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BIOINFORMATICS

Splicing predictions reliably classify different types
of alternative splicing

ANKE BUSCH"? and KLEMENS J. HERTEL'

'Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-4025, USA
“Institute of Molecular Biology (IMB), D-55128 Mainz, Germany

ABSTRACT

Alternative splicing is a key player in the creation of complex mammalian transcriptomes and its misregulation is associated with
many human diseases. Multiple mRNA isoforms are generated from most human genes, a process mediated by the interplay of
various RNA signature elements and trans-acting factors that guide spliceosomal assembly and intron removal. Here, we
introduce a splicing predictor that evaluates hundreds of RNA features simultaneously to successfully differentiate between
exons that are constitutively spliced, exons that undergo alternative 5" or 3’ splice-site selection, and alternative cassette-type
exons. Surprisingly, the splicing predictor did not feature strong discriminatory contributions from binding sites for known
splicing regulators. Rather, the ability of an exon to be involved in one or multiple types of alternative splicing is dictated by
its immediate sequence context, mainly driven by the identity of the exon’s splice sites, the conservation around them, and its
exon/intron architecture. Thus, the splicing behavior of human exons can be reliably predicted based on basic RNA sequence

elements.

Keywords: alternative splicing; splicing predictor; bioinformatics; support vector machine

INTRODUCTION

Alternative splicing results in the production of multiple
mRNA isoforms from a single pre-mRNA, thereby signifi-
cantly enriching the proteomic diversity of higher eukaryotic
organisms. It is carried out by the spliceosome, which cata-
lyzes the removal of noncoding intronic sequences and con-
catenates remaining exons to generate the mature mRNA
(Black 2003). Of the ~25,000 genes encoded by the human
genome (International Human Genome Sequencing Consor-
tium 2004), >90% are believed to produce transcripts that are
alternatively spliced (Pan et al. 2008; Wang et al. 2008). The
most prevalent types of alternative splicing are the variable
inclusion of an entire exon (cassette exon), the selection of
alternative splice sites upstream of or downstream from the
3’ or the 5 splice site, as well as intron retention (Wang
et al. 2008). Defects in splicing lead to many human genetic
diseases (Krawczak et al. 1992; Cartegni et al. 2002; Faustino
and Cooper 2003) and splicing mutations in a number of
genes involved in growth control have been implicated in
multiple types of cancer (Carstens et al. 1997; Mercatante
et al. 2001; Wang et al. 2003; Xu and Lee 2003; Bartel et al.
2004; Brinkman 2004). Insights into the basic mechanisms
of pre-mRNA splicing and splice-site recognition are there-
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fore fundamental to understanding regulated gene expression
and human disease.

Regulation of the splicing process relies on the activity of
multiple RNA signature elements, which include the strength
of splice sites (Yeo and Burge 2004), the number of enhancers
and silencers associated with the splicing unit (Black 2003),
the exon/intron architecture (Fox-Walsh et al. 2005), RNA
secondary structure (Eperon et al. 1988; Clouet d’Orval et al.
1991; Hiller et al. 2007; Shepard and Hertel 2008; McManus
and Graveley 2011), and the process of transcription by
RNA polymerase II (Kornblihtt 2005). Little is known about
the extent to which these parameters influence each other to
define the overall probability of exon recognition.

One goal in the splicing field is the creation of a “splicing
code” that predicts splicing behavior based on RNA sequence
alone (McManus and Graveley 2011). Several attempts of
such a splicing code generation have been described. For ex-
ample, Sorek et al. (2004) evaluated seven RNA features,
which were combined to classify cassette exons with a true
positive rate of 50% at a false positive rate of 1.8%. This ini-
tial classifier was refined by adding additional features and
filtering for conserved exons (Dror et al. 2005) to improve
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prediction accuracy to a true positive rate of 50% for a false
positive rate of 0.5%. The Blencowe and Frey laboratories
reported on their efforts to increase the performance of
the splicing code (Barash et al. 2010). Equipped with exten-
sive microarray results that recorded the inclusion levels of
>3500 cassette-type alternative exons from 27 diverse mouse
tissues, an algorithm based on ~200 features capable of pre-
dicting tissue-dependent changes in alternative splicing was
introduced. This work was further improved using a Bayesian
method on 1014 RNA features (Xiong et al. 2011; Barbosa-
Morais et al. 2012).

While previous approaches impressively demonstrated
that the simultaneous analysis of hundreds of splicing fea-
tures supported cassette splicing predictions across different
tissues, there is still significant room for improvement. First,
the performance of the splicing code can be improved upon
by adding new sequence features or by applying alternate
classifiers (Xiong et al. 2011). Second, previous work only
concentrated on differentiating between cassette-type exons
and constitutive exons across various tissues or cell types,
thus ignoring other major classes of alternative splicing, such
as alternative 5’ or 3’ splice-site selection. To classify the alter-
native splicing behavior of internal exons we present the de-
sign and performance evaluation of a splicing predictor that
differentiates between constitutive, cassette-type, and, for the
first time, alternative 5" and 3’ splice-site exons. Using sup-
port vector machines we identified RNA sequence features
that characterize each category of alternative splicing.

