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ABSTRACT  

Binary pseudo-random array (BPRA) artifacts  are useful devices for calibrating the instrument transfer function (ITF) of 
interferometric microscopes and other optical and non-optical surface and wavefront measurement instruments. The 
intrinsic white noise character of the power spectral density function of the artifact simplifies the deconvolution of the 
ITF from the measured power spectral density (PSD). However, resampling of the BPRA intrinsic artifact features with 
the measurement tool’s specific sampling pattern modifies the white noise character of the intrinsic spectrum and needs 
to be accounted for in the ITF-based data deconvolution process. We have developed an analytic solution to the 
spectrum of a resampled one- and two- dimensional BPRA. The resultant nominal PSD function is a simple two-
parameter cosine function with a period equal to the resampled pixel width. A transfer function model for interferometric 
microscopes that incorporates this function, along with an ITF that includes aliasing effects and variable numerical 
aperture (NA), wavelength, and obscuration factor, is used to fit to the BPRA PSDs measured by an interference 
microscope for a range of objective and zoom lens magnification combinations.  

 
Keywords: Instrument transfer function, ITF, metrology, standard calibration artifact, binary pseudorandom array, 
power spectral density, autocovariance 
 

1. INTRODUCTION  
Binary pseudo-random array (BPRA) artifacts [1-3] are useful in calibrating the instrument transfer function (ITF) of 
many precision metrology instruments, including phase-measuring interferometers and microscopes used to measure 
surface topography [4-11]. The binary height distribution of these artifacts has the mathematically useful property of 
having a white-noise power spectral density (PSD) over the spatial frequency range defined by the minimum feature size 
(MFS) and the total artifact size, which can be several thousand times the MFS. The flat white-noise spectrum makes it 
easy to deconvolve the ITF from the intrinsic BPRA spectrum. However, when a BPRA is actually used to calibrate an 
instrument, the intrinsic pattern features never align exactly with the boundaries of the camera pixels [12]. The BPRA 
features are resampled onto a grid defined by the magnified camera pixel array. This upsets the mathematically precise 
white-noise spectrum by introducing correlations between adjacent pixels in the measurement device. These correlations 
change the intrinsic flat white-noise PSD into a simple cosine function whose properties depend only on the ratio of the 
MFS to the magnified pixel size. The cosine function PSD can then be used to deconvolve the ITF from the measured 
PSD. We illustrate this by deconvolving BPRA artifact PSDs measured by an interference microscope with model 
microscope ITFs. The microscope model developed in an earlier paper [12] includes the resampled cosine PSD with 
adjustable parameters: numerical aperture, central obscuration, defocus, aliasing, and wavelength. The measurements are 
made on a 2D array artifact [13], and the average 1D PSD is computed by averaging the 1D PSDs computed from each 
row in the measured data. This effectively reduces a 2D problem to a 1D problem. We model the resampling of a 1D 
binary pseudo-random grating (BPRG) sequence by a detailed analysis of the autocovariance function (ACVF), averaged 
over subpixel shifts to account for non-isoplanatic nature of the digital imaging process. 
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2. RESAMPLING  
2.1 Base sequence definition 
The BPRG used in the present simulations is an n=14,maximum length pseudo random sequence (MLPRS) with a cycle 
length of 2n -1 = 16383 points, computed according to the method in Koleske and Sibener [2]. Each element is either a 1 
or 0, and there is one more “1s” than there are “0s” for a duty cycle of effectively 50%. The mean of this sequence is 
0.500031.. Subtracting this mean from each element, the root-mean-square value is exactly 0.500. This result is 
generally true for other binary pseudo-random sequences generated from other distributions as long as the duty cycle is 
near 50%. Figure 1 illustrates the first 50 points in the basic source sequence for n=14, along with its autocovariance 
function after subtracting the mean from each source element.  We use the discrete ACVF as defined by Koleske[2] with 
an additional normalization factor 
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which is a cyclic autocovariance where the yN+i term is equal to yi. There are always N terms in the sum, and the lag 
index, j, goes from 0 to N-1.  The normalized ACVF consists of a single non-zero point at lag = 0 with all others reduced 
by a factor of N, which makes them essentially zero. The PSD computed from this mathematical sequence is a straight 
line, which is the characteristic of a white noise sequence. The single non-zero point at j = 0 in the ACVF confirms that 
this is indeed a white noise distribution. The value of the 0-lag point is the mean-square of the sequence. If the points in 
the sequence are scaled by some physical height value, Z, the mean value becomes Z/2 and the mean-square is Z2./4 with 
the root-mean-square (RMS) equal to Z/2. The ACVF plot on the right in Fig. 1 is for the zero-mean sequence, where the 
mean value (almost exactly 0.500) is subtracted from each source point. 

