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ABSTRACT OF THE DISSERTATION

Generative Audio Systems: Musical Applications of Time-Varying Feedback
Networks and Computational Aesthetics

by

Gregory Surges

Doctor of Philosophy in Music

University of California, San Diego, 2015

Professor Tamara Smyth, Chair

This dissertation is focused on the development of generative audio systems - a

term used to describe generative music systems that generate both formal structure and

synthesized audio content from the same audio-rate computational process. In other words,

a system wherein the synthesis and organizational processes are inseparable and operate at

the sample level.

First, a series of generative software systems are described. These systems each

employ a different method to create generativity and, though they are not strictly generative

audio systems, they lay important groundwork for the rest of the discussion as ideas from and

xv



contributions to the fields of generative algorithmic composition, computational aesthetics,

music information dynamics, and digital signal processing are introduced.

Second, the dissertation investigates the use of a novel signal processing technique

in which time-varying allpass filters are placed into feedback networks, producing synthesis

structures capable of yielding interesting emergent sonic behaviors. Ideas from the field of

computational aesthetics are employed to allow a large system built from these synthesis

structures to become “aesthetically aware.” Many theories about computational aesthetics

center around a favorable balance between order and complexity in a stimulus - a successful

artistic work is neither too orderly nor too complex. Using a model of human perception

based on the “mere exposure” effect, which describes how listener appreciation and boredom

change as they experience repeated exposure to a stimulus, the AAS-4 system autonomously

determines when and how to modify its own parameters to avoid repetitions that may lead

to boredom in listeners.

The dissertation concludes with objective analysis of the generative system by

considering the complexity of its output from an information-theoretic perspective. It

was found that the generative audio system described here is capable of producing output

with equivalent complexity to that of real-world musical examples. It is also shown that

the level of complexity in the generated audio and real-world examples falls in-between

the low complexity of silence and sinusoids and the maximal complexity of white noise,

corresponding with the theories from computational aesthetics. Future directions of this

work are also described. Two appendices describing related topics that would disrupt the

flow of the dissertation are included.

xvi



Chapter 1

Introduction

1.1 Motivation

This dissertation is both a presentation of finalized results and a description of

points along an ongoing investigation of generative music systems. Most, if not all, of my

compositional and research work has, in some way, been related to ideas about generative

music and the generative audio system - a new kind of generative music system, that

combines synthesis and structure in the same generative process. This document traces the

path that this work has followed, describing the significant research projects along with

some of the fruitful detours encountered along the way. The work documented here includes

research and contributions that combine the fields of digital signal processing, algorithmic

composition and generative music, open-source hardware design, and music information

retrieval.

Generative music is often broadly defined as music that arises from the specification

of a system as a set of rules. After these rules have been specified, the system is left to work

out the specifics of the music [1]. Generative techniques can be either manual or automated,

and have been widely used in the production of a variety of art-forms [2]. Of particular

interest to me is the field of live performance with generative electronic systems. I have long

1



2

been fascinated with the creative opportunities afforded in pieces and performances where a

human performer (or performers) and an electronic system coexist as components of a larger

cybernetic configuration, and exert mutual influence. In other words, the human responds

to input from the electronics as much as the electronic system responds to input from the

human. In these cases, the electronics are often at least partially generative - the performer

may not specify low-level details about musical events, but instead may make high-level

decisions about algorithmic parameters. This type of performance practice, involving a

“push-pull” relationship between performer and instrument, has become extremely common

in electro-acoustic music.1

In parallel with this interest in live and interactive generative music systems, I have

long been interested in computational methods of musical analysis or evaluation. The work

described in this dissertation applies ideas about computational aesthetics to the production

of generative live electronic music. The project described in Chapter 8 attempts to replace

the human component of the cybernetic system described in the previous paragraph with an

aesthetically aware software component. Instead of relying on a human to make high-level

decisions about musical parameters, the aesthetically aware software component makes

these decisions based on the output of a computational model. A secondary motivating factor

of this current research is related to what I perceive as a flaw in a large portion of the body

of Music Information Retrieval (MIR) research. At the time of this writing, many advanced

MIR techniques have been presented in the literature, ranging from automatic segmentation

of musical audio signals [3] to automatic genre classification [4] to musical style modeling

[5]. Unfortunately, these techniques rarely see application in creative works. When they do,

they are often straightforward - such as segmentation according to an amplitude envelope

follower as in [6]. Instead, these MIR techniques often seem to function as parts of the music
1By the author’s count, at a recent (at the time of this writing) concert performance at the 2015 International

Computer Music Conference, 75% of the pieces on one of the late-night concert programs featured a composer
interacting with a (at least partially) generative system.
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industry’s push toward automation - forming components of recommendation systems or

working as automatic transcriptionists [7, 8]. The goal here is to find a creative application

of a particular advanced MIR technique. After all, what is the purpose of computer music

research if not to make computer music?

1.2 Novel Contributions

This dissertation presents a number of novel contributions to the field of computer

music. Chapter 4 and Appendix B describe a unique hybrid hardware and software generative

music system. The system, called Feld, uses custom hardware devices to interface between

a laptop computer and analog synthesis hardware. The hardware allows for computer

control of the modulation and routing of the analog synthesizer, and the computer software

generates parameter data and applies audio signal processing effects to the output of the

analog synthesizer. Appendix B describes the original hardware devices used in this system,

and Chapter 4 describes the overall system structure as well as the unique approach to

sectional automation used. The Feld system was an initial attempt to use ideas from

computational aesthetics in a real-time generative music system.

Chapter 5 describes the use of an information-theoretic measure obtained from a

musical signal in a generative machine improvisation system. The PyOracle system is the

first machine improvisation system to use the Audio Oracle algorithm, a modification of the

Factor Oracle string-matching algorithm. PyOracle enables a machine improvisation system

to learn musical structures from arbitrary, possibly multi-dimensional features extracted

from audio signals. These structures can then be used to generate new variations on the

original input signal. The chapter describes the implementation and use of the system, as

well as a creative application of the system.

Chapters 6 and 7 are focused on the use of digital signal processing in so-called

generative audio systems, and describe the use of time-varying all-pass filters as modulation
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effects and in such generative systems. A novel technique is described in Chapter 6 that

allows for modulation of only selected spectral components of a complex sound, while

leaving the rest of the spectrum relatively unmodified. Chapter 7 addresses the issue of

instability in time-varying all-pass filters, and a power-preserving formulation of the time-

varying all-pass filter is presented. Finally, Chapter 8 describes a creative application in

the form of a system, called AAS-4, that combines these generative feedback networks

with a real-time measure of computational aesthetics. The output of the system consists of

the signals obtained from a set of generative, time-varying feedback networks modulated

by all-pass filters. The system uses an algorithm from the field of machine improvisation

(Audio Oracle) to analyze these signals, “listening” for repetition. If the system determines

that too much repetition has occurred, based on a simple model informed by research on

perception and boredom, it attempts to produce novel output by making changes in its own

parameters.

1.3 Dissertation Organization

This dissertation is organized into three main parts. This section will provide an

overview of the structure of the document, along with a brief description of the contents of

each chapter. Part I of the dissertation consists provides conceptual and technical background

for the research to follow. The term “generative audio system” was introduced by the author

in [9] and refers to a particular subset of generative music systems. Chapter 2 provides a

definition and background of the “generative audio system”. Chapter 3 describes theories of

computational aesthetics and research on boredom and aesthetic preference that will be used

throughout the chapters to follow.

Part II of the dissertation consists of Chapter 4 and Chapter 5, each of which describes

a different generative music system. The first of these chapters describes the Feld system, a

combined hardware and software system for the generation of live electronic music. The
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second describes the PyOracle system, a library of code and a corresponding real-time

system for machine improvisation and analysis of music information dynamics.

Part III consists of the final three chapters of the dissertation. The first two of these,

Chapters 6 and 7 describe the use of time-varying all-pass filters in modulation effects

and generative feedback networks. Stability issues in these time-varying filters are also

addressed. Finally, Chapter 8 describes the AAS-4 system, which combines the generative,

all-pass filter-modulated feedback networks introduced in Chapter 7 with real-time analysis

of music information dynamics. Finally, the dissertation also includes two appendices.

The first of these describes my experiences at the David Tudor archives held at the Getty

Research Library, while the second describes the custom hardware used in the Feld system.



Part I: Background

6



Chapter 2

Generative Systems

There are many names for algorithms and systems that autonomously produce

music - generative music, algorithmic composition, automated composition, and autonomous

instruments, to name a few [10, 11]. The work described in later chapters focuses on a

newly recognized sub-category, referred to here as generative audio systems. The aim of

this chapter is to introduce the generative audio system, the design of which is the ultimate

aim of the current research, and to distinguish it from the more general and encompassing

generative music system. Generative audio systems differ from other kinds of generative

music systems in that they operate entirely at the sample level. In other words, the generative

and synthesis processes are one and the same. Before entering into any detailed discussion

of the current research, there is some background information which must be given on these

systems. This chapter will give a conceptual and historical overview of generative audio

systems as a way of providing background information for the chapters to follow.

Generative techniques are often used in art-making, and can include both computer-

based and manual approaches to producing works through procedures that fall outside the

control of the art maker [2]. Any generative music system depends on both sonic materials

and the organizational principles which apply to those sounds. Generative audio systems

additionally have a very tight coupling between these two elements, as will be elaborated

7
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below. Historically, composers working with generative audio systems have shaped their

works through either real-time or pre-composed manipulation of system parameters. In

these cases, the performer serves as auditor, curator, and censor - emphasizing, highlighting,

diminishing, or suppressing certain aspects of the system’s output in order to produce a

satisfying aesthetic experience. Although there is often an expressed desire to bring forth

the “music in the machine,” there is almost always a human shaping the aesthetic experience

in time. This stands in contrast to the “pure computer-generated music” described by Nick

Collins, where “the operation of the artwork is free of complicated human intervention

during execution” [2].

This chapter will begin with a definition and overview of generative music systems

and generative audio systems, with a particular focus on systems that employ feedback.

Some important concepts that arise when working with feedback will be presented as a way

to qualify some of the aspects and behaviors of these systems that are less easily analyzed.

The final section contains a number of historical examples of composition using generative

audio systems and feedback. The aim is to place the research in the following chapters into

a historical and theoretical framework.

2.1 Generative Audio Systems

Composers have employed generative compositional techniques for generations.

Although composer and computer music researcher Nick Collins makes a distinction be-

tween generative music and algorithmic composition - with the former being a real-time

phenomenon, and the latter happening offline - it is important to describe early approaches to

computer-based algorithmic composition [2]. Experiments in algorithmic composition have

been on-going since the mid-1950s [11]. Many early examples of algorithmic composition,

including landmark works by Hiller, Koenig, and Xenakis, used computer programs to gen-

erate material which was later converted into a traditionally notated score for performance
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on acoustic instruments [2]. Though the concepts explored in these compositions were novel,

often involving probability and stochastic processes, their presentation in familiar media

(i.e. Xenakis’ string quartet from the early 1960s ST/4, composed using stochastic a model

of particle interactions) kept them somewhat rooted in the traditions of Western art music

[12]. James Tenney’s computer music compositions are well-known for being some of the

first examples of fully computer-generated music. Tenney’s model was to algorithmically

generate a score, and then realize it through digital synthesis [11]. This score / orchestra

paradigm is reflected in the design of computer music software like the MUSIC N family

and CSound and possibly manifests itself through the distinction between control and signal

rates in modern languages like Pure Data and Max [13, 14]. There are many more recent

examples of computer-based generative music systems, many of which also produce their

sonic output in real-time, such as Essl’s Lexicon-Sonate, Eigenfeldt and Pasquier’s Kinetic

Engine, and Bown’s work with recurrent neural networks, to name but a few [15, 16, 17].

In parallel - and perhaps, in contrast - with this ongoing creative research in computer

music, another group of composers was investigating the use of electronic technology in live

musical performance. The composer John Cage had perhaps the most significant influence

on this group, notably for his pioneering live electronic music, but also for his insistence on

embracing chance processes and his role in the creation of some of the first multi-media

“happenings” [18]. Many of the composers used their own, homebrew equipment, and

formed groups such as “Composers Inside Electronics” where ideas, circuitry, and music

could be shared by practitioners [19]. An important concept for much of this work is the

“circuit score” - a type of musical composition where the compositional logic is embedded

in the same hardware that produces the sound. In such a piece, the hardware configuration

alone is sufficient to produce the piece - without any further instructions to performers. This

approach is nowhere more evident than in the music of David Tudor, a virtuoso pianist and

Cage collaborator who later became a composer of live electronic music [20]. The idea of
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the circuit score is closely related to that of the generative audio system, and the work of

Tudor - perhaps the archetypical composer of this group - and others will be discussed in

more detail below.

To reiterate: the phrase generative audio system is used to refer to a generative

music system in which dynamic and surprising audio output is generated (with little or no

human input) at the signal level - that is, the generative process is not based on symbolic

manipulations of higher-level musical data, but instead functions directly through audio

synthesis or processing. In other words, generative audio systems form a particular subset

of generative music systems. In these systems, high-level musical details - such as form,

dynamics, and timbre - emerge from the same algorithm or computational process that

performs the audio generation itself.

2.1.1 Feedback Systems

In many cases, generative audio systems make use of feedback. A feedback system

can be defined as one which transforms an input, the result of which then becomes the output

and appears again at the input after a delay [21]. Feedback systems appear in engineering,

nature, societies, and, of course, music. Feedback is commonly used in digital signal

processing (DSP), for example in the realization of a filter with an infinite impulse response

(IIR). This type of feedback is vital to the allpass filters discussed in Chapters 6 and 7, but

I am also interested here in feedback that operates at a higher level. In an IIR filter, the

feedback path includes simple multiplication and delay elements, with specific coefficient

values selected to produce a particular frequency response in terms of magnitude, phase, or

both. In the systems used to create the works discussed later in this section, the feedback path

often includes complex and time-varying signal-processing blocks like filters, phase-shifters,

and modulators.

Feedback systems can be characterized by the polarity of the feedback path, and the



11

feedback can be either negative or positive [22]. Negative feedback occurs when there is a

inverse relationship between the input and output of a system. These systems tend toward

equilibrium and stability. Positive feedback, on the other hand, occurs when changes in the

system produce larger changes in the same direction. These systems are usually unstable.

In [23], a distinction is also made between internal and external feedback. Systems with

internal feedback route the output of the system back to the input directly, while those

with external feedback allow the environment to affect the signal between output and input.

Chapter 4 describes systems which use both internal and external feedback.

In addition to feedback polarity and the distinction between internal and external

feedback, it will be useful to define some further characteristics of feedback systems: non-

linearity, iteration, coupling, self-organization, and complexity [21]. These terms can be

useful when discussing the behavior of complex, possibly time-varying, feedback systems

(such as the ones described in Chapter 8) which may not be easily analyzed using traditional

techniques.

The issue of non-linearity arises when working with feedback systems. Although

non-linearity has a particular meaning in the context of DSP, Sanfillipo and Valle provide a

slightly different, yet related, definition. The non-linearity in a feedback system is a result of

“a process with circular causality. . . In such a configuration, effects are also causes, and there

is a mutual relation between them” [21]. In other words, the order of components - even

linear ones - in a feedback system, can be significant, and the relation between cause and

effect can be disproportionate [23]. This is even more the case when traditionally non-linear

or time-varying components are used [24].

Due to the iterative processing inherent in these systems, wherein a signal recursively

passes through some form of processing block, they are often self-sustaining and capable

of producing variations on initial conditions. As material recirculates through the system,

transformations are applied again and again, producing generations of changes. This iterative
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nature can also result in types of interrelations between musical parameters which may not

occur in non-feedback systems [21]. As an example, consider the familiar Karplus-Strong

string synthesis algorithm [25]. In this design, shown in block diagram form in Figure 2.1, a

noise burst - applied at X(z) in the figure - is used to excite a recirculating delay network.

As the noise burst recirculates through the network, it is repeatedly smoothed by a low-pass

filter. The result is a noise burst decaying to a sinusoid. The fundamental frequency of the

output is dependent on the delay time n. A well-known side-effect of this algorithm in its

basic form is that the decay time of a note is also dependent on n, as well as the magnitude

response of the low-pass filter [25]. As such, in this particular feedback system, fundamental

frequency is directly related to note duration - the parameters are interrelated due to the

iterative nature of the network.

+

X(z) Y (z)z�n
Lowpass

Figure 2.1: Block diagram of Karplus-Strong string synthesis algorithm.

The circular causality described in [21] - where causes and effects are often difficult

to distinguish - leads to coupling, where components of a system are mutually influential.

When this behavior extends across an entire system of components, the system will have a

specific set of characteristic behaviors. All of the individual components are important to

the overall output, and can have significant effects. Further, behaviors may arise which are

not additive but instead synergistic [21]. In other words, the whole can be greater than (or

radically different from) the sum of its parts. A basic signal-processing block, say a delay,

can have important and surprising effects when integrated into a larger feedback system.

Small changes in the network, for example swapping the order of two elements, can have
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large effects on the output [23].

Many composers have been attracted to the property of self-organization which is of-

ten associated with feedback systems [26, 27, 28]. A system which is self-organizing is one

that can autonomously shift from one state to another or from which can emerge high-level

patterns based on the behavior between low-level components, without outside influence

[21, 23]. In other words, self-organizing systems are characterized by the “emergence of

coherent patterns at a global level out of local interactions between the elements of a system”

[23]. The states of a self-organizing system can be characterized as either stable (charac-

terized by static behavior) or unstable (continually shifting behavior). Self-organization

- corresponding to stability - can be opposed with self-disorganization - instability - and

they can be characterized in terms of their relative entropy or amount of randomness [21].

Self-organizing behaviors lead to a decrease in entropy, while self-disorganizing behaviors

lead to an increase.

Finally, complexity has emerged as a phenomenon worthy of scientific investigation,

and of relevance to feedback and generative audio systems [23]. A complex system is

constructed of many small, simple processing units. From the interaction of these individual

units, surprising and complicated results can emerge. Sanfillipo and Valle argue that since

feedback is “a simple behavior that leads to unexpected results. . . it can be described in

the framework of complexity.” The unexpected results are often referred to as “emergent

behavior” - and in the case of a generative audio system, the dynamic and surprising output

“emerges” from the interactions between individual interconnected system components.

The authors of [23] also point out the importance of distinguishing between complexity

and total unpredictability. Complex systems are capable of both chaotic and non-chaotic

behavior [23]. Chapter 4 of this dissertation describes a system constructed from many

small processing blocks from which emerge complex gestural and timbral shapes and formal

structures.



14

2.1.2 Historical Examples of Generative Audio Systems

The following discussion focuses on a set of examples of composition using feedback.

Perhaps beginning with John Cage and David Tudor’s collaborations in the 1950s and 60s,

composers of electronic music have used feedback in a variety of ways, employing both

analog and digital methods of sound production. Along with Tudor, Cage virtually invented

the genre of live electronic music, and his piece Imaginary Landscape No. 1 (1939) was one

of the first pieces to use electronic equipment (primarily a turntable with a test-tone record)

in performance [18]. While Cage is well-known for his systematic approach to acoustic

and tape composition using chance processes, and later employing computer software

as a compositional tool, he is particularly important to mention here for works such as

Cartridge Music (1960) and Variations II (1961), both of which ask performers to perform

using complex electro-acoustic systems capable of exerting their own influence on the

performances [29]. After collaborating as performer (and in some cases, some might say

co-composer) on many of Cage’s works, Tudor went on to develop a unique approach to

the composition and performance of live electronic music, and he became a key figure

in the development of generative audio systems. Tudor’s compositions often consisted

of complex electronic networks either excited by pre-recorded material or connected into

feedback networks [30]. The networks themselves became semi-automatic compositions

and functioned using entirely analog signals. Like in most analog synthesizer music, there

was little or no distinction between “control” and “audio” signals. Tudor’s music was

complex, bold, sometimes harsh, often alien, extremely rhythmic, and always evolving, and

his work and approach has been a central inspiration to the pieces described in Chapter 4

and Chapter 8.

Tudor was a primary figure in the development of generative audio systems and is

well-known for his use of feedback in composition. This interest began to emerge in his

infamous realization of Cage’s Variations II (1961) [29]. Cage designed a set of transparent
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sheets with lines and dots printed on them. To make a performance score, a musician would

indeterminately overlap these sheets, and measure the distances from lines to dots, with

each distance giving a value for one parameter. Tudor, who was still focused on the piano

as he developed an interest in live electronic music, decided to use an amplified piano as

his instrument. Cage biographer James Pritchett describes the piano setup as being quite

complex:

The whole system presents a very complex interaction of its various parts.
Adjusting the levels of the various microphone signals, the ways in which
the cartridges are deployed in the piano, and the ways in which the piano is
played will alter the behavior of the whole system. However, the system is so
complex that its behavior can never be totally predicted: the amplification of
the piano made it, to some degree, an uncontrollable instrument. Tudor’s own
characterization of it was that he ‘could only hope to influence’ the instrument –
he could not predict the nature of the sounds that would result from a particular
action. [29]

This embrace of complexity and unpredictability would become a defining characteristic of

Tudor’s approach to electronic composition. Beginning with his first acknowledged composi-

tion Bandoneon! (1966)1, Tudor employed large networks of simple, often homemade signal

processing modules as a means of obtaining complexity and dynamic behavior in electronic

sound. The piece revolved around Tudor’s performance using an accordion-like instrument

called a bandoneon [31]. Microphones were placed on both ends of the instrument, and the

signals were used to excite a network of signal processors. The performance consisted of

Tudor playing the bandoneon, along with the results of the signal processing network: mod-

ulated or otherwise processed sounds derived from the bandoneon. The program note offers

an important insight into Tudors developing aesthetic: “Bandoneon! uses no composing

means; when activated it composes itself out of its own composite instrumental nature.” [32]

This complexity would recur in Tudor’s music throughout the rest of his career. The

instrumentation for many of his later works consisted of a tabletop covered in homemade
1Also known as “Bandoneon Factorial.”
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electronic devices arranged with many interconnections and feedback loops. Untitled

(1972), composed for a duo tour with John Cage, was based entirely around the principle of

electronic feedback. The piece consisted of a pair of signal processing paths which were

allowed to feed back and interfere with each other. This interference served to disrupt the

static drone which often emerges from a saturated feedback system. Due to the non-linear

nature of Tudor’s electronic components, as Ron Kuivila writes,

The feedback path becomes its own control signal, and the ‘instrumentalization
of sound’ that began with the 9 Evenings [the concert series where Bandoneon!
was performed] no longer requires the introduction of an external sound source
rendered by a performer in a traditional manner. [20]

In these works, the activity of the composer changes from controlling and specifying to

auditioning and suggesting. Due to the complexity of the “composite instrument” formed

by the signal processing network, with its coupled components and iterative processing, it

becomes extremely difficult to entirely predict the effect of a specific parameter change.

Though most of Tudor’s work involved almost entirely analog equipment, one of his

final compositions provides a hint of how this style of instrument building might have been

extended into the digital realm. Neural Synthesis (1995) was composed in collaboration with

engineers from Intel, and uses a small digital computer to control a custom neurally-inspired

analog signal-routing matrix microchip [33]. The chip consisted of non-linear amplifiers

which could be interconnected at will, including feedback routing and varying gain at

connection points. In addition, a subset of these amplifiers could also behave as relaxation

oscillators, introducing additional input to the routing matrix. Though the chip was designed

for neural computation, Tudor used it as a central hub for a selection of his homebrew analog

gear. This allowed him to access an enormous number of configurations in performance, and

produced seemingly autonomous and evolving sound.2 The composer again tasked himself

with navigating the space of possible configurations, to locate those yielding interesting and
2Tudor’s matrix approach was an important influence on the pucktronix.snake.corral, described in Ap-

pendix B.
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musical results. Video artist Bill Viola, a former student of Tudor, suggests that Tudor saw

his performance practice as being different than improvisation within the given electronic

framework, instead it was “. . . a probing exploration of the internal junctions inside the

system to see what might be hiding there.” [34] Viola claims that Tudor saw his approach

as being more systematic than improvisatory, however this distinction is probably more

conceptual than practical and is perhaps more reflective of bias on Viola’s part. In 2013, I

was awarded a grant from the Getty Research Library to study their collection of Tudor’s

archives, and my first-hand experience with the complexity and idiosyncratic nature of his

approach is described in Appendix A.

Roland Kayn (1933 - 2011) was a relatively unknown composer of electronic music.

Despite his lack of renown, Kayn was a pioneer in what he called cybernetic music, borrow-

ing from the theories of cybernetics, information theory, and aesthetics [35]. Cybernetics,

introduced by Wiener, is the study of self-regulation and feedback [36]. Kayn was particu-

larly influenced by Max Bense, who posed that aesthetics were related to a combination of

predictability and surprise. Since the balance between surprise and predictability was so vital

to his music, Kayn avoided involvement in computer music, as he believed that programming

languages influenced composers to think mechanistically rather than artistically (though

Thomas Patteson argues that this may have been due to an oversight or misunderstanding on

Kayn’s behalf) [35]. Instead, Kayn favored analog electronics, making use of the particular

non-linearities of analog equipment and creating feedback systems which generated endless

variations on previous material. As described above, cybernetic theories describe two forms

of feedback, negative and positive. Negative feedback results in equilibrium and regulation.

Positive feedback, on the other hand, results in jumps from one state to another. Kayn’s

electronic systems exploited positive feedback - resulting from interconnections between

components - in order to produce musical interest.
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Kayn produced his most famous cybernetic music while working at the Institute of

Sonology in Utrecht [35]. Central to these compositions was the studio itself. In addition to

an advanced modular synthesizer, the studio had a custom sequencer which could be used to

control the entire studio. Kayn used this sequencer to produce musical situations where the

final results - in terms of both sound material and system configuration - were unpredictable,

due to their dependence on initial conditions. In essence, Kayn’s compositional work

consisted of designing an electronic configuration and a series of sequences which defined

the settings of and interconnections between studio components. After these sequences were

perfected, the system was set into motion and recorded to tape.

Iannis Xenakis is another composer who must be mentioned in any discussion of

generative audio systems. Xenakis is well-known for incorporating stochastic methods into

his acoustic and electro-acoustic compositions, and he viewed probability functions as a

way of generating complexity without resorting to serial techniques [37, 38]. Starting in

the early 1970s, Xenakis developed a series of software programs which applied stochastic

processes to the generation of waveforms. These programs all relied on the manipulation of

a break-point function, which was then used as a look-up table in a wave-table synthesis

system. Xenakis applied stochastic processes to a variety of parameters of the break-point

function, most significantly the location of the breakpoints themselves. In the simplest case,

at each cycle of the waveform, the x and y values of each break-point are updated according

to a constrained random walk.3 The breakpoints are then interpolated and the break-point

function is used in for wave-table synthesis [38]. This form of synthesis is conceived of

entirely in the time domain, and is theoretically capable of evolving toward any possible

waveform or sound - though the probability of arriving at a particular waveform is extremely

low.
3These parameters and constraints were also often subjected to “secondary random walks” themselves,

allowing them to evolve over time. The reader is encouraged to see Luque’s “The Stochastic Synthesis of
Iannis Xenakis” for a more detailed treatment of the various programs [38].
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Xenakis apparently did often exert some high-level manual or probabilistic control

over the way these synthesis algorithms were deployed in their final musical form [38].

Despite this, when a single instance of the generative process is considered, elements of pitch,

timbre, dynamics, and possibly even rhythm are all directly related to the synthesis algorithm

itself [37]. As Xenakis himself stated: “I am always trying to develop a program that can

create the continuity of an entire piece” [38]. Though Xenakis’ technique, unlike others

discussed here, did not employ feedback, it is another important example of a generative

audio system.

