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High TC Superconductivity: Doping Dependent

Theory Confirmed by Experiment
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Abstract

A Hamiltonian H(Γ) applicable to cuprate HTS, with a doping
dependent pairing interaction Γ(x) = V (x) + U(x), is linked to a
Cu3d-O2p state probability model(SPM). A consequence of doping
induced electron hopping, the SPM mandates that plaquettes with
net charge and spin form in the CuO plane, establishing an effec-
tive spin-singlet exchange interaction U(x). The U(x) is determined
from a set of probability functions that characterize the occupation
of the single particle states. An exact treatment of the average static
fluctuation part of H shows that diagonal matrix elements Ukk < 0
produce very effective pairing, with significant deviation from the
mean field approximation, which also depends on a phonon-mediated
interaction V . This deviation is primarily responsible for the diverse
set of HTS properties. The SC phase transition boundary TC(x), the
SC gap ∆(x), and the pseudogap ∆pg(x) are fundamentally related.
Predictions are in excellent agreement with experiment, and a new
class of HTS materials is proposed. Large static fluctuation results
in extreme HTS and quantum criticality.
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1 INTRODUCTION

The 1986 discovery of non-elemental high TC supercon-
ductor(HTS) cuprates[1] introduced a class of antifer-
romagnetic Mott insulator ceramics that exhibit an ex-
otic array of seemingly disparate superconducting(SC)
and normal state(NS) properties.[2, 3] Despite the
plethora of experimental data indicating several micro-
scopic interactions, there is incomplete agreement on
which interactions are essential and how they combine
to produce HTS.[4] No current Hamiltonian leads to
the diverse HTS properties observed in cuprates. This
paper presents a Hamiltonian, conjoined with a state
probability model(SPM), that predicts the observed
properties listed below and elucidates a key ingredient
for pairing glue. It is shown that the pseudogap re-
sults from doping induced charge-spin fluctuation, and
a new class of HTS materials with an anti-pseudogap
is suggested.

The disparity between elemental low TC < 10K
superconductor(LTS) and HTS properties is remark-
able. The doped cuprates are extreme type-II super-
conductors, exhibiting strong magnetic field induced
quantum fluctuations, with the interpretation that
the state of these materials may lie in close proxim-
ity to a quantum critical state.[5, 6] Denoting x as
the hole(electron) doping concentration, nine diverse
cuprate HTS properties are: order of magnitude in-
creased a) average energy gap amplitude ∆(x, T ), and
b) TC(x), which is maximum at optimal doping xop,
can exceed 100K, with TC/TF ∼ 10−1− 10−2. c) large
shape ratio ∆(xop, 0)/kBTC(xop) � 2, the maximum
BCS LTS value, d) inverted parabolic(dome) shaped
phase boundary TC(x), e) magnetic field penetration
with λ−2(T ) linearly decreasing with T for T << TC ,
f) x dependent evolution of the isotope effect, g) a large
condensation energy ∆Ω(x), and an anomalously large
discontinuity in the electron specific heat at TC(xop),
h) an SC gap ∆k with d-wave symmetry, contrasting
the s-wave gap in LTS materials, i) a tentative first
order phase transition, with a concomitant quantum
critical point.

In the normal state an anomalous property is the
suppression of the density of electronic states referred
to as the pseudogap. The pseudogap ∆pg(x), estab-
lished by a number of spectroscopic probes, summa-

rized in Ref. [7], deceases linearly in the underdoped
domain from a maximum value ∆pg(x ≈ 0.05) until
it merges on the overdoped side x > xop with the SC
gap ∆(x). Some researchers refer to ∆pg as the SC
gap, but there is considerable experimental evidence
that the distinct lower energy SC gap exists, with a
very different x < xop dependence.[7, 8] Current the-
ories either promote the pseudogap state as a pairing
precursor of the SC state, or as a competitor due to un-
related dynamical fluctuations.[9, 10] Hence, the origin
and the effect of the pseudogap on the SC state remains
unresolved.[2, 7, 11, 9] The SPM gives new insight here.

Cuprate HTS theories abound. Partially sup-
ported by experiment, various theories and reviews
thereof include electron-phonon interactions[12] with
possible small polaron,[13, 14] or Jahn-Teller po-
laron formation,[15] interband interactions,[16, 17]
exciton mediated interactions,[18, 19, 20, 21, 22]
negative U-center pairing,[23, 24] bosonic electron-
hole pairing,[25] spin-exciton,[26] spin-phonon
interactions,[27] fractals,[28] quantum oscillations in
fermi liquids,[29] quantum criticality,[30, 31, 5, 32, 6]
2D strong electron-electron correlation with res-
onating valence bonds(RVB) and spin exchange,
fluctuating spin exchange(overdoped regime),
spinons, holons, various slave-particle techniques
with extensive monte-carlo calculation, etc.
[33, 34, 35, 2, 36, 37, 38, 3, 39, 40, 41, 42] The
RVB theory,[43] generally implemented using the
Hubbard t − J Hamiltonian,[34] gives a reasonable
perspective of the undoped antiferromagnetic charge
transfer insulator phase, and as a potential HTS
model, spin exchange has appeal since d-wave pairing
is a natural consequence.[43] Although various HTS
characteristics are explained by reasonable, but dis-
jointed, arguments,[2, 44] present model Hamiltonians
produce only a small subset of the cuprate HTS
properties a)-i). For example, the t − J Hamiltonian
implementation of the RVB theory in the mean
field(MF) approximation does not directly produce
TC , nor does it give the correct SC gap over the
doping range of the SC state, nor does it give the
observed ratio of the maximum pseudogap to the SC
gap at optimal doping.[34]

The Bardeen-Cooper-Schrieffer(BCS) phonon me-
diated electron-pairing theory of superconductivity[45,
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46], in conjunction with the method of Eliashberg,[47]
applicable to the strong interaction regime, [48] pro-
vides the framework for understanding the microscopic
interactions responsible for LTS. However, the BCS
phonon mediated pairing interaction does not produce
cuprate HTS, although the BCS theory appears to ap-
ply to MgB2 with TC = 40oK.[49] Multiple pairing in-
teractions are considered necessary to explain cuprate
HTS,[2, 15, 19, 24, 3] but the exact nature of the
doping dependent interactions in the cuprate unit cell
presently remains beyond quantitative measurement.
Hence, formulation of a HTS model Hamiltonian relies
on reasonable conjecture about the underlying mecha-
nisms responsible for HTS, with subsequent validation
requiring comparison of model predictions with many
diverse experiments.

Our Hamiltonian H(x) is based on a phonon-
mediated interaction V (x), detailed in Section III, and
an exchange interaction U(x), with the doping depen-
dence x determined by the SPM. The U(x) < 0 is pro-
portional an effective spin-singlet exchange, which is
related to the x dependent particle occupation proba-
bility of the O2p states. The diagonal matrix elements
of U produce significant static fluctuation(deviation
from the MF) even for relatively weak U . We show
that this static fluctuation is the key ingredient for
HTS. For weak U , the model predicts the listed a)-h)
cuprate doping dependent characteristics with a sec-
ond order phase transition(SOPT). The SPM coupled
with H produces a unique relation between the con-
joined model and the observed phase transition bound-
ary TC(x), the SC gap ∆(T, x) and the NS pseudogap
∆pg(x). For stronger U , large static fluctuation re-
sults in an SC state that is essentially controlled by
the ratio U/V . If U/V / 1 the model exhibits a first
order phase transition(FOPT), and quantum critical-
ity, a phenomenon of broad interest beyond cuprate
HTS systems.[50, 51]

2 STATE PROBABILTIY
MODEL

Intrinsic cuprates are antiferromagnetic insulators with
single or multiple CuO xy-planes, alternating with car-

rier reservoir planes which may have a significant ef-
fect on the value of TC(xop) in various cuprates.[24, 52]
The Cu3d (Cu2+) ion is in an octahedral environment
surrounded by six O2p (O2−) ions, with the apical oxy-
gens on the z-axis. Jahn-Teller distortion along the z-
axis lowers the energy of the system by increasing the
Cu apical O distance. The resulting intrinsic cuprate
is a quasi-2D antiferromagnetic insulator, exhibiting
strong electron correlation. In the xy-plane nearest
neighbor Cu3d and O2p orbitals point directly toward
each other, producing strong covalent bond coupling.
This intermediary ligand coupling indirectly connects
neighboring Cu3d ions, giving rise to a large antiferro-
magnetic superexchange interaction Jdd ∼ 0.13eV.

A salient property of cuprate HTS is its dependence
on the doping concentration x. For many cuprates,
hole doping produces a dome shaped SC phase bound-
ary in the doping range [x1 = 0.05, x2 = 0.27] with
TC(xop ≈ 0.16) exceeding 100oK; whereas for elec-
tron doping the range is comparatively narrow, [x1 =
0.14, x2 < 0.2], with much lower TC(xop). This sec-
tion introduces a general state probability model based
on particle occupation of the cuprate electronic states.
The SPM defines the probability of the SC state, and
various normal states, in terms of the probabilities of
the accessible unit cell(UC) states, independent of the
model Hamiltonian. The SPM mandates the existence
plaquettes with net charge and spin to preserve local
charge-spin neutrality. Relating particle occupation
probabilities to the doping concentration x, the SC
gap |∆(x)|, the pseudogap ∆pg(x), and a new anti-
pseudogap ∆′pg(x), which determine domain bound-
aries of the phase diagram, are a natural consequence
of the SPM. Linking the SPM to our Hamiltonian de-
termines the doping dependence of the thermodynamic
quantities. Electron doping, with prediction of a pos-
sible new class of HTS materials, is considered at the
end of this section.

Although there is considerable hybridization of the
atomic states, it is advantageous to denote each UC
state by the occupation of the constituent single par-
ticle states. This simplification is consistent with a
fundamental assumption of quantum mechanics that
composite systems retain the properties of the individ-
ual constituent particles to a considerable extent.[53]

The undoped cuprate state ϕAF is charge neutral,
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Cu2+−O2− with a hole on the Cu3d-orbitals and two
electrons filling each of the O2 px and py orbitals. For
hole doping, the AF state, with few exceptions, [54] is
rapidly quenched by doping induced hopping.[2] In a
doping range 0 ≤ x < x1 there is an onset of charge
transfer excitations involving random hopping of par-
ticles among Cu3d orbitals and O2p orbitals. Initially
holes are localized, but as doping increases hopping
produces numerous possible states with net charge and
spin.

The electronic state of a doped cuprate is modeled
here by UC states containing a total of 5 fermion par-
ticles with spin σ = ±1/2. These single-particle states
form a large set of 25 particle states ×25 spin states
= 210 = 1024 states denoted as ϕ. It is advantageous
to divide the UC states into two sets. The sets ϕhσ
and ϕeσ represent states with a hole or an electron,
respectively, in a given Cu3d orbital. The UC states,
written as elements of a matrix, are

ϕeσ(ij) ≡ |eσ〉[ΦΦT ]ij ,

(1)

ϕhσ(ij) ≡ |hσ〉[ΦΦT ]ij ,

ΦT ≡ [|eσ′, hσ′′〉, |hσ′, eσ′′〉, |hσ′, hσ′′〉, |eσ′, eσ′′〉].

The single particle Cu3d states are denoted by |eσ〉 and
|hσ〉. Elements of the column vector Φ, and the row
vector ΦT are states representing the possible particle
configurations for the py-orbital, and the px-orbital,
respectively. The matrix ΦΦT gives the complete set
of particle configurations, for each spin set. The ϕhσ
states are illustrated in table 1.

Contrasting the well defined undoped AF state, the
doped state is a probabilistic mixture of the states in
Eq. (1) that result from doping induced hopping. The
constituent single particle states are assumed to be mu-
tually exclusive, and thus the distinct UC states are
mutually exclusive, analogous to a 16 sided die with
each face imprinted with one of the particle configura-
tions, including spin. Let Peσ(x, T ) represent the en-
ergy averaged probability that a given single particle
state is occupied by an electron with spin σ, at temper-
ature T , and doping concentration x. The correspond-
ing hole occupation probability is Phσ = 1− Peσ. The

• ◦ • ◦
• • ◦ ◦
◦ • • ◦ • • ◦ • • ◦ • •

• ◦ • ◦
• • ◦ ◦
◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦

• ◦ • ◦
• • ◦ ◦
◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ •

• ◦ • ◦
• • ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Table 1: Illustrated are the distinct single-particle
states comprising the unit cell states ϕhσ(ij). Holes
are denoted by ◦, and electrons by •, with spin not
shown. The corner position represents one of the Cu3d
orbitals. The undoped, charge neutral AF state is
ϕ(11). Other states have net charge, e.g. ϕ(12) has
charge +e, ϕ(22) has +2e, and ϕ(24) has +3e. The
UC states ϕeσ(ij) are obtained by interchanging every
• and ◦, with the same spin. The net charge of ϕeσ(ij)
and ϕhσ(ij) differ.

probability that a particular UC state ϕhσ(ij) exists
is a joint probability involving products of the proba-
bilities Peσ, and Phσ. With one high T exception in
the normal state, the scaled properties developed be-
low have negligible T dependence.

