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Empirical analysis of the prevalence of HVAC faults in
commercial buildings

ELIOT CROWE1� , YIMIN CHEN1 , HAYDEN REEVE2 , DAVID YUILL3 , AMIR EBRAHIMIFAKHAR4 ,
YUXUAN CHEN3 , LUCAS TROUP2, AMANDA SMITH5 , and JESSICA GRANDERSON1

1Lawrence Berkeley National Laboratory, Berkeley, CA, USA
2Pacific Northwest National Laboratory, Richland, WA, USA
3University of Nebraska–Lincoln, Lincoln, NE, USA
4Delos Labs, New York, NY, USA
5Project Drawdown, San Francisco, CA, USA

Commercial building HVAC systems experience many sensing, mechanical, and control-related faults that increase energy
consumption and impact occupant comfort. Fault detection & diagnostics (FDD) software has been demonstrated to identify and help
diagnose these types of faults. Several studies have demonstrated FDD energy savings potential, but there is limited empirical data
characterizing the quantity and type of faults reported by FDD tools. This paper presents results of an FDD fault reporting study,
employing multi-year monitoring data for over 60,000 pieces of HVAC equipment, covering over 90 fault types, and using new
metrics that we developed to characterize fault prevalence. Study results offer an unprecedented accounting of the quantity of faults
reported, the most commonly occurring faults, and fault persistence. We find that 21 air handling unit (AHU) faults were reported on
20% or more AHUs in our dataset, and 18 AHU faults persisted for more than 20% of the time period covered by the data. On any
given day, 40% of AHUs and 30% of air terminal units saw a reported fault of some kind. Based on in-depth analysis of these results
we provide recommendations for building operators, FDD software developers, and researchers to enable more efficient commercial
building operation.

Introduction

Commercial building heating, ventilation, and air-condition-
ing (HVAC) systems can experience a diverse variety of

operational faults. For example, damper actuators may fail,
control sequences may not meet design intent, and sensors
may fail or drift out of calibration. These operational faults
can have a negative impact on energy consumption/cost,
occupant comfort, and long term equipment reliability (Roth
et al. 2004).

Energy savings resulting from resolution of commercial
HVAC system operational faults has been documented in
several past studies. For example, Crowe et al. reported
median whole building energy savings of 6% for implement-
ing existing building commissioning (EBCx; a quality assur-
ance process addressing HVAC operational faults), based on
a study dataset of over 1,500 buildings (Crowe et al. 2020).
Another study reported 29% energy savings potential from
optimizing the operation of inefficient buildings, based on
simulations across multiple building types and baseline/
measure permutations (Fernandez et al. 2018). Such oper-
ational faults can equally apply to old and newer buildings.

Aggressive building decarbonization and energy effi-
ciency goals are being set at national, regional, and corpor-
ate levels. For example the U.S. Department of Energy has
set a goal to triple the energy efficiency of the buildings sec-
tor by 2030 relative to 2020 levels (Satchwell et al. 2021).
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To achieve these goals, energy waste in commercial build-
ings must be minimized.

EBCx has become increasingly popular over the past two
decades as a strategy for addressing HVAC operational
faults in commercial buildings on a periodic basis, being rec-
ommended every 3-5 years (U.S. DOE. 2014). In parallel, a
class of software called energy management and information
systems (EMIS) has emerged as a useful tool for supporting
continuous Monitoring-Based Commissioning (MBCx) and
ongoing operations management (LBNL 2021). Fault detec-
tion & diagnostics (FDD) software, a class of EMIS that is
designed to identify a wide range of HVAC operational
faults, has been studied at scale and found to achieve a
median 9% whole building energy savings (Lin et al. 2022).
The gap between operational energy savings potential of
29% (Fernandez et al. 2018) and examples of achieved sav-
ings such as 6% (Crowe et al. 2020) or 9% (Lin et al. 2022)
gives a sense of the magnitude of untapped potential and the
required urgency to better understand the nature and fre-
quency of HVAC faults. In considering the factors that may
limit operational savings potential, it has been reported that
building analytics tools such as FDD can result in building
operators experiencing data overload (Kramer et al. 2020),
though the typical quantity of faults reported by FDD tools
has not been studied in detail.