Research into generative audio systems, in particular those involving feedback, has

continued. In [39], Christopher Burns documents his experiments using digital feedback

networks in compositional settings. Burns describes the use of a soft-clipping function

based on a guitar amplifier to ensure the stability of networks with non-standard topologies.

This is similar to the way analog components will saturate rather than allow the signal

amplitude to increase infinitely. Burns, writing from the perspective of a composer, argues

that the harmonics introduced by the clipping function may be seen as a useful feature

in a compositional context. Burns also describes the ways in which network topologies

change the characteristics of the output. For example, if a network does not employ a

change in sign in a feedback path, it will often produce DC - this is one possible end state

of positive feedback. However, this tendency can be avoided by changing gains or delay

lengths, effectively encouraging the system to jump to states other than DC. Burns’ piece

Hero and Leander (2003) makes use of a circular feedback system consisting of multiple

sections based on standard wave-guides. The overall system gain and each of the delay times

are controlled with envelopes, and the system is excited with a multi-channel sound-file.

Instead of specifying musical details like rhythm, pitch, and timbre, the composer instead

dealt directly with the parameters of delay times and gains.
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Agostino Di Scipio’s Modes of Interference n.2 uses audio feedback modulated by

saxophone and electronics [40]. Here, a saxophone body filters acoustic feedback, avoiding

undesirable static feedback. In addition, a piece of software further modulates the sound.

Finally, the performance space itself has an effect on the sounding result. Di Scipio designed

a complex feedback system consisting of instrument, software, and architectural space,

each of which has its own influence on the final sounding result. The composer provides

a notated score for the performer, specifying the physical actions (fingerings, key-clicks,

tonguing) to be performed using the saxophone. The sounding results are left unspecified.

Similarly to Kayn’s aesthetic, Di Scipio specifies part of the information necessary for

the piece while leaving the rest up to the system (comprised of performer, saxophone,

electronics, and environment) itself. A video of a performance given by Pedro Bettencourt

demonstrates the subtle interactions between the acoustic instrument, acoustic space, and

electronic processing [41]. Minuscule changes in physical location of the instrument, along

with different fingerings and blowing techniques, produce unpredictable changes in the

output.

Sanfillipo’s LIES (Live Interaction in Emergent Sound) system was designed with

the goal of producing surprising results without stochastic elements [23]. The piece LIES

(topology), a “real-time cybernetic music system,” is constructed from multiple interacting

feedback networks. These networks are described by the composer as comb filters with

signal processing elements - such as ring modulation, frequency shifting, granulation, and

reverberation - embedded in their feedback paths [23]. The parameters to these effects

are chosen so that they produce output that will be perceptually merged and heard as as

a single sound rather than as discrete events. The output of the system is played into a

performance space, where it is further transformed by the room acoustics before being

captured by microphones for recursive processing. The role of the performer is to change

the coefficients of the feedback routing matrix and the parameters of the signal processing
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components, as a way of “exploring the identities of the system and the perturbations that

can push it towards unexpected behaviors” [23]. The output of the system is characterized

by an extremely wide registral range, alternating high frequency tones with low rumbles and

thumps. The influence of the performer can be heard in the way that registral changes mark

sectional boundaries [42].

Finally, Holopainen’s work on “feature-feedback” and “autonomous instruments” is

very relevant to the current discussion. In feature-feedback systems, the output of a synthesis

algorithm is subjected to some feature extraction [10]. The data retrieved from the feature

extraction is then used to generate parameters for the synthesis algorithm. The feedback used

here is not in the form of audio samples, but as feature descriptors extracted from the output

of the system. Holopainen uses this model to create what he calls “autonomous instruments”

- computer programs that “generate music algorithmically and without real-time interaction,

from the waveform level up to the large scale form” [10]. Holopainen’s goal is similar to

the goal of the current research, in that he is interested in the development of generative

audio systems, although his specific approach (the use of feature-feedback) is different. The

audio examples provided by Holopainen demonstrate a wide array of sounds: chaotically

modulated sinusoids, oscillating pitches, textures with extremely long transients, and slowly

undulating tones with smoothly changing timbres [43].

There are a multitude of other contemporary approaches. It is clear, from the

multitude of examples, that feedback is a compositional resource which suggests and

encourages a variety of compositional approaches and can produce a diversity of musical

material. For these reasons, many of the systems described in later chapters employ feedback

in some form.
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2.2 Discussion

This chapter presented background information on generative audio systems, pro-

viding context and motivation for further development and discussion. Section 2.1 defined

the generative audio system. These are systems that autonomously generate music and are

characterized by a tight coupling between signal generation and compositional logic. Many

such systems, and in particular the systems discussed in later chapters, use some form of

feedback as a way to achieve this type of behavior. Section 2.1.1 defined a few important

characteristics of feedback systems: non-linearity, iteration, coupling, self-organization,

and complexity. These terms provide some useful language for qualitatively describing the

behavior of generative feedback systems which might be otherwise difficult to explain or

quantify.

Some examples of pioneering composers and compositions were given in sec-

tion 2.1.2, with a focus on analog systems but also including more recent computer music

research. Composers like David Tudor, Roland Kayn, and others employed feedback in

their generative audio systems. Many of their generative systems were designed to produce

complex behaviors from the interaction of many smaller components. There is also a trend,

exemplified in Tudor’s performance practice, of systems which require human interven-

tion to produce a meaningful musical experience. This is seen both in pieces requiring

a human performer, like those of Di Scipio; and in those relying on pre-compositional

decision-making, like those of Kayn or Burns.

The idea of the generative audio system is central to the current research. In the

chapters to come, a variety of generative audio systems will be discussed. Chapter 4 will

describe two systems which employ digital and electro-acoustic feedback as primary sound

sources. Chapter 4 also describes a system which uses an idea similar to Holopainen’s

feature feedback to generate aspects of musical form. In Chapters 6 - 8, the use of time-

varying allpass filters will be developed and their application as components in generative
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audio systems will be discussed.



Chapter 3

Computational Aesthetics

Though the generative audio systems described in Chapter 2 are capable of producing

interesting, time-varying output, they generally depend on control from a performer or

composer. The role of this individual is to make decisions about the form and material of

the work - in other words, to make aesthetic decisions about when and how to change the

musical output. For a composer like David Tudor, this meant acting as a performer on stage,

adjusting controls in real time, while for Roland Kayn, this meant shaping his music by

composing specific system configurations and signal routings which would then unfold over

time via an electronic sequencer. Due to this dependence on a performer or composer, their

systems were not capable of autonomously making aesthetically-informed decisions. The

hardware system used for Tudor’s Untitled, for example, would be hard-pressed sound like

the piece without input from the composer. If a system were capable of performing aesthetic

self-evaluation, then it could structure its own output in a musically meaningful way.

This chapter will introduce research which attempts to formalize and explain aes-

thetic perception, in order to provide background for the specific music information theoretic

measure described in Section 3.1. The aim of this chapter is to present ways in which

the aesthetic experience of listening to a piece of music might be measured or quantified.

Through computer analysis of a musical signal - either a symbolic representation or sampled

24
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audio - it is possible to characterize aspects of the music according to their information

content. This information content is related to the amount of novelty present in the signal at

a given moment, and has been shown to be related to human affect and surprise or familiarity

[44]. A particular measure (Music Information Rate) will be defined and described, and its

potential use in a generative audio system will be explored [45].

Surprise and familiarity, concepts often associated with novelty, are also closely

related to the idea of expectations - the listeners’ beliefs about the future. Familiarity

establishes and reinforces expectations, while surprise interferes with or contradicts these

expectations. It has been suggested that a positive aesthetic experience is dependent on a

proper balance between reinforcing and confounding expectations [46]. The experience

of boredom has also been shown to be related to both novelty and repetition. The “mere

exposure” effect, described below, causes subjects to rate a stimulus more positively as they

are repeatedly exposed to it [47]. As the number of repetitions (or exposures) increases

past a certain point, however, boredom begins to exert an effect and cause a less positive

experience. This discussion aims to lay the groundwork for the self-reflective generative

audio system described in Chapter 8.

The Oxford Dictionary defines aesthetics as “a set of principles concerned with

the nature and appreciation of beauty, especially in art” [48]. In particular, the discussion

will focus on the idea of aesthetic formalism, a view which assumes that the quality of

an aesthetic object is a function of purely formal attributes - those which we can perceive

directly [49]. Clearly, art is not solely a function of formal parameters, as many works of

art make reference to real-world concepts, emotions, and events. However, this focus on

formalism will be an advantage, as computers can more easily be programmed to extract

formal features than the referential ones used in some approaches. The field of computational

aesthetics, active since the early 20th century, forms an interesting parallel development

to the study of self-regulating or self-organizing feedback systems described in Chapter 2.
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Composers, like Roland Kayn, were interested in integrating formal aesthetic theories with

their music, and in some cases interacted directly with some of the theorists working in the

field of computational aesthetics [35]. Many theories of computational aesthetics are based

on an assumption that the aesthetic worth of an art piece is based upon a balance between

simplicity and complexity, familiarity and surprise, or order and entropy. This basic idea

has been applied to a number of different media, and has been used for both predictive and

generative applications [50].

Psychological research has also shown the influence of order, in the form of repeated

exposures to a stimuli, on the affective response to that stimuli. It has been shown, across a

variety of forms of stimuli, that repeated exposure creates a more positive affective response

[51]. The more familiar a subject is with a stimuli, the more favorably they will rate it. In

addition, theories on the interaction between repetition and boredom have been developed,

which attempt to explain how affective response can change from increasingly positive to

increasingly negative as the number of exposures increases past a certain threshold [47]. This

chapter will provide an overview of some of the main theories in computational aesthetics,

and discuss research on exposure, boredom, and affect.

3.0.1 Theories of Computational Aesthetics

Computational aesthetics is a branch of computer science research which attempts

to formalize aesthetic appreciation [52]. Since the early part of the 20th century, theorists

have proposed ways in which aspects of the aesthetic worth of a work of art might be

objectively measured. George Birkhoff, in his 1933 book Aesthetic Measure, proposed a

method for such a computation. Birkhoff proposed the ratio M = O/C, where M is the

aesthetic measure of an object, and O and C its order and complexity, respectively [53].

Complexity is related to the amount of effort a subject must expend in order to understand

an object, and order to the release of “unconscious tension” which comes from features like
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symmetry and balance [50]. Birkhoff focused on purely formal aspects of the objects, and

attempted to quantify their order and complexity mathematically, ignoring any symbolic

meaning or reference [50]. Holopainen, in [10], provides a compact survey of ways of

quantifying complexity, including complexity as size, entropy, and algorithmic information

content. A further approach to measuring musical complexity through a measure of fractal

dimension is described in [54]. One of the above mentioned methods, the algorithmic

information content - also referred to as Kolmogorov complexity - has been used in studies

of computational aesthetics applied to paintings [55]. The Kolmogorov complexity of a

string is a measure of the size of the smallest program which can reproduce that string.

In practice, this measure is usually estimated using compression algorithms, like .jpg and

.png in the case of visual images [55]. The ratio of the length of the compressed string to

that of the full, uncompressed version is called the compression ratio and the Kolmogorov

complexity can be used to calculate to the amount of order in the string [55]. Though

Birkhoff’s specific formula has repeatedly been challenged and modified, the basic notion

that order and complexity inform aesthetic experience has generally remained intact [56].

Leonard Meyer’s Emotion and Meaning in Music (1956) is another important early

work on aesthetics and musical meaning, and has particular relevance to the ideas of compu-

tational aesthetics [46]. David Huron describes Meyer’s approach as a compromise between

two basic positions: absolutist, which is a type of aesthetic formalism in which musical

meaning is defined by the relationships of strictly musical materials, and referentialist, where

musical emotion is created by reference to non-musical, real-world ideas [57]. Meyer theo-

rizes that listeners hear new music through their previously existing, learned expectations.

These expectations are generally in the form of stylistic norms, which can define things like

acceptable harmonic progressions, theories of tuning, voice leading, and formal structure.

As a listener hears a new work, he or she hears it in relation to these previously developed

expectations. As the work deviates from these expectations, the listener will experience
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these deviations as “emotional or affective stimuli” such as surprise, suspense, anxiety, or

humor depending on the context [57].

The ideas of Birkhoff and Meyer have been applied to visual aesthetics [58], tele-

vision and radio program structure [59, 60], humor [61] and music [62]. Section 3.1 will

describe some ways in which researchers have attempted to apply the theories of Birkhoff

and Meyer, among others, to the study of music.

3.0.2 Exposure, Affect, and Boredom

One common way of creating order in a musical work is through the use of repeti-

tion, and almost all forms of Western music employ repetition as an important structural

element. By repeating material, such as the exposition of a sonata form which recurs in

the conclusion or a rounded binary form, a composer can create a sense of familiarity in

listeners. Familiarity, an effect of repeated exposure, has been shown to be related to affect,

with a general finding that an individual who experiences repeated exposure to a stimuli will

have a more positive affective response to the stimuli [51].

A meta-review, by Bornstein et al., collected and analyzed past experiments which

tested and confirmed the original “mere exposure” theory using nonsense words, Chinese

characters, photographs of faces, unfamiliar foods, and other stimuli of variable duration,

complexity, and number of exposures [63]. In general, these studies were performed by

presenting a particular stimulus to a subject. Variables which were manipulated in the

studies include stimulus type, stimulus complexity, number of exposures, exposure sequence

(in cases where subjects were exposed to multiple stimuli), exposure duration, and stimulus

recognition (accomplished through priming procedures where the subjects were subliminally

exposed to stimuli) [63]. The review presented some interesting findings. First, the order

of stimuli is significant, with presentation of a diverse sequence of stimuli with interleaved

repetitions leading to a more positive affect than a sequence of repetitions of a single
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stimulus. Second, the “frequency-affect curve” is shallow, and tapers off after approximately

10 exposures. Third, exposure can be subliminal - the subject need not be aware that he or

she is being exposed to the stimuli, suggesting that familiarity with the stimuli is not needed

for the exposure effect.1 Finally, the complexity of the stimuli can have a significant effect

on subject response, with more complex stimuli found to lead to a more positive response.

The findings can perhaps be summarized as follows: repeated exposures, up to about 10 in

number, lead to a more positive affect. After 10 exposures, the influence on affect begins to

taper of. Both stimulus complexity and the sequence of presentation (whether immediate

repetition or interleaved) can increase this positive affect.

In theory, then, the ideal piece of art is simply a sequence of repetitions of material.

Most people who have attended a concert, however, have probably had the experience of

a piece that “goes on for too long.” Clearly, there is more at play than “mere exposure.”

In fact, Bornstein et al. suggest that the findings summarized in their review point to the

influence of boredom on the subjects’ affective response [63]. In their own words, “when

stimulus exposures are brief, limited in number, and interspersed among presentations of

other stimuli. . . the exposure-affect relationship is enhanced” [63]. Stimulus complexity

could also play a significant role, in that more complex stimuli remain interesting after more

exposures than do simple ones. The effect of repetition eventually producing boredom can

be seen as arising from an evolutionary origin, as new stimuli can be dangerous and are best

avoided, but repeated unfruitful stimuli become boring and should also be avoided in favor

of more rewarding ones [63].

Cohen defines musical boredom as a limit on “the tension that is created both by

the expectation for change and by the uncertainty of change” [65]. When this limit is

reached in a listener, boredom occurs. The impact of boredom on the exposure effect is

sometimes explained through a two-factor model [47]. In this model, both familiarity and
1 Although this has been recently contradicted in [64].
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boredom can influence affective response. As familiarity increases, so does positive affect.

However, boredom eventually begins to have an effect, and exerts a negative influence on

the affective response. In [47], it was suggested that boredom can become an influencing

factor in three ways. First, subjects may be “boredom-prone” and therefore less responsive

to repeated exposure [66]. Second, uninteresting stimuli can encourage boredom - the study

found that Welsh figures (simple images used in a non-verbal personality test) induced

less of an exposure effect than more complex optical illusions. Finally, the combination

of “interesting” and “uninteresting” exposure seems to have an effect. The authors of [47]

found that if interesting and uninteresting stimuli are used together, instead of independently,

the uninteresting stimuli induce less of an exposure effect than they would have otherwise.

It was found in [67] that increasing numbers of exposures to musical stimuli generally

produced an inverted U-shaped affect curve - where affect initially became more positive but

eventually became more negative - but that different types of stimuli and listening conditions

could influence this result. As described above, the general assumption of the “mere

exposure” effect is that as the number of exposures increases, a stimulus will be rated more

positively. After a certain point, however, the affect was found to become more negative

- corresponding to the appearance of boredom. This study used the notion of “ecological

validity” - a spectrum measuring how close the stimuli is to real music - as a variable

across three experiments [67]. The authors claim that ecological validity is equivalent to

stimulus complexity. Exposure to synthetic tone sequences, the least ecologically valid

stimuli, produced affective ratings that did not increase with exposure even as listeners

became more familiar with the material. More complex stimuli, like 15-second excerpts of

orchestral recordings, produced the inverted U-shaped curve described in previous studies.

A distinction was also made between focused and incidental listening, with focused listening

producing the familiar inverted U-shaped curve and incidental listening producing a linear

increase in positive affect. Thus, if music is heard passively, as background sound, it will
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become more and more liked. However, if listening is performed more actively, in a concert

setting for example, then liking will follow an inverted U-shaped curve.

A related notion to that of exposure is processing fluency. Proponents of processing

fluency theories claim that the subject’s ability to process, or understand, a stimuli has

an effect on their response. The better a subject is able to process the stimuli, the more

positively they will respond [68]. This can be shown by using priming procedures, where a

stimulus is subliminally previewed before it is consciously given [69]. A stimuli which is

primed is generally better received. If repeated exposure is a form of priming, and therefore

increases processing fluency, then we can easily connect the two theories. In [68], it is

argued that there is a balance between complexity and simplicity which informs a subject’s

experience. When exposed to a simple stimuli, a subject will easily attribute their fluency

to its simplicity. However, when a more complicated stimulus is used, the subject will

instead attribute the fluency to the notion of “beauty”. If complexity continues to increase,

the subject will eventually experience a decrease in processing fluency, which ultimately

leads to a decrease in positive response [68]. Again, we find an inverted U-shaped curve: as

complexity increases, the affective response will increase (as the subject begins to attribute

their fluency to “beauty”) before again decreasing (as the stimulus complexity becomes too

great for the subject to process it).

Both of these theories, mere exposure and processing fluency, relate affective re-

sponse to repetition. The mere exposure effect shows that repeated exposure to a stimulus

leads to a more positive response. The more easily a subject is able to process, or understand,

a stimulus, the more positively they will respond. Both of these factors are countered by

some notion of boredom. In both cases, boredom acts to negatively influence affective

response. As exposure and fluency increase, boredom also increases, and at a certain point

begins to exert a greater effect - “overriding” the influence of exposure or fluency.



32

3.0.3 Alternative Approaches to Musical Emotion

The goal of the discussion above is not to argue that expectation and repetition are

the only factors in musical emotion and aesthetic appreciation. It is likely that there are

many other elements at play when one has an emotional reaction to a piece of music. A

more encompassing approach to musical emotions can be found in the Multiple Mechanism

Theory proposed by Juslin and Vastfjall [70]. It is important to consider this theory as a

means of understanding and contextualizing the potential shortcomings of the framework

used in the rest of this dissertation. The Multiple Mechanism Theory centers around six

psychological mechanisms that influence musical emotions, each of which as been studied

independently:

• Brain stem reflexes: Related to auditory sensations (dissonance, loudness, speed) and

reflexes - these result in basic emotions related to sounds or musical events which

signify importance or urgency.

• Evaluative conditioning: Emotions can be associated with specific music because

of repeated exposure paired with other positive or negative experiences. When this

music is heard, it can cause the listener to recall the emotions associated with these

past experiences.

• Emotional contagion: Music can induce emotions in listeners through a feedback pro-

cess. In such a process, emotions perceived in music trigger muscular or psychological

processes in the listener, ultimately leading to a similar emotional state.

• Visual imagery: Some musical emotions can be related to the imagining of visual

stimuli while listening to music. These visual images may then trigger emotions in

the listener.

• Episodic memory: Similar to evaluative conditioning. In this case, a piece of music
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is associated with a particular memory or event. When the listener remembers this

event, associated emotions can be evoked.

• Musical expectancy: Related to the establishment and violation of listener’s expecta-

tions, as described in the discussion of the theories of Leonard Meyer.

The authors of [70] point out that the incorporation of multiple mechanisms in their theory

allows for reconciliation between previously opposed views of musical emotion (like the

absolutist and referentialist perspectives), as it is likely that these opposing perspectives

are considering different psychological mechanisms. It also allows for the simultaneous

activation of multiple mechanisms, perhaps explaining how music can produce complex, or

mixed, emotional states.

Clearly, many of these mechanisms are dependent on subjective experience and

individual memory. In addition, and perhaps most importantly to the current discussion,

they may not be understood well enough to enable them to be modeled computationally.

Therefore, the research in this dissertation will focus on the ideas about musical expecta-

tion, repetition, and boredom introduced above and related to the mechanism of musical

expectancy.

3.1 Music Information Dynamics

More recently, researchers have used ideas from information theory to quantify

Birkhoff’s ideas of order and complexity [52, 10]. Many studies have used music as the

aesthetic stimulus, and this has lead to the development of a field called Music Information

Dynamics (MID). The “information” in MID refers to the information content proposed

by Shannon [71]. Shannon’s information theory provides two measurements which will

become relevant to the discussion here [72]. The first, information content, refers to the

number of bits needed to encode a piece of data. The second, entropy, quantifies the amount
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of randomness or disorder in a signal. The measure described later in this section uses

calculations of two forms of entropy in order to estimate the information content of a musical

signal. Assuming that moments with high entropy - large amounts of randomness - are

surprising to the listener, we can join these information-theoretical concepts with Meyer’s

theories of aesthetics. If we can model the time evolution of a signal according to its inner

order and moments of complexity or novelty, then we can relate this model to ideas of

aesthetic appreciation. In other words, as Meyer argued, a piece of music establishes its own

inner set of rules and expectations, and - if we model the unfolding of the piece in terms

of moments of conformity to or violation of these rules - we can potentially estimate the

aesthetic content of the signal in terms of its order and complexity.

Many approaches to the calculation of MID use some type of statistical model

in order to characterize the likelihood of current events given knowledge of past events.

For example, the system described in [72] models both short-term and long-term musical

memory. Both models operate on symbolic descriptions of music, using pitch as their

main representation feature. The long-term model uses a database of 900 tonal melodies as

training data, as a way to approximate what the authors call “typical human Western musical

experience.” The short-term model uses an identical algorithm to the long-term, but only

learns from the current piece as it unfolds. By combining these two models, the probability

of a given pitch occurring in a specific musical context can be calculated. Pitches with a

high probability of occurrence will conform to a listener’s expectations, while those with a

low probability will violate those expectations. From this probability, it is possible to infer

whether a given moment of music is surprising or familiar.

Other approaches, such as the IDyOM (Information Dynamics of Music Model)

project [73] and the work of Abdallah and Plumbley [74], use Markov models to measure

information content in symbolic representations of music. Analysis of minimalist music

performed with these models has been shown to correspond well with human structural
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analysis [74]. These representations work well with quantized, symbolic representations of

musical works such as MIDI, but may not be able to deal well with timbral or microtonal /

non-standard pitch material. In the case of a generative audio system, like those described

later in this dissertation, much of the musical content may place an emphasis on timbre,

and what pitch sequences there are may emphasize micro-tonality or continuous changes in

pitch rather than discrete, equal-tempered intervals. The rest of this section will describe a

measure of musical information which can be used with any extracted musical feature, and

can be automatically calibrated to the characteristics of that particular feature.

3.1.1 Information Rate

Information Rate (IR) is a measure of the information content in a musical signal

which operates directly on the audio signal, instead of a symbolic representation [45]. IR

has been studied in relation to human judgments of emotional force and familiarity, making

it particularly relevant for the goals of the current study [44]. IR quantifies to what extent

the present moment can be “explained” by the past - and answers the question: “How much

does the present repeat something that has been heard previously?” Recalling Meyer’s ideas

about musical expectation, IR describes whether the present moment of an audio signal

conforms to or violates the expectations established in the prior portions of that signal, and

can thus be related to aesthetic appreciation.

More specifically, IR measures the mutual information between the past xpast and

the present xn of a signal x:

IR(xpast ,xn) = H(xn)�H(xn|xpast), (3.1)

where

xpast = {x1,x2, · · ·xn�1}. (3.2)
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In (3.1), H(x) represents the Shannon entropy of a variable x, representing the signal, and is

given by

H(x) =�SP(x) log2P(x), (3.3)

where P(x) is the probability distribution of that variable. H(x|y) is the conditional entropy:

H(x|y) =�SP(x,y) log2P(x|y). (3.4)

A newer formulation of IR, introduced in [45], facilitates easier estimation from an

audio signal, and is estimated using the equation

IRAO(xpast ,xn) = C(xn)�C(xn|xpast), (3.5)

where C(x) is the length - measured in bits - of the output of a compression algorithm given

the signal x as input. In other words, the IR at a given moment is the difference between two

compressed versions of the input signal:

1. C(xn): A compressed version of x which does not consider the past of the signal - the

“unconditional complexity.”

2. C(xn|xpast): A compressed version of x which does consider the past of the signal -

the “conditional complexity.”

Conveniently, the Audio Oracle (AO) algorithm can be used to model the signal and

then create a compressed representation of this model. AO is an audio analysis method and

representation of musical structure, and is based on the Factor Oracle (FO) string algorithm

[75, 76]. AO has applications to both analysis and generation of audio [77]. During the

construction of an AO, individual feature vectors (extracted from frames of an audio signal)

are compared in order to detect similarities. The feature vectors are compared using a

distance function, and if their measured distance is below a certain distance threshold, they
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are considered to be identical for the purpose of representing the signal.

By using knowledge about the location and length of repeated patterns occurring

throughout a signal, it is possible to obtain a lossy compression of the audio signal from the

AO structure. Since it is possible for multiple suffixes to point to varying lengths of the same

pattern, i.e. a musical motive or other recurring element which appears in multiple forms,

the compressed version of the AO structure will only retain the longest of these repeated

suffixes. The longest repeated suffix (LRS) of a state is the longest sequence of states leading

directly up to state i that appears at least twice before i. The LRS of each frame is computed

during the AO construction process. Compression of the AO is performed similarly to that

presented in [78]:

1. First, the size of the coding alphabet is calculated. In AO, each transition from the

first state, state 0, corresponds to the first appearance of a unique frame of audio. The

number of unique frames / states is equal to the size of the coding alphabet. Therefore,

the number of transitions from state 0 is equal to the size of the alphabet.

2. C(xn) can then be obtained by calculating log2(n) where n is the size of the alphabet

from the previous step.

3. An array K = [1] of encoding events is generated. For each frame i:

• If no repetition of i is found, then the suffix link from i will point to frame 0.

This is a new frame and it will be individually encoded. It is added to K.

• Otherwise, if a suffix link to an earlier frame is found, and the LRS of that frame

is less than the number of frames since the last encoding event, then the entire

segment is encoded as a (length, position) pair.