The states ϕhσ(ij) and ϕeσ(ij) carry net charge-
spin. To maintain charge-spin neutrality in the CuO
plane, it is energetically favorable for plaquettes con-
taining UC states to form with opposite charge and
spin for each value of x. (Plaquette is used in a generic
sense to include various geometrical shapes commen-
surate with lattice symmetry.) The sets of plaquette
states necessary to preserve charge-spin neutrality, de-
noted as

ϕh↑, ϕe↑, ϕh↓, ϕe↓, (2)
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must satisfy the state probability equalities

P (ϕh↑) = P (ϕe↓), P (ϕe↑) = P (ϕh↓), (3)

where P (ϕ) is the probability that ϕ exists. Having
established the UC states and the probability require-
ment Eq. (3) for pairing the plaquettes, one can de-
termine SC and normal state probabilities and average
properties.

SC State: In a doping range x1 < x < x2 a co-
herent doping dependent SC state ϕSC emerges for
T ≤ TC . An effective exchange interaction respon-
sible for the SC state is formulated below. Based
on repulsive energy considerations, it is assumed that
the SC state excludes the AF state ϕ(11) and the ex-
treme overdoped state ϕ(44), with completely filled or
completely empty p-orbitals, respectively. In the over-
doped range x ≈ x2 states form in the charge transfer
gap, resulting in a Fermi-liquid state ϕFL with negli-
gible remaining individual particle character, and the
SC state is destroyed.

We define the probability that the SC state exists as
the sum of the probabilities of the UC states ϕhσ that
remain after extracting the high energy states ϕ(11)
and ϕ(44) from Table 1, and the corresponding ϕeσ
states. The result is

PSC(ϕeσ) = PeσFp, PSC(ϕhσ) = PhσFp (4)

Fp = (Peσ′ + Peσ′′)(Phσ′ + Phσ′′ ]−

2Peσ′Peσ′′Phσ′Phσ′′ .

Adding the expressions in Eq. (4) gives the SC state
probability PSC = Fp, which depends only on the oc-
cupation probabilities for the p-orbitals. For the re-
mainder of the analysis of the SC state we neglect spin
dependence of the p-orbital probabilities Peσ′ and Phσ′ ,
giving

PSC = 4PePh[1− 1

2
PePh]. (5)

The first term in PSC arises from a simplified three par-
ticle state model by considering the row and columns
in table 1 independently, excluding doubly occupied p-
orbitals. The second term results from a joint proba-
bilty involving both px and py-orbitals. Thus PSC , as

defined above, automatically excludes all doubly oc-
cupied p-orbitals. Writing PSC in the form PSC =
1 − P 4

e − P 4
h confirms that ϕ(11) and ϕ(44) are ex-

cluded from the SC state.
The utility of PSC is implemented by relating the

particle occupation probabilities to the doping concen-
tration x. Assuming a uniform probability density over
a doping range w = x2 − x1, the probability that a
doped hole is created in doping range [x1, x1 + x] is
Πh(x) = (x−x1)/w. (Setting dΠ/dx constant, and ne-
glecting temperature dependence, is the same assump-
tion used in Anderson Ref. [34], but its application
and the resultant HTS properties are clearly not the
same, as discussed below.) The doped holes fill oxygen
orbitals in the reservoir planes, which in turn distort
the lattice and induce particle hopping in the CuO con-
ducting planes. Since the probability of the SC state,
Eq. (5), reduced to the that of effective p orbital states
with an electron and a hole, it is reasonable to assume
that the probability Ph that a position labeled h has a
hole is Ph ∝ Πh(x). Without loss of essential informa-
tion, we set the constant of proportionality to unity,
giving the probability Pe = Πe(x) = 1 − Πh(x) that
a position labeled e has an electron. Hence, Eq. (5)
written in terms of the dopant probabilities is

PSC(x) = 4Πe(x)Πh(x)[1− 1

2
Πe(x)Πh(x)], (6)

Πh(x) =
x− x1

w
, Πe(x) =

x2 − x
w

, w = x2 − x1,

with Πe(x) + Πh(x) = 1.
Equations (4)-(6) are independent of the detailed

interaction responsible for the SC state. The proposed
pairing interaction is a net effective inter-plaquette,
spin singlet exchange J(x) per unit cell that emerges as
a consequence of doping induced hopping. The J(x)
is an average over the values for each UC state ϕij
participating in the SC state. Determination of the
exchange Jij between states ϕh↑(ij) and ϕe↓(ij) re-
quires microscopic analysis to determine the overlap
integrals and the resultant eigenstates of a very com-
plicated system. Here, the relative value J(x)/J(xop)
is obtained by probability arguments, with J(xop) a
parameter found by fitting experimental data in Sec-
tion V.
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The exchange energy, per unit cell, averaged over
the accessible UC state configurations ϕi,j is formu-
lated in Appendix A. The result from Eq. (63) is

J(x) ≈ J2Πe(x)Πh(x)[1− 2(1− J1

2J2
)ΠeΠh] (7)

J1 = J11 + J22 + 2(J12 + J34),

J2 = 2(J13 + J23), J3 = 2(J14 + J24),

The Jij are the exchange constants corresponding to
the interaction between ϕh↑(i, j) and ϕe↓(i, j). Thus
J(x) is an average spin-singlet exchange between the
paired plaquettes that ensure local charge-spin neutral-
ity. Although microscopic evaluation of the Jij involves
multiple particle-particle and particle-antiparticle in-
teractions between UC states, the doping dependence
of J(x) is via the Π(x)’s which refer to p orbital occupa-
tion. The participation of the Cu3d particle serves as
a mediator, appearing only in the exchange constants.
Note that for J1/J2 = 3/2, the effective exchange is
identical to PSC , to within a constant of proportion-
ality. Since the maximum of (1/2)Πe(x)Πh(x) = 1/8
the small px-py interaction correction will be neglected
below. In this approximation the Jij in the factor J2

have no effect on scaled HTS properties.
Retaining the linear two particle terms in Eqs. (6)

and (7), the effective exchange J(x) and the SC state
probabilities are given by

J(x) ∝ PSC(x) = 4Πe(x)Πh(x). (8)

The simplification to the dominant two particle term
implies that an effective electron-hole pair within the
px and py orbitals is an essential ingredient characteriz-
ing the SC state. Assuming a lower energy alternating
spin state, the implied quasi-particles are spin-excitons
with spin-singlet exchange. This picture is somewhat
distinct from the Zhang-Rice[35] and Geballe[24] pic-
tures which explicitly contain a Cu3d particle. All
three scenarios involve dynamical processes, which are
treated here as static, time-averaged, phenomena.

In view of Eq. (8), we propose an hypothesis:

Doping dependence of scaled energy param-
eters that characterize SC, and normal,

states is manifested only via the doping de-
pendent probabilities that the relevant UC
states are accessible.

The validity of this hypothesis, already evident in Eq.
(8), is further substantiated by the following analysis
that produces the doping dependence of many observed
cuprate properties.

In accordance with the hypothesis, the scaled SC
gap ∆(x) ∝ Πh(x)Πe(x). This result is also confirmed
by combining Eq. (46), which is a direct consequence
our model Hamiltonian developed below, with Eq. (8).
This gives the doping dependent relations

TC(x)

TC(xop)
=

∆(x)

∆0
= 4Πh(x)Πe(x), ∆0 = ∆(xop).

(9)
These universal relations, independent of the aver-
age density of states N0 and the cutoff temperature
Tm defined in Section IV, give the doping depen-
dent phase boundary TC(x) and the low temperature
SC gap ∆(x) observed in cuprates, as shown in Sec-
tion V. Equation (9), concomitant with the Hamilto-
nian model relation TC(ν), is supported by the (T, x)
dependence of the Hall-coefficient used to track the
hole(electron) charge characteristic throughout the SC
phase.[25] The two-particle nature of the pairing in-
teraction parameter ν(x) and the resulting ∆(x), is
consistent with measurement of the SC gap, requir-
ing two-particle probes.[7] In the RVB-Hubbard model,
Ref. [34], the SC gap is assumed to be proportional to
g2
t (x) = [2x/(1 + x)]2, where gt is a kinetic energy

renormalization factor. This function only approxi-
mates ∆(x) in the very underdoped region x << xop,
whereas Eq. (9) agrees with the observed gap over the
entire doping range of the SC state.

Normal State: The doping dependent normal
state is characterized by unusual properties, e.g. pseu-
dogap, vortices, stripes, etc, reviewed in Ref. [2]. The
apparent complexity is daunting, as are the myriad of
complex and exotic theories. Nichtsdestoweniger, it is
our contention that there is a rather simple explana-
tion for many properties based on the UC states in Eq.
(1) and illustrated in Table 1.

Since doping induced hopping is a random process,
it is asserted that the normal state is characterized by
the complete set of UC states in Eq. (2). Assuming
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that all of the state configurations in Eq. (1) are ac-
cessible, the probability P (ϕh) that some one of the
states in ϕh exists is denoted by

P (ϕhσ) = P (|hσ〉ΦΦT ) = PhσP (Φ)P (ΦT ). (10)

The probability that Φ exists is defined as the sum of
the probabilities for each state, i.e. it is the probability
that some one of the states exist. Thus

P (Φ) = (Peσ′ + Phσ′)(Peσ′′ + Phσ′′) = 1. (11)

Since P (Φ)T is also unity, one obtains

P (ϕhσ) = Phσ(x, T ), P (ϕeσ) = Peσ(x, T ), (12)

independent of the p-orbital occupation for any given
spin set. One can derive the same result for P (ϕhσ)
by tediously summing the probabilities for each of the
UC states ϕhσ in Table 1, and for the corresponding
ϕeσ states.

The seemingly trivial expression in Eq. (12), a
consequence of the completeness of the UC p-orbital
states used, has profound implications. It gives a non-
zero probability for static charge and spin fluctuation
on any given Cu3d orbital. Since Ph(x) 6= Pe(x) for
x 6= xop, it is evident that the states ϕh and ϕe cannot
exist alone. As concluded above, plaquettes form in
the CuO plane with opposite charge and spin for each
value of x. The presence of such plaquettes is consis-
tent with the formation of charge and/or spin density
waves with concomitant gaps.[2, 55] The paired pla-
quettes dictate that the system is composed of the four
states in Eq. (2). Since Eq. (12) shows that the dop-
ing dependence of these states is characterized by the
Cu3d orbital occupation, we set P (x) = Π(x), giving
the plaquette state probabilities

P (ϕh↑) = Πh(x), P (ϕe↑) = Πe(x),

(13)

P (ϕh↓) = Πe(x), P (ϕe↓) = Πh(x).

Consider a checkerboard pattern of UC plaquette
states ϕ↑, and ϕ↓. Since Πe(x) + Πh(x) = 1, the
plaquette state ϕ↑(x < xop) is dominated by spin-up
electrons, and the plaquette state ϕ↓(x < xop) is dom-
inated by spin-down holes. At optimal doping x = xop

there is no net charge or spin for the plaquette pair.
Overdoping gives the reverse of the underdoped pic-
ture.

