UC Irvine
ICS Technical Reports

Title
A System for Testing Student Programs

Permalink
https://escholarship.org/uc/item/9fk0Ov3sq

Author
Tonge, Fred M.

Publication Date
1971-07-01

Peer reviewed

eScholarship.org

Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/9fk0v3sg
https://escholarship.org
http://www.cdlib.org/

')
)

A SYSTEM FCR TESTING

STUDENT PRCGRAMS

Fred M. Tonge

TECHNICAL REPORT No. 12, JULY 1971

S

INTRODUCTION

TEST is a system for checking student programs using data sets
supplied by the instructor. This system owes much to the TEACH
system developed at Dartmouth for grading student BASIC programs.
However, the goals of TEST are somewhat different.

1. To as large an extent as possible, the system is language
irdependent. This is achieved primarily by describing the
language of student programs in production form, so that
by changing only the productioms, student programs in

" different languages can be handled.

2. Testing programs are written in the same language as student
programs.

3. The system is uséd to test student programs, not to grade
them. No data on errors, number of attempts, is kept.

4. Following from 3., there is no need that the system be "safe"
from students; indeed, students can be encouraged to figure
out how TEST works.

5. TFollowing also from 3., the system can assume legal student
programs; no large effort need be put into detecting and/or
avoiding tricks.

The current system works with XBASIC on the Sigma-7, and (although

it need not be) TEST is programmed in XBASIC. It has not yet been used
with another language, but that does seem straightforward. A description

of the TEST program itself is given in Appendix B.

HOW TEST APPEARS TO THE STUDENT

The student who is going to'use TEST is given both a general
description of how to prepare a program for TESTing (Figure 15 and a
problem assignment (Figure 2). When the student has a (hopefully)
debugged version of the program filed (e.g., Figure 3), he uses TEST,
as shown in the sample output (Figure 4).

HOW TEST APPEARS TO THE INSTRUCTOR

The instructor first prepares the problem assignment. Then,
based on instructions for TESTing a program (Figure 5), he prepares
a program that will be merged with the student's program to test that
program. (Figure 6 gives a flowchart of a testing program.for the
problem of Figure 2, and Figure 7 gives a program for that flowchart.)
When the testing program is debugged, it is filed under the appropriate
name in the TEST account, and the system isvreédy for student use.
HOW TEST WORKS

The TEST system proceeds in the following manner:

1. The file designated by the student is read in and edited,
and a new file (COPYFILE) is produced containing the edited
program.

2. The COPYFILE is loaded.

3. The test program is loaded, merging with COPYFILE.

4. The combined program is run.

The exact details of merging two programs and of executing a

program depend on the language and operating system in which student

and test programs are run; in XBASIC under BTM this is straightforward.

The editing done by TEST is controlled by a description of the
syntax of the language being processed. TFor XBASIC, the changes made
in an edited program are as follows. (Most of the complications in
handliné XBASIC arise from the possibiiity of compound conditional

statements.)

a. Line numbers are checked, and for any less than 10 or greater

than 9999 .an error indication is printed.
b. The command words 'INPUT' and 'INPUTS' are replaced by 'READ'.
c. Statements beginning with 'STOP', 'PAUSE', or ;END' are
replaced by the statement 'GOTO 10000' (the béginning of the
test program).
d. Statements beginning with 'PRINT' are replaced by the statement
'0=0" (an effective no-operation).
The edited‘version of TRI (e.g., COPYFILE) is shown in Figuie 8.
HOW TO CHANGE LANGUAGES
Changing the TEST system to handle some other language for student
and instructor programs than XBASIC requires several changes in the present
system, and also the appropriate file linking capability in the processor
for the new language.
1. The productions controlling editing of the student program
must be changed to those appropriate for the new language.
The productions for XBASIC are described in Appendix C.
2. The scanner in TEST may require modi fication to recognize the
basic classes of tokens for the new language.

3. The statement in the TEST system which outputs to the edited

program (COPYFILE) a linkage command to the test program
(in the current version of TEST, statement 5000) must be
changed to reflect the linkage conventions of the new
language.

The commands at the end of TEST to link it to COPYFILE must
be changed to reflect the linkage conventions of the new

language and the fact that TEST and COPYFILE are in different

.languages.

The commands added to the end of the test program to cause
its execution after linking with the edited program (see
Figure 5) must be changed to reflect the conventions of the

new language.