The compressed version of the AO is the list of (length, position) pairs contained in K. The

AO structure and its applications to machine improvisation and music analysis are explored

further in Chapter 5.
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Returning to (3.5), the IR can then be computed by calculating the difference between

two entropies, H0 and H1, corresponding to C(xn) and C(xn|xpast) [45]. These entropy values

are calculated through an iterative process in which the locations and lengths of new states

and encoded blocks are calculated, and stored as two intermediate functions. The first, Cw0

counts the appearance of new states only, ignoring repetitions. The second, Cw1 counts all

encoded states. A third function, BL, stores the length of encoded blocks. The entropies H0

and H1 are calculated by taking the log of the cumulative sums of Cw0 and Cw1 respectively.

H1 is then normalized by the block lengths BL. The final IR result is then simply H0�H1.

The algorithm is shown in Algorithm 1.

Algorithm 1 Information Rate from Compressed AO
Require: code - compressed AO in the form of (length, position) pairs, and total signal

length N.
1: Create arrays H0 and H1
2: for i = 1 to N do
3: H0 Log2(number of new states in code (L == 0) up to i)
4: H1 Log2(number of all code-words up to i)

length L of a block to which state i belongs
5: end for
6: return IR = H0�H1

Since IR is related to the amount of information shared between the past and the

present, i.e. how much of the present is a repetition of something which has come before, it

can be seen as a measure of the balance between complexity and familiarity or reinforcement

and violation of expectations. We can also reasonably assume a connection between IR and

surprise. A low IR value corresponds to a high amount of novelty, and therefore surprise,

while a high IR value corresponds to a repetition of something previously heard. As found in

previous studies on computational aesthetics, such as Birkhoff’s aesthetic measure, the most

pleasing aesthetic experiences often rely on a careful balance between order and complexity.
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Figure 3.1: Music Information Rate function superimposed on spectrogram of Pink Floyd’s
Arnold Layne. IR was calculated using MFCC analysis frames.

3.1.2 IR Applied to a Musical Example

As an applied example of how an IR function can be related to real musical experi-

ence, consider the plot in Figure 3.1. This plot superimposes three pieces of information

extracted from Pink Floyd’s song Arnold Layne (1967), to compare IR with aspects of

musical form. The first layer of the plot is a spectrogram of the audio signal, the second

is the IR function, and the third is a high-level sectional analysis. The IR function was

calculated using Mel-Frequency Cepstral Coefficient (MFCC) analysis frames, which give a

concise description of the spectral envelope of the signal and are commonly used in speech

and music processing [79].

This particular song was chosen for the variety of timbres produced by the instrumen-

tation - electric guitar and bass, vocals, organ, and drums - and its clear formal structure. The

sectional analysis is marked by vertical lines on the plot. Each section is labeled according

to its function: verses with V, choruses with C, bridge material with B, and the outro with O.

The overall IR value increases as the song progresses, which is expected: as more material is

analyzed, it becomes more likely that each current moment can be explained as a repetition

of something previously analyzed. Of particular interest is the way the different types of

material are characterized by different behavior in the IR function. The verse material is

extremely blocky, indicating a high amount of variety and novelty in the spectral envelope.



40

Contrasting with this, the choruses are much more stable, with both C1 and C2 essentially

composed of single blocks - indicating very little change in the spectral envelope. Finally,

the bridge B and outro O material are composed of slightly longer blocks than the verses,

again indicating a higher amount of variety.

This analysis is consistent with the musical material during these sections. The

verses are characterized by the gradual addition of various instruments: bass first, followed

by drums, then organ, followed by arpeggiated guitar. This layering results in a continually

changing spectral envelope. The choruses, on the other hand, feature the entire instrumenta-

tion, without any change in texture or envelope. The B material is characterized again by

gradual layering, and expands into a brief instrumental passage in B2. Finally, the outro

O material repeats vocal material heard earlier in the song, but with different layering and

instrumental arrangement.

3.2 Discussion

This chapter provided an overview of the field of computational aesthetics. Many

theories of computational aesthetics are influenced by Birkhoff’s aesthetic measure, which

describes the aesthetic value of a stimulus as the ratio between its order and complexity.

Later researchers used information theoretic approaches to quantify the notions of order

and complexity. Theories about how exposure and repetition influence aesthetic response

were also introduced. First, the “mere exposure” effect was described, in which repeated

exposure to a stimulus increases subjective affective response to that stimulus. This effect

seems to be countered or balanced by a boredom effect, which begins to exert a negative

affective response after a certain point. Second, the related idea of processing fluency was

described. Processing fluency is tied to the ease with which a subject can understand or

process a stimulus. It has been shown that greater processing fluency, which can be obtained

through repetition or “priming,” is tied with positive affective response. Greater ease of
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processing leads to more positive response. There is again a countering influence, where the

effect of stimulus complexity has a “U”-shaped curve. Too little complexity leads to fluency

being attributed directly to the simplicity of the stimuli, while increasing complexity leads

to fluency being attributed to the “beauty” or aesthetic merit of the stimuli and leads to a

more positive affect. After a certain level of complexity, however, processing fluency will

decrease, leading to a less positive overall response.

The field of Music Information Dynamics is particularly relevant to the ideas of

computational aesthetics and exposure, and a particular approach - Information Rate - was

described. IR is based on two measures of entropy in a musical signal, and considers

the difference between the conditional complexity and unconditional complexity of the

signal. These can be calculated by making two compressed versions of the signal: one

which considers the past (conditional), and one which does not (unconditional). IR can be

calculated from an audio signal in real-time, using the Audio Oracle algorithm, and gives a

simple measure of to what extent the present moment in an audio signal can be related to

past moments. Chapter 8 will describe an implementation of Audio Oracle, and its practical

application to generative music.



Part II: Complexity and Computational

Aesthetics
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Chapter 4

Feedback and Complexity in Generative

Systems

One of my primary compositional and research interests, both during my time at

UCSD and before, has been the creation of systems which generate music with some level

of autonomy. In particular, as laid out in Chapters 1 and 2, I am particularly interested in

systems where sound synthesis and compositional logic are tightly coupled. My interest is

in systems which generate audio through some type of synthesis, rather than those which

deal with symbolic representations. This chapter will discuss a trio of generative systems

and software instruments which function in a similar manner. These systems create a sense

of autonomy and generativity in two ways: feedback and modular design. All three systems

use some sort of feedback to create sonic material or structural parameters. They also all

use modular design to facilitate the production of complex output, which - as described in

Chapter 1 - is often thought to be a necessary component of a satisfying aesthetic experience.

The first section of this chapter will describe my use of digital and electro-acoustic

feedback as a compositional resource, as evidenced in a pair of pieces, called Gates No. 1

and Gates No. 2. Both pieces function as “improvisational instruments” - software programs

which allow a performer to improvise within very specific constraints. In the case of these

43
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pieces, formal aspects of the final composition are left almost entirely unspecified, while

the character of the musical materials is determined by a specific and tightly constrained

signal processing network. These pieces emphasize the use of feedback as a compositional

resource, while leaving most of the organizational work up to the performer.

The second part of this chapter will discuss a generative system called Feld, which

combines analog synthesis hardware with digital hardware control and signal processing to

create a generative system. Feld does not require performer intervention, instead it constructs

its own form in real-time, as a function of its own past output and a set of compositional

algorithms. The complexity of the synthesis and signal processing network - as elaborated

below - encourages a sense of emergent or self-organizing behavior. Little of the gestural or

formal structure of the work is predetermined, instead arising from the momentary internal

configuration of the network and compositional algorithms.

4.1 Feedback as Source Material - Gates Nos. 1 and 2

Digital and acoustic feedback have long been favored compositional materials of

mine. As many composers have discovered, and as elaborated in Chapter 2, feedback

systems are capable of generating interesting timbres with dynamic and surprising behaviors.

In the following section, I will describe a pair of musical systems which make use of digital

and electro-acoustic feedback. The systems are named Gates No. 1 and Gates No. 2, after

their methods of articulating rhythmic and phrase-level behavior from continuous feedback.

In addition to the unpredictability of feedback, a desire to participate in free improvisation

fueled my interest in leaving the final form of the output produced by the systems unfixed

until the moment of performance. I will briefly describe the design of each system , as well

as the ways in which compositional desires were intermingled with the dynamic results

of the systems. Finally, I will discuss several flaws in the systems , and place them into

the context of the research to be discussed later. It should be noted that the aim of this
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section is not to describe the systems in great detail, but to give an overview of my own past

involvement with feedback and generative audio systems, and to set up further discussion of

digital feedback networks.

4.1.1 Gates No. 1

Gates No. 1 is a software improvisation instrument which uses of a pair of digital

feedback networks as its sole source of musical material. An example network topology

is shown below in Figure 4.1. The networks are loosely based on physical modeling

wave-guides, and constructed out of two identical “rails”. Each network is encouraged

to resonate within a particular musical register, through particular settings of delay times

and bandpass filtering. The delay times and filter center frequencies are allowed to vary

randomly over time within predetermined ranges, ensuring that the output of each feedback

network varies while remaining within the specified range. The ranges are left deliberately

vague, corresponding to low, mid-range, and high frequencies. Each network is excited

ADC + Delay Limiter Filter Delay Filter

Delay Limiter Filter Delay Filter

2

2

-1

-1

Figure 4.1: An example feedback loop from Gates No. 1. The loop contains time-varying
delays, time-varying bandpass filters, and multipliers (ensuring the delay line never loses
energy).

by input from the computer ADC or built-in microphone, ensuring variation and allowing

the output of the system to re-appear at the input. (The goal is not really for the system to

respond to audio input in any meaningful way, but simply to provide an interesting “random”

excitation.) Since the feedback networks are time-varying, with changing delay times and

filter center frequencies, it can be difficult to ensure stability. This problem is addressed in
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a manner similar to that employed in [39], where a soft-clipping function is used both to

ensure stability and for its interesting timbral characteristics. In Gates No. 1, stability is

ensured using a look-ahead limiting function, ensuring that the amplitude over a window of

samples stays below a specific threshold. In combination with a gain factor of two, shown

in Figure 4.1, this structure forms a crude compressor, and boosts low amplitudes while

constraining or reducing high ones.

Multiple points within each feedback network are used as tap locations, and the out-

put of each tap is sent to one of a set of signal-processing modules. Each processing module

applies a single, time-varying effect to the signal: amplitude modulation, ring modulation

with either an oscillator or noise as the modulator, a delay-line based pitch-shifting effect, a

chorus effect, and a very narrow bandpass filter. The parameters of the effects are modulated

by reading from one of 50 pre-composed function tables. These functions are designed to

be multi-purpose, and each may be used as the modulation source for a number of different

effects over the course of a performance. The functions are collected into groups according

to characteristics of their shapes - straight lines, curved lines, combinations of both, jagged

contours, smooth contours, etc. Finally, each processing module also applies a randomly

generated (with some constraints, discussed below) amplitude envelope to the input signal.

This envelope serves to create rhythmic interest by gating the otherwise constant sound of

the feedback network. The output of the processing modules is summed and passed through

a reverberation and delay module, before being spatialized.

The composer/performer interacts with this system at a high level. Instead of

specifying specific musical materials, a series of purposefully vague commands is used to

trigger sounds. First, the performer selects which of the six processing modules should be

activated. Then, he or she specifies a register and duration for the sound. As mentioned, the

feedback networks are organized to produce low, mid-range, and high frequency sounds.

When the performer specifies a register, the output of the corresponding feedback network
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is used as input to the selected signal processing module. The duration parameter is sent

to the amplitude envelope generation portion of the selected signal processing module.

The amplitude envelopes can be short, medium-length, or long in duration. The processed

output of the feedback network will be enveloped with a function designed according to

the duration range specified. Finally, the group of modulation functions to use for effect

parameter modulation is selected, and a particular function is chosen at random from that

family and applied to the parameters of the processing unit. A performance consists of the

performer triggering events by selecting these sets of parameters, and allowing the instrument

to fill in the details. The challenge is to create a musically effective form with materials

which can vary widely between performances and even within a single performance.

4.1.2 Gates No. 2

Gates No. 2 takes the strategy of processing the output of digital feedback networks

and moves it into the electro-acoustic realm. The instrument was designed for performance

at the eight-channel composition studio at the University of Wisconsin - Milwaukee, and

uses eight discrete speakers and a single microphone placed in the center of the space. The

microphone signal is digitized, split, and fed into eight identical signal processing channels,

each of which is output directly to one of the speakers. Each channel has a gain of 20

(ensuring audible feedback), a set of time-varying filters (switchable, by the performer, to

either bandpass or comb filters), a short delay intended to function as a phase shift rather than

an audible echo, and a so-called “formant shifter,” borrowed from David Tudor’s Untitled,

consisting of the product of the output of high-pass and low-pass filters with identical cutoff

frequencies [80]. These signal processing modules are time-varying, and their automation

is derived from analysis of the fundamental frequency and amplitude of the signal at the

microphone at previous moments. The signal processing is designed to disrupt and animate

the feedback which occurs between the microphone and speakers in order to avoid static,
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Figure 4.2: System structure of Gates No. 2 showing both software and hardware compo-
nents.

high-amplitude drones. The final output of each channel is fed through a time-varying

low-pass filter before being output to a single speaker.

In performance, the final output gain of each channel (and therefore at each speaker)

is controlled by a performer manipulating the faders of an analog mixer. The use of an analog

mixer has the benefit of introducing a clipping mechanism to ensure that feedback does not

grow unbounded or cause digital clipping. Through this simple interface, the performer

has control over form, dynamics, and spatialization - all of which are interdependent.

Depending on the output gain of a particular channel, it may produce sounds ranging from

pure, sweeping tones to rhythmically articulated noise. The diverse material produced

by the different output channels is blended at the microphone, and processed again. The

microphone signal is also analyzed for fundamental frequency and amplitude, and then both

the signal and the analysis are used in the generation of the next moments as the signal

becomes material to be processed and the analysis informs the parameters of the processing

modules. Although the performer has the ability to selectively audition certain channels, the

output at any given moment is dependent on the past in a way which is impossible to fully

predict.
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4.1.3 Discussion and Further Work

Both Gates No. 1 and Gates No. 2 successfully use feedback as their sole source of

sound material. Where Gates No. 1 used fully digital feedback, Gates No. 2 used a hybrid

digital/analog feedback network. Both systems avoided static feedback by introducing

disrupting signal processing elements - time-varying delays and filters, modulation and

feedback. This resulted in dynamic and surprising sounds with characteristics unique to

each system. Where Gates No. 1 used a limiting/compression scheme to maintain system

stability, Gates No. 2 relied on the clipping inherent in the analog mixer circuitry.

Although the systems provide a satisfying performance experience, retaining distinct

timbral and gestural identities while allowing flexibility and improvisation, they are not

fully autonomous or generative audio systems. Due to their open-ended design, much of

the final musical form is left undecided until the moment of performance. The systems do

not function on their own - if left unmanaged, no music will emerge. Both systems need

the input from a performer to trigger events. There is also a divide (particularly in Gates

No. 1, and the use of pre-composed function tables) between pre-composed and emergent

material. In a more autonomous generative audio system, musical materials - like rhythm,

gestures, and motivic behavior - should be closely tied to the sound generation procedure

itself, with musical form emerging from the synthesis algorithm employed. The next section

describes another system which employs a different method of feedback as a method of

creating formal autonomy.

4.2 Generativity and Complexity - the Feld system

The software systems described in the previous section employed digital and electro-

acoustic feedback as a means of generating surprising and dynamic material. This approach

was successful in that it created works with unique and unified sounds and gestures. However,
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these works always required some human intervention to audition, disrupt, or otherwise

frame the generated sounds in a larger musical context. In order to create a system from

which interesting music might arise spontaneously - that is, without the influence of a human

performer - it seemed necessary to design a system with a higher level of complexity and to

introduce opportunities for other types of indeterminacy than were previously employed.

This section will describe my next attempt at an autonomous generative system. The

system, called Feld, couples a custom hardware analog synthesizer with a complex DSP

network, drives synthesis and signal processing with a suite of compositional algorithms,

and performs feature extraction on its own output in order to inform the development of

the work. There are many theories about ways in which the computational worth of an

art object might be objectively measured, but almost all of them involve a ratio between

order and complexity. During the design of Feld, special care was taken to ensure that this

balance lead to a satisfying aesthetic experience. I will describe below the ways in which

this balance was designed into the system.

Analog 
Synthesizer

Signal 
Processing Output

Control
Generation

Feature 
Extraction

USB-
Octomod

snake.corral

Figure 4.3: A high-level block diagram of the Feld system feedback loop. The laptop
controls the synthesis hardware while also analyzing and processing the output of the
hardware. The gray box indicates software components. Solid lines indicate audio signals,
dashed ones indicate control signals.

4.2.1 System Structure

The Feld system consists of both hardware and software components, arranged into

a feedback loop. The structure is shown in block diagram form in Figure 4.3. This section
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will describe the hardware and software components and arrangement of the system.

4.2.1.1 Hardware

The hardware used in Feld is entirely hand-made, and includes both custom designs

by the author and circuit boards purchased from small designers around the globe. In

particular, I developed two custom devices - the USB-Octomod and snake.corral - which

were used to interface between the computer and hardware systems [81]. An additional

custom device, the tabulaRasa, was also designed and employed in the system. The

motivations and design of these devices are described in greater detail in Appendix B, so as

not to disrupt the narrative flow of this chapter. In addition to these custom devices, the Feld

system uses conventional oscillators, low-frequency oscillators (LFO), a state-variable filter,

voltage-controlled amplifiers, and a ring modulator.

4.2.1.2 Software

The system also makes use of a software patch (implemented in Max/MSP) which

handles spatialization, signal processing, and hardware control. Much of the gestural

and timbral information in the work is generated or modified through the software. The

patch communicates with an external eight-channel audio interface as well as the USB-

Octomod and snake.corral. This section will describe the software, starting with components

which generate control signals (control-rate components), and then discussing the signal

processing.

4.2.1.2.1 Control-Rate Components There are two major control-rate components to

the Feld system, each contained in a sub-patch. The first allows the composer to specify a

base duration and a set of proportions which are used to determine many elements of the

form and sectionality of the piece. The proportions are made into a fractal using one level

of recursion - the set of proportions is reflected on both large and small scales. In other
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words, the proportions manifest in both the progression from section to section and on the

average duration over groups of sections. The sub-patch also contains a timer which steps

through the durations and transmits a pulse to other areas of the Feld patch at the onset of

each section.

The other major control-rate component generates and assigns parameters to DSP

modules elsewhere in the patch, and also generates and transmits data to the USB-Octomod

and snake.corral hardware. The DSP parameters generated in this sub-patch will be discussed

in greater detail in the next section.

The first function of this sub-patch interfaces with the snake.corral matrix. This

code generates an evolving set of matrix patch configurations. The algorithm was inspired

by John Cage’s use of charts to generate slowly evolving indeterminate material during

the composition of Music of Changes (1952) [18]. At each sectional boundary, two preset

configurations are selected at random - one for each matrix in the snake.corral. At the

same time, there is a probability that a selected preset will be replaced. This allows for the

system to have a limited number of possible configurations at a particular time, while also

allowing for the set of configurations to change over time. A balance between repetition and

novelty is created, where some configurations will be repeated while new configurations

will gradually emerge. After a configuration is selected, it is transmitted to the snake.corral

hardware over a USB serial connection.

The second function of the sub-patch is to generate eight modulation signals that

are sent to the synthesis hardware via the USB-Octomod. The eight modulation signals are

constructed from the output of a set of six control-rate modulation generators:

• Random Ramp / Step - Generates smooth / instantaneous transitions between values

selected from a uniform distribution.

• Random Walk / Random Walk Slider - A standard random walk, with instantaneous /

ramped transitions between values.
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• Cycle - Iterates through a list of values in sequence, with a small probability that a

given value will be replaced after it is used.

• Bag - Randomly draws from a set of values, with a small probability that a given value

will be replaced after it is used.

Each modulation output channel has an independent set of six generators. There are two

parameters for the modulation generators, “Switching Rate” and “Modulation Rate.” The

“Modulation Rate” parameter determines the speed with which new values are drawn from

each of these generators. Each of the eight final modulation signals is constructed by an

algorithm which occasionally switches between the output of these generators, at a rate

controlled by the “Switching Rate” parameter. The composite output is then transmitted to

the USB-Octomod via a USB serial connection.

4.2.1.2.2 Signal Processing Components Four channels of audio are used as input to

the software system, and are taken directly from four matrix outputs on the snake.corral.

The simplicity of the small hardware modular system can cause it to function with only a

few basic rhythmic or gestural motives at a time. Feld includes a few strategies for avoiding

monotony which may occur. For example, a single LFO may be patched to many modules

simultaneously, causing similar modulation patterns to be heard across multiple output

channels. The Feld patch applies an independent delay - randomized at each sectional

boundary - to each of the four input audio channels, creating polyphonic textures and

canonic effects. Each channel is heavily processed, as described below, so these canonic

effects are rarely heard as such. Instead, particular features (a change in LFO speed, for

example) of the input signals will appear in short succession, but with large amounts of

variation. Listeners hear relation, but not repetition or imitation.

Each channel then passes through its own signal-processing network. Each of the

four networks is constructed of four “nodes,” each consisting of a subset of 14 individual
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effect modules, including amplitude modulation, comb filtering, delay, single-side-band

modulation, delay-line frequency modulation, soft clipping, and rhythmic gating, to name a

few. An example node is shown in Figure 4.4. The four nodes are reordered at sectional

boundaries, to ensure timbral and gestural diversity between sections. In one section, an

amplitude modulated signal may be processed by a comb filter, while in the next a comb

filtered signal is processed by the AM module. As described in [21], this change in order

of operations can have a significant effect on the output, since many of the effects are

non-linear and all are time-varying. Effect parameters are automated in the same way

as the USB-Octomod channels, by switching between independent parameter generation

algorithms.

Within each node, the modules are connected in networks, many of which have

multiple branches. These branches can be automatically switched on or off using rhythmic

gating modules. Each section of the generated formal structure of the system’s output uses

only a subset of available effect modules, bypassing the rest. Even if a section reuses a

network topology, the resulting sounds will vary in interesting ways. Each active module is

also occasionally bypassed within each section according to a rhythm generation module,

which again switches between multiple rhythm generators, adding polyphonic timbral

variation to the signal as effects are switched in and out of the signal path. The clean input

to the processing network is then blended with the processed version, with the weighting

between the two signals determined randomly for each section. The combination is passed

through a delay effect and an automated stereo panner. Finally, the stereo signal is passed

through a reverberator and out to the DAC and a signal analysis module.

4.2.1.2.3 Analysis Components The analysis module computes three perceptual de-

scriptors extracted from the output signals. The three descriptors are “loudness,” “brightness,”

and “noisiness,” and are calculated using Tristan Jehan’s analyzer˜ object1. During each
1Available at http://web.media.mit.edu/ tristan/maxmsp.html
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Figure 4.4: Screenshot showing an example Feld signal processing node. The top object,
bypass-helper˜, divides the network into two branches. Each branch passes through a
few different effects modules, which are bypassed according to a rhythm generator, and
modulated independently. Finally, both branches are summed and output to the next node.

section, a running average of each descriptor is constructed. At the end of the section, the

difference between the current section and the previous is calculated. These difference

values are scaled and assigned - in a rather loose manner - to the “Switching Rate” and

“Modulation Rate” parameters used in determining the USB-Octomod modulation signals

for the next section. An inverse relationship is used, so that small contrasts between features

across sections result in more rapid and varied modulation of the hardware. The system

favors contrast, and attempts to introduce high levels of activity when the level of sectional

contrast is low. The result is a form of negative feedback, and the system tends toward

self-regulation and settles in a state in which sectional contrast is emphasized.
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4.2.2 Order and Complexity in the Feld system

As mentioned in Section 4.2, the Feld system attempts to create balance between

order and complexity in a few ways. This approach is based on the assumption that the

aesthetic worth of a stimulus is related to the amount of order and complexity in that stimulus.

Perhaps the most famous example of this is Birkhoff’s aesthetic measure [53], given as

M =

order
complexity

, (4.1)

but these theories have also been applied more loosely by composers of electronic music

[35] and computer art [82]. Later researchers have found that there is an inverted ‘U’-shaped

curve in aesthetic preference. In other words, listeners prefer neither too much complexity

nor too much order - the “best” experience is somewhere between [83]. This section will

describe the ways in which complexity is constrained or otherwise given order in the system

design, sound sources, and large-scale form of Feld.

First, sound synthesis is performed using a modular synthesizer which, by nature,

is limited by the number and type of modules in the system. Rather than the “unlimited”

sonic resources available through computer synthesis, Feld creates complexity through very

limited means. Complex routings and modulation help to produce surprising output, but the

system itself provides a significant constraint and sense of order.

Second, the software signal processing chains (described in Section 4.2.1.2.2) consist

of many distinct algorithms, but can only be arranged in a few ways. Only a subset of the

algorithms is used during a section of the piece. Complexity arises from the variety and

number of possible algorithms, and their continually automated parameters. Conversely,

the limited number of arrangements along with the rule that only a few algorithms are used

during each section help to constrain the complexity and give the listener a sense of order.

Third, the modular synthesizer is automatically re-patched according to a limited
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but evolving group of presets. By constraining the synthesis system to a small number of

possible configurations, particular timbres and behaviors will reappear, creating a sense of

order, repetition, and familiarity. On the other hand, the fact that presets from the group are

gradually replaced introduces an amount of complexity and surprise.

Fourth, both the hardware system and the software DSP modules are given a set of

modulation control signals. These signals are generated with a variety of random algorithms,

but are constrained with higher-level parameters like “Switching Rate” and “Modulation

Rate” (described in Section 4.2.1.2.1) and minimum/maximum values which control the

content and rate of change of their output.

Finally, the self-analysis portion of the system described in Section 4.2.1.2.3 attempts

to enforce contrast between order and complexity. If the previous section was judged to be

too similar to the current, then the system attempts to create more diverse material for the

next section. By introducing higher levels of parameter modulation and rhythmic activity,

the system is more likely to find new and surprising or contrasting material.

4.2.3 Performance and Presentation

The Feld system was designed, in part, to experiment with long-duration works

which evolve in a continual fashion and avoid repetitions. Each performance of Feld begins

with a small number of pre-compositional decisions (described in greater detail below).

After these decisions are made, the system is set into motion and the music evolves from

those initial conditions. The hope is that these constraints, along with the framework of

compositional assumptions provided by the system itself, will provide enough order to keep

the complexity of the output from completely overwhelming listeners. This first part of this

section will describe the pre-performance decisions and their impact on the longer work.

The second will discuss the motivation behind the long duration format of the work.
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4.2.4 Performance Decisions

There are two primary decisions which must be made before Feld can be performed.

First, a patch must be chosen for the modular system. Generally, most of the synthesis

modules are connected in some way to the inputs and outputs of the pucktronix.snake.corral,

allowing for significant reconfiguration of the system to be performed instantaneously at

sectional boundaries during the piece. Some module connections may be left “hard-wired” in

order to lend some unique characteristics to a given patch. For example, the user may choose

to connect the modulation rate control inputs of an LFO to each of the oscillators, and then

connect each of the LFOs to the outputs of the switching matrix. In this way, the system is

unable to modulate the oscillators directly, and can only affect their frequency by modulating

the LFOs. These more specific configurations help to lend a unique sound and behavior to

a patch. The second decision which must be made is a set of durational proportions and a

base duration, as described above. These proportions are automatically transformed (with

reference to the base duration) into a longer, fractal set of specific durations. These durations

are used to designate sections within the longer work. These two decisions provide some

control over the output of Feld. By embracing constraints and allowing for these simple

pre-performance decisions to be made, the composer is able to balance the sheer complexity

of the possible output - resulting from the reconfigurability of the system, the density of

textures and events, and the use of multiple simultaneous compositional algorithms - with

an amount of simplicity and order.