While energy savings potential from resolving operational
faults in commercial buildings is now well documented, the
exact nature and frequency of those operational faults has
been less studied. Kim et al. carried out a comprehensive
review on HVAC fault prevalence (Kim et al. 2021), to
document the current state of knowledge, gaps and potential
value of further research. The study featured a literature
review (26 papers) and 25 expert interviews, synthesizing
and documenting unmet needs and gaps. For example, the
authors found little research to document occurrence and fre-
quency of HVAC faults at the level of granularity, consist-
ency, and scale desired by researchers, analytical tool
developers, and building operators. Based on the study, the
authors suggested a methodical assessment of HVAC fault
prevalence to address knowledge gaps. The increasing adop-
tion of FDD analytical tools presents an opportunity to
gather granular HVAC fault data over an extended period, to
address the questions raised in this study.

A comprehensive reporting of HVAC fault prevalence
(for air handling units [AHUs] and air terminal units [ATUs]
in the case of the current research project) can be valuable
for several audiences:
� Building operators can focus operations & maintenance

(O&M) efforts on mitigating the most common and lin-
gering fault types, and also plan for adequate resourcing
for the expected quantity of faults reported;

� FDD tool developers can enhance diagnostic algorithms,
such as applying Bayesian inference to improve diag-
nostic accuracy, or developing algorithms to target
faults that are found to be common;

� Equipment manufacturers could alter design or selection
of components that are found to frequently experience
faults;

� Researchers can determine the highest priority activities
for further development & testing to better identify and
more quickly resolve operational faults.

This paper presents findings from a comprehensive study
of fault reporting for a subset of commercial building
HVAC equipment (covering AHUs and ATUs). The study
quantifies, through the introduction of four new fault report-
ing metrics and a methodical data analysis approach, how
many faults are reported, and how frequently, for these com-
mon types of commercial HVAC systems. The impetus for
this paper was to provide information that helps the audien-
ces listed above to understand the patterns we found in fault
reporting and to assess what that means for FDD tools and
for the commercial building stock. This overarching object-
ive is translated into:
� What quantity of AHU/ATU faults are reported per

building and per piece of equipment?
� Which AHU/ATU faults are most commonly reported?
� Which AHU/ATU faults persist/linger the most over

time?
This paper presents a background literature review,

research methods, data analysis results, discussion of the
results and their implications, and summarizes conclusions
and recommendations.

Literature review

As noted in the Introduction, Kim et al. (2021) conducted a
literature review relevant to the topic of commercial HVAC
fault prevalence; across a body of 26 papers. That work con-
cluded that there is a need for a methodical assessment of
HVAC fault prevalence to address several knowledge gaps.
Since publication of that comprehensive review article
(which we do not duplicate here), additional papers of rele-
vance to the topic have been published. For example,
Katipamula et al. (2021) analyzed project results from the
application of Building Re-Tuning (a variant of EBCx). The
study showed that the incidence of the top 20 opportunities
recommended through Building Re-Tuning ranged between
23% and 74% across the 151 buildings and 140 opportuni-
ties at the system level (e.g., AHU, lighting, envelope, etc.).

Aguilera et al. (2022) conducted a comprehensive review
on common faults in 53 large-scale heat pumps. In the
research, faults were characterized according to potential
causes, mitigation or prevention implications as well as
detection and diagnosis methods. A total of 129 faults, div-
ided into 48 fault types, were identified in the heat pumps.

Torabi et al. (2022) identified and categorized human-
induced errors in variable air volume (VAV) AHU control
systems (sensors, actuators, and sequencing logic) by
reviewing the literature and conducting interviews with con-
trol expert professionals. The most common human-induced
errors in VAV AHU control systems are classified, and
examples from 11 interviews with industry professionals are
listed for different building life cycle phases. However, the
paper does not investigate the fault occurrence and distribu-
tion in terms of various components in HVAC systems, nor
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does it investigate equipment component failures caused by
wear.

A few additional papers that are adjacent to the fault
prevalence topic, but of less direct relevance, are also of
note. Zhou and Dexter (2009) developed estimates of fault
impact of an actuator fault and air-side fouling fault in the
cooling coil system of an AHU, but provided no analysis of
data on actual occurrence of those faults. Carretero-Ayuso,
Moreno-Cansado, and Garc�ıa-Sanz-Calcedo (2020) evaluated
design faults in HVAC systems and the recurrence of occu-
pant complaints in response to those faults, with a dataset of
168 complaints in a residential application.

