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Abstract

Soft-Reset Control and Optimization

by

Justin Huynh Le

Reset control is a technique that augments traditional dynamic feedback controllers

with a mechanism to adaptively or periodically reset a memory state in such a way as

to improve transient closed-loop behaviors such as overshoot and settling time. It has

been shown to overcome inherent limitations of linear time-invariant controllers, enabling

performance improvements in a wide variety of applications, including industrial high-

precision motion systems and electromechanical automotive systems. As reset control

finds broader applications, it faces challenges in implementation and analysis, especially

due to the prevalence of nonlinearities, such as those arising in the dynamics of robotic

and vehicular systems, as well as those arising in the cost functions that are to be opti-

mized in such systems. One challenge lies in the need for a feature known as temporal

regularization, which is generally necessary to guarantee robust stability properties of re-

set control systems and can be difficult to implement effectively while preserving benefits

of resets. Another challenge lies in the inherent discontinuity of control signals produced

by reset controllers, which can be detrimental to hardware in physical systems.

This dissertation studies the recently introduced notion of soft resetting, which ad-

dresses the above limitations by implementing reset behaviors in an approximate sense,

allowing resets to occur gradually rather than instantaneously and doing so with tun-

able fidelity of approximation. It is shown that, if a traditional reset controller admits

a strongly convex energy function that certifies passivity, there exists a soft-reset con-

troller that approximates the behavior of the traditional controller while inheriting its

vii



passivity properties. The implications of this result are discussed for nonlinear and multi-

agent problems having nonlinear cost functions to be optimized in steady state. Then,

connections are drawn between discrete-time analogues of soft-reset systems and accel-

erated gradient methods for numerical optimization, for which resetting has historically

been referred to as restarting and has been shown to improve convergence behaviors in

applications such as machine learning. Specifically, for convex problems, linear matrix

inequalities are constructed for numerically certifying exponential convergence, while for

nonconvex problems, asymptotic stability in probability of global minima is studied for a

class of stochastically perturbed accelerated gradient methods with resets. Soft resetting

is numerically demonstrated on various problems, including vehicular formation control

and online parameter identification.
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Chapter 1

Introduction

A reset controller is a dynamical system whose state jumps to a new value when a

prescribed condition, involving controller states and plant states, is realized. One of the

earliest known reset controllers is due to Clegg, who introduced an integrating circuit that,

for all intents and purposes, resets its state to zero when the product of the input and

the output of the integrator attempts to become negative [1]. The Clegg integrator was

extended by Horowitz and co-authors some twenty years later to more general “first-order

reset elements” (FOREs) [2], [3]. After another two decades, stability and performance

results for linear reset control systems began to receive significant attention, starting with

the work of Hollot and co-authors [4], [5], [6], [7], [8], [9]. This work was continued and

expanded upon within the hybrid systems framework of [10] in [11] and [12], for example.

Other contributions pertaining to linear reset control systems include [13] and [14]. A

recent overview, perspective, and applications of linear reset control systems are found

in [15]. For nonlinear reset control systems, Haddad and co-authors made noteworthy

contributions, especially for lossless interconnections [16], [17], using an alternative hybrid

systems framework [18]. In all of this work, controller resets are typically triggered by

the closed-loop system state hitting a surface or attempting to enter a sector. Other

reset control system mechanisms include those found in event-triggered control, where a

control signal is typically held constant until a change to its value is required to maintain
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Introduction Chapter 1

closed-loop stability or other properties [19], [20]. These types of resets are beyond the

scope of our work. We focus instead on sector-based resets, which are resets riggered by

the closed-loop system state attempting to enter a sector.

More recently, reset controllers are finding increasingly broad applications, includ-

ing, but not limited to, industrial high-precision motion systems with unknown friction

characteristics [21], [22], longitudinal motion in a coordinated platoon of automatically

cruising vehicles [23], [24], exhaust gas recirculation valves [15, Ch. 8], and electrome-

chanical valves in power-split transmission systems [15, Ch. 9]. In all of these cases,

the transient performance of a linear feedback controller is significantly improved by

augmenting that controller with a reset mechanism.

However, reset control continues to face challenges in implementation and analysis,

especially due to the prevalence of nonlinearities, such as those arising in the dynamics of

robotic and vehicular systems, as well as those arising in the cost functions that are to be

optimized in such systems. One specific challenge lies in implementing a feature referred

to as temporal regularization, which enforces a positive lower bound on the time elapsed

between instances of resetting and has been shown to be essential for stability/robustness

guarantees in reset control [12]. Another challenge lies in the inherent discontinuity of

control signals produced by reset controllers, which can be detrimental to hardware in

physical systems, especially the aforementioned systems in which nonlinearities abound.

To address these challenges, we consider an alternative implementation, referred to

as a soft-reset implementation, of control systems with sector-based resets. In contrast

with previously studied reset systems modeled by hybrid systems, which we refer to as

hard-reset systems, soft-reset systems are modeled as differential inclusions. (Differential

inclusions have appeared in other works related to reset control systems, including [25],

[26], and [27].) Soft-reset systems allow resets to occur gradually rather than instanta-

neously, doing so with tunable fidelity of approximation. In this way, they avoid the need

2



Introduction Chapter 1

for regularization and prevent discontinuity of control signals.

In Chapter 3, we give conditions under which such a reset control system can be

implemented using a differential inclusion rather than a hybrid system that involves

resets, focusing on nonlinear control problems in which passivty characterizes both plant

and controller, inspired by results for linear systems given in [28]. Soft-reset control

is numerically demonstrated on some systems commonly studied in nonlinear control

theory, including a robotic manipulator and a translational oscillator with a rotational

actuator.

In Chapter 5, the problem of steady-state optimization is considered, in which a

plant is to be driven asymptotically toward the solution of an optimization problem

using feedback measurement of the plant state and knowledge of the plant’s steady-state

input-output relation. We restrict our focus to specific soft-reset controllers which can

be numerically demonstrated to improve on the performance of standard controllers that

lack resets, showing that steady-state optimality is achieved in a sense for linear time-

invariant plants and for a class of nonlinear passive plants having only filtered gradient

information available.

In Chapter 4, we examine implications of passivity for reset control in multi-agent set-

tings, in which multiple plants sharing information through a graph-structured network

are to be driven toward consensus or toward the solution of a network-wide optimiza-

tion problem. We give conditions involving passivity on the agent-level dynamics under

which soft resets can be implemented for such systems and numerically demonstrate the

benefits of resets.

The connections between reset control and gradient-based optimization motivate the

application of resets to parameter identification methods, many of which can be in-

terpreted as dynamics that optimize an objective function representing the parameter

estimation error. One such method that has seen recent attention in the literature is
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Introduction Chapter 1

the high-order tuner, which aims to improve on the performance of standard gradient

methods for identification by filtering the gradient and thereby introducing additional

tuning parameters. Chapter 6 lays some groundwork to enable future applications of

soft resets in high-order tuners, beginning with a novel analysis via Matrosov theorem

to establish uniform global asymptotic stability properties of high-order tuners without

resets under a persistent excitation condition. It is then shown that the incorporation

of online data in the sense of “concurrent learning” can relax the persistent excitation

condition and enable the use of soft resets without much modification to the analysis or

implementation.

Chapters 7 and 8 consider the discrete-time perspective, in which connections can

be made between reset control and the notion referred to as “restarting” in numerical

optimization. In Chapter 7, a technique inspired by reset control is demonstrated on

convex optimization algorithms, which are algorithms that are widely used in statistical

data analysis, among many other applications, and can be modeled as nonlinear systems.

Specifically, a numerical approach is developed, based on linear matrix inequalities, to

certify exponential rates of convergence for reset-based optimization algorithms that are

implemented in the discrete-time domain. In addition, it is demonstrated through nu-

merical experiments that resets can greatly improve the efficiency of optimization algo-

rithms when applied to statistical problems such as logistic regression. In Chapter 8, we

introduce a stochastic difference inclusion to model a class of nonconvex optimization

algorithms derived from accelerated gradient methods in which resets are combined with

stochastic perturbations with the intention of efficiently seeking global optima. We show

that a probabilistic notion of global asymptotic stability holds for the set of global solu-

tions to a minimization problem having appropriate smoothness conditions but without

requiring convexity.
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Chapter 2

Mathematical Preliminaries

The set of (nonnegative) real numbers is denoted by (R≥0) R. The set of (nonnegative)

integers is denoted by (Z≥0) Z. For any two vectors u, v ∈ Rn, we use 〈u, v〉 := uTv. For

x ∈ Rn, we use |x| :=
√
〈x, x〉. Given x ∈ Rn and a nonempty set A ⊂ Rn, the distance

of x to A is denoted |x|A and is defined by |x|A := infy∈A|x − y|. A vector having all

entries equal to 1 is denoted 1.

Given a pair (x, u) ∈ Rn × Rm, by abuse of notation we consider z := (x, u) to be a

vector in Rn+m. By the same abuse of notation, we sometimes write a function defined

on Rn×Rm as a function defined on Rn+m. That is, f(x, u) may be written as f(z) with

z = (x, u).

We denote by G the set of functions from R≥0 to R≥0 that are continuous, nondecreas-

ing, and zero at zero. The subset of strictly increasing functions in G is denoted by K. The

subset of unbounded functions in K is denoted by K∞. Moreover, β : R≥0 ×R≥0 → R≥0

is said to belong to class KL if β(·, s) belongs to class K for each s ≥ 0, and for each

fixed r ≥ 0, the mapping β(r, ·) is decreasing to zero.

For any set A ⊆ Rn, the closure of A is denoted A. A set-valued mapping F : Rn ⇒

Rm is said to be outer semicontinuous if, for every x ∈ Rn and every sequence {xi}∞i=1

with limi→∞ xi = x, it holds that lim supi→∞ F (xi) ⊆ F (x). The graph of F is defined

as graph(F ) := {(x, y) ∈ Rn×Rm : y ∈ F (x)}. The mapping F is outer semicontinuous

5
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if and only if its graph is closed [10, Lemma 5.10]. It is said to be locally bounded if, for

every x ∈ Rn, there exists a neighborhood Ux of x such that F (Ux) ⊆ Rm is bounded.

It is said to be sector bounded near the origin if there exist δ > 0 and L > 0 such that

|f | ≤ L|z| for all z ∈ Rn satisfying |z| ≤ δ and all f ∈ F (z). It is said to be quadratically

bounded near the origin if there exist δ > 0 and L > 0 such that |f | ≤ L|z|2 for all z ∈ Rn

satisfying |z| ≤ δ and all f ∈ F (z). It is said to be homogeneous of degree k ∈ Z≥0 if

F (λx) = λkF (x) for all x ∈ Rn and λ > 0.

We use C1 for any function that is continuously differentiable. A function V : Rn → R

is said to be convex if

V (λx1 + (1− λ)x2) ≤ λV (x1) + (1− λ)V (x2)

for all x1, x2 ∈ Rn and all λ ∈ [0, 1]. A C1 function V : Rn → R is called strongly convex

if there exists a µ > 0 such that, for all x, y ∈ Rn, we have

V (y) ≥ V (x) + 〈∇V (x), y − x〉+ µ|x− y|2. (2.1)

A differentiable function V : Rn → R is called invex if the there exists a function

η : R2n → Rn such that a V (x)− V (y) ≥ η(x, y)T∇V (y) for all x, y ∈ Rn. The function

V is invex if and only if the set of minimizers is equivalent to the set of points x for which

∇V (x) = 0 [29, Thm. 1].

The origin of the system ẋ ∈ F (x) is said to be (Lyapunov) stable if, for each ε > 0,

there exists δ > 0 such that |x(0)| ≤ δ implies |x(t)| ≤ ε for all t ≥ 0. It is said to be

globally attractive if every solution x satisfies limt→∞|x(t)| = 0. It is said to be globally

asymptotically stable (GAS) if it is both stable and globally attractive. It is said to be

globally exponentially stable (GES) if there exist positive constants c0 and c1 such that
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every solution x satisfies |x(t)| ≤ c0|x(0)| exp(−c1t) for all t ≥ 0.

A map ϕ : Rn × R≥0 → Rm is said to be locally bounded in x uniformly in t if there

exist numbers δ > 0 and M > 0 not dependent on t such that |ϕ(x, t)| ≤ M for all t

and for all x such that |x| ≤ δ. For a locally bounded function f : Rn × R≥0 → Rn such

that x 7→ f(x, t) is continuous uniformly in t and t 7→ f(x, t) is piecewise continuous, the

origin of the system ẋ = f(x, t) is said to be uniformly globally stable (UGS) if there

exists a class-K∞ function γ such that, for each initial condition (x◦, t◦) ∈ Rn×R≥0, each

solution x(·) satisfies |x(t)| ≤ γ(|x◦|) for all t ≥ t◦. The origin is said to be uniformly

globally attractive (UGA) if for each r > 0 and σ > 0 there exists T > 0 such that, if

the initial condition (x◦, t◦) ∈ Rn × R≥0 satisfies |x◦| ≤ r, |x(t)| ≤ σ for all t ≥ t◦ + T .

The origin is said to be uniformly globally asymptotically stable (UGAS) if it is UGS

and UGA. The origin is said to be uniformly globally exponentially stable (UGES) if

there exist c > 0 and α > 0 such that, for each initial condition (x◦, t◦) ∈ Rn × R≥0,

|x(t)| ≤ c|x◦| exp(−α(t− t0)) for all t ≥ t◦.

The open and closed unit balls in Rn are denoted B◦ and B, respectively. We write

v ∼ µ(·) to indicate that a random vector v has probability distribution µ. For the

stochastic difference inclusion

x+ ∈ G(x, v+), v ∼ µ(·), (2.2)

a compact set A ⊆ Rn is said to be uniformly Lyapunov stable in probability for (2.2)

if, for each ε > 0 and ρ > 0, there exists a δ > 0 such that, for every initial condition in

A+ δB,

P [graph(x) ⊆ (Z× (A+ εB◦))] ≥ 1− ρ, (2.3)
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where graph(x) := ∪i∈Z≥0
({i} × x(i)). The compact set A is uniformly Lagrange stable

in probability for (2.2) if, for each δ > 0 and ρ > 0, there exists a ε > 0 such that (2.3)

holds. The compact set A is uniformly globally stable in probability for (2.2) if it is both

uniformly Lyapunov stable in probability and uniformly Lagrange stable in probability.

A compact set A is uniformly globally attractive in probability for (2.2) if, for each

ε > 0, ρ > 0, and R > 0, there exists τ ≥ 0 such that, for every initial condition in

A+RB,

P [graph(x) ∩ (Z≥τ × Rn) ⊆ (Z× (A+ εB◦))] ≥ 1− ρ,

where Z≥τ is the set of nonnegative integers greater than or equal to τ . The compact

set A is uniformly globally asymptotically stable in probability for (2.2) if it is uniformly

globally stable in probability and uniformly globally attractive in probability.

8



Chapter 3

Passive Soft-Reset Controllers for
Nonlinear Systems

In this chapter, we focus on implementing reset controllers that are (strictly) passive and

on analyzing their interconnection with passive plants. We show that a passive hard-

reset controller that has a strongly convex energy function can be approximated as a

soft-reset controller. The considered soft-reset controller contains a parameter that can

be adjusted to better approximate the action of the hard-reset controller. Closed-loop

asymptotic stability is established for the interconnection of a passive soft-reset controller

with a passive plant, under appropriate detectability assumptions. Several examples are

used to illustrate the efficacy of soft-reset controllers.

3.1 Introduction

In [28], conditions were given under which a linear reset control system can be im-

plemented using a differential inclusion rather than a hybrid system that involves resets.

Here, we instead focus on nonlinear control problems, especially those where passivity

plays a role, both in characterizing a nonlinear plant and also in characterizing a reset

controller. In Section 3.2, we specify the passive, hard-reset controllers that we aim

to implement as soft-reset controllers. We emphasize that such passive hard-reset con-

9
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trollers should admit a strongly convex energy function in order to be implementable

as a soft-reset controller. In particular, it is shown that, if a hard-reset controller ad-

mits a strongly convex energy function that certifies passivity, there exists a soft-reset

implementation that inherits its passivity properties, enabling the soft-reset controller

to achieve desired closed-loop stability and passivity properties when placed in feedback

interconnection with a passive nonlinear system. Our passive soft-reset controllers are

introduced in Section 3.3. In Section 3.4, we discuss the interconnection of a passive

soft-reset controller with a passive plant. Section 3.5 contains several illustrations of the

developed theory.

3.2 Passive hard-reset controllers

A (square) hard-reset control system is a hybrid system with state xc ∈ Rnc , input

uc ∈ Rmc , and output yc ∈ Rmc with the following model:

(xc, uc) ∈ C ẋc = fc(xc, uc) (3.1a)

(xc, uc) ∈ D x+c = gc(xc, uc) (3.1b)

yc = hc(xc, uc) (3.1c)

where, typically,

C := {(xc, uc) ∈ Rnc × Rmc : ϕ(xc, uc) ≤ 0} (3.2a)

D := {(xc, uc) ∈ Rnc × Rmc : ϕ(xc, uc) ≥ 0} . (3.2b)

We impose the following assumptions on the functions that prescribe the model.

Assumption 1 The following conditions hold for the functions fc, gc, hc, and ϕ that

10
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appear in (3.1)-(3.2):

1. (Continuous, locally sector bounded data and quadratic jump condition)

There exists M = MT such that ϕ(zc) = zTc Mzc for all zc ∈ Rnc+mc; also, fc, gc,

and hc are sector bounded near the origin and continuous.

2. (Jumps land in flow set)

(xc, uc) ∈ D implies (gc(xc, uc), uc) ∈ C.

3. (Passivity via a strongly convex energy function)

There exist a strongly convex, positive definite, continuously differentiable function

Vc : Rnc → R≥0, a continuous, positive definite, quadratically bounded near the

origin function ρ : Rmc → R≥0, and ε > 0 such that, with the definition

Cε :=
{
zc ∈ Rnc+mc : zTc Mzc ≤ εzTc zc

}
, (3.3)

we have

〈∇Vc(xc),fc(xc, uc)〉 ≤ yTc uc−ρ(yc) ∀(xc, uc) ∈ Cε (3.4a)

Vc(gc(xc, uc)) ≤ Vc(xc) ∀(xc, uc) ∈ D (3.4b)

where yc = hc(xc, uc).

4. (Minimum phase and detectable)

Any absolutely continuous, bounded solution (xc, uc) : [0,∞)→ Rnc×Rmc of (3.1a),

i.e., for almost all t ∈ [0,∞),

(xc(t), uc(t)) ∈ C, ẋc(t) = fc(xc(t), uc(t)), (3.5)

11



Passive Soft-Reset Controllers for Nonlinear Systems Chapter 3

that satisfies yc(t) = 0 for all t ∈ [0,∞) also satisfies limt→∞ uc(t) = 0 and

limt→∞ xc(t) = 0. �

Assumption 1.2 implies that, after a jump, the solution of the hard-reset system

(3.1)-(3.2) has the potential to flow without immediately jumping again. However, it is

possible that (gc(xc, uc), uc) ∈ C ∩ D, in which case the solution also has the potential

to jump immediately. That is, there is no guarantee that all of the complete solutions of

the hard-reset control system (3.1)-(3.2) have time domains that are unbounded in the

ordinary time direction. This is one of the primary motivations for considering a “soft”

implementation of the reset control system (3.1)-(3.2), as we do in the next section.

The crux of Assumption 1 is Assumption 1.3, which imposes a type of strict passivity

condition on the hard-reset control system (3.1)-(3.2). For more context, compare with

Assumption 2.2, where strict passivity of a continuous-time, passive plant is character-

ized. In addition, we use (3.4b) and the strong convexity of Vc in the next section to

propose the soft-reset implementation of the hard-reset system (3.1).

The following example illustrates a class of systems satisfying Assumption 1.

Example 1 Consider a hard-reset control system (3.1)-(3.2) with (xc, uc) ∈ R× R, the

following data:

fc(xc, uc) := acxc + bcuc (3.6a)

gc(xc, uc) := rcxc + pcuc (3.6b)

hc(xc, uc) := ccxc + dcuc (3.6c)

M :=

 m11 m12

m12 m22

 (3.6d)

12
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and the energy function

Vc(xc) := κx2c (3.7)

where κ > 0. There are no assumptions yet on the signs of the parameters in (3.6).