RESULTS

Splice-site usage and exon inclusion levels

We analyzed the usage level of alternative 3" and 5’ splice sites
(referred to as “splice-site usage levels”) as well as the in-
clusion level of cassette exons (referred to as “exon inclusion
levels”) using our data sets of alternative splicing events
(Materials and Methods). As shown in Figure 1, the vast ma-
jority of alternative splicing events are biased toward high

A alternative 3’ splice site exons B alternative 5’ splice site exons C cassette exons

(>80%) or low (<20%) splice-site usage/exon inclusion lev-
els, an observation consistent with inclusion levels derived
from deep sequencing of individual cell lines (Shepard et al.
2011). This raises the question whether all alternative splicing
events should be placed into the same training data set or
whether it would be more advantageous to split exons into
sets of high and low inclusion exon sets. Based on the bimo-
dal distribution of alternative splicing events we filtered our
training set of alternatively spliced exons into high inclusion
exons or high usage splice sites (>80% inclusion/usage) and
low inclusion exons or low usage splice sites (<20% inclu-
sion/usage) to train support vector machines (SVMs).

Splicing code

To create a splicing code that differentiates between various
types of alternative splicing, we applied the concept of a sup-
port vector machine (SVM), a widely used machine learning
technique. A SVM is a binary classifier that uses input data for
training and is then able to make predictions on new unclas-
sified data based on the training data. Here, we applied it to
distinguish between different classes of exons initially using
262 unique RNA features (Supplemental Table 1). To esti-
mate the accuracy of the SVMs, we determined the area un-
der the ROC curve (AUC), which plots the true positive rate
(TRP) versus the false positive rate (FPR). When comparing
constitutive exons and exons with a rarely used alternative 3
or 5’ splice site, the splicing code was very efficient in differ-
entiating between the splicing classes, generating ROC curves
with an area under the curve (AUC) of 0.939 and 0.949,
respectively (Table 1; Fig. 2A,B). In contrast, exons with fre-
quently used alternative 3’ or 5’ splice sites are much harder
to distinguish from constitutive exons (Table 1; Fig. 2A,B).
The accuracy of classifying between exons with a moderately
used alternative 3’ or 5 splice site (i.e., exons with an alterna-
tive 3’ or 5 splice-site usage up to 80%) and constitutive ex-
ons is also high (Fig. 3). We conclude that exons with a highly
used alternative splice site behave very much like constitutive
exons and the currently used RNA features do not allow effi-
cient separation. However, the splicing
code is very accurate in differentiating
between constitutive exons and exons
with moderately and rarely used alterna-

cumulative number of events cumulative number of events

FIGURE 1. Splice-site usage (A) and (B) and exon inclusion (C) levels of exons in our data sets.
The plots show the relationship between inclusion/usage levels and the cumulative number of
events. Exons in each set were ordered based on their inclusion/usage level. Cassette exons
were then grouped in sets of 100, exons with an alternative 3" or 5’ splice-site were grouped in

sets of 20 events and averaged.
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(Table 1; Fig. 2C). However, frequently
included cassette exons are practically in-
distinguishable from constitutive exons
(Table 1; Fig. 2C). Furthermore, the ac-
curacy of classifying between constitutive
exons and cassette exons with inclusion
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TABLE 1. Performance of SVMs after a 10% cross-validation
measured as the area under the ROC curve (AUC)

TPR at a TPR at a AUC under

SVM FPRoOf 1%  FPRof 5% ROC
(A) Low inclusion/usage exons

CO-lowALT3 54.0% 77 1% 0.939

CO-lowALT5 48.0% 73.7% 0.949

LowALT3- 71.7% 90.6% 0.975

lowALT5

CO-lowCA 50.3% 85.7% 0.970

LowALL 41.4%° 73.7%" 0.944°
(B) High inclusion/usage exons

CO-highALT3 8.3% 17.1% 0.647

CO-highALT5 8.3% 16.6% 0.690

HighALT3— 4.3% 19.1% 0.690

highALT5

CO-highCA 6.0% 10.9% 0.542

HighALL 5.0%" 13.3%"° 0.629%

Rates are given for the prediction of the alternative event when
compared with constitutive exons. When comparing exons with
an alternative 3’ splice site with exons with an alternative 5" splice
site, rates refer to the performance of alternative 5 splice-site
exons. Abbreviations are used as specified in Materials and
Methods.

“The average of all four classes.

levels in the median range is still high for inclusion levels up
to 60% (Fig. 3C).

Using a combination of several SVMs, we also trained a
classifier (multiclassifier SVM) to differentiate between all
four classes of exons: constitutive, exons with an alternative
3’ or 5 splice site, and cassette exons. Internally, exons of
each category are compared with exons of every other catego-
ry, thus, six two-class SVMs are trained and their results are
combined to make a final prediction. Depending on the exon
class, we obtained excellent classifier performances of AUCs
between 0.922 and 0.958 for rarely included exons and rarely
used splice sites (Table 1; Fig. 2D). As was observed in the
pairwise analysis, this performance drops significantly when
comparing exons with highly used alternative splice sites and
highly included exons (Table 1; Fig. 2E).

