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Abstract This paper considers two nonlocal regularizations for image recovery, which ex-
ploit the spatial interactions in images. We get superior results using preprocessed data as
input for the weighted functionals. Applications discussed include image deconvolution and
tomographic reconstruction. The numerical results show our method outperforms some pre-
vious ones.

Keywords Nonlocal methods · Inverse problem · Deconvolution · Tomography ·
Variational model

1 Introduction

We consider a general model:

f = Ku + n, (1)

where f is the observed data, K is a continuous linear operator, u is the original image
and n is white noise. Image recovery is an inverse problem, which refers to the estimation
of u given the data f and continuous operator K. For example, when the operator K is
formulated as a convolution with a shift invariant kernel, this inverse problem becomes
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image deconvolution. Another example occurs in the context of tomographic reconstruction
in which K represents an attenuated Radon transform and the data f are observed as photon
counts [2]. These are the two examples considered here.

It is standard to approach the inverse problem by the method of regularization. For ex-
ample, Tikhonov regularization [24] can be formulated as a one-step filter via Fourier trans-
form, in the case of image deconvolution. However, this procedure tends to amplify the
high frequencies where noise is conspicuous. Another popular regularization is total vari-
ation (TV). Due to its virtue of preserving edges, it is widely used in the many applica-
tions of image processing, such as blind deconvolution [7, 15, 20], inpainting [6] and super-
resolution [21]. However, these TV-based methods do not preserve the fine structures, details
and textures.

Buades et al. [3] introduce the nonlocal means filter to image denoising, which takes
advantage of similar patches in the same image. The similarity is represented by a weight
function, which induces a weighted averaging filter. The application of the nonlocal means
filter to different image processing tasks is an active research area [4, 12, 22]. However, it
remains challenging to extend previous nonlocal models to general inverse problems suc-
cessfully. For example, the same authors use neighborhood filters to stabilize the inverse
heat equation [4], following the direction in the PDE community to formulate Gaussian
blurring as diffusion [16, 17, 19]. But this method does not work very well, since observed
data and original images do not necessarily have same similarity distribution and structures.
In this paper, we propose a key step for nonlocal methods to work effectively in the general
case, which is to use a crude solution of the inverse problem to construct the weight. This
solution can be obtained by any fast image restoration method, e.g. Tikhonov regularization
[24] for image deconvolution and Filtered Back Projection (FBP) [2] for tomography. This
step amounts to preprocessing the data to exploit the useful spatial information in image.
It is more important for tomography, since the observed data and the image lie in different
spaces. Along with the preprocessing the data to build the weight, we show that a nonlocal
extension of total variation provides an effective mechanism for the inverse problem.

The paper is organized as follows: we review the related approaches in Sect. 2. A math-
ematic framework for nonlocal operators is studied in Sect. 3. In Sect. 4, we extend the
TV-based model to a nonlocal setting with the applications to deconvolution and tomo-
graphic reconstruction. Section 5 contains numerical experiments.

2 Prior Work

2.1 Linear Models

First we review two common examples of linear regularizations to solve the image recovery
problem. One is called Tikhonov regularization with identity [24], which is to solve the
following minimization problem:

u = arg min
∫

(f − Ku)2 + μ

∫
u2, (2)

where μ > 0 is a regularizing parameter. The variational formulation gives us K∗(Ku−f )+
μu = 0, where K∗ is the adjoint of K. An alternative regularization [1] is to replace the L2

norm in the last term in (2) with H 1 semi-norm. The second approach is called Wiener filter
for image deconvolution:

u = arg min
∫

(f − Ku)2 + ν

∫
|∇u|2. (3)
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Similarly, the minimizer u is a solution of the Euler-Lagrange equation K∗(Ku − f ) −
ν�u = 0, where �u is the Laplacian of u.

These linear methods are very simple and fast to implement. For example, when K is a
convolution operator, it only involves one step of calculation, e.g., the fast Fourier transform.
In general, the minimizer can be obtained by an efficient conjugate gradient algorithm. How-
ever, in order to compensate for the noise, a large regularizing parameter μ or ν is necessary,
which tends to smear out the edges.

