current case, with NURE included as the only explanatory variable, the mean 
posterior estimate of (J2 is 0.019. Combining this with the value of (J2 = 0.097 obtained 
when only the county effects are included, we obtain the an estimated value of R;ff = 0.80; 
our best estimate is that 10g(NURE) explains 80% of the county-to-county variation in 
10g(GM). In terms of determining a county's 10g(GM), knowledge of the county's NURE 
value is "worth" an extra /'1,2/ (J2 ~ 30 observations in each county. 

The ability of NURE to predict county GMs so well appears to be unique to the state of 
Minnesota-in the several other states of the U.S. that we have examined, NURE has lower 
predictive power, with 10g(NURE) typically explaining about 30% to 65% of the variation 
in the logarithm of the county GMs. 

The coefficient of 10g(NURE) in Eq. 7 is estimated to be b = 0.711, with 90% posterior 
bounds of 0.561 and 0.849. Since a coefficient of 10g(NURE) different from unity implies 
(after transforming back from log space) a nonlinear relationship between county soil radium 
concentration and county indoor radon concentration, this result may seem peculiar: at 
least for individual homes, physical models suggest the indoor concentration should be 
approximately proportional to the radium concentration in the surrounding soil. 

Several factors may contribute to a non-linear relationship between county-average 
NURE and the indoor radon concentration measurements. First, the use of county-average 
NURE would be completely appropriate only if homes in each county are uniformly dis­
tributed over the entire area of the county. In fact, in some counties homes are proba­
bly more heavily concentrated in high-radium areas, while in others they're more heavily 
concentrated in low-radium areas, simply by random chance. A consequence of such a 
phenomenon is a decreased coefficient on 10g(NURE), through the regression effect (cf. 
Price 1995 for another consequence of the regression effect in indoor radon studies). Fur­
thermore, the NURE measurements are subject to errors, some of which are related to 
factors such as soil moisture content that are likely to affect indoor radon concentrations 
[Duval et al. 1989, Schumann et al. 1994]. Given these facts, a coefficient different from 
unity in the regression is certainly not a cause for concern. 

Figure 4 shows the result of performing the mixed effects regression; as in Fig. 3, only 
counties with more than 5 observations have been plotted. The posterior predicted GM 
for each county has been plotted with a square, as a function of the prediction based on a 
conventional regression on 10g(NURE); thus, if the posterior prediction and the conventional 
regression prediction agreed perfectly, the square would be plotted on the 45-degree line on 
the figure. The GM of observations in each county has been plotted with a point (the 
same as Figure 3, except that that error bars are not shown). The position of each square 
represents a sort of weighted average between the observed GM and the GM predicted from 
a conventional regression on 10g(NURE), with the relative weighting determined from the 
data. 

For counties with many observations the posterior estimate is always very close to the 
observed GM, while for counties with fewer observations the final estimate can be shifted 
fairly far. Most of the final estimates are very close to the regression line-there is strong 
evidence that NURE explains almost all of the county-to-county variation in radon levels 
in Minnesota. However, as noted previously the distribution within each county is quite 
broad: the best estimate of /'1, is 0.76, corresponding to a GSD of 2.1. 
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Table 1 presents results for each county in Minnesota (including the two counties with 
no observations): the number of observations in the county, the GM of the observations, the 
predicted GM from a conventional linear regression of county 10g(GM) on county 10g(NURE) 
alone, and the posterior estimate and uncertainty (one standard error) of the county's 
true GM, based on the mixed effects regression described above. The 'uncertainty' is an 
approximation, treating the posterior GM estimates as if they were normally distributed. In 
fact, the distribution of posterior estimates for a county is close to lognormal, but since the 
uncertainties are generally small compared to the estimates, the normal approximation is 
fairly good. If more accurate summaries of the uncertainties were desired, posterior intervals 
could be determined directly from the distribution of 1000 posterior estimates from each 
county. 

Figure 5 displays histograms of the distribution of observed and estimated county GMs 
Each county is represented by a number, indicating the number of observations in the county. 
Each number is stacked in the column appropriate to the county GM radon concentration4 • 

Note that all of the counties with observed GMs over 250 Bq/m3have 5 or fewer observa­
tions. The distribution of predicted GMs is much tighter than the distribution of observed 
GMs-there is no convincing evidence that any of the true GMs are as high as 250 Bq/m3 , 

although some county predictions barely include 250 Bq/m3within two standard errors. 
The distribution of true GMs is somewhat broader than the distribution of predicted GMs 
that is shown, since the true GMs are distributed about the predicted values, with stan­
dard errors given in Table 1. As noted previously, 0"2 = 0.097 is the estimated variance of 
the logarithms of the true county GMs, so that the distribution of true county GMs has a 
relatively small GSD, about exp( )0.097) = 1.37. 

