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Neural mechanisms of sustained attention are rhythmic
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Summary

Classic models of attention suggest that sustained neural firing constitutes a neural correlate of 

sustained attention. However, recent evidence indicates that behavioral performance fluctuates 

over time, exhibiting temporal dynamics that closely resemble the spectral features of ongoing, 

oscillatory brain activity. Therefore, it has been proposed that periodic neuronal excitability 

fluctuations might shape attentional allocation and overt behavior. However, empirical evidence to 

support this notion is sparse. Here, we address this issue by examining data from large-scale 

subdural recordings, using two different attention tasks that track perceptual ability at high 

temporal resolution. Our results reveal that perceptual outcome varies as a function of the theta 

phase even in states of sustained spatial attention. These effects were robust at the single-subject 

level, suggesting that rhythmic perceptual sampling is an inherent property of the frontoparietal 
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attention network. Collectively, these findings support the notion that the functional architecture of 

top-down attention is intrinsically rhythmic.

eTOC

Helfrich et al. demonstrate that the neural basis of sustained attention is rhythmic. Using human 

intracranial recordings, they show that attentional allocation and overt behavior are modulated by a 

~4 Hz theta rhythm that predicts endogenous excitability fluctuations.

Introduction

A long-standing question in models of sensory perception is whether perception is discrete 

or continuous (VanRullen, 2016a; VanRullen and Koch, 2003). Likewise, it has been debated 

whether the allocation of ‘sustained’ attention to one cued location is actually sustained or 

instead waxes and wanes over time (Buschman and Kastner, 2015). These considerations 

raise the possibility that our seemingly continuous experience of the world is actually 

constructed from a rapid, sequential sampling of the environment. Given that neuronal 

oscillations are ubiquitous in neural recordings (Buzsáki and Draguhn, 2004), it has been 

suggested that rhythmic brain activity might support the periodic sampling of the 

environment (Bishop, 1932; Valera et al., 1981; VanRullen and Koch, 2003). Hence, 

endogenous oscillatory brain activity might shape our perception of the world on a rapid 

timescale (Helfrich and Knight, 2016; Siegel et al., 2012). In the past, the functional role of 

neuronal oscillations has often only been inferred by assessing binary task contrasts, e.g. 

attend vs. non-attend, which integrated activity over longer time windows (Buschman and 

Kastner, 2015; Siegel et al., 2008). However, in order to establish a direct link between 

ongoing brain activity and behavior (Thut et al., 2012), it is desirable to sample behavioral 

outcome on a fine-grained temporal scale matching the timescale of endogenous brain 

activity (VanRullen, 2016a).

Previous behavioral and scalp EEG studies reported evidence for periodicities in bottom-up 

perception and top-down guided behavior (Fiebelkorn et al., 2013; Fontolan et al., 2014; 

Helfrich et al., 2017; Henry et al., 2014; Landau and Fries, 2012; Neuling et al., 2012; Spaak 

et al., 2014; Wöstmann et al., 2016; Zion Golumbic et al., 2013). For example, EEG studies 

have shown that the detection of a close-to-sensory-threshold target can be linked to 

neuronal oscillations in the range from 7-10 Hz (Busch and VanRullen, 2010, 2010; Busch 

et al., 2009; Mathewson et al., 2009). Behavioral studies have reported evidence of an 

‘attentional spotlight’ mechanism, whereby attention alternately samples two spatial 

locations at anti-phasic ~4 Hz rhythms (Busch and VanRullen, 2010; Fiebelkorn et al., 2013; 

Landau et al., 2015; VanRullen et al., 2007). It remains unclear, however, whether these 

theta rhythms originate in early visual cortex or elsewhere (Busch and VanRullen, 2010; 

Dugué et al., 2015), and behavioral and M/EEG data lack sufficient spatiotemporal 

resolution to resolve the origins of rhythmic sampling during attention (VanRullen, 2016a).

In particular, it is unclear (I) which anatomical correlates constitute the structural basis for 

rhythmic sampling in the human brain. Furthermore, (II) it is unresolved how rhythmic 

sampling is functionally organized and distributed across cortical networks. (III) The limited 
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spatiotemporal resolution of methods employed in previous studies could not resolve 

whether behavioral periodicities are a direct result of spontaneous, ongoing, oscillatory brain 

activity, which is generated at the neuronal population level. (IV) Finally, it remains 

unknown if rhythmic sampling results from the inherent functional architecture of cortical 

networks or if rhythmic sampling is instead task and context dependent.

In the present study, we address these unanswered questions by combining subdural 

recordings in humans with two different attention tasks (Egly et al., 1994; Szczepanski et al., 

2014) that probed behavioral outcome on a rapid timescale. Electrocorticography (ECoG) 

provides the spatiotemporal resolution necessary to precisely track the ongoing brain 

dynamics that influence instantaneous human behavior. We specifically tested the hypothesis 

that low frequency oscillations - previously observed in behavioral time courses - are a direct 

result of periodic excitability fluctuations in the same time range. We predicted that cortical 

high frequency band (HFB) activity, a proxy for cortical excitability and population spiking 

in humans (Rich and Wallis, 2017; Watson et al., 2017), is modulated by low frequency 

activity. We focused on HFB activity and not evoked narrow-band gamma oscillations 

(Landau et al., 2015), since narrow-band gamma oscillations do not predict local spiking 

activity or cortical excitability (Ray and Maunsell, 2011; Watson et al., 2017). We 

hypothesized that the phase of these low frequency oscillations would predict behavioral 

outcomes on a trial-by-trial basis not only in V1 (Dugué et al., 2016; Landau et al., 2015), 

but in widespread regions of the fronto-parietal attention network, facilitating interregional 

information transfer (Buschman and Kastner, 2015; Helfrich and Knight, 2016; Sellers et al., 

2016).

Results

We recorded intracranial EEG from a total of 15 pharmacoresistant epilepsy patients (32.80 

years ± 12.63, mean ± SD; 8 female) who underwent pre-surgical monitoring with extensive 

electrode coverage of frontal and parieto-occipital areas in left and right hemispheres. The 

participants performed one of two spatial attention tasks, where they were asked to covertly 

monitor a cued location and indicate the appearance of a target after a variable cue-target 

delay. This experimental design allowed us to probe whether behavioral performance varied 

as a function of the cue-target interval. We utilized two different behavioral metrics. In 

experiment 1, participants (N = 7) performed a target detection task where the target 

luminance was titrated to perceptual threshold and detection accuracy was measured, while 

participants in experiment 2 (N = 8) performed a reaction time task where the target was 

presented above sensory threshold in the cued visual field.

Covert visual attention samples the environment at a theta rhythm

In the first experiment, participants performed a variant of an object-based attention task 

(Fiebelkorn et al., 2013). We cued participants to one of four possible locations (Figure 1A) 

and asked them to indicate the appearance of a close-to-sensory-threshold target after a 

variable cue-target-interval (500 – 1700ms). We continuously adjusted the luminance of the 

target to ensure that participants performed at approximately 80% accuracy (75.91% 

± 11.80%, mean ± SD; t6 = −0.92, p = 0.3945). We then assessed whether the hit rate varied 
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as a function of the cue-target-interval. We observed strong fluctuations of detection 

accuracy in the behavioral time course in every participant (Figure 1B, left panel and Figure 

S1). In order to test whether these fluctuations exhibited an intrinsic temporal profile, we 

utilized irregular resampling (Wen and Liu, 2016) to separate non-oscillatory 1/f activity 

from the oscillatory component (Figure 1B, right panel). Across participants, we found that 

the behavioral time courses exhibited periodic fluctuations in the theta-band (3.99 Hz ± 0.88 

Hz, mean ± SD; Figure 1C), where the observed spectrum exceeded the 1/f estimate (mean 

+ 3SD; p < 0.001; see Figure 1B and Figure S1). We also utilized a more conventional 

permutation approach, which confirmed that the time courses exhibit a significant oscillation 

in the theta-band (z = 2.20 ± 0.55 (mean ± SEM); combined p < 0.0001; Figure S2A/B). 