Define

M0 :=

 2κac + ρc2c κbc + ρccdc − 0.5cc

κbc + ρccdc − 0.5cc −dc + ρd2c

 (3.8)

and note that if

 xc

uc


T

M0

 xc

uc

 ≤ 0 (3.9)

then

〈∇Vc(xc), fc(xc, uc)〉 = 2κacx
2
c + 2κbcxcuc

≤ (ccxc+dcuc)uc−ρ(ccxc+dcuc)
2

= ycuc − ρy2c . (3.10)

Let ε > 0. By the S-procedure [30, p. 655], if there exists λ ∈ [0,∞) such that

λ(M − εI)−M0 ≥ 0 (3.11)

and there exists zc 6= 0 such that zTc Mzc ≤ 0, i.e., the flow set C contains more points

than just the origin, then (3.10) holds for zc ∈ Cε where Cε is defined in (3.3). For

example, when dc > 0, we can take M = M0 + εI, with ε > 0 and ρ > 0 small, and

13
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λ = 1. In this case, there exists zc 6= 0 of the form zc = (0, uc) with uc 6= 0 such that

zTc Mzc ≤ 0 so that the S-procedure applies. It also follows that, with the zero reset map,

i.e., rc = pc = 0, (xc, uc) ∈ D implies (g(xc, uc), uc) ∈ C, i.e., Assumption 1.2 holds. If

dc > 0 and bccc > acdc then the minimum phase and detectability properties hold.

3.3 Passive soft-reset controllers

Using (2.1), the strong convexity assumption on Vc in Assumption 1.3 and the bound

in (3.4b) imply that there exists µ > 0 such that

(xc, uc) ∈ D =⇒

〈∇Vc(xc), xc − gc(xc, uc)〉 ≥ µ|xc − gc(xc, uc)|2. (3.12)

With (3.2b), another way to write this condition is as

s ∈ SGN(ϕ(xc, uc)) =⇒

〈∇Vc(xc), (s+ 1)(gc(xc, uc)− xc)〉

≤ −(s+ 1)µ|xc − gc(xc, uc)|2, (3.13)

where the set-valued mapping SGN : R ⇒ R is defined as SGN(s) := sign(s) for s 6= 0

and SGN(0) := [−1, 1]. Thus, we can add a term of the form

−γ(xc, uc)

(
SGN

(
ϕ(xc, uc)

)
+ 1

)(
xc − gc(xc, uc)

)
(3.14)

to the differential equation ẋc = fc(xc, uc) without increasing the directional derivative

of Vc as long as γ takes nonnegative values. Moreover, due to Assumption 1.1 and

Assumption 1.2, it can be shown that |gc(xc, uc) − xc| > 0 when ϕ(xc, uc) > 0, which

14
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means that the additional term (3.14) can be used to enhance the negativity of the

directional derivative of Vc outside of the set Cε defined in (3.3), potentially obviating

the need for hard resets.

Led by these observations, the soft-reset implementation of the hard-reset system

(3.1) is given by the differential inclusion

ẋc ∈ fc(xc, uc) (3.15)

− γ(xc, uc)

(
SGN

(
ϕ(xc, uc)

)
+ 1

)(
xc − gc(xc, uc)

)

where γ : Rnc × Rmc → R>0 is continuous, and the set-valued mapping SGN : R ⇒ R

is defined above (3.14). Notice that, within the set C defined in (3.1a), the soft-reset

dynamics (3.15) match the dynamics (3.1a) of the hard-reset controller. Outside of C,

the dynamics (3.15) imitate a reset (if γ(xc, uc) is large) by rapidly driving xc towards

gc(xc, uc).

We now show that the soft-reset control system (3.15) inherits a strict passivity

property from its hard-reset control system inspiration (3.1)-(3.2) when γ is sufficiently

large. In addition, we note that γ does not need to be large when the inequality in (3.4a)

holds for all (xc, uc) ∈ Rnc × Rmc , i.e., ε ≥ σ(M) where σ(M) the maximum singular

value of M .

Theorem 1 If Assumption 1.1, 1.2, and 1.3 hold then there exists a continuous, positive

definite function σ1 : Rnc×Rmc → R≥0 and for each γ0 > 0 there exists a continuous func-
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tion γ : Rnc×mc → R>0 such that, for each (xc, uc) ∈ Rnc × Rmc and s ∈ SGN(ϕ(xc, uc)),

〈∇Vc(xc), fc(xc, uc)− γ(xc, uc)(s+ 1)(xc − gc(xc, uc))〉

≤ yTc uc − ρ(yc) (3.16)

− γ0 max {0, ϕ(xc, uc)}
ϕ(xc, uc)

max {1, σ1(xc, uc)2}
.

One can take γ proportional to γ0 in the case where the inequality in (3.4a) holds for all

(xc, uc) ∈ Rnc × Rmc.

Proof: Define ĝc(zc) :=

[
gc(xc, uc)

T uTc

]T
. Due to Assumption 1.1, which sup-

poses that gc is sector bounded near the origin and continuous, there exists a continuous

function σ1 : D → R≥0 that is sector bounded near the origin and positive definite

satisfying

|M(ĝc(zc) + zc)| ≤ σ1(zc) ∀zc ∈ D. (3.17)

Then using the Cauchy-Schwarz inequality, M = MT , and Assumption 1.2, which gives

that ĝc(zc)
TMĝc(zc) ≤ 0 when zTc Mzc ≥ 0, it follows that

zc 6= 0, zTc Mzc ≥ 0 =⇒

|gc(xc, uc)− xc|2 ≥
−(ĝ(zc)− zc)TM(ĝ(zc) + zc)

σ1(zc)

=
zTc Mzc − ĝ(zc)

TMĝ(zc)

σ1(zc)
(3.18)

≥ zTc Mzc
σ1(zc)

.
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Combining (3.13), (3.18), and Assumption 1.1 gives

zc 6= 0, s ∈ SGN(zTc Mzc) =⇒

〈∇Vc(xc), (s+ 1)(gc(xc, uc)− xc)〉 (3.19)

≤ −2µmax
{

0, zTc Mzc
} zTc Mzc
σ1(zc)2

.

Next, due to Assumption 1.1, which supposes that fc and hc are sector bounded near

the origin and continuous, and due to Assumption 1.3 which supposes that Vc is con-

tinuously differentiable and zero at zero, so that ∇Vc is sector bounded near the origin

and continuous, and also supposes that ρ is quadratically bounded near the origin, there

exists a continuous function σ2 : Rnc+mc → R≥0 that is quadratically bounded near the

origin such that, for all (xc, uc) ∈ Rnc+mc ,

〈∇Vc(xc), fc(xc, uc)〉 − yTc uc + ρ(yc) ≤ σ2(zc). (3.20)

Note that, according to (3.4a), we can take σ2(zc) = 0 for all zc ∈ Cε. Also note that if

ε ≥ σ(M), the latter denoting the maximum singular value of M , then Cε = Rnc ×Rmc .

It follows from (3.20) that

zc 6= 0, zTc Mzc ≥ ε|zc|2 =⇒

〈∇Vc(xc), fc(xc, uc)〉 − yTc uc + ρ(yc) ≤ σ2(zc)

≤ σ2(zc) max
{

0, zTc Mzc
} zTc Mzc
ε2|zc|4

=
σ1(zc)

2σ2(zc)

ε2|zc|4
max

{
0, zTc Mzc

} zTc Mzc
σ1(zc)2

. (3.21)

We note that, since σ1 is sector bounded near the origin and σ2 is quadratically bounded
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near the origin,

lim sup
zc→0,zc∈D\{0}

σ1(zc)
2σ2(zc)

|zc|4
<∞. (3.22)

Pick γ : Rnc+mc → R≥0 to be a continuous function such that, for all zc ∈ D\ {0},

γ(zc) ≥
1

2µ

(
γ0 +

σ1(zc)
2σ2(zc)

ε2|zc|4

)
. (3.23)

It then follows by combining (3.19), (3.21), and (3.23) that

zc 6= 0, s ∈ SGN
(
zTc Mzc

)
=⇒

〈Vc(xc), fc(xc, uc)− γ(xc, uc)(s+ 1)(xc − gc(xc, uc))〉

≤ yTc uc − ρ(yc)− γ0 max
{

0, zTc Mzc
} zTc Mzc
σ1(zc)2

(3.24)

and thus

s ∈ SGN
(
zTc Mzc

)
=⇒

〈Vc(xc), fc(xc, uc)− γ(xc, uc)(s+ 1)(xc − gc(xc, uc))〉

≤ yTc uc − ρ(yc)− γ0 max
{

0, zTc Mzc
} zTc Mzc

max {1, σ1(zc)2}
. (3.25)

Since ϕ(xc, uc) = zTc Mzc, this bound gives the result.
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3.4 Negative feedback interconnection with a passive

plant

In this section, we consider the negative feedback interconnection of (3.15) with a

continuous-time, passive, detectable plant that has state xp ∈ Rnp , input up ∈ Rmp , and

output yp ∈ Rmp , and can be modeled as

ẋp = fp(xp, up) yp = hp(xp). (3.26)

A negative feedback interconnection is produced via the conditions

uc = −yp = −hp(xp) (3.27a)

up = yc = h(xc, uc) = h(xc,−hp(xp)). (3.27b)

The resulting closed-loop system has state variable denoted x := (xp, xc).

Assumption 2 The following conditions hold for the functions fp and hp that appear in

(3.26):

1. (Continuous data)

The functions fp and hp are continuous.

2. (Passive dynamics)

There exists a continuously differentiable, positive definite, radially unbounded func-

tion Vp : Rnp → R≥0 such that, for all (xp, up) ∈ Rnp × Rmp,

〈∇Vp(xp), fp(xp, up)〉 ≤ yTp up (3.28)

where yp = hp(xp).
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3. (Detectability)

Each bounded solution xp : [0,∞) → Rnp of (3.26) that satisfies up(t) = yp(t) = 0

for all t ∈ [0,∞) also satisfies limt→∞ xp(t) = 0. �

Theorem 2 Suppose Assumption 1 and Assumption 2 hold. Then the interconnection

of the plant (3.26) with the soft-reset system (3.15) via negative feedback (3.27) has the

origin globally asymptotically stable whenever the function γ : Rnc+mc → R>0 in (3.15)

induces the inequality (3.16).

Proof: We use x := (xp, xc) for the composite state and F (x) to denote the right-

hand side of the closed-loop differential inclusion, so that ẋ ∈ F (x).

Consider the composite Lyapunov function candidate

V (x) := Vp(xp) + Vc(xc) ∀(xp, xc) ∈ Rnp × Rnc (3.29)

where Vp comes from Assumption 2.2 and Vc comes from Assumption 1.3. This function

is continuously differentiable and positive definite by these assumptions. It is radially

unbounded since Vp is assumed to be radially unbounded and Vc is assumed to be strongly

convex. Using (3.28) and (3.16) together with (3.27), we get, for all x ∈ Rnp+nc and all

f ∈ F (x),

〈∇V (x), f〉 ≤ −ρ(yc) (3.30)

− γ0 max {0, ϕ(xc,−yp)}
ϕ(xc,−yp)

max {1, σ1(xc,−yp)2}

where γ0 > 0, ρ is positive definite, and yp = hp(xp). It follows that the right-hand side

of (3.30) is never positive and so the origin is stable and all solutions are bounded.
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To establish global convergence to the origin, we use the invariance principle for

differential inclusions [31, 32], which applies due to Assumption 1.1 and 2.1 and the fact

that the set-valued mapping SGN is outer semicontinuous and bounded with nonempty

convex values. According to the invariance principle, every solution converges to the

origin if and only if there does not exist a solution x : [0,∞) → Rn and constant c > 0

satisfying V (x(t)) = c for all t ∈ [0,∞). To rule out such a solution, we decompose F so

that

ẋ ∈ F (x) =: g(x) +
(

SGN(φ(x)) + 1
)
ω(x) (3.31)

for appropriate, continuous functions g, φ and ω and note that

|ω(x)| = γ(xc,−hp(xp))|xc − gc(xc,−hp(xp))| (3.32)

and

〈∇V (x), ω(x)〉 (3.33)

= −γ
(
xc,−hp(xp)

)
〈∇Vc(xc),

(
xc − gc(xc,−hp(xp))

)
〉.

Now suppose there exists a solution x : [0,∞) → Rn and constant c > 0 satisfying

V (x(t)) = c for all t ∈ [0,∞). Being a solution of (3.31), x(·) satisfies, for almost all

t ∈ [0,∞),

ẋ(t) = g(x(t)) +
(
s(t) + 1

)
ω(x(t)) (3.34a)

s(t) ∈ SGN
(
φ(x(t))

)
. (3.34b)

Since ρ is positive definite and γ0 > 0, it follows from (3.30) that such a solution requires
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yc(t) = up(t) = 0 for all t ∈ [0,∞) and ϕ(xc(t),−yp(t)) ≤ 0 for all t ∈ [0,∞), i.e., for

almost all t ≥ 0,

(xc(t), uc(t)) ∈ C. (3.35)

In turn, it follows from (3.4a), (3.28), (3.33), (3.13) and the positivity of γ(·) that, for

almost all t ≥ 0,

0 = 〈∇V (x(t)), g(x(t))〉 (3.36a)

0 = 〈∇V (x(t)), (s(t) + 1)ω(x(t))〉. (3.36b)

Again with (3.13), the positivity of µ and the strict positivity of γ(·), it follows that, for

almost all t ≥ 0,

(s(t) + 1)|xc(t)− gc(xc(t),−yp(t))|2 = 0 (3.37)

and thus, from (3.32), for almost all t ≥ 0,

(s(t) + 1)ω(x(t)) = 0. (3.38)

It then follows from (3.34) that x(·) is a solution of ẋ = g(x), with g defined via (3.31). In

particular, with (3.35), xc(·) is a solution of (3.1a). Then, according to Assumption 1.4,

it follows that limt→∞ uc(t) = limt→∞−yp(t) = 0 and limt→∞ xc(t) = 0. We thus have

limt→∞ Vp(xp(t)) = c. Again, by the invariance principle, there must exist a solution

x̂p : [0,∞) → Rn of (3.26) with Vp(x̂p(t)) = c and ûp(t) = ŷp(t) = 0 for all t ≥ 0.

However, the existence of such a solution contradicts Assumption 2.3. Hence, there is no

solution that keeps V equal to a non-zero constant. Thus, the origin is globally attractive
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and global asymptotic stability is established.

While our assumptions focus on guaranteeing global results, it is clear that local

results accrue from local assumptions. For example, the plant considered in Section

3.5.2 satisfies local detectability instead of global detectability, and hence Theorem 2

guarantees a local asymptotic stability result for the closed-loop system.

It is also easy to show that, by introducing a closed-loop input u := (u1, u2) of

appropriate dimension and considering the feedback interconnection produced by the

conditions

uc = u1 − yp, (3.39a)

up = u2 + yc, (3.39b)

the channel (u1, u2) 7→ (yc, yp) is passive with the storage function being the function V

from the proof of Theorem 2.

3.5 Illustrations

3.5.1 TORA

We consider the translational oscillator with rotating actuator (TORA) from [33] and

[34]. The dynamics have the form

 1 σ cos(θ)

σ cos(θ) 1


 θ̈

ẍ

 =

 u

−x+ σθ̇2 sin(θ)

 (3.40)

where σ ∈ (0, 1), θ is an angular position, and x is a dimensionless translational position.

Following [35, Problem 5.10(b)], the preliminary control choice u = −θ + w renders
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the system passive (in fact, lossless) from w to θ̇, as established by the continuously

differentiable, positive definite, radially unbounded energy function

Vp(θ, θ̇, x, ẋ) :=
1

2

(
x2 + θ2

)
+ (3.41)

1

2

 θ̇

ẋ


T  1 σ cos(θ)

σ cos(θ) 1


 θ̇

ẋ

 .
Figures 3.1 and 3.2 show the performance of a soft-reset controller using the system

data from Example 1, with ac = bc = cc = 1, dc = 0.01, rc = pc = 0, κ = 1/4,

ρ = 10−3, ε = 10−2, and M = M0 + εI controlling the TORA with σ = 0.1. The

controller is an unstable FORE implemented with soft resets and having the energy

function Vc(x) = 0.5|xc|2. We do not simulate the behavior for γ = 0 since it is immediate

that the time derivative of

t 7→ Vp(xp(t)) + Vc(xc(t))

is 2κacx
2
p(t) ≥ 0 for all t ≥ 0 in this case, so that asymptotic stability of the origin is

impossible. The performance for sufficiently large, positive values of γ is shown. The

oscillations in the translational position decrease and the convergence rate increases as

γ increases.

3.5.2 Multi-link robotic manipulator

We consider the planar 2-link robotic manipulator from [35, App. A.10]. The state

variable is q = (q1, q2), where q1 is the angular position of the first link, measured with

respect to the horizontal axis of the plane, and q2 is the angular position of the second

link, measured with respect to the line segment from the first joint to the second joint.
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Figure 3.1: Evolution of the translational position of the TORA system (σ = 0.1)
controlled by an unstable FORE with soft resets and various values of the soft-reset
parameter γ. With γ = 0 the origin is not asymptotically stable. With γ > 0
large enough, the origin is asymptotically stable; oscillations are smaller and the
convergence is faster for larger γ.

We define the potential energy as

P (q) := 784.8 sin(q1) + 245.25 sin(q1 + q2)

+
%

2

(∣∣∣q1 +
π

2

∣∣∣2 + |q2|2
)
,

where % is a small positive number to ensure radial unboundedness and positive definite-

ness of q 7→ P (q) − P (q∗) with respect to q∗ := (−π
2
, 0). With g(q) := ∂P (q)/∂q for all

q ∈ Rn, the dynamic equation of the manipulator is

q̈ = M−1(q)[u− C(q, q̇)q̇ − g(q)], (3.42)
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Figure 3.2: Evolution of the total energy for the TORA system (σ = 0.1) controlled
by an unstable FORE with soft resets and various values of the soft-reset parameter
γ. The convergence rate increases as γ increases.

with u being the system input, and with M and C given by [35, Eqs. A.36-A.38].

Defining the state xp = (q, q̇), passivity from u to q̇ can be shown using the continuously

differentiable, positive definite, radially unbounded energy function

Vp(xp) =
1

2
q̇TM(q)q̇ + P (q)− P (q∗). (3.43)

For the system having the translated state x̃p := (q̃, q̇) with q̃ := q−q∗, global detectability

does not hold because, for small %, g(q) can be zero at some points where q 6= q∗. However,

g(q) is uniquely zero at q∗ in the region where q− q∗ ∈ [−π, π]2. Thus, local detectability

holds for trajectories x̃p for which q̃(t) ∈ [−π, π]2 for all t. Figure 3.3 shows the trajectory

of q1 and Figure 3.4 shows the evolution of the energy when the system is controlled using
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measurements of q̇, with the controller having input uc = −q̇ and having the form

fc(zc) = Acxc +Bcuc, (3.44a)

gc(zc) = 0, (3.44b)

hc(zc) = Ccxc, (3.44c)

with Ac = −Inc , Bc = 100Inc , and Cc = Inc . With the chosen system matrices, the

controller’s energy function is given by Vc(x) = 0.005|xc|2. The initial condition is

(π/2,−π/4), which we have chosen so that, via the closed-loop stability verified by the

Lyapunov function Vp(xp) + Vc(xc), the trajectories satisfy q̃(t) ∈ [−π, π]2 for all t. The

soft resets are implemented with γ = 103 and

M =

 0 −1
2
Inc

−1
2
Inc 0

 . (3.45)

3.5.3 Strongly convex, non-quadratic accelerated optimization

We consider the strongly convex function φ : Rnp → R from [36, Eq. 17], given by

φ(x) =

p∑
i=1

φ̂(aTi x− bi) +
1

2
|x|2, (3.46)

φ̂(α) =


1

2
α2 exp(−r/α), α > 0

0 α ≤ 0,

(3.47)

with r = 10−6. We randomly generate the entries of A and b as described in [36], such that

|A| =
√
L− 1, where L = 104 is the Lipschitz constant of ∇φ. To apply our proposed
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Figure 3.3: Angular position trajectory of the first link in a 2-link robotic manipulator,
controlled using a stable FORE with angular velocities as inputs and using soft resets.

reset control approach toward the minimization of φ, we define the plant system

fp(xp, up) = up, (3.48)

hp(xp, up) = ∇φ(xp), (3.49)

and we take the control system to be defined by (3.44) with nc = np, Ac = −KInc ,

Bc = Inc , and Cc = Inc , where K ∈ R>0 is a tuning parameter. The top plot in Figure

3.5 shows the evolution of |∇φ(xp)| for the case of np = 5, p = 10, and K = 2. The soft

resets are implemented with K = 1, γ = 30, and M given by (3.45). The bottom plot in

Figure 3.5 shows the evolution of |∇φ(xp)| for the case of np = 50, p = 5, and K = 2.

