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There is increasing evidence of a role for environmental contaminants in disrupting metabolic 

health in both humans and animals. Despite a growing need for well-understood models for 

evaluating adipogenic and potential obesogenic contaminants, there has been a reliance on 

decades-old in vitro models that have not been appropriately managed by cell line providers. 

There has been a quick rise in available in vitro models in the last ten years, including commercial 

availability of human mesenchymal stem cell and preadipocyte models; these models require 

more comprehensive validations but demonstrate real promise in improved translation to human 

metabolic health. There is also progress in developing three-dimensional and co-culture techniques 

that allow for the interrogation of a more physiologically relevant state. While diverse rodent 

models exist for evaluating putative obesogenic and/or adipogenic chemicals in a physiologically 

relevant context, increasing capabilities have been identified for alternative model organisms such 

as Drosophila, C. elegans, zebrafish, and medaka in metabolic health testing. These models have 

several appreciable advantages, most notably the size, rapid development, large brood sizes, and 

ease of high-resolution lipid accumulation throughout the organisms. They are anticipated to 

expand the capabilities of metabolic health research, particularly when coupled with emerging 

obesogen evaluation techniques as described herein.

Graphical Abstract

1. Introduction

Over the last several decades, the global prevalence of metabolic disorders, specifically 

obesity, has risen at an alarming rate. Despite extensive investments in exploring 

interventions to address this health trend, the incidence rates continue to rise. In the United 

States (US), 8.9% of infants and toddlers [1, 2], 18.5% of 2–19 year old’s [1, 2], and 

42.4% of adults (20+) [3] are currently classified as obese, with an additional 31.2% of the 

adult population classified as overweight [4]. Obesity consumes >$200 billion of the US 

health care expenditure annually and also drives increased risks of various comorbidities 

(e.g., type II diabetes, cardiovascular disease, hypertension) [5–8]. High societal costs [8, 9] 

have driven support for research into causal factors, including exposure(s) to environmental 

contaminants. Previous research estimated extremely high economic costs of obesity, 
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diabetes, and associated health costs reasonably attributable to environmental contaminants 

in the European Union [9], even when only considering five chemicals for which sufficient 

epidemiological data were available.

As detailed in the companion review, Obesity II, “obesogens” are environmental chemicals 

that increase the size of white adipose tissue (WAT) stores in the body as a result of exposure 

in vivo [10, 11]. Chemicals that can induce adipogenesis in cellular models in vitro but have 

not yet been shown to increase WAT stores in vivo are designated as potential obesogens 

[12]. Considering the complexity of human chemical exposures, the increasing reports of 

obesogens, and the rising incidence of metabolic disorders, it is critical to identify and 

validate comprehensive models (in silico, in vitro, and in vivo) for the identification and 

evaluation of obesogens. One of the major challenges in the obesity field is to develop 

a robust set of tests that can reveal adipogenic and/or obesogenic properties of chemicals 

and have strong predictive capacity in humans. These tests should be in line with the 

3R principles (i.e., reducing the number of animals, refining experiments to minimize the 

number of animals used, and replacing animal experiments where possible). Practically 

speaking, the high costs of animal experiments limit the use of mammals in screening for 

potential obesogens. This supports an urgent need for increased use of lower-order (in silico, 
in vitro) testing to prioritize higher-order (in vivo) testing. There is also an urgent need for 

new in vivo models that are less time and cost-intensive to support in vivo testing that is still 

required for the tens of thousands of chemicals used in commerce. While the number and 

diversity of cellular models of adipocyte differentiation and metabolic health is increasing, 

these require comprehensive validation to determine the strengths and weaknesses of each 

for their relevance to human metabolic health

Despite the potential limitations of available animal models to reproduce human disease 

fully, they help evaluate exposure pathways, generation of in vivo metabolites, elucidating 

tissue and/or disease biology, and underlying molecular mechanisms involved in adverse 

health outcomes. The choice of the animal model should consider the degree to which the 

outcomes being examined are relevant to humans and the sensitivity of these outcomes to 

environmental chemicals. The relevance of the model to human health depends considerably 

on the evolutionary conservation of biological processes impacted by candidate chemical 

or pharmacological molecules between humans and the animal model used. It is likely that 

a single test might not reveal all relevant properties and that a battery of tests should be 

developed. This set of tests should address the following issues: 1) evaluate in vivo obesity 

according to its different characteristics, including the type and importance of different 

adipose depots; 2) reveal in vitro and in silico assays/models that reliably predict obesity; 3) 

identify in vivo biomarkers that are predictive of obesity, and 4) account for delays between 

exposure(s) to putative obesogens and the appearance of a phenotype.

Mammalian models have been relied on for metabolic health testing due to clear translation 

of adipose physiology. However, non-mammalian model species are increasingly appropriate 

for the screening and rapid identification of chemicals and mixtures and the exploration 

of disease mechanisms. Knowledge acquired from non-mammalian model systems (e.g., 

vertebrates such as teleost fish and invertebrates such as flies and worms) can provide 

insights into mechanisms involved in regulating lipid metabolism and transport processes 
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that have been intractable by other approaches [13]. Due to the conservation of lipid 

metabolism processes among vertebrates, the zebrafish model has become an attractive 

alternative to rodents, with lower costs and time investments.

2. In vitro assays

The most well-established lower-order testing protocols are the adipogenesis cell assays, 

although newly developed cell models have allowed an increasing breadth of metabolic 

disruption assessment (Figure 1). Several in vitro models were developed in various species 

(primarily human and murine) to identify potential obesogens [14, 15]. These models 

generally assess three endpoints: commitment to the adipocyte lineage (via multipotent MSC 

models), preadipocyte proliferation (proliferation of early-stage adipocyte lineage cells), and 

differentiation into mature adipocytes (adipogenesis; generally determined via quantification 

of intracellular triglyceride accumulation).

2.1 Preadipocyte models

Preadipocytes are already committed to the adipocyte lineage and thus can be used 

to examine both proliferation (via nuclear staining) and adipogenesis (via triglyceride 

quantification). These cells are in an early stage of adipocyte development and require 

activation of signaling pathways to promote further development/maturation. Adipogenesis 

can be achieved by treating cells with a “differentiation cocktail” that contains a variety 

of hormonal and/or growth factors to initiate the process. These factors are often different 

between laboratories, but generally always include a mixture of fetal bovine serum, insulin, 

and isobutylmethylxanthine (IBMX); some laboratories also include thyroid hormone and/or 

glucocorticoids, though the presence of these and concentrations varies widely. Once the 

cocktail is removed, the relative roles of various test chemicals in the role of differentiation 

(assessed via triglyceride accumulation) and proliferation (of adipocyte precursor cells) can 

be assessed [16–19].

The 3T3-L1 mouse cell line was isolated and described in the 1970s and has been utilized 

for decades as an in vitro screen to examine the mechanisms regulating adipogenesis and 

evaluate potential adipogenic chemicals [16, 17, 20]. This cell line has been used to carefully 

explore mechanisms promoting and underlying various stages of adipogenesis [21, 22] 

and has been shown to appropriately select chemicals for further testing (linking in vitro 
results to in vivo health outcomes; e.g., bisphenol A and tributyltin) [23–31]. While this 

line has been well-characterized [21], its sourcing can be unreliable [32, 33]. For example, 

nuclear receptor expression related to adipogenesis is markedly different between lots and 

sources of this cell line [32]. These and other cell line integrity issues can contribute to 

discrepancies in replication efforts between laboratories [34, 35]. We recently undertook 

an interlaboratory reproducibility effort of 3T3-L1 responses to a positive control chemical 

(rosiglitazone) and three blinded test chemicals [35]. While the determination of “active” 

versus “inactive” were consistent across the ten participating laboratories, the potencies 

and efficacies of the blinded chemical responses varied by orders of magnitude. The 

cross-over study design allowed for determinations of the sources of variation, and our 

results demonstrated that inconsistencies of the cell line sources and differentiation protocol 
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differences promoted most of the variation. Thus the harmonization of protocols across 

laboratories may help support consistent reporting of adipogenic results [35]. Despite these 

limitations, 3T3-L1 cells remain the most popular model for assessing adipogenic outcomes. 

