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Abstract A variety of techniques have been proposed to
train machine learning classifiers that are independent of a
given feature. While this can be an essential technique for
enabling background estimation, it may also be useful for
reducing uncertainties. We carefully examine theory uncer-
tainties, which typically do not have a statistical origin. We
will provide explicit examples of two-point (fragmentation
modeling) and continuous (higher-order corrections) uncer-
tainties where decorrelating significantly reduces the appar-
ent uncertainty while the true uncertainty is much larger.
These results suggest that caution should be taken when using
decorrelation for these types of uncertainties as long as we do
not have a complete decomposition into statistically mean-
ingful components.
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1 Introduction

Modern machine learning classifiers hold great promise for
increasing the sensitivity of high energy physics data anal-
yses [1–8]. Typically, a classifier is trained using simulated

a e-mail: aishikghosh@lbl.gov
b e-mail: bpnachman@lbl.gov (corresponding author)

data and then the number of events passing a fixed threshold
on the classifier output in data and in simulation is counted.
A comparison between these counts is then used to esti-
mate model parameters such as masses, couplings, and new
physics cross sections. Theoretical and experimental uncer-
tainties on the final result are accounted for by varying an
aspect of the simulation and recomputing the predicted count
using the nominal classifier. The uncertainties from the sim-
ulation model used for training affect the optimality of the
classifier itself [9], but typically do not cause a bias and can be
accounted for [10] by using parameterized classifiers [11,12].

A variety of techniques have been proposed to render
a classifier independent of a given feature [13–24]. This
has become an essential tool for resonance searches, where
thresholds on the classifier output must not sculpt bumps in
a given spectrum so that the Standard Model background
can be estimated using sideband fits. The same methodology
has also been proposed to reduce the impact of systematic
uncertainties on classifier-based inference [25–28]. If such a
classifier does not depend on a particular nuisance parame-
ter, then the count computed when the parameter is varied
will be the same as the nominal value. This means that the
uncertainty on the parameter(s) of interest will appear to be
reduced.

In the case that the systematic uncertainty is decomposed
into its most fundamental components, each with a clear sta-
tistical interpretation, the above would be the end of the story.
The systematic uncertainty can be reduced through decorre-
lation and this would be useful if the classification perfor-
mance does not rely strongly on the value of the nuisance
parameters (otherwise, it may be better to profile instead
[10]). However, theory uncertainties almost never satisfy
these conditions. These uncertainties are the result of approx-
imations when performing calculations and are also due to
parameter freedom in phenomenological models that are
needed when first-principles calculations are not possible.
The canonical examples for these two types of uncertainties
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are perturbative uncertainties from series truncation and frag-
mentation modeling. For the former, calculations are trun-
cated at a fixed order in perturbation theory and the result
depends on unphysical scales. These scales are varied typ-
ically by factors of two in order to determine the uncer-
tainty. Since the scales can be varied continuously, we refer to
these as ‘continuous uncertainties’. Fragmentation modeling
uncertainties are often evaluated by comparing two differ-
ent models, such as the string model [29,30] in the Pythia

[31,32] parton shower Monte Carlo (PSMC) and the cluster
model [33,34] in the Herwig [35,36] PSMC. These varia-
tions are then interpreted as a one standard deviation uncer-
tainty and combined with other sources of uncertainty in a
final statistical analysis. Since only two variations of frag-
mentation modeling are usually available, we refer to these
as ‘two-point uncertainties’.

Continuous and two-point variations are ad hoc techniques
commonly used in the particle physics community to have
some handle over these difficult-to-estimate uncertainties.
Generating multiple simulations from different fragmenta-
tion models allows us to probe two points in an under-
explored theory space of fragmentation models. The dif-
ference between these two models provides only a rough
estimate of how different nature may be to either of them.
Varying unphysical scales would not change the observed
physics if the full calculations could be performed. The sen-
sitivity of our simulations to these scale variations therefore
provides a rough estimate of the uncertainty associated with
truncating the calculations at lower order. While the numer-
ical value of uncertainties coming from statistically inter-
pretable origins is well trusted, the kind of theoretical uncer-
tainties discussed above only provide a rough estimate. This
is in contrast to experimental nuisance parameters (that give
rise to experimental uncertainties), including the jet energy
scale. Such nuisance parameters are constrained using cal-
ibration datasets. The statistical uncertainty of the control
region becomes a systematic uncertainty for the experimental
nuisance parameters. This justifies treating the correspond-
ing nuisance parameters as (approximate) Gaussian random
variables. A detailed discussion of the origin and validity of
theory uncertainties is outside the scope of this paper.