The soft resets are implemented with K = 2, γ = 20, and M given by (3.45).
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Figure 3.4: Evolution of the total energy of a 2-link robotic manipulator, controlled
using a stable FORE with angular velocities as inputs and using soft resets.
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(a)

(b)

Figure 3.5: Performance of reset control for strongly convex optimization.
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Chapter 4

Soft Resetting in Multi-Agent
Optimization and Formation Control

Leveraging results for the single-agent case, this chapter introduces passive soft-reset

control for multi-agent problems, namely for leader-follower formation control problems

with not-necessarily-convex cost functions to be optimized by leader agents. Agents

are assumed to have nonlinear passive dynamics and to share position but not veloc-

ity information with neighboring agents in a communication network represented by an

undirected connected graph. The target-seeking formation is shown to be achieved in the

sense of global asymptotic stability of the desired formation anchored at a desired target.

Passivity properties and reset mechanisms are specified at the agent (nodal) level to pre-

serve the decentralized nature of the control system implementation while also inducing

the desired stability properties at the network level.

4.1 Introduction

Reset mechanisms have the potential to improve on the performance of existing

continuous-time controllers in several ways without greatly affecting the complexity of

implementation. In the setting of multi-agent systems, resets may be able to signifi-

cantly reduce severe fluctuations in the agents’ trajectories that result from uncertainty
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about real-world operating conditions. Such uncertainties include the communication

graph topology, number of agents in the network, and the target-seeking dynamics of the

leader agents. In addition, reset methods may also yield similar benefits in settings where

the uncertainties pertain to exogenous disturbances such as wind and payload in an un-

manned aerial vehicle (UAV). These disturbances have presented challenges in designing

robust controllers for multi-UAV systems, for example those that are tasked with collabo-

ratively transporting a payload suspended by cables [37], [38]. The fluctuations typically

must be addressed by appropriately tuning the gain parameters of the continuous-time

controllers according to properties of, for example, the Laplacian of the communication

graph or the dynamics of neighboring agents and disturbances. It is often unreasonable to

assume that such information will be available in practice or that an opportunity will be

available, before deployment of the multi-agent system, for precisely tuning parameters

to unknown environments. Hence, we propose that reset control can play a crucial role

in coping with uncertainty in multi-agent systems, like the role played by reset methods

in convex optimization [26], where improvements are seen not only in the reduction of

fluctuations but also in asymptotic convergence rates. For UAV systems, among other

vehicular and robotic systems, the particular advantage of reduced fluctuations may be

especially important in mitigating the wear of actuators and reducing the consumption

of energy, and reset methods can potentially offer this advantage without introducing

much additional cost or complexity to the controller implementation.

We focus on a type of multi-agent optimization problem referred to as a leader-follower

formation control problem [39], of which the problem of multi-agent consensus is a special

case. Many studies on this topic focus on agents modeled by double-integrator dynamics

or having strongly convex quadratic cost functions to be optimized. We avoid these

limitations by working within the framework of passivity, which furthermore facilitates

the application of passive soft-reset control techniques developed in [40]. Although the
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stability properties of formation controllers for double-integrator agents can be analyzed

using the approach of [41, Ch. 3], in contrast, the passivity-based approach of [42] enables

a unified study of stability when extending the algorithm to account for the following:

more general models than double integrators (including nonlinear models), nonlinear

optimization objectives that encode formation properties, and adaptive estimation of a

network-wide reference velocity. The more general models can capture the nonlinear

dynamics of systems such as marine vessels [43], [44], robotic manipulators [45], satellites

[46], and sensor networks [46]. See [42] and [46] for overviews of passivity-based multi-

agent control systems. We make use of the passivity framework of [42], as it is especially

compatible with existing passivity-based analyses of reset control systems.

The benefit of reset control has been demonstrated in a variety of multi-agent systems.

Reset methods for consensus of single-integrator networks are studied in [47] and [48],

where the use of proportional-integral control gives rise to an integrator state to which

resets can be applied. In addition to improvements in disturbance rejection properties,

it is also shown in [47] that the use of integral control can improve the exponential rate

of convergence. However, to our knowledge, reset methods have not been applied in

double-integrator networks, where the benefits can potentially be more significant than

those seen in the single-integrator setting. Several of these benefits are demonstrated

in the numerical example of Section 4.4 of this chapter. Other multi-agent systems to

which reset control has been applied include vehicle platoons, particularly those with

lane-changing requirements [23], [24]. In all of the existing work on reset control for

multi-agent systems, hard resets are considered. However, because the agents in these

systems are often vehicles and robots with passive nonlinear dynamics, they stand to

benefit greatly from soft resetting, which is applicable to passive systems and avoids

the discontinuity of control signals that can be detrimental to hardware in mechanical

systems.
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In this chapter, we introduce soft resetting for leader-follower formation control, with

target-seeking objectives encoded by not-necessarily-convex but invex cost functions,

assuming an undirected connected communication graph for convenience. In Section 4.2,

we introduce the basic leader-follower formation control system which is to be augmented

with resets. In Section 4.3, we develop a reset mechanism and a corresponding soft-reset

implementation, establishing a closed-loop asymptotic stability result to show that the

target-seeking formation is achieved. We obtain a Lyapunov function for showing closed-

loop stability properties via storage functions that verify passivity at the nodal level.

This approach somewhat resembles the approaches taken in, for example, [49], [50], and

[51]. However, we employ a more traditional notion of passivity, in contrast with the

notion of equilibrium independent passivity [50] employed those works.

4.2 The basic multi-agent optimization dynamics

Consider a network of agents, with N := {1, . . . , N} denoting the set of agent indices

and each agent having state variable xi := (qi, pi) ∈ R2n with position qi and velocity

pi. Denote the network-wide states by q := (q1, . . . , qN) and p := (p1, . . . , pN). For each

agent i ∈ N , the control input is denoted ui, and the system model is given by

q̇i = pi, (4.1a)

ṗi = fi(pi, ui), (4.1b)

yi = pi, (4.1c)

under the following conditions.

Assumption 3 For each i ∈ N , the following conditions hold.

1. fi is sector bounded near the origin and continuous.
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2. There exist a strongly convex, positive definite, continuously differentiable function

Vp,i : Rn → R≥0, a continuous, positive definite, quadratically bounded near the

origin function ρi : Rn → R≥0, ε > 0, and a matrix Mi = MT
i such that, with the

definition

Cε,i :=
{
zi := (pi, ui) ∈ R2n : zTi Mizi ≤ εzTi zi

}
, (4.2)

we have

〈∇Vp,i(pi), fi(pi, ui)〉 ≤ yTi ui−ρi(yi) ∀(pi, ui) ∈ Cε,i. (4.3)

3. Any absolutely continuous, bounded solution (pi, ui) : [0,∞)→ R2n of

ṗi = fi(pi, ui), (pi, ui) ∈ C0,i (4.4)

that satisfies pi(t) = 0 for all t ∈ [0,∞) also satisfies limt→∞ ui(t) = 0. Here, C0,i

is given by (4.2) with ε = 0.

The control objective is to drive the agents to reach a formation which is centered at

a point known only to the leader agent(s), assuming that each agent can communicate

information only with a subset of other agents, according to the following conditions.

Assumption 4 The agents’ communication network topology is described by a static

undirected graph G having Laplacian matrix L, with vertices (nodes) indexed by i ∈ N :=

{1, . . . , N} and edges indexed by l ∈ E := {1, . . . , E}. Furthermore, the agents can

communicate information about their positions but not about their velocities or relative

velocities.
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Given Assumption 4, for each edge l ∈ E of the graph G, we arbitrarily assign one node

to be the head and the other to be the tail, so that the incidence matrix D ∈ RN×E may

be defined as follows:

Dil =


1 if i is the head of l

−1 if i is the tail of l

0 otherwise.

Note that the Laplacian L satisfies L = DDT [52, Prop. 4.8]. Let D̃ := D ⊗ In and

L̃ := L ⊗ In. Note that, for all q := (q1, . . . , qN) ∈ RnN ,

D̃T q = 0 if and only if qi = qj ∀(i, j) ∈ N 2. (4.5)

Let qri ∈ Rn denote the desired position of agent i. Let qc denote the “center” of

the desired formation, in the sense that, for each i, we may write qri = qc + qfi for some

vector qfi referred to as the “formation vector” of agent i. A formation is said to be

asymptotically achieved if, for all (i, j) ∈ N 2, qi − qfi → qj − qfj as t→∞.

We define sets NL ⊆ N and NF ⊆ N representing the sets of leader and follower

agents, respectively. Assume N = NL ∪ NF and NL ∩ NF = ∅. For convenience, we

assume that the agents are indexed in such a way that NL = {1, . . . , |NL|}. Denote the

leader positions by qL := (q1, . . . , q|NL|) and the follower positions by qF , so that we have

q = (qL, qF ).

We consider the leaders to be tasked with target seeking. That is, they are tasked

with converging to a point that minimizes a certain cost function that is unknown to the

follower agents and which can be designed according to the needs of the application at

hand. For each leader i ∈ NL, denote the cost function by φL,i : Rn → R. The total cost
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function φL : Rn|NL| → R is given by

φL(qL) :=

|NL|∑
i=1

φL,i(qL,i). (4.6)

The following conditions are assumed to hold.

Assumption 5 For each i ∈ NL, φL,i has a unique minimizer at qri , with the minimal

value of φL,i denoted φ∗L,i. Furthermore, the functions φL,i are such that φL

� has a unique minimizer at qrL := (qr1, . . . , q
r
|NL|) and minimal value denoted φ∗L,

� is continuously differentiable,

� is positive definite and radially unbounded with respect to qrL,

� and satisfies ∇φL(qL) = 0 if and only if qL = qrL.

Defining

γqi :=


1 if i ∈ NL,

0 if i /∈ NL,

let γq := (γ1, . . . , γN). Observing that the matrix diag(γq) has rank |NL|, we consider a

factorization of diag(γq) given by ΓΓT with the matrix Γ ∈ RN×|NL| having orthonormal

columns. Letting Γ̃ := Γ ⊗ In, we have qL = Γ̃q. Then, letting L̃ := L ⊗ In, qf :=

(qf1 , . . . , q
f
N), qr := (qr1, . . . , q

r
N), and f(p, u) := (f1(p1, u1), . . . , fN(pN , uN)), the leader-
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follower formation control system is given by

q :=

 qL

qF

 ∈ RnN , qL = Γ̃q, (4.7a)

u :=


u1
...

uN

 = −L̃(q − qf )− Γ̃∇φL(qL), (4.7b)

q̇ = p, (4.7c)

ṗ = f(p, u), (4.7d)

under the following condition.

Assumption 6 The matrix

[
−D̃ −Γ̃

]
has full column rank.

To give an example satisfying Assumption 6, consider n = 1 and N = 3, with agent 1

being the only leader and G being a simple path from agent 1 to agent N , in which case

we may write

D̃ =


1 0

−1 1

0 −1

 , Γ̃ =


1

0

0

 . (4.8)

More generally, Assumption 6 can be satisfied as follows.

Proposition 4.2.1 Suppose that there is exactly one leader agent and that the graph G

is undirected, connected, and acyclic. Then, Assumption 6 holds.

Proof: The undirected, connected, and acyclic properties of G together ensure that

D has N − 1 columns and has full column rank [52, Prop. 4.3]. The presence of exactly
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one leader ensures that Γ has exactly one column with exactly one non-zero entry. By

definition, each column of D has more than one non-zero entry, and therefore each column

of D is linearly independent of Γ. It follows that

[
−D −Γ

]
∈ RN×N has full column

rank and therefore that

[
−D̃ −Γ̃

]
has full column rank.

4.3 Soft-reset multi-agent optimization

4.3.1 The reset mechanism

Resets are incorporated into (4.1) as follows. For each agent i ∈ N , given a matrix

Mi = MT
i satisfying Assumption 3, the reset condition is described by the set

Di :=
{
zi := (pi, ui) ∈ R2n : zTi Mizi ≥ 0

}
. (4.9)

For each agent i ∈ N , the desired state value after resetting is specified by a function

gi : R2n → Rn that satisfies the following conditions.

Assumption 7 For each i ∈ N , the following conditions hold.

1. gi is sector bounded near the origin and continuous.

2. (pi, ui) ∈ Di implies (gi(pi, ui), ui) ∈ C0,i, where C0,i is given by (4.2) with ε = 0.

3. For some function Vp,i satisfying Assumption 3, it holds that

Vp,i(gi(pi, ui)) ≤ Vp,i(pi) ∀(pi, ui) ∈ Di. (4.10)
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4.3.2 The soft-reset implementation

For each agent i ∈ N , with

ϕi(pi, ui) :=

 pi

ui


T

Mi

 pi

ui

 ,
soft resets are implemented in (4.1) as follows:

ṗi ∈ Fi(pi, ui)

:= fi(pi, ui)− γi(pi, ui)
(

SGN
(
ϕi(pi, ui)

)
+ 1

)(
pi − gi(pi, ui)

)
, (4.11)

where γi : R2n → R>0 is continuous, and the set-valued mapping SGN : R ⇒ R is defined

as SGN(s) := sign(s) for s 6= 0 and SGN(0) := [−1, 1]. The following lemma is a direct

consequence of Theorem 1 in Chapter 3.

Lemma 4.3.1 Under Assumptions 3 and 7, for each i ∈ N , there exists a continuous,

positive definite function σ1,i : R2n → R≥0 and for each γ0 > 0 there exists a continuous

function γi : R2n → R>0 such that, for each (pi, ui) ∈ R2n and each fi ∈ Fi(pi, ui),

〈∇Vp,i(pi), fi〉 ≤ yTi ui − ρi(yi)− γ0 max {0, ϕi(pi, ui)}
ϕi(pi, ui)

max {1, σ1,i(pi, ui)2}
. (4.12)

Moreover, due to Assumption 7.3 and the strong convexity of each Vp,i, there exists µ > 0

such that, for all i ∈ N ,

si ∈ SGN(ϕi(pi, ui)) =⇒

〈∇Vp,i(pi), (si + 1)(gi(pi, ui)− pi)〉 ≤ −(si + 1)µ|pi − gi(pi, ui)|2. (4.13)
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Without loss of generality, µ may be taken to be independent of i.

The soft-reset leader-follower formation control system is given by

q :=

 qL

qF

 ∈ RnN , qL = Γ̃q, (4.14a)

u :=


u1
...

uN

 = −L̃(q − qf )− Γ̃∇φL(qL), (4.14b)

q̇ = p, (4.14c)

ṗ ∈ F (p, u), (4.14d)

where, for each (p, u) ∈ R2nN , F (p, u) is defined as the set of points f ◦ := (f ◦1 , . . . , f
◦
N) ∈

RnN such that f ◦i ∈ Fi(pi, ui) for all i ∈ N , with Fi defined by (4.11). The formation

control and target seeking objectives are achieved in the following sense.

Theorem 3 Suppose Assumptions 3, 4, 5, 6, and 7 hold. Then, whenever the function

γ := (γ1, . . . , γN) induces the inequality (4.12) for all i ∈ N , the point (qr, 0) is globally

asymptotically stable for the system having state (q, p) with dynamics given by (4.14).

Proof: With (4.5) and the definition of qrL from Assumption 5, the result follows by

showing that the origin is globally asymptotically stable for the system given by

z := D̃T (q − qf ) ∈ RnE, (4.15a)

q̃L := qL − qrL ∈ Rn|NL|, (4.15b)

u :=


u1
...

uN

 = −D̃z − Γ̃∇φL(q̃L + qrL), (4.15c)
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ż = D̃Tp, (4.15d)

ṗ ∈ F (p, u), (4.15e)

˙̃qL = Γ̃p, (4.15f)

where qrL comes from Assumption 5. We use x := (z, p, q̃L) for the composite state

and F (x) to denote the right-hand side of the closed-loop differential inclusion, so that

ẋ ∈ F (x). Let

Vz(z) :=
1

2
|z|2

Vp(p) :=
N∑
i=1

Vp,i(pi),

VL(q̃L) := φL(q̃L + qrL)− φ∗L,

where {Vp,i}Ni=1 comes from Assumption 3, φL comes from (4.6), and φ∗L comes from

Assumption 5. Consider the composite Lyapunov function candidate

V (x) := Vz(z) + Vp(p) + VL(q̃L) ∀x ∈ Rn(E+N+|NL|),

which is continuously differentiable, positive definite, and radially unbounded due to

Assumptions 3, 4, and 5. Using Assumption 3 and Lemma 4.3.1, we have, for all x ∈
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Rn(E+N+|NL|) and all f ∈ F (x),

〈
∇V (x), f

〉
≤
〈
z, D̃Tp

〉
+
∑
i=1

[
yTi ui − ρi(yi)− γ0 max {0, ϕi(pi, ui)}

ϕi(pi, ui)

max {1, σ1,i(pi, ui)2}

]
+
〈
∇φL(q̃L + qrL), Γ̃p

〉
=
∑
i=1

[
−ρi(yi)− γ0 max {0, ϕi(pi, ui)}

ϕi(pi, ui)

max {1, σ1,i(pi, ui)2}

]
. (4.16)

where γ0 > 0, ρi is positive definite for all i ∈ N , and yi = pi for all i ∈ N . It follows that

the right-hand side of (4.16) is never positive and so the origin is stable and all solutions

are bounded.

To establish global convergence to the origin, we use the invariance principle for

differential inclusions [31, 32], which applies due to Assumptions 3.1 and 7.1 and the fact

that the set-valued mapping SGN is outer semicontinuous and bounded with nonempty

convex values. According to the invariance principle, every solution converges to the

origin if and only if there does not exist a solution x : [0,∞) → Rn(E+N+|NL|) and

constant c > 0 satisfying V (x(t)) = c for all t ∈ [0,∞). To rule out such a solution, we

decompose F so that solutions of ẋ ∈ F (x) satisfy, for almost all t ∈ [0,∞),

ẋ(t) ∈ η(x(t)) +


0nE×nN

diag(s(t)) + I

0n|NL|×nN

ω(x(t)), (4.17a)

s(t) := (s1(t), . . . , sN(t)), (4.17b)

si(t) ∈ SGN(ϕi(pi(t), ui(t))), ∀i ∈ N , (4.17c)
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for appropriate, continuous functions η and ω, and note that

|ω(x)|2 =
N∑
i=1

γ2i (pi, ui)|pi − gi(pi, ui)|2 (4.18)

and

〈
∇V (x),


0nE×nN

diag(s) + I

0n|NL|×nN

ω(x)

〉

= −
N∑
i=1

γi(pi, ui)
〈
∇Vp,i(pi), (si + 1)

(
pi − gi(pi, ui)

)〉
. (4.19)

Now suppose there exists a solution x : [0,∞) → Rn(E+N+|NL|) and constant c > 0

satisfying V (x(t)) = c for all t ∈ [0,∞). Since ρi is positive definite for each i ∈ N , and

γ0 > 0, it follows from (4.16) that such a solution requires yi(t) = 0 for all i ∈ N and

t ∈ [0,∞), as well as ϕi(pi(t), ui(t)) ≤ 0 for all i ∈ N and t ∈ [0,∞). That is,

Vp(p(t)) = 0 ∀t ∈ [0,∞), (4.20)

and for all i ∈ N and almost all t ≥ 0,

(pi(t), ui(t)) ∈ C0,i. (4.21)

In turn, it follows from (4.3), (4.19), (4.13), and the positivity of γi for all i ∈ N that,
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for almost all t ≥ 0,

0 = 〈∇V (x(t)), η(x(t))〉,

0 =

〈
∇V (x),


0nE×nN

diag(s) + I

0n|NL|×nN

ω(x)

〉
.

Again with (4.13), the positivity of µ, and the strict positivity of γi for all i ∈ N , it

follows that, for all i ∈ N and for almost all t ≥ 0,

(si(t) + 1)|pi(t)− gi(pi(t), ui(t))|2 = 0 (4.23)

and thus, from (4.18), for almost all t ≥ 0,


0nE×nN

diag(s) + I

0n|NL|×nN

ω(x) = 0.

It then follows from (4.17) that x(·) is a solution of ẋ = η(x). In particular, for each

i ∈ N , with (4.21), pi(·) is a solution of (4.4). Then, according to Assumption 3.3, it

follows that, for all i ∈ N , limt→∞ ui(t) = 0. That is,

lim
t→∞

u(t) = 0. (4.24)
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Figure 4.1: Evolution of the local consensus error, measuring the deviation from a
desired formation. Denoting the ith-row of L by Li, the local consensus error can be
expressed as |(Li ⊗ In)(q − qf )|2.