These results suggest that the splicing predictor might also
be able to differentiate between different types of alternative
splicing. To test this hypothesis we trained SVMs comparing
cassette-type exons and exons with an alternative splice site.
As was observed for the differentiation between constitutive
and alternatively spliced exons (Fig. 2), the performance is
excellent when comparing rarely included exons and exons
with a rarely used alternative splice site. However, the predic-
tive power drops significantly when comparing highly in-
cluded exons and exons with a frequently used alternative
splice site (Supplemental Fig. 1).

To further test the performance of the SVMs, we derived
alternative splice-site usage and alternative exon inclusion
levels from a HeLa cell mRNA high-throughput sequencing
data set (Shepard et al. 2011) using MISO (Katz et al.

2010). For each splicing category (cassette exons and exons
with an alternative 3’ or 5 splice site) exons were chosen
randomly and their observed alternative splicing phenotype
was compared with SVM predictions. As illustrated in
Figure 4, the SVM predictions correlate very well with the
phenotype of alternative exons with low and intermediate
inclusion or usage levels. We conclude that the SVMs display
an excellent performance for predicting alternative splicing
classes.

Information gain

In addition to using the exon sets to train SVMs, we extracted
the features that showed the highest information gain with
respect to the determination of the exon types. The infor-
mation gain of each feature describes the “worth” of that fea-
ture when predicting the splicing type of an exon. We expect
those features to be part of the basis that dictates the splic-
ing behavior of an exon class. Thus, the RNA features with
the highest information gain can be viewed as the most
important molecular clues to classify exons as constitutive,
as exons using alternative splice sites, or as alternatively in-
cluded exons. When comparing constitutive exons with
alternative 3’ splice-site exons we mainly detected high infor-
mation gain for RNA features that describe the strength of the
3’ splice site (Fig. 5B, left panel). The combined strength of
the 3’ and 5’ splice sites (a value measured by a Maximum
Entropy Score, MES [Yeo and Burge 2004]) shows a high in-
formation gain as well, but presumably this RNA feature
emerges due to the large effect of the 3’ splice site alone,
which has an average 3’ MES of 1.68 for rarely used alterna-
tive 3’ splice sites compared with an average MES of 8.78 for
constitutive 3’ splice sites. In contrast, frequently used alter-
native 3’ splice sites show an average MES of 7.40, a value
much closer to this observed for constitutive 3’ splice sites.
In addition, the conservation around the 3’ splice site has a
significant information gain. While for constitutive exons
the upstream intron is always intronic, these definitions are
not so clear for exons with an alternative 3’ splice site. The
area in between the alternative splice sites can be exonic and
potentially protein coding or intronic and noncoding de-
pending on whether the upstream or downstream splice site
is used. Thus, for alternative 3" splice-site exons the conserva-
tion of the upstream intronic region is much higher than
the intronic conservation of constitutive exons. Based on
similar arguments, the exonic region downstream from al-
ternative 3’ splice sites is expected to display lower conserva-
tion scores than constitutive exons, as verified by our analysis
(Fig. 5B). Thus, the fluctuating exonic character of alternative
exon parts in addition to the presence of as of yet unidentified
cis-acting RNA elements may reflect the phylogenetic differ-
ences between the constitutive and the alternative 3’ splice-
site exon classes. However, none of the evaluated binding
sites for known splicing regulators emerged as features with
significant information gain.

www.rnajournal.org 815
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A constitutive vs. exons with an alternative

B constitutive vs. exons with an alternative

The frequency and strength of possible
alternative 5 splice sites as well as the

exon length complete the top 10 RNA
features dictating alternative 5 splice-
L site exon categorization. As was observed
for alternative 3’ splice-site events, bind-
ing sites for splicing regulatory proteins

did not emerge as RNA features with sig-
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with rarely included cassette exons, the
phylogenetic conservation around the
exon junctions shows by far the highest
information gain and, thus, has the larg-
est influence on the classifier between the
two exon groups (Fig. 5D, left panel).
Constitutive as well as frequently includ-
ed cassette exons show a very high con-
servation within the exon and almost
no conservation outside the exons (Fig.
5D, right panel, see median and quartiles
around the median). In contrast, rarely
included cassette exons show a rather
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FIGURE 2. ROC curves of SVMs comparing constitutive exons (CO) and (A) exons with an al-
ternative 3’ splice site, (B) exons with an alternative 5 splice site, (C) cassette exons, (D) rarely
included cassette exons (lowCA), exons with a rarely used alternative 3’ splice site (lowALT3),
and exons with a rarely used alternative 5 splice site (lowALT5), and (E) frequently included cas-
sette exons (highCA), exons with a frequently used alternative 3’ splice site (highALT3), and exons
with a frequently used alternative 5 splice site (highALT5). The true positive rate (TPR) is calcu-
lated as the number of true positives (TP) divided by the number of positive (P) samples in the test
set. The false positive rate (FPR) is calculated as the number of false positives (FP) divided by the

number of negative (N) samples in the test set.