Furthermore, we observed the same effect when a different method for the 1/f correction was 

utilized (Figure S2C) or the averaging window was decreased to 50ms. These findings 

suggest that attention does not sample the cued location continuously, but periodically at 

approximately 4 Hz.

Cortical high frequency activity is nested in theta-band oscillations

We hypothesized that the 4 Hz rhythmic sampling that we observed in individual behavioral 

time courses might be the result of periodic fluctuations in cortical excitability. To test this 

idea, we analyzed intracranial EEG data from a total of 614 artifact- and epilepsy-free 

electrodes (Figure 2A and Figure S1) and extracted the high-frequency band (HFB; 70-150 

Hz) activity, which has been shown to be a reliable proxy of population spiking activity 

(Rich and Wallis, 2017). Based on an electrode’s response to the cue (0 – 0.5s), we classified 

electrodes into cue-responsive (cue+) or cue-unresponsive (cue-; Figure 2B). We found 

enhanced HFB activity at cue+ sites during the target interval (0.5 – 1.7s; grand-average 

across subjects; cluster-based permutation test: p = 0.0010, d = 1.55), as well as after target 

presentation (cluster from 0 – 0.59s; p = 0.0010, d = 2.55). Next, we assessed the 

modulation of HFB during the selection process at cue+ electrodes by contrasting activity at 

cued and uncued locations. Averaging across trials revealed spatially specific enhanced 

delay activity prior to the target onset at the cued location (Figure S3A). However, this 

apparent enhanced delay activity did not reflect what we observed on single trials, where the 

HFB activity waxed and waned during the cue-target-interval (Figure 2C). In order to test 

whether the fluctuations in HFB amplitude exhibited rhythmic modulations, we extracted all 

HFB peaks from the cue-target interval, excluding peaks that reflected cue− or target-evoked 

activity (i.e., peaks within 0.3s after cue presentation and before target presentation). Then 

we performed peak-triggered averaging of the raw, unfiltered time series. Figure 2D depicts 

a single electrode example indicating that HFB activity was nested in an ongoing 4 Hz 

oscillation. In order to quantify this effect, we spectrally decomposed the peak-triggered 

averages by means of an FFT analysis (± 0.5s) and again compared cue+ and cue− 

electrodes (see Figure 2E for a single subject example). We found that a theta-band 

oscillation was present in the peak-triggered averages of cue+, but not of cue− electrodes 

(Figure 2F; permutation test: p = 0.0110, d = 0.26). In addition, we also tested if this process 

was spatially selective (Figure S3B). Our results indicate that the modulation of HFB 

activity by ongoing theta was stronger at the cued than the uncued locations in all subjects. 

Furthermore, we utilized irregular resampling to confirm the presence of oscillatory theta-

band activity (Figure S3C), which was distinct from cortical sources of alpha-band (8-12 
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Hz) activity (Figure S3D). We also utilized conventional cross-frequency coupling metrics to 

confirm that this approach reliably detected theta-gamma cross-frequency coupling (Figure 

S4). Taken together, these findings provide evidence that cortical excitability is rhythmically 

modulated by theta-band oscillations (Canolty et al., 2006).

Theta phase predicts target detection performance

In order to establish a direct link between behavioral fluctuations and ongoing cortical theta-

band dynamics, we computed low-frequency phase-resolved behavioral time courses (Figure 

3A). We divided the underlying phases of 17 logarithmically spaced frequencies (2-32 Hz) 

into 50 equally distributed bins and computed the average hit rate for all trials within a 90° 

window centered on every phase bin. We then calculated the normalized Kullback-Leibler 

divergence of the observed distribution against a uniform distribution (Figure 3A, left panel) 

to quantify how strongly the observed distribution was modulated by the phase of the low 

frequency activity. We obtained a surrogate distribution by randomly shuffling the condition 

labels (correct/incorrect; Figure 3A, center and right panel). This approach allowed us to 

investigate which phase of a low frequency oscillation predicted subsequent behavior 

(Figure 3B) and if such phase modulation occurred differentially at cue+ and cue− 

electrodes (Figure 3C). We found evidence for enhanced rhythmic sampling at cue+ 

electrodes in every participant (Figure 3D; permutation test: p = 0.0091, d = 0.62). These 

findings demonstrate that the phase of ongoing theta-band activity during the cue-target-

interval predicted subsequent perception. Notably, this effect was not confounded by 

differences in low frequency oscillatory power (Figure S3E) or event-related potentials 

(Figure S3F). Figure 4A depicts the spatial extent of the observed effects for a single subject 

(see Figure S5 for data from all participants), highlighting comparable effects between left 

and right hemispheres. Across subjects, we observed theta-band phase-dependent rhythmic 

sampling in inferior parietal regions, in the intraparietal sulcus and adjacent superior parietal 

areas as well as in frontal eye fields (FEF) and adjacent regions in the frontal lobe. These 

findings indicate that theta-mediated fluctuations in cortical excitability in widespread 

cortical regions are behaviorally relevant and predict visual detection performance.

Theta phase-resolved behavior delineates frontoparietal network interactions

Next, we aimed to assess how different nodes of the frontoparietal network contributed to 

the functional organization of rhythmic attentional sampling in the human brain. To address 

this, we employed a seed-based functional connectivity approach, where we defined the 

electrode with the highest normalized Kullback-Leibler divergence as a seed (Figure 4A, 

right lower panel) and computed correlations to all other electrodes (Figure 4B). This 

approach indicated that distant regions in the fronto-parietal network exhibit similar phase-

behavior-relationships (see Figure S4C and Figure S5 for data from all subjects).

Rhythmic behavioral sampling is independent of task structure

In a second experiment, we investigated whether the observed theta-mediated rhythmic 

sampling in experiment 1 is a fundamental feature of attention allocation implementation in 

the frontoparietal network, or if the observed results were task-specific. To accomplish this, 

we utilized a reaction time task, where subjects only had to monitor two and not three spatial 

locations (Szczepanski et al., 2014). In addition, we presented the informative visual field 
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cue at fixation and not in the periphery. Participants (N = 8) were instructed to maintain 

fixation and were cued to allocate their attention to either the left or right visual field (Figure 

5A). After a variable cue-target-interval (1000 – 2000ms), the participants had to respond to 

a target that was embedded among flickering visual distractors. Participants performed this 

task with high accuracy (hit rate 97.21% ± 1.13%; mean ± SEM; Szczepanski et al., 2014). 

This approach allowed us to assess the reaction time as a function of the cue-target-interval 

(Figure 5B). We again separated oscillatory components and 1/f background contributions 

by means of irregular resampling, as employed in Experiment 1, and found that the 

behavioral time courses in every subject exhibited periodic fluctuations in the theta band that 

exceeded the 1/f estimate by more than 3 SD (p < 0.001; 4.14 ± 1.34 Hz, mean ± SD; Figure 

5C and Figure S6). These findings from two different attention tasks provide strong evidence 

that human attentional allocation is not evenly distributed across time, but fluctuates as a 

function of endogenous oscillatory brain activity. Thus, rhythmic sampling appears to be a 

general property of spatial attention regardless of specific task structure. Furthermore, we 

conducted a control experiment in healthy participants who performed both tasks (Figure 

S2D-F) and found that theta-band dynamics across tasks were significantly correlated, 

explaining ~35% of the behavioral variance.