We examine the interplay of decorrelation with theory
uncertainties. In particular, we will show that constructing
a classifier that is independent of a given theory nuisance
parameter does not mean that the theory uncertainty is zero.
Instead, it means that the only handle to determine the the-
ory uncertainty is eliminated. Figure 1 illustrates the intuition
behind why this might be the case. As concrete examples, we
study fragmentation modeling in the context of classifying
Lorentz-boosted W boson jet from QCD jets and factoriza-
tion scale variations in the context of classifying t-channel
single top quark events from W+jets events.

This paper is organized as follows. Section 2 briefly intro-
duces existing decorrelation techniques. Numerical exam-
ples of both two-point and continuous uncertainties are pro-
vided in Sect. 3. The paper ends with conclusions and outlook
in Sect. 4.

2 Decorrelation techniques

Let x ∈ R
n be the features used for classification. Suppose

that there is a feature1 m ∈ R that we want to be decorrelated
from a classifier f (x) : R

n → R. One can achieve this
decorrelation by minimizing the following loss functional
L:

L[ f (x)] =
∑

i∈S
Lclass( f (xi ), 1)+

∑

i∈B
w(mi )Lclass( f (xi ), 0)

+ λ
∑

i∈B
Ldecor( f (xi ),mi ), (2.1)

where S and B represent signal and background events,
respectively. The loss Lclass is the classifier loss and is
often the binary cross entropy loss Lclass( f (x), y) =
y log( f (x))+(1− y) log(1− f (x)). The function w(m) rep-
resents a weighting function and λ represents a hyperparam-
eter that controls the strength of the decorrelation. Finally,
Ldecor is a term that penalizes any dependence between f and
m. This last term in Eq. (2.1) is schematic as the decorrela-
tion penalty often acts at the level of batches of events and
not individual examples. Standard classification corresponds
to w(m) = 1 and λ = 0. Decorrelation approaches include:

• Planing [37,38]: λ = 0 and w(mi ) ≈ pS(m)/pB(m) so
that the marginal distribution of m is non-discriminatory
after the reweighting.

• Adversaries [16,25,26,28]: w(m) = 1, λ < 0, and Ldecor

is the loss of a second neural network (adversary) that
takes f (x) as input and tries to learn some properties of
m.

• Distance Correlation (DisCo) [19,23]: w(m) = 1, λ > 0,
and the last term in Eq. (2.1) is the distance correlation
[39–42] between f (x) and m for the background.

• Flatness [21]: w(m) = 1, λ > 0, and Ldecor =∑
m bm

∫ |Fm(s) − F(s)|2 ds where the sum runs over
mass bins, bm is the fraction of candidates in bin m, F
is the cumulative distribution function, and s = f (x)
is the classifier output. This is generalized to Moment
Decorrelation (MoDE) in Ref. [24] to allow for a given
dependence of f on m.

1 This also applies to cases where m is multi-dimensional, but we
restrict to the one-dimensional setting here for simplicity and because
it is widely used.
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Fig. 1 An illustration of the potential impact of training a classifier
to be decorrelated to two-point uncertainties. The distance between
Pythia and Herwig is treated as the uncertainty. Left: Without decor-
relation, the uncertainty covers nature even if nature does not lie on
the line connecting Pythia and Herwig. Right: The distance between

Pythia and Herwig is reduced due to the decorrelation requirement,
resulting in a smaller estimate of the uncertainty, which no longer cov-
ers nature. These diagrams are meant only to be intuitive illustrations

In the examples below, we focus on the adversarial case
as it is the most explored in the literature. However, the same
ideas apply to all decorrelation methods.