In analogy to the alternative 3’ splice-site events, only fea-
tures of and around the 5’ splice site show a high informa-
tion gain when comparing constitutive exons with exons
that have a rarely used alternative 5" splice site (Fig. 5C, left
panel). Especially the conservation around the 5’ splice site
shows a strong influence on splicing categorization, while
the conservation downstream from the 5" splice site has a
larger information gain than the upstream exonic conser-
vation (Fig. 5C). In addition, a strong influence of the 5
splice-site strength can be seen (an average MES of 8.28 for
constitutive 5 splice sites and an average MES of 0.15 for
rarely used alternative 5" splice sites, while frequently used
alternative 5 splice sites show an average MES of 6.72).

816 RNA, Vol. 21, No. 5

false positive rate FPR=FP/N

conservation, as can be seen by the wide-
spread quartiles around the median in
Figure 5D (right panel). Besides phyloge-
netic conservation, the strength of the
splice sites and the exon/intron architec-
ture (defined in Materials and Methods)
has a high impact on the prediction qual-
ity of the code. As previously reported
(Stamm et al. 2000; Clark and Thanaraj
2002; Zheng et al. 2005), constitutive
splice sites are stronger than alternative
splice sites. While constitutive exons in our data sets showed
an average combined MES of both splice sites of 17.06, rarely
included cassette exons only showed a combined average MES
of 13.71. Furthermore, introns downstream from constitutive
exons have an average length of 3535 nt, whereas introns
downstream from alternatively spliced exons are much larger
with an average length of 11,201 nt. These observations sup-
port the notion that exons flanked by large introns are more
likely to be involved in alternative splicing than exons flanked
by short introns (Berget 1995; Fox-Walsh et al. 2005).
Although splicing regulatory protein features are not repre-
sented in the top information gain list (Fig. 5), the binding sites
for SRSF2 (SC35) and SRSF5 (Srp40) rank 12th and 13th in
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A using the SVM trained on constitutive exons and B using the SVM trained on constitutive exons and
exons with a rarely used alternative 5’ splice site

usage level of alt. 5’ splice sites

exons with a rarely used alternative 3’ splice site
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FIGURE 3. Accuracy of the predictions when comparing constitutive exons with alternatively
spliced exons. Using the SVM that was trained on constitutive exons and (A) exons with a rarely
used (up to 20%) alternative 3’ splice site (CO-lowALT3), (B) exons with a rarely used alternative
5’ splice site (CO-lowALTS5), and (C) rarely included cassette exons, predictions were made for
new test exons whose alternative splice sites were used with various different frequencies (x-

axis). Accuracy is specified as AUC of the ROC curve (y-axis).

our feature compendium. However, their overall contribution
in differentiating between constitutive and alternatively in-
cluded exons is nearly negligible.

Surprisingly, the information gain analysis demonstrated
that the SVMs did not feature strong discriminatory contribu-
tions from binding sites for known splicing regulators. With
the exception of SRSF2 and SRSF5 features described above,
none of the RNA features used in our classification scheme
associated with the existence or strength of binding sites for
splicing regulators showed significant information gain. To
test whether this lack of discriminatory contributions from
binding sites for known splicing regulators was the result of
not including sufficient numbers of potential binding site se-
quences in our RNA feature compendium, we added addi-
tional 5mers, 6mers, and 7mers of known binding sites for
splicing regulators as well as codon frequencies (Yeo et al.
2007; Barash et al. 2010) to increase the RNA feature compen-

20%-50%

dium to 826 features. However, training
our data sets with the extended RNA fea-
ture compendium did not improve the
performance of our splicing code (Sup-
plemental Fig. 2), nor did we observe a
change in the identity of the RNA features
that displayed the highest information
gain (Supplemental Fig. 3).

Based on these observations, splice-
site scores as well as the conservation
around the exon junctions were identi-
fied as the RNA features with the highest
information gain. To evaluate the per-
formance gain derived from phylogenetic
conservation, we re-trained our SVMs
on the same training exons, but removed
all conservation features. For all SVMs,
the AUC decreased (Supplemental Fig.
4). Interestingly, the decrease in classifi-
cation performance was less pronounced
for alternative 5 or 3’ splice-site usage.
These results support the notion that the
exon/intron architecture and the com-
peting splice-site scores are the main de-
terminants in dictating alternative 5" or
3’ splice-site usage.

50%-80%
80%-<100%

DISCUSSION

A splicing code was created to compare
constitutive exons with exons exhibiting
alternative 5 or alternative 3’ splice site
selection and alternative cassette-type ex-
ons. The splicing code permitted efficient
classification of splicing events as long as
overall splice-site selection levels (for al-
ternative 5 and 3’ splice-site exons) or
inclusion levels (for alternative cassette
exons) were incorporated. Based on the observation that
the majority of exons undergo alternative splicing at either
high (>80%) or low (<20%) frequencies, we carried out
classification attempts in separate categories. By splitting al-
ternative splicing events into groups, we were able to obtain
excellent classification performances for exons with a rarely
or moderately used alternative splice site as well as rarely
and moderately included cassette exons (Fig. 3). However,
for frequently occurring alternative splicing events, our splic-
ing code was unable to make useful splicing categorizations.
These observations demonstrate that none of the RNA fea-
tures evaluated significantly differentiated the splicing behav-
ior of alternative exons with high usage or high inclusion
levels from constitutive exons. Furthermore, it suggests that
the recognition of highly used splice sites and included exons
is similar to the recognition of constitutive exons. This is in-
deed the case because highly included alternative exons are