In addition to efforts focused on understanding HVAC
fault occurrence, there has also been research to understand
how faults relate to one another, how corrective actions can
be managed by operators, and how the technology can be
enhanced to automate corrective action. Chen et al. (2021)
developed and documented a standardized HVAC fault tax-
onomy that was employed by this study to enable granular
definition of fault location and characteristics. In the context
of managing a high quantity of reported faults, several publi-
cations address concepts concerning fault prioritization
(Cook, Smith, and Meier 2012; Nzukam et al. 2019; Medal,
Sunitiyoso, and Kim 2021). Further, the literature includes
FDD-identified fault types demonstrated as having potential
for automated fault correction (Lin et al. 2020; Pritoni et al.
2022). Finally, Ebrahimifakhar et al. (2021) described the
development of the methodology for the current paper, and
illustrated the study approach with preliminary results for a
subset of faults.

Method

The HVAC fault prevalence study involved multiple steps,
from obtaining fault data to analyzing results:
� Obtain and clean HVAC fault data & associated

metadata;
� Apply HVAC fault taxonomy and standard time

resolution;
� Calculate fault reporting prevalence metrics;
� Analyze and chart results.

Each of these steps is described in detail below.

Obtaining and cleaning study data

Study data were drawn from six FDD software providers
and one large building portfolio owner. The scope of the
data request was limited to built-up air handlers (AHUs) and
associated air terminal units (ATUs), and packaged rooftop
HVAC units (RTUs). In total, we received data covering
3,660 AHUs, 53,865ATUs, and 7,974 RTUs. For 90% of
the buildings covered by the study we received at least 12
months’ worth of reported faults, and in some cases over
24months. In addition to receiving data on reported faults,
we also received building metadata summarizing (at min-
imum) building type and building location. Metadata
included full AHU/ATU equipment listings, including equip-
ment for which there were no reported faults. To meet the

study design objectives, FDD software was identified as a
valuable source of data at scale. FDD data drawn from a
relatively small number of software tools offers the benefit
of some standardization (when compared to drawing directly
from individual building automation systems [BAS]), and it
may be assumed that data quality would have been checked
in the course of developing and deploying fault detection
rules. It is acknowledged that a study employing first-hand,
site-level observations would ensure greater data accuracy;
however, this would come at a cost that would limit this
type of study to very few buildings and results that would
be near impossible to generalize. Utilizing FDD data was
viewed as offering a balance of scale and accuracy, but to
better understand how this approach affects the results, some
of the buildings that were included in the FDD reporting
data were studied via intensive site visit measurements and
analysis of BAS data. The details of the field verification
portion of the study will be reported in a subsequent paper,
but an overall conclusion from preliminary results is that the
FDD data generally provided accurate insight into fault
prevalence.

Data providers were consulted to gain a clear understand-
ing of the data shared, for example:
� Clarifying fault naming definitions;
� Understanding linkages between different buildings and

the inter-relationships between equipment;
� Addressing data gaps and inconsistencies;
� Clarifying date ranges over which buildings were moni-

tored (i.e., the first and last dates of reported faults in a
building are not necessarily the full monitoring time
period);

� Clarifying, where possible, the presence or absence of
nonstandard components on specific buildings (e.g., a
return air carbon dioxide sensor may not be present on
all AHUs).

Once the data were fully reviewed, fault names and time
intervals were standardized into a common format across the
dataset.

Applying HVAC fault taxonomy and standard time
resolution

Applying a consistent fault naming structure is key to ana-
lyzing data from disparate sources. The data providers for
the fault prevalence study all used unique fault naming
approaches, and in some cases their datasets included several
fault names for the same fault (e.g., they allowed FDD users
to rename faults when initially configuring the software).
For datasets covering AHUs/ATUs there were many hun-
dreds of unique fault names (in one case there were 1,105
fault names). Through manual review, all raw fault names
(i.e., names provided in datasets received from partners)
were checked and, where applicable, manually mapped to
standardized fault names based on the HVAC fault tax-
onomy published in Chen et al. (2021). This taxonomy clas-
sifies HVAC faults at four levels:
� Equipment type (currently limited to AHUs, ATUs, and

RTUs)
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� Fault location in the system (e.g., supply air, mixed
air, etc.)