Preparing a Program for TESTing

Some of your programming assignments can be tested using the
system TEST. For those assignments, when you believe your program is
debugged and ready to be tested, file it under the name given in the
assignment and then proceed as follows. (Suppose the specified file
name is TRI.) V

*GET TEST
FILE NAME:. TRI (You type the underlined parts.)

TEST will load your program from the file, modify it slightly for
TESTing, and then try it out with several sets of data, informing you
of any errors it finds. If there aré errors, you can correct them, file
the revised program, and TEST it again.

TEST expects that the program you give to i; is a working one; it
may not accept an undebugged program. In preparing a program for TEST,
you must follow theée rules. If you do not, TEST may give you inaccurate
resﬁlts.

1. Statement numbers must lie between 10 and 9999,

2. Variable names starting with the letter O followed by one
or more digits should not be used.

3. The program should input (whether by INPUT or READ) only that
-.data described in the problem statement. Other input statements
will confuse TEST.
4. The program should do exactly what is specified. ¥For example,
if the problem calls for processing one set of data, the program
should not loop back for more sets. If it does, TEST may give

. Inaccurate results.

5. TEST cannot stop a program that loops forever. You will have
to interrupt if that is the case.

TEST is not a grading program. You are invited (encouraged) to find
out how it works. And it may still contain a few bugs, too. So if you

can't explain its treatment of your program, let us know.

Figure 1.

Triangle Program Assignment

Write a program to read in three numbers which are the lengths
of sides of a triangle. Compute the type of triangle they form, if
any, and set the variable F according to that result as follows.
= 0 if not a triangle
1 if an acute triangle

2 if a right triangle
3 if an obtuse triangle.

bxj = e o
([

If you wish to use TEST to check your program, file it under the

name TRI and then GET TEST.

Good luck. 7

Figure 2.

i5 REMee TRIANGLE ASSIGNMENT
20 READ AsBaC

30 A=sMAX{ALE,C) , S
35 YsA+E+C=PuX

37 IF ¥ <spn THEN 120,

40 Ysx @2

80 J=p 248 24C Pepsy _
&0 IF 72<0 TheN 100

70 IF 2>0 THFN 110 - B

80 Fsp ‘
90 68 vye 45 e
100 Fa=i

108 Geate 115

110 Fs3

1185 PRINT AsBeCsfF , . o . , o o .
116 IF Fs0O THEN PRINT INBT TRIANGLEY ELSE PRINT tTRIANGLE !
117 g78F e
120 FeD

128 GATH 1415
180 CATA 1:254
160 DATA 4,5%,6
170 DATA 3,45

130 DATA 2:3:4 e

200 END

‘GET TEST
FILE NAME: TRI

BEGIN TESTING TRI
OKAY FOR 1 2 4

ERRCR
FOR 4 5 6 PROGRAM SET F= 3, SHOULD BE 1

OKAY FOR 3 4 5

ERROR
FOR 2 3 4 PROGRAM SET ¥= 1, SHOULD BE 3

OKAY FOR -2 -2 =3

TEST COMPLETED
HALT AT 10090

Figure 4.

Preparing a TEST Program

The program which you prepare to test a student's program will be
merged with that program and the two executed together. The student
program will be in lines 10 through 9999, so your program should proceed
and follow that area.

In preparing a TEST program, use the folléwing Tules.

1. Use only varizble names beginning with the letter 0
followed by one or more digits.

2. TUse statements numbered 1-8 for initial setup,
before first exceution of the student program.

3. Include a statement 9, a REM or other no-0p, as an
entry point to the student program.

4. The student program will exit to statement 10000 when
completed, so checking his results should start there.

5. Make sure that your instructioné to the student specify
the variables that he is to set as output, whether or
not his program is to loop through several data sets,
any intermediate variables that you want him to use
specifically, and the name under which he is to file
his completed program.

When your test program is completed and debugged, file it in the
test program account under the same file name as the student is to use,
but with a * appended (e.g., the test program for TRI would be filed
under TRI*). Then add to that file the following two lines, using the

Edit subsystem:

RUN
X

Figure 5.

Procedure for Testing TRI

START | &«
. :
"BEGIN | :
TESTING | ;
TRI" E ?

>

!