www.rnajournal.org 817
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FIGURE 4. Experimental verification. Predictions were made using the SVMs CO-lowALT3 (for exons with an alternative 3" splice site, drawn in
green), CO-lowALT5 (for exons with an alternative 5 splice site, drawn in blue), and CO-lowCA (for cassette exons, drawn in red). Inclusion/usage
levels were determined based on RNA-seq data in HeLa cells (x-axes). The performance of the SVMs is shown on the y-axes as area under the ROC
curve (AUC). Abbreviations for all SVMs are used as defined in Materials and Methods.

almost as efficient in discriminating against low inclusion ex-
ons as constitutive exons are (Supplemental Fig. 5).

Because our EST-derived data set originates from various
tissues, it is unclear how the splice-site usage and exon inclu-
sion rates of highly included exons are generated. For exam-
ple, it is possible that the splice-site usage or exon inclusion
rates are universally high in all tissues from which ESTs
have been derived. Alternatively, exon splicing for those ex-
ons may be constitutive in most tissues, but infrequent in a
small number of other tissues. Regardless, the overlap be-
tween constitutive exons and exons with highly used alterna-
tive splice sites as well as highly included exons raises the
question of whether the definition of constitutive exons
should remain as strict as it was defined here, i.e., no indica-
tion of alternative splicing at all, or whether it should be more
relaxed permitting a small fraction of alternative splicing. We
have recently argued that essentially all exons will engage in
low level alternative splicing and its detection is limited by
the sensitivity of the assays used to detect alternative splicing
events (Fox-Walsh and Hertel 2009). Accordingly, a genome-
wide investigation of alternative splicing using deep sequenc-
ing of unprecedented depth suggested widespread alternative
splicing at low frequencies (Pickrell et al. 2010).

While the main purpose of the splicing code previously de-
scribed (Barash et al. 2010, 2013) is to predict the directional-
ity of change in exon inclusion between different tissues, when
used to distinguish between constitutive and alternatively
spliced cassette exons, its performance is comparable with
the performance of our splicing code. However, our splicing
code is the first to differentiate between constitutive exons, ex-
ons with an alternative 3’ or 5 splice site, and cassette exons.

Mechanistic implication based on information
gain analysis

When analyzing the information gain of single RNA features,
phylogenetic conservation around the splice sites as well as

818 RNA, Vol. 21, No. 5

the strength of the splice sites appeared to be the most sig-
nificant discriminants in all classes of alternative splicing.
Generally, constitutive exons show much higher conserva-
tion than rarely included cassette exons and conservation lev-
els around alternative splice sites differ considerably from
conservation values around constitutive splice sites. Even
though phylogenetic conservation has a strong influence in
the comparison of constitutively and alternatively spliced
exons, conservation is not expected to be recognizable by
the spliceosome. As suggested previously (Chen and Zheng
2008), the observed conservation features may reflect the ex-
istence of cis-acting RNA splicing elements that have not been
defined yet. This interpretation leads to the expectation that
increased conservation should be observed around alterna-
tive splicing events, presumably because regulatory elements
are contained within. While this expectation is met when
comparing flanking introns of cassette exons with constitu-
tive exons (Fig. 5D, right panel), the more striking conserva-
tion difference detected in this splicing category was within
the exon. Here, conservation was much lower for alternative-
ly spliced cassette exons, an observation that does not support
the association of unknown regulatory elements. Rather, this
result indicates that a large proportion of the cassette exons
with low inclusion rates are young or are changing fast on
an evolutionary timescale.

After retraining our SVMs without conservation features
we observed variable performance drops for SVMs trained
on rarely included exons and/or exons with rarely used splice
sites. As there is no significant difference between the conser-
vation of constitutive exons and frequently included cassette
exons and/or exons with frequently used alternative splice
sites, the removal of those features had only a minor effect,
if any, on the performance of the SVM. However, when com-
paring constitutive exons with rarely included cassette exons
and/or exons with a rarely used alternative splice site, the per-
formance of the SVMs decreased significantly. This observa-
tion supports the importance of the conservation features for
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FIGURE 5. Most influential features and average conservation 50 nt around the exon junctions
after splitting the data sets into subsets. Color coding for different regions is depicted in A. Features
that refer to a combination of several regions are given in gray. The surroundings of the 3" and 5
splices site were typically defined as +50 nt around the exon/intron junctions. The left plots in B-D
show the information gain of the dominant features when comparing (B) constitutive and exons
with a rarely used alternative 3’ splice site, (C) constitutive and exons with a rarely used alternative
5’ splice site, (D) constitutive and rarely included cassette exons. Right plots in B—D show the av-
erage conservation (PhastCons score) £50 nt around the exon junctions. The thick line in each box
depicts the median, while the upper and lower ends of the box represent the 25% and 75% quantile,
respectively. Smallest and largest observations are depicted by the upper and lower end of the whis-
kers. Constitutive exons (CO) are compared with (B) exons with a frequently or rarely used alter-
native 3 splice site (highALT3 and lowALT3, respectively), (C) exons with a frequently or rarely
used alternative 5" splice site (highALT5 and lowALT5, respectively), and (D) frequently and rarely
included cassette exons (highCA and lowCA, respectively).

the overall performance of our SVMs as
well as those published previously (Bar-
ash et al. 2010; Shepard and Hertel
2010; Xiong et al. 2011).