� Affected component or parameter (an example compo-
nent is a temperature sensor, an example parameter is
measured temperature)

� Fault mode (e.g., frozen, stuck, abnormal)
An example of a fully resolved fault ID is “AHU-

Supply_air-Temperature_sensor-Frozen,” where the levels
are delimited by a dash (-), and words within a level are
separated by an underscore (_). The taxonomy design allows
for both condition-based (CB) faults and behavior-based
(BB) faults. CB fault reporting specifies the component
where the fault symptom is observed (e.g., return air tem-
perature sensor frozen), whereas BB faults report the
observed behavior without pinpointing the specific compo-
nent (for example, ‘supply air temperature abnormal’ behav-
ior could be due to a faulty sensor reading or the air
temperature could truly be too high or low). Frank et al.
(2019) provided further detail on CB and BB fault defini-
tions applied in this study. Although CB and BB faults can
sometimes provide very different insight about root causes,
and can potentially overlap, FDD software tools commonly
report a mix of these fault types, so it makes sense to
include both in a large scale fault reporting study.

Using this fault ID structure it is possible to analyze and
aggregate data at various levels across the taxonomy. For
example, the three-level fault ID “AHU-Supply_air-
Temperature_sensor,” would be applied for reporting the
prevalence of any of the possible faults on that specific com-
ponent, regardless of the different fault modes that may have
occurred (e.g., sensor frozen, drift, etc.).

In total, 1,563 fault names from the 7 data providers were
mapped into 182 unique names for the study (in many cases
multiple raw fault names were translated to a single mapped

fault name for the study). Figure 1 illustrates the full scope
of system locations, components/parameters, and fault modes
represented in the study dataset (the identifier “NA” is used
where a value could not be determined from the data pro-
vided). In this paper we document fault reporting based on
the component or parameter experiencing the fault, i.e., fault
mode is excluded. This reduces the list of unique fault
names to a more manageable level for the purpose of
addressing the main research questions.

Raw fault reporting data were provided with different
time resolutions, so following fault name mapping we stand-
ardized that representation to a common format, “binary
daily fault” (BDF) format, where each row of BDF data rep-
resents a unique fault occurring on a specific piece of equip-
ment on a specific date (Chen et al. 2022). BDF data uses a
daily unit, irrespective of whether the raw fault data indi-
cates fault symptoms were present for 1 h or 24 h on that
specific day. Figure 2 provides a graphic representation of a
given fault’s occurrence (represented by a “1”) across a
short time frame for 3 pieces of equipment, as derived from
BDF data.

Data analysis and metrics

Under this study, five HVAC fault reporting metrics were
developed; four are described and reported here:
� Percent of equipment experiencing a given fault (Pct_

Affected);
� Mean percent time faulted, applied to equipment experi-

encing a given fault at least once (MPTF_Affected);
� Quantity of faults reported each month per building, per

AHU, and per ATU;
� Percent of equipment operating in a faulted state on any

given day.

Fig. 1. Fault naming framework used in the study.
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Pct_Affected represents the percent of the population of
equipment for which a given fault was reported at least once
in the study dataset, and is taken as a measure of how com-
mon a fault is. For example, cooling coil valve faults were
reported on 35% of AHUs in the study dataset, whereas
heating coil valve faults were reported on 22% of AHUs.

MPTF_Affected represents the mean percent time faulted
for equipment that was affected by a given fault, and is a
measure of how persistently a fault is reported (though
ascertaining reasons for persistent reporting of faults is out
of scope for this study). Percent time faulted (PTF) is calcu-
lated for a specific fault’s occurrence on a specific piece of
equipment, as illustrated in Figure 2 and described in
Equation 1.

PTF ¼ 100�
Pn

i¼1 Fault DayiPm
j¼1 Equipment Dayj

(1)

where Fault_Dayi is the ith day on which the specific fault
occurs on the specific piece of equipment (represented by a
“1” in Figure 2), Equipment_Dayj is the jth day on which
the specific equipment was monitored, n is the total number
of days on which the specific fault occurs on the specific
equipment (for any length of time), and m is the total num-
ber of days on which the specific equipment was monitored
(e.g., the total number of days shown in Figure 2).

MPTF_Affected is the mean of the PTF values calculated
for each piece of equipment in the study dataset (calculated
separately for each fault reported on each piece of equip-
ment), applied across the pieces of equipment on which the
specific fault occurred (i.e., equipment/fault combinations
with zero reported fault occurrences are excluded from
MPTF_Affected), as described in Equation 2.

