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Abstract
Motivated by the close relation of predictive coding and active
inference to cognition, we introduce a dynamic artificial neu-
ral network-based (ANN) adaptation process, which we term
REPRISE: REtrospective and PRospective Inference SchEme.
REPRISE first executes a retrospective inference process, in-
ferring the unobservable contextual state that best explains its
recently encountered sensorimotor experiences. It then exe-
cutes a prospective inference process, inferring upcoming mo-
tor activities in the light of the inferred contextual state and
a given goal state. First, the ANN – a recurrent neural net-
work – is trained to learn one sensorimotor temporal forward
model, that is, the sensorimotor contingencies generated by the
behavior of three moving or flying vehicles. During training,
additional three bits are provided as input, indicating which
mode currently applies. After training, goal-directed control
and system state inference are activated: Given a goal state,
the system imagines a motor command sequence optimizing it
with the prospective objective to minimize the distance to the
goal. Meanwhile, the system evaluates the encountered sen-
sorimotor contingencies retrospectively, adapting its vehicle
estimation activities and, in order to maintain coherence, the
neural hidden states accordingly. This ANN’s ’mind’ is thus
continuously imagining the future and reflecting on the past –
showing superior performance on the posed control problems.
The architecture effectively demonstrates that neural error sig-
nals and neural activities can be projected into the past and into
the future, respectively, optimizing both neural context codes
that approximately generate the recent past and upcoming be-
havior in the light of desired goal states.
Keywords: artificial neural networks; forward model learn-
ing; inverse sensorimotor control; active inference; dynamics;
adaptation; cognitive systems

Introduction
While the predictive brain and active inference principles
have strongly influenced cognitive science over the last years
(Butz, 2016; Butz & Kutter, 2017; Clark, 2016; Friston,
2009), it remains highly challenging to realize these princi-
ples in scalable, temporal dynamic artificial neural network
models. Moreover, it remains unclear how effective abstrac-
tion and generalized structures can be realized (Botvinick &
Weinstein, 2014; McClelland et al., 2010). Despite the re-
cent remarkable successes in playing challenging computer
games and the board game GO (Mnih et al., 2015; Silver et
al., 2016), neural systems that are able to infer the current
system state, conceptual abstractions, and goal-directed mo-
tor control concurrently remain largely out of reach.

Perceptual processing reveals a strong tendency towards
the segmentation of the continuous sensorimotor stream into

meaningful event and event-transition encodings (Zacks &
Tversky, 2001; Zacks, Speer, Swallow, Braver, & Reynolds,
2007). The theory of event coding has proposed integra-
tive action-effect codes (Hommel, Müsseler, Aschersleben,
& Prinz, 2001). Similarly, forward-inverse control schemes
have modeled human behavior, (Wolpert & Kawato, 1998;
Wolpert & Flanagan, 2016), where the involved forward-
inverse models essentially encode interaction events. Even
the memorization of experienced episodes appears event-
segmented and event-focused. Moreover, memorized events
can be used not only for processing current sensorimotor in-
formation, but also for reflecting on the past and for imag-
ining potential futures (Schacter et al., 2012). In sum, our
mind seems to cluster sensorimotor contingencies into pre-
dictive events (Butz, 2016). As a result, our state of mind
may be viewed as continuously adapting to the current event-
respective circumstances, but also to past, future, or even fully
hypothetical events (Bar, 2009; Buckner & Carroll, 2007).

We present here an retrospective and prospective temporal
inference scheme (REPRISE), which can be applied in recur-
rent ANNs. REPRISE infers retrospectively the unobservable
current event context (here the controlled vehicle), which best
explains the recent sensorimotor experiences, while it concur-
rently infers motor control commands prospectively in a goal-
directed manner. We thereby build on our previous work,
which had accomplished prospective, active motor control in-
ference (Otte, Schmitt, Friston, & Butz, 2017; Otte, Zwiener,
& Butz, 2017) but not retrospective inference. Our results
suggest that REPRISE can do both, effective goal-directed
control and event-oriented, system state inference.