We have previously demonstrated that
the ability to form stable RNA secondary
structures around splice sites correlates
with an increased propensity to under-
go alternative 5’ or 3’ splice-site selection
(Shepard and Hertel 2008). While fea-
tures characterizing the probability of
splice sites to be involved in RNA second-
ary structures were incorporated into
the splicing code, they did not emerge
as one of the highest information gain
features described in Figure 5. However,
RNA secondary structure probability
features were among the top 25% RNA
features within the compendium tested
when comparing constitutive exons and
exons with an alternative 3’ splice site
and among the top 28% RNA features
when comparing constitutive and exons
with an alternative 5’ splice site. As was ar-
gued before (Shepard and Hertel 2008),
RNA secondary structures around splice
sites are important in mediating alter-
native splice-site selection for a smaller
fraction of alternative splicing events.
Thus, the information across all alterna-
tive splicing events evaluated is limited.

Interestingly, our splicing code did not
feature significant discriminatory contri-
butions from binding sites for known
splicing regulators. Although SRSF2 and
SRSF5 binding sites did emerge as one
of several weak contributors in differenti-
ating between constitutive and cassette
exons, none of the features associated
with the existence or strength of binding
sites for splicing regulators was among
those identified with the highest infor-
mation gain. Adding further features of
known binding sites for splicing regula-
tors as well as 2mer and 3mer frequencies
within the exon and neighboring introns
did not improve the performance of our
splicing code. Furthermore, none of the
extra binding site sequences emerged
as features with high information gain.
These observations suggest that the ability
of an exon to be involved in one or mul-
tiple types of alternative splicing is dictat-
ed by its immediate sequence context,
mainly driven by the identity of the exon’s
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splice sites and exon/intron architecture. No set of the evalu-
ated splicing regulatory proteins appears to generally promote
one type of alternative splicing over another. Rather, the an-
ticipated fluctuations in the expression of splicing regulators
in different tissues may modulate the efficiency at which a par-
ticular exon, or an exon fraction, is recognized by the spliceo-
some. Thus, most splicing regulatory factors appear to work
on a tissue-specific basis. As such, each exon has an intrinsic
ability to participate in one or more types of alternative splic-
ing that is based on the identity of the exon’s splice sites and
exon/intron architecture. Fluctuating inclusion rates for these
exons are then achieved through regulated modifiers such as
differential transcription kinetics or differential recruitment
of splicing factors.

MATERIALS AND METHODS

To create a splicing code that differentiates between various types of
alternative splicing, we applied the concept of a support vector ma-
chine (SVM), a widely used machine learning technique. A SVM is
a binary classifier that uses input data for training and is then able
to make predictions on new unclassified data based on the training
data. Here, we applied it to distinguish between different classes of
exons.

We used and trained the freely available SVM implementation in
WEKA (version 3.6.2), a software package incorporating several ma-
chine learning techniques (Hall et al. 2009). Using WEKA, we also
tested several other machine learning techniques like decision trees,
a naive Bayesian classifier as well as a Bayesian network on our data.
Comparing their performance and predictive power, they were all
outperformed by John Platt’s sequential minimal optimization algo-
rithm for training a support vector classifier (SMO, as implemented
in WEKA) (Platt 1999). It normalizes training data automatically
and uses a polynomial kernel.

Creating training sets

We created four sets of internal exons with known splicing behavior
to train the SVMs: a set of constitutive exons, a set of exons having
an alternative 3’ splice site, a set of exons with an alternative 5 splice
site, and a set of cassette exons, which can either be included or
skipped. All sets are the results of very strict filtering to ensure
that all exons display only one type of alternative splicing, i.e., exons
with an alternative splice site will not be skipped and cassette exons
do not have an alternative splice site. All splicing information was
based on ~4 million ESTs and known isoforms as well as the alter-
native events track (Alt Events) of the UCSC Genome Browser
(GRCh37/hgl9) (Meyer et al. 2013).

The set of constitutive exons includes internal human exons that
are not involved in any type of alternative splicing and that are sup-
ported by at least 20 ESTs. Alternative exons in our sets are internal
exons that show only one type of alternative splicing. All exons have
a minimal length of 23 nt and a minimal length of neighboring in-
trons of 78 nt. These numbers were set according to the length dis-
tributions of all internal exons as well as their neighboring introns,
respectively, (see Supplemental Fig. 6). An exon length of 23 nt rep-
resents the 1% quantile of the exon length distribution, i.e., 99% of
the internal human exons are at least 23 nt long. Equivalently, an in-
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tron length of 78 nt represents the 1% quantile of the intron length
distribution.