 
Figure 1- First 50 points in the BPRG sequence (left) and the corresponding ACVF (right) for parameters n=14 and 
M=1139. The ACVF has a single non-zero value at zero-lag, indicative of a white noise sequence. All others are reduced by 
a factor of N. 

Actual BPRG artifacts are produced by a lithographic process where each feature is a multiple of some minimum feature 
size (MFS) [13]. The artifacts that we are simulating have a MFS of 400 nm. The features are arranged on a grid with a 
spacing of 400 nm. When we view these features through a microscope with a camera, the artifact’s features are imaged 
onto the camera’s pixel grid with some magnification factor. In general, the grid of the camera does not align perfectly 
with the grid of the BPRG. The case of oversampling was discussed in a previous paper [12]. Here we consider in more 
detail the case of undersampling, where the camera pixels are larger than the magnified BPRG MFS. When the MFS grid 
is undersampled, the signal recorded in each camera pixel combines the contributions of 2 or more adjacent features in 
the BPRG.  

3. AUTOCOVARIANCE OF AN UNDERSAMPLED BPRG ARRAY 
In the previous paper[12], simulations of PSDs and ACVFs computed from resampled 1D binary pseudo-random grating 
sequences led us to postulate that for undersampled data, where the resampling grid pixels are larger than the MFS of the 
BPRG, a simple two-parameter cosine function fits the computed 1D PSD: 



 
 

 
 

 		S1 fx( ) = A+Bcos 2π D fx( )   (2)  

where D is the resampled pixel size and fx is the 1D spatial frequency. In the current paper, we confirm that this function 
is, indeed, the proper analytic solution to the resampling problem by deriving the results for A and B from an analysis of 
the autocovariance function. To achieve this result, we make use of the Wiener-Khintchine theorem [14] that connects 
the Fourier transform of the ACVF to the PSD of the sequence. For simplicity, we analyze the one-dimensional case for 
a BPRG sequence. Extension to the 2D case follows naturally and will be discussed in a future publication. We restrict 
the analysis to the undersampled case, where the resampled pixels are larger than the MFS. This insures that there will 
be no nulls in the PSD of the resampled data that will cause the MTF reconstruction function to blow up with divide-by-
zero noise [12]. 

Complicating the analysis is the fact that sampling an image with a discrete array of pixels is a non-isoplanatic, non-
shift-invariant process. The response of the system depends on the position of the image within a pixel [15, 16]. We 
employ the method in Park and Schowengerdt [17] that computes the ensemble average over all possible subpixel 
positions to define an average MTF for the non-isoplanatic system. Our analysis is valid for resampled pixels up to twice 
the base pixel size, i.e. for values of ε between 0 and 1, where ε is the fractional increase is size of the resampled pixel 
over the base minimum feature size. However, empirical results show that it is valid for all values of ε beyond 1. As 
shown in an earlier paper [12], it will be more convenient to express the final result for the A and B coefficients in terms 
of the ratio of the base MFS to the resampled pixels size, k = d/D. In this case, undersampled pixels have k-values that 
range from 1 to 0. 

3.1 ACVF lag = 0 term, c0 
We start with an N-point random sequence of 1’s and 0’s that has a duty cycle of about 50 %. As discussed above, the 
statistics of this type of MLPRS sequence are such that the mean is 0.5 and the root-mean-square (RMS) is also 0.5. In 
the case of a physical realization of this sequence with features that have a height of Z, the mean and RMS are both 
equal to Z/2. Figure 2 illustrates the starting point for the analysis. The base BPRG features, with minimum feature size 
set to unity, are shown in blue, with values indicated by the xi. The value of xi is either 1 or 0, randomly distributed. The 
camera pixels, demagnified by projecting through the objective lens onto the BPRG, are shown in red, with values yj. 
The width of each resampled pixel is given by the quantity 1+ε, where ε is the fractional increase in size over the base 
MFS. The value of yi depends on the contributions from the base pixels that lie under it.  