Since the probability of the normal states reduced
to simple, one particle probabilities for the Cu3d or-
bitals, we are able to formulate the exchange inter-
action between plaquettes in the normal states more
precisely than that in the SC state. Let J0 = J(h ↑
, e ↓) = −J(e ↑, h ↓) denote the spin singlet exchange
between spins in the plaquette states characterized by
the corresponding particle and spin in the Cu3d or-
bital. Neglecting particle-particle exchange, expected
to be much weaker than particle-antiparticle exchange,
and noting that exchange requires joint probabilities,
the doping dependent average interaction energy Js(x)
for the balanced plaquette pair is

Js(x) = J0[Π2
h(x)−Π2

e(x)] = J0[Πh(x)−Πe(x)]. (14)

Introducing the definitions

∆h(x) = J0 + Js(x) = 2J0Πh(x)

(15)

∆e(x) = J0 − Js(x) = 2J0Πe(x),

the energy ∆e(x) becomes identical to the experimen-
tal pseudogap ∆pg(x) with the single requirement that
∆e(x) ≥ ∆(x). This gives the maximum SC gap
∆0 = 0.5J0 such that ∆e(x) is excluded from the SC
state, yielding the form

∆pg(x) ≡ ∆e(x) = 4∆0Πe(x). (16)

The pseudogap ∆pg(x) in Eq. (16) decreases lin-
early with doping from a maximum ∆pg(x1) = 4∆0

to ∆pg(x2) = ∆(x2) = 0. It is shown in Section V
that both Eqs. (9) and (16) are in excellent agreement
with a broad class of cuprates. In comparison, the
RVB-Hubbard theory in Ref. [34], Figure 2, also gives
∆pg(x) ≥ ∆(x), but ∆pg(x1) > 6∆0 does not agree
with experiment.

A simple SC gap-pseudogap relation is obtained by
eliminating the scaling factor ∆0 from Eqs. (9) and
(16), or alternatively retaining ∆0 and writing a dif-
ference relation. This gives

∆(x) = ∆pg(x)Πh(x) = ∆pg(x)− 4∆0Π2
e(x), (17)

7
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Figure 1: Plotted is the doping concentration x depen-
dence of the common, two-particle SC gap ∆eh(x) ≡
∆(x) and the distinct, single-particle pseudogaps
∆e(x) and ∆h(x) for hole doped cuprates and the pro-
posed electron doped anti-cuprates, respectively. The
dashed curves are the transition energies ∆tr(x) and
∆′tr(x).

which is a universal relation corresponding to Eq. (9).
It is evident that ∆pg and ∆ have the same symmetry,
and that their difference is proportional to the prob-
ability for filled p orbitals, which characterize the AF
state.

It is useful to introduce the concept of a pseudo-
gap state, and an anti-pseudogap state, defined by
their probabilities Ppg(x) = Πe(x), and P ′pg(x) =
Πh(x), respectively, corresponding to the pseudogap
∆pg(x) = ∆e(x) and anti-pseudogap ∆′pg(x) = ∆h(x).
The transition domains between the pseudogap(anti-
pseudogap) state and the SC state is defined by the
joint probabilities

Ptr(x) = Ppg(x)PSC(x), P ′tr(x) = P ′pg(x)PSC(x)
(18)

where PSC(x) is given by Eq. (6). The corresponding
energy transition boundaries are ∆tr(x) = ∆0Ptr(x)
and ∆′tr(x) = ∆0P

′
tr(x).

The SPM exhibits reflection symmetry about xop
for energies in both the SC and normal states. The
symmetry is illustrated in Fig.1, where the SC two-

particle gap ∆(x) = ∆eh(x) and the distinct, single-
particle, pseudo gaps ∆e(x) and ∆h(x) are plotted
in units of ∆0 versus the doping concentration x.
The dashed curves are ∆tr(x) and ∆′tr(x), represent-
ing the boundary of the transition from the normal
state to the SC state. Not shown, but of interest,
is the net normal state pseudogap energy Epg(x) =
(1/4∆0)[∆2

e(x) + ∆2
h(x)]. As x increases on the under-

doped side Epg(x) and the pseudogap decrease and the
SC state becomes more robust. The SC state is max-
imized at optimal doping where Epg(x) is minimum,
with equal pseudogaps and no net plaquette-plaquette
interaction energy in the normal state. On the over-
doped side Epg(x) and the anti-pseudogap increases
and the SC state loses coherence.

A pertinent question is why is the pseudogap ∆e(x)
observed, while ∆h(x) has not yet been observed. In
the overdoped range, it is plausible that a local excess
hole imbalance would be obscured, or destroyed, by the
onset of the fermi-fluid hole state, but ∆h(x) should
appear close to the SC gap on the underdoped side
near xop. In any case, ∆h(x) has a significant role in
both cuprates and the anti-cuprates proposed below.

The doping dependence of the Knight-shift, which
is proportional to the spin susceptibility χs, is partially
explained by ∆e(x, T ). Here the width of the probabil-
ity distribution w(T ) = x2(T )−x1(T ) is assumed to be
a function of T , with xop = (x1 +x2)/2 constant. Since
∆e(x, T ) is proportional to the spin-singlet exchange
between plaquettes, χs(x, T ) ∝ 1/∆e(x, T ), giving

χs(xop, T )

χs(x, T )
=

∆e(xop)

∆e(x)
= 1 +

2

w(T )
(xop − x) (19)

In the underdoped range χs(x, T ) < χs(xop, T ), and
in the overdoped range χs(x, T ) > χs(xop, T ) for each
value of T as observed in La2−xSrxCuO2.[56] The T
dependence of w(T ) is not obtained within the SPM.
However, using a Curie-Weiss form w(T ) = T −Θ ap-
proximates the χs(x, T ) curves.

For hole doping of cuprates, a few more compar-
isons are noteworthy. The slave-boson picture devel-
oped from the t − J model,[2] divides the phase dia-
gram into domains by a fermi pairing parameter and a
MF bose condensation parameter, which have the same
doping dependence as ∆e(x) and ∆h(x), respectively.
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The Nernst domain is very similar to our pseudogap-
SC state transition domain, bounded by ∆tr(x) and
the SC gap ∆(x).

In the Emery-Kivelson model[44] xop is determined
by the intersection of a pairing amplitude ∆0(x), which
decreases with x, and the phase stiffness Eθ(x) =
kBTθ, which increases with x. The value of TC(xop) is
generally not the maximum value of TC(x).[24] In our
model, the intersection of the pseudogap ∆e(x) and
the anti-pseudogap ∆h(x) occurs at xop, with TC(xop)
the maximum value.

Measurements of the superfluid density ns(T, x)[9]
provide another connection to our model. The x de-
pendence ns(T = 0, x) ∝ x − x1 is the same as
the that of anti-pseudo gap ∆′pg(x) ∝ Πh(x). Also,
dns(T, x)/dT ∝ Π2

e(x), which is the probability that
a p orbital is full, fits the data as well as the singular
function dns(T, x)/dT ∝ x−2 proposed.[9]

Electron Doping and Anti-Cuprates: Electron
doping of cuprates produces an SC state in the com-
paratively narrow range, [x1 = 0.14, x2 < 0.2], with
much lower TC(xop) than for hole doping. Referring to
the discussion above, the SC state of cuprates stems
from the states in Table 1, excluding ϕ(11) and ϕ(44).
Hole doping increases the probability that these states
exist at the expense of the definite, undoped AF state
ϕh(11). In contrast, while electron doping may induce
hopping, it also serves to maintain the predominance
of the undoped state to higher values of x, thus sup-
pressing the formation of the states necessary to form
the SC state. At a doping induced hopping level which
finally produces an SC state, the onset of an electron
Fermi-fluid state ϕFL again quickly suppresses the SC
state.

Electron doping of cuprates is not a very effective
means of producing HTS. However, envision a possible
class of ”anti-cuprates” with the same crystal structure
as a cuprate, but with exchanged anion and cation
roles: The Cu2+ and the O2− are replaced by ions
A2− and B2+, respectively. The SC gap is the same as
that for cuprates, but the role of the pseudogap is now
taken by the anti-pseudogap ∆h(x). If anti-cuprate
material exists, or can be synthesized, electron doping
should exhibit HTS properties similar to hole doping
of cuprates. The symmetry of the two HTS systems is
evident in Fig.1.

3 HAMILTONIAN H

The Hamiltonian is constructed from a combined in-
teraction V + U . As analyzed in Section II, a conse-
quence of particle hopping is an induced effective spin-
singlet exchange interaction U(x) ∝ J(x). However, it
is emphasized that the development in this section, and
many of the resulting HTS properties, are completely
independent of the x dependence of U . In addition
to U , the formation of small polarons contribute to
a phonon-mediated interaction V . The resulting two-
particle interaction Hint has the general form

Hint =
1

N

∑
q

∑
kk′

Γkk′p†kqpk′q, (20)

pkq = c−k+q/2↓ck+q/2↑,

where the interaction matrix Γ = [Γkk′ ] = [Vkk′ +
Ukk′ ].

In the cuprate SC state it is consistent with ob-
servation that BCS pairs c−k↓ck↑ form in the CuO
planes.[57, 58] Accordingly, Hint is approximated by
replacing all terms in the operator products in Eq. (20)
with BCS pairing terms, i.e. neglecting q dependence.
The Hamiltonian for the electron system, including the
kinetic energy is

H = Hkin +Hint, (21)

Hkin =
∑
k

εk[c†kck + c†−kc−k],

Hint(Γ) = p†Γp =
∑
kk′

Γkk′(c−kck)†c−k′ck′ ,

where p = [c−kck] is a column vector with BCS pairing
operators as the elements. The fixed spins are implic-
itly indicated by ±k ≡ k ↑,−k ↓. The single particle
energies, referenced to the chemical potential µ, are
εk = εk − µ. In the underdoped regime εk is the tight
binding kinetic energy, and in the overdoped regime it
is expected that εk is characterized by an effective mass
m∗. The general form of Γ is retained in the analysis
below until it becomes necessary to develop the spe-
cific matrix structure relevant to cuprates. Next, a
method is introduced for dealing with non-negligible
static fluctuation due to Γkk 6= 0.
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Mean Field and Static Fluctuation: Our pro-
cedure begins with an extraction of the mean field(MF)
part Hmf of H leaving a deviation(static fluctuation)
Hd. Then Hmf is diagonalized and Hd is approximated
by 〈Hd〉, which is subsequently evaluated exactly in the
eigenstates of Hmf . The first step is to introduce a vec-
tor pair deviation operator d = [dk] = b − p, where
d = [dk] and the components of b = [bk] are complex
scalar fields bk(x). Using d to reorganize Hint(Γ) in
Eq. (21) gives the form

H = Hkin +Hb(Γ) +Hd(Γ), (22)

Hb =
∑
kk′

Γkk′ [b∗kc−k′ck′ + (c−kck)†bk′ − b∗kbk′ ],

Hd =
∑
kk′

Γkk′d†kdk′ .

If Hd is neglected, H reduces to the form of the conven-
tional BCS MF Hamiltonian with bk = 〈c−k↓ck↑〉.[58,
55] The MF approximation is valid for interactions
with only off-diagonal matrix elements, such as the of-
ten used model with Γkk′ = −V0(1−δkk′). In this case,
static fluctuations are zero in the random phase ap-
proximation and Hd is negligible. However, as shown
below, Hd is not negligible for a pairing interaction
with diagonal elements Γkk 6= 0. This key feature of Γ
produces HTS.

The Hamiltonian in Eq. (22) is a reformulation
of H in Eq. (21), with no approximation. The
Bogoliubov-Valatin canonical transformation[59, 60]
diagonalizes Hmf = Hkin + Hb(Γ) in terms of quasi-

particle number operators nk = γ†kγk, and qk = λ†kλk.
To complete the diagonalization of H, the deviation
term Hd is approximated by its ensemble average
〈Hd〉 = 〈d†Γd〉. The details are outlined in Appendix

A. Exact evaluation of 〈d†kdk′〉 in the eigenstates of
Hmf , using Eqs. (85) and (88), gives the diagonal

Hamiltonian

H = Hmf + 〈Hd〉, (23)

Hmf = −
∑
k

[Ek(1− nk − qk)− εk −∆kb
∗
k],

〈Hd〉 =
∑
kk′

Γkk′ [〈d†k〉〈dk′〉+
1

4
δkk′σ2

k],

σk = 1− εk
Ek

tanh(βEk/2), β = 1/(kBT ),

Ek =
√
ε2
k + |∆k|2.

The quasi-particle excitation energy Ek depends on
the energy gap ∆k, which is linked to the average gap
deviation 〈δk〉. They are defined by

∆k = −
∑
k′

Γkk′bk′ , 〈δk〉 = −
∑
k′

Γkk′〈dk′〉. (24)

Using 〈dk〉 = bk − 〈c−kck〉, and Eq. (81) to evaluate
〈c−kck〉, the gap ∆k and gap deviation 〈δk〉 in Eq. (24)
are related by the constraint

〈δk〉
∆k

= gk = 1 +
1

∆k

∑
k′

Γkk′〈c−k′ck′〉, (25)

〈c−kck〉 =
1

2

∆k

Ek
tanh(βEk/2).