Feature extraction

For all exons, 262 sequence features were evaluated (for a complete
list, see Supplemental Table 1), covering all major parameters
known to influence exon recognition.

Splice-site strength

The strength of the splice sites is measured by a maximum entropy
score (MES) (Yeo and Burge 2004).

Exon/intron architecture

Features describing the exon/intron architecture include the length
of the exon, the length of its neighboring introns, and its neighbor-
ing exons.

Local secondary structures

Secondary structures might influence splicing by either promoting
the accessibility of certain sequence elements or by masking them
and, thus, making them inaccessible. We evaluated the local second-
ary structure potential of both splice sites as well as those within £70
nt around both exon junctions. For all areas, we calculated the
probability of all 4mers to be unpaired, and thus accessible, using
the Vienna RNA Package (Lorenz et al. 2011). Based on these values,
we extracted average, minimal and maximal probabilities of a 4mer
being unpaired in each area.

Binding sites for splicing regulators

To search for binding sites of known splicing regulators, we used the
position-weighted matrices and thresholds as specified by ESEfinder
(Cartegni et al. 2003) for the SR proteins SRSF1, SRSF2, SRSF5, and
SRSF6. For each of them, we extracted the density, i.e., how many
occurrences we find relative to the length of the exon, the average
strength of all occurrences, and the maximal strength in each
exon. Furthermore, we recorded the distance of the first binding
site from the start of the exon as well as the distance of the last bind-
ing site to the end of the exon. In addition, we combined all these
features with a local secondary structure measurement, i.e., we
only accepted binding sites as real, if they were accessible. Accessibil-
ities were calculated using the Vienna RNA Package (Lorenz et al.
2011). The accessibility threshold varies for each SR protein as pre-
viously described (Hiller et al. 2007). In addition, we scanned for a
set of known binding sites for other regulators, including Nova
binding sites (YCAY clusters) (Ule et al. 2006), Fox binding sites
(Minovitsky et al. 2005), MBNL binding motifs (Ho et al. 2004),
U-rich TIAI/TIALI motifs (Aznarez et al. 2008), UG-rich motifs
(Faustino and Cooper 2005), splicing repressor sites that bind
PTB (Ashiya and Grabowski 1997; Pérez et al. 1997; Oberstrass
et al. 2005), and binding motifs of the Quaking protein (Galarneau
and Richard 2005).

Extended binding motifs (only used in extended SVMs,
Supplemental Fig. 2)

In addition to the aforementioned binding sites for splicing regula-
tors, we extended our set of features by motif clusters identified in
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Yeo et al. (2007) and additional sequence features as described in
Barash et al. (2010) as well as all possible 2mers and 3mers.

Alternative splice sites

To evaluate the potential of alternative splice-site selection around
a recorded splice sites, we scanned for putative splice sites in the
vicinity of the known splice sites. The number of found potential
alternative splice sites as well as their strengths act as further features.
To find a reasonable search radius around exon junctions, we
evaluated the distance of all pairs of known alternative 3’ and
5’ splice sites in our data set to estimate a distribution of common
distances of alternative 3’ and alternative 5’ splice sites. Using a
90% quantile limit of our distance distributions, potential alter-
native 3’ splice sites and alternative 5" splice sites were searched
within a £200-nt window around both splice sites, assuring a re-
maining minimal exon length of 23 nt as well as a remaining min-
imal intron length of 78 nt. For each splice site, we extracted the total
number of potential alternative splice sites found, the density
(i.e., the total number of alternative splice sites found normalized
by the length of the scanned area), the average strength of all sites
and their maximal strength. Values were evaluated for several differ-
ent MES thresholds.

Phylogenetic conservation

We extracted position-wise conservation of £50 nt around the
exon junctions and calculated the average conservation in each of
these four regions (=50 nt of 3’ splice site, +50 nt of 3" splice
site, =50 nt of 5’ splice site, +50 nt of 5" splice site). Conservation
values are PhastCons scores (Siepel et al. 2005) based on a multiple
alignment of 46 vertebrate genomes. PhastCons scores are calcu-
lated per position and represent probabilities of a nucleotide
position to be part of a conserved sequence element. All conserva-
tion data were downloaded from the UCSC Genome Browser
(Meyer et al. 2013). As previously shown, the conservation differs
between constitutive and cassette exons and their flanking introns
(Sorek and Ast 2003; Chen and Zheng 2008). Thus, we determined
conservation features for the region of £50 nt around the exon
junctions.

For each exon, all evaluated features were concatenated into one
vector. Their normalization was done automatically by the support
vector package (SMO) used.

Splice-site usage and exon inclusion levels

In an attempt to improve the performance of the splicing code and
to better understand differences between exon types, we analyzed
the distribution of inclusion and usage levels of cassette exons and
alternative splice sites, respectively. We extracted EST-based inclu-
sion and usage levels of exons and splice sites in our training sets,
respectively, that are supported by at least 10 ESTs. Exons in each
category were sorted based on inclusion/usage levels, which are
used as defined in Busch and Hertel (2013). The inclusion level
equals the number of ESTs including the exon G, divided by the
number of ESTs that either included Cj,q or excluded C.. the
exon, inclLevel = Cina/(Cind + Cexcl)- Analogously, the usage level
of a splice site equals the number of ESTs in which the exon occurs
with the splice site of interest Cyyjice site of interest divided by the num-

ber of ESTs in which the exon occurs with any splice site Cypjice site of

interest T Cother splice sites»

Csplice site of interest

usageLevel = .
splice site of interest + Cother splice sites

As mentioned above, cassette exons in our data sets do not have
alternative splice sites on either end.