Specifically, numerous publications have assessed bisphenols [26, 32, 36], brominated and 

organophosphate flame retardants [37–39], per and polyfluoroalkyl substances [40, 41], 

and diverse other environmental contaminants [20, 24, 37] and mixtures [42] using this 

cell model. There is an emerging interest in determinations of whether environmental 

contaminant exposures promote the development of normal or abnormal adipocytes, and 

some preliminary data has begun to evaluate this. For example, BPA enhanced levels of 

leptin, interleukin-6, and interferon gamma in mature adipocytes, resulting in hypertrophic 

adipocytes with impared insulin signaling, increased pro-inflammatory cytokine production, 

and reduced glucose utilization [43].

The OP9 mouse bone marrow-derived stromal cell line is another established preadipocyte 

model [19, 44] that allows faster differentiation (2–3 versus 10–14 days). This cell line 

is considered to be a later stage preadipocyte than 3T3-L1 cells because it expressed key 

adipogenic factors such as CCAAT/enhancer-binding proteins alpha and beta, peroxisome 

proliferator-activated receptor gamma (PPARγ), sterol-regulatory element-binding protein-1 

(SREBP-1), perilipin, and other adipocyte markers that are not expressed in basal 3T3-L1 

cells before adipogenic induction [19]. Therefore, OP9 cells can be induced to accumulate 

triglycerides within two days, differentiation is not diminished by maintenance in culture 

at high cell density, their adipogenic potential is maintained for >100 passages, and 

they do not require contact inhibition and reversion to clonal expansion before initiating 

the differentiation induction [19]. These characteristics suggest a promising model with 

lower time and cost investments, though this does require careful validation to understand 

the translation of responses to human health effects. We have reported that these cells 

do differentially express nuclear receptors relative to 3T3-L1 cells, including PPARγ/α, 

liver X receptor alpha (LXRα), glucocorticoid receptor (GR), retinoid X receptor-alpha/

beta (RXRα/β), and estrogen receptor alpha (ERα) [32]. As a result, responsiveness to 

adipogenic chemicals in OP9 cells is significantly different from 3T3-L1 cells, characterized 

by lower responsiveness via activation of GR and greater responsiveness via the RXR 

pathway [32, 45]. While still an uncommon model for assessing obesogens, OP9 cells have 

been used to evaluate bisphenols [32], pesticides [45], and other environmental contaminants 

[45].

More recently, several human preadipocyte models have become available that hold promise 

for future evaluations of adipogenicity by environmental contaminants. Since the basis 

for much of our understanding of adipogenesis has been evaluated using the murine 

3T3-L1 cells, utilizing these newer human models may help elucidate any species-specific 

differences that may be present. Many companies now supply primary human preadipocytes 

(HPAd) isolated from several human subcutaneous depots, visceral depots, and/or adipose 

surrounding the heart. Moreover, suppliers also provide source-specific HPAd cells, 

i.e., those sourced from donors with normal, overweight, or obese body mass indices 

and those with or without diabetes (e.g., see, https://www.zen-bio.com/products/cells/

subcutaneous_adipocytes.php). These discrete preadipocyte populations allow more targeted 

questions and potentially a better molecular understanding of adipogenesis. However, human 
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preadipocyte cell models are cryopreserved at the end of primary culture. They can generally 

be propagated at most two additional passages before losing their ability to differentiate into 

mature adipocytes [46, 47]. As such, these models, while potentially more translationally 

relevant to human health, are extremely costly, as numerous cryopreserved vials are needed 

to complete any well-designed experiment (e.g., multiple biological replicates). Limitations 

aside, researchers have begun to utilize human preadipocytes to assess adipogenic and 

anti-adipogenic effects of botanical and biological mixtures [48–50], bisphenols [51], and 

flame retardants [38].

The Simpson-Golabi-Behmel syndrome (SGBS) cell line addresses some of these 

limitations of using primary human preadipocytes. These cells were isolated from an infant 

with an extremely rare (250 reported cases) metabolic health condition characterized by 

excess growth; this infant demonstrated expanded subcutaneous fat depots, and a sample 

of this tissue was obtained postmortem [52]. Profiling these cells suggests that they 

can be maintained and retain robust differentiation capability over 50 passages [53], a 

significant advantage over normal human donor preadipocytes, and profiling has suggested 

morphological, biochemical, and functional similarities to differentiated adipocytes from 

healthy subjects [52, 54]. These cells also transiently express brown adipocyte markers [55–

57], suggesting that this cell line might be useful for assessments of adipocyte browning. 

Proteomic and transcriptomic analyses of SGBS cells have been used to evaluate the 

molecular underpinnings of SGBS differentiation, with >1100 proteins and >300 genes 

differentially expressed in differentiated cells relative to undifferentiated [58]. However, 

some research comparing this model to existing models has suggested notable differences. 

Metabolomics and lipidomics profiling revealed a diverse grouping of lipid classes markedly 

changed throughout the differentiation process, suggesting a radically different metabolite 

profile than previously observed in 3T3-L1 cells [59]. SGBS cells have been used to 

evaluate the adipogenic effects of various bisphenols [60], though have not yet seen frequent 

use in this context. Other human cell lines obtained from tumors or transformed can be 

differentiated into either white (Lisa, LS-14, AML-1, Chub-S7) or brown (PAZ6) adipocytes 

[61], but their use in toxicology is rare [60].

2.2 Mesenchymal stem cells (MSCs)

Another option in assessing adipogenesis is the utilization of multipotent mesenchymal 

stromal stem cells (mesenchymal stem cells, MSCs). MSCs are multipotent cells that 

can assess adipocyte lineage commitment in addition to adipocyte differentiation [18, 62, 

63]. MSCs are isolated from either bone marrow or adipose tissue, and cells from both 

sources have been used to assess adipogenesis. The use of MSC models has been reviewed 

previously in the context of obesogens and their potential impacts on cell commitment 

and subsequent differentiation [64]. Recent work described a novel protocol for separately 

evaluating adipogenic commitment and subsequent differentiation in primary MSCs [63], 

previously described for the C3H10T1/2 murine stem cell model [65, 66]. This protocol 

allows a complete characterization of potential obesogens and their role in disrupting cell 

commitment and differentiation. While the focus has been on evaluating effects on the 

adipocyte lineage, a growing body of research has begun to evaluate potential chemical 

impacts on osteogenic development using these models [67–70]. Some limited research has 
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evaluated chemical impacts on development down the chondrogenic, myogenic, or other cell 

lineages [64]. Human MSCs are readily available from diverse vendors, although murine 

models are also routinely used [45, 70–72].

Recent research elegantly described protocols for distinguishing assays to evaluate 

adipogenic lineage commitment and subsequent adipocyte differentiation [63]; briefly, cells 

can be pre-treated with test chemicals prior to the differentiation cocktail exposure. These 

pre-treated cells can be subsequently exposed to the differentiation cocktail and evaluated 

at the end of the differentiation window. The extent of triglyceride accumulation can be 

compared with standard adipogenesis plates; chemicals with effects on commitment should 

have equivalent effects to those differentiated for the full two weeks, whereas cells without 

effects on commitment should not accumulate more triglycerides than the vehicle control in 

the commitment assays, regardless of effects in the standard adipogenesis assay [63].

The human MSCs lack the issues inherent in the primary human preadipocyte models; 

they can be maintained in culture for several more passages, have less variability in 

sourcing, and are easier to isolate and culture, increasing the utility of this model. This 

should lead to an increased reliance on human MSCs for adipogenic in vitro testing. 

However, rigorous reproducibility assessments and comprehensive validation testing are 

still needed to ensure accurate translation to and/or prediction of in vivo and human 

health outcomes. Diverse bisphenols [72–74] and their mixtures [75], flame retardants [18], 

parabens [76], and other environmental contaminants [63, 77–79] have been evaluated using 

MSC models. Research in female MSCs demonstrated that RXR agonists attenuated glucose 

uptake; blunted adiponectin expression; promoted a sustained interferon signaling, inhibiting 

markers of adipocyte browning; and unlike activation of PPARγ, failed to downregulate 

proinflammatory and profibrotic transcripts [77]. As the authors described, these data 

implicated RXR agonists in the development of dysfunctional white adipose tissue that 

could potentially exacerbate obesity and/or diabetes risk in vivo. Future research is needed 

to evaluate these functional differences in adipocyte physiology to determine more subtle 

effects of obesogenic contaminants. There has also been some initial research to evaluate the 

interplay between lineage commitment, suggesting that exposures to certain chemicals can 

not only commit cells to the adipocyte lineage but can also suppress the osteogenic lineage 

[45]; this interplay between different cell lineages is an area of research that still requires 

further investigation and mechanistic assessment.