Setting gk = 0, Eq. (25) reduces to the conventional
BCS constraint that determines ∆k. However, it is
shown below that ∆k cannot be determined from Eq.
(25) because 〈δk〉 and ∆k are in phase and increase
simultaneously for an interaction with diagonal matrix
elements. Since 0 ≤ 〈c−kck〉 ≤ 1/2, it is evident from
Eq. (25) that a large gap solution has a corresponding
large deviation.

Using H in Eq. (23) gives the model expressions
for the thermodynamic functions defined in Appendix
B. The thermodynamic potential Ω and the average
internal energy U = 〈H〉 are

Ω = Ωmf + 〈Hd〉, (26)

Ωmf = −
∑
k

{ 2

β
ln[2 cosh(βEk/2)]− εk −∆kb

∗
k},
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and

U = −
∑
k

[Ek tanh(βEk/2)−εk−∆kb
∗
k]+ 〈Hd〉. (27)

It should be noted that since the evaluation of 〈Hd〉 in
Eq. (23) is exact, the U(T ) is exact for all T . Although
Ω(T ) is approximate, it is expected to be accurate for
T � TC since Ω(0) = U(0). The third thermodynamic
function of interest is the entropy S(T ). Inserting U
and Ω from Eq. (26) into Eq. (92) gives

S =
1

T

∑
k

{(2/β) ln[2 cosh(βEk/2)]−

Ek tanh(βEk/2)}. (28)

The standard Fermion gas form for S applied
in LTS,[58] is obtained using the identity x =
ln[f(−x)/f(x)]. The error inherent in Ω accounts
for the absence of the direct effect of 〈Hd〉 in S.
Such dependence is indirect, via ∆k determined self-
consistently from the fixed point of Ω.

Random Phase Approximation: To resolve the
system for non-negligible static fluctuation, we apply
a random phase approximation(RPA) to 〈Hd〉 in Eq.
(23). Assume the phases of the complex fluctuation
components 〈dk〉 are random. The only contribution
to 〈Hd〉 in an ensemble average over the phases is from
the phase independent k = k′ terms. The fluctuation
terms in 〈Hd〉 due to the off-diagonal elements of Γkk′

are zero. The average RPA value of the complex 〈δk〉
is also zero, but |〈δk〉| 6= 0. Noting that 〈d†k〉 = 〈dk〉∗,
the phase average RPA expressions are

〈Hd〉 =
∑
k

Γkk

[
|〈dk〉|2 +

1

4
σ2
k

]
, (29)

|〈δk〉|2 =
∑
k′

|Γkk′〈dk′〉|2. (30)

It should be noted that 〈Hd〉 can make a significant
contribution to H if Γkk 6= 0, even when the |〈dk〉|2
terms are negligible.

Interaction Matrix Structure: It is the goal
here to formulate a minimal structure for Γ = V + U
which reflects the essential physics of cuprates. The

U = [Ukk′ ] is formulated in Appendix A from a generic
spin-singlet exchange interaction, with the effective
doping dependent exchange U(x) ∝ J(x) given in Sec-
tion II.

Since the doping range of the SC state of most
cuprates is relatively small (0.05 / x / 0.27), it is
expected that a phonon mediated interaction V has a
significant contribution due to the formation of tight
binding small polarons. Small polaron formation in
cuprates has three important consequences:[55] 1) The
lattice deformation in response to the charge variation
tracks the electron hopping between Cu3d and O2p
orbitals. 2) There is exponential reduction in the elec-
tronic bandwidth. 3) Electron hopping requires emis-
sion or absorption of phonons. In the same order, rele-
vance to our model is three fold: 1) It is assumed that
the symmetry of V is the same Cu3d-O2p bond sym-
metry as that of the exchange interaction. 2) There is a
cut-off for the kinetic energy. 3) The diagonal elements
Vkk = 0.

An additional consideration is the repulsive
electron-electron interaction Vc included in V = Vp +
Vc. Since Vp < 0 and Vc > 0, the net phonon in-
teraction V (x) = −[|Vp(x)| − Vc(x)]. As the mate-
rial changes with doping from an insulator to a metal,
the |Vp(x)| is expected to decrease with increasing
x as the strong small polaron interaction changes to
a weaker Fermi-fluid-phonon form.[14] The Vc(x) is
also expected to decrease with increasing x as screen-
ing increases. Since x dependence of the difference
|Vp(x)| − Vc(x) is reduced, V is approximated by a
constant. Although V involves both CuO and reser-
voir planes, 3D effects[52] are incorporated here only
in the strength of V .

In accordance with the above discussion, the inter-
action matrix elements are given by Eq. (78), which
is

Γkk′ = −Γ0(x)(1− δkk′)ψkψ
∗
k′ − 2U0(x)δkk′ ,

(31)

Γ0(x) = V0 + U0(x) U0(x) = 4J(x).

Gap symmetry is corroborated by numerous experi-
ments on cuprates indicating a mixed s- and dx2−y2-
wave gap,[2, 15, 3] and by general gauge and time-
reversal symmetry breaking arguments.[3] As shown
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after Eq. (75) the symmetry factor ψk can be d-
wave, or s-wave, or a complex linear combination. All
three choices have the same effect on the thermody-
namic functions, which depend on |ψk|2. However, a
d-wave gap ∆k = ∆ψdk, with ψdk = cos(kx) − cos(ky)
enforces the Hubbard double occupancy restriction
〈c†rσc

†
rσ′〉 = 0, which follows from the expression for

〈c−kck〉 in Eq. (25).
Using Eq. (31) in the definitions in Eq. (24) gives

∆k ≈ ∆ψk, ∆ = Γ0

∑
k

ψ∗kbk

(32)

〈δk〉 ≈ δψk, δ = Γ0

∑
k

ψ∗k〈dk〉.

The approximate ∆k and δk assume that the sum of
terms in ∆ and δ is much larger than the single term
arising from the diagonal elements of Γ. Using the
approximate forms of ∆k and δk, in the constraint Eq.
(25) gives

± |δ|
|∆|

= g = 1− Γ0

2

∑
k

|ψk|2

Ek
tanh(βEk/2). (33)

Since g is real, only magnitudes |δ| and |∆| appear in
the relative fluctuation ratio. It is shown that g ≥ 0
for an SC state to exist.

Using ∆k ≈ ∆ψk from Eq. (32) to eliminate the
bk from Hmf in Eq. (23), and using Eq. (31) in the
phase average RPA Eqs. (29) and (30), the Hamilto-
nian assumes the form

H = H0 + 〈Hd〉, (34)

H0 = −
∑
k

[Ek(1− nk − qk)− εk] +
|∆|2

Γ0
,

〈Hd〉 = −2(1 + α)U0
|δ|2

Γ2
0

− U0Σ1,

where

Σ1 =
1

2

∑
k

σ2
k, α =

Σd2

Σd1
� 1,

|δ|2

Γ2
0

= Σd1

Σd1 =
∑
k

|ψk|2|〈dk〉|2, Σd2 =
∑
k

(1− |ψk|2)|〈dk〉|2.

The remainder of this article is based on the Hamil-
tonian in Eq. (34), coupled to the constraint Eq. (33).
The general symmetry dependent problem is outlined
in Appendix D, where it is shown that the model not
only produces small U0 HTS solutions with the |δ|2
term neglected, but also extreme HTS solutions exist
for weak interactions in the large fluctuation limit. It
is also concluded that the symmetry factor ψk does not
fundamentally change the HTS thermodynamic prop-
erties which depend only on |ψk|2.

4 AVERAGED SYMMETRY
ANALYSIS

In accordance with the above discussion, the sums are
now transformed to integrals, with |ψ2

k| replaced by
the average 〈|ψ2

k|〉av = 1, which sets α = 0. The in-
teractions V and U may have different energy scales.
However, underdoped cuprates are narrow band insu-
lators, with further narrowing due to the formation of
small polarons. Thus electronic kinetic energies are
limited to values much less than the polaron cut-off
at T = 0. In the overdoped domain the band widths
are larger but the effective pairing interaction is re-
duced, resulting in a small value of TC . Since the use
of multiple cut-offs would not essentially change the
HTS results over the relatively narrow doping depen-
dent range of the SC state, we invoke a kinetic energy
cut-off. This simplifying assumption is implemented
by replacing electron energies εk by their k-space an-
gular averages 〈εk〉, which are then bandwidth limited
by 〈εk〉 ≤ εm = kBTm.

In this section we focus on the resolution of the sys-
tem when the effect of the fluctuation term with |δ|2 in
Eq. (34) can be neglected. However, since the gap |∆|
is determined from the thermodynamic potential fixed
point equation, ∂Ω/∂|∆| = 0, the validity of the small
fluctuation solution can only be assessed by retaining
the |δ|2 in Ω, and then neglecting it in the fixed point
equation.

The integral forms of the thermodynamic potential
Ω in Eq. (26), the internal energy U in Eq. (27), with
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〈Hd〉 from Eq. (34), and the entropy S in Eq. (28) are

aΩ(t, φ) = 1− 4tI0(t, φ) +
φ2

γ
+ a〈Hd〉, (35)

aU(t, φ) = 1− 2I3(t, φ) +
φ2

γ
+ a〈Hd〉, (36)

a〈Hd〉 = −2ν

(
φg

γ

)2

− 2ν

χ
I1(t, φ),

S(t, φ) = 2kBχ[2I0(t, φ)− (1/t)I3(t, φ)]. (37)

The constraint Eq. (33) assumes the form

± |δ|
|∆|

= g(t, φ) = 1− γI(t, φ). (38)

The integrals In(t, φ) are defined in Appendix E. The
scaled temperature and gap are

t =
T

Tm
, φ(t) =

|∆(t)|
εm

, (39)

and the material parameters are

γ = η + ν, η = N0V0, ν = N0U0 = 4N0J

(40)

χ = N0εm, a = 1/(χεm).

The N0 is the average density of electron states in the
energy integration interval [−εm, εm]. The η = ηp− ηc
is the effective electron-phonon interaction parameter
ηp reduced by the repulsive coulomb parameter ηc. As
discussed before Eq. (31), there is at least partial can-
celing of the x dependence of η. It is possible that other
parameters, cut-off energy εm, density of states N0,
and chemical potential µ are also functions of x. How-
ever, lacking explicit information, the model is kept
reasonably simple by neglecting doping dependence of
the set [η, εm, N0, µ]. Excellent agreement with exper-
iment in Section V confirms the validity of implement-
ing this approximation.

Gap Equation: The thermodynamic potential
(35) contains two unknowns, |∆(t)| and |δ(t)|. The
constraints g = 1− γI, and ∂Ω/∂φ2|t = 0 determine g
and φ, self-consistently, as functions of the parameters

[η, ν, χ] at each value of t. From Eq. (35) one obtains
the fixed point equation

a
∂Ω

∂φ2
|t =

g

γ
− 2ν

[(
g

γ

)2

+ I4
g

γ

]
− ν

χ
I2 = 0, (41)

where the integrals I2 and I4 are defined in Appendix
E. The first term is the mean field term, the second
and third terms are from the |δ|2 fluctuation term, and
the last term is due to the constant diagonal elements
of the effective exchange interaction U . In the limit
ν = 0, Eq. (41) gives g = 1−ηI(t, φ) = 0, which is the
LTS BCS constraint for non-zero t.

Neglecting the fluctuation terms, Eq. (41) reduces
to

g

γ
=

1

γ
− I(t, φ) =

ν

χ
I2(t, φ) ≥ 0, (42)

which is valid for parameters satisfying

2ν

[
ν

χ
I2(t, φ) + I4(t, φ)

]
� 1. (43)

Solutions of Eq. (42) exist for γ = η + ν > 0, since
the integrals I ≥ 0 and I2 ≥ 0. Thus the exchange
interaction ν is so effective that even if η = ηp−ηc < 0,
i.e. when the coulomb interaction overrides the phonon
interaction, a SC solution exists for values of ν as long
as η + ν > 0.