Neural correlates of rhythmic attentional sampling in the frontoparietal network

To investigate the neural correlates of this behavioral effect, we analyzed intracranial EEG 

from 758 electrodes (Figure 6A). We extracted the HFB activity and observed enhanced 

delay activity during the cue-target-interval (1 – 2s; p = 0.0010, d = 1.05) and after target 

presentation (cluster from 0 – 0.77s; p = 0.0010, d = 1.88), which as in experiment 1 did not 

reflect single trial dynamics (Figure 6B), but showed strong spatial selectivity for cued than 

uncued locations (cluster test: p = 0.0010). Peak-triggered averaging and spectral 

decomposition revealed multiple spectral peaks in the low frequency range in which the 

HFB activity was nested (Figure 6C). However, we only found a modulation at group level 

by a theta rhythm around 4 Hz (Figure 6D; permutation test: p = 0.0230, d = 0.21) and not in 

the alpha-band (8-12 Hz; p = 0.8137). After irregular resampling and discounting the 1/f 

background activity, we also observed distinct sources of theta and alpha-band activity 

(Figure S3D), which were comparable to the results obtained in the first experiment.

Then we tested the behavioral relevance of the theta-band phase by calculating low-

frequency phase-resolved behavioral time courses and quantified the degree of non-

uniformity by calculating the normalized Kullback-Leibler divergence (Figure 6E) against a 

surrogate distribution where reaction times were shuffled. We observed evidence for a 

systematic relationship between theta-band phase and subsequent reaction times on the 

single-trial (Figure 6E), single-subject (Figure 6F and Figure S7) and group levels (Figure 

6G; permutation test: p = 0.0069, d = 0.46). Figure 7A highlights the spatial extent of the 

theta-band phase-dependent sampling, which is in accordance with the results from 

experiment 1. Functional network parcellation again highlighted that the functional 

relationship between ongoing theta phase and perception was similar across distant areas in 

the fronto-parietal network (Figure 7B, Figure S4D and Figure S7).
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Taken together, the results from experiment 2 confirm the findings of experiment 1. The 

collective results suggest that oscillatory brain activity, generated at the population level in 

widespread cortical networks, shapes human perception and behavior on a rapid time scale.

Discussion

Our results demonstrate that rhythmic behavioral fluctuations in humans during sustained 

attention at a cued location are the direct result of endogenous oscillatory fluctuations in 

excitability, as indexed by HFB activity. These fluctuations in excitability shape both 

perception and behavioral performance on a sub-second time scale. Our findings reveal that 

(I) intrinsic theta-band activity in the frontoparietal attention network samples the 

environment rhythmically, even in states of ‘sustained’ attention at the cued location. (II) We 

demonstrate that cortical excitability, as indexed by HFB activity, is nested within ongoing 

theta-band activity, (III) which is being generated at the population level of cortical 

networks. (IV) Crucially, our results from two independent studies highlight that the 

observed effects are an inherent characteristic of the functional organization of the fronto-

parietal attention network, where theta oscillations support attentional rhythmic sampling 

irrespective of task structure and context.

Visual attention samples space rhythmically and not continuously

There is a longstanding debate whether perception is discrete or continuous (VanRullen, 

2016a). We perceive the world as continuous, but several lines of research have provided 

indirect evidence that perception and attention are not uniformly distributed across time and 

space, but exhibit intrinsic temporal profiles that match the timescale of endogenous 

oscillatory brain activity (Buschman and Kastner, 2015; Helfrich and Knight, 2016; 

VanRullen, 2016a). This raised the intriguing hypothesis that intrinsic brain activity shapes 

how we perceive the world around us. For example, several groups reported that tracking of 

different spatial locations or different object varies as a function of a ~4 Hz rhythm (Dugué 

et al., 2015, 2016; Fiebelkorn et al., 2013; Holcombe and Chen, 2013; Landau and Fries, 

2012).

Why would the cortex operate in a rhythmic mode? It has been argued that a rhythmic 

process might have functional advantages and that endogenous phase-alignment, to external, 

behaviorally relevant cues facilitates subsequent performance (Calderone et al., 2014). 

Likewise, it has been proposed that rhythmic sampling might be more energy efficient and 

that the brain switches from a ‘continuous’ to a ‘rhythmic’ processing mode in states when 

prior information is available (Schroeder and Lakatos, 2009).

Another intriguing observation is that the rhythms observed during covert attention exhibit 

theta-range temporal profiles similar to overt behaviors, such as sniffing, whisking or 

saccadic eye movements (VanRullen, 2016a). Furthermore, there seems to be a tight 

interplay between theta oscillations and micro-saccadic eye movements, with these 

fixational eye movements preferentially occurring at certain theta phase angles (Bosman et 

al., 2009; Lowet et al., 2016). Importantly, several studies have shown that rhythmic 

attentional sampling is not a micro-saccade artifact (Fiebelkorn et al., 2018; Landau et al., 

2015; Spyropoulos et al., 2018). This leads to the hypothesis that covert sampling of the 
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environment informs subsequent overt behavior, with the most salient event covertly selected 

from the visual environment for the next saccade (Bellet et al., 2017; Helfrich, 2017) by e.g. 

the motor system as previously observed in auditory attention studies (Morillon et al., 2014).

Currently, there is no consensus on how to implement spectral analysis on sparse behavioral 

time course data (Helfrich, 2017; Zoefel and Sokoliuk, 2014). Previous studies utilized 

surrogate distributions to infer if a certain frequency-band has more power than expected by 

chance (Fiebelkorn et al., 2013). However, this approach does not explicitly test for the 

presence of oscillations (Haller et al., 2018). Here, we used a novel approach to disentangle 

oscillatory from aperiodic 1/f components (Wen and Liu, 2016), which has not previously 

been applied to behavioral data. This method yielded highly comparable results to the more 

conventional permutation approach and indicated that low frequency oscillations were 

present in the behavioral time course, despite inter-individual differences in the exact peak 

frequency, which span multiple canonical frequency bands, such as the delta (1 – 4 Hz), 

theta (4 – 8 Hz) and alpha band (8 – 12 Hz). While there was variability in individual peak 

frequencies, all analyses linking behavior to electrophysiology (for individual spectra see 

Figure S5 and Figure S7) indicated a tight link between theta oscillations and behavior.

Rhythmic synchronization in the frontoparietal network constitutes the functional 
architecture of visual attention

Functional imaging results in humans as well as a multitude of findings from invasive 

recordings in rodents and non-human primates have linked attentional processing to the 

frontoparietal network (Buschman and Kastner, 2015). While long-range theta-band 

synchronization (Bastos et al., 2015; Sellers et al., 2016) or theta-gamma cross-frequency 

coupling (Canolty et al., 2006; Szczepanski et al., 2014) was commonly observed in the 

fronto-parietal network, the behavioral relevance was only indirectly inferred by e.g. 

comparing trials with correct/incorrect or fast/slow responses. Furthermore, the limited 

spatial resolution of scalp EEG pointed towards frontal or parietal sources of rhythmic 

sampling (Busch et al., 2009; Busch and VanRullen, 2010; Mathewson et al., 2009), without 

assessing the functional interactions and mutual dependencies. In addition, in several studies 

the spectral content of the sensory input matched the endogenous frequency (de Graaf et al., 

2013; Spaak et al., 2014). This hampers the interpretability of observed effects since 

sensory-evoked effects masked intrinsically generated dynamics (Breska and Deouell, 

2017).