4.2.5 Listening Experience

As mentioned, a specific aesthetic and compositional interest for this work was

to experiment with longer durations. During my time teaching an undergraduate course

on American experimental music, I became interested in the way the listening experience

changes over the course of a long duration. For example, while listening to a long string
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trio composed of slowly unfolding three-note chords, the listeners’ interest may first be

focused on ideas about musical progression, defined by pitch, harmony, and rhythm. Over

time, however, these elements tend to recede in importance while details of timbre and

space become more prominent. Small changes in parameters eventually take on a greater

significance.

My aim with Feld was to create a situation in which the listener is forced to attune

to minute musical details on a local scale. The piece is a series of exciting and dynamic

moments, organized into a simple form characterized by a long duration segmented into

a series of contrasting sections. By limiting musical progress, enforcing contrasts, and

prioritizing complexity, the piece encourages attention to moment-to-moment gestural and

timbral complexity, while discouraging focus on form and progression.

Feld was recorded and presented as a set of three hour-long recordings.2 Each

recording was composed of a single “take” - the direct recorded output of the system. No

editing was used, aside from trimming the ends and adding a fade at the beginning and end

of each recording.

4.3 Conclusion

Both the Gates and Feld systems make use of feedback in the production of gener-

ative music. Where the Gates systems used digital and electro-acoustic feedback as their

source of sound materials, Feld used a less direct form of feedback - analyzing its own

output, and using the analysis results to inform future musical material. Both types of

feedback provide interesting opportunities for generative systems.

In terms of autonomy, the Gates systems are significantly more dependent on a

human performer than is Feld. Both Gates No. 1 and Gates No. 2 rely on a performer to

directly trigger sonic events and also to provide a large-scale shape to the music. This is
2 Available at http://music.gregsurges.com/album/feld

http://music.gregsurges.com/album/feld
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not the case in Feld - instead, the user provides a set of numbers which are then used to

determine the durations of sections throughout the work. Following that limited interaction,

the musical work unfolds according to the algorithmic procedures defined in the software.

While Feld makes an attempt to pay attention to its own output, this ability is rudimentary

at best and makes no real attempt to relate the signal analysis to human perception or

expectation.

Unfortunately, both Gates and Feld fail to achieve any tight coupling between the

generative procedure and the synthesis algorithm. A true generative audio system would

make little to no distinction between the two - the synthesis algorithm itself would produce

interesting and dynamic variations. While both systems are capable of producing compelling

music over moderate to long durations, there is room for further development. Whereas the

Gates systems function more as a instruments than autonomous performers, Feld primarily

functions under the control of a set of pre-designed compositional algorithms with minimal

adaptation to its previous output. Both fall short of being fully autonomous systems which

make music according to principles of human expectation and interest. The problems

described here will be addressed in greater detail in Chapter 8.



Chapter 5

Machine Learning and Computational

Aesthetics in the PyOracle System

5.1 Introduction

This chapter describes PyOracle, a new machine improvisation and analysis system in

the family of software built using the Factor Oracle (FO) and Audio Oracle (AO) algorithms

[84, 85]. PyOracle was introduced by the author in [77], and is the first software to use AO -

a graph structure built using features derived from input audio in the context of machine

improvisation. The AO algorithm was described in Chapter 3. AO is useful for both analysis

and generative purposes, and these uses will be described in this chapter. Though PyOracle

is not a generative audio system, it will be useful to describe its applications to generative

music and analysis.

The PyOracle project can be divided into two parts: PyOracle Analyzer and PyOracle

Improviser. PyOracle Analyzer is a library written in the Python programming language

for AO analysis of music and calculation of music information dynamics [86]. PyOracle

Analyzer also provides some generative music functions, but is primarily intended for offline

work. PyOracle Improviser embeds PyOracle Analyzer into the Max/MSP programming

61
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environment, enabling real-time analysis of audio input and generation of new musical con-

tent based on that input. PyOracle Improviser is conceptualized as a software improvising

partner which learns elements of a performer’s style and generates a real-time audio accom-

paniment. In this context, the AO algorithm is used to determine the repetition structure

of an improvisation as it unfolds. This repetition structure is then used to recombine the

original audio material into new, but related material.

The PyOracle system makes use of ideas from the field of Music Information

Dynamics, in order to determine the best model of an arbitrary input signal. A measure

called Music Information Rate (IR) is used to measure the amounts of complexity and

repetition in the signal over time, and can be used to find the ideal AO model.

PyOracle Improviser provides some unique features for enabling composition and

structured improvisations. Constraints, probabilities, and other parameters can be modified

in real-time or according to a predefined script. This chapter will discuss the use of PyOracle

Improviser in a compositional context, and suggest some directions for further work in this

area. The chapter will conclude with a description of an implementation of the AO algorithm

as an external object for Pure Data and Max/MSP.

Figure 5.1: The PyOracle Improviser interface.
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5.2 Machine Improvisation

Machine improvisation is a field of research wherein computer programs are designed

to function as improvisational soloists or partners. In a situation where the software functions

as part of a duo with a human performer, the software often receives musical input from

the performer in the form of MIDI or audio, and responds appropriately according to some

stylistic model or other algorithm. An important example is George Lewis’s Voyager (1988),

described by the composer, in [87] as a “virtual improvising orchestra.”The Voyager software

receives MIDI input derived from an instrumental audio signal, analyzes it, and produces

output with one of a set of many timbres. Voyager is capable of both producing variations

on input material and generating completely new material.

The Continuator project uses variable-length Markov chains to generate new contin-

uations from a MIDI input stream [88]. The MIDI stream is parsed and a tree structure is

constructed. As further MIDI input arrives, the tree is traversed to find continuations of the

input. If no continuation is found, the next event is randomly chosen. The use of a weighted

fitness function enables control over the “sensitivity” of the machine improvisation to the

current musical context of the input. The authors also present some interesting ideas for

structured improvisations using the Continuator system.

The Jambot, a flexible improvising system, was introduced in [89]. The Jambot

attempts to combine “imitative” and “intelligent” behaviors, using a confidence measure to

trigger switching between the two behaviors. The authors demonstrate this confidence-based

switching method with the example of a beat-tracking behavior. If the system has a high

confidence in its beat-tracking ability, given the current musical context, it will function

more “intelligently” - producing more novel material. On the other hand, if the system is

unconfident in its current model of the beat, it will switch to an “imitative” behavior until it

regains confidence.

Many previous machine improvisation systems use symbolic music representations,
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such as MIDI, which can have some advantages, but can also fail to capture significant

musical information, such as timbre. Additionally, by their very nature, these symbolic

representations require quantization of musical features. For many features, such as those

related to the harmonic structure of a sound, it is often unclear how best to quantize the

features - a “one size fits all” approach will often fail to accurately represent many sounds.

The Audio Oracle algorithm, described in the following section, attempts to address these

problems.

5.3 Audio Oracle

Audio Oracle (AO) is an audio analysis method and a representation of musical

structure, and was introduced in Chapter 3. The description of the AO structure will be

expanded upon here, focusing on its application to real time machine improvisation. AO

extends previous methods which used Lempel-Ziv and Probabilistic Suffix Trees, described

in [75]. The AO algorithm is based on a string matching algorithm called Factor Oracle (FO),

extending it to audio signals [76]. AO accepts an audio signal stream as input, transforms it

into a time-indexed sequence of feature vectors (calculated from a moving window on the

time-domain signal), and submits these vectors to pattern analysis that attempts to detect

repeating sub-sequences or factors in the audio stream. Mathematically speaking, the AO

generalizes the FO to partial or imperfect matching by operating over metric spaces instead

of a symbolic domain. In other words, AO does not require the same kind of quantization of

input that FO does. One of the main challenges in producing an AO analysis is determining

the level of similarity needed for detecting approximate repetition. This can be done using

ideas from information theory applied to the structure of an AO. The “listening mechanism”

of the AO tunes itself to the differences in the acoustic signal so as to produce a optimal

representation that is the most informative in terms of its prediction properties. This “tuning”

process will be described in greater detail below. Like the FO-based method, AO generates
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an automaton containing pointers to different locations in the audio data that satisfy certain

similarity criteria. The resulting automaton is passed later to an oracle compression module

that is used for the estimation of Information Dynamics, as will be described in the following

section.

The structure of an AO segment is shown in Figure 5.2. Similar to the Factor Oracle

algorithm, forward transitions (upper arcs) correspond to states that can produce similar

patterns with alternative continuations by continuing forward, and suffix links (lower arcs)

correspond to states that share the largest similar sub-clip in their past when going backward.

During construction, the oracle is updated in an incremental manner, allowing for

real-time construction. The algorithm iteratively traverses the previously learned oracle

structure, jumping along suffix links, in order to add new links. A more detailed treatment

of the AO construction algorithm is given in [75].

Figure 5.2: An example of an Audio Oracle structure.
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5.4 Computational Aesthetic Theories

One of the novel properties of PyOracle Analyzer is that it performs analysis of music

in terms of signal complexity and repetition structure during the learning stage undertaken in

preparation for improvisation. A link between statistical properties of the signal and human

perception, was initially established in [44], and motivates the current approach to using AO

for composition.

5.4.1 Music Information Dynamics and Information Rate

Music Information Dynamics is a field of study that considers the evolution of the

information content of music [74, 72]. The changes in the information content of a piece of

music over time are often assumed to be related to structures captured by cognitive processes

such as the forming, validation, and violation of musical expectations [46]. In particular,

a measure called Information Rate (IR) has been studied in relation to human judgments

of emotional force and familiarity [44]. The process of obtaining the IR function of an AO

analysis was detailed in Chapter 3.

Recalling the AO algorithm described above, we can use the notion of balancing

complexity and familiarity to solve the problem of how to determine the best model of the

signal. The ideal model should represent the complexity of the signal, while also capturing

repetitions that occur. If we consider IR to be related to the amount of information shared

between the past and the present, i.e. how much of the present is a repetition of something

which has come before, we can relate IR to the balance between complexity and familiarity.

We can also draw a connection between IR and surprise. A low IR value corresponds to

a high amount of novelty, and therefore surprise, while a high IR value corresponds to a

repetition of something previously heard. As found in the previous studies on computational

aesthetics, the most pleasing aesthetic experiences seem to rely on a balance between order

and complexity. This has a practical application in determining the best distance threshold
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to use during AO construction.

Figure 5.3: The ideal AO model. Note the balance between occurrences of transitions
(upper arcs) and suffixes (low arcs).

Figure 5.4: An AO with the distance threshold set too low. Each state is considered unique.

5.4.2 Tuning the AO Algorithm

A distance threshold is used to detect similar states during the construction of the

AO. If the distance between two states is found to be lower than the threshold, the states

are determined to be similar. For a more intuitive understanding of this distance threshold,

IR, and how they relate to the AO structure, consider Figures 5.3 - 5.5. These figures
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Figure 5.5: An AO with the distance threshold set too high. All states are considered
repetitions.

demonstrate the differences between an oracle constructed using a well-chosen distance

threshold and those constructed where the threshold is too low or too high. The audio signal

analyzed here is the complete fourth movement of Prokofiev’s Visions Fugitives, a short

composition for solo piano. The first oracle, shown in Figure 5.3, is considered the optimal

oracle. It is assumed that a good AO analysis will capture as much as possible of the mutual

information between the past and present of the signal, and therefore an analysis with a high

total IR is preferred. Through an iterative process, the total IRs obtained from using each of

a range of possible distance thresholds are compared, and the particular threshold which

maximizes total IR across the IR function is selected. Figure 5.6 shows the total IR as a

Figure 5.6: Total IR as a function of Distance Threshold for Prokofiev piano work.
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function of the distance threshold. The peak of this function yields the optimal AO, though

it is often worth studying oracles formed using secondary peaks as well. In the case of the

Prokofiev work, the optimal distance threshold was found to be approximately 0.22, yielding

a total IR of 1081 bits. Figure 5.4 shows an oracle where the distance threshold was too low.

In this case, no similarity between any frames was found, and all frames were considered to

be new. Each frame has only a link from state 0, indicating that this is its first appearance in

the sequence. The algorithm has determined the input to be a “random” sequence, where all

frames are unrelated and no repetitions or patterns occur. Conversely, Figure 5.5 shows an

oracle where the distance threshold was set too high, resulting in dissimilar frames being

lumped together, and producing an oracle where all frames were considered to be repetitions

of the first. Each frame has a suffix link to the previous frame, indicating this repetition.1

Figure 5.7: Total IR vs. Distance Threshold for Shakuhachi recording.

To understand how this threshold selection process “tunes” the oracle to its input,

consider the difference between Figures 5.6 and 5.7. As described above, Figure 5.6 shows

the total IR as a function of the distance threshold for the Prokofiev piano work. Figure 5.7

shows a similar plot, but for a recording of a solo shakuhachi. The underlying feature for

both plots was Mel-Frequency Cepstral Coefficients (MFCCs). The optimal threshold for the

Prokofiev was 0.22, while that of the shakuhachi performance was 0.14. This corresponds
1Note that in these diagrams, suffix links to the 0th frame, present when a new frame is detected, are

omitted for visual clarity.



70

to the oracle adjusting to the more subtle timbral variation in the shakuhachi recording. A

lower distance threshold was required to detect meaningful distinctions between frames

with smaller variations. Both the PyOracle system described here and the AAS-4 system

described in Chapter 8 use an implementation of this training process.

5.5 Music Generation with PyOracle Improviser

AO can be used in a generative context, to produce real-time variations on the

learned musical structure. PyOracle Improviser aims to facilitate experimentation and help

simplify composition with this algorithm. In order to understand how one might interact

with PyOracle Improviser, it is helpful to consider the basic parameters of the system. A

pointer is used to navigate the AO structure, navigating linearly forward with probability p

and jumping forward or backward along a suffix link with probability 1� p. This parameter

is referred to as the continuity control. As the pointer moves, audio corresponding to the

current oracle state is played. Each new frame is cross-faded with the previous, in order

to avoid discontinuities in the output signal. Forward linear movement corresponds to

playback of the original audio, while jumps forward or backward produce new variations

on the original material. Since suffix links connect states which share similar context, the

transitions between these jump points will be musically smooth. The length of this shared

context, the longest repeated suffix (LRS), can also be used to constrain navigation. Setting a

minimum LRS allows jumps to occur only when a certain length of context is shared between

states. This parameter allows the user to control the smoothness of the jumps, with shorter

contexts producing more abrupt jumps. If a sufficiently long shared context is not found, the

system defaults to a linear continuation to the next frame. The oracle navigation can also be

limited to only certain areas of the data structure, in effect restricting the musical generation

to specific materials. This is accomplished through specifying a region of contiguous states.

Transitions or jumps which would cause the navigation to fall outside this region are ignored.
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Finally, a taboo list can be applied. This functions as a circular buffer of flexible length, into

which the index of each played frame is placed. During navigation, if the taboo list is active,

jumps or transitions which would lead to playback of a frame already present in the taboo

list are ignored. This feature helps to eliminate excessive repetition and loop-like behavior

that can arise during oracle navigation.

PyOracle Improviser uses the IR tuning process described in the previous section to

independently determine the best distance threshold for each of 6 signal features. PyOracle

Improviser uses MFCCs, spectral centroid, RMS amplitude, zero-crossing rate, pitch, and

chroma estimates. These features were chosen because they relate to important musical

parameters. MFCCs and the spectral centroid provide information about musical timbre

and brightness, RMS amplitude corresponds to signal energy and musical dynamics, zero-

crossing rate is related to both the fundamental frequency and the noisiness of the signal,

and pitch and chroma estimates relate to melodic or harmonic materials used. Oracles built

on different features will often have different structures, and so it is important to determine

each threshold independently. The training process is simple: the human improviser plays a

short (approximately 30 seconds to 1 minute) improvisation, aiming to create an excerpted

version of their full improvisation. During this short improvisation, feature vectors are

stored. After the improvisation, oracles are built on each feature, iterating over a range of

possible distance thresholds. Finally, as described above, the threshold which maximizes

the total IR of the sequence for each feature is retained, and used to build the oracle for that

feature during the full improvisation.

5.5.1 Composition and Improvisation using PyOracle Improviser

PyOracle Improviser also provides several new features to facilitate composing

and designing structured improvisations using AO. The primary means for creating a

reproducible musical structure is through a scripting mechanism. Any of the parameters
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described in the previous section - such as continuity, LRS, and regions - can be scripted

using a simple time-line-based system. Sections based on different musical materials are

easily defined using regions, and areas of greater or lesser musical “fragmentation” can be

defined using the continuity parameter.

Several different modes of interaction are implemented in PyOracle Improviser. In

the standard mode, oracle navigation and interaction are defined according to the above

parameters, and modified according to a script or in real-time by a human machine operator.

The query mode is a novel introduction, and deserves special mention here. A similar idea

has been explored in the SoMax system, developed by Bonasse-Gahot, in which input MIDI

data is used to query a corpus of symbolic musical material [90]. A new accompaniment

is generated driven by the input but using materials found in the corpus. In PyOracle

Improviser, this notion is extended to operate on the audio signal itself, and without relying

on a pre-analyzed corpus. In query mode, the pitch content (chroma) of the input signal is

captured and used as a guide for oracle navigation. When query mode is active, each AO

navigation jump triggers a three-part search process:

1. The first phase of the search compares past Oracle feature frames to the most recently

received input (from the human musician). The indices of those frames which are

determined to be similar enough, according to a query distance threshold, are stored.

2. Next, the algorithm iteratively backtracks along suffix links starting from the current

state k, and collects states which are connected via suffix, reverse suffix, and transition

links.

3. Finally, the next state is determined with a random choice made from the intersection

of the set of states with similar features and the set of connected states. If there are no

states in common, the oracle simply advances to the next state k+1. The function

described returns the index of the next state for navigation.
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It was found that the query distance threshold should be set slightly higher than the ideal

distance threshold for the chroma feature. When set in this manner, less precise matches will

be found, which may have produced a less ideal oracle structure but are still similar enough

to be musically meaningful. The final mode is follow mode. Like the mode of the same

name found in OMax, this mode creates a sliding window which advances automatically

and constrains oracle navigation to only the material most recently played by the human

improviser.

Figure 5.8: Peter Farrar and Ollie Bown sound-checking Nomos ex Machina. Photo
courtesy Ben Carey.
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5.5.2 Case Study: Nomos ex Machina

Nomos ex Machina is a structured improvisation which was composed for the

Musical Metacreation Weekend, held in June 2013.2 A graphical score indicating the

structure of the improvisation is shown in Figure 5.9. This score is intended for a human

performer to read, and is accompanied by a script file which automates PyOracle Improviser.

The total duration is approximately eight minutes, and is broken into eight sections, two

of which are repeated. The human improviser’s part is indicated on the upper line, while

the oracle behavior is indicated on the lower line. For the human, the sections in the score

indicate time-brackets within which he or she is free to play. Within each section, the

performer should aim to produce distinct and focused musical material. This emphasis on

focused material is important when considering the way the script automates the PyOracle

Improviser. In terms of the software, each section is primarily demarcated by the use of the

region parameter described above. The region for each section corresponds to the material

played during a previous section or sections. The piece unfolds as a series of introductions

and interactions of new material that is layered with previously heard material recombined

via the oracle. As mentioned previously, PyOracle Improviser builds oracles on multiple

audio features simultaneously. In the case of the two repeated sections, sections five and

six, the same structure is performed twice, but with a change in oracle feature to shift the

emphasis from pitch-based material to timbral material. The instrumentalist is asked to

mirror the shift in emphasis. Finally, the last sections of the piece use the query mode. At

this point in the performance, there is a variety of material for the query algorithm to choose

from, which helps to ensure better matches.

This method of structuring composition and improvisation presents some unique

challenges to the human performer. Due to the strictly-timed progression of sections in the

piece, the performer must develop materials which can be established or developed within
2
http://www.isea2013.org/events/mume2013/

http://www.isea2013.org/events/mume2013/
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a specific duration. Additionally, the material associated with each section will need to

function well when layered with previous and/or future materials.

During rehearsals, a few performers expressed a desire for a more flexible timing

system. The automatic nature of the timing mechanism may feel inhibiting or limiting to a

certain playing style. Additionally, it was found that if the timing shifts during performance

(i.e. if the performer begins counting a section before the software), it is possible that

previously defined regions will contain erroneous silence or unintended sounds. One

potential future project is to explore methods for adding flexibility or variability to the

PyOracle Improviser score system. A few options could be considered:

• Enabling performers to advance through sections manually, via a MIDI foot-pedal or

other controller. This would increase flexibility, at the cost of additional burden on the

performer.

• Using some form of score-following mechanism to advance sections according to

the musical performance. This would add significant design overhead during the

composition of a new piece, as the score-following mechanism and its mapping to

parameters would need to be specified.

• Automatic section changes, according to some compositional algorithm. This would

not necessarily increase flexibility, but would provide variety in performance.

5.6 The ao Object

The ao object was designed to address a pair of problems with the structure and

implementation of PyOracle, in order to obtain more modularity and better performance

in real-time settings. The first problem was related to computation speed. PyOracle is

implemented in Python, a high-level programming language used for a variety of purposes.
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Figure 5.9: Score for Nomos ex Machina.

Python was chosen for the way it facilitates rapid development of systems. However, Python

trades the efficiency of lower-level languages like C for the development speed enabled by

its high-level design. This trade-off is acceptable for offline AO and IR calculations, and

therefore was acceptable for the PyOracle library. The PyOracle Improviser system used a

combination of Python scripts and Max patches to enable real-time machine improvisation.

The Max components handled audio feature extraction and playback, and transmitted feature

vectors to the Python scripts via the OSC communication protocol [91]. This design was

practical, in that it enabled heavy code reuse from the PyOracle Python library - in fact,

most of the PyOracle Improviser scripts are simply wrappers around PyOracle functions.

However, the slower speed of the components programmed in Python created a performance

bottleneck. As a piece progresses, the AO structure built from it grows proportionally longer.
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As the AO structure grows, each new feature vector must be compared to more and more

previous vectors - the AO algorithm ensures that not all vectors are compared, but this still

became a problem. Eventually, the AO algorithm implemented in Python was not able to

keep up with the output of new feature vectors from Max, resulting in irregular time-steps

or skipped feature vectors.

The second problem that ao addresses is the complexity added by the separation

of AO calculation and audio computation. A user needs to ensure that both the Max patch

and Python scripts are running and synchronized, and this seemed to be daunting for less

technical users. Implementing ao as a PD/Max external solved this problem, while also

enabling easier integration of AO with a variety of systems, as both PD and Max are widely

used in a large number of computer music applications.

5.6.1 Features of the ao Object

The ao external object provides a simple interface that allows users to use AO for a

variety of purposes. The help patch, shown in Figure 5.10, demonstrates how to configure

and use AO in both generative and purely analytical contexts. While this section will

focus primarily on those aspects of the ao external of relevance to IR analysis, the object

implements the generative and machine improvisation features described above.

5.6.1.1 Training

By design, ao does not perform its own feature extraction. This enables users to use

any kind of features desired, and from any source. In order to use ao, the object must be

trained. As mentioned in Section 8.3.1, the similarity of different feature vectors is measured

according to a threshold q. If the difference between the two vectors is below this threshold,

they are considered similar. Of course, as described in Chapter 5, appropriate values of q

will vary with different types of features and different signals. For example, if the feature
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Figure 5.10: The ao object help patch, showing all messages.



79

being used is a measure of signal brightness, then a signal with large jumps in brightness

will need a much different threshold than one with very small fluctuations. By setting q

appropriately, the AO algorithm avoids arbitrary quantization schemes, and instead adapts

to the particular signal being analyzed.

The ao object implements the training scheme introduced in [77] and described

above. By iterating over a range of possible thresholds, and choosing the one which

maximizes the total IR over the course of the entire signal, the ideal threshold can be found

which will produce the best model of the signal. Practically, this is achieved by giving the

ao object a series of feature vectors as training material. This initial material should cover a

wide range. After the initial feature vectors are captured, the threshold q can be determined

with the train message, which has arguments indicating a start point, end point, and step

size for the range of thresholds to be considered. Since, as described in [77], we want a

model that captures both repetitions and novelty, we choose the q that maximizes the total

IR over the signal. After this ideal q is determined, the AO can be reset for capture of the

actual signal.

5.6.1.2 AO Construction

After training, feature vectors are extracted from the audio signal and passed to ao as

arguments to an add state message. As new vectors are added, the total length of the AO is

sent to the leftmost outlet of the ao object. Four additional messages can be used to inspect

the state of the AO data structure as it is constructed. The messages print sfx, print trn,

print rsfx, and print lrs, print their respective data to the PD or Max window.

5.6.1.3 IR Calculation

During AO construction, it is also possible to calculate the IR of the signal. Since

this can be somewhat computationally intensive, IR calculation is decoupled from AO
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calculation. A secondary message calculate ir causes the IR to be calculated for the

current AO structure and stored in an array. It is necessary to recalculate the IR for the entire

AO as the structure expands, as the repetition structure of the signal will likely change as

new feature vectors are added. After the IR has been calculated, individual indices can be

obtained with the get ir message.3

5.7 Conclusion

This chapter described musical applications of the Audio Oracle (AO) algorithm.

PyOracle Analyzer and PyOracle Improviser use AO to enable music analysis and machine

improvisation. Unlike many other machine improvisation programs, PyOracle Improviser

does not use a symbolic or quantized representation of the musical events, but instead learns

directly from musical signal features. The quality of an AO representation depends on the

distance threshold used, and Music Information Rate (IR) can be used to determine the

best threshold. Since IR is easy to derive from the AO structure, it is convenient to employ

music information dynamics considerations in music composition and improvisation. This

chapter described a procedure for predicting the best AO distance threshold for a given

improvisation, by learning an excerpt of similar material. PyOracle Improviser presents

a group of features enabling reproducible compositions or structured improvisations. In

addition to a set of modes defining specific modes of interaction, a scripting function has

been implemented and used in a composition titled Nomos ex Machina. The script enables

the creation of compositional structures by automating parameters and constraints during

performance. Though some performers have found found the timing mechanism to be too

rigid, this chapter presented some possible methods and future directions for introducing

flexibility into these compositional structures. Finally, an implementation of AO for the
3 Although it may be more desirable to output the current IR function as a single list, this design was a

compromise, as Max does not allow for messages longer than 256 atoms to be output from an object.
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Pure Data and Max/MSP environments was described. This implementation improved on

the original in terms of computational speed and software modularity. The ao object will be

used in Chapter 8.

Although PyOracle Improviser is not a generative audio system, it is useful to

understand prior uses of AO in a generative context. This chapter laid groundwork for

discussion to come. Chapter 8 will describe a new application of AO and IR calculation in a

generative audio system, as well as an improved implementation of the AO algorithm itself.

5.8 Acknowledgements

Thanks to Ollie Bown and Peter Farrar for their rehearsals and performance during

the MuME Weekend 2013. The material in this chapter was originally published in:

Surges, G. and Dubnov, S. “Feature Selection and Composition Using PyOracle.” Proceed-

ings, Workshop on Musical Metacreation, Ninth AAAI Conference on Artificial Intelligence

and Interactive Digital Entertainment. Boston, MA. 2013. The dissertation author was the

primary investigator and author of this paper.



Part III: Generative Audio Systems

82



Chapter 6

Phase Distortion Using Time-Varying

All-pass Filters

The next three chapters describe a technique for applying vibrato or phase distortion

to specific spectral components of an input signal using a cascade of time-varying, parametric

second-order all-pass filters. This chapter describes the basic technique and provides some

examples of how the technique might be applied to instrumental sounds. Chapter 7 addresses

stability issues in the time-varying second-order all-pass filter, and presents the use of these

filters in generative unitary gain feedback networks. Finally, Chapter 8 describes a generative

audio system that makes use of these feedback networks in combination with ideas about

computational aesthetics described in Chapters 3 and 5.