Due to Assumptions 4, 5, and 6,

u =

[
−D̃ −Γ̃

] z

∇φL(q̃L + qrL)

 = 0

if and only if (z,∇φL(q̃L + qrL)) = (0, 0). Hence, (4.24) implies that limt→∞(z, q̃L)(t) =

(0, 0) and limt→∞ Vz(z(t)) + VL(q̃L(t)) = 0. However, due to (4.20), this contradicts the

premise that V (x(t)) = c for all t ∈ [0,∞). Hence, there is no solution that keeps V

equal to a non-zero constant. We conclude that the origin of (4.15) is globally attractive

and global asymptotic stability is established.
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4.4 Numerical results

4.4.1 Experiments

Figure 4.1 compares the transient behaviors of the standard formation controller (4.7)

and the soft-reset formation controller (4.14), for an experiment where n = 2, N = 5,

agent 3 is the only leader, and G is a simple path from agent 1 to agent N . We choose

fi(pi, ui) = −Kipi + ui, (4.25)

gi(pi, ui) = 0,

Mi =

 0 −InN

0 −InN


for all i ∈ N . With (4.25), we focus on the case of double-integrator agents to make our

figures more easily interpretable. One way to motivate the double-integrator model is to

assume, as in [38] for example, that a low-level controller handles the roll, pitch, and yaw

variables in a multirotor UAV. For the case of fixed-wing UAVs, the double-integrator

model can be motivated by the use of feedback linearization, as described in [53, Section

3] for example.

Figure 4.2 shows the same experiment, displaying the traces of the agents’ trajectories

in R2. Initial positions are randomly drawn vectors with uniformly distributed entries

(independently and identically distributed). The signal (qc, qf ) is piecewise constant

in time, with a switching signal that has dwell-time parameter δ = 0.08, yielding a

sequence of six different formations. For each i ∈ N , we use “coarsely” chosen values of

parameters, i.e., values that are not tailored to the specific experiment: for all i ∈ N ,

Ki = 1 and γi(pi, ui) = 104. However, similar performance (and, in fact, oftentimes

better performance) can be achieved by using much smaller values for γi(pi, ui) such as
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10.

4.4.2 Discussion

In Figure 4.1, the focus is not on the actual values of local consensus errors but on

the variance of those values. In other words, the figure gives a quantitative sense of how

resets reduce fluctuations in transient behaviors. On the other hand, in terms of the

asymptotic performance with respect to network-wide consensus and target-seeking, the

controller behaves similarly with and without resets, and hence, the resets are shown to

improve transient behaviors while still preserving desirable asymptotic behaviors.

In Figure 4.2, the traces of the agents’ trajectories illustrate how resets can consis-

tently reduce the unhelpful and wasteful behaviors of the standard controller: at certain

times, the “overshoot” behaviors are reduced, while at other times, the redundant “back-

tracking” behaviors are reduced. Overall, the reset method yields trajectories that are

more regular and more akin to what a human operator might produce when manually

controlling UAVs with full knowledge of the desired positions. Recall, however, that the

agents here are severely information-restricted in the sense that they do not know the

desired positions associated with each formation (with the exception of the leader agent,

which only knows its own desired position), nor do they anticipate the times at which

the desired formation switches.

Although the communication graph in our experiment does not vary with time, we

anticipate that the setting of time-varying graphs will reveal novel benefits of resets. In

particular, resets may reduce costly fluctuations that can typically be prevented only

by carefully (possibly adaptively) tuning the parameters of existing controllers accord-

ing to graph properties, such as the eigenvalues of the Laplacian, at the time of each

switch. Especially when such properties are uncertain in practice, resets can offer a way
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to improve transient behaviors without introducing much complexity to the controller

implementation.

It is worth emphasizing that the incorporation of the reset method does not introduce

any significant computational cost to the standard controller (4.7). Indeed, one recog-

nized benefit of reset control is that it simply and cost-effectively augments the control

systems that are already standard or currently implemented in practice, as explained

in the introductory sections of [21] and [22]. Although other advanced control methods

may be available for motion control and trajectory planning in multi-agent systems, they

can be challenging to implement in distributed systems with low-cost hardware and with

severely limited energy resources. In contrast, reset methods have the potential to achieve

performance benefits in the presence of environmental uncertainty without compromising

the real-time constraints on computing, sensing, actuation, communication, and power

that arise in multi-agent systems that are mobile, spatially distributed, and driven by

low-cost embedded computing platforms.
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(a) First formation

(b) Second formation

Figure 4.2: Traces of agent positions with and without reset control. Desired forma-
tions are indicated with ‘x’-shaped markers.
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(c) Third formation

(d) Fourth formation

Figure 4.2: Traces of agent positions with and without reset control (continued).
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(e) Fifth formation

(f) Sixth formation

Figure 4.2: Traces of agent positions with and without reset control (continued).
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Chapter 5

Soft-Reset Controllers for
Steady-State Optimization with
Feedback

One of the illustrations in Chapter 3 showed that soft-reset control is applicable to the

problem of steady-state optimization, in which the goal is to drive a plant toward the

solution of an optimization problem in steady state, assuming feedback measurement of

the plant state and knowledge of the plant’s steady-state input-output relation, as well

as knowledge of the gradient of the optimization objective. In this chapter, we expand

on this idea by constructing soft-reset controllers that show promise in improving on

the performance of steady-state optimization controllers that lack resets. It is shown

that steady-state optimality is achieved for linear time-invariant plants and for a class

of nonlinear passive plants having only filtered gradient information available, in the

sense that the solution of the online formulation for the desired optimization problem is

globally asymptotically stable for the closed-loop system.
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5.1 Introduction

In the problem of steady-state optimization with feedback, also referred to in the lit-

erature as the problem of feedback optimization or autonomous optimization, the control

objective is to drive a plant toward a steady-state value that is the solution to an opti-

mization problem, assuming feedback measurement of the plant state [54] [55] [56]. Here,

the optimization problem encodes the relevant performance metrics and practical con-

straints, and the meaning of “steady-state value” may encompass the state-input pair or

simply the plant state by itself, although the former case has seen much broader consid-

eration in the literature. Both simulations and hardware experiments have demonstrated

the benefits of steady-state optimization in such applications as power systems [57] [58]

and transportation systems [59] [60]. In those applications, steady-state optimization

with feedback plays an important role, due to the mismatch of plant models and the

presence of time-varying input disturbances which make it infeasible to compute control

strategies offline.

Many steady-state optimization strategies are based on first-order gradient meth-

ods for convex optimization. However, basic gradient methods may be insufficient for

high-performance applications that demand rapid convergence. Some strategies have

improved on the settling time of the basic gradient method by incorporating dynamics

that are similar to the continuous-time notion of Nesterov acceleration studied in convex

optimization, giving rise to a momentum state in the controller dynamics which has a

time-varying damping parameter [54] [59]. As shown in [59], the time-dependence of

the damping parameter must be designed in a specific way as to ensure robust stability

properties without comprising efficiency of convergence. Namely, a form of temporal

regularization is required, in which the momentum damping parameter decreases toward

zero as a function of time but jumps to a large value periodically, with the period being
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set in accordance with Lyapunov-like conditions for asymptotic stability. The stability

conditions are obtained using a hybrid systems framework, which is natural for such

systems that exhibit both flows and jumps.

In this chapter, we consider a novel perspective on momentum-based gradient meth-

ods for steady-state optimization with feedback, one in which the momentum parameter

is adaptively tuned according to a sector-based condition on the state-input pair of the

controller rather than a periodic or explicitly time-dependent mechanism. The result is

a soft-reset controller for steady-state optimization that enjoys the same benefits of soft-

reset control discussed in previous chapters: it avoids the need for temporal regularization

and hybrid systems theory, while preventing discontinuity of control signals.

In Section 5.2, two soft-reset controllers inspired by momentum-based gradient meth-

ods are proposed: one for linear time-invariant plants and one for a class of passive

nonlinear plants for which only filtered gradient information is available. In the lat-

ter case, the controller by itself does not have the form of a momentum-based gradient

method but is designed to induce momentum-based gradient dynamics in the closed-loop

system. Using analyses derived from singular perturbation methods, global asymptotic

stability of the optimizer is established for both of the considered soft-reset control sys-

tems, assuming invexity and suitable smoothness conditions on the objective function.

Section 5.3 numerically illustrates the potential for soft resets to significantly improve

efficiency of convergence.
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5.2 Stability analysis of soft-reset steady-state opti-

mization

5.2.1 Linear time-variant systems

Consider a plant having state x ∈ Rnp and input u ∈ Rnc , given by

εẋ = Ax+Bu (5.1)

with ε > 0 and matrices A and B of appropriate dimension, under the following assump-

tion.

Assumption 8 The matrix A is Hurwitz. That is, all the eigenvalues of A have negative

real part. Equivalently, for every symmetric matrix Q > 0, there exists a symmetric

matrix P > 0 such that ATP + PA = −Q.

Given differentiable functions φx : Rnp → R and φu : Rnc → R, the control objective is

to steer (x, u) toward the solution of the optimization problem given by

min
x∈Rnp , u∈Rnc

φx(x) + φu(u) (5.2a)

s.t. Ax+Bu = 0. (5.2b)

Due to Assumption 8, A is Hurwitz and therefore invertible, and the steady-state relation

of (5.1) can be written as x = Gu with G := −A−1B. We reformulate (5.2) as

min
u∈Rnc

Φ(u) := φx(Gu) + φu(u) (5.3)

under the following assumptions.
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Assumption 9 The matrix G has full column rank, and there exists a unique solution

u∗ to (5.3).

Assumption 10 There exists Lx > 0 such that, for all x1, x2 ∈ Rnp,

|∇φx(x1)−∇φx(x2)| ≤ Lx|x1 − x2|.

Assumption 11 The function Φ is invex and radially unbounded.

Assuming that x can be measured for feedback control and that the functions (∇φx,∇φu)

are known, the plant can be interconnected with a soft-reset controller having state

u := (u1, u2) ∈ R2nc , output u := u1, and dynamics given by

u̇1 = u2, (5.4a)

u̇2 ∈ −Kcu2 − ψ(x, u1)− κ
(

SGN (〈ψ(x, u1), u2〉) + 1
)
u2, (5.4b)

ψ(x, u1) := GT∇φx(x) +∇φu(u1), (5.4c)

where Kc > 0, κ > 0, and the set-valued mapping SGN is defined as

SGN(s) :=


s
|s| s 6= 0

[−1, 1] s = 0.

(5.5)

The following result establishes that the control objective is achieved for sufficiently small

values of ε in (5.1).

Theorem 4 Under Assumptions 8, 9, 10, and 11, there exists ε∗ > 0 such that, for all

ε ∈ (0, ε∗), the point (Gu∗, u∗, 0) is globally asymptotically stable for the system having

state xcl := (x, u1, u2) satisfying (5.1) and (5.4).
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Proof: Let x̃ := x−Gu1, ũ1 := u1− u∗, and x̃cl := (x̃, ũ1, u2). The result follows by

showing that, under the given assumptions, the origin of the system given by

˙̃xcl ∈ F̃ (x̃cl)

:=


(1/ε)Ax̃−Gu2

u2

−Kcu2 − ψ(x̃+Gu1, ũ1 + u∗)− κ
(
SGN (〈ψ(x̃+Gu1, ũ1 + u∗), u2〉) + 1

)
u2


(5.6)

is globally asymptotically stable. To this end, let (P,Q) be any pair of symmetric positive

definite matrices satisfying the equation in Assumption 8, and let α > 0. Consider the

Lyapunov function candidate

V (x̃cl) := x̃TPx̃+ α

(
Φ(ũ1 + u∗)− Φ(u∗) +

1

2
|u2|2

)
,

which is positive definite due to Assumption 9 and radially unbounded due to Assumption

11. By Assumption 10, we have

|∇Φ(ũ1 + u∗)− ψ(x̃+Gu1, ũ1 + u∗)|

= |GT∇φx(Gu1) +∇φu(u1)

−
(
GT∇φx(x) +∇φu(u1)

)
|

= |GT (∇φx(Gu1)−∇φx(x))|

≤ Lx|G||Gu1 − x|

= Lx|G||x̃|. (5.7)
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Furthermore, under Assumption 8,

2〈Px̃, Ax̃〉 = x̃T (ATP + PA)x̃ ≤ −λmin(Q)|x̃|2. (5.8)

Using (5.7), (5.8), and the positivity of κ, we have that, for all x̃cl ∈ Rnp+2nc and f̃ ∈

F̃ (x̃cl), there exists σ ∈ [−1, 1] such that

〈∇V (x̃cl), f̃〉

= α
(
〈∇Φ(ũ1 + u∗), u2〉 −Kc|u2|2

− 〈ψ(x̃+Gu1, ũ1 + u∗), u2〉 − κ(σ + 1)|u2|2
)

+
2

ε
〈Px̃, Ax̃〉 − 2〈Px̃,Gu2〉

≤ α
(
Lx|G||x̃||u2| −Kc|u2|2

)
+

2

ε
〈Px̃, Ax̃〉 − 2〈Px̃,Gu2〉

≤ αLx|G||x̃||u2| − αKc|u2|2 −
1

ε
λmin(Q)|x̃|2 + 2|P ||G||x̃||u2|

= −

 |u2|
|x̃|


T

Λ

 |u2|
|x̃|

 , (5.9)

Λ :=

 αKc −(αLx + 2|P |)|G|/2

−(αLx + 2|P |)|G|/2 λmin(Q)/ε

 .
By requiring that

ε <
4αKcλmin(Q)

(αLx|G|+ 2|P ||G|)2
=: ε∗, (5.10)

we have that Λ is positive definite, and (5.9) implies that the origin of (5.6) is globally

stable. To show global asymptotic stability, we will apply the invariance principle for

differential inclusions [32, Theorem 2.11] by showing that no complete solution of (5.6)
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keeps V at a nonzero constant value. Observe that, due to (5.9), any solution that keeps

V constant must satisfy u2 ≡ x̃ ≡ 0 and consequently u̇2 ≡ 0. Then, according to (5.6),

such solutions also satisfy ψ(x̃ + Gu1, ũ1 + u∗) ≡ 0. Moreover, because x̃ ≡ 0, we have

ψ(x̃ + Gu1, ũ1 + u∗) ≡ ∇Φ(u1) ≡ 0. It follows that u1 ≡ u∗, due to the invexity in

Assumption 11, which ensures that ∇Φ(u1) = 0 if and only if u1 = u∗. In summary,

solutions that keep V constant must satisfy (x̃, ũ1, u2) ≡ (0, 0, 0), and we conclude that

the origin of (5.14) is globally asymptotically stable.

5.2.2 Passive systems

Consider a plant having states ξ ∈ Rnp and x ∈ Rnp with input u ∈ Rnc , parameter

K > 0, and dynamics given by

ξ̇ = −K(ξ −∇φ(x)), (5.11a)

ẋ = fp(x, u), (5.11b)

where φ : Rnp → R and fp : Rnp × Rnc → Rnp satisfy the following.

Assumption 12 The function φ is twice continuously differentiable, ∇φ has locally Lip-

schitz partial derivatives, and there exists H > 0 such that

|∇2φ(x)| ≤ H, ∀x ∈ Rnp .

Assumption 13 The function φ is invex, radially unbounded, and has a unique mini-

mizer over Rnp denoted x∗.
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Assumption 14 The function fp is continuous and satisfies

〈∇φ(x), fp(x, u)〉 ≤ 〈∇φ(x), u〉

for all (x, u) ∈ Rnp × Rnc.

The control objective is to steer x toward the solution of the optimization problem given

by

min
x∈Rnp

φ(x).

Assuming that ξ can be measured for feedback control, we interconnect the plant

with a soft-reset controller having input −ξ and output u, given by

u̇ ∈ Fc(u,−ξ) := −Kcu− ξ − κ(u,−ξ)
(

SGN (〈ξ, u〉) + 1
)
u, (5.13)

where Kc > 0, κ is a continuous function taking positive values, and SGN is defined

as in (5.5). The following result establishes that the control objective is achieved for

sufficiently large values of K in (5.11).

Theorem 5 Under Assumptions 12, 13, and 14, if K > H/Kc then the point (0, x∗, 0) is

globally asymptotically stable for the system having state xcl := (ξ, x, u) satisfying (5.11)

and (5.13).

Proof: Let ξ̃ := ξ −∇φ(x), x̃ := x − x∗, and x̃cl := (ξ̃, x̃, u). The result follows by
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showing that, under the given assumptions, the origin of the system given by

˙̃xcl ∈ F̃ (x̃cl)

:=


−Kξ̃ −∇2φ(x̃+ x∗)u

fp(x̃+ x∗, u)

−Kcu−
(
ξ̃ +∇φ(x̃+ x∗)

)
− κ(u,−ξ)

(
SGN

(〈
ξ̃ +∇φ(x̃+ x∗), u

〉)
+ 1
)
u


(5.14)

is globally asymptotically stable. Consider, for some α > 0 to be chosen later, the positive

definite Lyapunov function candidate

V (x̃cl) :=
1

2
|ξ̃|2 + α

(
φ(x̃+ x∗)− φ(x∗) +

1

2
|u|2
)
, (5.15)

which is radially unbounded due to Assumption 13. For all x̃cl ∈ R2np+nc and f̃ ∈ F̃ (x̃cl),

there exists σ ∈ [−1, 1] such that

〈∇V (x̃cl), f̃〉

= α
(
〈∇φ(x̃+ x∗), fp(x̃+ x∗, u)〉 − 〈ξ, u〉 −Kc|u|2 − κ(u,−ξ)(σ + 1)|u|2

)
−K|ξ̃|2 − 〈ξ̃,∇2φ(x̃+ x∗)u〉

≤ α
(
〈∇φ(x̃+ x∗), u〉 − 〈ξ, u〉 −Kc|u|2

)
−K|ξ̃|2 +H|ξ̃||u| (5.16a)

= α
(
−Kc|u|2 − 〈ξ̃, u〉

)
−K|ξ̃|2 +H|ξ̃||u|

≤ −αKc|u|2 + α|ξ̃||u| −K|ξ̃|2 +H|ξ̃||u|

= −

 |u|
|ξ̃|


T

Λ

 |u|
|ξ̃|

 , (5.16b)
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Λ :=

 αKc −(α +H)/2

−(α +H)/2 K

 ,
where, in (5.16a), we have used Assumptions 12 and 14 and the positivity of κ. By

requiring that

K >
(α +H)2

4Kcα
=: K(α), (5.17)

we have that Λ is positive definite, and (5.16b) implies that the origin of (5.14) is globally

stable. Note that

dK(α)

dα
=

(α−H)(α +H)

4Kcα2
,

d2K(α)

dα2
=

2H
2

4Kcα3
,

and K : R>0 → R>0 is minimized at α = H. For this choice of α, (5.17) is equivalent to

the constraint that K > H/Kc.

To show global asymptotic stability, we will apply the invariance principle as done in

the proof of Theorem 4. Due to (5.16b), any solution that keeps V at a nonzero constant

must satisfy u ≡ ξ̃ ≡ 0 and consequently u̇ ≡ 0. Then, according to (5.14), such solutions

also satisfy ξ̃ +∇φ(x̃ + x∗) ≡ 0 or, equivalently, ξ ≡ 0. Combining ξ ≡ 0 and ξ̃ ≡ 0, we

have ∇φ(x) ≡ 0. It follows that x ≡ x∗, due to the invexity in Assumption 13, which

ensures that ∇φ(x) = 0 if and only if x = x∗. Therefore, solutions that keep V constant

must satisfy (ξ̃, x̃, u) ≡ (0, 0, 0), and we conclude that the origin of (5.14) is globally

asymptotically stable.
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5.3 Numerical results

Figure 5.1: Evolution of the tracking error norm over time.

Defining the error xcl − x∗cl with respect to x∗cl := (Gu∗, u∗, 0), Figure 5.1 shows the

performance of the soft-reset controller (5.4) with Kc = 1/4 and compares it with the

basic controller given by u̇ = −ψ(x, u), where ψ is given by (5.4c) with

φx(x) =
1

2
xTQx+ bTx, (5.18a)

φu(u) = 0.01|u|2, (5.18b)

where Q is randomly generated to have λmin(Q) = 0.05 and a condition number of 103,

and the elements of b are randomly generated, independently uniformly distributed on

[−10, 10]np . Each controller in Figure 5.1 is placed in feedback interconnection with the
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Figure 5.2: Evolution of the tracking error norm over time.

plant (5.1), setting ε = 1,

A =


0 1 0

0 0 1

−48 −44 −12

 , B =


0

0

5/3

 .