Our present findings clarify previous results by demonstrating that multiple cortical sources 

in the frontal and parietal cortex engage in rhythmic sampling of the environment. We 

sampled behavior at a fine-grained temporal scale to highlight, on a trial-by-trial basis, how 

the phase of ongoing theta oscillations controls cortical excitability and shapes human 

perception and behavioral outcome. Furthermore, our findings are in line with the idea that 

low frequency oscillations preferentially support long-range cortico-cortical coupling 

(Helfrich and Knight, 2016; Siegel et al., 2012), where theta organizes mainly feedforward 

information flow from sensory to association areas (Bastos et al., 2015; Spyropoulos et al., 

2018), possibly through travelling waves (Zhang et al., 2018). One testable question, which 

could be addressed in future studies involving patients with focal frontal or parietal lesion is 
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how the disruption of the frontoparietal network modulates rhythmic sampling processes. 

Given that behavioral time courses exhibit multiple spectral peaks, which might reflect 

distinct contributions (e.g. theta could primarily signal top-down components, while alpha 

may signal bottom-up components; Bellet et al., 2017; Helfrich et al., 2017; Jia et al., 2017; 

VanRullen, 2016a), we speculate that frontal and parietal lesions will exhibit differential 

spectral signatures that may be observable in behavioral time courses.

It is unclear how nodes of the fronto-parietal network are synchronized to precisely time 

information transfer. One testable hypothesis in animal models emerging from our findings 

is that the pulvinar, a set of nuclei in the visual thalamus connected to frontal and parietal 

areas, might orchestrate and coordinate network activity (Halassa and Kastner, 2017; 

Saalmann et al., 2012). Likewise, animal models are ideally suited to collect a sufficiently 

high number of trials to study attention effects at uncued locations, which cannot be 

achieved in patient populations given the limited time available for recordings in epilepsy 

monitoring units.

Population activity might determine the time scale of cognition

Classic models of attention, decision-making or working memory are often characterized by 

persistent and not time-varying neuronal activity (Stokes and Spaak, 2016). For instance, in 

the case of working memory, persistent delay activity was though to constitute a hallmark of 

how information is maintained online (Christophel et al., 2017). However, recent advances 

revealed that data averaged across hundreds of trials does not appropriately reflect single 

trial dynamics (Lundqvist et al., 2016). While background activity has often been considered 

to reflect noise, novel high-resolution recordings indicate that single trial dynamics carry 

information in a time-varying population code (Stokes et al., 2013; Wolff et al., 2017).

In the present study, we show that sustained activity at the cued location during ‘sustained’ 

attention did not reflect single trial dynamics (Stokes and Spaak, 2016). Importantly, our 

present results only reflect intrinsic, ongoing dynamics and are not confounded by 

continuous sensory input during the rhythmic sampling process, which might elicit narrow-

banded gamma oscillations (Landau et al., 2015). In contrast, we observed (I) that HFB was 

nested in ongoing theta-band activity and exhibited a waxing and waning pattern, not 

apparent in grand averages. (II) That this theta-band activity was generated at the population 

level in the fronto-parietal network and predicted behavioral outcome on a rapid timescale. 

These findings collectively suggest that the resulting behavior is shaped by ongoing 

oscillatory brain activity. We speculate that this rhythmic sampling at the cued location is the 

result of monitoring several spatial locations simultaneously (three in experiment 1 and two 

in experiment 2) and that attention is rhythmically re-weighted between the different 

possible locations. Hence, this implies that the underlying sampling rhythm could be 2-3 

times faster, in line with previous findings that reported evidence for attentional rhythmic 

sampling in the low alpha range around 7-10 Hz, which samples different spatial locations 

sequentially (Busch and VanRullen, 2010; Busch et al., 2009; Dugué et al., 2015; Fiebelkorn 

et al., 2013; Helfrich et al., 2017; Landau and Fries, 2012; VanRullen, 2016a).
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Comparative electrophysiology to bridge different experiments

The present study was conducted with human epilepsy patients who underwent pre-surgical 

evaluation and all experiments were performed on the epilepsy-monitoring unit. While direct 

brain recordings in humans provide rare and valuable data, the experiments have to be 

tailored to clinical circumstances and individual patients needs. In the present experiment, 

this resulted in significantly lower trial numbers that can typically be gathered from healthy 

participants, e.g. in case of experiment 1 we collected an average of 190 trials per patient, 

which constitutes a fraction of the trials (~11%) as compared to recent behavioral studies 

(Fiebelkorn et al., 2013) who gathered 1764 trials per subject. Hence, we focused our 

analyses on the validly cue trials (72%) and averaged trials over 100ms time windows to 

have a sufficient number of samples per time bin. Thus, we cannot report on the time-

resolved performance for invalidly cued trials in experiment 1. Regardless, we observed 

strong evidence for rhythmic sampling in the behavioral time courses in line with recent 

findings (Fiebelkorn et al., 2013, 2018; Landau and Fries, 2012; Landau et al., 2015). 

Likewise, in experiment 2, subjects were instructed to withhold their response when the 

target appeared in the un-cued hemi field, which impedes time-resolved behavioral analyses 

(Szczepanski et al., 2014). Studies in healthy subjects (Fiebelkorn et al., 2013; Landau and 

Fries, 2012) and primates (Fiebelkorn et al., 2018) are ideally suited to assess performance 

over time for invalidly cued trials. Thus, our present results need to be interpreted in the 

context of studies in healthy human participants (Dugué et al., 2015; Fiebelkorn et al., 2013; 

Helfrich et al., 2017; Henry et al., 2014; Jia et al., 2017; Landau and Fries, 2012) as well as 

primates (Bellet et al., 2017; Fiebelkorn et al., 2018), which jointly suggest that multiple 

rhythms modulate behavior on a rapid time scale and that different neuronal populations 

exhibit anti-phasic relationships (Lakatos et al., 2013; Landau et al., 2015).

In direct comparison to Fiebelkorn et al. (2018), it may appear striking that we observed 

similar effects in the theta-band, but not e.g. in the beta-band (15 – 30 Hz). However, in the 

present study we used subdural grid electrodes, which span large portions of the neocortex, 

but which primarily record from superficial cortical layers (Parvizi and Kastner, 2018). In 

contrast, recordings spanning all cortical layers in primates indicate that the beta-band 

rhythm emerges from deeper layers, which we might not capture using ECoG grids (Bastos 

et al., 2018) outside of motor cortex. Hence, we conclude that a multimodal approach 

involving experiments in several species and spanning several spatiotemporal scales can 

jointly elucidate the neural mechanisms underlying rhythmic attentional sampling.

Conclusions

Our findings reveal a fundamental neurophysiologic mechanism involving the 

spatiotemporal organization of attention in the human brain. We demonstrate that population 

activity in the theta-band predicts behavior on a sub-second time scale by rhythmically 

adjusting cortical excitability in states of sustained attention at the cued location. These 

findings have important implications for how attention, a central construct in cognitive 

neuroscience, is conceptualized and implemented in large-scale neuronal circuits (Buschman 

and Kastner, 2015; Stokes and Spaak, 2016). We propose that neural oscillations 
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dynamically allocate limited resources based on sensory information content and 

endogenous priors.

The present results also add to the emerging notion that human behavior is supported by 

rhythmic neuronal populations (Eichenbaum, 2017; Fusi et al., 2016). This consideration is 

in line with evidence that HFB activity indexes cognitive processing with a high 

spatiotemporal resolution in both human and non-human primates and is modulated by 

rhythmic low frequency activity (Rich and Wallis, 2017; Watson et al., 2017). Given similar 

effects were observed in two independent experiments utilizing different task structures, we 

suggest that this rhythmic sampling is an inherent feature of the fronto-parietal network that 

shapes the individual experience of the world.