MPTF Affected ¼ 100 �
Xn

k¼1
PTFkÞ=n

�
(2)

where PTFk is the PTF calculated from Equation 1
reported on the kth piece of equipment, n is the total number
of the equipment, in which at least one occurrence of a
given fault is reported in that piece of equipment in the
data set.

In 90% of cases, equipment includes a year or more of
monitored days in the study dataset, though Figure 3 shows
a 5-day time-series to illustrate the calculation approach. In
this example, a given fault type has a PTF value of 20%,
80%, and 60% on the three individual AHUs, and the
MPTF_Affected in this case would be the mean of those
three values (53%).

In addition to reporting the metrics described above, the
results below also summarize the quantity of faults (within
the scope of this study) reported each month per building,
per AHU, and per ATU. Quantity of faults per month is cal-
culated based on unique fault/equipment combinations and
excludes duplicates, meaning:
� One fault type (e.g., supply air temperature [SAT] sen-

sor fault) being reported on two AHUs in the same
building in a given month counts as two faults for that
month;

� One fault type being reported on an AHU multiple
times in the same month counts as a single fault for that
month.

Study data were also analyzed to calculate the portion of
equipment operating in a faulted state on any given day,
where “faulted” denotes a piece of equipment as having at
least one fault reported on a given day. Figure 3 represents
the approach to calculating the percent of equipment operat-
ing in a faulted state, where “1” indicates that one or more

Fig. 2. Percent Time Faulted (PTF) calculation concept (“1” represents a day on which a fault was reported).

Fig. 3. Illustration of method to calculate percent of equipment operating in a faulted state.
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faults were reported on an AHU on a given day. Figure 3
indicates the percent of AHUs faulted for each day in a 5-
day series, and the mean value across all days in this illus-
trative example is 53.3%.

When aggregating analysis results across the whole data-
set for any given fault type, we excluded cases where that
fault was not within the scope of a given FDD tool’s fault
detection library (i.e., cases where zero fault reporting on a
piece of equipment was due to lack of analytics to detect
that specific fault, as opposed to being interpreted as fault-
free operation).

At the time of writing, RTU fault reporting analysis is
still being refined, and is not included here.

Results

FDD fault reporting analysis results are presented below,
organized around the three key research questions: How
many HVAC faults are reported per building and per piece
of equipment? Which faults are most common? Which faults
persist/linger most over time? Results are reported for build-
ings equipped with AHUs and ATUs. As noted above, fault-

specific results (for the metrics Pct_Affected and MPTF_
Affected) are presented at the component/parameter level,
and do not include the specific fault mode.

Quantity of faults reported

As shown in Table 1, the average number of reported faults
per building per month is 245; while giving a general indica-
tion of reporting quantity, buildings can vary significantly in
terms of the quantity and complexity of installed equipment.
When analyzing at the equipment level, we find an average
of three faults reported per month for AHUs and one per
month for ATUs. Based on these results per AHU and per
ATU, a large building with 30 AHUs and 445 ATUs would,
on average, see 535 reported faults per month, compared to
a smaller building with 3 AHUs and 15 ATUs that would
see 24 reported faults per month.

Moreover, a mean value of 40% of AHUs and 30% of
ATUs were observed to be faulted (i.e., having at least one
fault reported) on any given day across the study dataset
(See Figure 3 for an illustrative example of how these values
are calculated).

Most common faults

Figures 4 and 5 show the average percentage of equipment
(AHUs and ATUs respectively) affected by different faults,
with higher values representing the most common faults. For
brevity, the figures are limited to show faults with values
20% or higher, which accounts for 21 out of a total of 69
mapped faults for AHUs, and 8 out of a total of 20 mapped
faults for ATUs. Figures 4 and 5 show condition-based (CB)
faults in orange and behavior-based (BB) faults in blue.

Key observations from Figure 4 (AHUs) include:

Table 1. Mean number of reported faults per month (AHU
and ATU).

Mean Reported
Faults per Month

Sample
Size

Per Building 245 317 buildings
Per AHU 3 3,660 AHUs
Per ATU 1 53,865 ATUs

Fig. 4. Most commonly reported faults for AHUs, based on Pct_Affected value (chart shows faults 20% or higher).
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� The most common fault relates to supply air tempera-
ture (SAT) setpoint, appearing on 55% of AHUs in the
study data set at some point. This is the only fault type
to occur on over half the population of AHUs. This
fault type relates to conditions where SAT setpoint is
mismatched to measured conditions, such as temperature
being higher/lower than setpoint or temperature not
tracking setpoints. This is a BB fault, meaning that there
could be many different potential causes, including
problems in systems external to the AHU, such as the
chilled water supply.