The eigenvalues of A are −2, −4, and −6, and thus Assumption 8 is satisfied [61, Thm.

8.2].

Figure 5.2 shows the performance of the soft-reset controller (5.13) with Kc = 1/4

and compares it with the basic controller given by u̇ = −ξ, with np = 5 and with φ

having the same form as (5.18a), where Q and b are randomly generated as described

previously. Each controller in Figure 5.2 is placed in feedback interconnection with the

plant (5.11) with K = 200 and fp(x, u) = u.
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Chapter 6

Concurrent Learning in High-Order
Tuners for Parameter Identification

High-order tuners are algorithms that show promise in achieving greater efficiency than

classic gradient-based algorithms in identifying the parameters of parametric models

and/or in facilitating the progress of a control or optimization algorithm whose adap-

tive behavior relies on such models. For high-order tuners, robust stability properties,

namely uniform global asymptotic (and exponential) stability, currently rely on a persis-

tent excitation (PE) condition. In this work, we establish such stability properties with

a novel analysis based on a Matrosov theorem and then show that the PE requirement

can be relaxed via a concurrent learning technique driven by sampled data points that

are sufficiently rich. We show numerically that concurrent learning may greatly improve

efficiency. We incorporate reset methods that preserve the stability guarantees while

providing additional improvements that may be relevant in applications that demand

highly accurate parameter estimates at relatively low additional cost in computation.

6.1 Introduction

The problem of identifying the parameters in a linear parametric model through the

use of online measurements of input-output data has been studied extensively from the
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standpoint of the continuous-time gradient algorithm, which plays an important role in

adaptive control [62], [63] and has found broad applications in areas such as optimal

nonlinear control [64], extremum seeking [65], and the analysis of machine learning algo-

rithms [66]. The gradient algorithm has been shown to achieve uniform global asymptotic

(and exponential) stability of the desired parameter value, under a condition of persis-

tent excitation which has been shown to be both necessary and sufficient [67]. Here, the

distinction between uniform and non-uniform asymptotic stability has crucial implica-

tions in practice: unlike the non-uniform notion of stability, the uniform notion ensures

robustness, in the sense of achieving “total stability” in the presence of bounded additive

disturbances ([68, Sec. 1B]) which are widely encountered in applications.

Although persistent excitation characterizes uniform asymptotic stability for the gra-

dient algorithm, the incorporation of “concurrent learning” has been shown to enable

uniform asymptotic stability in the absence of persistent excitation [69]. Concurrent

learning involves an augmentation of the gradient, using discretely sampled data mea-

surements that collectively satisfy a condition of “sufficient richness.” Advantageously,

sufficient richness can be characterized in terms of a rank condition on a matrix con-

structed from the data samples, a condition which can be computationally much simpler

to verify in practice than the condition of persistent excitation.

In a separate thread of research, recent studies have shown that filtering the gradient

can improve the performance of the gradient algorithm, sometimes significantly and in

the absence of persistent excitation [70]. Namely, the use of filtering can improve the

convergence rate of the parameter estimate toward the desired parameter value or, in

adaptive control problems, the convergence rate of the tracking error toward zero. The

filtering procedures considered in [70] and [71] give rise to algorithms referred to as high-

order tuners, which take inspiration from algorithms introduced in [72]. In addition

to offering improved performance in continuous-time settings, the recently developed
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high-order tuners serve as a basis for deriving novel discrete-time algorithms for various

problems of estimation and learning with online data, with guarantees of efficiency in

the sense of Nesterov’s method for convex optimization [73] and of robustness in noisy

and adversarial environments [74], [75]. In continuous time, under a persistent excitation

condition, uniform asymptotic stability properties of high-order tuners can be established

using the method of analysis in [76, Sec. 4.6]. However, the use of concurrent learning

in high-order tuners has not yet been explored.

In this work, we establish uniform global asymptotic stability (UGAS) properties of

continuous-time high-order tuners for parameter identification under two different condi-

tions: (1) persistent excitation and (2) concurrent learning with sufficiently rich data. In

Section 6.2, UGAS is established under persistent excitation, using an approach that we

claim to be simpler than that of [76, Sec. 4.6]. Whereas [76] shows uniform convergence

by carefully examining solutions of a differential equation, we instead take advantage of

a Matrosov theorem [77], which can be regarded as an analogue of the LaSalle invari-

ance principle in the context of time-varying systems, with which uniform convergence

is shown by combining infinitesimal conditions on Lyapunov-like functions together with

observability-like conditions. In Section 6.3, we propose implementations of concurrent

learning for high-order tuners in order to preserve UGAS in the absence of persistent

excitation, given sufficiently rich data. We show that the resulting systems admit strict

Lyapunov functions. In Section 6.4, we propose the use of a technique inspired by reset

methods in control and optimization ([26], [40]), which shows promise in improving the

efficiency of high-order tuners that make use of concurrent learning. In Section 6.5, nu-

merical results show that concurrent learning can offer significant improvements in the

convergence rate of high-order tuners for a parameter identification problem involving a

regressor constructed from sinusoids.
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6.2 Uniform global asymptotic stability in

high-order tuners via persistent excitation

Suppose y∗(t) = φT (t)θ∗ for all t ≥ 0, where y∗ : R≥0 → R and φ : R≥0 → Rn are

known functions of time, and we wish to solve for θ∗ ∈ Rn online under the following

assumption.

Assumption 15 The regressor φ(·) is piecewise continuous, bounded, and persistently

exciting. That is, there exist M > 0, T > 0, and δ > 0 such that |φ(t)| ≤ M for all

t ≥ 0, and ∫ t+T

t

φ(s)φT (s)ds ≥ δI ∀t ≥ 0.

As a means of determining θ∗, we follow the algorithmic development of [71], [70,

Ch. 5]. Let θ ∈ Rn, y(t) := φT (t)θ, θ̃ := θ − θ∗, ey(t) := y(t) − y∗ = φT (t)θ̃, and

Lt(θ) := (1/2)θ̃Tφ(t)φT (t)θ̃, so that ∇θLt(θ) = φ(t)ey(t), and consider the following

differential equation in the variable x := (θ, ϑ):

ẋ = f(x, t) :=

 −β(θ − ϑ)Nt

−γ∇θLt(θ)

 , (6.1)

where β ∈ R>0, γ ∈ R>0, and t 7→ Nt are to be selected for the purpose of achieving

desired convergence properties for solutions of (6.1). Choosing Nt to be dependent on

φ(t) will be crucial for establishing stability properties of (6.1). We focus on the case of

Nt := 1 + µφT (t)φ(t) ∀t ≥ 0, µ ∈ R>0, (6.2)

although other choices may be feasible (see [78, Sec. 3] for an example to consider).

Equation (6.1) is referred to as a high-order tuner and is identical to [71, Eq. 6] and [70,
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Eq. 5.6].

Another high-order tuner of interest is given as follows:

ẋ = f(x, t) :=

 −β(θ − ϑ)

− γ

Nt
∇θLt(θ)

 . (6.3)

Equation (6.3) is identical to [71, Eq. 6’] and [70, Eq. 5.6’].

For brevity, the dependence of φ and ey on t will be suppressed hereafter.

Theorem 6 Under Assumption 15, with Nt given by (6.2), if β ≥ 2γ/µ, the point

(θ∗, θ∗) is uniformly globally asymptotically stable for (6.1).

Proof: Recalling that θ̃ = θ − θ∗, let p := ϑ − θ and x̃ := (θ̃, p). We will use

Matrosov’s theorem [77] to establish that the origin is UGAS for the system

˙̃x = f̃(x̃, t) :=

 βNtp

−βNtp− γ∇θLt

(
θ̃ + θ∗

)
 , (6.4)

which will imply that (θ∗, θ∗) is UGAS for (6.1). To begin, consider the Lyapunov function

candidate

V0(x̃) :=
1

γ

∣∣∣θ̃ + p
∣∣∣2 +

1

γ
|p|2. (6.5)

which is radially unbounded, positive definite, and continuously differentiable. For all
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(x̃, t) ∈ R2n × R≥0, we have

〈
∇V0(x̃), f̃(x̃, t)

〉
=

2

γ

[
−
〈
θ̃ + p, γ∇θLt

(
θ̃ + θ∗

)〉
−
〈
p, βNtp+ γ∇θLt

(
θ̃ + θ∗

)〉]

= −2
〈
θ̃,∇θLt

(
θ̃ + θ∗

)〉
− 2βNt

γ
|p|2

− 4
〈
p, ∇θLt

(
θ̃ + θ∗

)〉
.

Substituting ∇θLt

(
θ̃ + θ∗

)
= φφT θ̃ and ey = φT θ̃, followed by Nt = 1 + µφTφ, we have

〈
∇V0(x̃), f̃(x̃, t)

〉
≤ −2 |ey|2 −

2βNt
γ
|p|2 + 4|p||φ||ey|

= −2 |ey|2 −
2β

γ
|p|2 − 2βµ

γ
|φ|2|p|2 + 4|p||φ||ey|.

With β ≥ 2γ/µ, it follows that

〈
∇V0(x̃), f̃(x̃, t)

〉
≤ −2 |ey|2 −

2β

γ
|p|2 − 4|φ|2|p|2 + 4|p||φ||ey|

= −2β

γ
|p|2 − |ey|2 − [|ey| − 2|p||φ|]2

≤ −2β

γ
|p|2 − |ey|2 =: Y0(x̃, ey) ≤ 0, (6.6)

and hence the origin of (6.4) is uniformly globally stable. Next, we establish uniform

global attractivity by building Matrosov functions as follows. Let

V1(x̃, t) := −θ̃T
(∫ ∞

t

exp(t− τ)φ(τ)φT (τ)dτ

)
θ̃, (6.7)
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and note that Assumption 15 implies

V1(x̃, t) ≤ − exp(−T )δθ̃T θ̃ ∀(x̃, t) ∈ R2n × R≥0.

Then, for all (x̃, t) ∈ R2n × R≥0, it holds that

∂V1(x̃, t)

∂t
+
∂V1(x̃, t)

∂x̃
f(x̃, t)

≤ V1(x̃, t) + θ̃TφφT θ̃ + βM2(1 + µM2)|θ̃||p|

= V1(x̃, t) + |ey|2 + βM2(1 + µM2)|θ̃||p|

≤ − exp(−T )δθ̃T θ̃ + |ey|2 + βM2(1 + µM2)|θ̃||p| (6.8)

=: Y1(x̃, ey).

Note that Y0(x̃, ey) = 0 implies p = 0 and ey = 0, which implies

Y1(x̃, ey) = − exp(−T )δθ̃T θ̃ ≤ 0.

Also note that Y0(x̃, ey) = Y1(x̃, ey) = 0 implies p = 0 and θ̃ = 0. Finally, note that V0 is

time-invariant, the maps (x̃, t) 7→ V1(x̃, t) and (x̃, t) 7→ φT (t)θ̃ are each locally bounded in

x̃ uniformly in t, and both Y0 and Y1 are continuous. Thus, the conditions of Matrosov’s

theorem [77] hold, and we conclude that the origin of (6.4) is UGAS.

Theorem 7 Under Assumption 15, with Nt given by (6.2), if β ≥ 2γ/µ, the point

(θ∗, θ∗) is uniformly globally asymptotically stable for (6.3).

Proof: Recalling that θ̃ = θ − θ∗, let p := ϑ − θ and x̃ := (θ̃, p). Reusing notation

from the proof of Theorem 6, we will use Matrosov’s theorem [77] to establish that the
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origin is UGAS for the system

˙̃x = f̃(x̃, t) :=

 βp

−βp− γ

Nt
∇θLt

(
θ̃ + θ∗

)
 , (6.9)

which will imply that (θ∗, θ∗) is UGAS for (6.3). To begin, consider the Lyapunov

function candidate (6.5), which is radially unbounded, positive definite, and continuously

differentiable. Observing that the right-hand side of (6.9) can be obtained by multiplying

the right-hand side of (6.4) by 1/Nt, we have from (6.6) that, for all (x̃, t) ∈ R2n × R≥0

and for β ≥ 2γ/µ,

〈
∇V0(x̃), f̃(x̃, t)

〉
≤ 1

Nt

{
−2β

γ
|p|2 − |ey|2

}
(6.10)

=
1

1 + µφTφ

{
−2β

γ
|p|2 − θ̃TφφT θ̃

}
=: Y0(x̃, φ) ≤ 0,

and hence the origin of (6.9) is uniformly globally stable. Next, we establish uniform

global attractivity by building Matrosov functions as follows. Let V1 be defined as in (6.7)

so that, following the steps leading up to (6.8), we may write, for all (x̃, t) ∈ R2n ×R≥0,

∂V1(x̃, t)

∂t
+
∂V1(x̃, t)

∂x̃
f(x̃, t)

≤ − exp(−T )δθ̃T θ̃ + θ̃TφφT θ̃ + βM2|θ̃||p|

=: Y1(x̃, φ).
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Note that Y0(x̃, φ) = 0 implies p = 0 and φT θ̃ = 0, which implies

Y1(x̃, φ) = − exp(−T )δθ̃T θ̃ ≤ 0.

Also note that Y0(x̃, φ) = Y1(x̃, φ) = 0 implies p = 0 and θ̃ = 0. Finally, note that V0 is

time-invariant, the maps (x̃, t) 7→ V1(x̃, t) and (x̃, t) 7→ φ(t) are each locally bounded in

x̃ uniformly in t, and both Y0 and Y1 are continuous. Thus, the conditions of Matrosov’s

theorem [77] hold, and we conclude that the origin of (6.9) is UGAS.

Theorems 6 and 7 also establish uniform global exponential stability (UGES), due to

linearity of the systems (6.1) and (6.3) and the fact that UGAS is equivalent to UGES

for linear time-varying systems [79, Thm. 58.7].

Our assumptions differ from those of [71] only in regards to the regressor’s properties.

Namely, the analyses previously reported in [71, Thm. 2] and [71, Remark 8] require

that the regressor has a bounded time derivative, whereas our analyses do not require

differentiability of the regressor but instead require that it be persistently exciting. As

a consequence, the previous analyses can establish only that the output error ey := φT θ̃

tends to 0 and not necessarily uniformly, whereas Theorems 6 and 7 establish that the

parameter error θ̃ tends to 0 uniformly.
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6.3 Concurrent learning for high-order tuners

6.3.1 Stability analysis

Let {(φ(tk), y
∗(tk))}Nk=1 be a sequence of recorded data. Define B : Rn × R≥0 → Rn

as

B(θ, µ) :=
N∑
k=1

φ(tk)

1 + µφT (tk)φ(tk)

(
φT (tk)θ − y∗(tk)

)
. (6.11)

In (6.1), we implement concurrent learning (CL) in the sense of, e.g., [69], [80], and [78],

as follows:

ẋ = f(x, t) :=

 −β(θ − ϑ)Nt

−γ (∇θLt(θ) +NtB(θ, µ))

 , (6.12)

where Nt and µ are given by (6.2), and β and γ are positive real numbers. The B-term

involves a factor of Nt for reasons that will become clear in the stability analysis.

In (6.3), we implement CL as follows:

ẋ = f(x, t) :=

 −β(θ − ϑ)

−γ
(

1
Nt
∇θLt(θ) +B(θ, µ)

)
 , (6.13)

where Nt and µ are given by (6.2), and β and γ are positive real numbers.

UGAS properties for (6.12) and (6.13) can be shown if the data satisfies the following

property, which is characterized by the subsequent lemma.

Assumption 16 The regressor data {φ(tk)}Nk=1 is sufficiently rich (SR) in the sense that

the matrix

D := [φ(t1), φ(t2), · · · , φ(tN)] ∈ Rn×N
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has rank n.

Lemma 6.3.1 For a given µ ∈ R≥0, Assumption 16 holds if and only if there exists

δµ ∈ R>0 such that

Pµ :=
N∑
k=1

φ(tk)φ
T (tk)

1 + µφT (tk)φ(tk)
≥ δµIn.

Proof: Let µ ∈ R≥0 be given. First, we show the forward implication. Assuming

that D has rank n, it follows that, for any non-zero x ∈ Rn, there exists k ∈ {1, . . . , N}

such that φT (tk)x 6= 0. (If it were not true, the columns of D would not span Rn.) In

other words, for any non-zero x ∈ Rn, there exists k such that xTφ(tk)φ
T (tk)x > 0. It

follows that, for any non-zero x ∈ Rn, xTPµx > 0, and hence there exists δµ ∈ R>0 (which

generally depends on µ) such that xTPµx ≥ δµ. Next, we show the reverse implication.

Assuming that there exists δµ ∈ R>0 such that Pµ ≥ δµIn, it follows that, for any non-

zero x ∈ Rn, there exists k ∈ {1, . . . , N} such that xTφ(tk)φ
T (tk)x > 0. That is, there

exists k such that φT (tk)x 6= 0. Then, because x is an arbitrary non-zero vector in Rn, it

follows that there are n linearly independent columns of D.

Theorem 8 Under Assumption 16, if β ≥ 2γ/µ, the point (θ∗, θ∗) is UGAS for (6.12).

Proof: Let θ̃ := θ − θ∗, p := ϑ − θ, and x̃ := (θ̃, p). Due to the fact that y∗ (tk) =

φT (tk)θ
∗, we have that B(θ, µ) = Pµθ̃, and (reusing notation from previous proofs) (6.12)

can be written as

˙̃x = f̃(x̃, t) :=

 βNtp

−βNtp− γ
(
∇θLt(θ̃ + θ∗) +NtPµθ̃

)
 . (6.14)

To show that (θ∗, θ∗) is UGAS for (6.12), it suffices to show that the origin of (6.14) is
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UGAS. Consider the Lyapunov function candidate

V (x̃) :=
1

γ

∣∣∣θ̃ + p
∣∣∣2 +

1

γ
|p|2 +

2

β
θ̃TPµθ̃, (6.15)

which is radially unbounded, positive definite, and continuously differentiable. Following

steps similar to those leading up to (6.6), it can be shown that, for all (x̃, t) ∈ R2n×R≥0

and for β ≥ 2γ/µ,

〈
∇V (x̃), f̃(x̃, t)

〉
≤ −2γ

β
|p|2 − |ey|2 − 2Nt

〈
θ̃, Pµθ̃

〉
− 4Nt

〈
p, Pµθ̃

〉
+Nt

〈
4

β
Pµθ̃, βp

〉
≤ −2Ntθ̃TPµθ̃ −

2β

γ
|p|2 (6.16)

≤ −2θ̃TPµθ̃ −
2β

γ
|p|2 =: Y (x̃).

Due to Lemma 6.3.1, Y is negative definite. Hence, V is a Lyapunov function for (6.14),

and the origin of (6.14) is UGAS.

Theorem 9 Under Assumption 16, with Nt given by (6.2), if β ≥ 2γ/µ, the point

(θ∗, θ∗) is UGAS for (6.13).

Proof: Let θ̃ := θ − θ∗, p := ϑ − θ, and x̃ := (θ̃, p). Due to the fact that y∗ (tk) =

φT (tk)θ
∗, we have that B(θ, µ) = Pµθ̃ for any µ ∈ R≥0, and (reusing notation from

previous proofs) (6.13) can be written as

˙̃x = f̃(x̃, t) :=

 βp

−βp− γ
(

1
Nt
∇θLt(θ̃ + θ∗) + Pµθ̃

)
 . (6.17)
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To show that (θ∗, θ∗) is UGAS for (6.13), it suffices to show that the origin of (6.17) is

UGAS. Consider the Lyapunov function candidate (6.15), which is radially unbounded,

positive definite, and continuously differentiable. Observing that the right-hand side of

(6.17) can be obtained by multiplying the right-hand side of (6.14) by 1/Nt, we have

from (6.16) that, for all (x̃, t) ∈ R2n × R≥0 and for β ≥ 2γ/µ,

〈
∇V (x̃), f̃(x̃, t)

〉
≤ −2θ̃TPµθ̃ −

2β

γNt
|p|2

≤ −2θ̃TPµθ̃ −
2β

γ(1 + µM2)
|p|2 =: Y (x̃).

Due to Lemma 6.3.1, Y is negative definite. Hence, V is a Lyapunov function for (6.17),

and the origin of (6.17) is UGAS.

One benefit of the CL feature is that it can be implemented using only the sampled

data, mitigating the practical costs that may be incurred by continuously collecting data

online. For example, the following system can be interpreted as a novel high-order tuner

which does not require continuous online measurement of φ(t) and y(t):

ẋ = f(x, t) :=

 −β(θ − ϑ)

−γB(θ, µ)

 . (6.18)

In this case, an additional advantage is that the UGAS property can be established under

no restriction on the relative magnitudes of β, γ, and µ.