2.2 TV Regularization

Total variation [23] was proposed as regularizing functional for image restoration by Rudin,
Osher and Fatemi, so-called ROF model,

u = arg min
u

∫
|∇u| + λ

2

∫
(f − Ku)2, (4)

where λ > 0 is Lagrange multiplier. This yields a nonlinear model. One way of solving this
minimization problem is to evolve a PDE, whose steady state corresponds to a minima of
the energy (4), {

ut = ∇ ∇u
|∇u| + λK∗(f − Ku) in �,

∂u
∂n

= 0 on ∂�.
(5)

Note that when K is the identity operator, we obtain the problem of image denoising. There
are many fast methods to minimize (4) such as [5, 8, 13, 14].

2.3 Nonlocal Methods

The nonlocal methods in image processing are generalized from the Yaroslavsky filter [25]
and patch-based methods, originally proposed for texture synthesis [10]. The idea is to re-
store an unknown pixel using other similar pixels. The resemblance is regarded in terms of
a patch centered at each pixel, not just the intensity of the pixel itself. In order to denoise
a pixel, it is better to average the nearby pixels with similar structures (patches). This idea
is generalized to a famous neighborhood denoising filter, the Non Local Means (NLM) by
Buades et al. in [3]:

NLv(x) := 1

C(x)

∫
�

wv(x, y)v(y)dy, (6)

where v is the reference image, the weight function wv(x, y) and the normalizing factor
C(x) have the form:

wv(x, y) = exp

(
− (Ga ∗ |v(x + ·) − v(y + ·)|2)(0)

h2

)
, (7)

C(x) =
∫

�

wv(x, y)dy, (8)

where Ga is the Gaussian kernel with standard deviation a and h is a filtering parameter. In
general h corresponds to the noise level; usually we set it to be the standard deviation of the
noise. The weights are significant only if the window around y looks like the correspond-
ing window around x. Thus the self-similarity is used to reduce the noise. The authors [3]
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consider using the noisy data f as the reference image to construct the weight and by this
weighed averaging, the structures, e.g. edges, are reinforced, while the noise gets cancelled
out.

The application to a general inverse problem is not direct since observed data and original
images do not necessarily have same similarity distribution and structures. In the case of
deconvolution, based on the hypothesis that the deblurred image must maintain the same
similarities as the blurry image, Buades et al. proposed a nonlocal deblurring model in [4]:

u = arg min
u

∫
(u − NLf (u))2 + λ

2

∫
(f − Ku)2,

where NLf is defined in (6) with the reference to be the blurry noisy data, i.e. v = f . This
hypothesis has a strong limitation since it forces the deblurred image to maintain the same
coherence as the given blurred one.

The nonlocal means can be regarded as one step of fixed point iteration to solve the
optimality conditions of the general functional [18],

J (u) :=
∫

�×�

g

( |u(x) − u(y)|2
h2

)
w(|x − y|)dxdy.

where g is a general functional. Inspired by graph theory [26], Gilboa and Osher [11] pro-
pose a particular functional g, which turns out to be a linear regularization for denoising and
can be applied to supervised segmentation as well; they formalize a systematic and coherent
framework [12] for nonlocal operators.

3 Nonlocal Framework

3.1 Nonlocal Operators

Here we review the work from [12]. Let � ⊂ R2, x, y ∈ �, w(x, y) be a weight function.
Furthermore w(x,y) is assumed to be nonnegative and symmetric. We define

• nonlocal gradient ∇wu : � → � × �

(∇wu)(x, y) := (u(y) − u(x))
√

w(x,y).

• nonlocal divergence divw
−→v : � × � → �

(divw
−→v )(x) :=

∫
�

(v(x, y) − v(y, x))
√

w(x,y)dy.

We design two types of regularization functionals based on the nonlocal operators.

JNL/H 1(u) = 1

4

∫
|∇wu|2 =

∫∫
�×�

(u(x) − u(y))2w(x,y)dxdy, (9)

JNL/TV(u) =
∫

|∇wu| =
∫

�

√∫
�

(u(x) − u(y))2w(x,y)dydx. (10)

Note that the functional in (9) is analogous to the standard H 1 semi-norm, so it is denoted
as NL/H 1; similarly the one in (10) is denoted as NL/TV .
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We calculate the Euler-Lagrange of the functionals above, thus obtaining

LNL/H 1u = −
∫

�

(u(y) − u(x))w(x, y)dy, (11)

LNL/TVu = −
∫

�

(u(y) − u(x))w(x, y)

[
1

|∇wu(x)| + 1

|∇wu(y)|
]

dy. (12)

3.2 Computing the Weights

In this paper we use the weight function as (7), which is the same formula in [3] and [4],
except that we use a preprocessed image as the reference to construct the weight. Another
difference is that we do not require normalization of the weight since we formulate a mini-
mization problem. In practice, in order to improve computational time and storage efficiency,
we only compute the weights in a semi-local searching window for each pixel. The details
of the preprocessing are given in the next section, since it varies from different applications.

