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ABSTRACT
Transient and frequency-dependent conductivity measurements on excised brain-tissue lesions from epilepsy patients indicate that sodium
cations are the predominant charge carriers. The transient conductivity ultimately vanishes as ions encounter blockages. The initial and
final values of the transient conductivity correspond to the high-frequency and low-frequency limits of the frequency-dependent conduc-
tivity, respectively. Carrier dynamics determines the conductivity between these limits. Typically, the conductivity rises monotonically with
increasing frequency. By contrast, when pathology examinations found exceptionally disorganized excised tissue, the conductivity falls with
increasing frequency as it approaches its high-frequency limit. To analyze these measurements, excised tissues are modeled as mixtures of
“normal” tissue within which sodium cations can diffuse and “abnormal” tissue within which sodium cations are trapped. The decrease in
the conductivity with increasing frequency indicates the predominance of trapping. The high-frequency conductivity decreases as the rate
with which carriers are liberated from traps decreases. A relatively low conductivity results when most sodium cations remain trapped in
“abnormal” brain tissue, while few move within “normal” brain tissue. Thus, the high densities of sodium nuclei observed by 23Na-MRI in
epilepsy patients’ lesions are consistent with the low densities of diffusing sodium cations inferred from conductivity measurements of excised
lesions.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0041906

I. INTRODUCTION

Brain tissue of 67 epilepsy patients at the UCLA medical cen-
ter was excised from a variety of lesion locations. Each freshly
excised sample was subjected to (1) pathology examination, (2) mea-
surement of the diffusion MRI [spin-echo nuclear magnetic reso-
nance (NMR)] of its hydrogen nuclei, and (3) measurement of its
frequency-dependent conductivity σ(ω). Qualitative changes in σ(ω)

occur for excised samples whose pathology examination finds to be
exceptionally disorganized. The following five paragraphs summa-
rize the previously published experimental findings. The remain-
der of this paper develops a theoretical framework with which to
understand these experimental results.

Transient currents induced by application of dc electric fields
to cm-sized samples decayed in about 100 s as charge trans-
port stopped at cellular blockages separated by about 0.5 mm.1 In
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addition, the conductivity measured between 6 and 1000 Hz typi-
cally rises gently with increasing frequency as reversals of the applied
electric field increasingly enable drifting charges to avoid block-
ages. This charge transport was attributed to the slow motion of
solvated ions, primarily solvated sodium cations.1 A density of sol-
vated sodium cations of 2.5 × 1025 ions/m3 moving with a diffusion
constant of 10−9 m2/s generates a room-temperature conductivity of
about 0.16 S/m.1

Solvation occurs as oxygen atoms at the apex of the sur-
rounding water molecules orient themselves toward cations.2 Thus,
motion of solvated ions is associated with the reorientation of sur-
rounding water molecules. Diffusion MRI (i.e., spin-echo NMR)
performed on excised samples’ hydrogen atoms yields a diffusion
constant of about 10−9 m2/s.3 The value of this diffusion constant
is comparable to that inferred from conductivity measurements of
solvated sodium cations. This result suggests that the diffusion con-
stant obtained from these diffusion-MRI measurements monitors
the reorientation of water molecules associated with the motion of
solvated cations.1

In most instances, the conductivity rises as the applied fre-
quency was increased, ∂σ(ω)/∂ω > 0. At high enough frequencies
(typically >100 Hz), the frequency dependence of the conductivity
weakens as most diffusing cations avoid blockages. The conductiv-
ity then simply becomes proportional to the product of the den-
sity of diffusing ions and their diffusion constant. Distinctively, the
relative variations in the measured conductivities were an order
of magnitude greater than those of diffusion constants obtained
from diffusion-MRI measurements.4 Thus, changes in the ionic con-
ductivity are overwhelmingly caused by changes in the density of
diffusing ions.4

Although the conductivities of samples of excised brain tissue
usually increase slowly with increasing frequency, the conductivities
of some samples decrease with increasing frequency, ∂σ(ω)/∂ω < 0,
at high frequencies (cf. Fig. 1 of Ref. 5). Furthermore, the magni-
tudes of conductivities at 100 Hz of these samples were somewhat
lower than those of typical samples. As exemplified in Fig. 2 of
Ref. 5, pathology investigations indicated that samples of brain tissue
whose conductivities manifest this “anomalous” frequency depen-
dence were especially disorganized.5 In particular, gray matter is
extremely sparse and inhomogeneous, while white matter is grossly
segregated.