It is elucidating to consider approximate implicit
solutions of Eq. (42) for the interaction limit γ/[1 −
g(t)] < 0.3 at t = 0 and t = tC . Using Eqs. (114) and
(118) gives

φ(0) = 2e−1/γeg(0)/γ , tC = 1.134e−1/γeg(tC)/γ . (44)

The BCS MF results for ∆(0) and TC are obtained for
g(ν = 0) = 0. As ν increases from zero, the g(t) > 0
initially results in an exponential g/γ increase in ∆(0)
and TC . For larger ν the dependence of ∆(t) and TC
on ν is linear over a relatively broad range of ν values.

The linearity is found analytically under certain
conditions. It follows from Eq. (42), using Eqs. (114)
and Eq. (117) that

g(0, φ)

γ
=

1− π/4
χ

ν

φ
, for φ(0)� 1

(45)

g(t, 0)

γ
=

C1(t)

χ

ν

t
, for t ≈ tC � 1.
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where 0.0738 < C1(t) / 0.2. It is worth noting that
εm and N0 cancel in both expressions in Eq. (45);
hence the enhancement of the gap and tC , relative to
the BCS MF values, is due only to the exchange in-
teraction ∝ U0 > 0, independent of the cutoff energy
and the average density of states. Using g(0) and g(tC)
from Eq. (45) in Eq. (44), leads to approximate linear
relations for the ratio of the t = 0 gap and tC at ν and
νo. They are

φ(ν)

φ(νo)
=

tC(ν)

tC(νo)
=

ν

νo
, (46)

which are independent of N0 and Tm. The impor-
tance of this positive linearity to HTS, in stark con-
trast to the negative exponential dependence in LTS,
cannot be over emphasized. It was shown in Section
II to be an essential characteristic for the doping de-
pendence of the gap |∆(x)|, and TC(x) observed in
cuprates. It is also found numerically that Eq. (46)
holds over a relatively broad range of ν, including
values that give significant fluctuations requiring the
solution of Eq. (41). Using Eq. (8), and setting
νo = ν(xop = x1 + w/2) = νm, the doping dependence
of the effective exchange energy is

ν(x)

νm
= 4Πh(x)Πe(x). (47)

Thus |∆(x)|, and TC(x) are linked to x.
Critical Field, and Specific Heat: The conden-

sation energy

∆Ω(t, φ) = Ω(t, φ)− Ω(t, 0), (48)

defines a thermodynamic critical magnetic field HC by

(1/2)µoH
2
C(t) = |∆Ω(t, φ)|. (49)

At low temperatures, T � TC , for ν > 0 Eq. (99)
yields the linear temperature dependence

HC(T )

HC(0)
= 1−B(φ)

T

TC
, (50)

B(φ) =
ν

χ

ln 4− 1

|aΩ(0, φ)|
TC
Tm

.

It is shown in section V that for ν > 10−3 the slope
B(φ) lies in the range [0.4, 0.6], in agreement with

cuprate HTS observation. The ν = 0 LTS limit
in Eq. (99) gives a very different HC(T )/HC(0) =
1− 1.06(T/TC)2.

The entropy determines the specific heat C =
T∂S/∂T for µ constant. Using the integral relations
(113) in Eq. (37) gives the form

C(t) =
kBχ

t2

∫ 1

0

dy

[
Y 2 − t

2

∂φ2

∂t

]
cosh−2

(
Y

2t

)
. (51)

The normal state specific heat Cn(t) = C(t, 0) is given
by the first term in Eq. (51) with Y = y. The disconti-
nuity ∆C(tC) = C(tC , φ→ 0−Cn(tC) at tC , obtained
from Eq. (51) is

∆C(tC) = −kBχ tanh

(
1

2tC

)
∂φ2

∂t
|tC (52)

For ν > 0 there is a large increase in the discontinuity
due to the large slope ∂φ2/∂t|tC < 0. A quantitative
comparison between the HTS and LTS C(t) is given in
section V. General relationships between C and other
forms of specific heat are developed in Appendix C.

5 NUMERICAL SOLUTIONS
AND COMPARISON WITH
EXPERIMENT

The numerical solution of Eq. (42) is facilitated by
starting at t = 0, using the exact integrals in Eq. (114)
and then increasing t. The minimum free energy SC
gap ∆(t) is shown in Fig. 2. Contours are the con-
densation energy ∆Ω(t) in Eq. (48) divided by χεm.
Contours to the left(right) of the zero contour are neg-
ative(positive). Fig. 2 is plotted for a cutoff parameter
χ = 0.01, phonon parameter η = 0.25, and a compar-
atively small exchange parameter ν = 0.035 = 0.14η.
The significant points are φ(0) = ∆(0)/kBTm = 0.392,
tC = TC/Tm = 0.164, and gap ratio ∆(0)/kBTC =
2.39. For comparison, using the same values of χ
and η, Fig. 3 is the ν = 0.0 LTS MF solution, with
φmf (0) = 0.0366, tCmf = 0.021, and ∆(0)/(kBTC) =
1.76. The enhancements relative to the LTS MF val-
ues are ∆(0)/∆mf (0) = 10.7 and TC/TCmf = 7.81.
Thus a 12K LTS becomes a 94K HTS. The remarkable
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|δ(t)/∆(t)| of Eq. (57) plotted for η = 0.25, ν = 0.035,
and χ = 0.01. The contours are the scaled condensa-
tion energy.

effectiveness of the diagonal matrix elements of the
exchange interaction is clearly evident by comparing
these enhancements with the modest mean field only
enhancement ∆mf (T = 0, η + ν)/∆mf (T = 0, η) =
TCmf (η + ν)/TCmf (η) ≈ 1.63. Large enhancement for
all t ≤ tC is concomitant with relatively large values
of g(t) = |δ(t)/∆(t)|, which varies from g(0) = 0.52 to
g(tC) = 0.45.

The SOPT tC is plotted in Fig. 4 as a function
of ν, and using Eq. (47) as a typical cuprate second
order phase transition boundary tC(x) for hole doping.
[15, 2, 7] An abrupt transition to the insulator(metal)
state occurs for x just outside the [x1, x2] range.
The tC(x) plotted in the doping range [0.05, 0.27]
for η = 0.25, νm = 0.14η, where tC(ν) is a linear
function of ν, has the parabolic shape observed in
rather broad collection of cuprates: Bi2Sr2CaCu2O8+δ,
YBa2Cu3O7−δ, Tl2Ba2CuO6+δ, HgBa2CuO4+δ which
have same TC(xop) ∼ 90 − 95K, but with different
numbers, n = 1, 2, 3, of Cu-layers per unit cell.[7] For
this value of w = x2 − x1 = 0.22, the curve is of-
ten referred to as the empirical ”universal curve”. A
more appropriate designation is ”universal parabolic”.
The general form given by Eq. (9) and the equiva-
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Figure 3: LTS mean field solutions plotted for η =
0.25, ν = 0.0, and χ = 0.01.
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lent Eq. (53), is a fundamental cuprate characteris-
tic based on state occupation probability arguments.
Other cuprates exhibit a parabolic phase boundary,
but with a different values for [x1, xop, x2], and maxi-
mum TC . For example. other measurements on the
two-layer Bi2Sr2CaCu2O8+δ give [x1 ≈ 0.06, xop ≈
0.12],[61] but the shape of the SC phase boundary re-
mains parabolic. The phase boundaries of the single
layer Bi2Sr2LaCuO6+δ and Bi2PbSr2LaCuO6 + δ are
also parabolic with [x1 ≈ 0.11, x2 ≈ 0.235].[62]

The lower TC(x) for these cuprates with TC(xop) <
40oK is obtained in the model by reducing the value
of η and/or ν, and changing the range of x. However,
the scaled curves are independent of η and are given
by Eq. (53) below. Doping dependence of N0(x)[62]
and µ = µ(x)[63] may play a role in determining the
SC phase transition range [x1, x2], and they probably
introduce some asymmetry into the tC(x) boundary.
Also, the sign change of dµ(x)/dx contributes to the
observed asymmetry of the phase boundary for hole
versus electron doping.

The T = 0 doping dependent SC gap ∆(x) and
the pseudogap ∆pg(x) are plotted in Fig. 5 for η =
0.25, νm = 0.140η. The gap ∆(x) has the same shape

as TC(x), since both are linear functions of ν(x). The
x dependence of both ∆(x) and TC(x) is given by Eq.
(9), which can be written in the form

TC(x)

TC(xop)
=

∆(x, 0)

∆(xop)
= 1−

[
1− 2

w
(x− x1)

]2

, (53)

where w = x2 − x1. For the case x1 = 0.05, w =
0.22, Eq. (53) is identical to the empirical,[64, 65, 7]
doping dependent function observed in Bi2212, YB123,
Tl2201, Hg1201, listed above, with TC(xop) ∼ 90 −
95K, ∆exp(xop, 0) ≈ 21± 1mev, and ∆exp(0)/kBTC ≈
2.5± 0.15, as summarized in Ref. [7].

The model ∆(0, x) curve fits the experimen-
tal ∆exp(0, x) curve for a cutoff energy εm =
∆exp(xop)/φ(xop) ≈ 51mev, at xop = 0.16 ≈ 1/6.
Using 26mev ' 300K gives Tm ≈ 589K. The Tm
found from Fig. 4 is Tm = TC(exp, xop)/tc(xop) ≈
92.5/0.164 = 564K. The relative difference in Tm
is 4.3%, which is within the experimental error in
∆exp(xop, 0) and the spread of TC(exp). The effective
density of states N0 = χ/εm ≈ 1/(5ev), which is that
of a metal, i.e. N0 ∼ 1/εF . This is consistent with BCS
superconductor behavior at optimal doping.[2, 7] Using
the N0 gives the exchange constant at optimal doping
J(xop) = 0.25U0(xop) ≈ 0.0438ev, and V0 ≈ 1.25ev.
Comparison with the undoped Cu3d-Cu3d exchange
Jdd = 0.13ev gives J(xop)/Jdd ≈ 1/3. Relating this
result for the cuprates in Ref. [7] with the commonly
used t-J model ratio Jdd/t ≈ 1/3,[2] gives the geomet-
ric mean

Jdd =
√
tJ(xop), for xop ≈ 1/6. (54)

For these cuprates the competition between kinetic en-
ergy per unit area and exchange energy is characterized
by 2xopt ≈ Jdd.

The pseudogap given by Eq. (16) is

∆pg(x) = 4∆(xop)

[
x2 − x
w

]
. (55)

Using the above ∆(xop) gives ∆pg = 42 ± 4mev, and
∆pg(x1) = 4∆(xop) = 84 ± 4 mev. This is within
experimental error of the measured pseudogap ∆pg =
76±4, extrapolated to x1 = 0.05.[7] With this starting
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in Fig. 2. The discontinuity at TC is 2.36 times the
corresponding LTS value.

value, ∆pg(x) fits the data in the SC range 0.05 < x <
0.27.

The thermodynamic critical field HC(T ) is shown
in Fig. 6 versus T/Tm and in Fig. 7 versus T/TC . The
curves in Fig. 6, with ν = 0.07, are based on the full
Eq. (57). For T / TC/3 there is significant linear slope
for all ν(x) > 0, which has almost no dependence on
x. The field HC is related to the magnetic field pene-
tration depth λ(T ) by a simple argument. In cuprates
the existence of vortices with effective penetration area
πλ2 are pierced by constant quantized flux for T � TC .
Thus the flux πλ2(T )HC(T ) is constant, and Eq. (50)
gives the form

λ2(0)

λ2(T )
= 1−B(φ)

T

TC
. (56)

For the range 10−3 / ν / 0.035, we obtain a slope
B ≈ 0.4− 0.6. This is in quantitative agreement with
the observed [66, 67, 68, 69, 70, 71] linear T dependence
of λ−2(T ) with slopes B ≈ 0.5± 0.1.

In the SOPT domain the specific heat C(t) =
t∂S/∂t increases with increasing ν(x). As a conse-
quence the specific heat discontinuity at tC increases
with hole doping, reaching a maximum at optimal
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doping, as observed.[2] The normalized HTS specific
heat Cs(ν = 0.035, φ)/(2kBχ), and the normal state
Cn(ν, φ = 0)/(2kBχ) are plotted in Fig. 8. The
discontinuity at TC is (Cs − Cn)/Cn = 3.38. The
corresponding discontinuity for the LTS specific heat
C(ν = 0, φ) is 1.43. Thus the model gives the ob-
served, large comparative, difference between LTS and
HTS specific heats.