4 Two Applications

4.1 Image Deconvolution

We use the nonlocal regularization functionals in (9) and (10) to perform deconvolution,
by incorporating the convolution into the data fidelity. In this case, the general model Ku

amounts to the convolution between the image u and a circular shift-invariant blur kernel g.
Furthermore, periodic boundary conditions for the convolution are assumed, thus the fast
Fourier transform can be applied to realize the convolution.

We define the total energy as

E(u) = J (u) + λ

2

∫
(g ∗ u − f )2, (13)

We use gradient descent to update the solution by the Euler-Lagrange of (13)

ut = −Lu + λg̃ ∗ (f − g ∗ u), (14)

where the operator L is the corresponding gradient flow with respect to the functional J ,
that is either (11) or (12), and g̃ is the adjoint of g.

A better way to construct the weight function (7) is to use a preprocessed image in-
stead of the blurry and noisy data f . Ideally the preprocessed image should be sharper than
the blurry image and easy to compute. For example, we may use the linear model men-
tioned in Sect. 2.1. Although these methods suffer from amplifying the noise frequencies,
the nonlocal framework can automatically handle its side-effects. Since the noise statistics
of the preprocessed image is changed, we should alter the parameter h in the weight func-
tion to compensate for the noise accordingly. We choose Tikhonov regularization to be the
preprocessor considering that it produces sharper results than Wiener filter, which is to min-
imize the H 1 semi-norm.

The minimizer of the linear model (2) can be obtained in the frequency domain (ξ, η):

û(ξ, η) = ĝ∗(ξ, η)f̂ (ξ, η)

|ĝ|2(ξ, η) + μ
, (15)
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where ∧ denotes the Fourier transform and ∗ is the conjugate operator.
In the case where we know some statistics of additive noise, e.g. the standard deviation

of noise, a proper parameter μ is chosen such that the restored image u in (15) satisfies

∫∫
(f − g ∗ u)2dxdy =

∫∫
n2dxdy = σ 2.

By Parseval’s theorem, this is equivalent to finding μ satisfying

σ 2 =
∫∫

(f − g ∗ u)2dxdy =
∫∫

|f̂ − ĝû|2dξdη =
∫∫

μf̂ (ξ, η)

|ĝ|2 + μ
dξdη.

Notice that the right-hand side is monotonically increasing function in μ, hence there exist
a unique solution μ, which can be determined via bisection.

Since the above procedure describes a linear operator applied to f , we can denote Invg .
It follows from the image degradation model (1) that

f̃ = Invg ◦ f = Invg ◦ (g ∗ u + n).

Note that after preprocessing the data, the noise has L2 norm

‖Invg ◦ n‖L2 � ‖Invg‖L2‖n‖L2 = σ‖Invg‖L2 .

Hence a good choice is h = σ‖Invg‖L2 .

4.2 Tomographic Reconstruction

We provide another example of the nonlocal functional model in the context of Comput-
erized Tomography (CT). In a simplified parallel tomographic problem, an observed body
slice is modelled as a two-dimensional distribution (x, y) 
→ u(x, y) of the X-ray attenua-
tion constant, and a line integral called projection p(r, θ) represents the total attenuation of
a beam of X-rays parameterized by (r, θ), where r ∈ R is the signed perpendicular distance
from the line to the origin and θ ∈ [0,π) is the angle between the perpendicular vector and
the x-axis. As shown in Fig. 1, a projection obtained by illuminating the object along the
line is given by