Human multipotent adipose-derived stem cells (hMADS), obtained from human infant 

adipose tissue, have also been used to study the effects of aryl hydrocarbon receptor 

ligands that demonstrated an inflammatory response in pre-and adipocytes, a phenomenon 

observed in obesity [80]. hMADS were also used to screen 49 contaminants prioritized 

through ToxCast screening, reporting 26 active chemicals across diverse chemical groups 

(i.e., pesticides, phenolics, phthalates, etc.) [81].

2.3 Spheroid adipocyte models

Spheroid cell cultures of both MSCs and preadipocytes are being developed and 

evaluated [82–87]. These culture techniques may allow some inherent benefits over the 

traditional adherent monolayer cultures. Spheroid culture of adipocyte models may improve 
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differentiation efficiency relative to monolayer cultures [82–86, 88], reducing time and cost 

investment. The fundamental goal of spheroid models is to maintain greater in vivo or whole 

tissue-relevant signaling than monolayer models. Indeed, several papers have demonstrated 

greater adipogenic and osteogenic gene expression relative to monolayer cultures and 

a down-regulation of stemness markers [82, 83]. Other researchers have demonstrated 

increased plasticity of spheroid constructs through multiple generations of these cells able 

to commit to and differentiate into numerous cell lineages [89]. This plasticity might 

signal a greater variance in these models that requires further investigation. While these 

models have received no apparent use for the interrogation of putative obesogens, they 

have been demonstrated to exhibit improved relevance to the in vivo condition [90]. 

Specifically, researchers have demonstrated that human unilocular vascularized adipocyte 

spheroids have unilocular morphology and large lipid droplets, and these cells develop key 

features of adipocyte dysfunction (e.g., insulin resistance, impaired lipolysis, and disrupted 

adipokine secretion; [90, 91]) and respond to stress (toxin or culture-related) by secreting 

pro-inflammatory adipokines [92]. These spheroid cultures also maintain expression of 

markers specific to certain adipocyte types (e.g., brown) for longer than is possible in 2D 

culture [92]. These 3D cultures also exhibit more physiologically relevant gene expression 

(>4500 differentially expressed genes relative to 2D culture) and lipid profiles of >1000 

lipid species resemble the in vivo condition [93]. As such, these models may allow for 

a clearer understanding of adipose physiology than was possible with monolayer cultures 

and hence requires further evaluation and comprehensive validation and testing; this should 

also include evaluation of known adipogenic and/or obesogenic contaminants to compare 

responses with existing models.

2.4 Liver cell assays

Obesogens are also known to target liver (either directly or indirectly) and promote 

metabolic diseases such as toxicant-associated fatty liver diseases (TAFLD) or non-alcoholic 

fatty liver disease (NAFLD); thus, there is a need to have accurate in vitro hepatocyte 

models for testing chemicals. Liver cell assays are frequently used as surrogate models to 

predict in vivo hepatotoxicity related to chemicals and decipher the determinants of NAFLD 

development and progression. The use of various hepatocyte models for evaluating NAFLD 

and other metabolic disorders has been covered recently in detail [94–97]. These models 

have been used to evaluate diverse environmental contaminants, including bisphenols [98, 

99], phthalates [99–101], pesticides [102], other environmental contaminants [99, 101], and 

therapeutics [103] for effects on NAFLD and other metabolic dysfunction.

Among many liver cell lines, HepG2 cells a human hepatoma cell line commonly used 

for drug metabolism and hepatotoxicity studies. HepG2 cells express certain differentiated 

hepatic functions like lipoprotein metabolism, triglyceride metabolism, bile acid synthesis, 

glycogen synthesis, or insulin signaling, making them a useful tool for some studies 

targeting hepatotoxicity and drug metabolism [104]. HepG2 cells exposed to a low 

concentration of BPA alter lipid metabolism, mitochondrial function and promote lipid 

accumulation leading later one to steatosis [105]. Co-incubation of HepG2 with fatty acids 

palmitic acid and oleic acid, induced lipid accumulation in a dose-dependent manner which 

will contribute to steatosis [106].
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Comparatively, human THLE-2 and murine AML12 cell lines are derived from healthy 

liver cells and express characteristics of normal adult liver epithelial cells [107]. Insulin 

receptor expression was low in THLE-2 cells relative to AML12 and HepG2 cells, 

suggesting disparities in their application to insulin receptor signaling. Gluconeogenesis and 

hepatokine expression was impaired in both THLE-2 and AML12 cells; while expression 

of Angiopoietin Like 4 (ANGPTL4) was regulated byδ PPAR activation similarly across 

THLE-2, AML12, and HepG2 cells, only HepG2 cells reflected the in vivo environment 

with regulation by cAMP [107]. These models have been utilized to evaluate fatty acid 

induced lipid droplet accumulation and the presence and causes of heterogeneity in the lipid 

droplet content [108],

The most prevalent human liver cell line is HepaRG. HepaRG cells can differentiate into 

hepatocyte-like and biliary-like phenotypes after dimethylsulfoxide (DMSO) (1.75 – 2%) 

exposure, and possess the ability to stably express several liver-specific genes such as 

albumin, aldolase B, CYP2E1 and CYP3A4 [109]. Changes in metabolites related to energy 

metabolism, oxidative stress, and insulin resistance have also been observed in differentiated 

HepaRG cells supplemented with an oleate/palmitate mixture [110]. These are consistent 

with alterations observed in the liver tissues of human patients and animal models of 

NAFLD [111, 112]. Altogether, these data further support the suitability of the fatty acid-

supplemented HepaRG model to study the impact of obesogens on steatosis progression 

towards steatohepatitis in the context of the “two-hit” model [113]. In line with these data, 

an oleate/stearate mixture is sufficient to decrease the expression of CYP1A1, 1A2, 1B1 and 

decrease their activity after steatosis induction [114]. These results corroborate data obtained 

from NAFLD rodent models, especially regarding CYP1A1 and 1A2 [115–117].

In addition, several 3D liver culture models have also been developed to create a cell 

environment closer to in vivo conditions. In 3D cell cultures, cell growth and interaction 

with surrounding conditions exhibit higher differentiation and benefit from more extended 

culture than 2D cultures [118]. When cultured as 3D spheroids, HepaRG cells express genes 

involved in lipoprotein metabolism, energetic lipid synthesis, gluconeogenesis, glycolysis, 

and bile acid metabolism, liver-specific functions, and xenobiotic metabolism enzymes [119, 

120].

Primary human hepatocytes (PHH) are increasingly used to predict drug metabolism and 

liver enzyme induction in humans. However, PHH have inherent limitations: scarce and 

unpredictable availability, limited growth activity and lifespan, and early and variable 

phenotypic alterations in 2D culture. Moreover, liver-specific functions, particularly 

cytochrome P450 (CYP) activities and their responsiveness to prototypical inducers, are 

not maintained with increasing time of culture. Liver-specific functions also usually decrease 

with time in culture and are differently altered [121, 122]. Cultivated in a 3D collagen 

matrix, they proliferate, form hollow spheroids, and undergo robust hepatic differentiation. 

They can be maintained in this state for at least 28 days without decreasing survival rate and 

cellular polarity and require fewer cells to generate spheroids than 2D cultures [123]. PHH 

3D-spheroid models co-cultured with liver sinusoidal endothelial cells, Kupffer cells, hepatic 

stellate cells, increase human hepatocyte functionality (increased mRNA expression of 

APOB, CYP3A4, and albumin). Essential factors such as spheroid size, time in culture, and 
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culture media composition affect basal levels of xenobiotic metabolism and liver enzyme 

inducibility via activators of hepatic receptors such as the aryl hydrocarbon receptor (AhR), 

constitutive androstane receptor (CAR), and pregnane X receptor (PXR) [124]. Various 

co-culture techniques have also been developed for liver cell assays to recreate more tissue 

or disease-relevant environments for the evaluation of disease biology and toxicology [125].