¥ ENTRY TO
STUDENT PROGRAM

e et e s

?
EXIT FROM

P
"ACCEPTS YES 7

YES

0<0UTPUT<3

"ILLECAL 1
VALUE FOR!
F" . él

NEGATIVE ‘! ﬁ?’ “ANY SIDE

LENGTH" ‘NEGATIVE
STUDENT PROGRAM _
' NO
(Nexr paTA | : — ,}“___,
| ITEM (FLAG?) | 5 ("ERROR" |
| | !
"PROGRAM f i
NO _|READ T0O } | (
D MUCH OR | i | S
| TO0 LITTLE| A

: "
YES i DATA

e }
CORRECT INPUT,

k\s—/
: 7 stop
OUTPUT, NEXT | _ oToP

/%Q o

COMPUTED

|
~._ OUTPUT -~ L4

‘\\\OKAYV‘ 2 4:/./
~ YES

]

| "FOR" DATA

f "PROGRAM

} SET F=" F

} " SHOULD BE"

"TEST -

~ , COMPLETED"
e

——

YES

TRT K o
L PRINT - o e —
2 PRINT 'BFGIN TESTING TRIY
S 3UPRINY e - - S
S REM FANTRY FBR STUDENT!'S PRBGRANM
M“JOOOO“REM”MMW”ENTRXWEBR%IESIMPQSGRAMWwmemmu U

10030 REAC 67
10040 1F B2#-999 THEN 101CO ELSE READ B3,84,85,84,87 e
10050 IF @4#F THEN 10120 ELSE PRINT 'GKAY F8R 11830485
__ 10060 PRINT

10070 IF §7=1 THEN 9 ELSE PRINT 7T 7T oo
~-10020 PRINT HTEST COMPLETED! . .~ .
10080 sTBF :

..__..;10J.OQ.PRI!\'!';.A.J%FEEZ'GR‘AD’J,_,%‘EAD._‘Tﬁﬁ,!‘4.L,C’r1,ﬁ’-h’{..T:‘BG,L.Y'['I'LE,,DA'JZ,&\,,,,.,,,,;.w
10110 sTBF

10120 IF. F<0 BR F> 3_THEN 10170 e e
10130 IF MIN(83,84,85)>0 THEN PRINT TERRBR' ELSE PRINT 'ACCEPTS NEGATIVE LENGTH

MMJOiQO.PRINI_JEﬁRhliﬁSLB&i653!-PREGRANMSEI,F:!:FI!; SHEULD BE 'i56 .

10150 PRINT

10160 G&TE 1DO7QWMM“MNW“W,,»w”w.m.M‘WM‘_m"Mw‘mhwmqu . .
10170 PRINT ILLEGAL VALUE FBR F

-1Q180 G876 10140 - e
10180 DATA 1:2542299%95122542051

MMIQEOO‘DATAM4:5:64E9991§15;6:11ldwﬁhwaw_ e . . _-
10210 DATA 3545522999, 3,455,2,1

.10220 DATA 2:3,4,=2959, 243245328 . e
10230 DATA ®P1=22=2352995222;,=2:23,0,0

“m102¥OWEhD%_“_WH@mMm"Hv;mM“mm e e I e
RUN

X S S . . - . I —

_ _ e thw’@- T ‘ e

o “eeeyeiLe "

is REMa=eTRIANGLE ASSIGNMENT

20 READ A’B‘C - - '- e T T e e T T T e

30 X=MAX(ASR,C)Y

35 Y=A+R+CelaX

37 IF Y <=0 THFN 120
40 Y=X 2

50 Z=A 2+B 2+C 2epsy o R
60 IF Z<0 THEN 100

70 IF Z>0 THEN 110

80 Feoz e e

.90 G8 18 115 . e e e e e e e
100 F=1
105 Garg 115 S e
110 F=3
115 B=8

116 IF F=O THEN 628 ELSE 8e8 oo

117 Gete _lecooC

130 Feo : SO Vuwwfﬁww”ww_m““,m_W”»m

125 ¢GBve 115

160 REM 455,44

170 REM Bphan T

180 REM 2434

~100" REM ShI, e e e e e

200 GBTe 10000
LBAD 'TRI*(ICTFST)Y!

i:gﬁtxfﬁb &

s is the edihed versiow of At progeas o Bgued)

13

APPENDIX A
REALITIES

The preceding description of how TEST works is in fact idealistic,
as of -the present moment, and must be changed slightly to work under the
current version of XBASIC and TEST.)