Ru : p(r, θ) =
∫∫ ∞

−∞
u(x, y)δ(x cos θ + y sin θ − r)dxdy,

where δ denotes the Dirac delta-distribution. The linear operator R : u(x, y) 
→ p(r, θ) is
called Radon transform. The tomographic reconstruction problem is to estimate the distrib-
ution u(x, y) from a finite number of measured line integrals p(r, θ). The standard recon-
struction algorithm in clinical applications is the Filtered Back Projection, which is a direct
discretization of an analytical formula for the inverse of the Radon transform. As the name
indicates, this method can be decomposed into two steps: (1) the one-dimensional projec-
tion data along each orientation θ is applied via a ramp filter; (2) each pixel of the image
u is obtained by summing on those filtered projections passing through this pixel. In fact,
the last step is actually an adjoint transform of the Radon transform [2], which is called
back projection. In the presence of noise, this problem becomes difficult since the inverse
of the Radon transform is unbounded. Traditionally, a low-pass filter has to be applied to
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Fig. 1 Radon transform in R
2

compensate the noise amplification by ramp filter. However this step smooths edges, where
important structures are located.

Instead we formulate this problem as a variational problem

minJ (u) + λ

2
‖Ru − p‖2

2,

where R denotes a discrete Radon transform (often a sparse matrix) and p represents the
measured projection data, and the functional J can be chosen from (9) and (10). The solution
is found iteratively using a gradient algorithm.

The weight function w(x,y) is needed to measure the similarity of image features be-
tween pixels x and y. Since the observed projection data are in the Radon domain, which do
not directly reflect the similarity information of the image, we need a more accurate image
to compute the weight. We consider the FBP image as a crude and fast solution to build
the weight. Moreover, we choose the filter parameter h to be the estimated noise variance
in the filtered back projection image. Here we use a wavelet based noise estimation model
introduced by Donoho et al. [9] in 1994. More precisely, we first apply a wavelet transform
on the filtered back projection image, then the noise variance of this image is estimated by
using the medial absolute deviation of the wavelet coefficients at its finest scale, i.e.:

σ̂ 2 = median(|yi |)
0.6745

,

where yi are wavelet coefficients in the finest subband of the filtered back projection image.
Note that an alternative choice is to compute the norm of an discrete inverse of the Radon
transform.

4.3 Algorithm

Algorithm 1 summarizes the steps of the proposed methods for two applications: image
deconvolution and tomographic reconstruction. Note that it can be generalized to other ap-
plications.

5 Experiments

In this section we present some numerical results using the nonlocal functionals: NL/H 1 and
NL/TV . We compare these to traditional methods, such as Tikhonov regularization [24],
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Algorithm 1 Image Recovery via Nonlocal Operators
Input: Data f and the degradation model K.
Preprocessing: Compute u0 using Tikhonov regularization for image deconvolution or
filtered back projection for tomographic reconstruction.
Weight computation: For each pixel x, the weight w(x,y) is computed for every y

belonging to a searching window of size 21 × 21 centered at x, according to (7) for
v = u0. The choice of h was discussed in the previous section.
Minimization

E(u) = J (u) + λ

2

∫
(f − Ku)2

Choose a fixed λ, and set e = 1e − 5, dt = 0.1, k = 0 and maxIter = 500. Use the pre-
processed data u0 as the initial guess for the iteration.
while ‖uk+1 − uk‖ > e and k < maxIter do

Gradient descent

uk+1 = uk − dt
(
Luk + λK∗(Kuk − f )

)
where L is either (11) or (12).
k = k + 1.

end while
Output: final solution uk .
Comment: We run the minimization for a wide range of λ and choose the best result.

Table 1 The statistics of blur
and noise we add to the images Image Blur kernel Gaussian noise

Shape Gaussian with σb = 2 σn = 10

Barbara Gaussian with σb = 1 σn = 5

Cameraman 9 × 9 box average σn = 3

ROF [23] and the NL-means deblurring model [4] by Buades et al. As for the nonlocal
weight, we compute it from either the noisy blurry image or the preprocessed image.

We use signal-to-noise ratio (SNR) as a means of judging performance

SNR(u,f ) = 20 log10

{‖f − f̄ ‖L2

‖f − u‖L2

}
,

where u is the original image, f is the recovery and f̄ is its mean value.

5.1 Image Deconvolution

We test all the methods on three images: a synthetic image, Barbara and Cameraman with
various kinds of blur and noise as listed in Table 1. The synthetic one is referred to as Shape
since it contains geometric features. The Cameraman image is high contrast and has many
edges, while the image of Barbara contains more textures.