3 Numerical examples

All neural networks are implemented using Keras [43] with
the Tensorflow backend [44] and optimized with Adam

[45].

3.1 Two-point uncertainty: fragmentation modeling

General purpose event generators use perturbation theory
when they can and phenomenological models to describe
non-perturbative effects such as hadronization. The standard
procedure for estimating the uncertainty due to the model
choice is to compare the predictions from two different mod-
els. This uncertainty is typically largest when the analysis
strategy exploits subtle correlations in the high-dimensional
radiation pattern. For example, tagging the origin of high
pT jets is a widely-studied scenario [46–48] for machine
learning whereby the detailed jet substructure can be used
for classification. In this section, we study Lorentz-boosted
W boson tagging, where the signal is hadronically decaying,
high pT W bosons and the background is generic quark and
gluon jets. A single large-radius jet is often sufficient to cap-
ture most of the W boson decay products and its two-prong
substructure is distinct from typical quark and gluon jets.

Samples were generated with MadGraph5_aMC@NLO
2.7.3 [49] for modeling pp collisions at

√
s = 13 TeV. The

NNPDF23_nlo_as_0118 [50] parton distribution func-
tion is used. The hard-scattering events are passed to Pythia

8.303 [32] to simulate the parton shower and hadronization,
using the default settings. Herwig 7.2.2 [35] with angularly-
ordered showers and Sherpa 2.2.2 [51,52] with default set-
tings are also used to model the parton shower and hadroniza-
tion.2 The jets are clustered by Pyjet [53,54] and the anti-
kt [55] algorithm with radius parameter R = 1.2.

A set of high-level jet substructure features are used to dis-
tinguish W jets from QCD jets. These features are illustrated
in Fig. 2 and briefly described in the following. The kine-
matics are probed with the jet mass and transverse momen-
tum. Jet substructure observables include n-subjettiness ratio
τ21 = τ2/τ1 [56,57], and energy correlation function ratios
D(β)

2 = e(β)
3 /(e(β)

2 )3 [58] and C (β)
2 = e(β)

3 /(e(β)
2 )2 [59],

where ei is the normalized sum over doublets (i = 2) or
triplets (i = 3) of constituents inside jets, weighted by the
product of the constituent transverse momenta and pairwise
angular distances. For this analysis, we consider both β = 1
and β = 2.

As expected, the mass peaks near the W boson mass of
80 GeV [60] for the signal and has a broad distribution for
the background. The signal peak is slightly higher than the
W boson mass due to underlying event and other event con-

2 While Herwig and Sherpa both use a cluster model for fragmen-
tation, the actual Sherpa implementation is based on [34] and differs
from Herwig in several respects.
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tamination. This could be mitigated with grooming [61–65].
The jet pT is not very discriminating by construction. The
two-prong nature of the signal jets is quantified by low values
of τ21, D2, and C2.

A classifier is trained using the seven features presented
in Fig. 2 to distinguish W jets from QCD jets. The nomi-
nal classifier is trained using the Pythia simulation and is
parameterized as a neural network with two hidden layers
of 50 nodes each. Rectified Linear Unit (ReLU) activations
are used for the intermediate layers and the final output is
passed through a sigmoid function. The binary cross entropy
loss is used for training with a batch size of 100 and for 20
epochs. About 1 million events are used for each generator,
with 50% for training and 50% for testing. None of these
parameters were optimized, although minor variations were
found to have little impact on performance. The performance
of this nominal classifier evaluated on Pythia, Herwig, and
Sherpa is shown in Fig. 3. We focus on the region near
10–15% signal efficiency, which is a typical working point
for LHC analyses. In this range, the background rejection
(inverse QCD efficiency) is between a few hundred and a
few thousand.