Thus, measurements of the frequency-dependent conductivity
imply that the densities of conducting sodium cations are especially
low for especially disorganized brain tissue excised from epilepsy
patients. By contrast, unusually, high concentrations of sodium
atoms measured in vivo by 23Na-MRI are used to identify the lesions
of epileptic patients.6 However, 23Na-MRI provides no informa-
tion about the mobility of the sodium atoms it identifies.7 An aim
of this paper is to address the relationship between the frequency-
dependent sodium-cation conductivities σ(ω) measured on excised
epileptic human brain tissue and sodium concentrations in epileptic
lesions as measured by 23Na-MRI.

To analyze published measurements, we model excised sam-
ples as mixtures of “normal” tissue and “abnormal” (severely dis-
organized) tissue. Normal tissue generally exists at the margins
of excised tissue and also may be included within its lesion. At
its most extreme (Ra = 0 in the formulas of Sec. II), the model
developed in Sec. II envisions sodium cations to be mobile within

normal tissue and trapped within abnormal (severely disordered)
tissue. The frequency-dependent ionic conductivity is then primar-
ily governed by two electric-field-induced rates. First, Rn is the rate
at which sodium cations in the normal material migrate to blockages
at which they are stopped. Second, Rl is the rate at which ions are
liberated from traps in the abnormal material to then move within
the normal material. We find that the sign of the slope of the con-
ductivity with respect to the applied frequency, ∂σ(ω)/∂ω, in the
high-frequency limit just depends on the ratio Rl/Rn and on f , the
fraction of ions initially trapped in the abnormal material. For ineffi-
cient transfer of ions from abnormal tissue into normal tissue, Rl/Rn
≪ 1, the anomalous frequency-dependence of the high-frequency
conductivity, ∂σ(ω)/∂ω < 0, only occurs when most ions are ini-
tially trapped in abnormal tissue, f → 1. Concomitantly, relatively
few sodium cations initially move through normal tissue.

In summary, sodium-cation conductivities fall with increasing
applied frequency to especially low values in the severely disorga-
nized excised brain tissue excised from the most severely affected
patients.5 The calculation in Sec. II implies that the density of
sodium cations that then move in normal excised brain tissue has
decreased. However, the total density of sodium nuclei measured by
23Na-MRI increases with epilepsy’s severity.6 In combination, these
results imply that the density of trapped sodium cations rises with
the severity of the structural disruptions associated with epilepsy.
Discussion of the uncertainties and limitations of this simple model
is relegated to Sec. III.

II. CALCULATION
We divide brain tissue into two categories, “normal” (less etio-

logically related) and “abnormal” (more etiologically related), based
on the severity of their structural disruptions. Most generally, ions
can move within each category until being blocked by their respec-
tive cell structures. Thus, each category is treated as composed
of polarization centers defined by their respective blockages. Ions’
motion within normal and abnormal polarization centers in addi-
tion to transfer from abnormal to normal tissue generates their
frequency-dependent conductivities.

The application of an electric field at t = 0 initiates processes
that alter the probabilities of cations (1) moving in the normal mate-
rial (Pn), (2) moving in the abnormal material (Pa), and (3) being
stopped and bound at blockages (Pb). In particular, three master
equations govern the temporal evolution of the occupation proba-
bilities for cations moving in normal tissue, in abnormal tissue, and
being stopped at cellular blockages,

dPn(t)
dt

= RlPa − RnPn, (1)

dPa(t)
dt

= −RlPa − RaPa = −(Rl + Ra)Pa, (2)

and
dPb(t)

dt
= RnPn + RaPa. (3)

Here, Rl represents the rate characterizing the electric-field-induced
liberation of cations from being trapped within abnormal structures.
Liberated cations then transfer to normal matter within which their
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motion is relatively rapid. The rates with which cations move to
blockages within normal and abnormal structures are denoted by
Rn and Ra, respectively.