System Architecture and Inference
Mechanisms

In order to introduce REPRISE, we distinguish between the
actual (not directly observable) dynamical system φ and the
model Φ of this system, which is encoded by a recurrent arti-
ficial neural network (RNN). Focusing on a discrete-time dy-
namical system, at a certain point in time t, the current state
of the dynamical system φ may be denoted by ϑϑϑ

t , such that
the progression through time is determined by

ϑϑϑ
t φ
7−−→ ϑϑϑ

t+1. (1)
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Temporal Forward Model
The model Φ is trained to approximate these dynamics, in-
ferring its parameters from sensorimotor experiences dur-
ing learning. However, seeing that we are dealing with
a dynamic, partially observable Markov decision process
(POMDP) (Sutton & Barto, 1998), the true system state ϑϑϑ

t

is typically not directly deducible from current observables
st ∈ Rn. Thus, the dynamical system’s internal state σσσt must
be inferred in each iteration given the current observables st

as well as the current motor activities denoted by xt ∈ Rk.
With the help of the system’s model Φ, the next system state
σσσt+1 and the consequent sensory expectations s̃t+1 are deter-
mined by

(st ,σσσt ,xt)
Φ7−−→ (s̃t+1,σσσt+1), (2)

where the mapping Φ essentially models the temporal for-
ward dynamics of the system. Thus, the next system state
and sensory expectations depend on the current sensor (st )
and motor control (xt ) activities as well as, in principle, on
the entire state history, which is encoded in the (hidden) state
components (σσσt ) in a compressed form.

While learning the model, that is, while pursuing model
inference, the system essentially attempts to minimize the
quadratic loss between predicted and encountered sensory in-
formation over time, that is,

L =
T

∑
t=1

n

∑
i=1

1
2
(s̃t

i− st
i)

2, (3)

summing the accumulated losses over the gathered experi-
ences {s1, . . . ,sT}.

Multiple Dynamical Systems
In this paper we consider not only a single dynamical sys-
tem, but an ensemble of multiple systems φ = {φ1, . . . ,φu},
reflecting discretely different dynamic contingencies that can
occur in the world. These systems differ from each other con-
cerning their behavior, but share the same input, state, and
output dimensions. During model inference, the model Φ is
trained to approximate all of these dynamical systems within
one single RNN architecture. Specifically, the task of the tem-
poral forward model inference process is to approximate that
particular dynamical system φi that is currently active, given
observed state st and control commands xt , as well as the in-
ternal system state estimation σt .

During model inference, the identity of the currently active
dynamical system φi is represented by means of a context in-
put vector c ∈ Ru, which is simply added as additional input
and which is encoded as a one-hot vector (i-th component is
set to 1, rest to 0). This encoding is closely related to para-
metric bias encodings, which can be viewed as an indicator
of the current control event the system is situated in (Sugita,
Tani, & Butz, 2011; Tani, 2017).

REPRISE
Given an imagined action sequence, an initial state, and the
identity of the current dynamical system, the RNN can pre-

dict a state progression that is expected when executing the
action sequence by means of the learned temporal forward
model Φ. To effectively control the system, however, the in-
verse mapping is required, that is, an action sequence needs
to be inferred to approach a desired goal-state (or follow a
sequence of goal-states) from an initial state. This becomes
even more difficult when the identity of the current actual
dynamical system φi is unknown and has to be inferred as
well. In this section we introduce the REPRISE algorithm,
a concurrent retrospective and prospective inference scheme,
which solves the dual system identification and goal-directed
control problem.

Figure 1 shows the dynamic processes REPRISE unfolds
for two consecutive time steps. During each step, both a ret-
rospective and a prospective inference phase are executed.

In the retrospective phase, the gradient is propagated R
time steps into the past, to reflect on the states that were just
experienced. The gradient is fed by the discrepancy between
previously predicted system states s̃t−i, with i ∈ 0, . . . ,R, and
the actually observed system states st−i. The discrepancy is
then mapped onto the assumed context input ct−i – essentially
a subvector of st−i – indicating the dynamical system φi that
is presumably currently active. Additionally, the gradient is
used to adapt the RNN’s hidden state at time step t−R− 1,
that is, σt−R−1, such that it better fits the changing context in-
put. As a result, the RNN avoids disadvantageous or even un-
defined sensory input, motor command, hidden state combi-
nations. Finally, the neural activities are propagated forward
again to the present time step, with respect to the inferred hid-
den state and context input, and the already recorded motor
commands and observed system states, yielding an updated
σt . This retrospective inference cycle is executed r times.