A second network is trained as part of an adversarial
approach. This second network uses both Pythia and Her-

wig events and minimizes the following loss:

L[ f, g] = −
⎛

⎝
∑

i∈W
log( f (xi )) −

∑

i∈QCD

log(1 − f (xi ))

⎞

⎠

+ λ

⎛

⎝
∑

i∈Pythia

log(g( f (xi ), yi ))

−
∑

i∈Herwig

log(1 − g( f (xi ), yi ))

⎞

⎠ , (3.1)

where f is the classifier, g is the adversary, yi = 0 for W jets
and yi = 1 for QCD jets. Furthermore, λ = 10. Note that
unlike Eq. (2.1), Eq. (3.1) has the labels as part of the function
for the adversary. This means that the labels for the classifier
are given as an input feature to the adversary, which allows
the adversary to potentially learn separate decision functions
for W jets and QCD jets. The classifier network f has the
same composition as the nominal classifier described above:
two hidden layers with 50 nodes each. The adversary has
five hidden layers with 50 nodes each. As W jets are more
different from QCD jets than Pythia jets are from Her-

wig jets, the adversary has a more difficult task, which is
why g has a more complex architecture. It was found that
adding the label yi to g as well as multiplying the gradient
for the adversary by 10 improved performance and stabil-
ity. The minimax nature of the optimization in Eq. (3.1) is
implemented by connecting the adversary to the classifier via

a gradient reversal layer [66] that multiplies the gradient by
a fixed negative constant during backpropagation. The clas-
sifier network is then extracted after training for 20 epochs.
When λ = 0, the performance was found to be the same as
for the nominal case.3

Figure 3 shows that the performance of the adversari-
ally trained classifier is worse than the nominal case. This
drop in performance is the cost for building a classifier that
is insensitive to fragmentation model variations. The differ-
ence between Pythia and Herwig for the nominal classifier
is about 40% at 10% W efficiency while it is only about
20% for the adversarially trained network.4 The reduced
difference may give the impression that the adversarially
trained classifier has successfully learnt to be less sensitive
to fragmentation model variations. However, the difference
between Sherpa and Pythia is nearly the same for the nom-
inal and the adversarially trained classifier. This means that
the ‘true’ uncertainty would be significantly underestimated
if only Pythia and Herwig were available. It is often the
case in an LHC analysis that only two fragmentation models
are available. While the choice of Sherpa as the indepen-
dent third generator is arbitrary, it is simply used in this study
as a third point in the under-examined theory space of frag-
mentation modeling (Fig. 1), in order to demonstrate that the
difference in performance of the classifier on an independent
third point (whether another generator or nature) may not
be well decorrelated. The result demonstrates the danger of
training decorrelation methods on the same two generators
that are then used to also estimate the theory uncertainty.

A curious reader may wonder why Sherpa does not lie
within the range spanned between Pythia and Herwig even
for the nominal classifier (also alluded to in the illustration in
Fig. 1). The uncertainties from these two generators of course
do not restrict all other generators to lie within them, it treated
as one standard deviation uncertainty5 not as the maximum
possible deviation. This study however reveals that apply-
ing decorrelation techniques would dramatically reduce the
estimate of the uncertainty without necessarily reducing the
differences to other generators or to nature.

3 Note that when λ = 0, the adversarial setup is slightly different than
the nominal configuration because both Pythia and Herwig are used
for training. This has little impact on the results – see Appendix A.
4 It is possible this could be reduced with further hyperparameter tun-
ing. We found some parameters that made this smaller, but with sig-
nificant variation across trainings. The configuration reported here was
found to be robust to retraining.
5 To test the reliability of this uncertainty, one would need a large num-
ber of generators that span all possible ways of describing fragmentation
modeling, and check how often they lie within the uncertainty bands;
this is not possible in reality.
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Fig. 2 The seven features used
to train a classifier to distinguish
boosted W boson jets from
generic QCD jets events

Fig. 3 The QCD rejection (inverse QCD efficiency) as a function of the
W jet efficiency for classifiers applied to Pythia,Herwig, and Sherpa

jets. The solid lines correspond to the nominal classifier trained with
Pythia while the dotted lines correspond to the adversarial setup that
uses both Pythia and Herwig (Sherpa is a hold-out dataset). The bot-
tom panel shows the pull, which is the difference between Pythia and
Sherpa divided by the uncertainty defined by the difference between
Pythia and Herwig. While adversarial training reduces the difference
in performance between Pythia and Herwig, the difference to Sherpa
remains large, indicating that the true uncertainty will be underestimated
if a third independent sample is unavailable