The first-order linear differential equations [Eqs. (2) and (1)]
have the respective solutions as follows:

Pa(t) = A exp[−(Rl + Ra)t] (4)

and

Pn(t) = B exp(−Rnt) + A( Rl

Rn − Rl − Ra
) exp[−(Rl + Ra)t]. (5)

The coefficients A and B are determined from the initial conditions
that Pa = f and Pn = 1 − f at t = 0, where f equals the fraction of
cations initially occupying abnormal tissue and 1 − f equals the frac-
tion of cations initially occupying normal tissue. Then, after some
straightforward algebra, Eqs. (4) and (5) become

Pa(t) = f exp[−(Rl + Ra)t] (6)

and

Pn(t) =
[Rl − (1 − f )(Rn − Ra)] exp(−Rnt) − f Rl exp[−(Rl + Ra)t]

Rl − Rn + Ra
.

(7)

Unlike Eq. (12) of Ref. 5, Eq. (7) includes the possibility of cation
transport through the damaged regions. As such, Eq. (7) reduces to
Eq. (12) of Ref. 5 in the limit that Ra = 0.

The transient ionic conductivity most generally is the sum of
(1) that from mobile cations drifting through regions of normal tis-
sue until they are stopped at blockages and (2) that from mobile
cations drifting through damaged regions until being stopped at
their blockages,

σt(t) = σnPn(t) + σaPa(t). (8)

Here, σn and σa denote the initial ionic conductivities of normal tis-
sue and abnormal tissue, respectively, where they are occupied by
the totality of mobile ions, nc. Specifically, σn = nc(q2/kT)Dn and σa
= nc(q2/kT)Da, where q represents the ion’s charge; k denotes the
Boltzmann constant; T signifies the temperature; and Dn and Da
denote the ionic diffusion constants in normal and abnormal tis-
sues, respectively. Employing Eqs. (6) and (7), the transient ionic
conductivity [Eq. (8)] is written as

σt(t) = σn
[Rl − (1 − f )(Rn − Ra)]exp(−Rnt) − f Rl exp[−(Rl + Ra)t]

Rl − Rn + Ra

+ σa f exp[−(Rl + Ra)t]. (9)

Consider two limiting situations. First, if there are no damaged
regions, f = 0, the transient conductivity, σt(t)∝ σn exp(−Rnt), falls
monotonically with time as solvated cations move through the nor-
mal material until they are stopped at a blockage. Second, if all the
tissue is damaged with no transfer of trapped cations in abnormal
tissue to normal tissue being possible, f = 1 and Rl = 0, the tran-
sient conductivity becomes simply σt(t) ∝ σa exp(−Rat). That is,
the transient current density falls monotonically with time as sol-
vated cations move relatively slowly, Ra≪ Rn, through the damaged
material until they are stopped at blockages.

In between these two extreme limits, the transfer of sodium
cations from abnormal tissue to normal tissue can produce a qualita-
tively different behavior, trap-limited motion through normal tissue.
For example, in the absence of transport in abnormal tissue, σa = 0
and Ra = 0, Eq. (9) becomes

σt(t) = σn
[Rl − (1 − f )Rn] exp(−Rnt) − f Rl exp[−Rlt]

Rl − Rn

= σn[exp(−Rnt) + f
Rn exp(−Rnt) − Rl exp[−Rlt]

Rl − Rn
]. (10)

As indicated in Fig. 4 of Ref. 5, at short times, the transient current
of Eq. (9) rises with time for sufficiently large f with fRl > Rn(1 − f ),

σt(t)→ σn{(1 − f ) + t[−Rn + f
(Rl − Rn)(Rl + Rn)
(Rl − Rn)

]}

= σn{(1 − f ) + t[ f Rl − Rn(1 − f )]}, (11)

even though the transient current of Eq. (10) falls toward zero at
sufficiently long times.