Theorem 10 Under Assumption 16, for any positive β and γ, and for any nonnegative

µ, the point (θ∗, θ∗) is UGAS for (6.18).

Proof: Let θ̃ := θ − θ∗, p := ϑ − θ, and x̃ := (θ̃, p). Due to the fact that y∗ (tk) =

φT (tk)θ
∗, we have that B(θ, µ) = Pµθ̃ for any µ ∈ R≥0, and (reusing notation from
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previous proofs) (6.18) can be written as

˙̃x = f̃(x̃, t) :=

 βp

−βp− γPµθ̃

 . (6.19)

To show that (θ∗, θ∗) is UGAS for (6.18), it suffices to show that the origin of (6.19) is

UGAS. Consider the Lyapunov function candidate

V (x̃) :=
1

2
|θ̃ + p|2 +

1

2
|p|2 +

γ

β
θ̃TPµθ̃,

which is radially unbounded, positive definite, and continuously differentiable. For all

x̃ ∈ R2n, we have

〈
∇V (x̃), f̃(x̃, t)

〉
=

〈
θ̃ + p+

2γ

β
Pµθ̃, βp

〉
− 〈θ̃ + 2p, βp+ γPµθ̃〉

= 〈p, 2γPµθ̃〉 − γθ̃TPµθ̃ − β|p|2 − 〈2p, γPµθ̃〉

= −γθ̃TPµθ̃ − β|p|2 =: Y (x̃).

Due to Lemma 6.3.1, Y is negative definite. Hence, V is a Lyapunov function for (6.19),

and the origin of (6.19) is UGAS.

As remarked in Section 6.2, UGAS is equivalent to UGES for linear time-varying

systems, and therefore Theorems 8, 9, and 10 also establish UGES, due to linearity of

the systems (6.12), (6.13), and (6.18).
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6.3.2 Online implementation

Standard analyses of stability and convergence for CL methods assume the availability

of recorded (offline) data that satisfies a rank condition similar to Assumption 16 [81],

[69], and the same assumption is made in Theorems 6-10. In the absence of such data,

CL can be implemented via online criteria that aim to ensure that the rank condition

is satisfied after executing the algorithm for some period of time. When evaluating the

performance of high-order tuners in Section 6.5, the simple online criterion of [82, Sec.

IV] is considered. Namely, the number of recorded data points at time t is denoted

N(t), and a new data point is added to the data set {(φ(tk), y
∗(tk))}N(t)

k=1 at time t if the

following condition is satisfied for some user-specified parameter ε ∈ R>0:

|φ(t)− φ(tN(t))|2

|φ(t)|
≥ ε. (6.20)

The data set is initialized as {(φ(t1), y
∗(t1))} with t1 = 0 and N(0) = 1. The condition

(6.20) is evaluated until N(t) reaches a user-specified maximum, an integer N ≥ n.

Equation (6.11) is implemented in a time-dependent fashion, i.e., with N replaced by

N(t), and it becomes time-independent after N(t) reaches N .

For this online implementation of CL, the stability analysis is beyond the scope of

the current work and, to our knowledge, has not been pursued in previous studies of

CL methods. Previous studies of online implementations have focused not on stability

analysis of the resulting dynamics but on showing that, in certain circumstances, an online

criterion ensures that a rank-condition is satisfied in finite time or that the convergence

rate of the resulting dynamics is maximized after a rank-condition has been met [82].
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6.4 Soft-reset methods for high-order tuners

For applications that demand high efficiency and precision, we explore the possibility

that resetting the state ϑ − θ to zero under certain conditions can benefit performance,

motivated by works such as [26] and [40]. Defining f as in (6.12), we incorporate resets

in (6.12) via a soft-reset approach, similar to ideas proposed in [40] and [28], resulting in

a differential inclusion given by

ϕ(x, t) := 〈ϑ− θ, ∇θLt (θ)〉 , (6.21a)

ẋ ∈ f(x, t) + βr

(
SGN(ϕ(x, t)) + 1

) −(θ − ϑ)Nt

0

 , (6.21b)

where βr ∈ R>0. The mapping ‘SGN’ is the set-valued sign mapping, i.e., SGN(s) is

equal to s/|s| when s 6= 0 and SGN(0) = [−1, 1]. Consequently, when ϕ(x, t) < 0, (6.21)

behaves like (6.12). On the other hand, when ϕ(x, t) > 0, the reset behavior becomes

active, causing (6.21) to behave like (6.21) but with β increased to a value of β + 2βr.

Based on these observations, a UGAS result for (6.21) can be obtained under the same

conditions of Theorem 8, following similar steps in the proof and making use of Lyapunov

conditions for differential inclusions.

Defining f as in (6.13), soft resets are implemented in (6.13) according to the following

differential inclusion:

ϕ(x, t) :=

〈
ϑ− θ, 1

Nt
∇θLt (θ)

〉
, (6.22a)

ẋ ∈ f(x, t) + βr

(
SGN(ϕ(x, t)) + 1

) −(θ − ϑ)

0

 , (6.22b)

with βr ∈ R>0. A UGAS result for (6.22) can be obtained using similar observations as
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those made above for (6.21), following similar steps as in the proof of Theorem 9 and

making use of Lyapunov conditions for differential inclusions.

In contrast with the soft-reset approach, the authors of [78] have studied various

hard-reset approaches in high-order algorithms for parameter identification.

6.5 Numerical results

Figure 6.1: Evolution of the parameter error norm over time, for the algorithms having
an unnormalized gradient term.

Figure 6.1 compares the efficiency of the basic gradient method given by

θ̇ = −∇θLt(θ) (6.23)

and of the high-order tuner given by (6.1), along with their respective CL counterparts
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given by

θ̇ = −γ (∇θLt(θ) +B(θ, 0)) (6.24)

and equation (6.12), using the online implementation described in Section 6.3.2 with

ε = 1 and N = 10. The soft-reset system is given by (6.21). Following [70, Sec. 5.7.1],

we set φ(t) = [1, 1 + 3 sin(t), 1 + 3 cos(t)]T for all t ≥ 0 and randomly initialize the value

of θ. We initialize ϑ at the same value as θ. For all algorithms, γ = 0.1, and µ = 0.2.

For all high-order tuners, we set β = 1 to satisfy the requirements of Theorems 6 and

8. These parameter values are intended to match those chosen in [70, Sec. 5.7]. For the

soft-reset system, βr = 4. All systems are implemented by Euler discretization with a

stepsize of 10−3.

Figure 6.2: Evolution of the parameter error norm over time, for the algorithms having
a normalized gradient term.

Under the same conditions as in Figure 6.1, Figure 6.2 compares the efficiency of the
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basic normalized gradient method given by

θ̇ = − γ

Nt
∇θLt(θ) (6.25)

and of the high-order tuner given by (6.3), along with their respective CL counterparts

given by

θ̇ = −γ
(

1

Nt
∇θLt(θ) +B(θ, µ)

)
(6.26)

and equation (6.13). To satisfy the requirements of Theorems 7 and 9, the values of β,

γ, µ, and βr are chosen to be the same as in the experiment shown by Figure 6.1.
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Chapter 7

Hybrid Heavy-Ball Systems: Reset
Methods for Optimization with
Uncertainty

Momentum methods for convex optimization often rely on precise choices of algorithmic

parameters, based on knowledge of problem parameters, in order to achieve fast conver-

gence, as well as to prevent oscillations that could severely restrict applications of these

algorithms to cyber-physical systems. To address these issues, we propose two dynamical

systems, named the Hybrid Heavy-Ball System and Hybrid-inspired Heavy-Ball System,

which employ a feedback mechanism for driving the momentum state toward zero when-

ever it points in undesired directions. We describe the relationship between the proposed

systems and their discrete-time counterparts, deriving conditions based on linear matrix

inequalities for ensuring exponential rates in both continuous time and discrete time.

We provide numerical LMI results to illustrate the effects of our reset mechanisms on

convergence rates in a setting that simulates uncertainty of problem parameters. Finally,

we numerically demonstrate the efficiency and avoidance of oscillations of the proposed

systems when solving both strongly convex and non-strongly convex problems.
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7.1 Introduction

Convex optimization problems are becoming increasingly challenging as they find

broader applications in cyber-physical systems, where they often bring stringent require-

ments on the efficiency and robustness of the algorithms that are used to solve them. In

theory and in practice, the efficient convergence of iterative algorithms for convex opti-

mization can be achieved through the use of momentum, as in the sense of Nesterov’s

method [83, Ch. 2]. In particular, for certain strongly convex problems, one theoreti-

cally significant aspect of Nesterov’s method is that it achieves an efficient degradation

of its convergence rate as the conditioning of the problem tends to infinity [84, Sec. 4.5].

However, in order to maintain such a property, the algorithmic parameters, namely the

stepsize and momentum parameter, must be selected according to a specific formula de-

pendent on the problem parameters. When such parameters are unavailable, Nesterov’s

method, as well as other momentum methods, not only lose their theoretical guaran-

tees of efficiency but also suffer from oscillations in their trajectories that hinder their

convergence in practice [85]. Moreover, such oscillations can make momentum methods

unreliable for applications in feedback-based optimization [54] [57], where the algorithm

is used in feedback interconnection with a physical system and can thereby jeopardize

the safety of that system when experiencing oscillations.

Oscillations in momentum methods have been addressed with reset mechanisms [86]

[87] [88], many of which involve scheduling the times at which the resets occur with-

out using any feedback information about the state of the algorithm but instead by

using knowledge or estimates of certain problem parameters, which are often uncertain

or entirely unknown in practice. In contrast, the adaptive reset mechanisms of [85] offer

conditions that can be computed straightforwardly at each iteration using state informa-

tion to determine the instants of reset. Although the theoretical guarantees of efficiency
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under the adaptive mechanism of [85] are difficult to extend beyond quadratic objectives,

the proposed reset conditions raise analogies with reset systems in control theory, espe-

cially those that have benefited from the use of hybrid systems theory [15], suggesting

opportunities to analyze and design novel optimization algorithms with resets within a

hybrid systems framework, as done in [89].

Our work builds on the themes of [89] and [15] in order to determine whether or not

(and to what extent) a feedback-based reset mechanism can either improve or degrade

the efficiency and robustness to uncertainty of momentum methods. First, we introduce

a hybrid dynamical system, referred to as the Hybrid Heavy-Ball Method (HHBM), that

incorporates momentum in its flows and uses an adaptive mechanism to reset the mo-

mentum to zero whenever it points away from the negative gradient of the objective

function. We also introduce a differential inclusion, referred to as the Hybrid-inspired

Heavy-Ball Method (HiHBM), that uses a similar mechanism to adjust the amount of

damping of the momentum. These two systems serve as vehicles for investigating the

effects of reset mechanisms in existing momentum methods and for deriving novel mo-

mentum methods that are useful for their robustness to uncertainty. Toward these goals,

we first derive linear matrix inequality (LMI) conditions for HHBM to achieve exponen-

tial convergence in the continuous-time sense for the case of strongly convex quadratic

objectives, in order to relate our proposed ideas to an existing result on linear reset sys-

tems [90]. Using insights gained from the proof, we formulate analogous LMI conditions,

assuming only strong convexity, for a general class of discrete-time systems whose special

cases include discretizations of HHBM, HiHBM, and several other dynamical systems

of interest in optimization, including the Hybrid Hamiltonian Algorithm of [89]. Our

discrete-time analysis generalizes known LMI conditions in the literature on momentum

methods, extending prior results from time-invariant systems to systems that feature

switching behaviors based on state-feedback information.

87



Hybrid Heavy-Ball Systems: Reset Methods for Optimization with Uncertainty Chapter 7

We show numerically that our LMI conditions can be used to compute feasible expo-

nential rates for the proposed family of discrete-time systems, revealing that the proposed

reset laws derived from HHBM and HiHBM can mitigate the deterioration of rates caused

by uncertainty about problem parameters. The computations suggest that the reset laws

do not quite preserve the rate guarantees of Nesterov’s method when assuming perfect

knowledge of problem parameters; on the other hand, we demonstrate that the discrete-

time analogues of HHBM and HiHBM show promise in achieving fast convergence and

reduction of oscillations without requiring precise tuning of algorithmic parameters, in

contrast to Nesterov’s method. Finally, we compare the performance of the considered

methods for a non-strongly convex objective to show that our proposed algorithms ex-

hibit similar advantages over existing methods as in the strongly convex case, even when

existing methods are tuned extensively by experiment.

7.2 Modeling heavy-ball systems with resets

Consider the problem

min
q∈Rn

φ(q) (7.1)

under the following assumption:

Assumption 17 The objective φ : Rn → R

1. attains φ∗ := minq∈Rn φ(q) > −∞,

2. is continuously differentiable,

3. has compact sublevel sets,
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4. has an L-Lipschitz1 gradient ∇φ,

5. is invex [29], i.e., satisfies

Q∗ := {q ∈ Rn : φ(q) = φ∗} = {q ∈ Rn : ∇φ(q) = 0}.

For the purpose of computing a solution to (7.1), we propose algorithms that are

extensions of the following system, referred to as a heavy-ball system with parameter

K ∈ R>0, denoted HB(K) and with state denoted x := (q, p):

ẋ =

 p

−Kp−∇φ(q)

 . (7.2)

We propose the Hybrid Heavy-Ball Method (HHBM) with parameter K ∈ R>0,

denoted HHB(K), which is a hybrid system [10, Ch. 2] with state z := (x, τ), with

x := (q, p), with flow map and jump map

ẋ = f0(x) :=

 p

−Kp−∇φ(q)

 , τ̇ = 1,

x+ = g0(x) :=

 q

0

 , τ+ = 0,

(7.3a)

with flow set F given by

F0 := {(q, p) ∈ R2n : 〈∇φ(q), p〉 ≤ 0},

F :=
(
R2n × [0, T ]

)
∪ (F0 × [T ,∞)) , T ∈ R>0, (7.3b)

1A function is said to be L-Lipschitz if it is Lipschitz continuous with Lipschitz constant L.
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and jump set J given by

J0 := {(q, p) ∈ R2n : 〈∇φ(q), p〉 ≥ 0},

J := J0 × [T ,∞). (7.3c)

The parameter T provides temporal regularization in the sense of [90] to avoid purely

discrete-time solutions. Without the regularization, the fact that F0 ∩ J0 6= ∅ would

allow for solutions [10, Def 2.6] that jump indefinitely. Note that, for sufficiently small

T , the special case HHB(0) is closely related to the Hybrid Hamiltonian Algorithm [89].

We also propose a differential inclusion referred to as the Hybrid-inspired Heavy-

Ball Method (HiHBM) with parameters {K,K} ∈ R2 satisfying 0 < K ≤ K, denoted

HiHB(K, K), with state x := (q, p) and dynamics given by

ẋ ∈ F (x) :=

 p

−κ(x)p−∇φ(q)

 , (7.4a)

κ(x) := κ(x;K,K)

:=


K if 〈∇φ(q), p〉 > 0,

K if 〈∇φ(q), p〉 < 0,[
K,K

]
if 〈∇φ(q), p〉 = 0.

(7.4b)

For any K ∈ R>0, HiHB(K, K) is equivalent to HB(K).

Under Assumption (17), it can be shown that Q∗ is uniformly globally asymptotically

stable [10, Def. 3.6] for the system (7.3), with the proof being similar to that of [89, Thm.

1]. An analogous result can be obtained for (7.4). However, we focus here on studying

exponential rates of convergence.
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7.3 Continuous-time exponential rates

A differentiable function φ is said to be µ-strongly convex if, for some µ ∈ R>0, it

holds that, for all x, y ∈ Rn,

φ(y) ≥ φ(x) +∇φ(x)T (y − x) +
µ

2
|y − x|2.

We use the following property of strongly convex functions with Lipschitz gradient, which

is established in [91, Eq. 3.27] as a special case of [84, Lemma 6].

Lemma 7.3.1 Let φ : Rn 7→ R be µ-strongly convex with L-Lipschitz gradient. Defining

Mµ,L :=

 − µL
µ+L

In
1
2
In

1
2
In − 1

µ+L
In

 , (7.5)

it holds that, for all v, w ∈ Rn,

 v − w

∇φ(v)−∇φ(w)


T

Mµ,L

 v − w

∇φ(v)−∇φ(w)

 ≥ 0. (7.6)

We now establish a result regarding exponential convergence of HHBM.

Theorem 11 For K ∈ R>0, let

A :=

 0 In

0 −KIn

 , AR :=

 In 0

0 0

 ,

B :=

 0

−In

 , C :=

 In

0


T

.

(7.7)

Consider a µ-strongly convex quadratic function φ satisfying Assumption (17) with unique
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global minimum denoted q∗, and let x∗ := (q∗, 0). Defining Mµ,L by (7.5), suppose that

there exist α, ε, σφ, σ1, σ2 ∈ R>0 and a positive definite P ∈ R2n×2n such that the matrices

MF :=

 PA+ ATP + 2αP PB

BTP 0

 ,
MJ :=

 ATRPAR − P 0

0 0

 ,
Mφ :=

 CT 0

0 In

Mµ,L

 C 0

0 In

 , (7.8)

Mε :=


εIn 0 0

0 εIn −1
2
In

0 −1
2
In 0

 , M0 := M(ε=0)

satisfy

MF + σφMφ + σ1Mε ≤ 0, (7.9a)

MJ − σ2M0 ≤ 0. (7.9b)

Then, there exist T ∗, c ∈ R>0 such that, for all T ∈ (0, T ∗), the solutions of HHB(K)

satisfy

|x(t, j)− x∗| ≤ c|x0 − x∗| exp

(
− α

cond(P )
t

)
(7.10)

for each initial condition x(0, 0) := x0 ∈ F ∪ J and for all (t, j) ∈ dom x. Here,

cond(P ) := λmax(P )/λmin(P ), where λmax(P ) and λmin(P ) denote the largest and smallest

eigenvalues of P , respectively.
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Proof: Define

x̃ := x− x∗, q̃ := q − q∗,

e := (x̃, u), u := ∇φ(q).

We aim to apply [90, Thm. 2] to the system whose state is x̃. To do so, we first observe

that, under the given assumptions on φ, there exists a positive definite matrix Q̃ such

that ∇φ(q) = Q̃(q − q∗) = Q̃q̃, so that the flow map and jump map for the system with

state x̃ can be written as

Ã :=

 0 In

−Q̃ −KIn

 , (7.11a)

f̃0(x̃) = Ãx̃, (7.11b)

g̃0(x̃) = ARx̃, (7.11c)

with AR given by (7.7). Then, letting φ̃(q̃) := (1/2)
∣∣∣Q̃1/2q̃

∣∣∣2, the flow set (7.3b) and jump

set (7.3c) can be expressed in terms of x̃ := (q̃, p) by observing that (q, p) = (q̃ + q∗, p)

and that

∇q̃φ̃(q̃) = ∇qφ(q), ∀q ∈ Rn. (7.12)

For brevity, we omit the subscript of ∇ herein.

First, note that [90, Assumption 1] holds because g0 in (7.11c) satisfies g0(x̃) = ARx̃ ∈

F . To satisfy the condition [90, Eq. 20], take V (x̃) := x̃TPx̃. Then, to show that [90,

Eq. 22] is satisfied, multiply (7.9b) by eT and e on the left and right, respectively, and
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observe that

eTM0e = −pT∇φ(q) ≤ 0, ∀(q, p) ∈ J .

Then, (7.12) ensures that [90, Eq. 22] holds for all points in the jump set of the system

whose state is x̃.

Next, to show that [90, Eq. 21] is satisfied, define

Fε := {(q̃, p) ∈ R2n : pT∇φ̃(q̃)− ε
(
|q̃|2 + |p|2

)
≤ 0}. (7.13)

Then, multiply (7.9) by eT and e on the left and right, respectively. From (7.12), we

have the inequality

eTMεe = −pT∇φ̃(q̃) + ε|x̃|2 ≥ 0, ∀x̃ ∈ Fε,

which implies that

eT (MF + σφMφ) e ≤ 0, ∀x̃ ∈ Fε.

Then, observe that eTMφe is equal to the left-hand side of (7.6) when v = q and w = q∗.

Hence, Lemma 7.3.1 can be applied to obtain eTMφe ≥ 0. It follows from the previous

inequality that

eTMFe ≤ 0, ∀x̃ ∈ Fε.
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Expanding the left-hand side yields

∂V

∂x̃
Ãx̃ ≤ −2αV (x̃) ≤ −2αλmin(P )|x̃|2, ∀x̃ ∈ Fε.

Furthermore, the condition [90, Eq. 20] is satisfied according to V (x̃) ≤ λmax(P )|x̃|2.