The HTS internal energy U(T, ν) shown in Fig. 9
for ν = 0.035 exhibits anomalous behavior in contrast
to the LTS internal energy U(T, 0), which exhibits a
monotonic increase with T for both the SC and nor-
mal states (See Fig. 3.3 in Tinkham[58]). The un-
usual dip in U(T, ν) in the range t1 ≈ 0.07 < t <
t2 ≈ 0.14 < tC = 0.164 indicates a temperature range
[T1, T2] of stronger effective exchange pairing than that
for T < T1. Entering the dip from the left, energy is
transferred to non-electronic parts of the system. As
T → TC the system is absorbing energy as SC pairs
are breaking. In the normal state T > TC energy
is again emitted, indicating some form of order stem-
ming from the exchange parameter ν. Saturation, due
to the kinetic energy cut-off, occurs for T � TC with
U(T, ν)→ 1− ν/χ.

The oxygen isotope effect on TC is characterized
by the coefficient αiso = −∂ ln tC/∂ lnM , with M the

oxygen isotope mass. Quantitative assessment of the
effect may be complicated and involve the effective
carrier mass m∗ on the overdoped side.[13, 15] How-
ever, making the simple assumption that dM ∝ −dx
to preserve charge neutrality during hole doping, it fol-
lows from tC(x) plots that αiso is positive for x < xop,
negative for x > xop, and independent of x near xop.
Thus, without rigorous derivation, the model qualita-
tively gives the observed doping dependent evolution
of the isotope effect on TC .

6 LARGE FLUCTUATIONS

Comparisons in Section V to cuprate HTS are based on
Eq. (42) in which fluctuations were neglected. Here we
consider solutions of Eq. (41) to determine the devia-
tion from solutions of Eq. (42) for the case considered
in Section V with the maximum ν(xop) = 0.035, and
to show the effect of large fluctuations. Solving Eq.
(41) for g leads to the key integral equation for φ(t).
It is

1

γ
− I(t, φ) =

1

2
hν(t, φ)

[
1±

√
1−Q(t, φ)

]
, (57)

Q(t, φ) =
2

χ

I2(t, φ)

h2
ν(t, φ)

, hν(t, φ) =
1

2ν
− I4(t, φ),

which is the symmetry independent equivalent of Eq.
(105) with α = 0. Eq. (57) determines g and φ±,
self-consistently, as functions of [η, ν, χ] at each value
of t.

Large Gap Limit and t − J Model Relation:
The general development in Appendix D shows the ex-
istence of a large gap solution in proximity to an in-
teraction dependent singularity for any gap symmetry.
Using the same Q� 1 expansion of Eq. (57), and the
t → 0 limits for the integrals given by Eq. (116), the
φ+(0) and g(φ) assume the asymptotic forms

φ3 = γν

(
ν/χ− 2/3

η − ν

)
, g = 1− γ

φ
. (58)

The gap expression is valid for (2/3)χ < ν ≤ η. It
is evident that φ is singular at ν/η = 1. The unique
point is attained for ν/χ = U0/εm > 2/3, and ν/η =
U0/V0 = 1, independent of the density of states N0.
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Since χ � 1 the point is reached even for extremely
weak interactions – a QCP characteristic. Near the
QCP, in the FOPT domain, both δ and ∆ are very
large, and g / 1. There is no order parameter that
approaches zero near the QCP at the FOPT, as is the
case for a QCP at a SOPT.[32]

In the QCP limit the scaled condensation energy
a∆Ω(0, φ) = aΩ(0, φ) saturates to the expression

a∆Ωo ≈ 1− 2

[
1 +

1

2χ

]
η. (59)

The corresponding critical field HC(0) also saturates,
and it follows from Eqs. (37) and (115) that the en-
tropy S(t)→ 0. Although it has been conjectured that
the observed spike in ∆Ω near optimal doping[30] may
signify proximity to a QCP, the comparisons in Section
V indicate that cuprates are SOPT materials far from
the large fluctuation regime that leads to a FOPT near
the QCP.

In the large gap limit the the large gap Eq. (58)
is related algebraically to the three band t− J model.
For ν � (2/3)χ, Eq. (58) assumes the form

∆3(0) =
t4

J
, t =

√
εmU0, N0J =

V0 − U0

V0 + U0
. (60)

Setting ∆ = Ep−Ed, which is the cuprate charge trans-
fer gap, Eq. (60) is identical to the analogous relation
in the three band t− J model for particle hopping be-
tween the Cu3d and the O2p orbitals.[2] The relation
between the models is remarkable, but difficult to in-
terpret, particularly since the phonon interaction V0 is
not in the t− J model.

Large Fluctuation Numerical Solutions
The solution φ−(t) of Eq. (57) coincides with the

solution φ(t) of Eq. (42) for small p = ν/η = U0/V0.
For fixed [η, χ], increasing p increases φ−(t) until the
SOPT solution φ−(tC) = 0 is lost and a FOPT solution
φ+ emerges. The FOPT occurs with φ+(tSN ) ≥ 0 at
the SN transition with maximum temperature tSN and
gap φ+(tSN ) > 0. In the FOPT domain there is also
a tC ≤ tSN with φ+(tC) = 0. For tC ≤ t ≤ tSN
there are two solutions for each value of t. Hence, the
FOPT exhibits t dependent hysteresis with no applied
magnetic field. In the limit p → 1, both |Ω(0, φ)| and
tSN saturate, but φ(t < tSN )→∞. Since this unique
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Figure 10: FOPT solutions φ+(t) and |δ(t)|/|∆(t)| of
Eq. (57) are plotted for ν = 0.964η, η = 0.25 and
χ = 0.01.

point exists for all t ≤ tSN , and depends only on the
ratio p = U0/V0, it satisfies the essential conditions of
a QCP.[30]

Fig. 10 shows a FOPT solution φ+(t) of Eq. (57).
Evident is the FOPT hysteresis, with the SN transition
at φ+(tSN ) 6= 0 a higher t than the NS transition at
φ+(tC) = 0. The maximum T saturates near T / 1
as the QCP is approached. This gap-TC decoupling
contrasts the behavior in the SOPT domain, where
both the gap and TC are increasing functions of ν. For
very large TC the ratio TC/TF ≈ χ ∼ 10−1 − 10−2,
consistent with low carrier densities in HTS cuprates,
and 103 − 104 times the LTS TC/TF values.[3] The
condensation energy contours near t = 0 tend toward
the QCP saturation value a∆Ωo = −24.5 calculated
from Eq. (59).

SOPT phase boundaries are plotted in Fig. 11.
The upper tC(x), plotted for νm = 0.84η, lies just be-
low the FOPT domain. The curve is slightly pinched
near the maximum TC(xop)/Tm = 1.06, where TC(ν)
is nonlinear. At xop the enhancement factor is 48 times
the BCS MF value. For comparison, the lower curve
is plotted for the same parameters used in the typ-
ical cuprate phase boundary in Fig. 4. The value of
tC(xop) = 0.177 is about 7% higher than that in Fig. 4
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Figure 11: Plotted are SOPT phase boundaries tc(x)
versus the hole doping concentration x for η = 0.25,
χ = 0.01. The upper boundary is for νm = 0.84η
which is very close to the FOPT region, and the lower
boundary is for νm = 0.14η.

where fluctuation was neglected. A significant charac-
teristic is the linearity of TC(ν) over a wide range of ν
values, which produces the parabolic phase boundary
TC(x) observed in cuprates.

The SC gap ∆(T = 0) is plotted in Fig. 12 as
∆(ν) and as ∆(x). Linearity of ∆(ν) over a relatively
broad range of ν values, gives a parabolic ∆(x). The
upper curve ∆(x) is for parameter values very close
to the FOPT domain. As the QCP is approached,
the increased nonlinearity of ∆(ν) gives the triangular
shape, which increasingly fills the phase domain below
the pseudo- and ant-pseudo gaps plotted in Fig. 1.
The lower curve is for same parameter values used in
Fig. 5, based on Eq. (42) where fluctuation is ne-
glected. For the lower curve, ∆(xop) = 0.451 and
∆(xop)/kBTC = 2.55. The quantitative effect of the
fluctuations is obtained by recalculating the value of
Tm from the experimental data, as done in connection
with Fig. 5. This gives Tm = 537 from the experimen-
tal gap, and Tm = 523 from the experimental TC . The
relative difference in Tm is 2.6%, compared with 4.3%.
The error in the gap ratio is 2% compared with 4%.
Thus for ν = 0.035 neglect of the fluctuation term is

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

3.5

4

ν  and  x

Δ(
0,

x)
   

  a
nd

   
 Δ

(0
,ν

) 
  

Δ(0,ν)

Δ(0,x) ν
m

 = 0.035

Δ(0,x)

ν
m

 = 0.21

Figure 12: The SC gap ∆(T = 0, x) as a function of
the hole doping concentration x, and as a function of
the exchange parameter ν for same parameter values
in Fig. 11.

justified.

7 CONCLUSIONS

The combined state probability-Hamiltonian model
predicts a rather large set of doping dependent HTS
properties listed in the introduction, and fundamental
properties of the normal state. The relative success is
attributed to the following properties of the model:

• The state probability model, defines the proba-
bility of the SC and normal states based parti-
cle occupation of a large set of unit cell states.
To preserve local charge neutrality in the CuO
plane, the SPM mandates the formation of dis-
tinct charge-spin plaquettes. The SPM deter-
mines the doping dependence of the SC pairing
interaction and the SC gap, and in the normal
state it determines the pseudogap and an anti-
pseudogap.

• The procedure introduced to treat the deviation
from the mean field Hamiltonian produces an ex-
act expression for the internal energy U(T ) =
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〈H〉. The thermodynamic potential Ω(T ) is ex-
act at T = 0.

• The phase average RPA value of the magnitude
|δ| of static fluctuation from the mean field is
not negligible for any interaction with non-zero
diagonal matrix elements. Values of |δ| and the
SC gap |∆| are determined self-consistently at
the minimum free energy.

• The spin-singlet exchange interaction U , with
k independent diagonal matrix elements, is a
very effective pairing glue, resulting in significant
static fluctuation from the mean field state.

• The SC gap and the critical temperature TC are
linear functions of the exchange interaction pa-
rameter ν ∝ U over a broad range of values of ν,
independent of the effective density of states and
the kinetic energy cutoff parameter.

• Large static fluctuation produces quantum criti-
cality with concomitant extreme HTS properties,
although relevance to cuprates is tentative.

The theory captures the key mechanism responsible
for a large SC gap, high TC , a large ∆(T = 0)/kBTC
ratio, and a low temperature λ−2 ∝ T . It also
gives the doping dependent mechanism, coupled with
H, that is responsible for the HTS phase transition
boundary TC(x), and gap ∆(x, 0) for a broad range
of cuprates exhibiting a SOPT with relatively high
TC . The doping dependent probability model ascribes
a physical basis to a ”universal parabolic” function
for TC(x)/TC(xop) = ∆(0, x)/∆(0, xop) satisfied by
cuprates. It includes the empirical function[64, 65, 7]
as a special case. The phonon interaction parameter
η ∝ V gives only a mean field contribution the HTS
state. Universality stems entirely from the exchange
parameter ν(x). The form of ν(x) is further supported
by the concomitant universal SC gap-pseudogap rela-
tion, which agrees with all observed parabolic phase
boundaries. Fitting the broad spectrum of cuprate
data in Ref. [7] further confirms the relevance and
internal consistency of the theory. These non-trivial
experimental signatures substantiate the essential role
of U(x) as a pairing mechanism. Symmetry of the state
probability model suggests the possibility of HTS in

electron doped ”anti-cuprates”, with the roles of the
cation and anion reversed.

A FOPT with T dependent hysteresis and large
static fluctuation occurs in proximity to a QCP. The
QCP is independent of the gap symmetry function,
the density of states, and the energy cut-off parame-
ter. The unique dependence on the interaction ratio
U0/V0 with the emergence of quantum criticality, may
indicate the possibility of extreme HTS with weak in-
teractions.

Although the theory predicts many cuprate HTS
properties, a number of aspects are not included in the
Hamiltonian. Doping dependence of parameters other
than ν(x), and explicit contributions from the charge
reservoir layers are neglected. A fundamental evalua-
tion of the state dependent contributions to the effec-
tive exchange J(x), and the phonon mediated V (x) is
lacking.
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A INTERACTION FORMU-
LATION

This appendix contains two parts. The first relates to
the exchange interaction, averaged over the UC states
using the probability model in Section II. The second
relates to the determination of the interaction matrix
elements in the Hamiltonian in Section III.