Including additional explanatory variables. 

In addition to the measured indoor radon concentration and the county NURE measure­
ment, we have some information on each home in the survey: does the home have a base­
ment, and, if so, was the measurement made in the basement. The presence of a basement 
might be expected to have some mild effect even on first-floor indoor radon measurements, 
and certainly measurements made in basements are expected to be considerably higher than 
measurements made on the first floor. There are two substantive reasons that we wish to 
take account of the basement and floor effects. 

First, we are interested in the magnitude of the coefficients themselves: how much higher 
are measurements made in the basement than those made on the first floor? 

Second, what are the county effects after controlling for the floor effect in the homes 
in each county? For example, do the low-radon counties have lower radon levels merely 
because they have more non-basement homes? 

As an initial attempt to answer these questions, we introduce three individual-home 
explanatory dummy variables. One variable (ry) indicates homes that have basements and 
were monitored in the basement, one (¢) indicates homes that have basements but were 
monitored on the first floor, and one (1/) indicates homes without basements. Most homes-

4It is important to remember what these histograms represent: the "105" in the 120-140 Bq/m3interval 
does not represent a county with 105 observations all of which fell in that interval; the observations from 
that county are spread over a very large range, (from 9.25 Bq/m3 to 888 Bq/m3

, as it happens), with a GM 
that falls in the range 120-140. 
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769 of the 919 homes tested-have a basement and were monitored in the basement. 
The model is defined as follows. For a home j in county i, the probability of obtaining 

a given observation is given by 

Here f3bb is the effect associated with a basement home that is monitored in the base­
ment, f3bl is the effect for a basement home monitored on the first floor, and f3nob is the 
effect for a home without a basement. The county effects {Oi} are assumed to be normally 
distributed, as before. As before, the county effects measure the extent to which the ex­
planatory variables in the linear model fail to explain all of the county-to-county variation in 
radon concentrations. If NURE and the housing dummy variables were sufficient to predict 
the distribution of measured values in homes in different counties, with no remaining evi­
dence of unexplained between-county variation, then the county effects would be near zero. 
Coefficient estimates and variance estimates are presented in Table 2, along with estimates 
from other models discussed below. The coefficient estimates all happen to have standard 
errors of about ±O.1 or so, except for the coefficient associated with the fraction of homes 
that do not have basements (discussed below), which has a standard error of about ±O.3. 

The model including individual-house explanatory variables does not allow direct pre­
diction of the county GMs, since Eq. 11 does not contain only county-level variables. Essen­
tially, we obtain separate estimates for each county for homes in three different categories: 
homes with basements in which the Rn levels were measured in the basement, homes with­
out basements, and homes with basements but in which the monitoring was nevertheless 
performed on the first floor. Use of the results to estimate the true county GMs would 
require knowledge of the distribution of housing types by county. For example, one might 
start (on one extreme) with the approximation that all counties have the same proportion of 
basement and non-basement homes, or (on the other extreme) with the approximation that 
all counties have exactly the observed proportion of basement and non-basement homes. We 
have not attempted to model the distribution of housing types. We perform the individual­
house analysis only to illustrate that the techniques described in this paper can handle both 
individual and county-level data. 

An interesting result of this regression is that the variance of the county effects goes 
up compared with the previous, NURE-only regression. How can this happen? Consider 
Roseau county. The value of NURE averaged over the county, when used in the conventional 
NURE-only regression, predicts the average value of log( CRn ) for homes in the county 
should be about log(126 Bq/m3), in good agreement with the observed value of log(131 
Bq/m3). However, in 5 of the 14 monitored houses in Roseau county, the measurement was 
made on the first floor of a home rather than in a basement. Since first-floor measurements 
are expected (based on the full regression) to be about half as high as basement levels, 
and since 5/14 represents a much larger fraction of non-basement homes than is typical in 
counties in Minnesota, the full regression prediction for the homes in Roseau county is now 
much too low, so the county effect estimate for this county must be made fairly large in 
order to bring the prediction into agreement with the observations. 

The increase of the size of the county effects when additional data are included indicates 
some violation of the model. In this case, it indicates that there is some difference between 
counties with many non-basement homes and those with few non-basement homes- some 
difference that affects radon levels. For example, counties with generally high soil moisture 
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may have fewer basement homes, and the soil moisture may also influence indoor radon 
concentrations (and perhaps the NURE observations as well [Duval et al. 1989]). 