As mentioned above, this chapter describes the time-varying, second-order paramet-

ric all-pass filter. The parametric second-order all-pass filter offers control over the position

and slope of the transition region of the phase response, and this control can be used to tune

a phase distortion effect to a specific frequency range. First, the phase response of a cascade

of first-order filters is presented, and then is related to that of the parametric second-order

all-pass. Instead of directly modulating coefficients, the focus here is on modulating the

filter parameters which control the placement and size of the transition region. This makes
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it possible to apply phase distortion to specific spectral bands, independently of others.

Time-varying parameters and the resulting time-varying phase response are derived for the

second-order case, and examples are provided which demonstrate the frequency-selective

phase distortion effect in the context of processing of instrumental sounds.

6.1 An Overview of Synthesis Applications of All-pass Fil-

ters

All-pass filters are a fundamental synthesis building-block, and have many appli-

cations in computer music. All-pass filters have been studied with applications to both

synthesis and effects processing, often in cascaded form or with modulation of the filter coef-

ficients. In [92], the dispersive effects of a cascade of first-order all-pass filters are exploited

to produce a frequency-dependent delay effect, called a spectral delay filter. Kleimola et al.,

in [93], propose the use of a cascade of filters, with audio-rate modulation of coefficients, to

obtain complex AM- and FM-like spectra, with applications to synthesis, physical modeling,

and effect processing. The dispersive effects of cascaded all-pass filters have been used in

physical modeling of piano strings [94] and spring reverberators [95]. Finally, Lazzarini et

al. describe the use of a first-order all-pass filter in phase distortion synthesis [96], where

the authors modulate the filter coefficient with a modulation function designed to create a

desired time-varying phase shift.

As described in the introduction to this chapter, this work is part of a larger investi-

gation into the use of time-varying filters in generative feedback systems. By making the

phase response of the feedback system time-varying, it is possible to avoid the static timbres

characteristic of some feedback systems, and introduce more dynamic musical behaviors.

Though the applications discussed in this chapter do not involve feedback systems, the

techniques introduced here are a first step toward that goal. The chapters to follow explore
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the use of all-pass filters in feedback systems.

6.2 The First-Order All-pass Filter

It is well known that all-pass filters have unity gain at all frequencies. They are,

therefore, frequently used in situations where a frequency-dependent phase shift is desirable,

but where the amplitudes of spectral components should be left unmodified.

A first-order all-pass filter, given by

H1(z) =
c+ z�1

1+ cz�1 , (6.1)

has a pole-zero pair, with the pole located at �c and the zero at �1/c, and the constraint

that |c| < 1 for stability. Because of the stability constraint, the pole lies inside the unit

circle, while the reciprocal zero lies outside the unit circle. If the coefficient c is real-valued,

both pole and zero will lie on the real axis, with |c| controlling the spacing of the pole-zero

pair from the unit circle—a magnitude of c close to 1 positions the pole and its reciprocal

zero closer to (as well as more equidistant from) the unit circle (see Fig. 6.1 for example of

c = 0.9 and c =�0.6).

The magnitude of (6.1), is given by:

|H1(w)|=
����

c+ e� jwT

1+ ce� jwT

����= 1, (6.2)

where fs is the sampling rate and T = 1/ fs is the sampling period. A sampling rate of

fs = 44100 Hz is used throughout this chapter. It is shown in [97] that the phase of (6.1) is

given by

\H1(w) =�w+2tan�1
✓

csin(w)
1+ ccos(w)

◆
. (6.3)
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Figure 6.1: The position of the pole-zero pair for the first-order all-pass filter (6.1). A
coefficient of c = 0.9 yields the pair on the real axis to the left and c =�0.6 yields the pair
to the right.

Since the denominator inside the tan�1
(·) is always positive (for |c|< 1), and the numerator

can change sign, the contribution due to the tan�1
(·) term has a possible range of ±p/2

rad (and ±p rad for 2 tan�1
(·)), and thus contributes an oscillation around the linear-phase

term [98]. The result, as shown in Figure 6.2, is a phase response that is monotonically

decreasing, with an overall decrease of 2p rad as w increases by 2p rad / sample.

Rearranging (6.3) yields the following expression for the coefficient c:

c =�
tan
✓\H1 +w

2

◆

tan
✓\H1 +w

2

◆
cos(w)� sin(w)

, (6.4)



87

which, for \H1 =�p/2, reduces to

c =
tan(w/2)�1
tan(w/2)+1

. (6.5)

That is, the behavior of the phase response can be controlled to some extent using (6.5), by

Figure 6.2: The phase response (curved line), monotonically decreasing by 2p with an
increase in w of 2p, is shown with the linear-phase term - w from (6.3).
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specifying the angular frequency

w = 2p
fp/2

fs
rad/sample, (6.6)

where fp/2 is the frequency in Hz at which 90� (p/2) phase shift is reached.

A general higher-order all-pass filter can be made by cascading several first-order

all-pass sections

Hk(z) =
K

’
k=0

z�1�a⇤k
1�akz�1 , (6.7)

where if the all-pass filter has real coefficients, for each complex root ak, there must

be a corresponding complex conjugate root a⇤k , making the phase anti-symmetric about

w = 0 [98]. The phase response for the overall filter is the sum of the phases for each section,

and is given by

\Hk(w) =�Kw�2
K

Â
k=1

tan�1
✓

Rk sin(w�qk)

1�Rk cos(w�qk)

◆
, (6.8)

for ak = Rke jqk . In the following, a special second-order case is considered.

6.3 The Second-Order All-pass Filter and its Cascade

Though there is some control over the phase response of the first-order filter by using

(6.5) to specify the frequency fp/2 at which the phase response is �90�, it is possible to

obtain greater control using a special case of the second-order all-pass filter, for which there

is an additional “bandwidth” parameter [99].

The transfer function of a second-order all-pass filter may be expressed using (6.7)

for k = 2, but a more convenient formulation is given in [99]:

H2(z) =
�c+d(1� c)z�1

+ z�2

1+d(1� c)z�1� cz�2 , (6.9)
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which allows for specification of coefficients

d =�cos
✓

2p fp
fs

◆
(6.10)

and

c =
tan(p fb/ fs)�1
tan(p fb/ fs)+1

(6.11)

according to the frequency fp (in Hz) at which the phase response is �180� (or �p), and a

bandwidth of the phase transition region fb.

Figure 6.3 shows the effects of fp and fb on the phase response. Adjusting fp and fb

allows for both placement of the frequency point at which a 180� phase shift is reached, and

control over the slope of the phase transition region.

The effect of the fp parameter can also be seen in Figure 6.4 which shows how it

affects the angle of the two pole-zero pairs on the unit circle. The bandwidth fb controls the

distance of the pole and zero to the unit circle.

6.4 Phase Distortion with the Second-Order All-pass

Through careful tuning of a cascade of these second-order all-pass filters, given

in (6.9), it is possible to apply a time-varying phase distortion effect to a specific band of

the spectrum. This section will describe how the effect is obtained, the effects of various

relevant parameters on the output, and provide a basic example.

6.4.1 A time-varying all-pass filter

In order to make (6.9) time varying, it is necessary to redefine coefficients d and c

as functions of time. In this work, rather than modulating the coefficients directly, it is the
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Figure 6.3: Effects of fp and fb on the phase response of the second-order all-pass. In
the left column, fp changes while fb remains constant. In the right, fb changes while fp
remains constant.

parameter fp that is made time varying:

f̃p(n) = fp +M cos
✓

2p fmn
fs

◆
, (6.12)

where ·̃ indicates a function made time varying, fp is as previously defined, M is the depth

of modulation, fm is the modulation frequency, and n is the discrete time index. Here, f̃p is

modulated sinusoidally (though this is not a requirement), and can be seen as an FM signal

with fp being the carrier frequency (which it will be subsequently called when referred to in

the time-varying case).
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The coefficient d from (6.10) is then replaced with

d̃(n) =�cos
✓

2p f̃p(n)
fs

◆
, (6.13)

yielding the time-varying filter’s difference equation

y(n) = �cx(n)+ d̃(n)(1� c)x(n�1)+ x(n�2)

�d̃(n)(1� c)y(n�1)+ cy(n�2). (6.14)
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Figure 6.4: The position of the poles and zeros for the second-order all-pass filter described
by (6.9). Holding the parameter fp constant for each row, and fb constant for each column,
we can see how the former adjusts the angle of the two pole-zero pairs, while the latter
controls their distance to the unit circle.
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Figure 6.5: Effect of modulation depth and transition region on phase distortion. Vertical
shaded region indicates range of f̃p(n), i.e. fp�M  f̃p(n) fp +M.

Expressing (6.9) as the difference equation in (6.14) follows the example given in [93], in

which the output of a time-varying filter y(n) is seen as a combination of delayed versions of

input x(n) which are ring modulated with sinusoidally-varying coefficients. Here, in contrast,

coefficient parameters are sinusoidally modulated, yielding time-varying coefficients that

are FM signals (see 6.13). Following (6.8) for the phase of the general all-pass, it can be

easily be shown that the time-varying second-order all-pass has a family of phase responses

which depends on frequency w and time n, and is given by

qA(w,n) =�2w+

2tan�1


d̃(n)(1� c)sin(w)� csin(2w)
1+ d̃(n)(1� c)cos(w)� ccos(2w)

�

(6.15)

To gain some intuition for the effect of this new time-varying parameter f̃p(n),

consider the effect of the parameters fp, fb, and M on this family of phase responses. Figure
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6.5 illustrates an example of the phase response for fp = fs/4 Hz, fb = fs/40 Hz, and

M = fs/10. Recalling (6.12), we can imagine the transition region centered on f̃p(n) being

shifted up and down in frequency - left and right in Figure 6.5 - at a rate corresponding to

fm. The upper and lower limits of this shift are provided by M, and indicated by the shaded

box in Figure 6.5. Spectral components in the shaded region will experience significant

time-varying phase shift as fp is modulated, while components outside of that region

will experience relatively less. Components below the transition region will be delayed

by a small and relatively stable amount, while those above the transition region will be

delayed by a larger, but still relatively stable amount. By placing fp at some frequency of

interest, and tuning fb and M to generate the appropriate transition region, we can apply

phase distortion to components which fall into the transition region, while leaving others

(relatively) unmodified.

Given a desired frequency deviation | f̃p(n)|� fp, there is a dependency between M

and fm. This can be explained by the interaction between the modulation frequency fm and

modulation index M in determining the instantaneous frequency of an FM signal. Assuming

a constant modulation index M, the instantaneous frequency1 of f̃p is given by:

f̃p(n) = fp�M fm sin(2p fmn+fm) (6.16)

By substituting a cosine modulation function (which allows us to disregard time, since the

cosine will begin at maximum deviation), and rearranging (6.16) to solve for M, we obtain:

M =

| f̃p|� fp
fm

(6.17)

where | f̃p| is the desired peak frequency deviation, and fp and fm are the carrier frequency
1
http://musicweb.ucsd.edu/

˜

trsmyth/modulation/Modulation_Index_cont.html

http://musicweb.ucsd.edu/~trsmyth/modulation/Modulation_Index_cont.html
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and modulation frequency as defined above. Equation (6.12) then becomes:

f̃p(n) = fp�M fm cos
✓

2p fmn
fs

◆
(6.18)

As shown in (6.8), a cascade of identical all-pass filters will produce an overall

phase response that is the sum of the phases of each section. In addition, the composite

filter will have a phase response with a similar curve to that of a single section, with the

only difference being a greater range between minimum and maximum delay (the range

increasing by a factor of K, the cascade length). This is an important consideration, as the

cascade length corresponds to the maximum possible amount of phase distortion. It is often

necessary to adjust the cascade length to obtain the desired amount of distortion. In the

following discussion, K is the cascade length in terms of second-order filters.

The bandwidth of a modulated cascade is similar to that of FM synthesis, but with a

different dependency on the modulation index M. Whereas for classical FM synthesis, the

bandwidth can be approximated by

BWf m = 2(M+1) fm, (6.19)

the maximum bandwidth of a modulated second-order all-pass is more closely approximated

by:

BWap = 2(M+2) fm (6.20)

Thus, given an input signal with a single component with frequency f0, the resulting

spectrum will consist of

f0 ± k fm, where k = {0,1, . . . ,M+2}. (6.21)

The cascade length K has a small effect on the overall bandwidth, by introducing additional,
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smaller amplitude sidebands. It has been shown that cascades of all-pass filters can become

unstable due to numerical error when larger values of K are used [100], so K generally

should not be used as a bandwidth parameter. This and other sources of instability are

addressed in Chapter 7. Both fb and K affect the relative amplitudes of f0 and the generated

side-bands. In the case of a single second-order all-pass filter, as fb decreases, the amplitudes

of the side-bands increase while that of f0 decreases. As K increases, the amplitudes are

affected in a more complex manner, due to the recursive processing at each stage in the

all-pass cascade. If each all-pass stage is modulated at the same rate, the output of each

stage will contain side-bands at the same frequencies. The generated side-bands sum to

produce more complex spectra, with slightly larger bandwidths, as further side-bands are

generated around components introduced by earlier all-pass stages. It is important to note

that the above measures only apply when input components fall into the transition region

controlled by fb. Input components which fall to either side of this region will be affected to

a lesser extent or hardly at all, as described above.

In summary, the parameters of the modulated second-order filter cascade are as

follows:

• fp: modulated filter “carrier” frequency - controls placement of frequency band

affected by modulation.

• fb: filter “bandwidth” - affects width of frequency band affected by modulation, and

amplitudes of side-bands.

• fm: modulation frequency - controls spacing of side-bands at audio rate / speed of

vibrato at sub-audio rates.

• M: modulation depth - controls maximum bandwidth of spectrum at audio rate / depth

of vibrato at sub-audio rates.
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• K: filter cascade length - affects amount of phase distortion applied to frequencies in

phase transition region, also affects overall bandwidth. Large K can lead to instability.
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Figure 6.6: Modulating individual components of a clarinet tone. From top to bottom:
spectrograms of the original signal and processed versions in which frequency modulation
was applied to the fundamental, first, and second harmonics, respectively. In all cases,
f̃p(n) = fp�M fm cos(2p fmn/ fs), K = 10.
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6.4.2 Simple Application to a Clarinet Sample

To demonstrate the frequency-selective nature of this effect, consider a clarinet

tone, which contains primarily odd harmonics. Figure 6.6 shows the effect of a modulated

all-pass cascade on the spectrum. The all-pass cascade has been tuned to affect only specific

harmonics of the clarinet sound. The carrier frequency fp is set to the frequency of the ith

harmonic and the bandwidth fb is set to 200 Hz. This creates a narrow transition region with

a steep slope centered around the frequency of the harmonic. The carrier fp is modulated by

a 25 Hz sinusoid.

6.5 Applications

As a basic signal processing effect, it is possible to use this technique to animate the

spectra of steady-state tones (as in the clarinet example of above). As shown previously

in Figure 6.6, specific spectral components can be modulated independently. This effect

could be useful to add interest to otherwise static timbres, perhaps as a post-processing stage

applied to common “analog” waveforms. Here we discuss other musical applications.

6.5.1 Modulation at Sub-Audio Rates

As described above, through careful tuning of the filter parameters, it is possible to

apply a frequency modulation effect to specific frequency ranges independently of others.

With sub-audio coefficient modulation rates, this produces a selective vibrato effect. Various

partials can be modulated independently of the rest, as illustrated in Figure 6.7. A recording

of a clarinet improvisation was processed with a cascade of second-order all-pass filters,

adding a fm = 2 Hz vibrato to a selected portion of the spectrum. The filter carrier frequency

fp was set to 3674 Hz (the visual midpoint of the spectrum), and a wide filter bandwidth

fb = 800 was used in order to affect a range of frequencies. The modulation depth M was
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set to 300, producing a 600 Hz swing for f̃p(n) (6.17), and it was necessary to use a filter

cascade of length K = 15 in order to obtain the amount of phase distortion necessary to

produce dramatic changes in frequency. Referring back to Figures 6.3 and 6.5, we see how

fb affects the slope of the phase transition region. As fb is increased, producing a more

shallow slope, the amount of phase distortion applied to any particular frequency component

will decrease. By increasing K, we can compensate for this by increasing the maximum

phase delay of the system - and consequently the phase delay applied to any given input

component.
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Figure 6.7: Clarinet passage with spectral modulation of selected harmonics for fp = 3674
Hz, M = 300, fb = 800 Hz, fm = 2 Hz. Length of all-pass cascade K = 15.

6.5.2 Audio-Rate Phase Distortion

In addition to sub-audio modulation, it is possible to modulate the filter parameters

at audio rates. As described in Section 6.4, this has the effect of building FM-like side-bands
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around component frequencies present in the original signal because of the ring-modulation

and FM terms in (6.14), and therefore can produce very rich spectra. Figure 6.8 provides a

spectrogram of a clarinet performance through a single cascade of identical second-order

all-pass filters, which are driven by a fundamental frequency estimator. The carrier frequency

fp is set to the estimated fundamental.

In this case, the upper harmonics of the sound are left relatively unmodified, while the

lower components (those nearest to the estimated fundamental frequency) are significantly

modulated. FM-like side-bands appear around at 100 Hz intervals around the distorted

frequencies. The amplitude envelopes of new components follow those of the originals.

Temporal aspects are also preserved, but a smearing effect is added. There is a possible trade-

off that may need to be considered as greater cascade lengths produce a more pronounced

“smearing” effect.
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Figure 6.8: Clarinet passage with f̃p(n) driven by fundamental frequency estimator. Here,
fm = 100 Hz, M = 1, fb = 500 Hz, and fp is the estimated fundamental. Cascade length is
K = 5.
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Figure 6.9: Example of audio-rate modulation of f̃p(n) on clarinet tone. Parameters used
are the same as those in Figure 6.8.

Figure 6.9 provides another view of this effect on a portion of the clarinet passage

used above. The excerpt used is approximately the first sonority of Figure 6.8 (approximately

the first 4 seconds). Here, we see spectra of both the distorted and un-distorted clarinet tone.

The estimated fundamental frequency and a few of the surrounding components exhibit

significant side-bands, while the remainder of the spectrum is left relatively unmodified. The

effect of the interaction between M and fb is to control the range of affected components

(see Figure 6.5). The spectrum of the modulated tone is dense, and contains sub-harmonics

not present in the original signal. The overall spectral envelope follows that of the original

tone.
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6.6 Conclusion

Cascaded and coefficient-modulated second-order all-pass filters have useful appli-

cations in de-tuning and phase distortion applications. The second-order all-pass provides

a greater amount of control over the transition region of the phase response than does the

first. This property can be used to apply phase distortion to only specific frequency ranges.

The parametric second-order all-pass filter was presented, along with a means of making

the parameters - and therefore the coefficients - time-varying. This allows for the use of the

filter as a frequency-selective phase distortion effect, and a simple example of this effect

applied to a clarinet tone was provided. Some more realistic example applications were also

provided. The first example demonstrated a low-frequency de-tuning effect applied to the

upper harmonics of a recorded clarinet passage, and the second applied a high-frequency

phase distortion to the same passage. Unfortunately, these filters are susceptible to instabili-

ties when made time-varying. This problem is addressed, and a solution is presented in the

form of a unitary rotation matrix, in Chapter 7.

These filters have also been studied as components in self-oscillating feedback

systems, where they provide a method of avoiding static timbres without introducing

unwanted gain or attenuation into the system. By introducing a time-varying, frequency-

dependent phase shift, the system function changes over time, thus producing dynamic and

evolving sonic behavior. This is described in more detail in the following chapter.

This technique could also be extended to modulation of the filter bandwidth parame-

ter fb, the use of non-sinusoidal parameter modulation functions, and the use of second-order

all-pass cascades as a synthesis technique - whether driven by a sinusoid or some other

signal. Finally, multiple cascades with different time-varying parameters could be used in

series, applying differing amounts of phase distortion to various spectral bands. Chapter 8

describes a system which uses some of these techniques.



102

6.7 Acknowledgements

The material presented in this chapter was originally published in:

Surges, G. and Smyth, T. “Spectral Modulation Using Second-Order All-pass Filters.”

Proceedings, 10th Sound and Music Computing Conference. Stockholm, Sweden. 2013.

The dissertation author was the primary investigator and author of this paper.



Chapter 7

Generative Feedback Networks Using

Time-Varying All-pass Filters

7.1 Introduction

Chapter 6 described some problems that can arise when traditional, time- invariant

filter structures are made time-varying. Filters which are stable when their coefficients are

time-invariant can quickly experience rapid growth in output power when those coefficients

are allowed to vary. This is shown analytically, and a method is given for predicting stability

of a filter with a known set of parameters. Next, a power-preserving second-order all-

pass filter is given and parameterized. This filter is then related to previous parametric

second-order all-pass structures, focusing on its behavior when made time-varying.

These power-preserving all-pass filters are being studied for their use in feedback

networks and generative audio systems. As described in Chapter 2, such systems are capable

of producing dynamic and surprising audio output, with little or no human input and function

entirely at the signal rate. The same process which governs high-level musical details should

also generate the signal in which those details are embodied. This paper will explore the use

of all-pass filters in such systems. In the discussion below, time-invariant and time-varying

103
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all-pass filters are used in feedback loops, and their parameters are modulated in a variety

of ways. These systems are shown to have the potential to produce dynamic, generative

behavior.

7.2 Synthesis Applications of All-pass Filters

7.2.1 The First- and Second-order All-pass Filters

All-pass filters are well known for applying a frequency-dependent delay to an input

signal, while leaving its magnitude spectrum unmodified. The first and second-order all-pass

filters were introduced in Chapter 6 and will be briefly covered here. The first-order all-pass

filter has a difference equation given by

y(n) = ax(n)+ x(n�1)�ay(n�1), (7.1)

where |a| < 1 for stability and for the filter to impart unity gain at all frequencies (the

characteristic after which the filter is named). The phase behavior can be controlled to

some extent by specifying a frequency fp/2 (in Hz) at which p/2 phase shift is reached (the

frequency at which the angle of the filter’s frequency response is �p/2) and setting the

all-pass filter coefficient to

a =

tan(p fp/2/ fs)�1
tan(p fp/2/ fs)+1

, (7.2)

where fs is the sampling rate used.

Though (7.2) offers some ability to specify phase behavior, additional control is
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afforded in the case of the second-order all-pass filter,

y(n) = �cx(n)+d(1� c)x(n�1)+ x(n�2)�

d(1� c)y(n�1)+ cy(n�2), (7.3)

where c and d are set according to the desired “bandwidth” fb of the phase transition region

and the frequency fp at which the phase response is �p:

d =�cos
✓

2p fp
fs

◆
and c =

tan(p fb/ fs)�1
tan(p fb/ fs)+1

. (7.4)

Adjusting fp and fb allows for both placement of the frequency point at which a phase shift

of p is reached and control over the slope of the phase transition region. Figure 6.3 shows

the effects of fp and fb on the phase response.

7.2.2 Frequency-selective Phase Distortion

In Chapter 6, a technique was described in which a user may apply a vibrato or

phase-distortion effect to particular frequency bands of a complex sound, leaving the rest of

the spectrum relatively unmodified. The technique involved sinusoidally modulating the

parameter fp,

f̃p(n) = fp +M cos
✓

2p fmn
fs

◆
, (7.5)

where ·̃ indicates a function made time varying, M is the depth of modulation, and fm is the

modulation frequency. The result is a second-order all-pass similar to (7.3), but made time

varying,

y(n) = �cx(n)+ d̃(n)(1� c)x(n�1)+ x(n�1)�

d̃(n)(1� c)y(n�1)+ cy(n�2), (7.6)
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where

d̃(n) =�cos
✓

2p f̃p(n)
fs

◆
. (7.7)

By applying carefully designed modulation to the center frequency fp, it is possible

to apply a frequency-selective phase distortion effect. Due to the non-linearity of the phase

response, certain frequency bands (those nearest to fp) are modulated while others are left

unmodified.

The results introduced in [97] and described in Chapter 6 showed very promising

musical potential, but use of a “time-invariant” filter caused expected instabilities. The work

presented here addresses these issues so that the original synthesis technique may be used

more reliably and its musical potential further explored.

7.3 Stability Analysis of Time-Varying All-pass Filters

7.3.1 Instability of the Time-Invariant All-pass Filter

It is well-known that systems with constant parameters can become unstable when

those parameters are made time varying. In [101], it is shown that if the first-order all-pass

filter (7.1) is made time-varying,

y(n) = a(n)x(n)+ x(n�1)�a(n)y(n�1), (7.8)

the filter coefficient condition |a(n)| e < 1 is not sufficient to ensure energy preservation.

It is demonstrated that when x(n) is an impulse and filter coefficients a(n) = e(�1)n, the
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output energy is

||y(·)||2 = a(0)2
+(1�a(0)a(1))2

 
1+

•

Â
n=2

n

’
i=2

a(i)2

!

= e2
+(1+ e2

)

2
•

Â
n=0

e2n

=

1+3e2

1� e2 ,

(7.9)

which is greater than the input for any choice of e < 1 [101]. A solution is suggested in

terms of a wave digital one-port and a corresponding orthogonal matrix formulation that

ensures energy preservation (to be discussed in Section 7.4).

7.3.2 Stability Analysis

Though the above example shows that stability cannot be ensured, it is not the case

that all time-varying coefficients will render (7.6) unstable. Because the coefficients in (7.6)

are modulated sinusoidally, a technique for determining stability of a periodic time-varying

system may be used by representing the system as a state space matrix [24]. It is necessary

to represent only the recursive part of (7.6) as a system of equations which, in matrix form,

becomes 2

64
y1(n)

y2(n)

3

75=

2

64
�d(n)(1� c) c

1 0

3

75 ·

2

64
y1(n�1)

y2(n�1)

3

75 , (7.10)

or

y(n) = A(n)y(n�1), (7.11)

where y(n) and y(n�1) are state vectors of the system at time sample n and n�1, respec-

tively, and A(n) is the time-varying coefficient matrix. The filter state vector at time sample
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k may be determined by

y(k) = A(k)y(k�1)

= A(k)A(k�1)y(k�2)

= ...

=

1

’
n=k

A(n)y(0), (7.12)

for known initial conditions y(0). Though stability can be calculated by assessing the

behavior of the state vector’s norm,

||y(k)||2 = y2
1(k)+ y2

2(k)+ . . .+ y2
n(k), (7.13)

a simplified method can be used if filter coefficients change periodically. For a periodically

linear time-variant system, the system monodromy matrix,

C(N,0) =

2

64
C11 C12

C21 C22

3

75=

1

’
i=N

A(n). (7.14)

connects arbitrary states of the system separated by N, the period of variation, in samples,

of d(n). The system is stable if all eigenvalues |l1,l2, . . . ,ln| of C(N,0) are less than or

equal to 1, giving the following limits which ensure stability:

1�C11�C22 +det(C(N,0))� 0

1+C11 +C22 +det(C(N,0))� 0

|det(C(N,0))| 1, (7.15)



109

where

det[C(N,0)] =
1

’
i=N

c = cN . (7.16)

By evaluating the conditions in (7.15), it is possible to determine whether a given set of

filter parameters fm, fp,M, fb, will produce a stable, periodic time-varying filter. Figure 7.1

shows the complexity of the interactions between the four parameters. The interdependence

of these parameters makes it difficult to intuitively understand which combinations will

produce instability, rendering this version of the filter very dangerous for real-time use

where a variety of settings may be used.