Thus, letting a2 := λmax(P ) and a3 := 2αλmin(P ), [90, Thm. 2.1] ensures that there

exists T ∗ ∈ R>0 such that, for all T ∈ (0, T ∗) and for all x0 ∈ F ∪ J , the solutions x

of HHB(K) are such that x̃ converges to zero with an exponential rate of a3/(2a2) =

2αλmin(P )/(2λmax(P )) = α/cond(P ).

The role of Mε in Theorem 11 motivates the results of the next section, where we

take advantage of a similar approach in order to arrive at LMI conditions that are more

numerically tractable and interpretable than (7.9). See 7.5.1 for more discussion on the

feasibility of (7.9).

7.4 Discrete-time exponential rates

7.4.1 Discrete-time dynamic equations

Throughout this section, we assume that φ is a µ-strongly convex function satisfying

Assumption 17. For certain choices of β, the following system, with state x := (q, p)

and parameter ε ∈ R>0, can be viewed as a discretization of the systems studied in the

previous sections:

qk+1 = qk + εpk+1,

pk+1 = β(xk)pk − ε∇φ(qk).

(7.14)
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Setting β ≡ 1−εK, the system (7.14) is a discretization of HB(K) defined in (7.2), which

we refer to as Polyak’s method. On the other hand, defining β to be

β(xk) := β(xk; β, β)

:=


β := 1− εK if 〈∇φ(qk), pk〉 < 0,

β := 1− εK if 〈∇φ(qk), pk〉 ≥ 0,

(7.15)

(7.14) is a discretization of HiHB(K, K) and is referred to as HiHB-Pol with parameters

0 ≤ β ≤ β ≤ 1. For the case of β = 0 and β = 1 − εK in (7.15), the resulting system

in (7.14) is a discretization of HHB(K) and is referred to as HHB-Pol with parameter β.

Thus, HHB-Pol is a special case of HiHB-Pol.

Note that, when discretizing HHB(K), there is no need to account for τ and T . To see

why, consider the case of β = 0 and β = 1−εK in (7.15), and observe that, for any k such

that ∇φ(qk) 6= 0, and for sufficiently small ε, 〈∇φ(qk+1), pk+1〉 = −ε∇φ(qk)
T∇φ(qk+1) '

−ε|∇φ(qk)| < 0. Thus, β(xk) = β implies that β(xk+1) = β. In other words, assuming

sufficiently small ε, whenever xk reaches a “jump” state, it immediately returns to a “flow”

state and remains in “flow” states for some iterations thereafter. In this sense, HHB-Pol

naturally models the temporally regularized system HHB(K) by having trajectories in

which each “jump” is followed by a period of “flow”.

Remark 7.4.1 The form (7.14) has been referred to as a two-step or multi-step dis-

cretization [92], which is related to symplectic integration [93]. From this viewpoint,

other systems of interest in optimization can be obtained from (7.14). Setting β = 0 and

β = 1 in (7.15), (7.14) becomes a discretization of the Hybrid Hamiltonian Algorithm

of [89]. Setting β ≡ 1, (7.14) is a symplectic integration of Hamiltonian flow, i.e., the

left-hand variant of [93, Thm. 3.3]. Related systems are found in [92, Eq. 26] and [94,

Sec. 2].
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The results of the next section will be applicable to two different discretizations of

HHBM, one based on Polyak’s method and another based on Nesterov’s method [83],

which we now describe. These two discretizations will also be possible for HiHBM. First,

the system (7.14) can be rewritten to resemble Polyak’s method in [95]:

qk+1 = qk + ε [β(xk)pk − ε∇φ(qk)] , (7.16a)

pk+1 =
qk+1 − qk

ε
. (7.16b)

We have already described above how special cases of this system correspond to dis-

cretizations of HHBM and HiHBM.

Next, note that, for strongly convex objectives, the continuous-time limit of Polyak’s

method is the same differential equation as the continuous-time limit of Nesterov’s

method [96]. Hence, we also consider the following system to be a discretization of

our proposed hybrid and hybrid-inspired systems:

qk+1 = qk + ε [β(xk)pk − ε∇φ(qk + εβ(xk)pk)] , (7.17a)

pk+1 =
qk+1 − qk

ε
. (7.17b)

For the case β ≡ 1− εK, we simply refer to (7.17) as Nesterov’s method with parameter

K ∈ R>0. On the other hand, defining β as in (7.15), the system (7.17) is a discretization

of HiHBM and is referred to as HiHB-Nes. Then, for the special case of β = 0 and

β = 1 − εK in (7.15), the system (7.17) is a discretization of HHBM, referred to as

HHB-Nes.

In subsequent sections, it will be convenient to define the stepsize parameter h := ε2,

which appears as the coefficient of the gradient in the above discrete-time systems.
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7.4.2 LMI conditions

Toward the goal of deriving LMI conditions for exponential convergence, consider the

system

xk+1 = Âxk + B̂uk, yk = Ĉxk, (7.18a)

uk = ∇φ(yk), ξk = Êxk, (7.18b)

having a fixed point (x∗, u∗, y∗, ξ∗) that satisfies ξ∗ = q∗ := arg minq∈Rn φ(q) and

x∗ = Âx∗ + B̂u∗, y∗ := Ĉx∗,

u∗ := ∇φ(y∗), ξ∗ = Êx∗.

We now begin rewriting (7.16a) and (7.17a) in the form (7.18). For the system

(7.16a), we define a set of system matrices in (7.18) for each case of the switching law

(7.15). Specifically, we set xk = (qk−1, qk) and, letting h := ε2, we have

Â =

 0 In

−βIn (β + 1)In

 , B̂ =

 0

−hIn

 ,

Ĉ =

 0

In


T

, Ê =

 0

In


T

.

(7.20)

Then, define (ÂR, B̂R, ĈR, ÊR) in the same way but with β replaced by β. (In this case,

B̂ = B̂R, Ĉ = ĈR, and Ê = ÊR.) The subscript R indicates that these matrices represent

the iterations that correspond to the (continuous-time) instants at which HHBM “resets”

its p-state.
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For the system (7.17a), define

(Â, B̂, Ê) as in (7.20), Ĉ =

 −βIn

(β + 1)In


T

. (7.21)

Then, define (ÂR, B̂R, ĈR, ÊR) in the same way but with β replaced by β. (In this case,

B̂ = B̂R, and Ê = ÊR.)

For convenience, we use the following notation to distinguish between the “non-reset”

and “reset” regions in the state-space of our proposed systems:

S ={x = (x1, x2) ∈ R2n :

〈∇φ(Ĉx), x2 − x1〉 < 0}, (7.22a)

SR ={x = (x1, x2) ∈ R2n :

〈∇φ(Ĉx), x2 − x1〉 ≥ 0}. (7.22b)

These sets reflect the switching law (7.15) but with pk scaled by ε (which does not change

the nature of the law because ε > 0). Then, combining the system matrices of (7.20)

or (7.21) with (7.18), we have a representation that can capture either system (7.16) or
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system (7.17), respectively, making both systems amenable to our LMI-based analysis:

xk ∈ S =⇒



xk+1 = Âxk + B̂uk,

yk = Ĉxk,

uk = ∇φ(yk),

ξk = Êxk,

(7.23a)

xk ∈ SR =⇒



xk+1 = ÂRxk + B̂Ruk,

yk = ĈRxk,

uk = ∇φ(yk),

ξk = ÊRxk.

(7.23b)

We now have the ingredients to establish the following.

Theorem 12 Let φ be a µ-strongly convex function satisfying Assumption 17 with min-

imizer denoted q∗. With system matrices (Â, B̂, Ĉ, Ê) given by either (7.20) or (7.21),

define the matrices

MP :=

 ÂTPÂ− ρ2P ÂTPB̂

B̂TPÂ B̂TPB̂

 ,
Σ1 :=

 ÊÂ− Ĉ ÊB̂

0 In

 , Σ2 :=

 Ĉ − Ê 0

0 In

 ,
N1 := ΣT

1

 L
2
In

1
2
In

1
2
In 0

Σ1,

N2 := ΣT
2

 −µ
2
In

1
2
In

1
2
In 0

Σ2,
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N3 :=

 Ĉ 0

0 In


T  −µ

2
In

1
2
In

1
2
In 0


 Ĉ 0

0 In

 ,
M1 := N1 +N2, M2 := N1 +N3,

M3 = Mφ as defined by (7.8),

M :=


0 0 1

2
In

0 0 −1
2
In

1
2
In −1

2
In 0

 . (7.24)

Define (MP,R,M1,R,M2,R,M3,R) in the same way except with system matrices

(ÂR, B̂R, ĈR, ÊR). Suppose that there exist a, λ, λR, σ, σR ∈ R>0, ρ ∈ (0, 1], and a positive

definite P ∈ R2n×2n such that

MP + aρ2M1 + a(1− ρ2)M2

+ λM3 + σM ≤ 0, (7.25a)

MP,R + aρ2M1,R + a(1− ρ2)M2,R

+ λRM3,R − σRM ≤ 0. (7.25b)

Then, for each initial condition x0 ∈ R2n, there exists c ∈ R>0 such that the trajectory of

(7.18) satisfies

φ(ξk)− φ(ξ∗) ≤ cρ2k

for all k ∈ Z≥0. In particular,

c =
1

a

(
a(φ(ξ0)− φ∗) + (x0 − x∗)TP (x0 − x∗)

)
.
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Proof: With ξ := Êx, we will show that the function Vk given by

Pk := ρ−2kP, ak := aρ−2k,

Vk(x) := ρ−2k
(
a(φ(ξ)− φ∗) + (x− x∗)TP (x− x∗)

) (7.26)

satisfies

Vk+1(xk+1) ≤ Vk(xk), (7.27)

for every iteration k of (7.23), from which it follows that

ak(φ(ξk)− φ∗) ≤ Vk(xk) ≤ V0(x0),

and therefore,

φ(ξk)− φ∗ ≤
(
V0(x0)

a

)
ρ2k.

First, with u defined by (7.18) and letting

ek := [xk − x∗ uk − u∗]T , (7.28)

we note that M in (7.24) satisfies

eTkMek ≥ 0, ∀k s.t. xk ∈ S, (7.29a)

eTkMek ≤ 0, ∀k s.t. xk ∈ SR. (7.29b)

Now, consider any k such that xk ∈ S. Multiply (7.25a) by eTk and ek on the left and
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right, respectively. Then, observe that (7.29a) implies

σeTkMek ≥ 0, (7.30)

while Lemma 7.3.1 implies

λeTkM3ek ≥ 0, (7.31)

and therefore,

eTk
(
MP + aρ2M1 + a(1− ρ2)M2

)
ek ≤ 0. (7.32)

Letting

MPk
:=

 ÂTPk+1Â− Pk ÂTPk+1B̂

B̂TPk+1Â B̂TPk+1B̂

 ,
multiply the previous inequality by ρ−2k−2 to obtain

eTk (MPk
+ akM1 + (ak+1 − ak)M2) ek ≤ 0. (7.33)

We will use (7.33) momentarily.

Next, from [91, Lemma 4.1], we have

φ(ξk+1)− φ(ξk) ≤ eTkM1ek, (7.34)

φ(ξk+1)− φ∗ ≤ eTkM2ek. (7.35)

Multiply (7.34) by ak, multiply (7.35) by (ak+1−ak), and then add the resulting inequal-
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ities to obtain

ak+1(φ(ξk+1)− φ∗)− ak(φ(ξk)− φ∗)

≤ eTk (akM1 + (ak+1 − ak)M2) ek. (7.36)

Combine this inequality with the fact that

eTkMPk
ek = (xk+1 − x∗)TPk+1(xk+1 − x∗)

− (xk − x∗)TPk(xk − x∗)

to obtain

Vk+1(xk+1)− Vk(xk)

≤ eTk (MPk
+ akM1 + (ak+1 − ak)M2) ek. (7.37)

Combining this inequality with (7.33), we have shown that (7.27) holds for all k such

that xk ∈ S.

Finally, for any k such that xk ∈ SR, we may show (7.27) using the same steps above,

replacing (MP ,M1,M2,M3) with (MP,R,M1,R,M2,R,M3,R) and replacing (7.30) with

−σReTkMek ≥ 0,

which follows from (7.29b). Because S ∪ SR = R2n, we have shown that (7.27) holds for

all k.

Theorem 12 is a generalization of [91, Thm 3.2], extending the class of systems from

those of the form (7.18) to those of the form (7.23).
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7.5 Numerical results

7.5.1 LMI solutions

We now demonstrate how Nesterov’s method is impacted by uncertainty about the

problem parameters (µ, L) and how HHB-Nes (7.17) shows some promise for mitigating

these effects. For simplicity, we use the notation β in this section for both the β param-

eter of Nesterov’s method as well as the β parameter of HHB-Nes. We are interested

in a setting in which the stepsize parameter h and momentum parameter β deviate sig-

nificantly from the optimal values (h∗, β∗), by which we mean the values dependent on

(µ, L) that have been shown in, e.g., [84, Proposition 12], to be optimal with respect to

the class of µ-strongly convex objectives with L-Lipschitz gradient. Specifically, for both

Nesterov’s method and HHB-Nes, we set h = 1/(2L) and β = 1− 0.1
√
h, which makes h

an underestimate of h∗ and makes β close to 1 but still increasing with L.

To obtain a value of ρ from the LMI (7.25), we perform a bisection search on ρ, solving

the resulting LMI for each fixed value of ρ ∈ [0, 1]. From the discussion in [84, Sec. 4.2],

the structure of the system matrices in (7.21) ensures that the LMI (7.25) holds with

n ≥ 1 being the dimension of dom φ if and only if it holds for n = 1. So, we attempt

to solve the LMI only for n = 1 here. For each fixed ρ, the LMI is solved by SeDuMi

1.3 in Matlab 2020a. The resulting values of ρ for µ = 1 and L ∈ [1, 100] are shown by

the top two curves in Figure 7.1a in tuning (h, β) causes ρ to deteriorate significantly

for Nesterov’s method, while HHB-Nes mitigates these impacts. For Nesterov’s method,

we use the LMI in [91, Thm 3.2] of which Theorem 12 is an extension. The bottom

two curves in Figure 7.1b depict the case (h, β) = (h∗, β∗), showing that, when the

algorithmic parameters are tuned with perfect knowledge of (µ, L), HHBM does not

necessarily preserve the scaling behavior of ρ with respect to L/µ, which is a desirable

property of Nesterov’s method [84, Sec. 4.5]. The experiment is repeated for HiHB-Nes
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with β = 1 −
√
h in Figure 7.1b, which shows that HiHB-Nes trades off between the

behaviors of HHB-Nes and Nesterov’s method.

We pursued similar experiments for HHB-Pol, in which the LMI (7.25) was able

to show that, for various choices (and sequences of choices) of algorithmic parameters,

HHB-Pol achieves nearly the same convergence rate as Polyak’s method across a variety of

values of L/µ. In particular, setting µ = 1 and using parameters that are (locally) optimal

for the strongly convex setting [84, Sec. 4.2], HHB-Pol achieves the same convergence

rate as Polyak’s method up to the value of L at which rates can no longer be guaranteed

for Polyak’s method, reproducing the curve in [84, Figure 5] labelled “LMI (sector)”.

These results suggest that HHB-Pol at least preserves the rates achievable by Polyak’s

method, even if it does not improve on those rates for any particular value of L/µ.

The continuous-time LMI (7.9) is difficult to solve (performing a bisection search for

α ∈ [10−6, 100]) unless the B = [0 −In]T matrix is replaced by [−In −In]T , in which case

the LMI is feasible for a restrictive range of values for L/µ, and the rates are difficult to

compare with those of the heavy-ball differential equation. We leave it to future research

to determine the permissible modifications to (A,B,C,Mε) that could play a role in

improving the feasibility of LMI conditions such as (7.9).

7.5.2 Example: strongly convex quadratic objective

In this section, we show examples of how HHBM can prevent oscillations from ap-

pearing in the trajectory of φ(q) that are caused by having a poorly tuned pair (h, β).

In particular, we consider a problem with strongly convex quadratic objective φ(q) :=

1
2
qTQq+ bT q, with L/µ = 103, and with Q and b randomly generated as described at the

end of this subsection. As in the previous section, we intentionally use a smaller value of

h than recommended in theory (h = 10−4), forcing β = 1−
√
hK to take values very close
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to 1. As a consequence, it is more intuitive to discuss the parameters of the algorithms in

terms of K rather than β, which we do in Figure 7.2, where K = 1.97 roughly corresponds

to the value that yields the fastest convergence rate for Polyak’s method and Nesterov’s

method for the given h and given (Q, b) (determined experimentally). Figure 7.2 shows

that the convergence rates of both Polyak’s method and Nesterov’s method deteriorate

significantly when K underestimates the desirable value of 1.97. Furthermore, due to the

large L/µ, the only way to remove the oscillations from the trajectory of Polyak’s method

is to increase K to the point at which the asymptotic convergence rate is significantly

slower than seen in Figure 7.2a. In contrast, HHBM achieves the same asymptotic rates

as the other two methods when K = 1.97, while it exhibits both faster asymptotic rates

and fewer oscillations when K underestimates the desirable value.

We do not include HiHBM in Figure 7.2 because the chosen stepsize is sufficiently

small that the performance of HiHBM can be made to resemble that of HHBM very

closely by choosing K sufficiently large. The appeal of HiHBM will instead be conveyed

in the next section.

It is important to note that the advantages of HHBM and HiHBM are specific to the

situation simulated above, in which the optimal algorithmic parameters are unavailable,

especially when h is too small and β is too large. In our experiments, we have found

situations where Polyak’s method and Nesterov’s method do not exhibit oscillations

when using their respective optimally tuned parameters, and in these situations, our

proposed algorithms essentially achieve the same asymptotic convergence rates (and lack

of oscillations) as their classic counterparts. These observations are compatible with our

LMI computations of the previous section, which suggested that our algorithms do not

improve on the rates of their classic counterparts when optimal algorithmic parameters

are available.

We use the following approach to generate a random matrix with a specific condition
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number L/µ. In fact, we consider only µ = 1. First, generate a random n × n matrix.

Then, take the singular value decomposition USV T , and replace S with Ŝ, where Ŝ has

diagonal entries σi for i ∈ {1, . . . , n} satisfying σmin = 1 and σmax =
√
L, with each of the

remaining n−2 diagonal entries being uniformly distributed on [1,
√
L]. Let Q̂ = UŜV T ,

and take Q := Q̂Q̂T to be the matrix that defines φ. To generate b, we take each of

its entries to be uniformly distributed on [−100, 100]. Initial conditions are randomly

generated in the same way as b. We have verified that the behaviors in Figure 7.2 persist

across several random trials.

7.5.3 Example: logistic regression

In this section, we show that our proposed algorithms may have advantages even

when applied to problems that are more general than those considered in our analyses.

We consider a problem of logistic regression, common in statistical data analysis and

machine learning [97, Ch. 4]. Figure 7.3 compares convergence rates for a problem of

logistic regression with dataset (Θ, b), where Θ ∈ Rn×m has columns denoted Θi and

entries randomly drawn with standard normal distribution, and each component bi of

b is uniformly randomly drawn from {−1, 1}. The dataset has m = 1000 observations.

The objective is

φ(q) =
m∑
i=1

log
(
1 + exp

(
−biΘT

i q
))
. (7.38)

The objective is convex but not strictly convex. However, on any compact set, it satisfies

the µ-PL condition [98, Eq. 3] for some constant µ (see [98, Sec. 2.3] for a discussion).