To help resolve this issue, we add another county-level explanatory variable: observed 
fraction of non-basement homes. For all the homes in a county (whether or not they have a 
basement) this variable takes the value of the fraction of survey homes in the county that do 
not have a basement. (We would prefer to use actual fraction of non-basement homes in the 
county, rather than observed fraction, which is subject to significant noise due to the small 
number of observations in most counties. Unfortunately the actual fraction for each county 
is not available.) A sizeable coefficient for this variable would indicate that the fraction of 
non-basement homes is correlated with county radon levels, over and above the correlation 
due to the fact that levels in the measured homes depend upon whether the measurement 
was made in a basement or not. 

Including the county-level non-basement fraction variable does decrease the magnitude 
of the county effects when individual-house basement categories are included (Model 5), 
although the county effects are still slightly smaller in the models that do not include 
individual-house variables. 

Spatial distribution of county effects. 

Thus far, we have not included any spatial information in our analysis. This fact does not 
invalidate any of the analyses discussed above; specifically, the estimates of the county effects 
(and the estimates of cr) are valid even though spatial information has not been included. 
Given these facts, there might seem to be no need to delve into the spatial relationships in 
the data. 

However, there are pitfalls to blindly applying the regression results without regard 
to spatial concerns. For example, suppose we wish to use the NURE-only regression to 
predict the mean radon level in some group of counties. If these counties are selected at 
random across the state, there is no problem with combining the regression predictions for 
the individual counties to predict the geometric mean of the entire group, and the more 
counties that are included in the group, the lower the error in the estimated GM is likely 
to be. If, on the other hand, the counties were all selected from a particular region of the 
state, then the presence of spatial correlations in the county effects would lead to problems: 
our estimated group GM would be overcertain, unless we account for such correlation. 

Also, spatial correlation in the county effects presents an opportunity: if there are 
some areas that are higher or lower in radon than predicted, even after controlling for the 
available explanatory variables, then the locations of these areas might suggest avenues of 
exploration to improve the models. In principle, even if no explanatory variables can be 
found that explain the spatial correlations, the presence of the correlations themselves can 
allow improvements in the accuracy and precision of the models by creating an explicitly 
spatial model. However, such in-depth analysis of the spatial correlations is beyond the 
scope of the present paper. 

Instead, we display the estimated county effects from Model 5 on a map of Minnesota 
(Figure 6). The estimated county effects have been multiplied by 100 to avoid printing 
unnecessary digits. Notice that there do seem to be patterns in the distribution of county 
effects; specifically, most of the large negative county effects occur in counties to the east of 
about 94 degrees longitude, while most of the large positive county effects occur to the west 
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of that line. "Large" is only relative in this context-the county effects with the largest 
magnitudes correspond to modifications from the ordinary regression predictions of only 
about 15%, and most of the effects are much lower. 

To remove the obvious east-west spatial trend, we added a "longitude" variable to the 
model. This county-level variable assigns to each data point the scaled longitude of the 
center of the county in which the house sits; the variable was defined as (longitude - 97) /7, 
which is zero at the western edge of the state, and unity near the eastern edge. The 
resulting models (numbers 6-9 in Table 2) show a barely improved fit, as indicated by the 
decrease in (j. In addition, examination of the spatial distribution of the associated county 
effects reveals no obvious large-scale trends, although non-random clumps of positive or 
negative county effects can still be found. The negative coefficient of the longitude variable 
indicates that county mean radon concentrations tend to be lower in the eastern part of 
the state than would be predicted based on the other explanatory variables alone, and 
higher on the western part of the state. However, the effect is quite small, changing most 
county posterior predicted GMs by a few Bq/m3in spite of the fact that the coefficient of 
the longitude variable is substantial: the effect of the sizeable coefficient of the longitude 
variable is largely offset by the decrease in the coefficient of log(NURE), which is partially 
collinear with longitude. 

In summary, although there is evidence for spatial variation in county GMs that is not 
explained by the included explanatory variables, the effect of such unexplained variation on 
the predictions for the true county G Ms is very small. 

Discussion and Conclusions. 

The models discussed above contain four variables believed to be directly related to indoor 
radon concentration measurements: NURE, which is a measure of surficial radium concen­
tration; and the three housing variables, which are related to the coupling between soil-gas 
radon concentrations and the indoor radon concentration. 