In the prospective phase, neural activities are projected P
time steps into the future, starting with the inferred current
internal system state σt and hypothetically executing a se-
quence of motor commands x̃t+i, which was inferred previ-
ously. The discrepancies between the predicted future s̃t+i

and desired goal state sequences ?st+i, with i ∈ 1, . . . ,P, are
then propagated backwards through time from the imagined
future back to the present time step, while the gradient is pro-
jected onto the individual neurally encoded anticipated motor
activity sequence x̃t+i, effectively optimizing it in the light of
the current system state estimates and the desired goal state.
This prospective inference cycle is executed p times.

After the retro- and prospective inference phases, the in-
ferred motor activity xt is executed by the system φ and the
forward RNN is updated via (2). This closes the processing
loop, repeating REPRISE in the following time step (t +1).

System Evaluations
Our experiments are based on a two dimensional dynamical
system simulation of u = 3 types of vehicles, constituting
three dynamical systems: φ1 is a multi-copter-like vehicle,
which we call rocket, φ2 is a static omnidirectional vehicle,
which we call stepper, and φ3 is a dynamical, omnidirec-
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Figure 1: Illustration of REPRISE for two consecutive time steps t (top part) and t + 1 (bottom part). Note that there is
only one RNN, whose activities are buffered. The right (green shaded) boxes illustrate future imaginations actively inferring
prospective motor activities, while the left boxes (gray shaded) show retrospections about the recent past for system state
inference (including event state ct ′ and hidden state σσσt ). Black lines indicate context and information forward flow, while the
red lines indicate gradient flow. x̃t ′ and c̃t ′ refer to the action and context input vectors, respectively, for a particular time step
t ′. s̃t ′

τ refers to a particular sensory prediction in the τ-th optimization cycle, whereas ?st ′ refers to a desired sensory goal state.

tional gliding vehicle, which we call glider. The rocket is
influenced by simulated gravity and undergoes inertia. It has
two propulsion motors that are spread at a 45◦ angle from the
vertical axis on both sides, inducing thrust forces in the re-
spective direction. The two other motor inputs are irrelevant
for the rocket. The stepper has four thrust motors that are
spread at 45◦ and 135◦ angle from the vertical axis to both
sides, inducing steps in the opposite direction. Finally, the
glider has the same four thrust motors as the stepper. How-
ever, in contrast to the stepper, the glider undergoes inertia
without any friction. Each motor unit can be throttled within
the interval [0,1]. Upon invocation, each vehicle is positioned
in a rectangular free space of size 3×2 units. It is surrounded
by borders, which block the vehicle.

Model Prediction Performance
During training, stochastic backpropagation through time op-
timized the weights of the considered RNN architectures
based on simulated sensorimotor experiences, learning in a
self-supervised manner. Experiences were generated by ex-
ecuting pseudorandom motor commands x ∈ [0,1]4, where
motor command generation was such that sufficient upwards
thrust was generated and a reasonable exploration of the com-
plete rectangular free space was loosely ensured.

At each time step (30Hz) the network is fed with the cur-
rent position of the vehicle (s ∈ {[−1.5,1.5], [0,2]}), the cur-
rent four motor commands (activities of the four thrust mo-

tors as forces; for the rocket, the second two motor values
have no effect; mass of vehicles is set to .1), and a three bit
one-hot vector, which indicates the vehicle that is currently
controlled, i.e., which φi applies. The network output is the
prediction of vehicle’s resulting change in position.

We trained the considered RNNs in 3000 epochs, consist-
ing of 2000 control steps each. We applied backpropaga-
tion through time every 50 iterations and Adam as the weight
adaptation mechanism (Kingma & Ba, 2014). The learning
rate was annealed, such that η = 0.01, η = 0.001, η = 0.0001
during the first, second, and third 1000 sequences (first and
second moment smoothing factors were set to the standard
values β1 = 0.9, β2 = 0.999). Each vehicle was simulated for
2000 time steps (i.e. one epoch), after which the hidden state
of the RNN was reset to zero and a new vehicle was initial-
ized.

Figure 2 contrasts the sensory prediction error develop-
ment during learning for several RNN architectures, show-
ing averaged mean errors and standard deviations across 20
independently weight-initialized (normally distributed values
with standard deviation 0.1) networks. Standard RNNs with
one hidden layer of 27 (1026), 36 (1692), and 54 neurons
(3510 weights) perform consistently worse than long short-
term memory (LSTM) RNNs with forget gates and peep-
hole connections (Gers, Schraudolph, & Schmidhuber, 2002).
While 16 hidden memory cells (1680 weights) clearly out-
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Figure 2: Learning progress comparing standard RNNs and
LSTMs with different numbers of hidden units.

perform 8 hidden memory cells (584 weights), the advantage
of yet another 8 hidden cells, that is, 24 cells in total (3288
weights) is less pronounced.