� Behavior-based faults are prominent, representing the four
most common, seven of the top ten most common, and
over half (12 of 21) of the full set of most common faults.

� The components most commonly affected by faults are
sensors (5 faults with Pct_Affected value �20%), valves
(3 faults with Pct_Affected value �20%), and dampers
(3 faults with Pct_Affected value �20%).

� The most common location for faults to be reported
within the AHU is the supply air section (5 faults with
Pct_Affected value �20%, including the top 3 most
common faults).

Key observations from Figure 5 (ATUs) include:
� The most commonly reported faults relate to faulty zone

temperature sensors or abnormal zone temperature, each
appearing on 46% of ATUs at some point in time.

� The eight most commonly reported faults are evenly
split between CB and BB faults.

Fault persistence over time

Figures 4 and 5 indicate the percent of equipment for which
certain faults are reported at some point in time, as a meas-
ure of how common a fault is. In contrast, Figures 6 and 7
show the Mean Percent Time Faulted (MPTF_Affected) for
AHUs and ATUs respectively, indicating the average portion

Fig. 5. Most commonly reported faults for ATUs, based on Pct_Affected value (chart shows faults 20% or higher).

Fig. 6. Mean Percent Time Faulted, for AHUs experiencing a given fault at least once (MPTF_Affected). Chart shows faults with
MPTF_Affected of 20% or greater, i.e., a given fault is reported on 20% or more of the days across which a piece of equipment was
monitored.
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of time a fault is reported (e.g., if the study data set covers
366 days for a given AHU, and a specific fault is reported
on 183 of those days, the Percent Time Faulted value would
be 50%). MPTF_Affected is a measure of how persistently/
frequently a fault is reported over time, and is calculated
only for those pieces of equipment on which a given fault
occurred at some point across the data history. Therefore,
the top value of 43% in Figure 6 does not mean that typical
humidity sensors are faulted 43% of the time, but that
humidity sensors that are faulted persist in reporting this
fault 43% of the time. Figure 6 shows the 18 AHU faults
with an MPTF_Affected value of 20% or greater, and Figure
7 shows 13 ATU faults.

Key observations from Figure 6 (AHUs) include:
� As with the Pct_Affected results (Figure 4), the majority

of faults (10 out of 18) that persist for at least 20% of
the data history are BB fault types;

� Supply air relative humidity faults are reported over the
longest periods, close to half of the time (43%) on
average;

� Three of the top six faults shown in Figure 6 occur in
the AHU return air section, and two are related to sup-
ply air; and

� Nine faults are reported more than a quarter of the time
(greater than 25% MPTF_Affected).

Key observations from Figure 7 (ATUs) include:
� Three ATU faults are reported more than 50% of the

time: Zone CO2 sensor, Zone relative humidity (RH),
and cooling related faults. All other faults in Figure 7
are reported significantly less often (21% - 29% of the
time);

� Three of the top four faults shown in Figure 7 are BB
faults, but BB faults make up the minority of faults
overall (6 of the 13 shown);

� Figure 7 shows results for 13 fault types, the majority
of the total 20 ATU fault types covered in the study
dataset, in contrast to Figure 5 which indicated only 8
ATU faults are commonly reported (Pct_Affected

�20%). This illustrates that the most common faults do
not necessarily correlate with the most persistently
occurring faults.

Faults observed to be both common and persistent

As shown in Figure 8, six AHU fault types are reported on
at least 20% of equipment (i.e., Pct_Affected �20%) and
those faults are reported at least 20% of the time (i.e.,
MPTF_Affected �20%): supply air temperature setpoint,
supply air static pressure setpoint, economizer sequence,
supply air temperature sensor, coil valve1, and airflow
sensor1.

Five ATU fault types occur on at least 20% of equipment
and have those faults occur at least 20% of the time (i.e.,
they are shown on Figures 5 and 7): Zone temperature,
reheat coil valve, discharge air temperature sensor, heating
capacity faults, and faults relating to control sequences.