We have included two additional county-level variables in the model: observed fraction 
of non-basement homes, and county longitude. These variables are not directly related to 
indoor concentration measurements; to the extent that they increase the predictive value 
of the models, they must be proxy for other (presently unknown) variables. 

Inclusion of the individual-house basement categories improves the within-county fits, 
as indicated by the decrease in /l" although it does not decrease (j. Although including the 
basement categories does not result in lower county effects, it does lead to a slight decrease 
in the uncertainty of the individual county effect estimates-this is a small effect in most 
counties, but for a few counties the uncertainty (the width of the 68% posterior intervals) 
decreases by 15% or more. 

Which of the models discussed above should be preferred? The answer depends on the 
purpose of the analysis. For purposes of estimating the true county GM's in Minnesota, 
using both the regression fits and the observations in each county (Le., including the county 
effects estimates), models 2 or 6 are most convenient. Model 6 contains longitude, which 
obviously acts as a proxy for some other variable or variables; this fact does not affect its 
value in the prediction of radon levels in Minnesota counties, but does make it harder to 
compare the results of the current study to those from other states in which longitude does 
not act as a useful proxy. 
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Model 2, which contains only NURE as an explanatory variable (and which was used 
to generate the predicted GMs in Table 1), still does an excellent job at fitting the county 
means. The estimated county geometric means are slightly less certain than in model 6, but 
the fact that only one variable is included, and that it has direct physical interpretation, 
may be sufficient reason to prefer this model in some instances. Note, however, that it is 
possible that the NURE measurement is itself partly a proxy for other important variables, 
as illustrated perhaps by the overlap in explanatory power between NURE and soil classes 
observed in previous work [Nero et al. 19941. 

The models that include individual-house explanatory variables are useful for under­
standing the factors that influence radon concentration measurements. All of the models 
agree that basement measurements in a county are about twice as high as first-floor measure­
ments, and that there is no evidence that first-floor measurements are higher in basement 
homes than in non-basement homes in the same county. In addition to the models dis­
cussed in this paper, we also looked for variation of basement effect with latitude, and for a 
difference between measurements in finished and unfinished basements; the magnitudes of 
those effects were found to be very small, and to have no significant effect on the posterior 
estimates for the county GMs. 

We remind the reader that the data used in the present work were short-term basement 
measurements made in winter, and so cannot be used directly to estimate radon risk or 
radon exposure for the living areas of the home. 

Random and mixed effects regression modeling of the Minnesota radon data have proved 
to be extremely useful in obtaining predictions for the true county geometric mean indoor 
screening (i.e., short-term winter) radon concentrations, and in determining the explana­
tory value of NURE and of the housing parameters. The predictions use all of the available 
data-both measurements and explanatory variables-and take proper account of the vary­
ing number of measurements in each county. The techniques discussed in the present work 
allow investigation of the use of various explanatory variables to account for variations 
in radon measurements, while minimizing the effects of finite sample size in the various 
counties. 

The models seem appropriate to the data, and we have confidellce in their basic con­
clusions; specifically, we believe the county GM estimates presented in Table 1, and their 
posterior intervals, to be substantially correct, although admittedly we might wish to widen 
the posterior intervals a bit, just in case of some slight undetected model violation. We 
feel that the posterior estimates of the county GMs should be used rather than taking the 
observed GM as an estimate of the true GM: for example, it seems extremely unlikely that 
Lac Qui Parle county and Murray county have true GMs over 450 Bqjm3 , or even over 300 
Bqjm3 . 

The Bayesian techniques described in the current work promise more efficient use of 
data and more reliable prediction than the techniques currently in use in the radon char­
acterization field, and we recommend their more widespread use. They are particularly 
important in identifying high-radon areas when only sparse monitoring data are available; 
even in cases in which counties are much better sampled than in the present case, attempts 
to predict radon levels at smaller spatial scales (such as zip code areas or census tracts) will 
inevitably need to cope with the effects of small sample sizes. Furthermore, the statistical 
techniques are obviously not specific to radon, and could profitably be applied to a wide 
variety of environmental problems. 
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Table 1: Comparison of GM of observations, GM predicted by ordinary regression on NURE, 
and posterior prediction as discussed in the text. Absolute uncertainties tend to be larger for 
high-radon counties than for low-radon counties. All posterior predictions and uncertainties 
are subject to small errors due to the finite number of simulation runs. 

county number NURE 
fips county of observed GM predicted GM posterior GM 
code name obs. (Bqjm3 ) (Bqjm3 ) (Bqjm3 ) 