The stepsizes of gradient descent, Nesterov’s method, and Polyak’s method were

tuned via bisection search. For Polyak’s method, the best stepsize was chosen from a

broad range of values, with the value of β being tuned via bisection search for each
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stepsize considered. For Nesterov’s method, we use the standard sequence of values for

β intended for the class of general convex objectives [83, Sec. 2.2], namely the sequence

αk(1 − αk)/ [α2
k + αk+1] where αk satisfies α2

k+1 = (1 − αk+1)α
2
k (here, the initialization

of β had negligible effect). For HiHBM, we set K = 0, while the stepsize and K were

tuned in the same way that the stepsize and β were tuned for HBM (which resulted in

the same ε found for HBM). For HHBM, the stepsize and K were tuned in the same way

that the stepsize and K were tuned for HiHBM, resulting in the same stepsize found for

Nesterov’s method and K = 0.
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(a) β = 0

(b) β = 1−
√
h

Figure 7.1: Values of ρ obtained from Thm. 12 for HHB-Nes and HiHB-Nes and from
[91, Thm 3.2] for Nesterov’s method. The circled curves indicate uncertainty about
(µ,L) in tuning (h, β), as described in Sec. 7.5.1. The starred curves indicate that h
and β are tuned with perfect knowledge of (µ,L), using [84, Proposition 12].
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(a)

(b)

Figure 7.2: The value of φ(q)− φ(q∗) versus iteration k, where φ is a strongly convex
quadratic objective, and q∗ is the minimizer of φ computed by Matlab’s “quadprog”
function.
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Figure 7.3: The value of φ(q)−φ(q∗) versus iteration k, where φ is the logistic regres-
sion objective (7.38), and q∗ is the minimizer of φ computed by gradient descent.
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Chapter 8

Nonconvex Optimization via Resets
and Stochasticity

In previous chapters, gradient-based optimization dynamics have been interpreted as

dynamical systems and control systems, enabling the use of tools from stability theory for

studying convergence and performance. This interpretation can be extended to discrete-

time systems having both stochasticity and set-valued right-hand sides, which have been

shown to be useful for nonconvex problems. The resulting dynamics are modeled as

stochastic difference inclusions, for which stability analysis can be carried out using

invariance principles. In this chapter, we make use of recent developments in Lyapunov-

like analyses for gradient-based algorithms in nonconvex optimization, enabling the use

of an invariance principle for establishing a probabilistic notion of asymptotic stability

for the set of global minimizers of a not-necessarily-convex but suitably smooth objective

function.

8.0.1 Introduction

Optimization problems with nonconvex objectives are becoming increasingly preva-

lent in large-scale signal processing, data analysis, and machine learning [99, Ch. 7-10].

In these areas, the training of deep neural networks is an especially prevalent application
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in which nonconvex objectives arise. Moreover, multi-agent systems such as UAV teams

[100], [101] may require decentralized training of neural networks using data collected

online in a changing and uncertain environment, where robustness to noise becomes cru-

cial. In centralized settings, nonconvex problems have often been tackled using iterative

first-order optimization algorithms [99, Ch. 3], [102, Ch. 4], which are discrete-time

dynamical systems that update their states using only information about the first-order

gradient of the objective function, and possibly the objective function value, at each it-

eration. Well-known examples include gradient descent and momentum-based methods

such as the Accelerated Gradient Method [103, Ch. 3]; see [104], [102], and [99] for other

examples. Unlike the convex setting, the nonconvex setting often calls for certain modi-

fications to the dynamics of first-order methods in order to ensure efficient convergence

in theory and in practice. Two such modifications that have been shown to be especially

effective include the injection of stochastic perturbations and the resetting of momentum

variables [105]. Each of these two modifications gives rise to its own challenges in the

analysis of convergence, and the challenges are further complicated when combining the

two modifications.

On one hand, due to the presence of saddle points in a variety of nonconvex objectives

that arise in applications, theoretical research has taken an interest in studying the

efficiency with which first-order algorithms escape from saddle points. When establishing

such guarantees, the introduction of a stochastic perturbation to the dynamic equation

has been crucial to the analysis. For example, in [106], a random vector is added to

the state of the gradient descent algorithm before executing each update, resulting in an

algorithm referred to as Perturbed Gradient Descent that is shown to escape from saddle

points and, in particular, to converge to a neighborhood of a second-order stationary

point with high probability. Here, a second-order stationary point is defined as a point

where the first-order gradient vanishes and where the second-order gradient (assumed
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to be Lipschitz continuous) is positive semidefinite. In the subsequent work of [107], a

similar perturbation applied to the Accelerated Gradient Method yields the Perturbed

Accelerated Gradient Method, which is shown to converge more efficiently to second-order

stationary points than Perturbed Gradient Descent.

On the other hand, the training of deep neural networks is a nonconvex optimization

problem in which momentum-based methods, such as the Accelerated Gradient Method

and its derivative methods, have been shown experimentally to be crucial in achiev-

ing practical efficiency of convergence; see, for example, [108]. In this context, each

momentum-based method has its advantages and disadvantages according to the design

of its dynamics and the selection of the (possibly time-varying or state-dependent) algo-

rithmic parameters such as the stepsize. Due to the complexity and poor conditioning of

the optimization landscape, the design of dynamics and algorithmic parameters becomes

crucial to preventing severe fluctuations in an algorithm’s trajectory that may signifi-

cantly degrade its efficiency. In momentum-based methods, such fluctuations are often

addressed using reset mechanisms, which are mechanisms that reset the momentum vari-

able to zero when certain conditions are met. Resets have been shown experimentally to

greatly improve on the efficiency of momentum-based methods when training deep neural

networks [105]. Although the literature on this subject has historically used the term

“restarting”, we use the term “resetting” to maintain the analogy with control systems

that is central to our work.

Various reset mechanisms have been proposed and analyzed for momentum-based

methods, such as those in [109], [86], [88], [87], and [85]. The mechanisms differ in terms

of the conditions that trigger the resets, some of which are periodic or based on the

number of iterations, while others are based on state-dependent conditions involving the

objective and/or gradient. Existing analyses have provided estimates for convergence

rates on a case-by-case basis, depending on the specific reset mechanism and class of
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objective functions considered. On the other hand, hybrid systems theory has recently

led to a framework that enables systematic study of convergence rates for a broad class

of state-dependent reset mechanisms and for strongly convex objectives [26]. Central to

this work is a hybrid system referred to as the Hybrid Heavy-Ball Method, for which

there are discrete-time implementations that recover the Accelerated Gradient Method

and Polyak’s Heavy-Ball Method as special cases. The resets in these discrete-time

systems are motivated by the type of reset condition studied in [85] and therefore make

use of state-dependent conditions for switching the value of the momentum parameter

at each iterate. One of the basic requirements for analyzing robust stability in such

systems is outer semicontinuity of the right-hand side of the dynamic equations [110],

and for this reason, the state-dependent momentum parameter must be modeled as a

set-valued mapping and the resulting dynamics modeled by a difference inclusion. When

stochasticity is incorporated in this model, invariance principles can be used to establish a

probabilistic notion of stability, namely uniform global asymptotic stability in probability.

In this chapter, robust stability properties of perturbed gradient methods with reset-

ting are established by modeling the dynamics as a stochastic difference inclusion and

thereby enabling the use of invariance principles that have been developed for such sys-

tems [111], [110]. These works have established conditions under which guarantees of

asymptotic stability are robust against arbitrarily small disturbances to the algorithmic

state or dynamics, and hence, these guarantees are especially relevant in the aforemen-

tioned decentralized optimization problems, where numerical imprecisions may arise from

limited communication bandwidth, quantized or sparsified data, and other factors that

can potentially be detrimental to the convergence properties of decentralized gradient-

based algorithms [112], [113]. In Section 8.1, we give both verbal and mathematical

descriptions of the class of dynamics to be considered. Then, in Section 8.2, we show

uniform global asymptotic stability in probability (UGASp) of the set of global minimiz-
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ers for a class of not-necessarily-convex objective functions having Lipschitz continuous

first and second derivatives.

8.1 A stochastic difference inclusion for global non-

convex optimization

8.1.1 Algorithmic overview

We study a stochastic difference inclusion that models a broad class of algorithms

for global optimization of nonconvex objective functions. At a high level, our model is

constructed from a deterministic subsystem and a stochastic subsystem, whose dynamic

equations have right-hand sides given by maps Gc and Gd, respectively.

The deterministic subsystem of our model, represented by Gc, is constructed from

two algorithms, referred to as the accelerated gradient method (AG) and the negative

curvature exploitation method (NCE), respectively represented by maps Ga and Gb. AG

is widely known to be useful for first-order convex optimization. However, when AG

is applied to nonconvex problems, it can be difficult to identify a Lyapunov function

for the purpose of analyzing stability properties of the resulting algorithmic dynamics.

Combining AG with NCE enables us to identify such a Lyapunov function in nonconvex

settings. This approach has been taken in [107].

Meanwhile, the stochastic subsystem, represented by Gd, employs stochastic updates

at time instances governed by a periodically resetting timer variable τ . This stochastic

feature of our model is intended to capture the behavior of algorithms that employ state

perturbations or random reinitialization strategies, which are often used in practice to

facilitate escape from local minima, maximizers, and saddle points in nonconvex settings.
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8.1.2 Algorithmic description

Let v be a placeholder for an i.i.d. sequence of random variables having a distribution

assigning positive probability to every open subset of Rn. We study stability properties

of the following stochastic difference inclusion having state variable x := (q, p, τ) with

q ∈ Rn, p ∈ Rn, and τ ∈ Z≥0:

x+ = G(x, v), x ∈ D, (8.1)

where G and D will be defined below.

We consider the system (8.1) to be a model for algorithms that iteratively seek solu-

tions of the following problem:

min
q′∈Rn

f(q′), (8.2)

where the objective function f : Rn → R is assumed to achieve a minimum in Rn, and it is

assumed that f has certain properties of smoothness and unboundedness to be described

in Sec. 8.2.

We define G and D as follows, using positive numbers s, η, γ, and θ, along with

positive integers Tmin and Tmax, whose restrictions will be stated in the stability analysis

of Sec. 8.2:

y(q, p) := q + (1− θ)p,

Da :=
{

(q, p) ∈ R2n :

f(q) ≥ f(y(q, p)) + 〈∇f(y(q, p)), q − y(q, p)〉 − γ

2
|q − y(q, p)|2

}
,

Db,1 :=
{

(q, p) ∈ R2n \ Da : |p|2 ≥ s
}
,
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Db,2 :=
{

(q, p) ∈ R2n \ Da : |p|2 ≤ s
}
,

Db := Db,1 ∪ Db,2,

D := Da ∪ Db,

Da := Da × {0, . . . , Tmin}, (8.3a)

Db,1 := Db,1 × {0, . . . , Tmin}, (8.3b)

Db,2 := Db,2 × {0, . . . , Tmin}, (8.3c)

Db := Db × {0, . . . , Tmin}, (8.3d)

Dc := D × {0, . . . , Tmin}, (8.3e)

Dd := D × {Tmin, . . . , Tmax}, (8.3f)

D := Dc ∪Dd, (8.3g)

g(q, p) := y(q, p)− η∇f(y(q, p)),

Ga(x) :=


g(q)

g(q)− q

τ + 1

 , (8.3h)

Gb,1(x) :=


q

0

τ + 1

 , (8.3i)

Gb,2(x) :=


arg min

{
f(q′) : q′ ∈

{
q + s p

|p| , q − s
p
|p|

}}
0

τ + 1

 , (8.3j)

Gb(x) :=


Gb,1(x) ∀x ∈ Db,1 \Db,2

Gb,2(x) ∀x ∈ Db,2 \Db,1

Gb,1(x) ∪Gb,2(x) ∀x ∈ Db,1 ∩Db,2,

(8.3k)
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Gc(x) :=


Ga(x) ∀x ∈ Da \Db

Gb(x) ∀x ∈ Db \Da

Ga(x) ∪Gb(x) ∀x ∈ Da ∩Db,

(8.3l)

Gd(x, v) :=


arg minq′∈{q,v} f(q′)

0

0

 , (8.3m)

G(x, v) :=


Gc(x) ∀x ∈ Dc \Dd

Gd(x, v) ∀x ∈ Dd \Dc

Gc(x) ∪Gd(x, v) ∀x ∈ Dc ∩Dd.

(8.3n)

Note that, in (8.3j), if p = 0, the expression p/|p| is considered to be 0.

8.2 Stability analysis

Our main result relies on the following assumptions regarding the function f in (8.2).

Assumption 18 The function f is twice differentiable, and there exist positive numbers

` and ρ such that, for all q1, q2 ∈ Rn,

|∇f(q1)−∇f(q2)| ≤ `|q1 − q2|, (8.4a)∣∣∇2f(q1)−∇2f(q2)
∣∣ ≤ ρ|q1 − q2|. (8.4b)

Let Q∗ denote the set of solutions to the problem (8.2), and let f ∗ denote the value

of f on Q∗.

Assumption 19 The set Q∗ is compact, and the function f is radially unbounded with

respect to Q∗.
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Consider the continuous function V : R2n × {0, . . . , Tmax} → R given by

V (x) := f(q)− f ∗ +
1

2γ
|p|2, (8.5)

which is positive definite and radially unbounded with respect to A := Q∗ × {0} ⊂ R2n.

Equation (8.5) is motivated by the work of [107], which provides key lemmas for our

analysis.

Lemma 8.2.1 If f is a differentiable function satisfying (8.4a) for some ` > 0, and if

η ≤ 1/(2`), θ ∈ [2ηγ, 1/2] with γ > 0, and Tmin ∈ Z>0, it holds that

V (Ga(x)) ≤ V (x) ∀x ∈ Da. (8.6)

Proof: The result follows from the proof of [107, Lemma 9]. Note that the proof

of [107, Lemma 9] is carried out under the condition given by [107, Eq. 8], which is

compatible with our definition of Da in (8.3a), despite this condition not being made

explicit in the statement of [107, Lemma 9].

Lemma 8.2.2 Given a function f satisfying Assumption 18, Tmin ∈ Z>0, and any posi-

tive numbers γ and s, it holds that

max
g∈Gb(x)

V (g) ≤ V (x) ∀x ∈ Db. (8.7)

Proof: The result follows from the proof of [107, Lemma 10]. Note that the proof

of [107, Lemma 10] accounts for the case |p| = s, despite this case not being explicitly

accounted for in the algorithmic descriptions of [107, Alg. 2] or [107, Alg. 3].

The following lemmas ensure fulfillment of some standard requirements for analyzing

stability in stochastic difference inclusions.
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Lemma 8.2.3 The set-valued mapping S : Rn ⇒ R4n+2 given by

S(v) := graph(G(·, v)) := {(x, y) ∈ R4n+2 : y ∈ G(x, v)} ∀v ∈ Rn (8.8)

is outer semicontinuous and closed-valued.

Proof: By continuity of f , (x, v) 7→ Gd(x, v) is outer semicontinuous. By construc-

tion, it follows that (x, v) 7→ G(x, v) is outer semicontinuous. By [114, Thm. 5.7(a)],

it follows that S is closed-valued. To show that S is outer semicontinuous, consider a

sequence {(vi, xi, yi)}∞i=1 having a limit denoted (v, x, y) and satisfying (xi, yi) ∈ S(vi) for

all i. By outer semicontinuity of G, we have y ∈ G(x, v). It follows that (x, y) ∈ S(v).

Lemma 8.2.4 The mapping S in (8.8) is measurable.

Proof: By Lemma 8.2.3 and [114, Prop. 5.11(a)], we have that, for every ζ ∈

range(S) = R4n+2, v 7→ |ζ|S(v) is lower semicontinuous and therefore measurable. It

follows by [114, Thm. 14.3(j)] that S is measurable.

Theorem 13 Under Assumptions 18 and 19, if η ≤ 1/(2`), θ ∈ [2ηγ, 1/2] with γ > 0,

Tmax ≥ Tmin ∈ Z>0, and s > 0, the set Q∗×{0}×{0, . . . , Tmax} is UGASp for the system

(8.1).

Proof: We make use of an invariance principle for stochastic difference inclusions

[110, Thm. 8]. To do so, we first note that, by construction, the map G in (8.3n) is

locally bounded, and the map v 7→ graph(G(·, v)) is measurable with closed values, by

Lemmas 8.2.3 and 8.2.4. Next, we show that

∫
Rn

max
g∈G(x,v)

V (g)µ(dv) ≤ V (x) ∀x ∈ D. (8.9)
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From Lemmas 8.2.1 and 8.2.2, along with the definitions of Dc and Gc in (8.3e) and

(8.3l), respectively, we have

max
g∈Gc(x)

V (g) ≤ V (x) ∀x ∈ Dc. (8.10)

From (8.10) and the definitions of Dd, D, Gd, and G in (8.3f), (8.3g), (8.3m), and (8.3n),

respectively, we have

max
g∈G(x,v)

V (g) ≤ V (x) ∀x ∈ D, v ∈ Rn, (8.11)

and therefore, (8.9) holds.

Next, we show that there does not exist an almost surely complete solution of (8.1)

that remains in a non-zero level set of V almost surely. Due to the fact that a stochastic

update is caused by Gd at least once every Tmax time steps, it suffices to show that those

updates cause a decrease in the expected value of V from points outside of A := Q∗×{0}.

To do so, let B := {q ∈ Rn : |q| ≤ 1}, and note that, given points (q, p) ∈ R2n \ A and

(q∗, p∗) ∈ A, there exists ε > 0 such that, for all q̂ ∈ q∗ + εB, f(q̂) ≤ f(q)− ε. Then, for

all x := (q, p, τ) ∈ (R2n \ A)× {0, . . . , Tmax}, it holds that

∫
Rn

max
g∈Gd(x,v)

V (g)µ(dv)

= µ(q∗ + εB)(f(q)− ε)

+ (1− µ(q∗ + εB))f(q)

= f(q)− µ(q∗ + εB)ε

≤ V (x)− µ(q∗ + εB)ε.

Due to the assumption that µ assigns non-zero measure to every open subset of Rn, it
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follows that there does not exist an almost surely complete solution of (8.1) that remains

in a non-zero level set of V almost surely.
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Conclusion

In this dissertation, we have introduced soft-reset controllers for nonlinear and multi-

agent systems, especially those that have nonlinear optimization objectives, by modeling

them as differential inclusions and thereby enabling their stability analysis through the

use of tools such as invariance principles and passivity. Conditions have been established

on the data of a given hard-reset controller under which its soft-reset implementation en-

joys desired passivity and stability properties, and these conditions have been extended

to the multi-agent case for the problem of leader-follower target-seeking formation con-

trol. Specific soft-reset controllers have been proposed for feedback-based steady-state

optimization of linear time-invariant and passive plants. In a separate thread of research,

high-order tuners for parameter identification have been analyzed under persistent exci-

tation conditions and then augmented with concurrent learning in order to relax those

conditions. Soft resetting was then proposed for the resulting high-order tuners with

concurrent learning. In all of the aforementioned cases, numerical results illustrated

the advantages of soft-reset approaches over standard approaches. Finally, discrete-time

reset systems have been proposed as iterative algorithms for convex and nonconvex op-

timization. For strongly convex problems, the effects of resetting on exponential rates

of convergence have been studied through the use of linear matrix inequalities, while for

nonconvex problems, stability properties have been established for a class of stochasti-
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cally perturbed gradient methods with resetting.

We have focused on unconstrained optimization problems, but it would be of interest

to investigate the handling of constraints. In continuous time, optimization constraints

can encode requirements on states, inputs, and outputs that play an important role in

the safety and reliably of the robotic and vehicular systems that we have emphasized

in our proposed applications. In both continuous and discrete time, constraints can

encode requirements on the relationship between decision variables that are computed

by networked agents in a decentralized fashion, ensuring that network-wide optimality

conditions are met in the absence of centralized coordination [115]. Constraints can

potentially be addressed using techniques such as projected gradients and anti-windup

control [116] [117], which fit into the framework of differential inclusions that we have

employed in our study of soft-reset systems.

High-order tuners are applicable to certain adaptive control problems [76], although

concurrent learning and resetting have not been explored in these cases. It would be of

interest to incorporate concurrent learning in high-order tuners for adaptive control and

investigate applications of soft resetting for such methods, motivated by the prevalence

of gradient methods in adaptive control and the effectiveness of soft resetting in other

settings where gradient methods have played a significant role. Similar gradient methods

also arise in actor-critic algorithms for approximate dynamic programming and reinforce-

ment learning [64], where momentum-based methods have been explored but not with

soft resetting [118].

Our linear matrix inequalities for certifying exponential rates of convergence in reset

systems can be refined using the general framework of integral quadratic constraints,

potentially giving rise to more refined rate estimates. In this dissertation, we have made

use of only one special case of such constraints. Linear matrix inequalities have also been

useful for certifying convergence rates of stochastic gradient methods [119] and there-
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fore provide opportunities for studying interactions between resetting and stochasticity.

Moreover, we have focused on applying resets to the Heavy-Ball Method, but future

research may reveal that resetting can benefit other optimization algorithms in which

momentum variables are present, such as the Triple Momentum Method [36].

Finally, it would be of interest to investigate conditions under which soft-reset sys-

tems enjoy desirable properties other than passivity or stability, such as dissipativity or

contractivity. Such properties would be desirable in the sense that, much like passivity,

they are useful in multi-agent systems, adaptive systems, optimization algorithms, and

many other applications [120] [121] [122] [123] [124] [125] [126]. Initial efforts have already

been made in this direction with regard to input-to-state stability of soft-reset systems

[127], and we are optimistic that future research on soft-reset systems will be as fruitful.
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