7.4 A Power-Preserving All-pass Filter

Though it is possible to analyze stability and determine which combinations of

parameters fp, fb, M, and fm will produce a system in which power is preserved, there is an

alternate power-preserving form of the first- and second-order all-pass filters. Fortunately,

for the application considered here, the power-preserving all-pass filter exhibits comparable

phase response characteristics, and can be parameterized in nearly the same way as the

time-invariant case.

Ensuring the output power of a filter is equal to the input power,

N�1

Â
n=0

x2
(n) =

N�1

Â
n=0

y2
(n), (7.17)

can be accomplished by using a power-preserving rotation matrix such as

2

64
cos(r) �sin(r)

sin(r) cos(r)

3

75 . (7.18)

If multiple input signals to a system x1(n), . . . ,xK(n) are considered coordinates in K-space,
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Figure 7.1: Influence on stability of the interaction between pairs of parameters. Each
subplot allows two parameters to vary, while the others are fixed. White indicates a stable
combination.

then a rotation is an operation that, by definition, will preserve the length, or correspondingly,

the magnitude of the input [102]. This solution is very similar to that presented in [101],

in which an orthogonal scattering matrix formulation of a wave digital one-port is used to

ensure power preservation, however the use here of sinusoids as matrix elements instead of

square root functions is preferred because it enables generation of both positive and negative
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values.

The second-order all-pass filter is obtained using a pair of power-preserving rotation

matrices, yielding

2

66664

y(n)

z1(n)

z2(n)

3

77775
=

2

66664

x(n)

z1(n�1)

z2(n�1)

3

77775
AB, (7.19)

where

A =

2

66664

cos(r1) �sin(r1) 0

sin(r1) cos(r1) 0

0 0 1

3

77775
(7.20)

and

B =

2

66664

1 0 0

0 cos(r2) �sin(r2)

0 sin(r2) cos(r2)

3

77775
. (7.21)

With some algebraic manipulation, the equivalent difference equation can be obtained

y(n) = b0x(n)�b1x(n�1)+ x(n�2)+

b1y(n�1)�b0y(n�2), (7.22)

where

b0 = cos(r1) (7.23)

b1 = cos(r2)(1+ cos(r2)). (7.24)

If (7.22) is made equal to the time-invariant all-pass in (7.3), coefficients r1 and r2 can be
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expressed in terms of c and d,

r1 = arccos(�c) (7.25)

r2 = arccos(�d). (7.26)

and thus in terms of the corresponding desired control parameters fp and fb as given by

(7.4).

7.4.1 Differences in Output

Figures 7.2-7.5 show the difference in output between the original time-invariant

version of the filter and the new power-preserving one. Figure 7.2 shows the effect of an

instantaneous change in fp on both filters. The time-invariant form experiences a large jump

in amplitude at the time where fp changes, while the power-preserving form experiences

a jump in phase. Figure 7.3 shows the difference in output between the two filters when

they are made time-varying with the same sinusoidal modulation parameters. For the most

part, the output is similar, but the time-invariant form experiences larger spikes in amplitude.

These spikes are much smaller in the power-preserving output. As implied by the waveforms

in Figure 7.3, the output of the two filters is very similar in terms of harmonic content. In

fact, as evidenced by the analysis in Figure 7.4, the outputs of the two filters share the same

harmonics, only differing slightly in their amplitudes. Figure 7.5 shows the output of both

filter types with parameters chosen so that the time-invariant form will become unstable. The

power-preserving matrix form maintains stability, while the time-invariant form produces

output which grows rapidly.
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Figure 7.2: Effects of instantaneous change in fp for time-invariant and power-preserving
filter types.

7.5 All-pass Filters in Feedback Networks

As discussed in the introduction, the aim of this project is to investigate the use of all-

pass filters in generative audio systems. It is thus useful to look at the behavior and potential

sound production of various configurations of all-pass filters in unity gain feedback networks.

First, the time-invariant transfer function is examined, followed by a qualitative study of the

spectra generated by the corresponding time-varying system. Finally, an application will be

given, in which time-varying all-pass filter is used to create a generative oscillator.
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Figure 7.3: Output of time-invariant and power-preserving filter types for identical modu-
lation parameters. Parameters were chosen so that both filters would remain stable.

7.5.1 Transfer Function Analysis of Time-invariant Feedback Systems

In the examples in this section, if the systems are excited with an impulse, they

behave as oscillators and may be left to oscillate indefinitely. The aim of this section is to

gain insight into the character of the generative oscillator, as well as how they respond to

control parameters fp and fb.

The output of a feedback system, like the one shown in Figure 7.6, comprised of a

cascade of N second-order all-pass filters given by (7.29) and a feedback delay of T , may be

expressed

Y (z) =
�
X(z)+Y (z)z�T�H1(z)N , (7.27)
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Figure 7.4: Magnitude spectrum of output of time-invariant and power-preserving filter
types for identical modulation parameters. Parameters were chosen so that time-invariant
filter would become unstable.

yielding a system transfer function of

H2(z,N) =

Y (z)
X(z)

=

HN
1 (z)

1�HN
1 (z)z�T . (7.28)

where

H1(z) =
b0�b1z�1

+ z�2

1�b1z�1
+b0z�2 , (7.29)

is the transfer function of the power-preserving second-order all-pass filter whose difference

equation is given in (7.3).

It is clear that since H2(z,N) is not an all-pass filter, the overall effects of control

parameters fp and fb are no longer what they were for H1(z) and warrant further exploration

of their behavior in their new context.

When N = 1 and T = 1, the system transfer function reduces to

H2(z,1) =
b0�b1z�1

+ z�2

1� (2b0 +b1)z�1
+(2b0 +b1)z�2� z�3 . (7.30)

Representing H2 in this way has the advantage of allowing observation of its poles and zeros
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Figure 7.5: Output of time-invariant and power-preserving filter types for identical mod-
ulation parameters. Parameters were chosen so that time-invariant filter would become
unstable.

(shown in Figure 7.7 for fp constant at 11025 Hz and various values of fb between 500

and 4000 Hz). As might be expected of a unitary feedback system, all three poles - two

complex and one real (at DC) - are directly on the unit circle. A decrease in fb corresponds

to a movement of the two zeros downward toward the unit circle, and the two complex poles

along the unit circle toward a point of pole-zero convergence.

The behavior of the poles and zeros has the effect, shown in Figure 7.8, of a resonant

peak in the amplitude response being shifted somewhat downward in frequency, with a

notable decrease in bandwidth. Accordingly, as shown in Figure 7.9, keeping fb constant

while increasing fp results in a magnitude response characterized by a peak that loosely

follows fp, but with a bandwidth that decreases slightly with an increase in frequency. It
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H1(z)
N

z�t

X(z) Y (z)

Figure 7.6: Block diagram of all-pass filter cascade in feedback configuration.

Figure 7.7: Example pole-zero plots as fb is varied while fp is kept fixed, demonstrating
effect of fb on zero location.

is clear, therefore, that both parameters affect the position and width of the peak, with the

bandwidth being more significantly influenced by fb, and the position (frequency) more

significantly influenced by fp.

Finally, cascading multiple all-pass filters (increasing N) has the effect of increasing

the order of H2, resulting in the introduction of an additional peak. Thus, as shown in

Figure 7.10, a cascade of N filters within H2 results in an amplitude response with N peaks

(excluding DC).

7.5.2 Spectra of Time-varying Feedback Systems

The following discussion considers the effect of various modulation parameters on

the spectra of the output of a time-varying feedback system. The parameters are made

time-varying as shown in Section 7.2.2.
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Figure 7.8: Example magnitude responses as fb is varied while fp is kept fixed, demon-
strating decreasing peak location.

The effect of each of the parameters fp, fb, fm, and M on the output spectra is

relatively clear, and in most cases is related to the effect on the non-feedback systems

described in [97]:

• fm - Controls spacing of side-bands. Side-bands are spaced at integer multiples of

a central frequency (which depends on fp and fb as discussed above). Figure 7.11

shows this effect.

• fp - Affects center frequency of side-bands. As fp increases, the center frequency

increases, though not in a 1 : 1 relationship. Figure 7.12 shows this effect.

• fb - Affects center frequency of side-bands. As fb decreases, the center frequency

decreases, becoming closer to fp. Additionally, the bandwidth of the output is

increased slightly with increasing fb. Figure 7.13 shows this effect.

• M - Affects bandwidth of output. As M increases, bandwidth increases. Figure 7.13

shows this effect. Side-bands can alias around DC or the Nyquist frequency back into

the spectrum.
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Figure 7.9: Example magnitude responses as fp is varied while fb is kept fixed, demon-
strating increase in peak location.

Finally, as an important note, consider the side-bands present just above DC in

Figures 7.11 - 7.14. These are components built around the DC term, introduced by the real

pole of the feedback system.

7.5.3 A Self-Modulating All-pass Feedback Network

The final network investigated here is one in which the sinusoidal modulation of

(7.5) is replaced with a modulation signal derived from a point in the network itself. In this

configuration, similar to one posed in [103], the delayed output of the all-pass filter is used

to modulate the fp parameter. A block diagram of this system is shown below in Figure 7.15.

In order to use such a configuration, the delayed output sample y(n� 1) must be

scaled and biased in order to occupy the same range as the parameter to be modulated. For

example, if we desire to modulate fp with y(n�1), then (7.5) is replaced with

f̃p(n) = b+ sy(n�1), (7.31)
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Figure 7.10: Example magnitude responses as N is varied while fp and fb are kept fixed,
demonstrating centering around fp and increasing flatness.

where s and b are user-defined scaling and bias factors, respectively.

In general, s and b should scale and offset y(n� 1) so that it falls into the range

expected for f̃p(n). However, this is not strictly necessary for stability, as the cosine term in

(7.7) will wrap any values into the range �1 <= d̃(n)<= 1. Thus, interesting results may

be obtained by using other values for s and b.

7.5.3.1 Qualities of Musical Feedback Systems

A configuration like the one proposed in this section is very sensitive to particular

combinations of s and b. It can therefore be difficult to assign meaningful parameters to

such a system. Sanfilippo et al. give some terminology which is useful when describing the

behavior of musical feedback systems like this one [21]. First, the system is iterative - it

is self-sustaining and produces variations on initial conditions. Second, there is coupling

between components of the system. All components of the system are of equal importance,

and this equality can lead to a specific set of characteristic behaviors. Finally, the system is

also capable of self-organization, in that the output tends to oscillate between two or more
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Figure 7.11: Output spectra of all-pass feedback network with time-varying parameters.
The parameter fm changes, while the others are fixed.

distinct types of behaviors. Due to the circularity of the time-varying feedback system,

in which “effects are also causes,” there is also an interaction between different musical

attributes - loudness, pitch, and timbre are interrelated.

This inter-relatedness is easy to see when considering the feedback system described

here: as the magnitude of the system’s output at y(n) increases, this causes a greater range

of values for f̃p(n) - equivalent to increasing M in the case of sinusoidal modulation - and

therefore a greater output bandwidth. Higher frequencies at the output - related to both pitch

and timbre - cause a faster rate of change in y(n�1). This is equivalent to increasing fm

and causes wider harmonic spacing around spectral components.

Practically, these systems often produce very high-amplitude output, which often

has a DC offset, due to the unit-radius pole at DC. Therefore, it is often necessarily to scale

and apply a high-pass or DC-blocking filter to the output.
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Figure 7.12: Output spectra of all-pass feedback network with time-varying parameters.
The parameter fp changes, while the others are fixed.

7.5.3.2 Sample Output

Consider a system where f̃p(n) is defined as

f̃p(n) = 3333+1173y(n�1). (7.32)

An example of the output of this system is shown in Figure 7.16. The characteristic output

of this system consists of rhythmic “chirps” of increasing frequency, alternating with steady

tones and short bursts of noise. The chirps are grouped into perceptible units by their

duration. Most of the steady tones are short, such as those from 0.0” to 1.5”, however

others are longer, like those beginning at about 1.9”. The rhythms are quasi-periodic, never

repeating exactly - the sense is more of a series of iterative variations, rather than repetitions.

Occasional interjections of noisy, over-modulated material occur, further challenging the

sense of periodicity. There is a semi-periodic oscillation between three types of material:

the rapid chirps, the steady tones, and the noise. Depending on the particular values of

s and b, this self-organizing behavior can continue indefinitely or eventually settle into a
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Figure 7.13: Output spectra of all-pass feedback network with time-varying parameters.
The bandwidth parameter fb changes, while the others are fixed. M = 1000, fp = 1000,
fm = 1000.

more repetitive mode. It should be noted that the system is extremely dependent on initial

conditions, and a given set of s and b will not necessarily produce the exact same results

each time they are recalled.

Figure 7.17 shows another view of the characteristic behavior of this system. The

values of fb and b are the same as those used in Figure 7.16, while s has changed slightly

(from 1173 to 1167). The change to s affects the rhythmic behavior of the system, as

evidenced by the much shorter duration of the steady tones, and the increased prominence

of noise. The harmonic structure changes as well, with the presence of more widely-spaced

bands of emphasis (two are visible at approximately 800 and 2000 Hz), instead of the tightly

spaced, clearly defined harmonics in Figure 7.16.

7.6 Conclusion

Time-varying all-pass filters have a variety of applications in signal processing and

generative music. This chapter described issues of stability in time-varying all-pass filters
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Figure 7.14: Output spectra of all-pass feedback network with time-varying parameters.
The parameter M changes, while the others are fixed.

and the application of these filters to generative audio systems. Unfortunately, commonly

used all-pass filter formulations are susceptible to instability when their coefficients are

made time-varying. Two methods of showing this instability were used, though neither is

useful in a real-time situation. Instead, a power-preserving matrix form of the second-order

all-pass was presented. This version of the filter is stable when its coefficients are modulated.

The filter was used to extend a technique for applying frequency-selective phase

distortion to signals, by incorporating a time-varying all-pass filter into a unity gain feedback

network. These networks were studied in terms of their static frequency responses and their

output spectra when the all-pass component was made time-varying.

Finally, an application was given which demonstrated the potential usefulness of the

power-preserving all-pass filter in a generative audio system. A self-modulating feedback

network was designed, in which a system’s parameters were modulated by its own output.

This type of system is capable of interesting, generative behavior, and will be studied further

in larger compositional contexts. Possible expansions include more complex modulation

schemes (for example. modulating s or b with signals from points in the feedback network),
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Figure 7.15: A high-level block diagram of a self-modulating all-pass feedback network.

or building feedback networks using multiple all-pass filters (or cascades) with differing

modulation parameters.
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Figure 7.16: Spectrogram showing self-organizing behavior of self-modulating feedback
system.

Figure 7.17: Spectrogram showing self-organizing behavior of self-modulating feedback
system.



Chapter 8

Evaluation of a Generative Audio

System

8.1 Introduction and Motivation

The discussion will now turn toward practical application and evaluation of the ideas

of generative audio systems and computational aesthetics discussed in previous sections.

This chapter describes a creative application in the form of a system that couples a generative

audio system component with a real-time computational aesthetic analysis component. This

analysis component allows the system to analyze its own output and is used to maintain

a balance between order and complexity or repetition and novelty. The result is a system

called AAS-4. In order to determine the usefulness of such a system, both the generative

audio component and the computational aesthetic analysis component are evaluated in terms

of the complexity of their output.

Chapter 2 introduced the generative audio system, and provided historical examples

of systems that were capable of generating interesting sonic behavior. Most of these

systems required the influence of a performer or composer. From a computational aesthetics

standpoint, the role of this individual is to make the decisions which determine the aesthetic

127
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worth of the music by manipulating the balance between order and complexity. Though

David Tudor’s electronic systems may have produced endlessly-sustaining variations on

particular textures, it is unrealistic to expect that the systems would have known its subjective

qualitative state (i.e. whether it had become too boring or, conversely, too dynamic, exciting

or lively). The systems had no way of compensating for such an imbalance.Likewise, my

Feld system (described previously in Chapter 4) exhibits a related problem: the system is

capable of producing sectional contrast, but it relies on arbitrary timing mechanisms to

produce sectional durations rather than any notion of aesthetics or balance.

Theories of computational aesthetics, along with psychological research on exposure

and processing fluency were presented in Chapter 3. These theories point toward the role

of repetition (order) and novelty (complexity) as significant factors in aesthetic experience.

Many researchers in the field of computational aesthetics have posed and tested theories

demonstrating the importance of a balance between these two factors, and the theories

have been reinforced by psychological studies on the “mere exposure” effect. Research

in the related field of Music Information Dynamics has produced multiple methods of

calculating the information content of a musical signal. Since Music Information Rate (IR),

described in Chapter 3, gives a measure of how repetitive the signal is at each moment, i.e.

it indicates whether the current moment is a repetition of something from earlier, it has

potential application in enabling a generative audio system to analyze its own output, and

maintain some balance between order and complexity. Through this “self-listening” process,

a system could make aesthetically informed judgments about when to make musical changes

without relying on the influence or control of a human performer or composer.

The research aim of the AAS-4 system described in this chapter is two-fold. The first

part is the creative application of the use of self-modulating all-pass feedback networks,

like those described in Chapter 7, in a generative audio system. The second is to make the

system fully autonomous, so that no human input will be required either before or during
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performance. This is achieved by using IR to enable the system to gain knowledge about

its own output. At the time of this writing, this represents a novel use of computational

aesthetic theories and analysis in real-time musical generation.

First, the self-modulating all-pass feedback network used in the AAS-4 system will be

described. The output of this generative audio system is passed through an additional signal-

processing network, which will be described next. The network topology and modulation

signal routing will be discussed, and example output from the system will be given. A

novel adaptive parameter switching technique informed by computational aesthetics will

be described. This technique uses real-time IR calculation to determine when system

parameters should be switched, in order to minimize over-exposure or boredom in a listener.

By determining when sonic material has become too repetitive, the AAS-4 system can change

the parameters of the generative audio system component to inject novelty into the musical

output.

Following these descriptions of system components, both the sound generation

capabilities and the adaptive switching technique will be evaluated. This evaluation will

take the form of a computational analysis of signal complexity. IR will be used alongside a

measure of Kolmogorov complexity to evaluate the utility of the system components.

8.2 The Generative Audio System Component

8.2.1 Network Topology

The generative audio system component of the AAS-4 system consists of a config-

uration of all-pass filters in a feedback network similar to the one described in Chapter 7.

The system is composed of two identical all-pass feedback networks, one of which is shown

in Figure 8.1. Each network consists of four all-pass cascades, with each constructed of

identical second-order all-pass filters. Within each network, the all-pass cascades are divided
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into two pairs. In Figure 8.1, the top two cascades (labeled H1(z) and H2(z)) form one pair,

while the bottom two (labeled H3(z) and H4(z)) form the pair. Each pair has a feedback path

from its output to its input.

+X(z)
H1(z)

N

f⇡(z)

z�1

+

⇥

f⇡(z)

H2(z)
N

Routing and Scaling

+

⇥

f⇡(z) f⇡(z)

+

⇥

+

⇥

+

Y1(z)z�1

H3(z)
N H4(z)

N

fb(z) fb(z)

fb(z)fb(z)
Y2(z)

Figure 8.1: The AAS-4 feedback network topology. H1(z) through H4(z) are time-varying
all-pass filter cascades.

8.2.2 Modulation Signal Generation

The modulation signals for each all-pass cascade, labeled fp(z) and fb(z) in Fig-

ure 8.1, derived from other points in the feedback network. The cascades do not drive each

other directly, but instead are coupled in such a way that the output of each all-pass cascade

can be transformed into a set of modulation signals for the others.

In order to map these output signals to parameters, the output of each all-pass pair

is subjected to routing and scaling. In the figure, the box labeled “Routing and Scaling”

represents this process. Each of the parameters of the all-pass cascades - s (represented
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by the X box in Figure 8.1), b (the + box), and fb(n), along with the modulation source

signal itself m(n) - is derived from this routing and scaling process. For each parameter,

the source signal m(n) is chosen from the set of individual all-pass outputs. This source

modulation signal is then scaled and biased in order to convert it from the range {�1,1} to

a range suitable for the parameter it will modulate. Following scaling and biasing, the signal

is passed through a one-pole low-pass filter with a cutoff frequency parameter fl p in order

reduce high-frequency modulation components. In this manner, the output from any of the

four all-pass cascades can be mapped to any of the modulation signals {b(n), s(n), fb(n),

m(n)} of any of the all-pass filters in the network at the next time step. Reasonable ranges

for the scaling, biasing, and filtering parameters were determined empirically, favoring those

which produced rich results while avoiding static behavior. These bounds were found to be

0 < s 2000, 0 < b 8000, and 0 < fl p  400.1

8.2.3 Output of the Generative Audio System

Figure 8.2 and Figure 8.3 show spectrograms of example output of this configuration.

The top plot in both figures shows the full recording, while the bottom plot shows a shorter

excerpt demonstrating details of the behavior. The parameters were randomly chosen within

the ranges described above. Both excerpts are characterized by the presence of a few

prominent pitches or harmonics, with varying amounts of “jitter” around those frequencies.

The first example, shown in Figure 8.2, features a pair of prominent spectral compo-

nents which rapidly oscillate around a pair of central frequencies. As shown in the bottom
1From an implementation standpoint, care must be taken to ensure that the software routing of these

modulation signals does not introduce unwanted delays, as this can radically alter the behavior of the output
signals. During the implementation, it was found that Max/MSP introduced a delay equal to the signal buffer
size when a feedback loop was suspected. This behavior is not particularly well documented, but is discussed on
the Cycling 74 forums: https://cycling74.com/forums/topic/send-and-receive-not-sync/. PD,
on the other hand, allows for more consistent behavior and explicit control over sub-patch block size, and
so proved to be the better choice for the implementation of this particular structure. Placing the send˜

and receive˜ objects in sub-patches helps enforce the correct behavior, as explained in the PD help patch
G05.execution.order.pd

https://cycling74.com/forums/topic/send-and-receive-not-sync/
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Figure 8.2: An example spectrogram from AAS-4 all-pass filter feedback network. Bottom
plot shows higher time resolution excerpt from top plot.

plot, the audio-rate modulation of all-pass filter parameters causes these signal components

experience rapid frequency modulation between larger jumps in frequency. The temporal

behavior is chaotic and unpredictable, but has a sense of uniformity and exhibits motivic,

self-organizing behavior. There are areas of high activity (from 0 - 3.7 seconds, for example)

as well as areas of low activity (from 11 seconds to just before 13 seconds), giving the

material a sense of pacing and phrase structure.

The second example, shown in Figure 8.3, is less rhythmically active and features

a set of four prominent spectral components. These components experience simultaneous

moments of oscillation around central frequencies, but with differing modulation depths.

Rhythmically, the oscillations are organized into clusters of semi-periodic rhythms of

differing tempi. For example, contrast the rapid oscillation at around 3 seconds with the

slower, more “spiky” ones from 5 - 7 seconds. Finally, at the end of the example (around
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Figure 8.3: Another example spectrogram from AAS-4 all-pass filter feedback network.
Bottom plot shows higher time resolution excerpt of top plot.

15.7 seconds), the system enters another stable state characterized by the presence of a single,

steady tone. Many parameter sets will produce such emergent behavior, where a particular

transient state may continue for a significant amount of time before abruptly switching to

another.

The AAS-4 system derives four output channels from the two feedback networks

described here - each network provides a pair of output channels. Though the two outputs

from each network are similar, they are different enough to function as separate voices.

These output channels are each then sent to a separate signal processing chain for further

rhythmic and timbral modification, which helps to reinforce the sense of independent voices.

Before describing these effect chains, the computational aesthetic analysis component of the

system must be described.
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8.3 The Computational Aesthetic Analysis Component

It has been demonstrated, in Figures 8.2 and 8.3 for example, that the generative

audio system configuration described above is capable of producing dynamic audio output.

Although a given set of parameters will produce audio output that evolves over time, the

range of textures, timbres, and gestures produced is limited. In order to produce a more

varied output, the system needs a means of changing its own parameters. This section

describes a method of determining when to reconfigure the generative audio system with a

parameter change, in order to maintain a balance between order and complexity in its output.

The desired balance is informed by the “mere exposure” effect and the interactions between

repetition, affect, and boredom described in Chapter 3.

Chapters 3 and 5 showed how the Audio Oracle (AO) algorithm can be used to

perform real-time Music Information Rate (IR) analysis of an audio signal. IR fits nicely

with the theories of computational aesthetics described in Chapter 3, as it attempts to quantify

the balance of order and complexity in the signal. Moments where the IR function is high

are those which can be understood as a repetition of previous material, while those where

the IR function is low are those with a high amount of novelty. This section will describe

the use of the AO algorithm and a real-time measurement of IR in the AAS-4 system.

8.3.1 Audio Oracle Analysis

To briefly recapitulate the discussion in Section 3.1.1, the AO algorithm is able

to model an audio signal in terms of its repetition structure. The resulting data structure

resembles Figure 5.2. Each node represents a single audio analysis frame - a feature vector.

The lower arcs (“suffix links”) connect repeating patterns and the upper arcs (“transitions”)

represent alternative continuations of patterns. An AO is built in a sequential fashion, from

input feature vectors extracted from an audio signal. As each new feature vector is received

as input, the AO algorithm recursively checks for similar vectors which have been previously
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received, moving backward in time through the data structure. Feature vectors connected by

suffix links are compared, and if their difference is below a threshold q, they are considered

to be similar. The resulting structures, like the one in Figure 5.2, represent the location of

these repetitions through suffix links. The AO construction process is described in greater

detail in [75].

8.3.2 Compositional Applications of IR Analysis

In the AAS-4 system, the ao object described in Chapter 5 is used to model the

interaction between repetition and boredom in a listener. As the studies summarized in

Chapter 3 show, as a listener experiences repeated exposures to a sound stimulus, their

affective response to the sound becomes more positive [47]. At a certain point (after

approximately 10 exposures), however, boredom begins to have an effect, and the affect

becomes more negative. The IR function is used as a measure of repetition over time, which

- for the purposes of the current discussion - is considered to be related to repeated exposures

to a stimulus. This model is then used by an adaptive timer to determine when the parameters

of the generative audio system should be changed, in order to produce new musical material.

8.3.2.1 An Adaptive Timing Mechanism

Each of the four output channels of the generative audio system is sent to an inde-

pendent AO analysis module. The analysis uses Mel-Frequency Cepstral Coefficients as its

feature. As more and more signal is analyzed, the AO structure and IR function change. It is

therefore necessary to periodically recalculate the IR function. In this case, a 500 ms rate

of recalculation was chosen and each 500 ms long segment of music is considered to be a

single exposure event. The resulting IR analysis is normalized to the range 0 - 1.

At each IR update, the most recent point in the IR function is used as the next

sample in a secondary signal sent to an adaptive timer. This resulting signal is smoothed
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with a low-pass filter, in order to avoid rapid jumps caused by the “blocky” character of

IR functions. After filtering, the signal is compared to a threshold value t, that determines

whether the current moment is similar enough to some past moment to count as a meaningful

repetition. The threshold value can be set to an decimal value in the range 0 - 1. If the

smoothed IR signal crosses the threshold, as a result of repetition detected in the signal,

a boredom counter is incremented. The boredom counter stores the number of sequential

repeated exposures. As the repetitions continue, the counter continues to increment. When

10 repeated exposures have occurred, the adaptive timer determines that the listener is

beginning to become bored, and a change in the generative audio system’s parameters is

triggered. However, if the repetitions stop before this threshold count is reached, the counter

resets, as the adaptive timer assumes that the listener is no longer bored.