1 AITKIN 4 73 90 87± 12 
3 ANOKA 52 88 80 84± 8 
5 BECKER 3 107 135 131 ± 18 
7 BELTRAMI 7 121 96 100 ± 13 
9 BENTON 4 130 133 131 ± 18 
11 BIGSTONE 3 169 193 188 ± 24 
13 BLUEEARTH 14 250 178 194 ± 24 
15 BROWN 4 189 179 179 ± 25 
17 CARLTON 10 96 116 109 ± 12 
19 CARVER 6 144 157 153 ± 18 
21 CASS 5 151 95 100 ± 14 
23 CHIPPEWA 4 210 178 179 ± 24 
25 CHISAGO 6 107 87 88± 12 
27 CLAY 14 222 187 195 ± 23 
29 CLEARWATER 4 100 140 134 ± 18 
31 COOK 2 73 103 100 ± 14 
33 COTTONWOOD 4 97 186 172 ± 24 
35 CROWWING 12 97 94 95± 11 
37 DAKOTA 63 137 144 139 ± 10 
39 DODGE 3 224 177 179 ± 24 
41 DOUGLAS 9 194 164 168 ± 21 
43 FARIBAULT 6 75 181 156 ± 22 
45 FILLMORE 2 105 197 187 ± 25 
47 FREEBORN 9 259 172 185 ± 24 
49 GOODHUE 14 235 169 184 ± 23 
51 GRANT 0 NA 190 191 ± 27 
53 HENNEPIN 105 136 137 136± 9 
55 HOUSTON 6 172 210 201 ± 27 
57 HUBBARD 5 85 110 105 ± 13 
59 ISANTI 3 107 86 87± 12 
61 ITASCA 11 95 92 93 ± 11 
63 JACKSON 5 280 183 191 ± 27 
65 KANABEC 4 128 141 137 ± 19 
67 KANDIYOHI 4 291 158 168 ± 24 
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county number NURE 
fips county of observed GM predicted GM posterior GM 
code name obs. (Bq/m3) (Bq/m3 ) (Bq/m3 ) 

69 KITTS ON 3 115 145 141 ± 18 
71 KOOCHICHING 7 57 78 73 ± 10 
73 LAC QUIPARLE 2 498 183 192 ± 29 
75 LAKE 9 54 90 80± 10 
77 LAKEOFTHEWOODS 4 168 91 95 ± 14 
79 LESUEUR 5 185 168 169 ± 23 
81 LINCOLN 4 314 201 207 ± 28 
83 LYON 8 242 194 201 ± 26 
85 MCLEOD 13 118 162 147 ± 18 
87 MAHNOMEN 1 145 163 162 ± 22 
89 MARSHALL 9 127 148 141 ± 17 
91 MARTIN 7 100 165 150 ± 19 
93 MEEKER 5 126 149 145 ± 19 
95 MILLELACS 2 69 127 119 ± 17 
97 MORRISON 9 109 137 130 ± 15 
99 MOWER 13 183 176 177 ± 21 
101 MURRAY 1 448 195 196 ± 29 
103 NICOLLET 4 323 175 185 ± 26 
105 NOBLES 3 255 195 198 ± 28 
107 NORMAN 3 103 177 166 ± 22 
109 OLMSTED 23 126 174 152 ± 17 
111 OTTERTAIL 8 144 127 129 ± 17 
113 PENNINGTON 3 78 139 130 ± 17 
115 PINE 6 72 131 118 ± 16 
117 PIPESTONE 4 200 206 205 ± 27 
119 POLK 4 146 177 171 ± 23 
121 POPE 2 134 179 175 ± 24 
123 RAMSEY 32 112 110 110 ± 10 
125 REDLAKE 0 NA 146 148 ± 21 
127 REDWOOD 5 234 190 193 ± 26 
129 RENVILLE 3 156 192 186 ± 25 
131 RICE 11 221 168 177 ± 22 
133 ROCK 2 137 213 205 ± 29 
135 ROSEAU 14 131 126 127 ± 14 
137 STLOUIS 116 83 105 88± 6 
139 SCOTT 13 181 153 159 ± 19 
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county number NURE 
fips county of observed GM predicted G M posterior GM 
code name obs. (Bqjm3 ) (Bqjm3 ) (Bqjm3 ) 