These qualitatively different time dependences of transient con-
ductivity manifest themselves in qualitatively different frequency
dependences of the frequency-dependent conductivity. Indeed, the
frequency-dependent current density is obtained from transforming
the transient current density as follows:

σ(ω) ≡ ω∫
∞

0
dtσt(t) sin(ωt). (12)

Inserting Eq. (9) into this formula and performing the standard
integrations yield

σ(ω) = σn{
[Rl − (1 − f )(Rn − Ra)]

Rl − Rn + Ra
( ω2

Rn
2 + ω2 )

− f ( Rl

Rl − Rn + Ra
− σa

σn
)[ ω2

(Rl + Ra)2 + ω2
]}. (13)

Some limiting values of Eq. (13) can be readily discerned. In
the low-frequency limit, ω → 0, the ac conductivity approaches the
final value, t =∞, of the transient conductivity, where all carriers are
stopped by blockages: σ(0) = 0. In the high-frequency limit, ω→∞,
the ac conductivity approaches the initial, t = 0, value of the transient
conductivity,

σ(∞) = σn(1 − f ) + σa f . (14)

In the absence of ionic transfer from abnormal tissue to normal tis-
sue, Rl → 0, the frequency-dependent conductivity becomes simply
the sum of that from polarization centers in the two types of tissues
as follows:

σ(ω) = σn(1 − f )( ω2

Rn
2 + ω2 ) + σa f [ ω2

Ra
2 + ω2 ]. (15)

Since ionic transport in extremely damaged excised brain tissue is
relatively poor, σa ≪ σn, the ionic conductivity of Eq. (15) becomes
extremely small as the fraction of cations in damaged tissue grows,
f → 1. By contrast, as Rl → ∞, all trapped carriers are readily
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liberated from abnormal tissue and are thereafter free to move
through normal tissue. The effects of trapping then disappear from
Eq. (13) as it reverts to that for all carriers moving through normal
tissue,

σ(ω) = σn(
ω2

Rn
2 + ω2 ). (16)

Figure 1 illustrates the frequency-dependent conductivity of
Eq. (13). The dashed curve shows that the conductivity rises mono-
tonically with increasing frequency in the absence of carriers liber-
ated from traps, Rl/Rn = 0. By contrast, the solid curves depict the
liberation of carriers from traps generating a substantial range of fre-
quencies over which the conductivity falls with increasing frequency.
As evidenced in this figure, the relatively mild frequency dependence
of the conductivity observed experimentally occurs when ω/Rn ≫ 1.

A relatively simple expression for the slope of the relative con-
ductivity ∂ [σ(ω)/σn]/∂[ω/Rn] is straightforwardly obtained from
Eq. (13) in the relevant limits, ω/Rn →∞, with vanishing transport
through abnormal brain tissue, Ra → 0,

∂[σ(ω)/σn]
∂(ω/Rn)

→ 2(Rn

ω
)

3
[(1 − f ) − f ( Rl

Rn
+ Rl

2

Rn
2 )]. (17)

The sign of the slope is given by the sign of the square-bracketed
term of Eq. (17). As illustrated by the dashed curve in Fig. 1, the
slope is positive in the absence of ions being transferred from being
trapped in abnormal tissue to being mobile in normal tissue, Rl
= 0. By contrast, a negative slope is obtained when the second term
within the square brackets of Eq. (17) dominates,

f > 1/[1 + ( Rl

Rn
) + ( Rl

Rn
)

2
]. (18)

Consider the two limiting situations that generate a negative
slope. First, if Rl/Rn ≫ 1, then, as illustrated in Fig. 2, a negative
slope will result even when only a small fraction of ions is ini-
tially trapped in abnormal tissue, e.g., f ≪ 1. Second, if Rl/Rn ≪ 1,

FIG. 1. The relative ionic conductivities, σ(ω)/σn, from Eq. (13) are plotted vs
relative frequency, ω/Rn, for Rl /Rn = 0, 4, and 8. Since these curves all take f
= 0.3 and Ra = 0, their current densities all approach 0.7 in the high-frequency
limit given by Eq. (13).