It was found that setting the threshold t = 0.3 produced a good compromise in the

system’s sensitivity to novelty. Theoretically, any IR value above 0 should be regarded as a

repetition, but in practice it was found that short repetitions (producing a low, but non-zero

IR value) were functionally equivalent to a new frame. In other words, a repetition consisting

of two signal frames totaling about half of a second will probably not be perceived as such

by a listener. As such, it should not be counted as a repetition by the adaptive timer.

In tracking the number of repeated exposures, the computational aesthetic analysis

models the interaction between exposure and boredom. This is based on the theory, described

in Chapter 3, that exposure and boredom are interrelated, and that boredom begins after

around 10 exposures [47]. The adaptive timer simulates this process. Small numbers of

repetitions are allowed to occur; but after 10 sequential appearances of repeated material,

further repetitions trigger a change in the configuration of the synthesis network. In other

words, when the current audio output has been a repetition of previous material for long

enough, the generative audio system is reorganized in a way that is conducive to generation

of novel material. The boredom trigger is sent, via the OpenSoundControl protocol, to a
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Python script which runs in parallel with the PD synthesis patch.2

This Python script, make params.py, handles the 64 generative audio system pa-

rameters, corresponding to routing, scaling, biasing, and filtering parameters for each of

the four output channels. Multiple sets of parameters are stored simultaneously. These

parameters are randomly assigned at script start-up, and constrained within ranges described

above. Each time a boredom trigger received from the adaptive timer, one of the stored

parameter sets is retrieved. One-third of the time, the parameter set is used as-is; the other

two-thirds of the time, four of the 64 parameter values in that set are replaced. A parameter

set produces related material each time it is recalled, while also varying slowly over time.

The location of this adaptive switching method in the context of the larger system is shown

in Figure 8.4.

Allpass Network DSP 
Effects Output

Feature 
Extractor

AO/IR
Adaptive Timer

Figure 8.4: The signal processing network, showing the location and configuration of
the adaptive, IR-based parameter switching mechanism. Dotted lines indicate control
messages.

8.4 Additional Signal Processing

As mentioned above, the four generative audio system output channels are sent to

separate signal processing chains, for further rhythmic and timbral modification. The effects
2In this case, computational demands are extremely low, so Python is an apt solution.
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chains here are similar to those used in Feld. These modules are automated according to

the boredom trigger derived from the IR function. When a trigger is received, each signal

processing module has a probability of becoming active, otherwise it will be bypassed for

that section. After a trigger is received, the parameters for active modules are ramped to new,

randomly chosen settings. The signal processing modules include an amplitude dependent

gate, designed to dramatically expand the dynamic range of the generative audio system

output; pitch-shifting, for expansion of the registral range of the output; two recirculating

delay lines, one with short times and one with long; ambisonic spatialization, for dynamic

panning and easy expansion to multi-channel output formats; and artificial reverberation

for a sense of depth and to emphasize the percussive aspects of the generative audio system

output.

This modular, switchable design was inspired by the one used in the Feld system

described in Chapter 4 and provides a computationally efficient and flexible method for

applying timbral and temporal modifications to the input signal. The all-pass network used

here provides a richer source of material than does the analog synthesizer of Feld, and the

desire was to showcase this material with slight accentuation, rather than large modifications.

Ultimately, it was decided to use fewer processing modules, so that the sounds from the

generative audio system would remain relatively “pure” and their inherent timbres kept

intact.

8.5 Evaluation

The following section will describe an approach to the objective evaluation of both

the output of the generative audio system used in the the AAS-4 system and the usefulness

of the adaptive, IR-based timing method (called the adaptive timing method here). These

techniques will be evaluated using a measure of signal complexity obtained during IR

calculation, as well as by calculating the total IR of the generated audio signals. In addition,
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the Kolmogorov complexity of the signals will be estimated and used to measure the amount

of order in each. Prior research using both of these approaches was discussed in Chapter 3.

Holopainen argues that generative audio systems (which he refers to as “autonomous

instruments”) are best evaluated using an objective measure of complexity [10]. Since

it is straight-forward for a system to obtain simple or trivial output and behavior, like a

sinusoid, the ability to produce complexity is the hallmark of a sophisticated generative

audio system. Many of the theories about computational aesthetics discussed in Chapter 3

consider complexity to be a primary component of aesthetic experience. As Streich argues

in [104], complexity is related to the amount of effort a listener must expend in order to

understand the music, and therefore can also be related to the ideas about processing fluency

and affect found in Chapter 3.

The adaptive timing method will be evaluated for its ability to maintain a balance

between order and complexity. The method should produce a signal with an amount of

complexity which, as a minimum requirement, falls in-between white noise (maximal

complexity) and silence (minimal complexity). The method should also produce output

which is more complex than other methods of determining when to make parameter changes.

A higher amount of complexity can be interpreted as an indication that the system is limiting

the amount of repetition in favor of more variety in its output.

It must be emphasized that the evaluation here is focused on analysis of objective

characteristics of the system’s output. The aim is not to consider notions of computational

creativity, intent, or machine musicianship. As Ariza writes, in his article on the misapplica-

tion of techniques like the Turing Test to generative music systems and the evaluation of

computational creativity, “generative music systems, as systems within problem-seeking

domains, likewise have no criteria for testing correct answers [105].” Machine-embodied

artistic intent is not necessarily a requirement for musical experience, as the listener can

provide the necessary intent [105]. The goal here is to evaluate those aspects of the system
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that can be objectively evaluated.

8.5.1 Audio Oracle Evaluation of Synthesis Output Complexity

If the generative audio system described in this chapter is to be used to generate

music, then it should produce sounds and structures with a complexity level similar to that

of real music. The AAS-4 system generates order by creating repetitive materials as it recalls

particular collections of parameter settings. By mostly utilizing recurring settings which

produce complex and evolving textures and timbres, the system will automatically create

a level of balance between order and complexity. This section will describe a method of

objectively measuring the complexity of the system’s output using IR calculations. This

complexity will then be compared to that measured from other musical examples.

In [10], a measure called spread of features (SOF) was used to quantify the com-

plexity of an audio signal. The SOF consists of the average spread over a set of features

extracted from the signal. The features used were zero-crossing rate (ZCR), voicing, spectral

entropy, inverse crest factor, spectral flux, and spectral centroid. This measure was applied

to several audio signals, including a sinusoid, pink noise, a chirp signal, speech, Xenakis’

S.709, and Reich’s Pendulum Music. It was found that the sinusoidal signal and pink noise

had the lowest complexity, while music and speech had the highest.

Rather than the SOF, a measure of complexity related to IR calculation will be

used here. Equation 3.5, in Chapter 3, showed how IR is calculated from the difference

between two measures of complexity: the unconditional complexity (or entropy) C(x) and

the conditional complexity C(xn|xpast). The unconditional complexity measures the total

complexity of a signal, and the order in that signal can be measured from the difference

between the unconditional and conditional complexities [45]. Another way to understand

the unconditional complexity is that it describes the size of the “encoding alphabet” used

to compress a signal, and is measured in bits. Each unique frame of audio in the signal
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increases the size of this alphabet, corresponding to an increase in overall signal complexity.

Therefore, we can use C(x), the unconditional complexity, as a convenient measure of the

total complexity of a signal. Since the complexity increases with the length of the signal, as

described in Algorithm 1, the final value in the array H0, obtained during the IR calculation,

can be used that as a measure of the total signal complexity.

Tables 8.1 and 8.2 show the results of applying this form of complexity analysis

to a variety of signals. All results were calculated by building an AO structure from a 20

second long clip of 44.1k audio, using feature vectors extracted from blocks of 2048 samples

with a 50% overlap. The features used were spectral centroid, MFCC, and zero-crossing

rate, calculated using the Bregman Audio-Visual Information Toolbox.3 The signals used

were silence, white noise, a 440 Hz sinusoid, a sinusoidal chirp, an excerpt from David

Tudor’s Neural Network Plus [106], and sample output from the generative audio system

component of the AAS-4 system. The output of the generative audio system was recorded

before the additional signal processing effects were applied, and the parameter set (the

collection of scaling and biasing terms described above) did not vary over the duration

of the excerpt. There are two forms of complexity analysis performed here. Table 8.1

shows the results obtained using the first, the automatic IR threshold calculation process

described in Section 5.6.1.1 and Chapter 5. This results in an ideal quantization scheme and

representation tuned to each individual signal.

The silence, white noise, and sinusoidal signals were found to have low levels of

complexity, while the chirp and musical examples have higher levels.4 While it is expected

that the white noise would have the highest complexity - as it has extremely high entropy -

the complexity is calculated using feature extractors operating on blocks of samples, causing
3
http://digitalmusics.dartmouth.edu/

˜

mcasey/bregman/

4Since the continually increasing frequency of the sinusoidal chirp covers the entire range of the zero-
crossing rate feature, and directly impacts the spectral centroid and envelope, it is not surprising that the
complexity of this feature rivals that of the musical examples - there are simply more values to encode than a
static sinusoid. The centroid measure is clearly erroneous for the silent signal as well.

http://digitalmusics.dartmouth.edu/~mcasey/bregman/
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Table 8.1: Complexity results for frame size of 2048 samples and automatic Audio Oracle
threshold detection. Highest two values for each feature in bold. Spectral centroid measure
for silent excerpt is assumed to be a false reading.

Feature Silence Sinusoid C(x) Noise C(x) Chirp C(x) Synth C(x) Tudor C(x)
Centroid 6.492 5.907 6.459 6.15 8.214 7.907
MFCC 1 3.7 4.954 6.322 6.409 6.34
ZCR 1 2.585 3.7 5.492 5.542 6.426
Total 8.492 12.192 15.133 17.964 20.165 20.673

the attributes of the noise signal to be averaged over time. Summing the complexities across

features yields similar results, with the musical excerpt yielding the highest complexity, and

the synthesized material in close second. The results shown in Table 8.1 are also plotted

in Figure 8.5. This figure shows the increase in complexity from test signals to generative

audio system output and actual music. These results show that, in terms of complexity, the

output of the generative audio system is comparable with real music.

Figure 8.5: A plot of the data shown in Table 8.1, measuring the signal complexity
using automatic threshold detection. Signal names are shown along the x-axis, signal
complexities along the y-axis. Each line shows the change in complexity for a signal
feature across the six signals.

It might be argued that allowing the complexity of each signal to be calculated

according to the measured ideal threshold for that particular signal makes it difficult to
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Table 8.2: Complexity results for frame size of 2048 samples and manual threshold q
setting. Highest two values for each feature in bold. Spectral centroid of silent excerpt is
assumed to be a false reading.

Feature q Silence Sinusoid C(x) Noise C(x) Chirp C(x) Synth C(x) Tudor C(x)
Centroid 10 7.401 4.17 7.516 7.492 8.994 8.916
MFCC 0.2 1 2.322 6.109 5.615 7.901 7.295
ZCR 1 1 2.585 6.304 5.492 8.484 7.972
Total n/a 9.401 9.077 19.929 18.599 25.379 24.183

compare complexity between signals. Since the signal features are not quantized according

to the same scheme, they may not be compatible measurements for comparison. The results

in Table 8.2 address this argument. Instead of using automatic threshold detection, like

in table 8.1, thresholds were chosen manually for each feature and kept uniform across

signals. Centroid, measured in Hz, uses a threshold of 10 (Hz); MFCC, with coefficient

values ranging from 0-1, uses a threshold of 0.2; and zero-crossing rate, measured in number

of crossings per block, uses a threshold of 1.

The results of these measurements are similar to those in Table 8.1, but the musical

signals are more consistently the most complex. Across all three features, the synthesized

excerpt and the audio recording are more complex than all other signals, and are close

together in complexity. The results in Table 8.2 are plotted in Figure 8.6. Like the previous

example, the general increase in objective complexity as the signals move from silence to

sinusoids to musical signals is clearly visible. Again, the generative audio system output and

the musical example are very close in complexity, with a marked drop-off when comparing

them to the chirp signal.

8.5.2 Kolmogorov Complexity Analysis of Synthesis Output

In [55], image compression algorithms are used to estimate the complexity and

a measure of the aesthetic value of paintings. Using a compression algorithm results in

an estimate of a measure of complexity called Kolmogorov complexity (referenced in
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Figure 8.6: A plot of the data shown in Table 8.2, measuring the signal complexity using
manual thresholds. Signal names are shown along the x-axis, signal complexities along
the y-axis. Each line shows the change in complexity for a signal feature across the five
signals.

Chapter 3), which corresponds to the size of the most compressed version of a string.

According to Rigau, the order in an image can be measured by calculating the normalized

difference between the maximum image size and the Kolmogorov complexity of the image:

MK =

NHrgb�K
NHrgb

, (8.1)

where N is the number of pixels, K is the Kolmogorov complexity, and Hrgb is the entropy

of all pixels [55]. In [55], each pixel is represented by three values - corresponding to red,

green, and blue channels, each of which is stored in 8 bits (256 values). The total entropy

Hrgb of the pixels is the sum of entropies for each color channel, computed from probability

distributions estimated for those channels:

Hrgb = H(Xr)+H(Xg)+H(Xb), (8.2)

where Xr,Xg, and Xb are the probability distributions of the color channels.



145

Table 8.3: Results of calculating order MK from Kolmogorov complexity K estimated
using FLAC algorithm on default settings.

File Input Size (bytes) K (bytes) Compression Ratio Hs MK
Noise 1764044 1774356 1.006 0.997 -0.009
Silence 1764044 324621 0.184 0.662 0.822
Sine 1764044 578098 0.328 0.957 0.658
Chirp 1764044 542726 0.308 0.985 0.688
Synth 1764044 1229650 0.697 0.970 0.281
Tudor 1764044 1025554 0.582 0.895 0.350

This method of obtaining a measure of order can be applied to an audio signal as well.

Although the .PNG and .JPG algorithms used in [55] work well for image data, they are not

appropriate for audio signals. The FLAC compression algorithm, a method of loss-less audio

compression based on linear prediction, can be used to measure the compressability of audio

signals [107]. The FLAC audio compression was chosen for its high-quality performance

and ease of use. In this case, (8.1) becomes:

MK =

NHs�K
NHs

, (8.3)

where Hs is the entropy of a time series of 16-bit audio samples, and N is the number of

samples. In the case of audio, K can be estimated using an audio compression algorithm. In

the examples here, K corresponds to the size in bytes of the output of the FLAC compressor

using default compression settings.

The results of computing the order MK for the sample audio files are shown in

Table 8.3. As expected, the noise file has the lowest amount of order, with a value of

Mk =�0.009.5 The silent signal has the highest order, with MK = 0.822. It is assumed that

K is inflated here, due to header information added by the FLAC algorithm, resulting in MK

lower than 1. Both the sine and chirp signals have relatively high amounts of order: 0.658

and 0.688 respectively. The musical examples, on the other hand, are more complex. The
5The fact that MK is negative is an expected result of constant information added by the compression

algorithm and is addressed in [55].
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synthesis output example has an order of 0.281 while the excerpt of Tudor’s composition has

0.350. As expected, both musical examples fall between the high complexity of noise and

the low complexity of the sinusoid. The results are plotted in Figure 8.7. The discrepancy

between white noise complexity measurements obtained from the AO complexity estimation

method and the Kolmogorov complexity is also expected. Whereas the AO method uses

feature vectors obtained across multiple samples, thus obtaining averaged results, the

Kolmogorov complexity considers the signal as a time-series of discrete, uncorrelated

samples.

Figure 8.7: A plot of the data shown in table 8.3, showing signal order MK obtained using
FLAC compression to estimate the Kolmogorov complexity K. Signal names are shown
along the x-axis, signal orders along the y-axis.

Clearly, this objective analysis is not the whole picture, and it is not the author’s

aim to disregard subjective aesthetic analysis. However, the results here suggest that the

levels of complexity found in various features extracted from the output of the generative

audio system are comparable to those extracted from real-world music. Therefore, the use

of such a generative audio system in a compositional context is merited. Order can be

relatively easily obtained through repetition, but complexity is less easily obtained. Starting

with a system that is capable of generating complexity is advantageous, and it is likely that

the output of such a system will suggest possibilities for its own further development as
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particular characteristics of the output are either refined and emphasized or modified and

suppressed.

8.5.3 AO Evaluation of the IR-based Adaptive Timer

The following section will describe a similar experiment designed to determine

whether the adaptive, IR-based timer described above is a useful method of balancing

order and complexity. In order to do so, it is necessary to have some method of objective

analysis in order to enable comparison between the proposed method and alternatives. This

section and the following will describe the results of subjecting the adaptive timing method,

along with two alternative methods of parameter change, to evaluation using the same

computational aesthetic measures employed in Section 8.5.1.

The output of the generative audio system using the adaptive timer to trigger param-

eter changes was compared with that of two other systems, each using a different timing

mechanism. The first of these other methods changed the state of the generative audio system

at random intervals falling in the range of 10 - 40 seconds, a range chosen to approximately

correspond with timings obtained from the adaptive method (ranging from 5 - 53 seconds

when measured).6 The second method changed parameters periodically, with a change

occurring every 20 seconds, again chosen to fall within the range produced by the adaptive

method. These comparisons were performed using the output from a single channel of the

generative audio system. Unlike the results in Section 8.5.1, the parameters of the networks

used for this comparison were allowed to vary over time. Ten 60-second long excerpts

were produced using each timing mechanism, and all excerpts were subjected to the same

analysis.

First, the unconditional complexity C(x) was measured from the excerpts using the

IR obtained from the AO algorithm. Table 8.4 contains the analysis using composite frame
6These timings are entirely dependent on the material being analyzed, and can vary widely with different

input.
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Table 8.4: Complexity results for frame size of 8192 samples (approx 186 ms.) and
manual threshold q = 0.2. C(x) and IR measured in bits. IR files are those with adaptive
parameter switching times according to IR calculation, Rand are those with random
parameter switching times, and Per are those with periodic parameter switching. Averages
and standard deviations shown for Rand do not include Rand6 and Rand8.

File C(x) IR File C(x) IR File C(x) IR
IR1 5.807 624.359 Rand1 3.585 1953.819 Per1 4.322 1775.586
IR2 4.087 1711.905 Rand2 2.233 1187.442 Per2 3 915.801
IR3 6.285 897.058 Rand3 4.7 2109.934 Per3 2.585 1181.659
IR4 5.044 1984.54 Rand4 5.459 1797.302 Per4 4.322 1130.935
IR5 6.524 2221.12 Rand5 3.807 1158.316 Per5 3.807 1447.329
IR6 6.6 2519.806 Rand6 1 0 Per6 3.7 1265.207
IR7 5.426 2409.216 Rand7 3.7 1036.1 Per7 5.087 2079.605
IR8 6.066 2396.459 Rand8 1 0 Per8 6.022 2140.55
IR9 6.066 1966.365 Rand9 2.585 468.351 Per9 4.322 2163.642
IR10 6.087 1928.264 Rand10 3.459 586.363 Per10 4.954 2153.052
AVG 5.799 1865.909 AVG 3.827 1287.302 AVG 4.212 1625.337
STDEV 0.765 637.905 STDEV 0.881 580.052 STDEV 1.01 490.888

sizes of 8192 samples, or approximately 186 ms at a sample rate of 44100. The AO distance

threshold q = 0.2 was set manually, to ensure that each sound-file was analyzed with the

same level of quantization. The feature used was again MFCCs, chosen to focus the analysis

on the spectral envelope and resulting timbre of the signal. The adaptive, IR-based method

produced output with the highest average complexity, at 5.799 bits, while the periodic and

random methods are second and third with 4.212 and 3.827 respectively.7

It is also useful to consider the total IR as a measure of aesthetic balance. Recalling

Algorithm 1, we see that the two required complexities are calculated at time i as follows:

C0(i) = Log2(number of new encoding events up to i) (8.4)

C1(i) =
Log2(number of all code-words up to i)

length L of a block to which state i belongs
(8.5)

Since the IR at time i is calculated by C0(i)�C1(i), in order for a signal to have a high total
7The analyses of Rand6 and Rand8 are likely flawed, as they found no distinction between signal frames.

When these values are removed, the average C(x) for the random method becomes 3.827. This does not change
the ordering of the methods in terms of complexity.
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Figure 8.8: A plot of the data shown in table 8.4. Top plot shows signal complexity
averages and standard deviations for three parameter switching methods. Bottom plot
shows signal IR averages and standard deviations.

IR, C1 should be small relative to C0 much of the time. This can happen in two ways:

• Due to C0 being large, as a result of many unique signal frames being encoded.

• Due to C1 being small, resulting from either a low number of encoding events or a

high amount of repetition (corresponding to large block length L).

For a particular point in the IR function to have a high value, the portion of the signal

leading up to that point must have contained many novel signal frames - resulting in high

C0 - and the current moment must be a repetition of a significant portion of the previous

signal - resulting in low C1. Therefore, a signal with high total IR will have both a large

number of unique frames and a large number of long repeated patterns - representing the

good balance of order and complexity necessary from the perspective of computational

aesthetics. Considering the total IR data from Table 8.4 and Figure 8.8, we see that the

adaptive timer again produces the best results. The average total IR is highest, at 1865.909
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bits, while the next closest value (1625.337 bits) is produced by the periodic method. The

random method produces the lowest total IR, with 1287.302 bits.

8.5.4 Kolmogorov Complexity Analysis of the Adaptive Timer

The three timing methods can also be studied in terms of the Kolmogorov complexity

K and resulting order MK of their output. These results are presented in Table 8.5. The

adaptive timer produces a slightly more complex output, with order of MK = 0.400, than the

random and periodic timers, which have order MK = 0.496 and MK = 0.507 respectively.

The musical excerpts all fall between the maximally complex noise signal and the orderly

sinusoid and chirp signals, the orders MK of which are presented in the table. The use of

Kolmogorov complexity to estimate the order of these signals confirms the results described

above using the complexity C(x) obtained from the AO IR analysis. The results in the table

are summarized in Figure 8.9. The figure also includes the order MK obtained from the noise,

sinusoid, chirp, and silence test signals, demonstrating the relationship of the generative

audio system output to the minimally and maximally complex silence and noise signals. All

three musical examples fall in the middle of this range, with the adaptive method almost

directly centered between noise and silence.

These comparisons were performed to quantify the effectiveness of the adaptive

method in balancing order and complexity by limiting excessive repetition. Although

both the random and periodic methods produced a variety of materials - and sometimes

quite interesting musical output - neither made use of any information about their behavior.

Textures and materials were often sustained long after their novelty and interest had worn

off, producing awkward and inconsistent pacing. On the other hand, the adaptive method

was able to measure when a particular type of material had been sustained long enough to

lose its interest and become boring, and change the system state as a way to produce new

material.
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Table 8.5: Results of computing Kolmogorov complexity K and order MK for excerpts
using three different parameter switching methods.

Sound-file Input Size (b) K (b) Ratio Hs MK

Noise 5292044 5306728 1.003 0.999 -0.004
Chirp 5292044 1585448 0.3 0.950 0.685
Sine 5292044 1695062 0.32 0.986 0.675
Silence 5292044 813805 0.154 0.609 0.748
IR1 5291948 3185168 0.602 0.905 0.335
IR2 5291948 3065857 0.579 0.882 0.343
IR3 5291948 3305459 0.625 0.936 0.333
IR4 5291948 2340320 0.442 0.808 0.453
IR5 5291948 2725154 0.515 0.850 0.394
IR6 5291948 2406725 0.455 0.841 0.459
IR7 5291948 2720092 0.514 0.897 0.427
IR8 5291948 2929195 0.554 0.952 0.419
IR9 5291948 2476396 0.468 0.829 0.435
IR10 5291948 2819908 0.533 0.897 0.406
AVG N/A N/A 0.529 0.880 0.400
STDEV N/A N/A 0.062 0.047 0.048
Rand1 5291948 1862520 0.352 0.782 0.550
Rand2 5291948 2241522 0.424 0.758 0.441
Rand3 5291948 2150544 0.406 0.924 0.560
Rand4 5291948 2600336 0.491 0.893 0.450
Rand5 5291948 1651848 0.312 0.732 0.574
Rand6 5291948 2081129 0.393 0.844 0.534
Rand7 5291948 2341865 0.443 0.812 0.455
Rand8 5291948 2548187 0.482 0.921 0.477
Rand9 5291948 2133653 0.403 0.892 0.548
Rand10 5291948 3124111 0.59 0.941 0.372
AVG N/A N/A 0.430 0.849 0.496
STDEV N/A N/A 0.078 0.075 0.066
Per1 5291948 2540452 0.48 0.911 0.472
Per2 5291948 1453177 0.464 0.836 0.671
Per3 5291948 2565938 0.485 0.920 0.473
Per4 5291948 2429163 0.459 0.906 0.493
Per5 5291948 2571816 0.486 0.906 0.463
Per6 5291948 1911595 0.361 0.686 0.473
Per7 5291948 2146030 0.406 0.835 0.514
Per8 5291948 2427124 0.459 0.885 0.482
Per9 5291948 2163453 0.409 0.817 0.500
Per10 5291948 1954289 0.369 0.776 0.524
AVG N/A N/A 0.438 0.848 0.507
STDEV N/A N/A 0.048 0.075 0.061
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Figure 8.9: A plot of the data shown in table 8.5. The plot shows signal order MK averages
and standard deviations for three parameter switching methods. Also shows order for noise,
sinusoid, and chirp test sound-files.

8.5.5 Summary and Discussion

These results demonstrate the usefulness of the generative audio system in producing

complex musical audio output and the effectiveness of the adaptive timing mechanism in

maintaining a good balance between order and complexity.

Two analysis techniques were used to measure the order and complexity of the

various signals. The first analysis technique built an AO structure from each audio signal.

After this structure was created, it was compressed and the unconditional complexity C(x) -

corresponding to the number of unique signal frames used in compression - was obtained.

The complexity was measured from a variety of signals, including silence, noise, sinusoids,

generative audio system output, and music. It was shown that the generative audio system

output and the musical excerpt were the most complex, although this is partially due to the

averaging imparted onto the noise signal by the feature extraction algorithms used.8 The

silence, sinusoid, noise, and chirp were found to be less complex than the musical signal, with

silence being the least complex. This held true for both manual and automatic AO threshold

detection. These results show that the all-pass network used here is a useful generative audio
8In reality, and as confirmed by later analysis using the Kolmogorov complexity, the noise signal is actually

the most complex.
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system. The system is capable of producing output with a level of complexity close to that

of real-world music.

When using the AO algorithm to evaluate the usefulness of the adaptive timing

method, the average unconditional complexity C(x) was measured across three groups of 10

excerpts - one group for each timing method (adaptive, random, or periodic). It was found

that the complexity of the signals created using the adaptive method was higher than that of

either the random or periodic method. In the case of these excerpts, which exhibit emergent

formal characteristics and feature multiple types of potentially repeated musical material, it

was useful to compare the total IR calculated across each excerpt. A higher total IR results

from an excerpt with a good balance between novelty and repetition. It was found that the

signals made using the adaptive timing method had a higher total IR than those made using

the random and periodic methods, and therefore had a better balance between order and

complexity.

The second analysis technique used an estimate of Kolmogorov complexity in order

to characterize the amount of order in an audio signal. The Kolmogorov complexity, defined

as the length of the shortest program which can generate a string, can be estimated using a

compression algorithm. In this case, it was estimated using the FLAC audio compression

algorithm, a loss-less compression technique designed specifically for audio. From this, the

amount of order MK in a signal can be characterized. This method was first used to measure

the amount of order in the set of test signals. It was shown that silence and noise signals

have maximal and minimal amounts of order, respectively. The sinusoid and chirp signals

also had high amounts of order. The musical excerpt and synthesis audio were in between

these two bounds of complexity, demonstrating a balance between order and complexity.