141 SHERBURNE 8 111 90 92 ± 13 
143 SIBLEY 4 129 173 166 ± 21 
145 STEARNS 25 148 159 153 ± 15 
147 STEELE 10 181 177 178 ± 20 
149 STEVENS 2 222 205 205 ± 29 
151 SWIFT 4 100 183 170 ± 24 
153 TODD 3 164 142 142 ± 19 
155 TRAVERSE 4 231 209 209 ± 28 
157 WABASHA 7 208 165 170 ± 22 
159 WADENA 5 103 91 92 ± 12 
161 WASECA 4 62 170 151 ± 21 
163 WASHINGTON 46 131 132 131 ± 11 
165 WATONWAN 3 344 167 177 ± 26 
167 WILKIN 1 344 173 175 ± 25 
169 WINONA 13 163 205 190 ± 23 
171 WRIGHT 13 182 138 147 ± 18 
173 YELLOWMEDICINE 2 122 189 181 ± 24 
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Table 2: Coefficient estimates and measures of model fit for models discussed in the text. 
Recall that coefficients apply in transformed (natural log) space. Each row includes all of 
the coefficients estimated for a given model, except that each model also included county 
dummy variables which were treated as random effects (assumed drawn from a normal 
distribution with mean 0 and variance 0"2), as discussed in the text. "Const" refers to the 
constant term in the models (where appropriate), and "long." refers to the scaled longitude 
variable (longitude-90) 17. 

coefficient estimates variances 
county-level individual house 

log of fraction has bmt has bint 
const NURE wlo bmt long. meas bmt meas 1st no bmt fi, 0" 

1 4.86 0.76 0.31 
2 5.73 0.71 0.76 0.14 
3 0.70 5.85 5.22 5.22 0.72 0.17 
4 5.74 0.71 -0.13 0.76 0.14 
5 0.75 0.54 5.87 5.24 5.19 0.72 0.15 
6 5.83 0.67 -0.32 0.76 0.13 
7 5.86 0.63 -0.40 -0.41 0.76 0.13 
8 0.67 0.22 -0.52 6.03 5.38 5.34 0.72 0.13 
9 0.64 -0.55 6.03 5.38 5.37 0.72 0.13 
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Figure I: Histogram showing the distribution of screening radon concentration measurements in 
Minnesota, weighted by sampling weight reported in the SRRS data set. A lognormal 
distribution with GM=132.5 Bq/m3 and GSD=2.18 has been superimposed on the data. 
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Figure 2: Posterior predictions of county GM values vs. GM of observations, for counties with 
more than 5 observations. Bars indicate the range that includes the middle 50% of posterior 
predictions based on 1000 simulation draws from the probability distribution of parameter 
values, as discussed in the text. The posterior prediction for each county is a compromise 
between the observed GM in the county and the grand mean of all of the county GMs, with the 
relative weighting determined from the data as described in the text. 
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Figure 3: Results of a conventional regression of 10g(GM) on 10g(NURE), for counties with more 
than 5 observations. Note that more than 60% of the error bars cross the line representing perfect 
agreement, and that predictions for well-sampled counties (those with small error bars) tend to 
fall close to the line representing perfect agreement. 
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Figure 4: Results of a mixed-effects regression of logarithm of individual-house radon 
concentration on logarithm of county NURE and county random effects. Only counties with 
more than 5 observations are shown, although all counties were used in the analysis. Prediction 
from a conventional NURE regression is on the x-axis. Posterior predicted GMs are indicated by 
squares, while the GM of observations for each county is plotted as a point. Note that the 
posterior prediction for each county lies between the observed GM (point) and the conventional 
NURE prediction (45-degree line). For highly sampled counties, the posterior prediction always 
lies near the observed value, while for poorly sampled counties the posterior prediction can be 
very different from the observed value. Posterior predictions are subject to slight variation due 
to the finite number of simulation draws. 
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Figure 5: Stacked-number histograms showing the distribution of observed county GMs (top) and 
the distribution of posterior predicted GMs (bottom). Each county is represented by digit(s) 
indicating the number of observations in the county. For example, in the upper figure the value 
"lOS" in the 120-140 Bq/m3 interval represents a county with an observed GM between 120 and 
140 Bq/m3, based on 105 observations. Note that the distribution of predicted true GMs is much 
tighter than the distribution of observed GMs. However, recall that the predicted GMs are 
themselves uncertain (by about 15 to 30 Bq/m3 ---about one bin---for most counties). 
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FigUre 6: Map showing estimated county effects from modelS, mUltiplied by 100. Note the 
spatial grouping of negative county effects in the northeastern portion of the state, and the 
sparseness of negative county effects in the western half of the state. 
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