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ABSTRACT: Understanding the role of interfaces is important for improving the
performance of all-solid-state lithium ion batteries. To study these interfaces, we present
a novel approach for fabrication of electrochemically active nanobatteries using focused
ion beams and their characterization by analytical electron microscopy. Morphological
changes by scanning transmission electron microscopy imaging and correlated
elemental concentration changes by electron energy loss spectroscopy mapping are
presented. We provide first evidence of lithium accumulation at the anode/current
collector (Si/Cu) and cathode/electrolyte (LixCoO2/LiPON) interfaces, which can be
accounted for the irreversible capacity losses. Interdiffusion of elements at the Si/
LiPON interface was also witnessed with a distinct contrast layer. These results
highlight that the interfaces may limit the lithium transport significantly in solid-state
batteries. Fabrication of electrochemically active nanobatteries also enables in situ
electron microscopy observation of electrochemical phenomena in a variety of solid-
state battery chemistries.

SECTION: Energy Conversion and Storage; Energy and Charge Transport

For almost two decades, lithium ion batteries have been
used heavily in consumer electronics worldwide. It is

envisioned that they are potential candidates for large scale high
power applications including electric vehicles. High power
applications require ultrafast lithium transport between the
active electrodes through electrolyte in a battery. In spite of
ultrafast lithiation of isolated nanomaterials,1−3 similar power
densities have not been realized in actual devices. Such
discrepancies indicate that active electrode materials alone are
not responsible for the poor rate performance. There has been
ample indirect evidence that both cathode and anode
electrode/electrolyte interfaces can play a major role in lithium
ion transport.4,5 Nevertheless, most of the ex situ as well as in
situ investigations are concentrated on the performance of
either cathode or anode but not the whole system including
electrolyte simultaneously.6−9 Recently, significant interest has
developed to investigate the interfaces in lithium ion battteries
both theoretically10,11 as well as experimentally.12,13 In this
respect, an all-solid-state battery is an ideal system to investigate
the structural, morphological and chemical changes in the
cathode, anode, electrolyte and their interfaces simultaneously.
Previous attempts have not yielded promising results; never-
theless, Ruzmetov et al. investigated the scaling limits of the
solid-electrolyte and claimed that it is detrimental to electro-
chemical performance when the electrolyte thickness is reduced
down to 100 nm.14 Yamamoto et al. investigated a solid-state
battery with ultrathick electrolyte (∼ 90 μm) using electron
holography;15 however, only a small portion of the battery near

the cathode/electrolyte interface was made electron transparent
for their holography investigation. Brazier et al. investigated the
diffusion of heavy elements across the cathode/electrolyte
interface by ex situ transmission electron microscopy (TEM)
and energy dispersive X-ray (EDX) analysis.5 Despite the
analysis of heavy elements, the EDX detection limit prevents
lighter elements, like lithium, from being quantitatively
analyzed. Along with the aforementioned characterization
techniques, scanning transmission electron microscopy
(STEM) coupled with electron energy loss spectroscopy
(EELS) are advanced techniques to characterize structural,
morphological, and chemical changes with a unique combina-
tion of high spatial, temporal resolution and chemical
sensitivity. With state-of-the-art STEM/EELS, one can achieve
subnanometer resolution, subsecond temporal resolution, and
the detection of light elements (such as lithium) down to a few
atomic percent.16 It is equally important to minimize electron
beam (e-beam) induced damages for proper quantitative
measurements, which is currently lacking in the literature.
Enabled with this technique, lithium concentration mapping
across interfaces in nanobatteries would help with the discovery
of new phenomena at the nanoscale, which may be otherwise
impossible. However, direct application of STEM/EELS on all-
solid-state batteries and e-beam damage quantification have not
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been reported in the literature to the best of our knowledge.
The foremost obstacle is the difficulty in fabricating electro-
chemically active thin (∼100 nm) all-solid-state nanobatteries.
In this Letter, we elucidate the first instance of focused ion
beam (FIB) fabrication of such functional all-solid-state
nanobatteries and report for the first time, direct evidence of
interfacial related phenomena in lithium ion batteries. Lithium
accumulation at the cathode/electrolyte interface was observed
during normal charging, and an additional phosphorus/silicon
interdiffused layer at the electrolyte/anode interface was
observed under an overcharged condition. STEM/EELS
chemical mapping highlights that the cathode/electrolyte
interface is the chief limiting factor for lithium transport. The
current ex situ study is a crucial step in achieving in situ TEM
observations of all-solid-state lithium ion batteries.
We start with an electrochemically active microbattery with