Our results have potential clinical relevance for neuropsychiatric disorders with increasing 

evidence of disordered network activity (Calderone et al., 2014; Voytek and Knight, 2015). 

Attention is a distributed rhythmic process, which cannot simply be modulated by changing 

the balance between excitatory and inhibitory drive, but might benefit from interventions 

targeting the underlying rhythmic architecture (Fröhlich, 2014). This suggests that 

population activity might provide a novel target for tailored interventions that engage 

neuronal oscillations, e.g. by means of rhythmic non-invasive brain stimulation.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Randolph Helfrich (rhelfrich@berkeley.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants—We obtained intracranial recordings from a total of 15 epilepsy patients who 

underwent pre-surgical monitoring with implanted grid electrodes. Seven patients 

participated in study 1 (35.29 ± 12.42 years; mean ± SD; 5 female) and were recruited from 

the University of California, Irvine Medical Center, USA (N = 6) and the California Pacific 

Medical Center (CPMC), San Francisco, USA (N = 1). In study 2, we recruited 8 patients 

(30.63 ± 13.22 years; mean ± SD; 3 female) from Children’s Hospital in Oakland, CA, USA 

(N = 1), Johns Hopkins Hospital in Baltimore, MD, USA (N = 1) and Stanford Hospital, 

CA, USA (N = 6). Electrode placement was exclusively guided by clinical considerations 

and all patients provided written informed consent to participate in the study. All procedures 

were approved by the Institutional Review Board at every site as well as by the Committee 

for Protection of Human Subjects at the University of California, Berkeley (Protocol 

number: 2010-02-783) and conducted in accordance with the Declaration of Helsinki. 

Patients were implanted with either grid or strip electrodes with 1 cm spacing. In one 

participant (S4), we included an additional 8 contact depth probe that was inserted into 

occipital cortex. For the control experiment (Figure S2D-F), we recruited an additional 

group of healthy volunteers who were paid for their participation (N = 14, 24.86 ± 5.55 

years; mean ± SD; 6 female) from the University of California, Berkeley.
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METHOD DETAILS

Experimental design and procedure

Behavioral tasks: All participants performed a spatial attention task. In experiment 1, 

participants performed a variant of the Egly-Driver task (Egly et al., 1994; Fiebelkorn et al., 

2013). Stimulus presentation was controlled with Presentation Software (Neurobehavioral 

Systems Inc.). Subject sat ~60 cm away from the laptop screen. Subjects initiated the trial 

start by pressing down the left mouse button. Then two bar objects appeared and were either 

vertically or horizontally oriented. After a variable delay (400 – 800ms), a brief spatial cue 

(100 ms) in the periphery around one bar indicated the location where the target was most 

likely to occur (72% cue validity). This cue was equally likely to appear at any of the four 

quadrants. After the cue, we introduced a variable cue-target-interval (500 – 1700ms) with a 

low number of catch trials (10%) where no subsequent target was presented. Targets could 

randomly appear at any time point during the cue-target-interval. Targets could also appear 

at uncued locations, which could either be part of the same object or not (18%). If the target 

appeared at the different object, it was shown at a location equidistant from the cued location 

to avoid distance confounds. Participants indicated that they detected the target by releasing 

the mouse button and received auditory feedback on whether they performed the trial 

correctly or not. We continuously tracked behavioral performance and adjusted the target 

luminance in steps of one RGB value every 15 trials to achieve an overall accuracy of ~80% 

correct. The experimenter monitored continuous fixation, and the results from the patient 

cohort are similar to a previous study that probed the same task and used a cohort of healthy 

adult participants whose eye movements were closely monitored (Fiebelkorn et al., 2013). 

All subjects responded with the hand contralateral to the implanted grid. Participant S6 

(bilateral grids) responded with the left hand. All participants were asked to perform up to 5 

blocks of 60 trials each (190 trials ± 67; mean ± SD). Note, we adjusted several parameters 

in comparison to a previous study (Fiebelkorn et al., 2013) to accommodate the unique 

clinical setting in which were the present data set was collected. In particular, performance 

was titrated to 80% instead of 65% to keep the subjects engaged. To increase the yield of 

correct responses, we adjusted the cue-target interval to 500-1700 ms instead of 300-1100 

ms to minimize the ramp-up effect that Fiebelkorn et al. observed in the time range from 

300-500 ms.

In experiment 2 (Figure 5A), the participants performed a reaction time task and were either 

cued to the left or the right hemifield by a central cue. Stimulus presentation was controlled 

with EPrime software (Psychology Software Tools Inc.). Subjects sat ~60 cm away from the 

laptop screen. Note, that in this experiment the cue was on the screen until the trial ended. 

Subjects were instructed to maintain fixation and covertly shift their attention to the cued 

hemifield. After a variable cue-target-interval (1000 – 2000ms), a blue square target 

appeared, which remained on the screen until the subject responded or the trial timed out 

after another 2000ms. Targets appeared randomly during the cue-target-interval. Subjects 

responded to targets in the cued hemifield, but were instructed to withhold a response to 

targets that were presented in the opposite hemifield. Six out of eight subject responded with 

the hand ipsilateral to the grid. In addition, a number of the red distractors located anywhere 

on the screen was randomly turned on or off to increase attentional competition. Participants 

performed 6 blocks of 42 trials each. Eye movements were visually monitored and the 
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experimenter ensured that subjects maintained central fixation throughout the trials. A 

previous study demonstrated that eye movements in this task were negligible and did not 

contribute to the observed theta-gamma interactions (Szczepanski et al., 2014).

ECoG data acquisition: Intracranial EEG data and peripheral data (photodiode) were 

acquired using a Nihon Kohden recording system (UC Irvine, CPMC and Children’s 

Hospital, 128/256 channel, 1000/5000 Hz digitization rate), a Natus Medical Inc. Stellate 

Harmonie recording system (Johns Hopkins, 128 channel, 1000 Hz digitization rate) or a 

Tucker Davis Technologies recording system (Stanford, 128 channel, 3052 Hz digitization 

rate).

CT and MRI data acquisition: We obtained anonymized postoperative CT scans and 

presurgical MRI scans, which were routinely acquired during clinical care.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analysis—In experiment 1, we analyzed the hit rate at the cued location 

as a function of the cue-target-interval. We utilized a variant of the original Egly-Driver task 

(Egly et al., 1994; Fiebelkorn et al., 2013). This task design was tailored to assess hit rates 

over time, which were titrated to ~80% correct in an adaptive procedure. We focused on the 

hit rates given that reaction time courses exhibited prominent Hazard functions, since the 

probability for the target occurrence increased over the cue-target-interval.

To extract the behavioral time course, we shifted a 100ms window in steps of 1ms from 500 

– 1700 ms and re-calculated the hit rate across all validly cued trials in the respective time 

window. We used relatively long windows of 100ms, because some bins did not contain 

behavioral estimates in some subjects with lower trial numbers if a window of e.g. 50 ms 

had been used due to the random target presentation. The traces were smoothed and missing 

data points interpolated by using a 25-point boxcar moving average. This approach yielded a 

time course per participant at a sampling rate of 1000 Hz. We obtained spectral estimates 

from a Fast Fourier Transform (FFT) after applying a Hanning window and zero padding the 

data to 10 seconds to increase the frequency resolution to 0.1 Hz. In order to estimate the 1/f 

background activity and disentangle oscillatory from fractal components, we utilized 

irregular resampling (IRASA, see below; (Wen and Liu, 2016)), based on a time window 

that had 75% length of the total signal and a step size of 0.05 s. Oscillatory peaks were 

defined as the strongest distinct peak that exceeded the 1/f distribution in the range from 

2-10 Hz. In order to obtain a better estimate of the individual peak frequency, the subsequent 

alignment was performed on the zero padded data.

