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Abstract

The dynamical accumulation of angular momentum in the course of a damped
nuc lear reaction is studied within the framework of the nucleon exchange
transport model. The dinuclear spin distribution is described by the mean
yalues and the covariances of the two prefragment spins and their onb{tal an-
gular momentum't. Using an intrinsic coordinate system aligned with the
fluctuating direction of I, the equations of motion for the spin distribution
are derived and'discussed. rThe ultimate transformation to an externally
defined reference frame is also discussed. The evolution of other‘obsérvab]es
and their ceup]iné to the spin variables are included and, by 1ntegrating con-
di%iona] distribufions over all impact parameters, results are obtained for
differential Ccross sections Corresponding to a specified 1055 of relative ki-
netic'energy. The characteristic features of the evolution of thevspin’dis—

tribution is discussed in detail. First the stationary solution of the equa-

tions of motion is considered and its different appearance in the various re-

levant coordinate systems is exhibited. The dynamical evolution is discussed

inyierme'of'the time-dependent relaxation times associated with the six dif-
fenent intnineic modes of rotation in the disphere. Due to the relative
enaflness 6f the window size the positive modes will dominate (for not too
long timee),'resulting in a predominantly positive correlation between the
fragment snin fluctuations. Illustrative applications to cases of

experimental interest are made and a critical discussion is given of other

models addressing angular momentum in damped nuclear reactions.



Introduction

The exploration of damped reactions between atomic nuclei has been a cen-
tral theme 1h nué]ear physics during the 1ést decade. Through this period,
steady impro?ements in instrumentation have permitted the taking of increas-
ihg]y détaiied data and have paved the way for an ever better understanding of
thosé processes.

A damped“nuclear reaction typically proceeds as follows. A heavy pro-
jecti]e nucleus AAwith a kinetic energy of several MeV per nucleon is bom-
barded onto a‘heavy térget huc]eus B. The two nuclei engage in a rather-inti-
mate reactibn duriﬁg which a substantial part of the available energy is lost
from the"re]étive motion and fwo fragments emerge with severely reduced re-
lative kinetic energy. Theﬂfwo fragments are highly excited and subsequently
dispose bf fheir excitation by vafious decay protesses, typically neutron eva-
boéatioﬁ f6110wed by gahma emissién. |

ih addition to the large energy 1055, typically hundreds of MeV, a char-

'éctéfiétic'féathre of a damped reaction is its binary character. Not only is
‘the exit channel binary (prior to the sequential decay processes, of course),
bUf fﬁé emerg{ng-nUCTei exhibit a great resemblance with the original ones
withﬂréspeét to their mass’and charge numbers. This dynamical preservation of
thé‘entranée:asymmetry imp]ies‘that the system must have maintained its bi-
naryzcharécter.tﬁrdughout the reaction phase. Thus, on the one side, damped
nuclear reactions are digtfhguished from the gent]erlquasi-elastic reactions

by their large energy loss, while on the other side, their binary character



distinguishes them from reactions in which a mononucleus is’formed; such as
fast fission or compound nucleus reactions. |

The most important observables characterizing the binary system shortly
after the reaction phase are:

1) the relative motion of the two nuclei, as specified by their relative
kinetic energy E and the direction of relative motion,

2) the partition of the total mass and charge among the two fragments,
as specified by the mass number A and the charge number Z of the projectile-
like fragment, and

3) the state of rotation of the two fragments, as specified by their an-
gular momenta"gA and gB.

In addition, the partition of the residual excitation energy between the two
fragments is: of some interest and in principle susceptible to experimental
determination.

The experimental data can be briefly, and roughly, characterized by -
stating that the multivariate distribution of the above observables resembles
that of a transport process, with the kinetic energy loss TKEL playing the:

" role of the generalized time parameter. That is to say, when the data is or-
ganized with respect to TKEL the distribution of any of the other observables,
for example the mass partition, the angular momentum, or the scattering angle,
develops steadily from being rather narrow for small TKEL to having an appre-

ciable width for the largest values of TKEL. Well known illustrations of this

general feature are the so-called Wilczyinski plots, which display the yié]ds



in the BCM—TKEL plane, and the plots of the element distribution for fixed
- TKEL. A review of damped nuclear reactions can be found in refl).

The discussion of the dynamics of damped nuclear reactions naturally or- .
ganizes itself into a conceptual hierarchy, with the first level concerning
the evolution of the mean values (the first moments of the multivariate
distribution of the observables) and the second level concerning the'
accumulation of the associated fluctuations, as described by the corresponding
covariance matrix.