Average Exchange. Referring to Section II,
we consider a checkerboard pattern of unit cell
plaquettes(±) with opposite net charge-spin. The UC
states in a given cell are denoted by ϕh↑, ϕe↑, and those
in the neighbor cell are denoted by ϕh↓, ϕe↓, which sat-
isfy the probability constraints in Eq. (3) to maintain
local charge-spin neutrality. Formulation of the ex-
change interaction between states in the paired cells
requires an extremely complicated microscopic deter-
mination of the overlap integrals for the 4 × 16 con-
stituent UC states, which in turn determine the eigen-
states of the interacting system. Here only the relative
values of the exchange for different groups of accessi-
ble states are formulated. In the context of the density
functional approach with a Kohn-Sham exchange cor-
relation potential,[55] the exchange values are assumed
to be proportional to differences between characteristic
energies vhσ(ij) and −veσ(ij) corresponding to the UC
states in Eq. (2), as illustrated in Table 1. In the SC
state, excluding the UC states ϕ(11) and ϕ(44), the
average energies for the paired plaquettes are

Eh↑ + Ee↓ = P dhPePh[J1PePh + J2P
2
e + J3P

2
h ], (61)

Ee↑ + Eh↓ = −P de PePh[J ′1PePh + J ′2P
2
h + J ′3P

2
e ],(62)

Jk = V h↑k − V
e↓
k , J ′k = V e↑k − V

h↓
k

V qσ1 = [v11 + v22 + 2(v12 + v34)]qσ, q = e, h

V qσ2 = 2[v13 + v23]qσ, V qσ3 = 2[v14 + v24]qσ.

The designation eσ or hσ in Vk is implicit in every vij .
The P d’s are Cu3d orbital occupation probabilities,
and all P ’s are O2 p-orbital occupation probabilities.

Adding Eqs. (61) and (62), defining J = Eh↑ +
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Ee↑ + Eh↓ + Ee↓, and noting that Jk = −J ′k leads to
the expression

J

PePh
= J1PePh + J2[P 2

e + P 2
h ]−

(J2 − J3)[P de P
2
e + P dhP

2
h ] (63)

Since Jk = V h↑k − V
e↓
k each energy difference

Jij = vh↑(ij)− ve↓(ij) = −[ve↑(ij)− vh↓(ij)]. (64)

is interpreted as an effective spin-singlet exchange in-
teraction between the states ϕh↑(ij) and ϕe↓(ij). Not-
ing that J2 ≈ J3, and using (Pe + Ph)n = 1, gives Eq.
(7).

Matrix Elements of U and V: The matrix ele-
ments of U ∝ J as a spin-singlet exchange interaction
is formulated. A singlet exchange interaction between
spins at coordinates r and r′ has the form

Hex =
1

4

∑
rr′

2Jrr′Ξ
†
rr′Ξrr′

(65)

=
∑
rr′

Jrr′ [Sr · Sr′ − (1/4)nrnr′ ],

Ξrr′ = cr′↓cr↑ − cr′↑cr↓

Setting r′ = r + R, the operator Ξ†rr′ creates a spin-
singlet with a translationally invariant energy exchange
constant Jr,r+R = JR. Eq. (65) and the transform of
Hex to momentum space, with compaction to a single
spin term is given without proof in Ref. [72]. We
develop the transform details to point out an oversight
in the determination of the diagonal elements, which
are important for HTS.

Defining the Fourier transform

crσi
=

1√
N

∑
ki

ckiσi
exp [iki · r], i = 1, ..., 4 (66)

and the shift k1 = −k + q/2,k2 = k + q/2,k3 =

−k′ + q/2,k4 = k′ + q/2, the transform of Eq. (65) is

Hex =
1

4N

∑
kk′

2Jkk′Ξ†kqΞkq (67)

Ξkq = c−k+q/2↓ck+q/2↑ − c−k+q/2↑ck+q/2↓

= c−k+q/2↓ck+q/2↑ + ck+q/2↓c−k+q/2↑

Jkk′ =
∑
R

JR exp [−i(k− k′) ·R].

The k space representation of Hex is simplified by writ-
ing Jkk′ = Jekk′ + Jokk′ , where

Jekk′ = Je−k,k′ = Jek,−k′ ,

(68)

Jokk′ = −Jo−k,k′ = −Jok,−k′ .

Noting the second form of Ξkq in Eq. (67), it follows
that terms involving Jokk′ do not contribute to Hex;
whereas terms involving Jek′ combine to give a single
spin set form

Hex =
2

N

∑
kk′q

Jekk′p
†
kqpk′q (69)

pkq = c−k+q/2↓ck+q/2↑.

For a square lattice, applicable to the CuO plane
of cuprates, we assume the nearest neighbor plaquette
exchange JR = −J is an average value for the x and
y directions. Setting Rx = Ry = 1, the transformed
exchange parameter is

Jkk′ = −4J [Ckk′ + Skk′ ], (70)

Ckk′ = cos kx cos k′x + cos ky cos k′y,

Skk′ = sin kx sin k′x + sin ky sin k′y

Since Ckk + Skk = 2, the even part of Jkk′ is

Jekk′ = −4J [(1− δkk′)Ckk′ + 2δkk′ ] . (71)

Defining d and s-wave symmetry functions

ψdk = cos kx − cos ky, ψsk = cos kx + cos ky, (72)
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it follows that

2Ckk′ = ψdkψ
d
k′ + ψskψ

s
k′ . (73)

This substitution of symmetry factors is used in
Ref.[72], however we note that the diagonal elements
are not correct. The contribution of Skk to Jekk′ was
overlooked. This term, which produces the k indepen-
dent diagonal element in Jkk′ , is essential to HTS.

It is convenient to introduce a complex symmetry
factor ψk defined as

ψk =
1√
2

[ψdk + iψsk], (74)

which gives the product

ψkψ
∗
k′ = Ckk′ + i[cos ky cos k′x − cos kx cos k′y]. (75)

It will be shown that all thermodynamic properties are
functions only of |ψk|2 = Ckk. Furthermore, as stated
in Ref. [72], the s-wave and d-wave contributions to
Hint are the same.

Using the complex ψk, we replace the Jekk′ with the
complex exchange interaction

Ukk′ = −U0 [(1− δkk′)ψkψ
∗
k′ + 2δkk′ ] , (76)

where U0 = 4J . As formulated in Section II, J is
replaced with an effective exchange J(x) that depends
on the doping dependent particle occupation of the
Cu3d-O2p orbitals.

In the phonon mediated interaction V , the main
contribution is from tight binding, small polarons
formed in response to the Cu3d-O2p hopping of elec-
trons(holes). Drawing from the discussion above Eq.
(31): The symmetry of Vkk′ is the same as that of
the exchange J , and the diagonal matrix elements
Vkk = 0. The structure of the off-diagonal matrix el-
ements, other than the symmetry factors, is a compli-
cated function of k and k′, which is modeled here by a
constant −V0. Accordingly, the effective contribution
of V to the electronic Hamiltonian is approximated by

Vkk′ = −V0(1− δkk′)ψkψ
∗
k′ , (77)

giving a V + U interaction

Γkk′ = −(V0 + U0)(1− δkk′)ψkψ
∗
k′ − 2U0δkk′ . (78)

B DIAGONALIZATION OF H

The Bogoliubov-Valatin canonical transformation,[59,
60] to a new set of Fermion operators γk and λk is

γk = ukck − vkc†−k, λk = ukc−k + vkc
†
k

(79)

ck = u∗kγk + vkλ
†
k, c†−k = −v∗kγk + ukλ

†
k,

where the coefficients satisfy |uk|2 + |vk|2 = 1. The

operators γ†k(γk) and λ†k(λk) create(destroy) quasi-
particle excitations consisting of a correlated electron-
hole pair.

Applying (79) to Hkin in Eq. (21), noting that
εk = ε−k , and using the anti-commutation rules, gives

Hkin =
∑
k

εk[N̂o
k +

2ukvk(λkγk)† + 2(ukvk)∗λkγk]

(80)

N̂o
k = (|uk|2 − |vk|2)(nk + qk) + 2|vk|2,

where nk = γ†kγk, and qk = λ†kλk are quasi-particle
number operators. To transform Hb we use

c−kck = u∗kvk(1− nk − qk) +

(u∗k)2λkγk − (vk)2(λkγk)†, (81)

giving

Hb =
∑
k

{−(ukv
∗
k∆k + u∗kvk∆∗k)(1− nk − qk) +

[(v∗k)2∆k − (u∗k)2∆∗k]λkγk −

[(uk)2∆k − (vk)2∆∗k](λkγk)† + b∗k∆k}, (82)

where ∆k = −
∑

k′ Γkk′bk′ . The off-diagonal terms
λkγk and (λkγk)† are eliminated from H0 = Hkin+Hb

using the coefficient constraint

2εkukvk − u2
k∆k + v2

k∆∗k = 0. (83)

The solution of Eqs. (83) and |uk|2 + |vk|2 = 1
leads to the relations

(uk/vk)∆k = εk ∓ Ek, 2Eku
∗
kvk = ∓∆k,

(84)

2Ek|uk|2 = Ek ∓ εk, 2Ek|vk|2 = Ek ± εk,
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where Ek =
√
ε2
k + |∆k|2. Using Eqs. (83) and (84)

in Hkin +Hb(Γ) leads to the diagonal mean field form

Hmf =
∑
k

[±Ek(1− nk − qk) + εk + ∆kb
∗
k]. (85)

It is stated in the literature that one should choose the
lower sign in (84), but all thermodynamic functions
are invariant with respect to the choice of sign, which
is simply a choice of an electron or a hole picture.

Determination of 〈Hd〉: To complete the diag-

onalization of H the operator d†kdk′ is approximated

by its average 〈d†kdk′〉. Define X[〈pkqk′〉] = 〈pkqk′〉 −
〈pk〉〈qk′〉. Using the definition dk = bk − c−kck and
applying Eq. (81), the bk’s cancel and one obtains

X[〈d†kdk′〉] = X[〈(c−kck)†c−k′ck′〉]

= ukv
∗
ku
∗
k′vk′X[〈(nk + qk)(nk′ + qk′)〉] +

(uku
∗
k′)2〈(λkγk)†λk′γk′〉+

(v∗kvk′)2〈λkγk(λk′γk′)†〉 (86)

The average of all other terms in X[〈d†kdk′〉] involv-
ing unmatched creation and annihilation operators
are zero in the eigenstates of Hmf . Using the anti-
commutation relation for Fermion operators to rear-
range the last two terms in Eq. (86), and noting that

〈γ†k′γk〉 = δkk′〈nk〉 and 〈λ†k′λk〉 = δkk′〈qk〉 gives

X[〈d†kdk′〉] = ukv
∗
ku
∗
k′vk′X[〈(nk + qk)(nk′ + qk′)〉] +

δkk′ |uk|4〈nkqk〉+ (87)

δkk′ |vk|4〈(1− nk)(1− qk)〉,

where δkk′ = 0 for k 6= k′ and δkk = 1. Since
nk and qk are uncorrelated it follows from Eq. (89)
that 〈nkqk′〉 = 〈nk〉〈qk′〉 for all k and k′. Similarly,
〈nknk′〉 = 〈nk〉〈nk′〉 for k 6= k′, but 〈nknk〉 = 〈nk〉,
and 〈qkqk〉 = 〈qk〉, since the eigenvalues are 0 and 1.
Using these relations, one obtains X[〈(nk + qk)(nk′ +

qk′)〉] = δkk′ [〈nk〉(1 − 〈nk〉 + 〈qk〉(1 − 〈qk〉]. Finally,
noting that 〈nk〉 = 〈qk〉, Eq. (87) reduces to

X[〈d†kdk′〉] =
1

4
δkk′〈N̂k〉2 (88)

1

2
〈N̂k〉 = |uk|2〈nk〉+ |vk|2(1− 〈nk〉),

The 〈Nk〉 = 〈No
k〉 is the average non-interacting

fermion gas particle number density for state k for
both spin orientations. Using Eq. (84) in Eq. (88)

and noting that 〈d†kdk′〉 = 〈d†k〉〈dk′〉+X[〈d†kdk′〉] gives
〈Hd〉 in Eq. (23). In obtaining Eq. (23) we apply Eq.
(89) to obtain 〈nk〉 = 〈qk〉 = f(Ek) = [eβEk + 1]−1,
and use 1− 2f(x) = tanh(x/2).