We utilized the same approach in experiment 2, but calculated the reaction time as a function 

of the cue-target-interval. Trials exceeding 2 SD above the median reaction time were 

excluded and only correct responses at the cued location were considered. Given the shorter 

cue-target-interval (1s duration), we also adjusted the sliding window for the irregular 

resampling procedure to 75% total length. Again, we performed peak detection and 

alignment on the zero padded data to increase the frequency resolution and improve peak 

frequency estimates.
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EEG data

Preprocessing:  A neurologist manually inspected all intracranial EEG channels to identify 

channels with epileptiform activity and artifacts. Contaminated channels and epochs were 

removed prior to all analyses. Then the data were linearly detrended, demeaned and notch 

filtered at 60 Hz and all harmonics as well as re-referenced to a local common average (per 

grid or per strip/probe) in experiment 1 using Fieldtrip. Data from experiment 2 was already 

filtered and common average referenced as described previously (Szczepanski et al., 2014).

Trial definition:  We extracted 8 second long, partially overlapping trials to facilitate 

subsequent filtering, spectral analyses and re-epoching to target onset given the long cue-

target and response intervals. In experiment 1, trials were extracted from −3 to +5 seconds 

around cue onset. In experiment 2, individual trials were extracted from −2 to +6 seconds 

around cue onset.

HFB analysis:  We extracted the high frequency band (HFB) activity by band-pass filtering 

the raw time courses in eight non-overlapping 10 Hz wide bins ranging from 70-150 Hz and 

applying a Hilbert transform to extract the instantaneous amplitude using band-pass filtering 

with the default settings as implemented in Fieldtrip (ft_preprocessing). Then every trace 

was separately baseline corrected by means of a z-score relative to a bootstrapped baseline 

distribution prior to cue onset (−0.2s to 0s, 1000 iterations; (Flinker et al., 2015)). Note that 

this approach accounts for the 1/f signal drop off in the high frequency band with increasing 

frequencies. Finally, we discarded the edges to avoid filter artifacts and extracted individual 

non-overlapping trials either relative to cue onset (−0.5 to 3.5s) or relative to target onset 

(−1.5 to 1.5s).

Cue-responsive electrode classification:  We classified an electrode as cue-responsive at a 

given location when the average HFB response to the cue exceeded a z-score of 1.96 

(corresponding to a two-tailed p-value of 0.05) for at least 10% of consecutive samples in 

the cue period (0 – 0.5s). Note that this approach separated the electrode selection time 

window from the test time window (cue target interval experiment 1: 0.5 – 1.7s, experiment 

2: 1 – 2s).

Peak-triggered averaging and spectral analysis:  In order to test whether HFB activity 

was nested in ongoing oscillatory activity, we utilized an approach that is similar to spike-

triggered averaging used in single unit electrophysiology (Brown et al., 2004). This 

approach allowed us to exclude multiple evoked transients that were present in the signal 

(e.g. cue onset, variable target onset, response), which are known to give rise to spurious 

CFC (Aru et al., 2015; Cole and Voytek, 2017; Gerber et al., 2016), when additional filtering 

is applied. Similar to spike-triggered averaging (Brown et al., 2004), we first detected all the 

HFB peaks in a given trial and at a given channel after the evoked response (> 0.3s) and 

prior to the target onset, which varied on a trial-by-trial basis. Then we aligned the raw 

unfiltered signal relative to the HFB peaks and epoched it in the range from −0.5 to 0.5s 

around the HFB peaks. To assess the spectral content of these 1 second long epochs, we 

transformed the data by means of a FFT after applying a Hanning window. We also fit an 

unconstrained sine wave (using the fit function in Matlab, with no specified parameters but 
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the argument ‘sin1’: [curve] = fit(x,y,‘sin1’)) to the peak-locked average to highlight the 

presence of an ongoing oscillation in the raw, averaged traces. Note that this approach is 

comparable with more traditional CFC analyses. In case of dataset 2, it had previously been 

reported that only the 2-5 Hz phase significantly modulated HFB activity during attentional 

allocation (Szczepanski et al., 2014). We replicate and extend this finding using the peak-

triggered method. To demonstrate that our results are independent of the exact CFC metric, 

four well-established CFC metrics were calculated on a one second time epoch prior to 

target onset between the theta-phase and the high-frequency band amplitude. We tested the 

Modulation Index by Tort et al. (Tort et al., 2008), as well as the Canolty Modulation Index 

(Canolty et al., 2006), the phase-locking technique (Helfrich et al., 2017; Szczepanski et al., 

2014) as well as circular-linear correlations (Berens, 2009) as an intuitive metric of what 

CFC should capture. We utilized the Tort MI as a the reference metric (Figure S4) given that 

it has been demonstrated that the Tort MI robustly detects CFC when data epochs are noisy 

and short (Huelsemann et al., 2018).

Irregular resampling (IRASA):  In order to disentangle true oscillatory components the 

prominent 1/f background activity, we utilized irregular-resampling auto-spectral analysis 

(IRASA; (Wen and Liu, 2016)). IRASA takes advantage of the fact that irregularly 

resampling of the neuronal signals by pairwise non-integer values (resampling factor rf and 

corresponding factor rf*: e.g. 1.2 and 0.8) slightly shifts the peak frequency of oscillatory 

signals by compressing or stretching the underlying signal. However, the 1/f component 

remains comparable. This procedure was then repeated in small, overlapping windows (3 

seconds, 0.5s step size) and resampling was always done in a pairwise fashion for factor h 

and the corresponding resampling factor rf* = 2 – r (resampling factors rf: 1.1-1.9 in 0.05 

steps). For each window, we calculated the auto-power spectrum by means of a FFT after 

applying a Hanning window. Then all auto-spectra were median-averaged to obtain the 

power spectrum of the 1/f component, where resampled oscillatory components were 

averaged out. Finally, the resampled 1/f PSD is subtracted from the original PSD to obtain 

the oscillatory residuals.

Spectral analysis:  For time-frequency decomposition of cue− and target-locked responses 

in the range from 2 – 32 Hz (33 logarithmically spaced bins), we utilized a 500ms sliding 

Hanning window, which we advanced in 50ms steps from −0.5 to 3.5s (cue-locked) or from 

−2.5 to 1.5s (target-locked). Spectral estimates in the range from 32 – 256 Hz we computed 

using the multitaper method based on discrete prolate spheroidal sequences in 24 

logarithmically spaced bins (Mitra and Pesaran, 1999). We adjusted the temporal and 

spectral smoothing to approximately match a 250ms time window and ½ octave frequency 

smoothing. We baseline-corrected the spectral estimates per frequency band by a z-score 

relative to a bootstrapped baseline distribution (−0.2 to 0s before cue onset).

Event-related potentials:  We extracted the ERPs from the epoched data after 30 Hz low 

pass filtering and applying an absolute baseline-correction (−0.2 to 0s before cue onset).

Phase-dependent modulation of behavior:  In order to test if the phase of the ongoing 

oscillatory activity significantly predicted either the hit rate (experiment 1) or reaction times 
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(experiment 2), we band-pass filtered the signal in 17 logarithmically spaced bins from 2 – 

32 Hz (± center-frequency / 4) using the function eegfilt.m with default settings as 

implemented in eeglab. Note we filtered the aggregated trials to avoid edge artifacts and 

filtered the data front- and backwards to minimize phase distortions (Delorme and Makeig, 

2004). For experiment 1, we only utilized trials where the target appeared at the correctly 

cued location. In experiment 2, only utilized trials where the target appeared at the cued 

location and was successfully detected were included. After filtering, we applied a Hilbert 

transform and extracted the instantaneous phase angles. Then we binned the phase angles at 

target onset into 50 equally distributed bins and computed the average phase-resolved 

behavior per channel and frequency bin (experiment 1: hit rate; experiment 2: reaction time) 

across all trials within a 90° window centered on every phase bin. Then we calculated the 

normalized Kullback-Leibler divergence of the observed distribution P (formula 1; phase-

dependent behavior per channel and frequency pair was normalized by its sum) against a 

uniform mean distribution Q to quantify how strongly the observed distribution was non-

uniformly distributed (formula 2).