Au and Cu as current collectors for the cathode (LiCoO2) and
anode (Si), respectively. The fabrication of such thin film
batteries have been reported previously.17−19 The optical and
cross-sectional SEM images of the microbatteries used for this
study are given in the Supporting Information (Figure S1). The
thickness of the active layers in the current set of batteries were
about 2 μm for the cathode, 1.2 μm for the electrolyte, and 80
nm for the anode. In order to study the electrochemical activity
of the nanobatteries, they were biased in the FIB immediately
after fabrication either using the complete isolation or the
pseudoisolation scheme from the thin film battery. Both FIB
biasing schemes are explained in the Supporting Information
(Figure S2). The nanobatteries were charged galvanostatically
(typically with a current density of about 100 μA/cm2,
equivalent to 1.25C rate) in situ in an FIB using the omniprobe
as shown in Figure 1a.
First, the successful fabrication of electrochemically active

nanobatteries requires very specific optimization of the FIB
process, and pixel dwell time was found to be the most
important factor. The charging profile for a nanobattery
fabricated using a 10 μs pixel dwell time displays hardly any
voltage, as shown in Figure 1b, indicating shorting across the
stack, while the charging curve for a nanobattery fabricated
using 1 μs pixel dwell time shows a voltage lower than the
expected 3.6 V. However, when the nanobattery was fabricated
using a 100 ns pixel dwell time, the charge profile shows that
the voltage reaches 3.6 V. In addition, the inset in Figure 1b
shows that the charging profile, when extended to 30 min
(equal to 50 μAh/cm2), plateaus at 3.6 V throughout the entire
charging period. Nanobatteries fabricated under these con-

ditions are highly consistent and repeatable with a 3.6 V voltage
plateau, which agrees well with the voltage profile of
microbatteries.19 The electrochemical activity of the nano-
batteries is preserved by using smaller pixel dwell time. Usage
of smaller pixel dwell time is thought to minimize localized
heating and compositional changes in the LiPON electrolyte,
which could cause significant loss of electrochemistry.
Following the successful nanobattery fabrication, we scaled
down the cross-section thickness to 200 nm, and Figure 1c
displays the charging profile for 40 μA/cm2 current density.
The typical current density (100 μA/cm2), used for thicker
nanobatteries was too high, leading to a large polarization,
causing the voltage limit to be attained much faster in these
thinner nanobatteries. Meanwhile, a 40 μA/cm2 current density
yields a profile with a plateau higher than the expected 3.6 V,
indicating that the current density is still too high. As we have
reached the lowest limit of our current source at 40 μA/cm2

(using 1 pA as the absolute biasing current), we are in the
process of developing a fA current source for future
experiments. Cycling performance of the nanobatteries in the
FIB were also investigated, and the first 10 cycles (Supporting
Information, Figure S3) were similar to the microbatteries
previously reported,19 which shows a considerable amount of
capacity loss.
With the developed optimized FIB process, electrochemically

active nanobatteries were fabricated and then charged to
different states using the pseudoisolated scheme. They were
further thinned by FIB and investigated by ex situ STEM and
EELS to understand the structural, morphological, and
chemical changes. Results for three different samples presented
here are (i) pristine, (ii) charged: to 80 μAh/cm2 at a rate of
1.25C, and (iii) overcharged: to about 260 μAh/cm2 at a rate of
100 times the charged sample (more details in section 2 of the
Supporting Information). There are signficant morphological
and chemical changes, although no detectable structural
changes were found from the electron diffraction analysis
within all active layers (Supporting Information, Figure S4).
As shown in Figure 2, there is a remarkable difference

between the anode regions in the pristine and overcharged
samples, with a sharp interface between anode and electrolyte
in the former versus a broad/thick interface in the latter. The
anode thickness increased significantly from 85 nm in the
pristine to about 140 nm in the overcharged sample,
corresponding to an expansion of about 165%, which may be
due to the first stage of lithiation of amorphous silicon anodes
according to the literature,20,21 and detailed discussions are