C THERMODYNAMIC
FUNCTIONS

General relations between several thermodynamic
functions are derived from their basic definitions, and
different definitions of specific heats are related.

Grand canonical ensemble average of an operator
Q:

〈Q〉 = Tr(ρ̂Q), ρ̂ =
1

Z
exp(−βH),

(89)

Z = Tr[exp(−βH)],

where β = 1/(kBT ), H(µ) = H(0)−µN̂ with chemical
potential µ(T ), Z is the grand partition function, and
ρ̂ is the density operator.

Thermodynamic potential (generalized free en-
ergy):

Ω = −(1/β) ln(Z). (90)

Von Neumann entropy:

S = −kBTr(ρ̂ ln ρ̂). (91)

The above definitions (89) - (91) give the entropy

S =
1

T
(〈H〉 − Ω) = −∂Ω

∂T
+ 〈∂H

∂T
〉. (92)
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The partition function for H in Eq. (23) is

Z =
∏
k

[1 + exp(−βEk)]2 exp[β(Ek − εk)]×

exp(−β∆kb
∗
k) exp(−β〈Hd〉). (93)

Using Z one obtains the expressions for Ω in Eq. (26),
and the internal energy U = 〈H〉 in Eq. (27).

Specific Heat: Differentiating S in Eq. (92) with
respect to T and eliminating S, yields the useful deriva-
tive relation

T
∂S

∂T
=
∂〈H〉
∂T

− 〈∂Ĥ
∂T
〉 = −T ∂

2Ω

∂T 2
+ T

∂

∂T
〈∂H
∂T
〉. (94)

The various forms of specific heat in Eq. (94) are

C = T
∂S

∂T
, (95)

CU =
∂〈H〉
∂T

= C + 〈∂H
∂T
〉, (96)

CΩ = −T ∂
2Ω

∂T 2
= C − T ∂

∂T
〈∂H
∂T
〉. (97)

Details for C are given in Eq. (51). It is evident that
for any model with 〈∂H/∂T 〉 6= 0, the specific heats
differ. In this case the internal energy U cannot be
determined from an integration of C with respect to
T , as done for LTS.[58]

Condensation Energy at Low Temperature:
The condensation energy is ∆Ω(t, φ) = Ω(t, φ) −
Ω(t, 0) ≤ 0, where Ω(t, φ) is given by Eq. (35) In
the limit 2t � φ2, and 2t � 1 for φ = 0, the inte-
grals in Appendix E give Ω(t, φ) ≈ Ω(0, φ) to within
exponentially small t dependence, and

aΩ(t, 0) = −2ν

χ
(ln 4− 1)t− π2

3
t2. (98)

Noting that ∆Ω(0, φ) = Ω(0, φ), leads to the expres-
sion

∆Ω(t, φ)

∆Ω(0, φ)
= 1− 2B(φ)

T

TC
−A(φ)

(
T

TC

)2

,(99)

B(φ) =
ν

χ

ln 4− 1

|aΩ(0, φ)|
TC
Tm

A(φ) =
π2

3|aΩ(0, φ)|

(
TC
Tm

)2

.

The factor ν/χ in Eq. (99) shows that the linear T
dependence is due to the diagonal matrix elements of
U . For ν = 0 the LTS dependence (T/TC)2 is recovered
with A ≈ (2/3)(πTC/∆)2 ≈ 2.12. But, even for a small
value of ν the linear term in T/TC dominates, since
χ� 1. Eq. (99) gives critical field Eq. (50).

D GENERAL ANALYSIS

The purpose of this appendix is to outline the behav-
ior of the general, symmetry dependent minimum free
energy solutions. The Ω corresponding to the model
H in Eq. (34) is

Ω = Ωmf + 〈Hd〉, (100)

Ωmf = − 4

β
Σ0 +

∑
k

εk +
|∆|2

Γ0
,

〈Hd〉 = −Θ0
|δ|2

Γ2
0

− U0Σ1, Θ0 = 2(1 + α)U0,

where α � 1 is defined in Eq. (34). The constraint
Eq. (33) is

± |δ|
|∆|

= g = 1− Γ0Σ, Γ0 = V0 + U0, (101)

and the k-space sums are

Σ0 =
1

2

∑
k

ln[2 cosh(βEk/2)],

Σ =
1

2

∑
k

|ψk|2

Ek
tanh(βEk/2), (102)

Σ1 =
1

2

∑
k

σ2
k, σk = 1− εk

Ek
tanh(βEk/2),

where Ek =
√
ε2
k + |∆k|2 and ∆k = ∆ψk. It follows

from Eqs. (100)-(102) that

a
∂Ω

∂|∆|2
|T =

g

Γ0
−Θ0(1 + ρ)

g2

Γ2
0

−Θ0Σ4
g

Γ0
− U0Σ2

(103)

ρ =
α

1 + α

∂ lnα

∂ ln |∆|2
.
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The sums arising from the derivatives of Σ1 and Σ,
respectively, are

Σ2 =
1

2

∑
k

|ψk|2
εk
E2

k

σkζk,

Σ4 =
1

2

∑
k

|ψk|2
|∆k|2

E2
k

ζk, (104)

ζk =
1

Ek
tanh(βEk/2)− β

2
cosh−2(βEk/2).

The first term in Eq. (103) is from the mean field Ωmf ,
and the remaining terms are from 〈Hd〉. Replacing the
symmetry factor |ψk|2 in Σd1, defined in Eq. (34), by
its average value unity, α = 0 and ρ = 0. Since α ≈ 0,
it is treated as a parameter and ρ� 1 is neglected.

Solving ∂Ω/∂|∆|2 = 0 for g/Γ0 gives

1

Γ0
− Σ =

W

2Θ0

[
1±

√
1−Q

]
, (105)

Q =
4U0Θ0

W 2
Σ2, W = 1−Θ0Σ4.

Solutions of Eq. (105) are the gap amplitudes |∆±(T )|.
Eq. (105) is complicated and it has several distinct
solution domains depending on the relative values of
the parameters. Extreme solutions of Eq. (105) are
the small and large gap solutions that occur in the
same limit Q � 1. To linear order in Q, Eq. (105)
leads to

Γ0 −Θ0

Γ0Θ0
= −(Σ− Σ4) +

U0

W
Σ2 (106)

Σ =
1

Γ0
− U0

W
Σ2, (107)

Eq. (106) determines |∆+| and Eq. (107) determines
|∆−|, corresponding to the sign in Eq. (105). Setting
U0 = 0, Eq. (107) reduces to the BCS constraint for
symmetry ψk, with a small, LTS gap |∆−|. Since Σ−
Σ4 ≥ 0, Eq. (106) has no finite real solution in the
limit U0 → 0.

Eq. (107), with W ≈ 1, is the small U0 equa-
tion that follows from the MF part Ωmf plus the
diagonal interaction term proportional to Σ1 in Eq.

(103), neglecting terms generated by |δ|2. As U0 is in-
creased from zero Eq. (107) has an effective Γeff =
Γ0/(1 − U0Γ0Σ2) > Γ0 that causes the gap amplitude
|∆−| to increase exponentially from the BCS value.
[See Eq. (44).] The term small U0 is quantified by the
condition

Θ0[U0Σ2 + Σ4]� 1, (108)

required for negligible fluctuation effect from |δ|2.
Retaining the fluctuation terms leads to the emer-

gence of a second solution |∆+| determined from Eq.
(106), which becomes large when Γ0 −Θ0 ' 0. In this
limit the large gap solution of Eq. (106) is

|∆+(0)|3 =
Γ0Θ0

V0 − (1 + 2α)U0
ΣM , (109)

ΣM =
1

2

∑
k

|ψk|2εk
(ε2

k/|∆+|2 + ψ2
k)3/2

[U0σk − εk] .

Existence of |∆+| requires a minimum value of U0

such that ΣM > 0. Eq. (109) is singular when
the interaction ratio p = U0/V0 assumes the value
p0 = 1/(1 + 2α) / 1. Near the singularity the gap
|∆+(0)| → ∞, and the ΣM is essentially independent
of |∆+|.

Although |∆+| becomes increasingly large for p
near p0, the g saturates to its maximum g = 1, and
Ω remains finite. It follows from Eq. (100), with some
manipulation, that the asymptotic saturation value is

Ωo(0) =
∑
k

(εk − U0/2)− Γ0

4

(∑
k

|ψk|

)2

, (110)

for any symmetry |ψk|.
Several inferences are drawn from the analysis

above: The symmetry factor ψk does not fundamen-
tally change the thermodynamic properties. For small
values of U0, defined by (108), the |∆−| is independent
of |δ|. The model Hamiltonian with |δ|2 neglected is
applied in Section III, and its relevance to cuprates is
clearly manifested by extensive comparison with ex-
periment in Section V. When the inequality (108) is
violated, retention of |δ|2 produces a gap solution gov-
erned by p = U0/V0 with a QCP at p0 / 1. Extreme
HTS properties of the model are considered in Section
VI.
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E INTEGRALS

The integrals in Eqs. (35) - (38), and (57), with inte-
gration variable y = 〈εk〉/εm, are

I0(t, φ) =

∫ 1

0

dy ln

[
2 cosh

(
Y

2t

)]
, Y =

√
y2 + φ2

I(t, φ) = 2
t

φ

∂I0
∂φ

=

∫ 1

0

dy
1

Y
tanh

(
Y

2t

)
,

I1(t, φ) =
1

2

∫ 1

0

dy

[
1− y

Y
tanh

(
Y

2t

)]2

,

(111)

I2(t, φ) =
1

φ

∂I1
∂φ

=

∫ 1

0

dy
y

Y 2

[
1− y

Y
tanh

(
Y

2t

)]
×

[
1

Y
tanh

(
Y

2t

)
− 1

2t
cosh−2

(
Y

2t

)]

I3(t, φ) =

∫ 1

0

dyY tanh

(
Y

2t

)

I4(t, φ) = −φ∂I
∂φ

= φ2

∫ 1

0

dy
1

Y 2

[
1

Y
tanh

(
Y

2t

)
−

1

2t
cosh−2

(
Y

2t

)]
.

Integration of I2 by parts gives the useful form

2I2(t, φ) =

[
1− 1

Y1
tanh

(
Y1

2t

)]2

−

[
1− 2

φ
tanh

(
φ

2t

)]
−

∫ 1

0

dy

[
1

Y
tanh

(
Y

2t

)]2

, (112)

The integrals satisfy the relations

2t
∂I0
∂t

+
1

t
I3 =

1

2
I
∂φ2

∂t
,

(113)

I
∂φ2

∂t
− 2

∂I3
∂t

=
1

t2

∫ 1

0

dy

[
Y 2 − t

2

∂φ2

∂t

]
cosh−2

(
Y

2t

)
.

For t � tC the integrals are given by their t = 0
limit

4tI0(0, φ) = Y1 + φ2I(0, φ), Y1 =
√

1 + φ2,

I(0, φ) = arcsinh(1/φ) = ln[(1/φ)(1 + Y1)]

I4(0, φ) = 1/Y1, (114)

I1(0, φ) = 1− Y1 + φ[1− (1/2) arctan(1/φ)]

I2(0, φ) = −(1/Y1)[1− 1/(2Y1)] +

(1/φ)[1− (1/2) arctan(1/φ)].

For φ� 2t,

2tI0(t, φ) = I3(t, φ) =

∫ 1

0

dyY (115)

Expansions of the integrals in Eq. (114) in powers of
1/φ� 1 are

I(0, φ) =
1

φ
− 1

6φ3
, I4(0, φ) =

1

φ
− 1

2φ3
,

(116)

I1(0, φ) =
1

2
− 1

2φ
+

1

6φ2
, I2(0, φ) =

1

2φ3
.

In the limit φ(t)→ 0

I1(t, 0) = 1− t[tanh (1/2t) + 2 ln cosh (1/2t)],

(117)

I4(t, 0) = 0.

For t / 0.1, with γe = 0.57726, giving D = 2.2677,

I(t, 0) =

∫ 1/2t

0

dx

x
tanh(x) ≈ ln (D/2t),

(118)

lnD ≈ −
∫ ∞

0

dx lnx cosh−2 x = ln (4/π) + γe,

I2(t, 0) ≈ C1(t)

t
, C1(t) =

1

2
− 1

4

∫ 1/2t

0

dx

x2
tanh2(x).
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