 
Figure 2 – Starting point for ACVF calculation. The source BPRG pixel grid is shown in blue; the resampled grid is in red. 
The value of each source pixel is xi, that of the resampled pixels is yj. The resampled pixels are larger than the MFS by the 
fraction ε. 

With reference to Fig. 3, the first quantity that we need to compute is the ensemble average value for the autocovariance 
term with lag = 0, c0 = <y0 y0>, averaged over all possible pixel shift values of P0, e.g. for values of α between 0 and 1. 
Without loss of generality, we start with the two grids coincident at position 0. For this starting configuration, we see 
that the value of y0 is given by an average of the value in x0 and the fractional part in x1: 

 
		
y0 =

1
1+ε x0+εx1( )   (3) 

Now we need to shift the resampled grid by a fractional distance, α, across the base pixel and see how each base x-pixel 
contributes to the resampled y-pixels. This results in a piecewise function defined by various breakpoints, as shown in 
Fig. 3. We notice that as α increases from 0 in Fig. 3(a), only the first 2 base pixels, x0 and x1, contribute to the y0 value, 



 
 

 
 

until the right side boundary of y0, P1, reaches a breakpoint at 2,in Fig. 3(b). This occurs when α  =  1−ε. For larger 
values of α, base pixel x2 also contributes to the y0 value in Fig. 3(c). So the expression for y0 becomes a piecewise 
function of α: 
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Figure 3 – Contributions of the x-pixels to y0 as the resampled grid is shifted by α across the MFS pixel, x0. (a) shows the 
shift of P0 away from the initial position at 0 by a small fraction α. (b) shows the first breakpoint when P1 reaches 2 when α 
= 1-ε. (c) shows the final configuration when P0 reaches the right edge of base pixel x0 for α = 1 

We make use of a commercial mathematical analysis program to compute the expectation value <y0y0> as a function of ε 
and α and then average over all possible α values. Note that the product <y0y0> is the mean square of the resampled 
array, and is also the lag = 0 element of the autocovariance function. Performing the multiplications for the two 
piecewise elements, eliminating the cross terms whose expectation values are zero, and substituting in the Z2/4 value for 
the <xixi> terms, we get the following piecewise expression: 
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Now we average over all possible α values and end up with a single expression for the mean square of the y0 term as a 
function of ε or k: 
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In Eq. (6) we have substituted in the value of k in terms of ε, where d is the base ground rule pixel size and D is the 
resampled pixel size: 
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Recall from above the c0 is the mean-square of the resampled BPRG, so we can write the RMS of the resampled 
sequence in terms of the intrinsic feature height, Z: 

 
		
rmsZk = Z

k 3−k( )
12

  (8) 

Note that this RMS value is before the optical and pixel MTFs are applied. It is not what is seen in a measurement of the 
BPRA. 

3.2 ACVF lag =1 term, c1 
In a similar way, we can compute the ensemble average of the lag =1 autocovariance term. This requires expressing the 
neighboring y1 term as a function of α and ε. The piecewise functions now depend on the value of ε. As can be seen in 
Fig. 4 for ε ≤ 0.5, P2 does not go beyond 4. So there are only 2 cases to consider for y1: y1A for ε ≤ 0.5, and y1B for ε > 
0.5. 

 

 

 
Figure 4 – Breakpoints for defining the piecewise function of α and ε ≤ 0.5 for case y1A. P2 does not go beyond 4 for this ε. 
(a) Starting configuration for α = 0. (b) First breakpoint when P2 reaches 3. (c)  Second breakpoint when P1 reaches 2. 

For y1A with ε ≤ 0.5, there are 2 breakpoints in the piecewise function: the first when P2 reaches 3, and the second when 
P1 reaches 2.  P2 does not go beyond 4, so there is no x4 contribution.  The 3 piecewise components when ε < 0.5 are: 

(a) 

(b) 

(c) 
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Figure 5 – Starting configuration for y1B for ε > 0.5. For this case, P2 does go beyond 4, so there is a contribution from x4. 