Early on in the development of the field efforts concentrated on under-
standing the mean evolution. It was demonstrated, within many different
models, that the reactions can be described by classical equations of motion
for two (possibly deformable) spheres interacting via conservative nuclear and
Coulomb forces and squect to a mutual friction force which is responsib}e for
the dissipation of relative energy and the associated accumulation of fragment
spins and excitation. Of special relevance to the discussion in the pkesent
paper 1is the early recognitionz) that the friction acting between the two
nucleides has three distinct components: 1) a radial friction acting on the
relative separation of the two nucleides, 2) a sliding friction acting on the
tangential component of the relative nuclear velocity, and 3) a rol]ihg fric-
tion acting to achieve a sticking configuration in which the entire system
rotates rigidly as a single body. -

Norenberg was the first to address the second conceptual level when de-
monstrating the linear growth of the charge variance with scattering angle for
the ArtTh reaction and arguing for the introduction of transport theoretical

concepts in the discussion of damped nuclear reactions3). He then proceeded



to develop a transport theory for damped reactions, first considering only theh
mass partition degree of freedom, but later on including an increasing number
of observables.

It is important to realize that in a dissipative system the mean evo- -
lution and the growth of the fluctuations are intimate]ylrelated since both .. .
are caused by the same fundamental processes. The friction constants and the
diffusion coefficients should. therefore not be treated as independent quan-.
tities. Furthermore, since again the same fundamental processes effect
changes in several macroscopic variables at the same time, the transport coef-
ficients pertaining to different observables are also mutually related and can
not be treated as independent.

On the basis of “linear response theory, Hofmann and Siemens have devel-
oped a quantum-mechanical framework for treating the macroscopic dynamics in
moderately excited nuclear systems4). In this theory, the transport coef-
ficients are -given in terms of the response functions of the system and .the.
drifticoefficients are related to the djffusion coefficients via the fluctu-
ation-dissipation .theorem. It is also demonstrated that the general equation
of motion for the macroscopic density matrix reduces to a transport equation
of the Fokker-Planck type in the classical limit, thus lending additional the-
oretical support for the discussion of nuclear dynamics in terms of transport
theory.

An important goal in the theory of nuclear dynamics is to understand the
observed transport phenomena in terms of the basic microscopic processes in
the system. For this purpose a model was developeds? in which the dissi--

pative mechanism is the transfer of nucleons between the two reacting



nucieidee. From the observed mass and charge widths, it is evident that many
'nuc]eons are tranferred in the course of a damped reaction. Each nucleon
transfer affects the partition of charge and mass as well as the radia]'end
angular momentum in the dinucleus and elementary kinematical considerations
indicate that the transfer of a single nucleon typically generates a sub-
stantia]lamountiof excitation. ' Therefore nucleon transfer is expected to be
an important dissipative mechanism in nuclear reactions. The deveioped
modeis) expresses the transport Coefficients pertaining to mass, change,
radial and angular momentum in terms of one common form factor describing the
‘rate of individual nucleon transfers between the binary partners. A detaiied
account of the numerical implementation of the model has been given in refp).
| Until now most efforts to confront that theory with dota have concen-
treted on the evolution of the charge and mass distributions, as functions of
the energy loss. By considering the dependence of the charge or mass width on

7) that the energy dissipated per nucleon trans-

vthe‘energy loss it was shown
fer ‘agrees well with the general model predictions which are substantially
above what would be expected in a classical picture, due to the effect of the

Pauli blocking. In a subsequent study8)

the projected two-dimensional dis-
tribution function in the NZ-plane was considered and good agreement with the
data was found for thevisotopic distribution for a given element as well as
the element distribution for a given mass partition, both considered as func-

tions of the energy loss. More recently, a somewhat similar studyg)

was
made for lighter reaction systems. After due account was taken of the se-
quential evaporation process, good agreement with the data was obtained for

the NZ-distribution as a function of TKEL. In all of these confrontations no
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parameter adjustments weré‘made in the theory and tﬁe dvéfa11 good égreement
for a variety of features lends strong support fo the theory and éuggests that
nucleon exchangevis'the dominant dissipatibn mechanism 1ﬁ'the§e rea;tions.

In view of this success it is important to puf the théory td fuffher
tests, particularly regarding other aspects of the data. Therefore, it is im-
portant to also consider the angular momenta of the reaction products. This
brings in six new observables (three for each fragment spin) in addition to A
and Z considered so far, and thus the angular-momentum variables provide a
rich testing ground for the theory.