First; XBASIC itself cannot be used, because it's file handling

capabilities are not complete; rather, an experimental version of XBASIC

called Z must be used. Assuming that the studént had in his files a copy

of the TEST system named XTEST, he could use it as follows:
‘GET Z

>LOAD 'XTEST'
FILE NAME: TRI

BEGIN TESTING TRI
OKAY FOR 1 2 4

ERROR
FOR 4 5 6 PROGRAM SET F= 3, SHUOULD BE 1 .

- OKAY FOR 3 4 5

ERROR
FOR 2 3 4 PROGRAM SET F= 1, SHOULD BE 3

OKAY FOR -2 -2 -3
TEST COMPLETED
HALT AT 10090
If XTESI were available in a common account (say, XTEST), then the LOAD
given above could be replaced by LOAD "XTEST(XTEST)" and there would be
no need for a copy of XTEST in the student's files.

Also, the current procedure leaves the edited program COPYFILE as a

file in the .student's account. He must be warned to delete it after testing

if he does not want to be charged for the space (and he must have the space

to create COPYFILE in the first place or the TESTing procedure will not work).

14

APPENDIX B
THE TEST PROGRAM

On the following pages are a listing of the TEST program in XBASIC.

The major part of the program is an adaption of a TYMSHARE SuperBasic

program and contains a number of possibilities for improved programming.

A number of the important variables used in TEST are listed below:

GO
Gl
G2
G3
G7
G8

L«OW%QG»

F

line being scanned

index
depth
index
index
index
stack
stack
array
array
array
array
array

col

col

col

col
col

of
of
in
of
of
of
of
of
of

character in line

stack of scanned characters

production picture being matched to stack
current production ’
stack of scanned characters

-scanned character types (see below)

actually scanned tokens corresponding to A

production pictures

replacement pictures

keywords

subroutine entries

productions —— each row a production

replacement picture index

semantics routine number

index of next production on success
(1000=DONE; 2000=SUBROUTINE RETURN)

scan next character indication

index of next production on failure
(1000=DONE; 2000=SUBROUTINE RETURN;
-number= error; O=numerically next production)

column from which to start copying wvalid output

The input statement scanner within TEST produces both the scanned

token and an indication of the type of token. The types recognized in

processing XBASIC are:

name

number

string
operator
separator

15

APPENDIX B (contiﬁued)

Productiop pictures may match any of these or certain other cases.
Each token in a production picture is encoded in two characters. If
one of the above, the token is blank followed by the type symbol.
Keywords are encoded by two digit numbers giving their index in the
keyword array. Subroutine entries are encoded by a single digit giving
the index of the entry in the subroutine array followed by the character

‘@. An indication of "match anything" is given by the two characters ? .

7 R
8 F
9 R
11
i3
15
16
17
18
19
20
21
22
23
24
25
26
27
23
29
30
32
35
36
38
39
40
44
50
60
70
80
100
130
140
150
153
160
162
165
180
195
200
205
208
210
215
220
230
235
237
240
250
270
280

EAC PRsKW:RPs8R

8R Ji=1 T8 PR

EAC GO o o
C(JL)=RIGHT((SPRACE(
NEXT J1

FBR Jis1 T8 Kw

READ K(J1)

NEXT J1

FOK Ji=1 768 RP
READ GS(J1)

CNEXT Ji

FBR Ji=1 T8 SB
READ Q(J1)

NEXT J1

FBR Jls1 T8 PR
FBR J2=1 T8 5

READ J(Jisd2)

NEXT J2.U01
FRINT FILE NAME:

INFUTS FILE
ENRFILE 5000 .
REACS FREM FILE:GO
G2,G32C4+G720
GO=GC+ 2
Gi=1
GBSUR 1010
REM o
G7=G7+1
G3=10
G&=G2
GS=SUBESTR(G(G7),G3,
IF Gss' ' TREN 230