3.2 Continuous uncertainty: higher-order corrections

The uncertainty from truncating the order of a perturbative
calculation is typically estimated by varying the unphysical
scales. Usually, there are renormalization scale and factor-
ization scale uncertainties. For simplicity, we focus here on
the factorization scale, which dictates the separation between
long- and short-distance physics. The standard procedure is
to set the factorization scale to the typical momentum transfer
in the problem.

To study the impact of factorization scale variations, we
consider measurements of t-channel single top quark produc-
tion. One of the main backgrounds for this process is W+jets
production and machine learning is already used by ATLAS
[67] and CMS [68] to enhance the signal. The semileptonic
channel is studied as it has a much smaller background than
the all-hadronic channel. The final state is characterized by
an isolated lepton, missing transverse momentum, and jets.

Events are simulated using MadGraph5_aMC@NLO
(MG5_aMC) 3.1.1 [49] interfaced with Pythia 8.244 [32]
for the parton shower andDelphes 3.4.2 [69–71] for detector
simulations with the default CMS card. Particle flow candi-
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Fig. 4 The 12 features used to train a classifier to distinguish single top events from W+jets events

dates are used as inputs to jet clustering, implemented using
FastJet 3.2.1 [54,72] and the anti-kt algorithm [55] with
radius parameter R = 0.5. For simplicity, W bosons are
forced to decay into muons and events are required to have
at least one isolated and identified muon using the default
reconstruction algorithm in Delphes. Usually, one uses the
highest precision method possible and then scale variations
give the uncertainty from the finite truncation of the perturba-
tive series. In order to compare with the ‘true’ uncertainty, we

artificially truncate the series early and then use the higher-
order calculation as the reference uncertainty. In particular,
the nominal simulation is performed at leading order (LO)
in the strong coupling constant and then an additional sam-
ple for the t-channel process is simulated at next-to-leading
order (NLO).

For the machine learning, events are represented by
12 numbers: the three-momentum of the muon, the four-
momentum of the leading two jets, and the scalar sum of
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Fig. 5 The impact of factorization scale variations by a factor of 1/2
and 2, in increments of 0.1 (lighter colors are lower scales). In each
case, histograms of the given observable with a particular factorization

scale are normalized to unity and divided by the normalized, nominal
histograms from Fig. 4. The single top NLO/LO differences are shown
in grey, with the band representing the statistical uncertainty
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the transverse momenta of all jets (HT ). Momenta are speci-
fied by pT , η, and φ. Histograms for each of the observables
for single top t-channel and W+jets are shown in Fig. 4. The
jet pT spectra are harder for single top compared with W jets
and the muons (jets) tend to be more central (forward) for
single top compared with W+jets.

The impact of factorization scale variations is shown in
Fig. 5. All variations are normalized to unity, as the impact
on the total cross section is not relevant for per-event clas-
sification performance. As expected, the variation for all φ

observables is negligible and the biggest variation occurs for
the transverse momenta.

The default performance for a classifier trained to distin-
guish single top events from W+jets events is shown in the
top plot of Fig. 6. The W+rejection at a single top efficiency
of 10% is about 75, with about 15% lower rejection when
the single top is simulated at NLO. Similarly to the fragmen-
tation modeling, an adversarial network is also trained to
reduce the sensitivity to factorization scale variations. Since
the scale variation is now continuous, the adversary is trained
using the mean squared error:

L[ f, g] = −
∑

μ

⎡

⎣

⎛

⎝
∑

i∈LO single top

wi (μ) log( f (xi ))

−
∑

i∈LO W+jets

wi (μ) log(1 − f (xi ))