Similarly, primary murine hepatocytes (PMHs) are readily isolated through rapid protocols 

and thus have improved availability relative to PHH [126]. PMHs have been well-described 

as a model to assess fat deposition, inflammatory responses, and mechanistic interrogation 

of fatty acid induced lipid accumulation by diverse contaminants [127–129].

2.5 Muscle cell assays

While skeletal muscle is the main tissue responsible for utilization of glucose and is the 

main site of the development of insulin resistance, the impact of toxicants on skeletal muscle 

has not been extensively studied. Detecting effects in vitro can be difficult due to the 

specific cell culture requirements and stimulation of skeletal muscle fibers required to mimic 

physiological function. Since skeletal muscle plays a critical role in developing metabolic 

diseases, any chronic disturbances in muscle cells may contribute to insulin resistance and 

subsequent obesity.

The most widely used in vitro myocyte model is the murine myoblast cell line, C2C12. 

These cells can be differentiated into myotubes (immature muscle cells) over several 

days. BPA and estradiol have been demonstrated to suppress myogenic differentiation 

by inhibiting Akt signaling in C2C12 cells [130], potentially disrupting ER signaling. 

Tolylfluanid alters insulin signaling, mitochondrial function, and protein synthesis in C2C12 

cells in a manner dependent on fatty acid levels [131]. The rat myoblast cell line, L6, has 

a longer differentiation time relative to C2C12 cells, as well as appreciable differences in 

mitochondrial respiration and glucose utilization [132]. In L6 rat myotubes, di(2-ethylhexyl) 

phthalate (DEHP) exposure was shown to affect insulin receptor expression, GLUT4 

expression, as well as glucose uptake and oxidation, indicating that it may negatively 

influence insulin signaling [133]. The pesticides dichlorodiphenyltrichloroethane (DDT) 

and lindane impair insulin signaling in L6 myotubes, promoting insulin resistance-like 

conditions [134].

Human and rodent primary myoblasts are also used. However, they are unsuitable for 

extended cultures and more extensive screening studies due to relatively low numbers of 

cells obtained at a relatively high cost. Some polychlorinated biphenyls (PCBs) have been 

shown to inhibit myogenic differentiation of primary murine myoblasts and L6 cells [135]. 

In primary murine myoblasts differentiated to myotubes, low micromolar concentrations 

of BPA and tetrabromobisphenol A (TBBPA) were shown to affect calcium signaling 

and resting potential. In a similar study, using rabbit skeletal muscle microsomes, BPA 

and TBBPA were shown to differently affect the function of proteins involved in calcium 

signaling [136].

Notably, there are distinct differences between mature muscle tissue and myotubes derived 

from myoblast cell lines or primary myoblasts [132]. Myotubes have lower energy demand, 

Kassotis et al. Page 10

Biochem Pharmacol. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lower oxidative phosphorylation, higher glycolysis, and lower insulin responsiveness [137]. 

There is a considerable knowledge gap regarding the effects of environmental chemicals 

in more complex and physiologically relevant skeletal muscle systems, which require 

additional validations.

3. In vivo assays

While in vitro mechanistic studies are a critical component in environmental chemical 

research, these studies cannot replace the need for in vivo integrative models, particularly 

for adverse health outcomes that develop later in life following developmental exposures. 

Research examining the environmental health consequences of exposure to environmental 

chemicals using animal models has demonstrated that some adverse health effects of 

chemical exposures reported in humans are also apparent across other vertebrates [138]. 

These findings are essential for understanding the impact of environmental chemicals, 

including obesogens, across all vertebrates [139]. These tests are critical because the 

classification of obesogens into different classes according to the strength of evidence is 

highly dependent on the tests used.

Beyond the classical rodent in vivo models used to investigate human obesity, new models 

have emerged based on alternative model organisms, e.g., bony fishes, worms, and flies 

[140] (Figure 2). These model organisms, including Danio rerio (zebrafish), Caenorhabditis 
elegans (C. elegans; roundworm), and Drosophila melanogaster (fruit flies), offer several 

advantages to accurate discernment of the metabolic processes involved in metabolic 

diseases such as obesity [141]. These organisms share small size, large numbers of progeny, 

relatively rapid development, and sequenced genomes. They are well suited to moderate 

throughput screening of chemicals to study metabolic diseases [142–146]. Moreover, most 

genes and gene families implicated in metabolic diseases are conserved among flies, worms, 

zebrafish and humans [144]. Below we present a short overview of the utility of each model 

and some summarized obesogenic chemical evaluation using these emerging models (Table 

1).

3.1 Danio rerio (Zebrafish)

Zebrafish, a small tropical freshwater fish native to South Asia (e.g., India and Bangladesh), 

has found wide use in almost all areas of biological research [147, 148]. Zebrafish is 

one of the most widely used models to study metabolic dysfunction. They have indeed 

all the critical organs that regulate energy homeostasis and metabolism, including adipose 

tissue, digestive organs, i.e., pancreas and liver, and skeletal muscles, all physiologically and 

anatomically like humans [141, 149, 150]. The rapid development of zebrafish promotes 

metabolically functional organs only a few days post-fertilization (dpf; e.g., pancreas and 

liver develop around three dpf). Organogenesis and biological processes can be easily 

monitored due to the extra-uterine development and the semitransparency of the embryo and 

larva stages that persist until a relatively late stage of development [151].

Zebrafish store excess neutral triglycerides in lipid droplets within white adipocytes similar 

to mammals [152] and have well-described anatomically, physiologically, and molecularly 

distinct adipose depots throughout their bodies [153–155]. This contrasts with Drosophila 
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and C. elegans, where fat is stored in non-specialized cells (within the fat body or within 

the intestine, respectively) that carry out several other functions besides lipid storage [156]. 

Regulations of body weight, appetite, lipid, and sugar homeostasis share similar mechanisms 

between humans and zebrafish and are similarly affected by endocrine disrupting chemicals 

(EDCs) [145, 157, 158]. The development of WAT starts in the pancreatic and abdominal 

adipose depots, then in various cranial and ocular depots, and finally expands throughout the 

fish. The appearance correlates with the size rather than the age of the fish [159–161]. The 

first adipocytes develop from 8–12 dpf or at a minimal larval size of approximately 5 mm 

[160].

Zebrafish obesity models enable the evaluation of diet, chemical or genetic, phenotypic 

modifiers through several different techniques [162–165]. Measurement of total body 

triglycerides may be used as an indicator for evaluating adiposity and/or obesity progression 

[161]. Adipocytes can also be visualized and quantified by lipid staining with the Oil Red 

O neutral dye or with various fluorescent lipophilic dyes (e.g., Nile Red, Lipid Green) 

in live fish, adult zebrafish sections, or fixed zebrafish larvae. Since zebrafish larvae are 

transparent, live-imaging and fluorescent staining allow ready detection and quantification 

of intracellular lipid droplets and adipose tissue, including its regional body distribution 

[166, 167]. These methodological advantages have been exploited for developing a bioassay 

to evaluate the obesogenic properties of chemicals in zebrafish larvae [161]. Zebrafish 

models can also help assess specific windows of sensitivity during life as well as 

transgenerational effects of obesogens [168–170] and can be used to study the interaction 

between the diet composition and metabolic health effects promoted by subsequent chemical 

exposures [114, 152, 159, 160, 171]. Interesting recent research demonstrated that long-term 

dietary vitamin D deficiency promoted stunted growth and increased central adiposity via 

both adipocyte hypertrophy and hyperplasia in both visceral and subcutaneous depots [172]. 

Through lipidomics analysis, these fish were demonstrated to have increased bioactive lipids 

that seemed to be mediated through disrupted endocannabinoid signaling [173].