IF GSs1®¢ THEN EOO

IF INDEX(Y#4%%=z,

: REM

IF A(GR)y#'%' THEN

G4=K (VAL (SUBSTR(G(
IF R(CR2)=G4 THEN 2
IF J(G7:,5)%0 THEN
IF A(Cg)=Gg THEN 2

REM

C4sSUESTRIG(G7)2G3=

IF G4=' 1+ THEN 180
GE=G1

S(Ge)=G7
G7=G(VAL(G4))
G8TH 5o

G3=G3~=2

GR=z(8=1

GBTY 70

IF J(C7s2)#0 THEN
IF U(C7,1)=0 THEN
CasLENGTH(GO) /2
W2= (G4

10)+G9),10)

1)

£G9YED THEN 1go
180
G7)2G3=1s2)))

30 |
500 ELSE GBTR 40
30 FLSE GBTB 165

121
ELSE G4=Gé+1

GaslB 301C

41C ELSE Ge=zGS(J(G

16

-l<eh§aé@w1is

o ek prdhs.

- stade pichees

- su&mm z.}f-

. - ’g‘“‘@ c\%ﬁ%\M w&w\‘w&%
: Gk Bl name

T Rewld vuut line C;?am*-gd&&

S c.dnn, \Sﬁ' cx%a&”mﬁ%bV‘
w- Pedo ?w&u&%m

Ex3h~fwfwmc*vuﬁaa Ci&a&un5§ﬂ~f bglpﬂx{

ELSE IF GS=t! ' THEN 24C

Chhecle

\

SPECIAL CHARACTER (}¢4&1 $Kakéka9 cﬂxmmbcie-=

IF INCEX(!'0123456789'2G9)=0 THEN 180

woveh

- Bodure o M‘\Lﬁk pméucﬁu;a

FBSSIBLE SUBREUTINE

N s '@xcﬁa&ve.cﬁﬁxkrzaeﬁsc«pﬁ
-~ Sewmuheg D .

721))

R&WM ch"\%r&-a}

290 IF RIGHT(GSs1)#' ' THEN 340 @&ug£&<4, QUumﬁr
300 A(GR+CuY=zA(G2)
310 K(GR+CG4)=H(G2)
320 G4=Gh=4
330 GO=SUBSTRIG9s1,2%#Gk])
340 IF G4=0 THEN 400
350 FBR G2=0G8+1 T8 GR+04
360 A(G2)=SUBSTR(G94+241)
~37¢ H{G2)=SUBSTR(G9:21,1) o S o o o
330 G9=SUBSTR(GY9:,3) '

390 NEXT G2 R _ e
400 G2=G8+J2

410 IF J(G7s4)s1 THEN GBSLR 101C =~ Scamiems =)
415 REM SUCCESS

440 G4= (G703 e
Ly Pz t4t

_ %50 G8T® Ses5 o

500 G4=u(G725) "F@&R«k@& bﬂﬁaukaﬂ%

502 J2st=! o o
505 IF G4=1000 THEN 550 ELSE IF G4=2000 TWEN S6C

B10 IF G4<0o THFN 540 ELSE G7= C@ A e
520 GST3 50

540 PRINT txxx ERRBR # '1G4, SUBSTR(GC,1sG1)

542 X - o
550 WRITE AN 'cOPYFILE!':BUT - -DonN&l =

552 GB8TH 3n ’

560 G7=S(Gs) - podurn Sew ?uiaf@:}kwﬂm

565 Gé=G6=1
570 IF J2=1+1_ YHEN 230

575 G1s5% [U e - N

580 GBTH 145
1010 C2=G2+1
1030 Co=SURSTR(GO,G1s1)
1040 IF GS4' ' THEN 1050 FLSE Glsgi+! ~ Scomn oSh Jdanls -
1045 GBTE 030 - - o
1050 Gu4=G1
1058 IF GS= 1t THEN 1330 ELSE IF Gags' ' TREN 41330
1060 IF INDEX(153:'5G9)1#0 THREN 1190
1063 IF INDEX('+es/ <>z#',;G9)%#0 THEN 1280
1065 IF IANDEX('0123456783':,G9)#C THFN 1210
1070 IF INREX('ABCDEFGKIJKLMNAPARETUVWXYZ'263)40 THEN 1110
- 1080 A(C2)=G9
1085 G1=G1l+1
109C GBTB 1170
1100 , ~ REM NAME
1110 G1sG1l+1
1120 G1=SLRSTR(GO,G1s1)
1130 2= INDEX (T ARCDEFGHIJKLMNSPORSTUVHRYXYZ 1934586788 5 Ut
1140 IF J2#0 THEN 1110
1165 A(G2)='3%t
1170 F(G2)=SUBSTR(GO»2G4sGl=G4)
1180 RETURN
1185 , REM SEFARATER
1190 A(G2)=?,?
1195 K(G2) =63

sy

Gi=Gi+y
RETURN
__REM _ NUMBER

G1:Gl+1

“1=SLBSTR(G0,G121)