P =
behaviorCH, f (ϕ)

ΣbehaviorCH, f (ϕ) (1)

DKL(P, Q) = ∑P ∗ log( P
Q ) (2)

Then we obtained a surrogate distribution Dsurr by randomly shuffling the condition labels 

1000 times (experiment 1: correct/incorrect; experiment 2: reaction times). This approach 

allowed to us to investigate which low frequency phase predicted subsequent behavior. We 

normalized the Kullback-Leibler divergence by subtracting the mean and dividing by the 

standard deviation of surrogate distribution (formula 3).

DKL norm .(P, Q) =
DKL(P, Q) − mean(Dsurr(P, Q))

std(Dsurr(P, Q)) (3)

Functional network parcellation and circular statistics:  In order to delineate functional 

networks, we utilized a seed-based functional connectivity approach. First, in every subject 

we defined the electrode as seed electrode that exhibited the highest normalized Kullback-

Leibler divergence in the theta-band (3-5 Hz). Then we calculated the Pearson correlation 

coefficient between the phase-resolved behavior at the seed electrode and all other 

electrodes, which yielded a correlation map that was bounded at ±1. In three cases, the seed 

was in the sensorimotor network, while in all other subjects, the seed was in the 

frontoparietal network. In order to have comparable color scales across all functional 

networks, we inverted the color scale in these subjects.

Helfrich et al. Page 16

Neuron. Author manuscript; available in PMC 2019 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Electrode localization—First, we transformed both the pre-implant MRI and the post-

implant CT into Talairach space. Then we segmented the MRI using Freesurfer 5.3.0 (Dale 

et al., 1999) and then co-registered the T1 to the CT. 3D electrode coordinates were 

determined using the Fieldtrip toolbox (Oostenveld et al., 2011; Stolk et al., 2017) on the co-

registered CT scan. We corrected for the brain shift that is often observed after large 

craniotomies (Dykstra et al., 2012). Finally, we warped the aligned electrodes onto a 

template brain in MNI space. Electrode position was defined using the VTPM atlas (Wang et 

al., 2015). For all electrodes, where no label was assigned, we repeated the process and 

assigned a label from the AFNI atlas (Lancaster et al., 1997). We manually verified and 

corrected the assigned atlas position after inspection of the electrode reconstruction in native 

Talairach space. In addition, we used a functional criterion to confirm the location of FEF. 

Therefore, only electrodes in the Precentral Gyrus or Middle Frontal Cortex were considered 

and we required that electrodes were cue-responsive and showed a stronger response to 

contralateral than ipsilateral presented cues. Electrodes in the vicinity of the TPJ were 

manually assigned, because TPJ definitions were not included in the VTPM or the AFNI 

atlas.

Statistical analysis—Throughout, we report single subject data and highlight effects that 

generalize across the population and were observed in every participant. Unless stated 

otherwise, we used cluster-based permutation tests for the electrophysiological data to 

correct for multiple comparisons as implemented in Fieldtrip (MonteCarlo method; 1000 

iterations; maxsum criterion; (Maris and Oostenveld, 2007)) based on either paired or 

unpaired two-tailed t-tests. Clusters were either formed in time (e.g. Figure 2B, 6B, S3A) or 

in the time-frequency domain (Figure S3E). Furthermore, we used two-tailed paired t-tests 

(e.g. Figure 1C, 2F, 3D, 5C, 6D, 6G) to infer significance at group level. However, given that 

parametric tests are not designed for small N, we utilized a permutation approach to infer 

significance by randomly shuffling subject labels and repeating the t-test 10000 times. P-

values were then computed from the observed t-value relative to the surrogate distribution. 

To reduce between subject variance in order to facilitate visualization, we mean normalized 

the value pairs for every subject to a mean of 1. We included bootstrapped 95% confidence 

interval, which were computed using a double-iterative procedure (ibootci by Andrew Penn; 

see key resource table). In order to infer significant rhythmic sampling we created a null 

distribution by randomly shuffling condition labels (experiment 1: correct/incorrect; 

experiment 2: reaction times; Figure 3A/6E), which were then submitted to the same 

spectral analysis (Figure S2A/B). We then z-scored the observed distribution relative to the 

surrogate distribution. We obtained p-values by either transforming z-values into p-values 

using the normal cumulative distribution function ϕ or using the method by the method by 

Stouffer et al. (Stouffer et al., 1951; VanRullen, 2016b), which was also used to combine p-

values across different Spearman correlation values comparing the different CFC estimates 

(Figure S4). Here, every p-value is turned into an equivalent z-score using the inverse 

normal cumulative distribution function ϕ−1. Subsequently, we combined z-scores across 

observers and then turned the averaged z-scores into a probability using the cumulative 

distribution function ϕ according to the following formula:
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pcombined = 1 − ϕ(∑i = 1:Nϕ−11 − pi
N )

We furthermore used Pearson’s correlation coefficient to delineate functional networks 

(Figure 4B/7B). Effect sizes were calculated using Cohen’s d, the correlation coefficient rho 

or the resultant vector length. Circular statistics as the Rayleigh test (Figure S4C/D), which 

tests for circular non-uniformity were carried out using the CircStat toolbox (Berens, 2009).

DATA AND SOFTWARE AVAILABILITY

Freely available software and algorithms used for analysis are listed in the resource table. 

All custom scripts and data contained in this manuscript are available upon request from the 

Lead Contact.
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Highlights

• The functional architecture of attention is rhythmic

• Frontoparietal theta activity predicts behavior on a rapid time scale

• Theta activity controls cortical excitability and information flow

• Rhythmic sampling is independent of task structure and context
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Figure 1. Task design and behavioral results of experiment 1
(A) Schematic task design. Participants initiated the trial start by pressing a button. After a 

variable delay, a brief spatial cue indicated the most likely position of the upcoming target 

(72% validity). Then, a variable cue-target-interval followed (500 – 1700ms), before a close-

to-sensory-threshold target appeared at either the cued location, an uncued location or was 

omitted. Participants released the button when they detected the target. (B) Left: Time-

resolved behavioral time course from subject S7 (see also Figure S1). Note the waxing and 

waning pattern over time. Right: FFT of the behavioral time course (black). In order to 

disentangle fractal 1/f and oscillatory components, we estimated the background 1/f 

spectrum (red; mean ± 3 SD) and only considered distinct peaks that exceeded this 

distribution. (c) Group level results after peak alignment to the individual peak frequency 

(IPF). We detected a peak in the theta-band with a mean of ~4 Hz in every participant 

(Figure S1).
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Figure 2. High frequency band activity is nested in cortical theta oscillations
(A) Overlap of all implanted electrodes in experiment 1 across all subjects (N = 7) overlaid 

on a standardized brain in MNI space. See Figure S1 for individual electrode placement. (B) 

Grand-average HFB time courses (mean ± SEM across subjects) of either cue-locked (left) 

or target-locked HFB activity (right). Note the apparent sustained activity at cue-responsive 