Zebrafish have been widely applied to obesogenic chemical testing, with expanding capacity 

for modulation of diverse metabolic disrupting effects [27, 169, 174–177]. Among other 

obesogenic chemical evaluations, developmental exposure of bisphenol S in combination 

with overfeeding promoted increased triacylglycerol and visceral adiposity via disrupted 

lipid metabolism [175], while BPA exposures both transiently and persistently disrupted 

food intake, increased body weights, and disrupted gene expression related to glucose and 

lipid metabolism [165]. Halogenated BPA analogs also promoted lipid accumulation in 

zebrafish larvae in a manner correlated with their activity as zebrafish PPARγ agonists 

[27]. Developmental exposures to nonylpthenol and nonylphenol polyethoxylates increased 

body weights and adiposity (in both viscera and subcutaneous adipose depots) and disrupted 

energy expenditure [79]. Tributyltin exposure has been described to increase body weights, 

hepatic triglycerides, and hepatosomatic index, along with disrupting genes related to 

adipogenesis, lipogenesis, and diverse other metabolism and growth-related pathways [178] 

as well as increasing adiposity [161]. Developmental cadmium exposures have also been 

demonstrated to increase lipid accumulation, though this effect was transient (observed at 

one and two months post fertilization but was no longer observed by 3.5 months [177]. 

Perfluorooctane sulfonate (PFOS) exposures have also been described to increase adiposity 
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and disrupt pancreatic islet morphology and area in developmentally exposed zebrafish, 

along with increasing fatty acid concentrations and disrupting PPAR gene expression [169].

3.2 Oryzias latipes (Medaka)

The Japanese rice fish, also known as the medaka, are a valuable model for 

environmental chemical and epigenetic transgenerational research [179]. Similar to 

zebrafish, this model can be used for estimating adipose tissue volumes and the effects 

of nutritional factors (dietary soy sauce oil) or various environmental chemicals such as 

per/polyfluoroalkyl substances and tributyltin chloride [180–182]. However, they lack the 

thorough characterization of adipose depots and the transparent bodies that zebrafish benefit 

from. They have also been utilized for determining transgenerational effects on metabolic 

health outcomes such as lipid metabolism [183]. Research using medaka has also evaluated 

chemical exposures and effects on bone formation [184], suggesting a potential strength for 

this model in the evaluation of differential MSC lineage commitment.

Medka have not yet been widely used in obesogenic chemical evaluations, but some 

preliminary research suggests utility in this model for diverse obesogenic endpoints. 

Specifically, exposure of medaka to both tributyltin and perfluorooctane sulfonate (PFOS) 

individually promoted adipose accumulation in larvae, with mixtures of these two obesogens 

resulting in enhanced effects (even below the individual no-effect concentrations) [181]. 

In related research, tributyltin exposures disrupted signaling pathways related to PPAR 

signaling, hormonal metabolism, and genes related to obesity in humans via mRNA-Seq 

analysis in exposed zebrafish [185]. Similarly, BPA exposure was reported to disrupt genes 

related to lipid metabolism (cholesterol and lipid synethsis, regulation, and transport, etc.) in 

a sex-specific manner [186].

3.3 C. elegans (Roundworm)

The roundworm is a small nematode living in temperate soil environments that has been 

used as a model organism since the 1960s in everything from developmental biology 

to neurodegenerative disease and aging. Although C. elegans is generally considered 

genetically and physiologically distant from humans, several studies have shown that 

the main regulatory pathways of energy homeostasis are shared between mammals and 

nematodes [144, 187, 188]. These advantages make C. elegans a suitable in vivo model 

to identify compounds that modulate fat storage and promote obesity [141, 189]. Both 

simple fluorescence (Nile red or Sudan-black probes) and biochemical (triglyceride assays) 

techniques can be used to quantify lipid amount and fat storage in these worms [188]. In 

addition, genetic approaches using mutant or transgenic animals can help evaluate molecular 

mechanisms underlying metabolic health effects [187, 188]. Moreover, C. elegans can be 

readily used to measure food intake and energy expenditure [188, 190]; several diets, food-

derived or nutraceutical compounds, and fat-increasing compounds have been described to 

modulate fat accumulation [189–191]. Limitations of this model include lower conservation 

of biological pathways with humans and a lack of particular organs and circulatory systems 

[192]. C. elegans also lack PPARγ, though they do express orthologs of both PPARα and 

δ, and have no identifiable homolog for leptin [193, 194]. Perhaps unsurprisingly, they thus 

have no cells specifically designed for lipid storage (i.e. adipocytes), though they do still 
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store lipids, primarily in intestinal and epidermal skin-like cells, which are comprised of 

diverse saturated, monounsatured, and polyunsatured fatty acids [193]. This model has also 

been used to assess transgenerational effects, with research demonstrating that starvation of 

the parental generaton promoted disrupted metabolism in the F3 generation, whereas BPA 

exposures resulted in transgenerational modulation of epigenetic germline silencing through 

up to five subsequent (non-exposed) generations (reviewed in [195]).

Despite these limitations, this model has been utilized widely in better understanding 

the genetics of fat accumulation, storage, and obesity [194, 196], and has been applied 

to obesogenic chemical evaluation successfully. Specifically, methylmercury exposure 

promotes triglyceride accumulation, lipid storage, and alter feeding behaviors [197], 

erythromycin promotes increased fat content and triacylglycerol levels as well as 

promoting overeating, presumably mediated through stimulation of serotonin, dopamine, 

and acetylcholine and/or disruption of lipogenesis and lipolysis [198]. Recent research 

demonstrated a non-monotonic increase in overall fat deposition and triglyceride content 

following bisphenol S exposures, along with modulation of fat synthesis and fatty acid 

oxidation gene expression [199].

3.4 Drosophila melanogaster (Fruit fly)

The fruit fly is one of the most used model organisms throughout biological research. The 

small size, short generation time, low cost, ease of breeding, and a large panel of genetic 

tools have spurred use in genetic and developmental biology research [192, 200]. Many 

studies have demonstrated the usefulness of this model in nutrition and obesity studies 

based on the manipulation of diet composition and genes involved in nutrient sensing and 

regulation of energy balance [201]. Although this model is anatomically different from 

mammals, many organ systems perform similar functions relative to mammals. For example, 

the fruit fly fat body covers metabolic functions of liver and adipose tissue (e.g., fat and 

carbohydrate storage). Instead of a fully differentiated pancreas, there are neurosecretory 

insulin-producing cells (IPCs), which allow carbohydrate and lipid homeostasis via the 

production and secretion of an insulin-like peptide [146, 201]. Few studies have utilized 

this model to evaluate potential obesogens and/or obesity biology, though its suitability for 

evaluating endocrine impact(s) on development and fertility is well accepted [202]. The 

efficiency of this model in assessing obesogenic properties of EDCs is highlighted by several 

studies demonstrating alterations of lipid homeostasis with chemical exposure (e.g., DEHP) 

and subsequent increase in lipid/adipose accumulation and/or transgenerational effects [203–

205].

3.5 Rodents

A critical issue in selecting an animal model is whether the outcomes examined are relevant 

to human anatomy, physiology, molecular mechanisms and show homology with humans, 

which has historically driven a reliance on rodent models (e.g., rats and mice). The use 

of rodents in metabolic health research is well-described and assessed by several previous 

reviews [206–208]. Here we will address other considerations for in vivo model organism 

research revealed through comprehensive evaluations in rodent models. Many of these 
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factors have yet to be evaluated or considered for the emerging models described above but 

will need to be assessed as they are increasingly used.

Dozens of publications have clearly delineated the use of the rodent model in metabolic 

health research. A number of studies (reviewed in [207, 208]) have explicitly described 

the use of hypercaloric and/or high fat diets to promote metabolic disorders and the 

clear translation of this preclinical model to human metabolic syndrome. However, 

other approaches, such as creating a crowded uterus in pregnant mice due to prior 

hemiovariectorm, have also been used to generate metabolicly abnormal intrauterine growth 

restricted (IUGR) and macrosomic offspring in the same litter [209].