REPRISE Performance
To evaluate the robustness and abilities of REPRISE, includ-
ing all relevant settings, we contrast the resulting control per-
formance of the RNN with 36 hidden neurons with the LSTM
with 16 hidden units, which have approximately an equal
number of weights (1692 versus 1680, respectively). Each
network was tested to reach a sequence of 50 uniformly ran-
domly positioned targets within a centered inner area of size
1.5× 1.5 units of the rectangular space of size 3× 2 units.
Thereby, the simulation is divided into a sequence of discrete
events, where the agent becomes one of the vehicles φi for a
continuous series of 150 timesteps. One of the agents tasks
is to infer which of these events is under way at any given
time. The values in the tables below are averages over the
20 independently trained networks and 50 considered targets,
whereby the target positions and vehicle succession were the
same for all runs.

We applied Adam in all inference processes. Prospective
inference was always looking P = 7 steps into the future,
executing the inference cycle p = 20 times. Detailed eval-
uations were run contrasting different learning rates ηc and
ησ for the retrospective context c and system state σ infer-
ence. In our standard setting, retrospective inference covered
R = 20 time steps into the past, while r = 20 inference cy-
cles were performed. Note that during optimization the motor
commands and the context inputs were clamped to their value
range [0,1], and the neural hidden states σ were clamped in
accordance to the range of the respective neurons’ activation
function.

Figure 3 shows a typical flight sequence generated by an
LSTM controlled by the REPRISE algorithm, in ten iteration
steps. Although glider and rocket initially slightly overshoot
the target, they quickly zoom in. For the stepper, the projected
path is less direct, which is probably partially the case be-
cause the goal is simply not directly reachable in seven steps.
It should be noted that although the images suggest that the

Figure 3: Typical flight sequence for the three vehicle types
controlled by REPRISE, showing 8 screenshots of glider,
rocket, and stepper, which are 10 time steps apart succes-
sively in the upper, middle, and bottom two rows, respec-
tively. The green target is approached. The red lines show the
current trajectory anticipation of REPRISE.

motor effort while staying at the goal is minimized, this is
not always the case, as there is currently no incentive in the
system that stresses motor effort minimization.

Tables 1 and 2 show the average distance to the goal lo-
cation that remained after 150 time steps, that is, control
iterations. The first row of results shows the performance
when the context bits are set to the correct values (no state
inference), resulting in a (much simpler) active motor infer-
ence problem. The next four rows show the performance of
REPRISE with different learning rate combinations, with-
out providing the context bit values. Clearly, overly large
or small values yield mediocre performance, however, it ap-
pears that quite a large value range yields robust target reach-
ing behavior. Consistently the best setting is with ηc = .01
and ησ = .001, adapting the context bits ten times faster than
the hidden states, which is most likely the case because with-
out proper context inputs, overly fast hidden state estimations
will lead to unstable adaptations. Thus, most robust perfor-
mance is reached when both context and hidden state activ-
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Table 1: LSTM: Distance to target after 150 control steps

Average ησ=0 ησ=1e-4 ησ=.001 ησ=.01 ησ=.1

c set 0.006 0.006 0.006 0.007 0.051
ηc=1e-4 0.082 0.057 0.034 - -
ηc=.001 0.039 0.024 0.011 0.011 -
ηc=.01 0.024 - 0.006 0.007 0.055
ηc=.1 0.025 - - 0.008 0.038

Rocket ησ=0 ησ=1e-4 ησ=.001 ησ=.01 ησ=.1

c set 0.014 0.014 0.013 0.015 0.095
ηc=1e-4 0.069 0.052 0.022 - -
ηc=.001 0.041 0.037 0.013 0.011 -
ηc=.01 0.026 - 0.006 0.011 0.069
ηc=.1 0.028 - - 0.010 0.051