For ε > 0.5, the starting configuration for y1B for α = 0 is shown in Fig. 5. As α increases from 0, the breakpoints occur 
when P1 reaches 2 and then when P2 reaches 4. The piecewise contributions to y1B are: 
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The expressions for the <y0 y1> expectations are more complicated now. When the piecewise expressions for y0 are 
multiplied by the expressions for y1 and the expectation values for the x-terms are substituted in, the result simplifies to 
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This expression for the expectation of the lag = 1 term is the same for both ε ranges. So we can integrate over α to get the 
average expectation as a function of ε, or k: 
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The above analysis is tailored specifically to a BPRG that is a maximum length pseudo-random sequence (MLPRS) with 
specific statistical properties[2].The same analysis holds for other binary statistical distributions. However, the relation 
between the mean square and the peak-to-valley (PV) height of other distributions may not be the same as for the 
MLPRS. For this reason, the numerical factors in the c0 and c1 expressions may need to be adjusted. 

4. PSD ANALYSIS 
4.1 PSD from ACVF 
Now that we have the analytic form of the ACVF terms for the resampled BPRG, we need to relate them to the 
parameters that describe the PSD for this sequence. From the definition of the cyclic ACVF in equation (1), we note that 
cj = cN-j and, extending to negative lags, c-j = cj. For the resampled sequence, there are only 3 significant non-zero 
autocovariance coefficients; c0, c1, and c-1, where c1 = c-1. Now we can apply the discrete form of the Wiener-Khintchine 
theorem [14] to compute the 2-sided PSD from the ACVF: 
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where D is the resampled pixel width and f ranges from –fNy to fNy, where the Nyquist frequency is given by fNy = 1/2D. 
The ideal PSD is a cosine function, as we surmised from earlier results [12]. In the form in Eq. (13), it is a 2-sided PSD, 
where the frequency encompasses both positive and negative frequencies. To be useful as input to the MTF model, the 2-
sided PSD needs to be converted into the 1-sided form of equation (2) by folding the negative frequencies over into the 
positive frequencies. Because the 2-sided PSD of a real number sequence is symmetric about the DC term, folding 
amounts to doubling the coefficients of the positive frequencies and dropping the negative frequencies. Special 
consideration needs to be given to the Nyquist frequency point when the number of points in the input 1D array is even. 
In this case, the Nyquist point does not get doubled. The DC point never gets doubled. We then have for the 1-sided PSD 
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Substituting the values of c0 and c1 from equations (6) and (12), we get the cosine function coefficients in terms of the 
base BPRG parameters and the resampling factor, k: 
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These analytic one-sided coefficients define the nominal PSD for a resampled BPRG artifact. As we will see in Sec. 5, it 
will be necessary to extend the valid frequency range beyond the Nyquist frequency to account for aliasing effects in 
actual measurements. 

When we use the analytic expression for the PSD of a resampled BPRG in the MTF model, we normalize it to unity at 
f = 0 by dividing each coefficient by the sum of the two coefficients. The normalized coefficients take on a particularly 
simple form as a function of k: 
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We note that for undersampled pixels that become significantly larger than the base BPRA MFS, or conversely, when 
the BPRA MFS is smaller than the demagnified camera pixels, k approaches 0. In this case, the cosine function flattens 
out, becoming more white-noise-like. The high frequency content in the PSD is then limited by the resampled pixel size 
and cuts off well before the inherent BPRA limit. To optimize the ITF reconstruction process, we try to select a BPRA 
minimum feature size that is less than a factor of 2 smaller than the projected pixel size. This gives us maximum spatial 
frequency coverage over the BPRA bandwidth.  

4.2 PSD of a resampled sequence: simulation 
To illustrate the resampling process, we start with the BPRG shown in Fig. 1 and assign a base pixel width of 400 nm to 
each point. Then we resample onto a 450 nm grid. The k-factor for this simulation is 400/450 = 0.888. The resampled 
sequence and its ACVF are shown in Fig. 6 along with the 2-sided PSD computed from the resampled points. One can 
see that the regular pattern of 1’s and 0’s seen in Fig. 1 becomes a more randomized pattern owing to the averaging over 
adjacent pixels in the resampling process.  

Note that the question about the randomness (uniformness) of the distribution of the shift values of a resampling process 
(assumed in the derivation of Eqs. (6) and (12)) directly relates to a more general mathematical question: “To what 
extent are arithmetical progressions of fractional parts stochastic?” [18]. An answer to this question is given in the so 
called ‘Fractional Parts Equipartition Theorem’ originally proved by H. Weyl in the beginning of the last century [19]. 
Weyl’s Theorem states (in application to the resampling transformation problem formulated above) that the sequence of 
residues of an arithmetic progression, is statistically uniformly distributed if its steps D is incommensurable with d, 
which simply means that the ratio 1/k is irrational. However, it can also be shown to be approximately valid, for 



 
 

 
 

example, empirically, for the case considered in this paper, where the shift values are uniformly distributed over the 
parameter α. A deeper discussion of this question is beyond the scope of the present paper and will be provided 
elsewhere. 