There are diverse genetic models of obesity, including db/db mice (leptin receptor mutation 

that promotes higher body weights, triglycerides, and cholesterol, hyperinsulinemia, and 

impaired glucose tolerance), ob/ob mice (leptin gene mutation resulting in inactive leptin 

protein and promoting obesity, hyperinsulinaemia and hyperglycaemia), fa/fa diabetic fatty 

rats (different leptin receptor mutation promoting hyperinsulinaemia, hypertriglyceridaemia, 

and increased serum inflammatory markers), and Otsuka Long-Evans Tokushima fatty rats 

(Pancreatic acini cells insensitive to cholecystokinin, which controls food intake, promoting 

obesity, hypertriglyceridaemia, impaired glucose tolerance), that have been described 

in detail previously [206]. Rodents can be robust models for body weight, adiposity, 

development of specific adipose depots, measurement of diverse lipid classes, glucose and 

insulin signaling, inflammatory markers, blood pressure, controlled measurement of food 

and water intake and metabolic activity, as well as NASH and NAFLD, among other 

metabolic outcomes [206].

3.6 Use of inbred vs. outbred models

Genetic diversity of model organisms (inbred versus outbred) can be an essential design 

consideration for chemical contaminant studies. Researchers may select an inbred rodent 

strain without background genetic variation to study the epigenetic basis of phenotypic 

diversity (e.g., inheritance of an epigenetic trait) [210]. In contrast, a researcher may choose 

an outbred rodent (e.g., CD-1) for the genetically diverse background to assess toxicant-

induced effects more rigorously. However, there are concerns that laboratory outbred rodent 

strains differ substantially between vendors and relative to bona fide outbred animals. 

Inbred rodents do not represent the spectrum of sensitivity required to model genetically 

diverse human populations accurately. For example, males at puberty have considerable 

heterogeneity in rodent responsiveness to estrogens [211]. The C57BL/6J inbred strain 

is exquisitely sensitive to estradiol after puberty relative to other mouse strains/stocks 

and exhibits hyper-estrogenization during fetal life, which becomes apparent in behavioral 

assays [212]. Interestingly, C57 mice are insensitive to xenoestrogens administered via the 

dam compared to the outbred, hyper-fertile CD-1 mouse, which exhibits high sensitivity 

fetal-neonatal response to xenoestrogens [213]. Given this, the choice of strain used can 

have demonstrable impacts on endpoint measurements.
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3.7 Animal feed as a source of variability

Animal feed can be a substantial source of variability in toxins, phytoestrogens, sources of 

fats, and other components. Open formula feeds provide the proportion of nutrients, which 

is intended to reduce, but not eliminate, batch-to-batch variability. Closed formula (constant 

nutrition) feeds just provide information about the amount of protein, fat and fiber, but the 

sources may vary due to price and availability [214, 215]. Thus, the choice of feed used 

in animal studies, impacted by price, can be a critical source of variability in outcomes 

of health-related research and can also be the basis for studies that do not replicate prior 

results [216]. For example, publications by Thigpen and colleagues reported that a batch of 

constant nutrition rodent feed (Purina® 5002) containing elevated levels of phytoestrogens 

(focusing on the soy isoflavones genistein and daidzein) interfered with the ability to see 

estrogenic effects of a positive control chemical, the potent estrogenic drug diethylstilbestrol 

(DES). However, DES effects were observed with another batch of 5002 feed that had much 

lower phytoestrogen levels. The rat strain used also mattered, with Sprague-Dawley rats 

showing no effect of use of soy feed, while the CD-1 mouse (the model used by the National 

Toxicology Program), is, as discussed below, very sensitive to components of feed [217].

This observation by Thigpen demonstrated that there can be significant batch-to-batch 

variability of phytoestrogen levels in laboratory animal feed with presumably the same 

nutrient profile; a constant level of soy protein in different batches of a feed can have 

markedly different levels of phytoestrogens, which vary in soy based on many environmental 

factors [216]. It has been assumed for some time that the only issue of concern with soy-

based feeds was variability in the soy phytoestrogens genistein and daidzein, but findings 

described below suggest other components of soy-based feeds (e.g., contaminated fish meal, 

source of lipid) may also lead to significant differences in phenotype in mice. Second, the 

study revealed that specific batches of feed could promote replication failure relative to most 

prior studies reporting that DES (a known human carcinogen) disrupted development in 

mice, just as it did in humans [218]. Developmental exposure to DES also promoted obesity 

during later adulthood in mice maintained on a soy-based (NIH31) open formula feed [219]. 

This demonstrates that a core issue should be whether the feed used is resulting in an 

inability to see effects in response to treatments that others are reporting. Not surprising is 

that industry-funded research on BPA, which claimed to be a replication of findings from 

multiple laboratories [220], in fact, had used 5002 feed [221, 222]. This led to a failure to 

demonstrate a BPA-induced effect in both CF-1 mice and Crl:CD Sprague-Dawley (CD-SD) 

rats. This research also failed to demonstrate effects of DES with this food (included as 

positive control) [221], suggesting an inappropriate model to detect BPA-induced effects 

[223].

In other studies, the expected developmental effects of DES were again shown not to occur 

in CD-1 mice fed 5002 feed, but were found if the mice were fed the constant nutrition, 

soy-based Purina® 5008/5001 breeder and maintenance feeds, respectively. Specifically, 

relative to Purina® 5008 fed to pregnant CD-1 mice, the 5002 feed significantly estrogenized 

and elevated fetal serum estradiol in fetuses. Critically, the 5008 feed had >50% higher 

total estrogenic activity (detected in a human breast cancer cell bioassay) as well as higher 

amounts of genistein and daidzein relative to the 5002 feed, substantiating that 5002 feed 
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interfered with finding DES effects, but this was not mediated by elevated genistein and 

daidzein or total estrogenic activity as initially proposed [224].

In addition to problems related to the use of soy-based 5002 feed, feeding casein-based 

low phytoestrogen 5K96 feed to pregnant CD-1 mice also elevated endogenous serum 

estradiol in fetuses compared to CD-1 mice fed Purina® 5008; 5K96 casein feed thus also 

promoted estrogenization of mouse fetuses, similar to effects in mice exposed as fetuses to 

xenoestrogens such as DES or BPA [225]. Relevant to this review, the 5K96 feed resulted in 

morbid obesity in adult CD-1 male mice (all internal organs were encased in fat) compared 

to Purina 5008/5001 or Harlan Teklad 8604, another soy-based constant nutrition feed [225, 

226].

Another example of feed-based impact on a supposed “non-replication” experiment was 

when prior metabolic effects of BPA and DES were not found is a study in which the 

control CD-1 mice were morbidly obese and did not show the previously reported effects 

of fetal exposure to BPA or DES [227] while maintained on the casein-based AIN93G 

feed [228]. The fetal mice whose mothers were fed casein-based 5K96 or soy-based 5002 

feeds potentially had elevated aromatase (estrogen synthetase) activity, thus elevating fetal 

estradiol levels, compared to other soy-based feeds. Various flavonoids and lignans have 

been reported to inhibit aromatase activity in a human preadipocyte cell culture assay [229], 

although the components of the different feeds that caused these effects remain unknown.

There have been many articles published about the issue of non-replication in laboratory 

research, mostly attempting to sensationalize the problem [230], but clearly, there are 

issues, such as variability in feed, that are a major contributing factor in non-replication 

in laboratory animal research. The above findings demonstrate the critical importance of, 

whenever possible, including a positive control in toxicological or pharmacological studies 

that will provide information about the sensitivity and validity of the assays and results 

[223]. The vast diversity of animal feed components, including the casein or soy backbone 

and multiple sources of protein and lipids, can markedly impact research findings related to 

metabolic health.

3.8 The role of positive controls in animal model selection

A National Toxicology Program (NTP) panel addressed animal models for EDCs or drug 

research. It stated: “Because of clear species and strain differences in sensitivity, animal 

model selection should be based on responsiveness to active endocrine agents of concern 

(i.e., responsive to positive controls), not on convenience and familiarity.” The rat strain 

(CRL: CD(SD)) is used by many investigators to examine gestational exposure to estrogenic 

chemicals and drugs, although this rat strain required over a 15-fold higher dose of 

ethinylestradiol to show a response relative to women [231]. It is well known that selecting 

for very high fecundity (CD-SD rats average 14–15 pups per litter), results in low sensitivity 

to estrogenic drugs and chemicals [232].

It is also possible that the characteristics selected for in the generation of the CD-SD rat 

strain, with large litter size and accelerated postnatal growth, may make them resistant to 

contaminant exposures, reducing their future sensitivity and usefulness as a model; this 
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strain is generally used in all FDA and in many commercial laboratory toxicology studies. 