The treatment of the angular-momentum observables within the theory was
especially considered in refg). Furthermore, a preliminary study of the
spin-spin correlations as probed in a double-fission experiment was made in
ref}o). In the present paper we reconsider the treatment of the angular mo-
mentum in the theory making several important improvements over ref§). In
Section 2 the equations of motion for the spin mean values and covariances are
derived and the importance of adopting an intrinsic fluctuating coordinate
system is brought out. Section 3 describes the treatment of other observ-
ables, such as the mass and charge partition, the relative position and mo-
mentum, and the relative energy. In Section 4 it is shown how to obtain
actual differential cross sections, conditioned by a specified energy loss.
Then, in Section 5, an instructive discussion is made of the characteristic
features of the spin evoution. Section 6 contains illustrative applications
to cases of experimental interest. Finally, in light of the insight gained in
the present study, Section 7 gives a critical discussion of other

contributions to the description of angular momentum in damped nuclear

reactions.



The present paper focusses on the accumulation of angular momenta during
the reaction and is the first in a series of two. The second paper (which
shall be referred to as II) deals with the subsequent decay process and the

confrontation with data.



2. Derivation of -the equations of motion

-+ This section is devoted to the derivation of the equations. of.motion for
the moments of the angular-momentum distribution in the dinucleus. This pro-
blem was already considered in refp). Relative to that work, the present
treatment differs in that the angular momenta are referred to a "body-fixed"
coordinate system aligned with the f]uctuating direction of the orbital an-
gular momentum. This refinement ensures that the tf]ting modé is fully in-
cluded in the treatment, contrary to the épproximate treatment of“refp)
based on a non-fluctuating coordinate system. This important difference will

. become evident during the.derivation. |

2.1 Setting the stagé.

.-~ We idealize 'the reacting.system-as two spherical nucleides A and B.

. . s .o DA 2B . . e s
Their relative position is R = R” - R” and their relative velocity is U =
S
UA‘f-JB.--(When.vectors or tensors are involved we shall reserve

subscripts. for -their spatial indices so we indicate the labels A and B as

superscripts.)  Their relative orbital angular momentum is thenff = ﬁﬁ x P
where;5>= uafisvthe relative momentum, u ~ mAB/(A+B) being the reduced mass.
(We éha11 also use the symbols.A and B to -denote the nucleon numbers of the
nucleides A -and B.)

The associated moment of inertia is JR = uRZ. The angular momenta, -

_)B

or spins, of the individual nucleides are §A and 57, and U, and J, are

the associated moments of inertia. Specific details about this model can be

. . 6) 7 A, 3B
found in Appendix A of ref.’”’. The total angular momentum J = §" + S~ +
-f:is a constant of motion s1nce.no external torques are acting on the system.
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Let us first recall the form of the transport coefficients for the an-

gular momentum bearing modes in the disphere. The mobility tensors ralating

e oA zB . 6)
to the two fragment spins S” and S° are given by

“AA ’.‘-’ a L i
M™ 2 mN (a®T 2, 1)

L oo d
TA® . N (abT - Ty = q®A __(»2.1)‘

LY
ave

> ‘:5 s
MP® 2 mN(B*T & 2 T)

<>
- AN

Here 1 is the identity tensor (which has the representation I = xx + }& + 77
g g AN
in any orthonormal coordinate system xyz) and T = I - RR projects onto the

plane perpendicular to the dinuclear axis ﬁ.\ The distances to the "window"
plane from the two nuclear centers are denoted by a and b, with a + b = R,
while Coye 1s the average off-axis displacement of the transferred nucle-
ons. The nucleon mass is denoted m, and N is the overall form factor gov-
erning the rate of nucleon transfer between the two nucleides A and B. .

sA ang B

In addition to the fragment spins SA and S”, it is also necessary to

‘consider the evolution of the orbital angular momentum’t = 3 S -‘§B.