The Kolmogorov complexity was also used to measure the average amount of order

in musical excerpts created using the three timing techniques studied. Again, it was found

that the musical excerpts fell in between the complexity of noise and simplicity of silence.
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The adaptive timer produced slightly more complex material than the random and periodic

methods; resulting from the adaptive method detecting material that has been allowed to

repeat for too long, and changing its own parameters to inject novelty into the audio stream.

While it is possible that either reducing the lower bounds on the random timing

method or shortening the duration of the periodic method could increase the complexity of

the signals they generate, the advantage of the IR-based method is its adaptiveness. Rather

than simply maximizing the amount of variety in the signals it generates - which could

conceivably be obtained by simply changing parameter sets at a rapid pace - this method

seeks to minimize the duration over which materials are allowed to repeat past a specific,

perceptually-informed threshold. If a particular set of parameters produces an interesting,

varied, and evolving sound, then this method will allow it to be heard in a prolonged fashion,

whereas a random or periodic timer might switch too soon. Conversely, if a set of parameters

produces dull, unchanging material, the adaptive system will detect this and adjust, while

the random or periodic method may allow it to continue unchecked.

8.6 Conclusion

The AAS-4 system described in this chapter provides a creative application of

concepts from computational aesthetics to the construction of a generative audio system.

The system uses a series of all-pass filters arranged in a complex, unitary feedback network.

The filters are made time-varying, by allowing their output signals to become modulation

signals for use elsewhere in the feedback network. As shown, this system is capable of

producing audio with a complexity level similar to other generative audio systems.

In order to produce a more compelling musical experience, the parameters controlling

the modulation signals can be changed over time. Music information rate can be used to

measure the amount of order in the systems output signal. An adaptive timing method can

then be developed, where the system makes changes only after it has determined that the
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signal has been redundant for a significant amount of time. It was shown that the adaptive

switching method produced greater complexity than switching at either random or periodic

intervals. This approach is supported by the theories on “mere exposure” and boredom

discussed in Chapter 3.



Chapter 9

Conclusion

The research in this dissertation centered around the idea of the generative audio

system, a term introduced in Chapter 2 to describe a subcategory of generative music

systems which function primarily at the signal level. Generative audio systems are capable

of producing surprising and idiosyncratic musical output, and have been used (in some form

or another) by many composers and musicians throughout the history of electronic music.

This conclusion will recapitulate the research described earlier, and provide a few areas

where it might be further developed.

9.1 Recapitulation

The first part of the dissertation introduced important concepts in the fields of

generative music and computational aesthetics. Chapter 2 introduced the generative audio

system and provided a variety of historical and contemporary examples. Many of these

examples used feedback as a method of producing generative material. The chapter described

some of the important attributes of feedback systems: non-linearity, iteration, coupling, self-

organization, and complexity [21]. These attributes have been attractive to many composers,

and form an important framework for the discussion and evaluation of feedback systems.
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The field of cybernetics provides another important distinction between feedback systems:

polarity. Systems can use either positive or negative feedback, and the character of their

output depends on the form chosen. Positive feedback is particularly interesting in generative

systems, as it can lead to unstable systems that jump from one state to another.

The examples of previous generative audio systems rely on a performer or com-

poser to make determinations about the output of the system, either in performance or as

compositional work. The systems are not capable of making their own formal structures.

A truly autonomous system needs to be able to evaluate its own output to determine how

the shape of that output should change over time, therefore a method of computational

aesthetic evaluation is needed. Chapter 3 introduced the field of computational aesthet-

ics. Many theories about computational aesthetics involve the balance between order and

complexity in a stimulus. The ideal aesthetic work is not too complex, and also not too

simple. Researchers have attempted to produce methods of quantifying the complexity in

stimuli. The discussion focused on an idea from the field of Music Information Dynamics,

called Music Information Rate (IR). IR gives a measure of the balance between order and

complexity in an audio signal, and was chosen for its ease of use and efficiency. Chapter 3

also described research on the effect of repetition on subjective affect and boredom. In order

to develop an understanding of how the balance of order and complexity might shape a

listener’s reaction to a piece of music as it unfolds, ideas from perceptual research were

introduced. In particular, the “mere exposure” effect describes how subject affect changes

as repeated exposures to a stimulus are experienced. As the number of exposures increases,

the subject’s affective response to the stimulus will become more positive - familiarity leads

to “liking.” However, research also shows that after a certain number of repetitions, affect

will begin to become more negative again. It is theorized that this is a result of the influence

of boredom on affect.

The next part of the dissertation described a group of experimental systems that built
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on the ideas laid out in the previous chapters. These creative applications were presented in

parallel with related research contributions in the areas of sound synthesis, generative music,

and computational aesthetics.

The first such system, Feld, was described in Chapter 4. The chapter began by

describing some early experiments that used digital or elecro-acoustic audio feedback as

a means of producing interesting, generative behavior. These systems, called the Gates

series, were conceived of as software instruments. As such, they were not fully autonomous;

instead, they relied on control from a human performer to give their output a musical

shape. The Feld system was an attempt to rectify this situation, by developing a fully

autonomous generative system. The system obtained sonic complexity through interactions

between many smaller components - including custom hardware devices described in

Appendix B - and attempted to balance order and complexity through a simple self-analysis

process. Feld can function fully autonomously, only needing a performer to trigger the

beginning and ending of a performance. The Feld system is capable of generating interesting

musical gestures and textures with a large amount of variety. Using the simple measure of

computational aesthetics, Feld attempts to balance order and complexity from section to

section. Unfortunately, Feld perhaps falls short of producing sophisticated formal structures.

Additionally, the design of Feld employed a variety of compositional algorithms to produce

gestural material. Although these algorithms generate their output in real-time, they can

still be thought of as the result of a composer exerting influence on the final output. This

decoupling of sonic generation and formal generation is antithetical to the concept of a

generative audio system.

Chapter 5 described the next system, called PyOracle. PyOracle was the first

real-time system to make use of the Audio Oracle (AO) algorithm to enable machine

improvisation and computational analysis of musical audio signals. IR was reviewed in this

chapter, and its relevance in computational aesthetics was explored. The PyOracle software
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provides some facilities for composers to specify formal structures for performances. The

most notable example of this is the script method, where a composer can specify a set of

time-varying constraints on the generative process. This leads to the ability to pre-compose

a formal structure, and have it filled in with improvised material during performance.

However, PyOracle makes no attempt at producing content or form generatively. Rather

than producing new materials, PyOracle instead recycles previously recorded materials into

a new form. The system is therefore more useful as a model of how music information

dynamics might be used in a true generative audio system. In particular, the AO algorithm

was extracted from the PyOracle system and used as a standalone PD or Max/MSP object.

The final section describes the system that is most clearly a generative audio system,

the AAS-4 system. The system functions as a synthesis and creative application of ideas

explored in the previous chapters. The AAS-4 system makes use of time-varying all-pass

filters in feedback networks as its sound-generating mechanism. A novel sound-processing

technique using these filters was described in Chapter 6. By making a second-order all-pass

filter time-varying, and carefully choosing the modulation parameters, it is possible to apply

a frequency-dependent vibrato or frequency modulation effect. This effect was explored and

the parameters were studied.

Unfortunately, making the parameters of the second-order all-pass filter time-varying

can lead to instability in some implementations. Chapter 7 provided a new implementation

that avoids these instabilities. After describing this new filter, the chapter described its use

in feedback systems. The effects of the filter parameters on the spectra of these feedback

systems were studied. Finally, a self-modulating all-pass network was described. In such

a network, the parameters of an all-pass filter (placed in a feedback loop) depend on the

previous output of the filter. These networks are capable of complex generative behavior, and

exhibit the characteristics of feedback systems (iteration, self-organization, etc.) mentioned

in Chapter 2.
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The AAS-4 system makes use of a set of complicated self-modulating all-pass

networks. This generative audio system forms the core of its audio synthesis capabilities.

The synthesis network produces a wide variety of textures, timbres, and gestures, and has

no compositional logic built-in. The higher-level characteristics of the output are entirely a

function of sample-level calculations. The AAS-4 system also makes use of the AO algorithm

to enable itself to perform real-time computational aesthetic evaluation on its output. This

allows the system to determine when its output has become too repetitive, and to adjust the

parameters of the generative audio system to produce novel output. It was shown that this

system is capable of producing musical output with an objective complexity level similar to

that of other musical excerpts.

9.2 Future Work

Both the use of time-varying all-pass filters for synthesis and the IR-based computa-

tional aesthetic evaluation technique merit further exploration. The feedback network used

in AAS-4 is a very specific one, and there exist many other possible topologies which may

produce other types of sounds and behaviors. The self-modulating allpass network described

in Chapter 7 could also be developed in isolation, with more attention paid to understanding

the interaction of its parameters. Additionally, the use of the time-varying all-pass in sound

effects processing was demonstrated, but further creative applications of these techniques

could be developed.

The IR-based method of detecting repetition described in Chapter 8 is not confined

to use with all-pass filter systems and so could be used in a variety of musical contexts.

In particular, the field of machine improvisation seems to be a likely area - perhaps as an

extension to the PyOracle system. It would be useful for such a system to be able to detect

repetition in the input from a human improviser and manipulate its own output accordingly

- either reinforcing or disrupting the sense of stasis. If the human performer has been
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playing repetitive materials, the system could become “bored” and spur the performer on by

producing an interjection. Alternatively, the system could reinforce the sense of repetition by

playing similar materials. Additionally, a method of combining data extracted from multiple

signal features into a single measure of repetition would be useful. Clearly, a human listener

tracks multiple features simultaneously, and it would be advantageous to have a system

capable of the same. This seems to be currently unsolved. The system could either track

multiple features independently, and allow the AO and IR models to interact, or some sort

of “meta-feature” could be designed - either manually, or through machine learning.

This dissertation described a generative audio system which has a level of aesthetic

awareness, and is therefore capable of producing meaningful output without the use of

arbitrary timing mechanisms. The research described within combined DSP and music

information retrieval techniques into a creative application. A system like AAS-4 is of

relevance for composers, sound designers, and researchers with a need for an autonomous

sound generation system.



Appendix A

Report on the David Tudor Archives at

the Getty Center

A.1 Background and Goals

David Tudor is perhaps best known as a performer of the experimental or avant-garde

music of composers like John Cage, Karlheinz Stockhausen, Morton Feldman, and Christian

Wolff. After an extremely successful career as a pianist, in which he worked as interpreter

of others music, Tudor became increasingly focused on his own compositions of electronic

music. Tudor essentially gave up his piano performance career in favor of a style of live

electronic music which relied heavily on his own home-made tools. Unfortunately, after

Tudor’s death, this music has not been regularly performed. I assumed that this was largely

due to the fact that traditional scores for the compositions do not exist. However, the Getty

holds Tudor’s archives, including many of his hand-drawn schematics and performance

documentation. Instead of a traditionally notated musical score, Tudor would design a

particular configuration of equipment for a given piece, and then create a “block diagram”

representing the physical orientation and interconnections between sound-generating or

transforming devices. My hope was that I could use these block diagrams, along with other
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information about specific devices (schematics, written descriptions, or photographs) to

recreate a few significant works as a performance using software rather than hardware. The

pieces I chose to focus on were Pulsers, Toneburst, and Untitled.

A.2 Findings

On my first visit to the Special Collections area of the Getty Research Library, my

main aim was to gain a broad overview of the types of material held there, and to understand

how they might relate to the specific compositions I was interested in. In particular, I focused

on materials in Series 1.A. Tudor, early, 1940s-1994. I requested box 3 and box 4,

containing materials related to specific pieces and unidentified diagrams, worksheets, and

notes. Box 3 contains folders related to both Pulsers, Toneburst, and Untitled, in addition to

a large number of Tudor’s other electronic compositions.

My initial findings were promising, as the files contained a variety of schematic

drawings showing the development of the compositions. In addition, there were various

drafts of performance and liner notes, in which Tudor described the functioning of his

systems (in very non-technical terms). The system used in Untitled was divided into two

drawings - one indicating the generative portion of the system, and the other the performance

processing portion. I photographed many of the relevant materials, in the hope that further

study would allow me to recreate the block diagram scores as software. I also studied some

of the unidentified materials in box 4, hoping that they might fill in any gaps that I might

find in the previous materials.

After my visit, I spent time trying to decipher Tudor’s drawings. The block diagrams

consist of various icons, representing specific pieces of hardware musical equipment (in

many cases custom-made), interconnected by lines indicating cables. In no case does Tudor

provide a “legend” or “key” to help decipher these notations. Many of the icons were

familiar, using customary iconography for amplifiers (a triangle) or ring-modulators (an
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“X” - indicating multiplication). Unfortunately, some of the most important icons were

non-standard. For example, the diagram for Pulsers contains a variety of amplifiers, filters

(lowpass, bandpass, and highpass), and mixers. Unfortunately, none of these components

generates sound on its own, and the component which seems to be the key sound-generator

(represented by a pair of boxes containing EEG-like pulses) is unknown. There is a pro-

fessionaly designed equipment layout for Toneburst - created in 1994, as Tudor’s health

began to decline - which indicates the use of specific “off-the-shelf” electronic components.

Guitar effects pedals, cassette tape players, and mixers are specified in detail, but again other

components are left unspecified. Tudor specifies two equalizers, but provides no information

about the type, brand, or settings for the equalizers. He also indicates a “spectrum transfer”

box, which is not described elsewhere.

I made note of these missing pieces of information and planned a second visit.

This time, I studied the materials in boxes from Series III. Electronics, 1950s -

1990s. These boxes contain various electronic documentation, and I hoped that I might

find descriptions or other information about the missing parts of his compositions. I also

examined boxes containing photographs of Tudor’s “table top setups” - his typical method

of performance.

Unfortunately, I did not find what I had hoped. The electronic documentation

consisted mainly of Tudor’s collection of manuals, ads, and receipts pertaining to some of

his equipment. There was also a selection of magazine articles related to electronics, audio,

and other more esoteric topics (brainwave modification through sound, for example). Tudor

had not sorted these materials in any way, and it was impossible to assign papers to specific

compositions or times. Though the photograph collection does contain some interesting and

potentially useful images of hardware configurations, no photos corresponded to the pieces

I was interested in, instead focusing on later pieces like Laser Focus.



165

A.3 Conclusion

My research at the Getty has opened up large questions, both pertaining to Tudor’s

music, and the preservation of electronic music in general. Tudor must have known that

his documentation was vague and incomplete. Did he intend that his works would pass

with him, or was he perhaps interested in a kind of performance indeterminacy like that

in the music of John Cage? It is difficult to know, as any change in the equipment used in

these pieces would create a potentially enormous change in the sound and character of the

musical output. If Tudor did intend that his works might carry on, composers could stand to

consider ways in which they could ensure the preservation of their works. Particularly in

such technology-mediated composition, it can be difficult or impossible to recreate certain

compositions. As older technologies age and are replaced with new ones, music which relies

on those technologies can also become obsolete. Composers who work with hardware, as

Tudor did, should document their work in a way that it can be understood and reproduced in

the future.



Appendix B

The Hardware Used in Feld

B.1 Overview

Some of the earliest experiments in real-time computer music involved interfacing a

computer with separate sound-generating hardware [108]. At the time (ca. 1970), computer

hardware was prohibitively expensive and incapable of real-time performance, while analog

synthesis hardware was responsive and comparatively affordable. In more recent years,

this situation has changed radically. Laptop computers capable of complex real-time sound

processing can be had for a few hundred dollars, while modular analog synthesizers are

generally the domain of boutique small-run manufacturers [109]. Perhaps in response to

this, a do-it-yourself (DIY) movement has emerged, centered around internet forums and

mailing-lists [110]. The DIYers, some borrowing from the hardware-hacking tradition of

David Tudor, Nicholas Collins, and others, tend to embrace experimentation without much

concern for the commercial viability of ideas. Many musicians working in this area are also

fluent in one or more computer music programming languages, many of which are freely

available and/or open-source. It is common practice for electronic musicians to perform

using only a laptop running custom performance software. The basic motivation behind the

projects described below was to integrate these two areas of electroacoustic music-making,
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and to stimulate further exploration in this direction.

The USB-Octomod , tabulaRasa, and pucktronix.snake.corral were developed con-

currently with the authors efforts to establish an affordable DIY hardware performance

setup. Budget constraints mandated that this was a slow-moving effort, with periods of

musical experimentation punctuated by soldering sessions. The three devices discussed here

were all designed to meet a particular musical need felt by the author, and reflect an attempt

to provide maximum flexibility with a minimum number of components. The devices

each take a different approach to combining computer music software with DIY hardware.

The USB-Octomod is an 8-channel control-voltage interface that allows a computer to be

interfaced with a modular synthesis system. The tabulaRasa is a table-lookup oscillator

that allows the user to design and edit custom waveforms using a PC software application.

Finally, the pucktronix.snake.corral is a dual 8 x 8 matrix routing device for analog signals,

with a computer control interface allowing for arbitrarily complex and rapid switching and

automation.

B.2 Related Works

Other control-voltage/computer interfaces exist, including the GROOVE system and

several MIDI-CV systems, both DIY and commercially manufactured [111]. Mark of the

Unicorn’s VOLTA and Expert Sleepers Silent Way represent another approach, each using

a DC-coupled audio interface to directly output voltages [112, 113]. Potential downsides

of these approaches include the low resolution of the MIDI protocol, and the requirement

to dedicate audio output channels to control-voltage generation (assuming one already has

access to a DC-coupled audio interface).

Several hardware table-lookup oscillators also exist in modular format, with the

Synthesis Technology E350 Morphing Terrarium being a notable example. The E350 is

commercially available as a pre-made module, and has the ability to morph between several
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waveforms using a proprietary algorithm [114]. The module comes with a built-in set of

192 non-modifiable waveforms, stored permanently in memory. Though the user has an

amount of control over the blending of the waveforms, the waveforms themselves remain

fixed and designed acccording to the desires of the manufacturers.

Finally, there is at least one other computer-controlled routing matrix, the 4ms

Pedals Bend Matrix [115]. This device uses similar hardware components to the puck-

tronix.snake.corral but relies on MIDI and physical pushbuttons for control over matrix

connection points. 4ms has undertaken great efforts toward making the Bend Matrix a

playable, musical instrument, through the use of firmware supporting presets, automation

routines, and multiple I/O configurations. Unfortunately, if the user desires a more cus-

tomized configuration than provided, he or she has to use MIDI to program the device. In

addition, the additional hardware required for pushbutton control and preset storage adds to

the overall cost of the device.

B.3 The Devices

B.3.1 Common Features

The devices discussed below all use a simple microcontroller as their primary

electronic component. The USB-Octomod and pucktronix.snake.corral use a Teensy2.0, a

breadboard-compatible microcontroller, programmed with the Arduino environment running

on OS X, Windows, and Linux [116]. The Teensy 2.0 uses an Atmel ATmega32U4 processor,

with 32k of flash memory, 25 digital I/O pins, and 12 analog input pins. The Teensy also

contains an integrated USB port for both firmware uploading and serial communication

with a PC. The Teensy 2.0 was chosen for its small footprint, built-in USB hardware,

and low price relative to Arduino-branded options. The tabulaRasa uses a simplified

Arduino configuration. Using an ATmega328, along with a crystal and a few other passive
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components, it is possible to create a breadboarduino - a device capable of running Arduino

code that can be incorporated into another circuit. This method was used in the tabulaRasa

because no serial communication with the PC was needed after programming, and because

of the low hardware cost associated with such a minimal circuit.

Figure B.1: USB-Octomod ciruit board assembly showing Teensy 2.0

The free, open-source Arduino programming language was used to develop the mi-

crocontroller code for all three projects [117]. Arduino provides a library of functions which

enable simplified access to the ATmega328s I/O pins and other functionality, while allowing

more experienced users to use the C programming language for lower-level hardware control.

The popularity of the Arduino among hobbyists and experimenters provides the benefit of

a large body of freely available example code, forum discussions, and tutorials. Both the

USB-Octomod and tabulaRasa use the Processing language for their PC-side interfaces

[118]. Processing is primarily intended for programming visual and interactive art, but

provides libraries for GUI design, serial communication, and sound generation. Finally, the

pucktronix.snake.corral uses a script written in the Python programming language to receive
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data and coordinate with the snake.corral hardware via the PC serial port. Efforts are made

to provide the software as both compiled binaries and source code, and modifications or

additions are encouraged. The projects are all hosted at https://bitbucket.org/pucktronix/

B.3.2 USB-Octomod

The USB-Octomod is an 8-channel control-voltage interface employing a minimal

hardware part count. The device uses a Teensy 2.0 and a pair of 4-channel 10-bit DAC ICs

as the backbone of the voltage-generation circuitry. Although higher resolution DACs are

available (at higher cost), experimentation showed that 10 bits was enough, when combined

with an RC low-pass filter, to produce a wide range of discrete output voltages and to

allow for smooth sweeps from one value to another. The device draws power directly

from the USB bus, and is designed to provide output voltages in the range of +/- 5 volts

corresponding to a 10-octave range in a typical Volt/octave synthesis system. Since the

USB-Octomod uses external DACs, the user is not required to use a DC-coupled audio

interface, or dedicate output channels to control-voltages. The USB-Octomod uses the

OpenSoundControl protocol (OSC) to enable a modular software design [91]. A lightweight

Processing GUI application (the host) intercepts OSC messages, buffers and converts them,

and finally sends them to the USB serial port. The host also provides the option to select a

custom OSC port, and allows the user to direct data to a specific serial device. Received

OSC data is visualized with a set of sliders. In order to send data to the host application, the

user assembles an OSC message formatted /dac ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 -

replacing the ch1-8 placeholders with an integer value 0 - 1023.

The separation of data generation from transmission is an important feature of

the device. The communication structure is shown in Figure B.2. By decoupling the host

software, which handles the technicalities of serial communication, from the OSC generation

algorithm, the device allows a musician to use his/her preferred software environment for
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the musically relevant OSC generation tasks. Users have developed Max and PD patches,

templates for the iPad touchOSC application, and ChucK programs all designed to generate

data and send it to the host application. The USB-Octomod can be thought of as 8 extremely

versatile modulation sources. Each output can be driven by any number of unique processes,

generated in real-time or pre-composed.

Data 
Generation
Software

USB-Octomod 
PC "Host"

USB-Octomod 
Hardware 

DeviceOSC Serial

Figure B.2: Illustration of USB-Octomod Control Flow

B.3.3 tabulaRasa

The tabulaRasa generates audio signals using a table-lookup oscillator algorithm,

and is designed to integrate directly into a modular synthesis system without necessitating

that a PC be present during performance. The device also requires either a +/- 12V or +/-

15V power source (modular synthesis standards), as there is no USB connection present.

An ATmega328 reads waveform data from an SD memory card held in a socket mounted to

the circuit board, and uses a modified version of Adrian Freeds table-lookup oscillator code

to generate a PWM signal at one of the digital output pins [119]. This signal is converted

to a continuous waveform by an external RC lowpass filter. Due to the limited memory on

the ATmega328, waveforms are stored as 256 byte arrays. The SD card is used as storage,

and two waveforms are read into RAM at a time. Modifications to the basic table-lookup

algorithm allow for interpolation (blend) between the two waveforms in RAM, allowing for

continuous timbral variation. Six of the ATmega328s analog inputs are used for controlling
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synthesis parameters in real-time. Each of the following parameters has both a potentiometer

and control-voltage input: oscillator frequency (V/octave), amount of interpolation between

waveform pairs, and selection of which waveform pair is currently stored in RAM.

Figure B.3: tabulaRasa waveform design interface

The tabulaRasa software presents a GUI (shown in Figure B.3) which allows the

user to design breakpoint-based waveforms in several ways, apply various interpolations

to the waveforms, and write them to an SD card in a format which can be read by the

hardware. The software also provides a real-time audio preview of the waveform, and allows

the created waveforms to be saved into any of 32 slots. The slots are organized into 16

pairs, which correspond to the interpolation pairs mentioned in describing the hardware.

The ability to design and load arbitrary waveforms gives the device a large amount of sonic

flexibility lacking in devices with a fixed bank of wavetables stored in permanent memory.



173

B.3.4 pucktronix.snake.corral

pucktronix.snake.corral is a computer-controlled dual 8 x 8 analog signal routing

matrix. Two independent matrices are presented, each with 8 inputs and 8 outputs. Within

each matrix, any input (or summed combination of inputs) can be routed to any output. The

device can switch and route any type of analog signal within the range of +/- 5V. The main

electronic components of the pucktronix.snake.corral are a Teensy 2.0 and a pair of Zarlink

MT8816 analog switching matrix ICs. The MT8816 is a bidirectional 8 x 16 matrix with

minimal signal bleed. Like the USB-Octomod, the pucktronix.snake.corral is powered from

the USB bus.

The pucktronix.snake.corral decouples the control and transmission components

of the software. Like the USB-Octomod, the device communicates with a PC through

a light-weight software application - here, a script written in the Python programming

language. Instead of demanding that the user employ a particular programming language

or compositional environment, the script listens for OSC messages and converts them into

serial data which is communicated to the hardware. The OSC protocol contains four pieces

of data: a flag selecting which of the two MT8816 ICs is being addressed, the x-address

of the switch being addressed, the y-address of the switch being addressed, and the state

(open/closed) of that switch. A Max/MSP patch which allows the user to define and switch

between presets and/or apply various algorithmic rhythmic effects to the switching matrices

has also been developed.

Using the pucktronix.snake.corral, a modest number of synthesis modules can be

used to create interesting rhythmic and timbral variety. The ability to rapidly switch or

reconfigure a large number of signal connections enables a level of rhythmic complexity

which is difficult to obtain through other means. Sharp cuts between disparate types of

musical material are made possible, and patches can be stored and quickly recalled.
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B.4 Further Work and Evaluation of Hardware

Ignoring, for a moment, the creative application of these devices, there are some

possible improvements which could allow for greater flexibility. The utility of the USB-

Octomod could easily be extended by the addition of analog inputs. A situation in which a

computer receives and transforms voltages from an analog synthesizer in real-time, acting as

an extremely flexible processing module, could be extremely musically rewarding. Further

exploration of the device in combination with GUI or alternate control methods is also

necessary.

The tabulaRasa could be improved by replacing the ATmega328 with a chip capable

of running at a higher clock rate. The current implementation (PWM running at 16Mhz)

is quite susceptible to aliasing. A chip with a larger amount of RAM would also enable a

2D crossfade between 4 waveforms - something initially planned for the tabulaRasa but

discarded due to memory constraints.

The pucktronix.snake.corral would benefit from a more flexible range of input

voltages. Currently, voltages greater than +/- 5V are clipped. This protects the internal

circuitry of the MT8816 chips, but could be changed. From a musical standpoint, having a

variable gain at each switch-point would allow for more variety and control over routing

configurations - especially useful in a situation where feedback paths are allowed.

The relative success of these projects suggests that further experimentation with

affordable microcontrollers in musical applications would be fruitful. While basic chips like

the ATmega328 are perhaps not powerful enough for real-time DSP, others, like the dsPIC

family, seem to merit exploration in this area [120]. Additionally, the processors used here

are more than powerful enough for control-based applications running at lower rates, while

also providing analog input from a variety of sensor devices.

Aside from issues of technological feasability, the emergence of the Arduino and

associated projects, along with the DIY and open-source software movements, create a
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fertile environment for experimentation. Computer musicians, hardware hackers, and com-

posers can design, rapidly prototype, and fabricate previously non-existent or commercially

unviable hardware devices. The hardware needs of the artist are no longer subject to the

whims of corporate manufacturers. Instead of bending a premade device to the specific

needs of individual musical practice, we (artists and musicians) can now create exactly the

device needed for a given piece, performance, or purpose.
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