Discussion and implications of results

The fault reporting analysis results presented in this work
offer signific2ant insights, enabled through the introduction
of four new fault reporting metrics and a methodical data
analysis approach. These research results have implications
for motivating adoption of building data analytics tools,
important analytics support services, priorities for O&M
staff, and FDD algorithm development needs. We discuss
each of these aspects in detail below, with additional consid-
eration for the limitations in interpreting study results and
the types of metrics applicable to the study of FDD fault
reporting.

Fig. 7. Mean Percent Time Faulted, for ATUs experiencing a given fault at least once (MPTF_Affected). Excludes ATUs that never
saw a given fault.

1Based on the data provided the exact type/location of coil valve (i.e.,
heating or cooling) and airflow sensor could not be determined
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Implications for motivating adoption of building data
analytics tools

Prior literature documented a median 9% whole building
energy savings from FDD deployment, with less than two
years’ simple payback. The results of this study demon-
strated that the value proposition of FDD is not simply lim-
ited to identifying a short list of faults that could be
uncovered without the support of analytics technology, or to
a limited set of problematic equipment. Out of a total of 89
mapped faults for AHUs and ATUs, 29 faults were observed
in at least 20% of the equipment in the study data set. On
average, FDD reports three faults per AHU and one fault
per ATU each month (median 245 airside faults per building
per month). These results indicate the high quantity of faults
reported, despite the study being limited only to AHU and
ATU faults (i.e., excluding chillers, pumps, cooling towers,
boilers, etc.). FDD technology can help building operators
identify and prioritize reported faults, focusing on those that
are most important to equipment health, comfort, energy and
emissions. For example, a faulty AHU supply air tempera-
ture sensor (found to be both common and persistent in this
study) could make occupied space temperature uncomfort-
able, and/or require excess reheat energy for terminal units.
As another example, a valve that is cycling due to sensor
error or a control sequence problem would be more likely to
fail over time.

Support, services, and development recommended for FDD

FDD technology is designed to automate the process of
identifying faults; operators are then tasked with addressing
those faults. Emerging fault correction capabilities have been
developed and demonstrated for a subset of HVAC fault
types (Lin et al. 2020; Pritoni et al. 2022; Fernandez et al.
2009). Broader deployment of existing automated fault

correction routines could significantly reduce the quantity of
reported faults. For example, faults with SAT, discharge air
temperature (DAT), and zone sensors’ calibration may be
resolved automatically, and also heating or cooling coil
valve hunting faults.

Based on the large number of HVAC system faults
reported per month, developing fault prioritization methods/
algorithms could have a significant impact on maximizing
the benefits of FDD. Fault prioritization can ensure limited
operational budgets are allocated where most beneficial for
occupant comfort, maximizing operational savings, improv-
ing health, and increasing the reliability of buildings as grid
assets. For example, zone temperature sensor faults, and
ATU DAT sensor faults would impact occupant comfort and
the ability to enact temporary zone temperature adjustments
to reduce demand in response to a grid signal.

The naming taxonomy and metrics developed under this
study, particularly Pct_Affected and MPTF_Affected, may
be useful for FDD developers to assess fault reporting across
their installed customer base. In contrast to this study, FDD
vendors would have access to more detailed fault definitions
and building automation system (BAS) trend data, as well as
direct owner contact, so they can explore macro trends to
inform better fault trigger thresholds, potential for predictive
maintenance, insights into faults being ignored, root cause of
lingering or recurrent faults, etc. This would require FDD
developers to standardize their fault naming conventions &
hierarchy, analogous to ongoing industry efforts to standard-
ize BAS control point naming schemas/hierarchies.

Priorities for O&M staff time and attention

The results of this study emphasize the importance of sched-
uled sensor calibration. This is especially true of SAT sen-
sors and airflow sensors for which common and persistent
faults were reported. Beyond these two priority sensor types,

Fig. 8. Scatter chart of Pct_Affected vs. MPTF_Affected for AHU faults, highlighting the six faults that are both common (Pct_
Affected �20%) and persistent (MPTF_Affected �20%).

Volume 29, Number 10, November - December 2023 1035



faults relating to mixed air temperature (MAT) sensors, out-
door air temperature (OAT) sensors, and CO2 sensors were
common or persistent. Sensor calibration issues not only
affect HVAC system performance, they can also affect FDD
algorithms’ ability to detect and diagnose more complex
faults.