SVM optimization

Based on frequently seen high and low inclusion levels, we carried
out SVM optimization experiments using training exons in sub-
groups: exons showing inclusion levels of 80% or higher, exons in-
cluded 20% or less, and exons showing intermediate inclusion levels
between 20% and 80%. Similarly, alternative splice sites were split
into subgroups based on their usage level: 80% or higher usage,
20% or lower usage, and a usage level between 20% and 80%. For
most subsequent analyses, we focused on the two extreme groups
of levels higher or equal to 80% and lower or equal to 20%.

We used 350 internal exons of each splicing subcategory to train
the SVMs. As a quality control, a 10% crossvalidation available dur-
ing the training process in WEKA was used. Here, 90% of the exons
in our data sets were used to train the classifiers, which were then
applied to the remaining 10% of the exons to test their performance.
To estimate the classification accuracy of the SVMs, we determined
the area under the ROC curve (AUC), which plots the true positive
rate (TRP) vs. the false positive rate (FPR). The TPR is calculated as
the number of true positives (TP) out of the number of positive (P)
samples in the test set. The FPR is calculated as the number of false
positives (FP) divided by the number of negative (N) samples in the
test set. Additionally, we compared the TPR (recall) with the positive
predictive value (PPV, precision). While the recall determines how
many of the truly positive exons are predicted to be positive (e.g.,
how many of the cassette exons are predicted to be cassette exons),
the precision describes how many of the positive predicted exons are
real positives (e.g., how many of the exons predicted to be cassette
exons are truly cassette exons). Supplemental Figure 7 illustrates
the results of the precision/recall analysis for the data depicted in
Figure 2A-C.

We created a general splicing code on mixed-tissue exon data sets
based on ESTs. We trained SVMs distinguishing between the follow-
ing data sets: (i) constitutive and exons with frequently used alterna-
tive 3 splice sites (CO-highALT3), (ii) constitutive and exons with
rarely used alternative 3’ splice sites (CO-lowALT3), (iii) constitu-
tive and exons with frequently used alternative 5" splice sites (CO-
highALT5), (iv) constitutive and exons with rarely used alternative
5" splice sites (CO-lowALT5), (v) exons with frequently used alter-
native 3’ splice sites and exons with frequently used alternative 5’
splice sites (highALT3-highALT5), (vi) exons with rarely used alter-
native 3’ splice sites and exons with rarely used alternative 5’ splice
sites (lowALT3-lowALT5), (vii) constitutive and highly included
cassette exons (CO-highCA), and (viii) constitutive and rarely in-
cluded cassette exons (CO-lowCA). Even though a SVM typically
classifies between two classes, we also applied a modified concept
of a SVM to the comparison of all four exon types: (ix) constitutive,
highly included cassette, exons with frequently used alternative 3’
splice sites and exons with frequently used alternative 5 splice sites
(highALL), as well as (x) constitutive, rarely included cassette, exons
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with rarely used alternative 3 splice sites and exons with rarely used
alternative 5’ splice sites (lowALL). Internally, exons of each catego-
ry are compared with exons of every other category, thus, six two-
class SVMs are trained and their results are combined to make a final
prediction.

In addition to training the SVMs, we used WEKA (Hall et al.
2009) to evaluate the information gain of each feature with respect
to the exon class.

SVM testing and verification

To test the performance of the SVMs derived, we used an RNA-seq
data set of HelLa cells (Shepard et al. 2011). Exon inclusion and
splice-site usage levels were calculated using MISO, a software that
not only takes reads overlapping exon/exon junctions into account,
but also reads that are within the exons neighboring the exon of
question and mutual to both alternative isoforms (Katz et al.
2010). From each alternative splicing category (exons with an alter-
native 3’ or 5 splice site or cassette exons) 3000 exons with at least
20 reads supporting either inclusion or exclusion were chosen ran-
domly, with 250 from each subcategory out of 12 subcategories
based on the inclusion/usage level of the exon or the splice site
used. Subcategories of alternative splice-site usage or exon inclusion
were: inclusion/usage level of 0% (exons or splice sites not used in
HelLa cells), (0,10]%, (10,20]%, (20,30]%, (30,40]%, (40,50]%,
(50,60]%, (60,70]%, (70,80]%, (80,90]%, (90,100)%, and 100% us-
age/inclusion. The last category was defined as being constitutive in
HeLa cells. For all exons in each of these subsets, we made predic-
tions using the SVMs previously trained on the comparison of con-
stitutive exons and rarely included cassette exons (CO-lowCA) and
constitutive exons and exons with a rarely used alternative 3’ or 5’
splice site (CO-lowALT3 or CO-lowALT5, respectively).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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