This is because we wish to use a coordinate system whose direction fluctuates

with respect to an external inertial system (and hence the components of the

total angular momentum J will fluctuate). |
As in refﬁ), it is notationally convenient to denote any of the

angu1af-momentum labels A, B, L by the letters F, G, ...so that EF =-§A,

§B, C'for F = A, B, L, respectively. The mobility tensor relating to the

orbital angular momentum can then be obtained by using the general relation,
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& L =) L .
MFL - - MPA - TF® . BVF (2.2)
(which follows from angu]ar-momentum'cénservation)'for F =’A, B, L:
MAL _‘-’AA ‘RAB - ﬁLA = '_‘VV\N O-R‘-?
. o e . > o ' )
L Qe ‘ﬁs& - ’ﬁt" - wmNBRT ' (2.3)
B = -RA-R e WNRT

In terms of thé mobility coefficiénts the spin transport coefficients are
given as follows.  The diffusion coefficients are simply the corresponding

mobility coefficients multiplied by the Yeffective temperature" T+,

L 2]

The drift coefficients are obtained by multiplying thé mobility tensor with

the cohresponding generalized forces, i.e., minus the rotational frequencies

=3P,

P -
E@vp& “6 . -E ‘R,Fc'- 56/‘36 (2.5)

N

Here and in the following the sum over the labels G extends over G = A, B, L.
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As mentioned in the beginning of this chapter we employ a "body-aligned"
orthonormal reference system defined by

3R, §=L, K=§=3 (2.6)

The choice of z = R ensures that the mobility tensors ?FG are diagonal in

the spatial indices. Since ; = 1, the orbital angular momentum T has only

components in the y-direction. We need then consider the temporal evolution
A A A B B B . .

of Sx, Sy, Sz, SX, Sy, o Ly and their covariances. In a standard

collision experiment, all are initially zero except for L

S

which equals the

y
total angular moentum J. It follows from the symmetry of the problem that the
mean values <S£> and <S£> and also the covariances aig and 052 will

remain zero throughout the collision. Therefore our attention can be re-

stricted to the following 19 quantities

A 1)
<S>, 80>, <KLy

4’
AA AR Bo

T ux A C 9 S x (2.7)
f6 _ \

T4y , FE= AR L
AA A 114

G 2a s S az 4 Tae
AA AG A% :1.3

G L S G

X2 9 % W ) ax » 2
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FG and oFG

xy vz will be-referred

Any distribution with vanishing <S§>, <S§>, o
to as a standard distribution.

2.2. Dynamical equations

. In order to derive the equations of motion for the above quantities (2.7)
we proceed as fo]lows; First we imagine that the system has been prepared in
~a dynamical state with definite valué§ of the angular momenta QA, EB, and
E. We then consider théﬁgystem affer a small (infiﬁitesimal) time increment
6t during which interval the spins have received the increments GEF due to
the nucleon transfer process; these random increments are characterized by the
following moments,

- R
<Oy L« = VTSt

(2.8)

C8SF 536 = 2D st

tmvw‘

where the brackets denote the mean value over the transfer during the small
time interval st. During that time interval the dinucleus has rotated an
angle 60= mRst around the y-axis. Furthermore, the direction of Z may have
changed, due to the increment sf. When the orbital ahgular momentum is lérge
in comparison with the increments caused by a nucleon transfer the corre-
sponding change in [ is small. The directional changes of R and L can then be
considered separately énd the necessary reorientation of the coordinate system
can be made by two infinitesimal rotations. Subsequently the time averages
(2.8) can be carried out. Finally, the fact that the dynamical state of the
system is usually characterized by an entire distribution of angular momenta

at the outset of the time interval is taken into account by performing the
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corresponding ensemble average. In this way, the time derivatives of the
moments (2.7) are obtained.

At the outset of the small time interval we have t = (0, L, 0) and at the
end we have L' =L + sl = (GLX, L+ 5Ly, 0) since L remains perpendicular
to ﬁ. Thus, ignoring for the time being the effect of the orbital rotation,

the new aligned coordinate system is obtained from the old one by rotating an

angle r» around the z-axis. The angle » is determined by

tan A =..._8L.!'_.

L+ 4L (2.9)

which, with the assumed relative smallness of the increments cf, yields

st A = - Ly + by Sty
. L' L‘l.
(2.10)
Ilx 2
~ - 4 —
cos A = I Y ( L )
The corresponding rotation operator is
cos A Sin A (o]
o cEL A .
R, =e = \-sin2 eexAr 0 (2.11)
(o) o I

where

~ .
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0O -¢ o
T = ¢t O 0 (2.12)
0 o o

is the standard spin matrix.
2.2a. Mean values

Therefore, we find at the end of the time interval

new
(S5Y =-(s5 + 857 sina + (5 +557) wsa

(2.13)
o oF Sbx o F Ol L, 5st S, e _ ar Ol ;
~ sx E T 9 L? + ""“"“""—“L + 55 i SS ( ‘l': ) +v653

through second order in the increments G%F. Thus, averaging with respect to

the random nucleon transfems with the use of (2.8), we have

new

F
< (5%

>-b~ms(

vy <200, - fosh DY) st (2.14)