IF INDEX(101234567891, 01040 THEN i2iC

A(G2)sTa!l
GCBTB 1170

: _REM BPERATBR
GCi=Gl+1

IF INDEX(1'<>31,SUBSTR(GO,G1,1))=0 THEN 1310

Gi=G1l+1
A(G2Y=st g
GBTHB 1170

. REM_ _STRING
J2z06S
Gi1zGl+1

IF SURSTR(GO,G1s1)#J2 THEN 1340 ELSE A(G2)s'st

C1=Glet
G8Te 1170
REM SEMANTICS

BN JU(G7,2) GETE 310043130s3145,3175,2195,3245,3147
FRINT 'SEMANTICS ERRBR'J J(G7,7)sSUBSTR(GOs1:61)

CBTE 550

‘ B REM SEMANTICS
F=H{G2) :
IF VAL(F)<10 THEN 3020

IF VAL(F) >=10000 THEN 302C

BUT = 11
F=1 .
RETURN o
F=G1 ¢
RETURN) .
REM SEMANTICS 2
GBSUE 3400
BUT=BUT+'g=0"
CB8T8 31720
FeGl={EN(H{G2))=1
RETURN . ,
REM SEMANTICS
CBsUBR 3400
BUT=BUT+YREM!
GBTH 2120
REM SEMANT IS
GeSUB 3400
BUT=0UT+ 'READ
GBaTe 3120
REM SEMANTIcs
GBSUB 3400 ,
BUTSELT+'GETA 100001
GeTR 3170
REM SEMANTICS
BUT=0UT+SURSTR(GOsFsLEN{GO) =F
GaTae 3120 :
J2ELENGTH(HIGR2))

s

1

S efW\OM'SC.\. OS ‘?

-

4

4

CaPY

SWRkerwTINE

19

- 3405 BUT=BUT+SUBSTR(GO,FsGi=Frd?)
3410 RETURN
S000 LINE=s LBAD § +FILE+'«t+ ! (ICTEQT) 4 e
5010 WRITE BN 'CBPYFILE'ILINE .
5910 CATA 68,25,3,3 & procluchons, #@ywovds, @ cepl pickures, & subrocTine
6000 CATA '#v;v01','02’:903u'04',vmsu*@e',"7';108':'09'«,@'@4&»@‘5 Petnees
£010 CATA 1014 Yo t1QL 0L, 'CL 01,7071, e gt 11 iq S
6020 CATA ’2@':‘3@'4'2@')'23';'#’1?291'#'1'$’;‘(':’=’l'(j
. 6030 CATA t(14 Va2 s e R s 5050011 C 101 A0 FRR SR o
6040 CATA !12‘,'13'5'14‘)'15’;'lé';'l?'p'lg';'19';'3@';':';'%71’:‘;'2574?20'
6050 CATA '2@?;’21'1'22'1'2@':'13';'13’1’24'1'25':?='z'('z'1@‘1”! IR RB YR
6100 DATA 'IF':’PRINT':‘DATA'g'RESTﬁgE’ﬁ'TNPUTVI'TNPUTS';’ST@D':?PAESE"K%ﬁmm%
6110 CATA !END'A‘ELSE':'QEM';'FBR':'G@TS’;’LET'@'hEXT';'G@SLB'p'RETURK° }
6120 CATA 'GN"'SKIP'A'TG'aQSTEP’,'RY'J'TFENY;'AND':'@" .
6160 CATA '',0 1,0 |91,34,26,36 - fw/@mmwf‘plcﬁm_s .Saaélm% Wﬂ&é
6200 CATA 1212221521505042351200152,1240s02153513:0202153214205C ﬁ%dwm%mscsiﬁ%
_ 6220 CATA 1;#11536103114315JCA031;5»16;01C}1:5:16:0:0:1:5;16;Oﬂc L rEY)
6230 DATA G£0ﬁ4150:17£010168@111000:0)0;20111]710;0121;1:171030z7291117
6240 [DATA 01013811:171056£1000!Cim731»0»lii1:23CnOiEOGOAOfOlOﬁOmB@:CJBB
6280 DATA OxO»E%eO;mS:O:0538:Oa“6;0nci24@61m7:150:25:116131;O:3811:2
6260 CATA 130&65:11@11»0130:110&1:0:3011)C;0:O:26;136&:11@;2611:62
6270 DATA 1:0:30;i:OlDJO#Eé:0133101032000301-10:0:0135:0;?OCO)110134:1119
_ 6280 CATA 1:0:37013?12)1)0:36;1&19;150118;1101116:100C:O@O:2)O»?:C:°13v
6290 CATA 110@38:11051;0:52:110;1:Op?l;11€11:0:50:1:0:1:0122:1:C
_ 6300 LATA ilOé?ill)Oll)OlBgJ1)0!110959)1)Cli}OJEi!llsalQlO)SltGl&lQ
6320 CATA 1)0!9111)“15511C153Jit“’ﬁnllCJS#ﬁﬂl‘17:0!0'55)0)'18)110!56)1!’19
6330 CATA O;Oﬁ57101n205110121a1!0:1:C;El;1)28;01016O1C;~21:1:0:20;11m?2
6340 CATA 1:0;95:11W8513032611501116:26:1131:1;C:26111-9:310166;1i30
6350 CATA N20+6720s=2255150030212=24:027235:0s=4
RUN
CLEAR
LBAD YCBFYFILES