⎞

⎠

+ λ
∑

i∈LO single top

wi (μ) (g( f (xi ), yi ) − μ)2

⎤

⎦ , (3.2)

where f is the classifier, g is the adversary, w are weights,
and μ is the relative factorization scale. For each event, we
can vary the factorization scale through per-event weights wi

and we use values μ ∈ {0.5, 0.6 . . . , 1.9, 2} for each event.
The adversarially trained classifier is therefore required to
reduce the difference in its performance between samples
coming from this entire range of scale variations. All hyper-
parameters are the same as for the fragmentation modeling
example shown in the previous section. The performance
of the adversarially trained classifier is shown in the bot-
tom plot of Fig. 6. The overall performance is reduced by
about a factor of 2 and the sensitivity to factorization scale
variations is also significantly reduced by a factor of two or
more. While the narrower uncertainty bands may give the
impression that the uncertainty has been reduced, in truth the
difference between the LO and NLO curves is about the same
or bigger than in the nominal case. This means that the ‘true’
uncertainty would be significantly underestimated using the
adversarially trained approach.

A curious reader may again wonder why the NLO curve
does not lie within the uncertainty band coming from scale

Fig. 6 Top: W+jets rejection (inverse W+jets efficiency) as a function
of t-channel single top efficiency for a nominal classifier. The blue band
represents the uncertainty estimated by varying the factorization scale
by 1

2 and 2 at LO. Bottom: the same as the top, but for the adversarially
trained classifier. Adversarial training only reduces the difference in
performance to factorization scale variations, not the difference to NLO,
indicating that adversarial training provides a reduced estimate of the
true uncertainty, which does not translate to a reduction in the true
uncertainty

variations even for the nominal classifier. As in the previous
study, the uncertainty bands do not reflect the maximum pos-
sible uncertainty but should rather be interpreted as a prob-
abilistic estimate. A study of whether these bands estimates
correctly the frequency of higher order computations lying
within these bounds is left for a future study. In addition,
for this particular example the focus was only on factor-
ization scale variations. This study reveals how decorrela-
tion reduces only the estimate of the uncertainty from scale
variations and this does not necessarily translate to actually
reducing the difference to NLO.

4 Conclusions and outlook

Decorrelation is a powerful tool for ensuring that machine
learning classifiers can be used in practice to enhance analy-
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sis sensitivity. However, this tool must be used with caution.
We have shown that decorrelation methods may result in sig-
nificantly underestimated theory uncertainties when using
standard approaches to theory uncertainty estimation. In the
cases we explored, the estimated uncertainty uses two sam-
ples while the ‘true’ uncertainty relies on a third sample that
is not part of the training. One could potentially incorporate
the third sample into the decorrelation procedure, but there
will always be another variation that is not part of the training
as long as the full theory uncertainty decomposition is not
known. Until we know the complete set of theory nuisance
parameters, it seems prudent to not decorrelate away these
uncertainties.

While this paper explicitly studied the case for decor-
relation, this cautionary tale remains relevant for other
uncertainty or inference aware machine learning approaches
[9,10,20,73–82] if they are being considered for such theory
uncertainties.

Software and data

The software and samples for this paper can be found at
https://github.com/hep-lbdl/TheoryUncertDecorrelation.
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Appendix A: Training with λ = 0

Figures 7 and 8 show the impact of using the adversarial
setup, but with λ = 0, i.e. the adversary is turned off. The
only difference with respect to the nominal configuration is
that Pythia and Herwig (factorization scale variations) are

Fig. 7 QCD rejection (inverse QCD efficiency) as a function of W
efficiency (study described in Sect. 3.1) for the nominal classifier and
for an adversarially trained classifier with λ = 0. The lower panel is the
absolute relative difference for each sample between the nominal and
adversarially trained classifiers

Fig. 8 W+jets rejection (inverse W+jets efficiency) as a function of t-
channel single top efficiency (study described in Sect. 3.2) for a nominal
classifier (solid lines) and for an adversarially trained classifier (dotted
lines) with λ = 0. The performance on LO samples is shown in blue and
on NLO samples in red. The lower panel is the relative difference for
LO and NLO samples between the nominal and adversarially trained
classifiers

used instead of just Pythia (μ = 1) for the nominal for the
two-point (continuous) uncertainty example.
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