(cue+; cue-unresponsive electrodes: cue-) electrodes in cue-target-interval (grey shaded), 

which was also spatially selective (Figure S3A). (C) Three single trial examples from a cue+ 

parietal electrode. Upper: Note the response to the cue (black line). However, after the offset 

of the cue+ (grey line), the HFB activity waxes and wanes and is not as static as Figure 2B 

and Figure S3A suggested. Target onset is depicted by black dashed line and the response is 

depicted in green. Note that trial 3 (lower panel) was a miss. Next, we detected all the HFB 

peaks (red asterisks) after cue offset (grey) and before target onset (black dashed line). (D) 

Peak-triggered average (± 0.5s; HFB peak at 0s) of the same parietal electrode. Note that the 

HFB peak is nested in an ongoing 4 Hz oscillation (black depicts the average, grey line a 

sine fit to the average). (E) Subject-level results. Left: FFT spectra (mean ± SEM) across all 

cue+ and cue− channels. Note the peak at 4 Hz for cue-responsive electrodes, which was 

again also spatially selective (Figure S3B) Center: Grand-average peak-triggered average 

across all cue+ electrodes (mean ± SEM) can easily be approximated by a 4 Hz sine fit (grey 

line) and reflects the peak in the power spectrum (Left). Right: Note that no similar peak 

was detected at the cue− electrodes (red). (F) Mean-normalized group-level results (error 

bars indicate bootstrapped 95% confidence intervals (CI) around the mean in red; black dots/

grey lines depict individual participants). All subjects exhibited enhanced theta-band power 

in the peak-triggered spectra at cue+ electrodes. The arrow indicates the example subject 

(Figure 2E).
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Figure 3. Theta-phase dependent hit rate modulation
(A) Analytical approach exemplified for a single parietal electrode. Left: Phase-resolved hit 

rates in the range from 3-5 Hz. Note the non-uniform distribution across 50 bins (± 45°). We 

calculated the normalize d Kullback-Leibler divergence against a uniform distribution. 

Center: We then randomly shuffled condition labels (correct/incorrect) and repeated the 

analysis. The histogram shows the distribution of KL values after 1000 iterations. The 

observed value is indicated in red and was then z-scored relative to the mean and SD of the 

surrogate distribution. Right: This analysis was performed for 17 logarithmically spaced 

frequencies ranging from 2-32 Hz. The grey shaded area depicts the mean of the surrogate 

distribution ± 2 SD. The red line indicates observed values. Note that only the 4 Hz phase 

significantly predicted the hit rate, while no significant modulation was detected at any other 

frequency bin. (B) Same data as in panel A, but now the hit rate is color-coded and displayed 

as a function of phase and frequency. Again, note the modulation around 4 Hz. (C) Grand-

average (mean ± SEM) across all electrodes for this subject. Note that rhythmic sampling is 

enhanced in lower frequencies at cue+ electrodes. (D) Mean-normalized group-level results 

(in red: error bars indicate bootstrapped 95% CI around the mean; black dots/grey lines 

depict individual participants). All subjects exhibited enhanced rhythmic theta-band (~ 4 Hz) 

sampling at cue+ electrodes. The arrow indicates the example subject (Figure 3C).
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Figure 4. Large-scale network dynamics underlying rhythmic perceptual sampling
(A) Left: Topographical depiction of rhythmic sampling in one example participant who was 

implanted with bilateral grids. Note that multiple regions contributed to the rhythmic 

sampling including frontal regions (upper right), sensorimotor regions (center right) and 

parietal regions (lower right). See Figure S5 for data from all participants. We seeded the 

electrode with the strongest phase-dependent behavioral modulation (lower right, located in 

IPS5). (B) Then we calculated seed-based correlations based on the phase-resolved 

behavioral data, which indicated that parietal and frontal areas exhibit the same preferred 

phase for optimal behavior.
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Figure 5. Task design and behavioral results of experiment 2
(A) Schematic task design. Participants fixated a cross on a dynamic background with a 

number of visual distractors (red), which were randomly switched on or off. After a variable 

delay a centrally presented spatial cue indicated the hemifield that participants should 

covertly monitor. After variable cue-target-interval (1000 – 2000ms) a blue square was 

presented at the target and subject responded if the target was presented in the cued 

hemifield. (B) Left: Time-resolved behavioral time course from one example subject (see 

also Figure S6). Note the waxing and waning pattern over time. Right: FFT of the behavioral 

time course (black) and the fractal 1/f component (red). Note the strong peak around 4-5 Hz.

(c) Group level results after peak alignment to the individual peak frequency (IPF). We 

detected a peak in the theta-band with a mean of ~4.1 Hz in every participant (Figure S6).
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Figure 6. Neural correlates of rhythmic attentional sampling in experiment 2
Overlap of all implanted electrodes in experiment 2 across all subjects (N = 8) overlaid on a 

standardized brain in MNI space. See Figure S6 for individual electrode placement. (B) 

Grand-average HFB time courses (mean ± SEM) of either cue-locked (left) or target-locked 

HFB activity (right). (C) Upper: Peak-triggered average (± 0.5s; HFB peak at 0s; mean ± 

SEM) of all cue+ electrodes (blue) and an unconstrained sine fit (grey, ~7 Hz). Lower: FFT 

spectra of peak-triggered averages for cue+ (blue) and cue− electrodes (red). Note a peak 

around 3-4 Hz and around 7-8 Hz. (D) Mean-normalized group-level results (error bars 

indicate bootstrapped 95% CI around the mean (in red); black dots/grey lines depict 

individual participants). All subjects exhibited enhanced ~4 Hz power in the peak-triggered 

spectra at cue+ electrodes. This effect was not significant in the alpha-band. The arrow 

indicates the example subject (Figure 6C). (E) Left: Observed (red) and surrogate (grey 

shaded; mean ± 2SD) phase-dependent reaction time modulation for one parietal electrode. 

Right: Color-coded reaction time as a function of phase and frequency from the same 

electrode. (F) Grand-average (mean ± SEM) across all electrodes for this subject. Note that 

rhythmic sampling is enhanced in lower frequencies at cue+ electrodes. (G) Mean-

normalized group-level results (error bars indicate bootstrapped 95% CI around the mean (in 

red); black dots/grey lines depict individual participants) reflecting enhanced rhythmic theta-

band sampling at cue+ electrodes. The arrow indicates the example subject (Figure 6F).
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Figure 7. Large-scale dynamics of rhythmic perceptual sampling in experiment 2
(A) Topographical depiction of rhythmic sampling. Note that the left and right hemispheres 

depict two different subjects, but show a consistent pattern with strong rhythmic sampling in 

parietal and frontal areas. See also Figure S7. (B) Seed-based functional network 

parcellation highlights similar functional relationships between the ongoing theta phase and 

behavior in parietal and frontal regions.
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KEY RESOURCE TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

 

Presentation Neurobehavioral Systems Inc. https://www.neurobs.com

EPrime Psychology Software Tools Inc. https://pstnet.com/

MATLAB 2015a MathWorks Inc. RRID: SCR_001622

EEGLAB 13_4_4b (Delorme and Makeig, 2004) https://sccn.ucsd.edu/eeglab/index.php

FieldTrip 20170912 (Oostenveld et al., 2011) http://www.fieldtriptoolbox.org/

CircStat 2012 (Berens, 2009) https://philippberens.wordpress.com/code/circstats/

IRASA (Wen and Liu, 2016) https://purr.purdue.edu/publications/1987/1

SPM8 (Penny et al., 2011) http://www.fil.ion.ucl.ac.uk/spm/

Freesurfer 5.3.0 (Dale et al., 1999) https://surfer.nmr.mgh.harvard.edu/

ibootci Andrew Penn; MATLAB central https://mathworks.com/matlabcentral/fileexchange/52741-ibootci
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