20

APPENDIX C
XBASTC PRODUCTIONS

Produétions for processing XBASIC programs using TEST are given
on the following pages. The rules for actually encoding these productions
in XBASTC DATA Statements are given in Appendik B, as are the encoded
productions themselves a part of the TEST listing. What follows is a
more readable representation of the productions.

As can be readily seen, READ FROM, WRITE ON, and multiple assignment
statements separated by semicolons are not handled by these productions;

but suitable productions could be added.

+

[EFONS e
U W ~d

—

STV VSR VLN A PR VAR AT IR VIR VAR A VIR A VIR M

[FRR VIR PV IR VVIRVS)
O 00~ O

FEN S
[FSEAVIEE N & I

£ F o
~ o U &

“-}8 E

49
50
31
2
53
el

e

N DY G Y e

o

NEHEWNN O N UL & O

PRINT

T DATAS

RESTBRE
INPUT
INPUTS
sTap
PAUSE

T END-

IF @

IF
TIF
IF

!

i

i

i
ondt o)

INLEELV IRV SN I

i
§
}

4
xI

I

—~ o~

¥

» N E-!hqétﬂvﬁ"\(ﬂ&c\‘?:;tzgﬂm&))@

IF 3
Ir 2
REM
FaRr
GaTta
LET
NEXT
5PQUR
RETUERN
- N
SKI1R

S

23

2R

TAa

VVVVVVVYVY

VVVVYV

v Vv

YVVVYVVVVVVYVVYVYYVVYV

vV VvV Vv

*

o
i
0
z
e
3
o S
4
5
C
5 - g
% ¢
C
* C
Foo
&
C
- Q
G
-0 -
C
oy c
% C
® C
* C
M e
* c
. -
* ¢
c
C
% C
* 0
® C
* ¢
é
¢
3* C
% c -
* C
* Q
* c
= C
® C
» C
* C
C
* o)
* C
% C
¢
#* C

i

51

%4
55
56

13 oo - - T -
14 &
15 p e e
15 C
ié C -
16 G
16 oG s - - -
41 i7
68 QOB - e e e
2C 17
~1 17 -
7e 17
28 17 . i
1C0 =2
11—z -~ - - -
»CCO C
38 3 '
28 =5 :
BB mA e e
z =7

(a)

- Bk amdbeddad ahasenuunt”

MO0 00—

8
—
£ O

mlE
c‘ié
«17
=18

nig

#fm ST

54
- ':)7»
58

~

&0
- él .
(oYl

637
L4
ga3e]

£6

&8

AND

-

A i i e e s i e ;(S

14

B S I PR
12

!

NOO GO O0A0300O0

i

k"

26
.
26
6e
67
— 30

33

57
7l
60 -
2Q

-

c

=zC

-
-
<=

. ? 1,< -

e
c
31 -
-g
a0
=25
mpf
=4

22