The ACVF points show that only the lag 0 and lag 1 (and hence the lag N-1) terms are significantly greater than 0. The 
other lag terms are no longer constant, but have small values fluctuating around zero. This contributes to the noise seen 
in the periodogram estimate of the PSD points shown in red. However, when the noisy PSD is smoothed by applying a 
10th order Gaussian filter, the cosine function nature of the PSD becomes evident. When we fit the unfiltered points to 
the cosine function defined in Eq. (2), we get the curve plotted over the other two in the PSD frame. The values of the fit 
coefficients indicated on the plot are for the 2-sided PSD fit. When we double them for the 1-sided PSD, we get Afit = 
0.14214 and Bfit = 0.0573. Using the results of our analytic resampling analysis in Eq. (15), with Z = 1 and D = 0.400, 
the analytic values for ensemble average values of A and B are 0.1407 and 0.0592. The small differences between the 
analytic and fit coefficients are due to the fluctuations in the single realization of the ensemble.  

 

 
 

Figure 6 – (Top left) The first 100 points of a 400 nm BPRG resampled to a 450 nm grid. (Top right) The 50 initial lag 
points in the ACVF of the resampled sequence. The low-level points are no longer constant. (Bottom) 2-sided PSD 
computed from the sequence Z-values. The red points are the raw PSD values; the blue curve is smoothed by an order 10 
Gaussian filter. The smooth curve is a fit of the raw points to an AB cosine function in the form of Eq. (2). 

5. ITF MODEL WITH BPRA MEASUREMENTS 
In the earlier paper [12], we modeled the ITF of a interferometric microscope as the product of the squares of the lens 
MTF and the pixel sampling MTF, with factors added for a central obscuration, defocus, and aliasing. We used this 
model to reconstruct the PSD of measurements of actual BPRA artifacts. At the time, we assumed that the spectrum of 
the BPRA was that of the ideal base array without any effects of resampling, i.e. a constant uniform horizontal line. As 
such, the ITF model did not fit the observed PSDs very well, especially at high frequencies for k-values close to 1. Now 
that we know how resampling affects the intrinsic spectrum of a measured BPRA, we can apply the ITF model to the 
measurements with improved results. The details of the ITF model for the interferometric microscope are presented in 
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the earlier paper[12] and will not be reproduced here. To summarize the process, we model the expected PSD that we 
should see for a given BPRA with a given microscope objective magnification and compare it to the measured PSD by 
dividing the measured by the model. Deviations from unity tell us how well our model describes our knowledge of the 
actual ITF. However, just removing the resampled BPRA PSD from the measured PSD gives the ITF, independent of 
any microscope model. Knowledge of this ITF will allow one to reconstruct the frequency content of objects viewed 
with this objective magnification combination. 

The instrument used in the present work is a commercial optical surface profiler based on an interference microscope in 
the Advanced Light Source (ALS) X-Ray Optics Laboratory (XROL) [20]. This microscope has a 1200 x 1600 pixel 
camera with 8.68 µm square pixels, but the current measurements are analyzed on a 1000x1000 pixel subset grid. The 
nominal wavelength of the illumination system is 550nm. Each objective has a numerical aperture (NA) that, along with 
the wavelength, determines the maximum spatial frequency transmitted by the system, . The effective 
demagnification factor, given by the product of the objective magnification and the zoom lens parameter, determines the 
size of the camera pixels projected onto the BPRA object. We use demagnifications that provide projected pixel sizes 
that are greater than the MFS of the BPRA to insure that we are undersampling the artifact. 

5.1 20x 1x with 0.4 µm BPRA 
The averaged 1D PSD from the measurement of the 0.4 µm BPRA pattern with the 20x objective without additional 
zoom magnification is shown as the green curve in Figure  The resampled pixel size for this measurement is 0.434 µm., 
and the k-factor is k = 0.922. The model MTF with the nominal NA and wavelength, and with no added obscuration, 
defocus, or aliasing factors, is shown in the plot on the left as the orange curve. The pixel sampling MTF is the topmost 
red curve and the lens MTF with no aliasing applied is the blue curve. The nominal lens cutoff frequency is 1.45 µm-1, 
which is just beyond the Nyquist frequency, 1.15 µm-1, so we expect a small amount of aliasing to be required. The ratio 
of the measured to modeled PSDs is shown in the points on the right. One can see that the ratio does not lie along a 
horizontal line at 1.0. The orange model MTF curve lies above the green measured PSD over the entire Nyquist 
frequency range. The dashed vertical red line indicates the Nyquist frequency for this resampled pixel size. 