Some strains have undergone selection for large litter sizes for over 100 generations in 

commercial laboratories, with the largest 5–10% of litters selected every generation for 

>100 generations, regardless of whether they were exposed to pesticides (in feed or used 

in the colony), xenoestrogens in their cage materials, or diseases in the colony, etc. The 

result is laboratory animal strains that are precocious, excellent breeders and produce large 

litters. However, the laboratory animal suppliers selected large litter animals not sensitive 

to environmental chemicals [211, 232]. Thus, before proceeding with experiments using 

environmental chemicals such as potential obesogens, it is critical to examine the sensitivity 

of the animal model to appropriate positive controls (e.g., DES for estrogenic testing) for the 

endpoint examined to ensure that each experimental design is sensitive to the environmental 

chemical being examined.

3.9 Animal housing

The caging used in an experiment is an additional key factor. This was clearly described 

in studies of BPA, the monomer used to make polycarbonate cages and bottles. Due to 

harsh washing of the cages, BPA was found to leach from the polycarbonate cages; this 

was further shown to expose both control and intervention animals to this xenoestrogen, 

negatively influencing the experimental determinations of successful meiosis in mouse 

oocytes [233–235]. It is also worth noting that the vast majority of aquatic housing 

systems use polycarbonate; there is likely to be leaching of BPA from these and potential 

recirculation of the chemical throughout the system. While some alternatives do exist [e.g., 

polysulfone (PS) or glass], they are often cost-prohibitive. Polycarbonate (PC) consists 

of BPA molecules linked by ester bonds that are subject to hydrolysis under elevated 

temperature or either high or low pH. PS is a co-polymer of BPA and bisphenol S (BPS) that 

is linked by ether bonds and is stable under temperature and pH conditions that hydrolyze 

BPA bonds in polycarbonate, though PS cages are more expensive. It is essential to ascertain 

the potential impacts of the housing materials (for rodents, also water bottles) on testing 

estrogenic or other metabolism disrupting chemicals.

3.10 Assays for detecting thermogenic brown fat activity

Beige and brown thermogenic fat produces heat during non-shivering thermogenesis to 

regulate body temperature by burning calories (i.e., glucose and lipids) [236]. These 

tissues help regulate glucose and lipid levels, making them high-priority targets for future 

therapeutics in the treatment and prevention of obesity and other metabolically related 

diseases [237]. The functionality of beige and brown fat and the discovery that these tissues 

exist in adults have made the development of reliable assays a critical step to better quantify 

and harness their therapeutic potential as well as to identify chemicals that promote or 

inhibit function.

The energy expenditure in beige and brown adipose tissue (BAT) is made possible through 

the activity of uncoupling protein 1 (UCP1) in brown and beige fat, which uncouples 

mitochondrial respiration from ATP production, leading to the generation of heat [237]. 

Reporter systems that focus on UCP1 levels have been developed to measure the activity of 

thermogenic fat and have been used as a screening tool to identify novel small molecules 
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that can induce thermogenesis within these tissues. Specifically, the ThermoMouse model 

measures thermogenesis via luciferase activity linked to levels of UCP1 expression in BAT 

following environmental stimuli (e.g., decreased temperatures) [238], which has also been 

adapted as an in vitro assay to screen small molecules for luciferase activity [238]. This 

assay has supported screening of potential drug targets that promote UCP1, and which 

could provide a foundation for future BAT-mediated drug therapies that could induce 

thermogenesis and energy expenditure [239–243].

The OLTAM (ODD-Luc based Thermogenic Activity Measurement) system was developed 

to assay the activity of UCP1 independent thermogenesis in beige and BAT. In this in vivo 
model, a transgenic mouse that expressed the ODD (oxygen-dependent degradation) domain 

of hypoxia-inducible factor 1 alpha (HIF1α), tagged with luciferase, was used to measure 

hypoxia. Hypoxia has been shown to take place during nonshivering thermogenesis in beige 

and brown fat and is an indicator of thermogenesis [244]. An in vitro system was developed 

using the stromal vascular fraction of isolated brown adipocytes from these mice to measure 

cell-based thermogenic activity [244]. These cells could be used to evaluate the action of 

chemicals on the function of thermogenic beige and brown adipocytes.

Measuring changes in heat generated within BAT offers another tool to assay thermogenic 

activity. Noninvasive imaging techniques lack sensitivity and specificity due to the distance 

between the instrument and the tissue, and invasive techniques lack sensitivity due to their 

inability to directly and safely insert into BAT and their inability to detect more minute 

temperature fluctuations [245]. Xenon-enhanced computed tomography enabled accurate 

measurement of BAT within mice due to the lipophilic preference of xenon gas [246], which 

has been further enhanced through later research [245]. ERthermAC, a small molecule 

fluorescent dye that responds to changes in intracellular heat, is another tool that has 

been found to assay chemically stimulated thermogenesis in both rodent and human brown 

adipocytes [247], and has provided evidence comparable to existing indirect methods of 

measurement.

Lastly, UCP1-expressing brown adipose cells isolated from supraclavicular depots in 

humans have revealed that the molecular makeup of these cells more closely resembled 

mouse beige adipocytes than brown adipocytes [248]. In addition, humans who initially 

possessed no BAT, were found to create new BAT within the supraclavicular region. This 

suggests that human BAT is derived from the browning of beige fat. One could develop 

assays based on these cells to identify chemicals that promote or inhibit the production of 

these thermogenic adipocytes.

4. In silico tests

Computational strategies offer promising tools for developing animal-free models for 

human risk assessment of obesogens. Traditional computational methods using structural 

information of chemicals (quantitative structure-activity relationship (QSAR), Read Across) 

have already been outlined as a general strategy for non-animal testing approaches, 

for example, by the US National Research Council (Tox21, Toxicity Testing in the 

21st Century) [249] and the Organization for Economic Cooperation and Development 
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(OECD) guidelines. New approach methodologies (NAMs), including silico methods, are 

increasingly important in toxicant risk assessment [250].

With the recent advance in omics and high throughput screening, the amount of 

information on gene/protein activity in response to obesogenic chemicals has expanded 

substantially, thereby enabling the development of innovative approaches such as integrative 

systems biology/toxicology models. Systems toxicology uses advanced bioinformatics 

and statistical tools to integrate heterogeneous data types (functional genomic profile of 

obesogens, protein-protein interactions, protein-tissue associations, disease annotations, etc.) 

to mimic the complexity of the biological organization, to identify uncharacterized putative 

associations between an obesogen and its biological targets, and therefore to prioritize 

further experimental testing, thereby associating these chemicals with the disease [251, 252].

Adverse Outcome Pathways (AOPs) are structured frameworks representing relationships 

between molecular initiating events, key events, and adverse outcomes. The OECD proposed 

AOPs to enable robust mechanistic evidence for chemical safety and risk assessment [253]. 

However, for chemical risk assesssments, a pragmatic approach has been proposed for 

applying AOP criteria in evaluating the safety of a chemical [254], since a comprehensive 

understanding of the initiating events and molecular pathways linking chemicals to adverse 

outcomes is unrealistic; for a chemical such as BPA with over 10,000 publications and 

clearly understood to result in adverse effects [255], understanding all of the AOPs is still 

a work in progress. AOPs describe and connect data from various sources, i.e., databases 

and the scientific literature. Key information used to build AOPs can also be gathered using 

computational approaches based on artificial intelligence, such as frequent itemset mining 

and text mining [256]. AOP-helpFinder is a recent hybrid tool that combines text mining and 

graph theory, helping identify the existing linkages between variables (e.g., an obesogen and 

a biological event) by automatically screening the available scientific abstracts [257]. Using 

this tool, it was possible to link exposure to bisphenol S with obesity [258]. Integrative 

systems toxicology modeling and text mining can also link obesogens to AOPs, as proposed 

recently for bisphenol F [259].