Stepper ησ=0 ησ=1e-4 ησ=.001 ησ=.01 ησ=.1

c set 0.002 0.001 0.001 0.001 0.006
ηc=1e-4 0.063 0.043 0.022 - -
ηc=.001 0.037 0.017 0.008 0.014 -
ηc=.01 0.024 - 0.007 0.005 0.035
ηc=.1 0.025 - - 0.004 0.024

Glider ησ=0 ησ=1e-4 ησ=.001 ησ=.01 ησ=.1

c set 0.004 0.004 0.004 0.004 0.053
ηc=1e-4 0.116 0.078 0.060 - -
ηc=.001 0.040 0.017 0.012 0.009 -
ηc=.01 0.021 - 0.005 0.006 0.061
ηc=.1 0.021 - - 0.010 0.039

Table 2: RNN: Distance to target after 150 control steps

Average ησ=0 ησ=1e-4 ησ=.001 ησ=.01 ησ=.1

c set 0.037 0.039 0.037 0.035 0.036
ηc=1e-4 0.162 0.019 0.019 - -
ηc=.001 0.038 0.052 0.020 0.018 -
ηc=.01 0.040 - 0.017 0.019 0.029
ηc=.1 0.169 - - 0.044 0.034

ities are adapted, yielding performance that is actually com-
petitive – in the RNN case even superior – to the one when
the context information is provided! In sum, with sufficiently
small state inference learning rates ησ, the additional state
inference (much harder problem, no context bit information
provided) does not affect performance in a negative manner!

Table 1 additionally shows the performance differences
when focusing in on the three different vehicle types in the
LSTM case. While the parameter dependencies are very sim-
ilar, it appears that the rocket was hardest to control, most
likely due to the fact that gravity needs to be continuously
counteracted.

Table 3 shows for the LSTM case that the average distance
to the target object over the 150 steps averaged over all ve-
hicles is smallest when the context information is provided.
This was indeed the case for all three vehicles (not shown).
This is expectable as context inference inevitably yields erro-

Table 3: LSTM: Average accumulated distance to target

Average ησ=0 ησ=1e-4 ησ=.001 ησ=.01 ησ=.1

c set 0.061 0.060 0.060 0.061 0.109
ηc=1e-4 0.157 0.139 0.109 - -
ηc=.001 0.106 0.100 0.079 0.082 -
ηc=.01 0.090 - 0.072 0.077 0.127
ηc=.1 0.092 - - 0.077 0.115
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Figure 4: Inferred values of the context values c.

neous behavior during the first control steps, confirming that
the switch in the vehicle identity causes initial disruptions,
which are quickly stabilized.

As a final evaluation result, Figure 4 shows the inferred
context input activations for the three vehicles, contrasting
again LSTM with RNN performance. Clearly, the LSTM
architecture is better-suited to infer the underlying control
system, although the estimates are still far from optimal. It
was observed that once the goal has been reached, the es-
timates sometimes drifted off towards more incorrect esti-
mates – probably because the sensorimotor information was
not sufficiently informative. This observation in particular
suggests that both context estimation stability could be en-
forced, switching only when error signals suggest to do so,
and active motor inference may be further optimized to main-
tain high context estimation certainty (Friston et al., 2015),
thus generating motor commands that minimize uncertainties
in the model states estimates σ.

Summary, Conclusions & Future Perspectives
We have shown that REPRISE maintains ANN activity that
reflects on the past and projects its own state into the future,
thus continuously optimizing its internal (generative) state
estimates about its own body and the environment as well
as imagined upcoming environmental interactions. We have
developed this system as a first step towards sensorimotor-
grounded, event-oriented abstractions. Essentially, the con-
text vector c, which was provided as an input vector dur-
ing training, signals the contextual “event” the system is cur-
rently in. Here we have shown that the event was inferable
after model learning. An important next challenge is to foster
the learning of contextual encodings during training – akin
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to parametric bias neural activities (Sugita et al., 2011; Tani,
2017) – probably by using unexpected changes in prediction
errors as an indicator signal for an event change (Butz, 2016;
Gumbsch, Otte, & Butz, 2017).

Once the automatic learning of event encodings is
achieved, event-predictive cognition on the compact event-
encoding level will become possible, potentially offering a
step towards conceptual and compositionally re-combinable
event schema abstractions. As an additional challenge, it
should be kept in mind that the implemented processes cur-
rently fully rely on error backpropagation through time. Im-
plementations of Bayesian inference or even more general
free-energy-based inference processes along similar lines are
well-imaginable.
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