FIG. 2. The relative conductivities, σ(ω)/σn, from Eq. (13) are plotted vs the rela-
tive frequency, ω/Rn, for increasing fractions of cations being trapped in abnormal
tissue, f = 0.0, 0.1, 0.2, 0.3, and 0.4, with Rl /Rn = 4 and Ra = 0. These curves all
approach 1 − f in the high-frequency limit given by Eq. (13).

then, as illustrated in Fig. 3, a negative slope only results when
a large fraction of ions are initially trapped in abnormal tissue, f
→ 1 − (Rl/Rn). The high-frequency conductivity is then relatively
small since it involves only a small fraction of tissue’s ions: σ(100 Hz)
≈ σn(1 − f ) ≈ σn(Rl/Rn)≪ σn. Rather, most ions are initially trapped
within abnormal tissue.

The second scenario appears most relevant to the observa-
tions reported in Refs. 4 and 5. In particular, (1) negative slopes are
only observed in especially disorganized excised brain tissue and (2)
these tissues’ high-frequency conductivities are lower than those of
samples manifesting positive slopes.5

III. SUMMARY AND DISCUSSION
Biological processes depend on the movement of ions. Ionic

transport generally depends on the quality of the biological struc-
tures within which ions exist. The quality of these structures is
evaluated by pathologists who relate it to the presence of disease.

FIG. 3. The relative conductivities, σ(ω)/σn, from Eq. (13) are plotted vs the rela-
tive frequency, ω/Rn, for increasing fractions of cations being trapped in abnormal
tissue, f = 0.0, 0.3, 0.6, and 0.9 with Rl /Rn = 0.5 and Ra = 0. These curves all
approach 1 − f in the high-frequency limit given by Eq. (13).
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Charge transport studies can be combined with pathology inves-
tigations. For example, anomalous frequency dependences of the
ionic conductivities are observed in brain tissues excised from pedi-
atric epilepsy patients whose pathology examination reveals to be
exceptionally disorganized.5

Here, we employ a simple model to describe changes in the
ionic transport through brain tissue as a function of the extent of
its structural abnormality. In particular, brain tissue is regarded
as the mixture of normal tissue, which supports ionic transport,
and abnormal tissue within which ions are trapped. As is widely
observed, the ionic conductivity of typical freshly excised tissue
increases slowly with the frequency of the applied electric field
that drives cation transport. This behavior is understood as arising
from ions moving until they encounter intrinsic blockages asso-
ciated with cellular structures.1 By contrast, the conductivity of
the unusually damaged material decreases with the frequency of
the applied electric field.5 We attribute this anomalous behavior
to electric-field induced freeing of cations from traps in abnor-
mal tissue, thereby enabling the freed cations to move within nor-
mal tissue. In other words, the unusual frequency dependence of
the conductivity is indicative of trap-limited ionic transport. As
such, the densities of mobile ionic charge carriers are significantly
smaller than the net density of these ions (mobile ions plus trapped
ions).5

Solvated sodium cations are the predominant charge carri-
ers in tissues excised from epilepsy patients.1 Excised tissues from
the most severely affected patients tend to be most disorganized
and to manifest conductivities that fall with increasing applied fre-
quency to especially small (high-frequency) values.5 Nonetheless,
the density of sodium nuclei measured by 23Na-MRI in epilepsy
patients’ lesions is taken as indicative of the severity of this afflic-
tion.6 Taken together, the conductivity and 23Na-MRI measure-
ments indicate that the density of trapped sodium cations rises with
the severity of the structural disruptions associated with epilepsy.
In other words, epilepsy’s etiology in these samples is consistent
with (1) disorganized brain tissue, (2) high densities of trapped
sodium atoms, and (3) low densities of mobile solvated sodium
cations.

The qualitative features of these results are robust. However,
we cannot estimate the fractions of excised brain tissue that should

be regarded as normal and abnormal. Normal and abnormal tis-
sues may be mixed within lesions. Furthermore, surgeons generally
include some surrounding normal tissue when they excise a lesion.
This effect will tend to exaggerate the fraction of normal tissue in
an excised sample and its conductivity. As such, the prevalence
of the distinctive features associated with abnormal tissue may be
underestimated.

Our measurements do not allow us to reliably designate sodium
cations as either intercellular or intracellular sodium cations. How-
ever, we note that the intercellular sodium concentration and vol-
ume fraction of the healthy rat brain (140 mM and 0.2) are quite
different from the intracellular concentration and volume fraction
(10 mM and 0.8).8
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