5. The Future of Screening for Obesogens

A single approach or assay will not yield all the information needed to identify and classify 

obesogens. Data from epidemiological studies should be integrated with experimental data 

from animal models to support the evidence for the obesogenic potential of an identified 

chemical. It is advisable to adopt a tiered approach to identify and characterize EDCs, which 

can ultimately inform their classification as obesogens, which has been proposed previously 

[260]. For example, if robust biomarkers such as epigenetic modifications (e.g., DNA 

methylation), growth factors, or metabolites are identified through in vivo experimental 

studies, they can be matched with findings from human studies. In vitro methods that assess 

these changes will support prioritized screening for putative obesogens, which can then be 

classified accordingly. Structured frameworks, such as the integrated approaches to testing 

and assessment (IATAs), allow categorization of different tests that support the linkage of 

a chemical with an adverse outcome and with the different events leading to that outcome. 

IATAs are expected to be used for large scale obesogen testing and appear to be more 
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time- and cost-effective than current approaches [261]. Additional in vitro tests are needed, 

including assays that will develop and characterize brown and beige adipocytes to be used to 

define further the sites and actions of potential and actual obesogens.

Approaches like this have been previously attempted using the ToxCast dataset. The 

National Institute for Environmental Health Sciences (NIEHS) hosted a workshop in 2011 

to develop models for predicting obesogenic and/or diabetogenic outcomes using ToxCast 

and Tox21 data [262]. Expert panels developed (among others) a model to predict chemicals 

likely to promote adipocyte differentiation. An early application of this model reported poor 

performance in predicting both active and inactive adipogenic chemicals and suggested that 

better validation of primary high throughput screening assays was required before using 

ToxCast data for this purpose [62]. Later analysis updated the predictive model and reported 

more promising effects [81]. Computational modeling cannot substitute for experimental (in 
vitro and in vivo studies) but can help prioritize obesogens, assess human health risks and 

trigger new epidemiological and experimental studies. To be useful for screening purposes, 

computational models need to be grounded in real-world data and continually refined such 

that predicted activities match the results of in vitro and in vivo screening assays.

Indeed, there is consensus regarding the need for standardized testing methods to identify 

new chemicals that trigger metabolic dysfunction. In this context, initiatives like the 

French PEPPER (Public-privatE Platform for the Pre-validation of Endocrine disRuptors 

characterization methods, https://ed-pepper.eu) platform may facilitate development of pre-

validated methods and assays in toxicology for identification of novel EDCs [263]. In 

Europe, a collaborative group of eight projects, named EURION [264], was established 

in 2019. EURION aimed to develop integrative tests to identify new EDCs. Among 

EURION’s projects, three projects focus on obesity and metabolic disorders (OBERON 

[265], GOLIATH [266], and EDCMET [267]), which are expected to deliver standardized 

batteries of tests for the identification of novel obesogens.

As the field of obesity and adiposity research develops, more research will likely utilize 

some of the alternative models described above. While historically less utilized than rodents, 

these models have some advantages that are likely to see increased use in the coming years. 

Among these are the relatively lower cost and rapid development of assays and models that 

may allow for superior chemical mixture assessments than using rodent models. In vitro 
models have also continued to expand, with an anticipated shift to greater use of normal 

human cell models, three-dimensional culture techniques, and co-cultures techniques that 

may recreate the physiology present in the tissue microenvironment more accurately. Recent 

advances in high content analysis provide promising grounds for increased throughput of 

adipogenesis models, which would enable the screening of larger number of chemicals and 

their mixtures with increased sensitivity and the possibility to differentiate the changes in 

adipocyte number as well as size [42, 75]. Predictive models are still early in development 

but have shown some promise in predicting likely active adipogenic and/or obesogenic 

chemicals. Predictive models based on key concepts for obesogens (such as those recently 

described for EDCs and hepatotoxicants [268, 269]) are likely to support determinations 

of obesogens and their causal mechanisms of action. They should be prioritized on an 

international level, such as the OECD.
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Abbreviations

US United States

WAT white adipose tissue

PPARγ peroxisome proliferator-activated receptor gamma

SREBP-1 sterol-regulatory element-binding protein-1

LXRα liver X receptor alpha

GR glucocorticoid receptor

RXRα/β retinoid X receptor-alpha/beta

ERα estrogen receptor alpha

HPAd human preadipocytes

SGBS Simpson-Golabi-Behmel syndrome

MSCs mesenchymal stem cells

hMADS Human multipotent adipose-derived stem cells
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TAFLD toxicant-associated fatty liver diseases

NAFLD non-alcoholic fatty liver disease

DMSO dimethylsulfoxide

PHH primary human hepatocytes

CYP cytochrome P450

AhR aryl hydrocarbon receptor

CAR constitutive androstane receptor

PXR pregnane X receptor

DEHP di(2-ethylhexyl) phthalate

DDT dichlorodiphenyltrichloroethane

BPA bisphenol A

PCBs polychlorinated biphenyls

TBBPA tetrabromobisphenol A

Dpf days post-fertilization

EDCs endocrine disrupting chemicals

IPCs insulin-producing cells

BAT brown adipose tissue

UCP1 uncoupling protein 1

OLTAM ODD-Luc based Thermogenic Activity Measurement

ODD oxygen-dependent degradation

HIF1α hypoxia-inducible factor 1 alpha

QSAR quantitative structure-activity relationship

Tox21 Toxicity Testing in the 21st Century

OECD Organization for Economic Cooperation and Development

NAMs New approach methodologies

AOPs Adverse Outcome Pathways

IATAs integrated approaches to testing and assessment

NIEHS National Institute for Environmental Health Sciences
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PEPPER Public-privatE Platform for the Pre-validation of Endocrine 

disRuptors
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Essential Points

There are increasing novel capabilities to identify and assess obesogens.

There is still a reliance on using well-defined models with unclear translation to human 

health.

There is still a need for comprehensive validations of novel metabolic health models.

Computational models show some promise in future predictions and assessments of 

obesogens.
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Figure 1: 
In vitro models used for testing the effect of metabolic disrupting chemicals on various 

pathways. Common uses of the various cell models are described.
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Figure 2: 
Advantages and disadvantages of in vivo models for metabolic disrupting chemical 

evaluation. Common or emerging model organisms used in metabolic health research are 

discussed and various characteristics are described.
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Table 1:

Obesogenic chemical testing in emerging in vivo models (zebrafish, medaka, roundworm, fruit fly)

Species Mode of action Representative References

Danio rerio Obesity phenotype
Increased weight, adiposity, and/or lipid accumulation

Cadmium: [177], [270]
DDT mixture: [271]
Nonylphenol and polyethoxylates: [79]
Bisphenols: [272], [27], [165]
Phthalates: [176], [273], [174]|
PFOS: [169]

NAFLD phenotype
Steatosis, fatty liver changes

Cadmium: [270]
Benzo(a)pyrene: [274], [275]
Bisphenols: [276], [277], [278], [279], [280]
Phthalates: [281], [282]

Metabolism changes
Metabolomics, lipids, fatty acids, diabetic phenotype, etc.

Bisphenols: [283], [278], [165]
Phthalates: [176], [284], [174]
PFOS: [169]

Oryzias latipes Obesity phenotype
Increased weight, adiposity, and/or lipid accumulation

TBT: [182]
TBT/PFOS: [181]

NAFLD phenotype
Steatosis, fatty liver changes

Metabolism changes
Metabolomics, lipids, fatty acids, diabetic phenotype, etc.

TBT: [182]
Bisphenols: [186]

C. elegans Obesity phenotype
Increased weight, adiposity, and/or lipid accumulation

Bisphenols: [199], [285]
Erythromycin: [198]
PFOA: [286]

NAFLD phenotype
Steatosis, fatty liver

Metabolism changes
Metabolomics, lipids, fatty acids, diabetic phenotype, etc.

Bisphenols: [199]
Erythromycin: [198]
Methylmercury: [197]
PFOA: [286]

Drosophila melanogaster Obesity phenotype
Increased weight, adiposity, and/or lipid accumulation

DEHP: [287]

NAFLD phenotype
Steatosis, fatty liver changes

Metabolism changes
Metabolomics, lipids, fatty acids, diabetic phenotype, etc.

PFOA: [288]
PFOS: [289]

Summary table of obesogenic activity testing in the zebrafish, medaka, roundworm, and fruit fly models. Representative obesogenic chemical 
testing (non-exhaustive) is included to detail the diversity of contaminants examined.
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