Anecdotally, economizer faults are believed to be a com-
mon HVAC problem area; the fault prevalence study results
reinforce anecdotal evidence. Six economizer faults were
observed to be common and five were persistent, with one
economizer fault falling into both categories. A total of 18
economizer-related fault types were reported overall.

While not common, we observed several faults relating to
relative humidity and airflow being persistent. This persist-
ence aligns with anecdotal evidence that RH sensors and air-
flow measurement are prone to faults. These components are
not always present in HVAC systems but, where installed,
the results of this study suggest that O&M staff should
develop remediation plans to deal with faults when they
occur.

Recommended metrics for assessing FDD algorithm
performance

Common test metrics such as false negative, false positive,
and true positive can be applied to FDD algorithms’ detec-
tion and diagnostic performance. Given the high quantity of
faults reported in this study, we hypothesize that false nega-
tive reporting is not likely a major practical issue. Gaining a
deeper understanding of false positive and true positive
detection would be valuable, especially for higher impact
faults, but this area of research was out of scope for this
study.

Study limitations

As noted earlier in the Method section, we consulted closely
with study data providers to minimize data interpretation
risks. Direct communications with data providers were com-
plemented with data quality analysis to identify and address
potential data anomalies. There remain some potential sour-
ces of uncertainty in results, however. For example, FDD
tools may report false positives and false negatives, and
there are likely differences in fault trigger thresholds
between FDD tools. Our communications with data pro-
viders and data quality analysis were intended to reduce
uncertainty in reported results, though it is not feasible to
quantify that uncertainty within the scope of this work. It
should also be noted that even though the study dataset is
large and covers many building types and climate zones, it
is a limited sample and not demonstrated to be representa-
tive of the U.S. commercial building stock; further, the data
covers buildings/equipment of different ages/conditions and
data monitoring periods varied between equipment. Study
data may also be subject to availability bias; for example,
building owners who have chosen to invest in FDD deploy-
ment may be more likely to own buildings that perform
above average. By design, this study accepted and managed
these data limitations as tradeoffs against the objective to

source a large, highly detailed dataset from FDD historians
(as opposed to gathering first-hand rigorous observations
with lower uncertainty but limited to a very small number of
buildings due to high cost).

Another limitation in the study results is the lack of data
on why certain faults are reported persistently (i.e., having
high MPTF_Affected values, as seen in Figures 6 and 7).
We can speculate on whether these faults are tolerated by
building operators because they are perceived to have lim-
ited impact on building performance, are challenging and/or
expensive to fully diagnose and resolve, or due to other rea-
sons. Further research may be warranted in this area, in
order to adequately prioritize and address root causes for
persistent reporting.

Conclusions and future work

By mining FDD software output from multiple sources, har-
monizing the outputs, and aggregating them using newly-
developed fault reporting metrics, this study documents
HVAC fault reporting characteristics at a level of detail not
present in prior published work and also with a large
breadth, from the combination of multiple vendors’ data.
With a focus on AHUs and ATUs, we characterized the
quantity, type, and persistence of the most commonly
reported faults. FDD software has been demonstrated to
achieve significant savings in prior studies, and the results
of this study complement energy savings data with detail on
the high incidence of certain faults and the overall diversity
of fault types. Moreover, gaining an empirical understanding
of the quantity of faults reported on a monthly basis adds
quantitative data to prior reporting that building analytics
software users are at risk of experiencing data overload
(Kramer et al. 2020). Study results also reinforce the need to
ensure that operations teams are adequately resourced (with
in-house support or other third party commissioning/main-
tenance providers) to rapidly address reported faults and
maintain optimal building performance. Recommended areas
for further research and development include:
� Extending research on fault reporting characteristics:

� Extension of fault prevalence study to other HVAC
equipment;

� Deeper investigation of fault persistence, intermit-
tency, and recurrence;

� Characterization of the intensity of faults, such as
the degree of sensor bias;

� Study of the drivers that may correlate with fault
prevalence.

� FDD Algorithm development:
� New fault self-correction algorithms for high preva-

lence faults;
� Active testing and inference-based solutions to

improve the diagnosis of behavior-based faults;
� Standardized fault prioritization algorithms.

Estimation of nationwide energy and cost impacts associ-
ated with the distribution of faults found in this study may
also be valuable to policymakers and program implementers
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as they work toward aggressive greenhouse gas reduction
goals.
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