 
Figure 7 – (Left) 20x 1x measured PSD (green) with nominal model MTF (orange) without including the cosine function 
factor and aliasing effects. The red and blue curves are the MTF contributions of the pixel size and lens, respectively. 
(Right) Measured PSD normalized by the combined nominal lens (without any obscuration) and pixel sampling MTFs.  

If we model this measurement without the cosine function PSD, i.e. with the flat, straight white noise PSD, the best we 
can do to fit the data is to add an obscuration fraction of 0.23 to the model, keeping NA = 0.4 and λ = 0.550 µm. This 
result from the previous work [12] is reproduced in Fig. 8. One can see that the “no resampling” model overestimates the 
ITF at high frequencies, so that the ratio drops significantly from unity. 
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Figure 8 – Earlier result of ratio of measured PSD to modeled PSD without including the cosine function for the BPRA 
resampling, from [12]. The previous ITF model overestimates the ITF at high frequencies. 

When we add aliasing to the model with the cosine function PSD and optimize the wavelength and obscuration 
parameters, we get a much better fit to the measured PSD, shown in Fig. 9. The parameter values after optimization are λ 
= 0.598 µm, obscuration fraction = 0.185, and NA = 0.4, with the lens cutoff frequency flens = 1.337 µm-1. This is the best 
we can do for this objective-zoom combination. The small deviation from unity in the restored PSD is still not exactly a 
straight line, indicating our model is incomplete. However, if we just correct the measured BPRA PSD with the cosine 
function, we are left with the actual ITF of the microscope with this objective-zoom combination, which can then be 
used to restore the spatial frequency content of other observations.   

Note that the optimized wavelength, 0.598 µm, differs from the nominal wavelength of the optical profiler, 0.550 µm. 
The source is a high intensity LED with a spectral bandwidth of 80 nm [21]. We allow wavelength to be an adjustable 
parameter since we do not know what the effective “average” wavelength will be after passing through the 
interferometer optics. The profiler is operated in coherence scanning mode, where the maximum of the envelope of the 
interference modulation determines the height in each pixel. For this reason, defocus is not considered in the model, as 
the surface is always in focus at the maximum modulation height. 

  
Figure 9 – The 20x 1x restored PSD after adding aliasing to the model and optimizing the wavelength and obscuration 
factor. The orange model curve is practically indistinguishable from the green measured PSD points. The measurement-to-
model ratio (right) is now closer to unity over the full frequency range. 



 
 

 
 

5.2 10x 1x with 0.4 µm BPRA 
The 10x 1x magnification model components are shown in Fig. 10. The nominal PSD (magenta) is the cosine function 
appropriate for the k = 0.461 resampling, where the base BPRA MFS is 400 nm and the resampled pixel size is 868 nm. 
The MTFs for the pixel and lens attenuations are shown in red and blue. One can see that the lens cutoff extends almost 
out to twice the Nyquist frequency, so we expect aliasing to be a significant contribution to the model fit. The Nyquist 
frequency is 0.576 um-1 (red dashed line) and the lens cutoff is at 1.09 um-1 (blue dashed line).  

 
Figure 10 – 10x 1x model components for nominal starting parameters: NA = 0.30, λ = 0.550 µm, no obscuration, 400nm 
MFS and 868nm resampled pixel size. The nominal cosine PSD for k = 0.461 is shown as the magenta curve. 

Figure 11 shows the model curve (orange) with the nominal microscope parameters. One can see that the model lies well 
above the measured PSD. 

  
Figure 11 – {Left) 10x 1x measured PSD (green) with nominal MTF starting parameter curves. The lens MTF (blue curve 
on left) includes the aliased component. (Right) Ratio of measured-to-model PSDs for nominal starting parameters, showing 
the departure from unity over most of the frequency range. 