We use Tikhonov regularization to preprocess the data with the method parameter μ

determined by the standard deviation of the noise. Then we use this preprocessed data to
compute the weight function with filter parameter h chosen to compensate the amplified
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Table 2 SNR for different
methods Image Shape Barbara Cameraman

Noisy input 11.6213 10.0363 8.4600

Tikhonov [1] 13.1970 10.5680 11.2940

ROF [23] 14.2192 11.4257 12.3448

NLM deblur [4] 16.3289 12.0903 12.4269

NL/H 1 16.8084 11.7952 12.4599

NL/TV 17.5251 12.0066 12.7495

Tikhonov + [4] 17.5269 12.7369 13.5099

Tikhonov + NL/H 1 19.6982 12.1182 13.5185

Tikhonov + NL/TV 20.9401 12.4616 13.6194

Fig. 2 A 150 × 150 image with Gaussian blur σb = 2 and Gaussian noise σn = 10

noise. Please refer to Sect. 4.1 for details. Once we have the weight, we solve the mini-
mizer of (13) with either NL/H 1 or NL/TV as regularization via gradient descent. For each
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Fig. 3 A 200 × 200 image with Gaussian blur σb = 1 and Gaussian noise σn = 5 cropped to 75 × 75 pixels

method, we present our result with an optimal parameter λ chosen from a series of values
with wide range.

Regardless of which way we compute the nonlocal weights, visually NL/H 1 returns a
smoother image than NL/TV does. We list the SNR of all the methods in Table 2. For
Figs. 2 and 4, the best reconstruction is the one that combines a preprocessor by Tikhonov
filter with NL/TV regularization functional both in terms of SNR and direct inspection as
well. Although Tikhonov + NLM deblur achieves the highest SNR in Barbara example,
Tikhonov + NL/TV restores most textures especially in the bottom left corner as zoomed
in Fig. 3.

For computational time, it takes about 2.9 seconds for a dual core desktop with 2.99 GHz
processor and 1.99 GB memory to construct the weight function of a 256 × 256 image
in MATLAB. Once we have constructed the weight, the iteration of NL/H 1 and NL/TV
is comparable to ROF in speed (NL/H 1 is more efficient than NL/TV). The computation
speed depends on the number of iterations. In general, it takes around 200 seconds for 500
steps iteration. For some examples, the energy converges very quickly. Also, code could be
optimized.
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Fig. 4 A 256 × 256 image with box average kernel 9 × 9 and Gaussian noise σn = 3

5.2 Tomographic Reconstruction

We have tried the algorithms on a synthetic Shepp-Logan head phantom and a real brain
image, for which projection data have been computed using a Radon transform matrix.

The size of each image is 128 × 128. The number of projection angles is chosen to be
the size of the image and there are

√
2 ∗ 128 ≈ 185 X-ray parallel beams for each angle

in order to cover the whole image domain. Therefore the sizes of projection data for both
images are 185 × 128. Then we add white noise of σn = 100 to the projection data of both
images. Since the projection data lies in a different space than the image does, [4] can not
be directly applied in this case. Therefore, the weight function for the nonlocal methods is
estimated from the image reconstructed by FBP, which is also used as the initial guess for
all the variational models. As we discussed above, we compute the weight function w(x,y)

from an initial filtered back projection image and estimate noise level to determine the value
of parameter h in the weight.

Figures 5 and 6 show the simulation results in the presence of Gaussian white noise
in the projection of a phantom and a brain image. The efficiency of FBP is very poor.
TV-regularization performs well but the details of the images are slightly blurred. Simi-
lar to deconvolution, NL/H 1 gives a visually smoother image than NL/TV does, but NL/TV
archives a slightly better SNR. Furthermore, NL/H 1 gives smoother results but details are
well-preserved. For both images, nonlocal functionals outperform the traditional methods.

6 Conclusion

Nonlocal functionals have recently been introduced for the case of image denoising. We have
extended their utilities to more general inverse problems. We discuss two applications of the
general model: image deconvolution and tomographic reconstruction. We found nonlocal
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Fig. 5 Results of reconstruction from noisy projection data with SNR = 28.1db

Fig. 6 Results of reconstruction from noisy projection data with SNR = 26.04db. On the last row is the
enlarged central part of each reconstruction

functionals to give superior results, provided that the data is preprocessed using older simple
techniques to construct the nonlocal weight functional.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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