Figure 1. (a) SEM image of a typical FIB biasing of a nanobattery using an omni-probe. Electrochemical voltage profile of FIB fabricated all-
solidstate. (b) Nanobattery at different fabrication pixel dwell times but fixed biasing current density of 100 μA/cm2 and (c) nanobattery charging
profile with a lower biasing current density. The inset in (b) shows 30 min charging profile of the nanobattery.
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given in the Supporting Information. In other cases, the
different contrast in the silicon copper interface is normally
attributed to the interdiffused interface upon cycling as
observed by STEM/EDX analysis.22 However, we present
additional differences based on lithium concentration analysis
described later in this manuscript. To correlate morphological
changes with the chemical changes, EELS 2D mapping was
performed on all three samples. Figure 3a−c shows the data for
pristine, charged, and overcharged samples, respectively. The
2D mapping of Li, P, and Si (shown in red, green, and blue,
respectively) is shown in the left image, the corresponding
STEM image is in the middle, and the lithium concentration
mapping is on the right. For the pristine sample, the bright red
and blue regions in the cathode and anode, respectively, clearly
demonstrate the pristine state of LCO and Si. The interface
sharpness (as discussed above) is also clearly evidenced in these
concentration maps. However, vital information can be
obtained from the lithium distribution across the stack. The

variation of lithium concentration by four color gradients with
increasing concentration from blue to red. For the pristine
sample, lithium is concentrated in the cathode and the
electrolyte while absent in the anode. In the charged and
overcharged samples, the lithium has been transported to the
anode, which can be seen from the green color in both cathode
and anode, indicating similar concentrations of lithium in both
electrodes. Actual low loss spectra from different regions of the
samples are displayed in Figure S5. Interestingly, some pixels
near the cathode/electrolyte interface reveals a high concen-
tration of lithium, indicating accumulation at this interface.
More detailed line scan analysis of the lithium concentration at
this interface is presented in Figure 3d.
It is clearly seen that the lithium concetration is high in the

cathode of pristine sample, while the charged and overcharged
samples are lithium depleted. Decrease of lithium concentration
near the cathode/electrolyte interface of the pristine sample
was observed in several data sets, and it is possibly due to the
preparation process. By contrast, an increased concentration is
seen at the cathode/electrolyte interface for the charged and
overcharged samples. This provides strong evidence that
lithium accumulation occurs at this interface, which may play
a significant role in the overall performance of the battery. The
possible reason for lithium accumulation is unclear at the
moment and requires more detailed study, which has been
planned in the near future. The stability of active layers under e-
beam during STEM/EELS are important for lithium
quantification, which was performed as part of this work and
reported in section 6 of the Supporting Information. Lower
lithium concentration along the right edge relative to left edge
of LiPON in the overcharged sample (Figure 3c) is possibly
due to e-beam damage. However, due to better electronic
conductivity, lithium concentration in the cathode and anode is

Figure 2. Cross-sectional annual dark-field STEM image of the anode
region for (a) pristine and (b) overcharged samples.

Figure 3. Elemental distribution mapped by EELS for pristine (a), charged (b), and overcharged (c) samples and lithium concentration profile (d),
indicating lithium accumulation at the cathode/electrolyte interface.
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not sensitive to the e-beam dose used. The results presented in
this manuscript are reproducible and not heavily influenced by
the lithium distribution in the LiPON layer.
Apart from lithium accumulation at the cathode/electrolyte

interface, an additional anode/electrolyte interface of lithium
accumulation was evident for the overcharged sample. A more
detailed spectral investigation was carried out at the anode/
electrolyte interface of the overcharged sample. Figure 4
displays the low-loss EELS spectra across the anode/electrolyte
interface indicated by numbers “0 to 7”. It is clearly seen that
position 0 is from the LiPON electrolyte where Li K-edge and
P L-edge peaks can be observed while the Si L-edge is not
present. The spectra from positions 1 and 2 are from the
interface region where all three, Li K-edge, Si L-edge and P L-
edge are present. This interdiffused interface region is clearly
distinct compared to the pristine sample (which exhibits a sharp
interface). In the spectra from positions 3, 4, and 5, we can see
that the Li K-edge and Si L-edge peaks are present, while no P
L-edge is visible, indicating a lithiated silicon anode. However,
spectra from positions 6 and 7 show an intense Li K-edge peak
with no significant Si L-edge peak. Possibly lithium plating
occurs at the Si/Cu interface, as indicated by high lithium
concentration. Lithium accumulation at the silicon/metal
interface has been observed recently by other groups well.12