When we optimize the fit parameters, we get the results shown in Fig. 12. The NA changes from 0.30 to 0.2641, the 
wavelength changes from 0.550 µm to 0.558 µm, and a slight amount of obscuration is added, 0.0137. The model curve 
(orange) now lies mostly on top of the measured PSD. However, the fit is not perfect, as shown by the departures from 
unity in the ratio curve in Fig. 12. The nature of the ratio curve is different from the 20x1x result in Fig. 9. This indicates 
again that our model does not include all the parameters necessary to fully describe the microscope ITF. 



 
 

 
 

 

 
Figure 12 – 10x1x results after optimizing the model parameters. The model curve (orange) now lies mostly on top of the 
measurement PSD (green). The ratio of measurement-to-model in the bottom frame still shows departures from unity. 

5.3 10x 2x with 0.4 µm BPRA 
The 1x zoom configuration does not add an additional magnification element to the objective lens. The 2x zoom 
introduces an additional element into the optical path of the objective lens. For the 10x2x combination, the magnification 
is the same as for the 20x1x configuration. The resampled pixel size is 0.434 µm and k = 0.922. What differs from the 
20x1x case is the NA: we assume the nominal NA should be the same as for the 10x1x case, NA = 0.30. This puts the 
lens cutoff frequency, 1.09 µm−1, just before the Nyquist frequency, 1.15 µm−1. The lens acts as a low pass filter in this 
case, so we get no aliasing of higher frequencies. We use the nominal NA, 0.30, along with the 0.550 µm wavelength 
and no obscuration as the starting point for the analysis. The model is shown with the measured PSD in Fig. 13. It is 
clear from the figure that the measured PSD has a cutoff frequency that is significantly lower than that of the nominal 
lens cutoff. The high frequency region of the measured PSD appears to drop off into the noise level. We need to modify 
the analysis to remove the noise and limit the model fitting to the region below the redefined lens cutoff frequency that 
depends on a variable NA and wavelength. 



 
 

 
 

 
Figure 13 – Model fit to the nominal parameters for the 10x2x magnification combination. The actual lens cutoff appears to 
be at a significantly lower frequency than nominal. 

Figure 14 shows the baseline-subtracted measured PSD curve for the 10x2x case. This serves as the starting point for the 
modeling. We need to adjust the NA and wavelength to match the observed cutoff frequency.  

 
Figure 14 – The blue points are the result of subtracting a constant baseline level from the measured green curve.  

The optimized parameters that produce the best fit shown in Fig. 15 are NA = 0.234, λ = 0.524 µm with no obscuration. 
The cutoff frequency is now 0.893 µm−1, significantly lower than the expected 1.09 µm−1.  The ratio of measured-to-
model PSDs on the right in Fig. 15 indicates that the model underestimates the measured PSD over most of the range. 
But some of this may arise from uncertainty in how the low frequency region is normalized because of the unusual low 
frequency behavior of the measured PSD, as seen in the upper right frame of Fig. 15. In any case, the BPRA 
measurement clearly shows the deviation of the actual ITF from the nominal ITF for this magnification combination. 
Why the model results for the 10x objective NA and the lens cutoff frequency with the 2x magnification zoom differ so 
much from the nominal values remains unclear. 



 
 

 
 

  

 
Figure 15 – Model curves fit to the 10x2x measured PSD (green). The fit is restricted to the frequency range below the 
apparent cutoff at 0.893 µm−1 after the baseline is subtracted. The model fit for this magnification combination with the 2x 
zoom added is not as good as for the others without the zoom lens. 

6. CONCLUSION 
Binary pseudo-random array artifacts have been shown to be useful in measuring the ITF of a multitude of metrology 
instruments. However, the theoretical white-noise spectrum of the intrinsic array needs to be modified when employed in 
systems that image the base artifact onto a grid with pixels larger or smaller than the minimum feature size of the 
artifact. We have shown that for undersampling, where the resampled pixels are larger than the base MFS, the intrinsic 
artifact white noise spectrum becomes a simple cosine function. The measured spectrum of an artifact can then be 
normalized by the cosine function appropriate for the resampling parameter, k, which then results in the ITF of the 
instrument. This microscope model with this modified BPRA PSD appears to fit some of the interferometric microscope 
measurements well with adjustments to some of the parameters. Other objective combinations require significant 
adjustments.  Deviations in the measured-to-model PSDs indicate that we have not included all parameters in the model 
that affect the complete ITF. 
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