Additionally, lithium plating at the LiPON/Cu interface in
anode-free solid-state batteries while cycling at moderate
current densities have been reported previously.23 They
observed that in the absence of a protective overlayer on the
copper more than 45% irreversibility at the first cycle due to
lithium plating while after 100 cycles only 20% of the initial
charge capacity remained. With the overlayer on copper, the
capacity was retained for 1000 cycles.23 From our set of spectral
analysis, we note the formation of a phosphorus−silicon
interdiffused layer in the silicon/LiPON interface upon
prolonged lithiation. This interface layer shows both micro-
scopic contrast and chemical changes. The lithium loss at the
end of first cycle and subsequent cycles in solid-state batteries
can be attributed to interfacial changes and lithium plating
observed in the present study. Significant amount of stress due
to volume expansion is possibly accommodated by the
interdiffused interfaces on both sides of the anode and interface

limited reaction rate24 as detailed in section 7 of the Supporting
Information. These observations highlight that interfaces are
the key limiting factor in solid-state lithium ion batteries.
To summarize, we have successfully fabricated electrochemi-

cally active all-solid-state nanobatteries for the first time and
investigated the interfacial chemical changes by semiquantitative
STEM/EELS analysis. Lithium mapping in electrochemically
active nanobatteries shine light on interface-limited Li trans-
portation across the stack. The lithium accumulation at the
cathode/electrolyte interface is significant, while an additional
phosphorus−silicon interdiffused anode/electrolyte interface
with lithium plating at the Si/Cu interface in the overcharged
sample is evidenced by both microscopic and chemical changes.
More importantly, we demonstrated that crucial information on
interface related issues is obtainable only through the all-solid-
state battery approach. The results presented here reveal the
importance of interface engineering of all-solid-state lithium ion
batteries in order to improve the reversibility of lithium
insertion and improve cycling and rate performances. This
study also shows the viability of in situ TEM cycling of all-solid-
state nanobatteries and lays the ground for exploration of new
solid state chemistries at nanoscale.

■ EXPERIMENTAL METHODS
Micro all-solid-state batteries have been deposited by
sputtering, and the results presented here deal with the
Alumina/Pt/LiCoO2/LiPON/a-Si/Cu full cell. More detailed
deposition conditions are described in an earlier paper.19 The
nanobatteries (cross-sectional thickness ranging from 100 to
2000 nm, while the area was ranging from 100 μm2 to 20 μm2)
are fabricated using FIB-SEM dual beam systems (Helios Nano
Lab, FEI). The samples for (S)TEM imaging and EELS were
prepared by standard FIB lift-out and thinning procedure (<80
nm thickness). Subsequent to the fabrication of nanobatteries,
STEM/EELS studies are performed at 200 keV on a JEOL
2100F machine. EELS spectra were recorded in STEM mode,
with a beam size of 0.5 nm, an energy resolution of about 1.1
eV, as judged by the full width at half-maximum (fwhm) of the
zero-loss peak (ZLP). Lithium mapping was generated by
fitting the pre-edge background using a polynomial function in
the Gatan Digital Micrograph software. To avoid significant

Figure 4. Annual dark-field STEM image of the anode/electrolyte interface in the overcharged sample (a) and the EELS spectra (b), recorded from
8 different sites, as labeled in the image.
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overlap with the Co M-edge, only a 5 eV window (from 52.5 to
57.5 eV) of the Li K-edge was selected for the 2D mapping.
Energy window of 102 to 107 eV for Si L-edge and 132 to 137
eV for P L-edge was used to map the integrated intensity of
elements.

■ ASSOCIATED CONTENT
*S Supporting Information
We provide details about the micro- and nanobatteries,
electrochemical biasing methodologies, cycling data of nano-
batteries, diffraction analysis of the pristine, charged and
overcharged samples, EELS lithium spectra, LiPON e-beam
damage quantification, and discussion on silicon volume
expansion. This material is available free of charge via the
Internet at http://pubs.acs.org.
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