XX LY 74 X%

= F « (VF 4t
= 55 +(V3 +L

L—
y =
age over the distribution of values S§, we obtain

We have here used that D& 0. Finally, performing the ensemble aver-

d F
at <5y

= <v§ +1sfyt w2t Ll Fpttys (2.15)
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2.2b. Covariances

The equations for the spin covariances can be obtained in a similar man-

ner. We consider first the xx-component:

(5% 8¢ Y= (F ¢35 ) wosa + (8§ + 37 1sina ]
LS5 +8S5 ) and ¢ (5§ «8S5) sin 2] - (2.16)

x s%8% + 555 555 « 85 88T« ash 5%

& 13
(8L, % + 8L 8% st, 23 s‘: S, + 8§5% 8Ly

- (585 - 8% s )(‘5"‘)

- (5L, 55 3L, AL, ‘”F 5"—Sfcas 3L, - 88 )
( Lx 5“ Lx' ) L “'_'. ‘)Lx Lj)

After .averaging over the transfers the last line disappears and we obtain

(3 new

<est T,

Whée

£ G Fé& £ 6 F .6
st S, +[adh « st v] «v, s, (2.17)
& v
‘ S S Gl (CHI
+ Vt S‘:) _l...S B ‘C.:(Q’Dxx * S0V,

L=
xx

(20

e

G
-2 o sfsy -0 s,y ] st

Subsequent ensemble averaging over a standard spin distribution then yields



17

&2

=('1DF::+52V(: *Vf S:,

-1 Teany] ~vrsf sy« sl aol) v sTvi]
- 2, 0%, (5§ s - s‘;s;’)>

Next we consider the yy-components:
n S
(855507 [-(s5 ¢35 06 2 ¢ (853571 en ]
6
[-055 ¢3S ) s« (85 *350V s 2 ]

% §58Y « 585 88y « s{ 887 « 35T S

4 3 3
& 12
« (3L, 5§ «3L, 555 ) 2 « 3 (8851, v 8¢ 8L
[ (% e (3 (5'.; 2
SIS, -5 SV T
s“ S LIy TRy F . ¢ - 23
+ (JL, d L d = ) ” ~ (JS: L, - Ou Ity )

Again transfer averaging eliminates the last line so we obtain

S 6 wew
<($355) >£mus{
L <F ¢© =1 F G F .6
-5555+[QD$5+$5V3+V3$$
¢ sf 6L
s ant wvisTy e (20 ¢ 5%V,

(2.18)

(2.19)

(2.20)

Therefore, after averaging over a standard spin distribution we arrive at
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LFe . 4 € Gy .4 F 6 _ ,Fy d 6
S = Tt <S$S$> &*4555 <SS> ‘SsUu‘SV
£6 £ .6 F .6
= V., S
CADy * Sy Vy « Vg 5y (2.21)
2 L £ .6 F .G
* T DL, (50 S5) -5, 5 )
: F Q' & c iR 6 Lt
+ 4\." S5 0")453> v <S$>< L* Saﬁx,>
The zz-components are the simplest ones:
(sh 88y 2 (of + 55T 1(s¢ 559
(2.22)
o )
= s a8 «5sf 597 « oF 558 ¢ 5sf 5]
so that
S EIEETE et RO,
(2.23)
F .6 F6 £ G F o6
= S; S, *[ngz "Szvz *V, 51 ] Jt
and, consequently,
¢ F6
xS
(2.24)
_ €6 £ .G F <G
= 2D, + S, V_, +« V, 5; >
Finally, we consider the off-diagonal elements:
(SF 8 (s e 350 1eonn ¢ (554385 1siua T (8% < 38T
F & F <6
= SS Sc: * asf 55‘; + Sl ‘SSZ + 55& Sz (2.25)
G
(JL‘\‘L F F SZ
- ( -2-1' s‘ +()Lx 55\ C

- 5

(<]
£ Il 85 3T Ak o, oF LIy ©
3 L' L: 2 - L‘I. 2



19

so that

[ G .ow
( (s! sz’ i >‘bm.ao(

L Sf 5‘;

e ,6 £ .6 £
RS SR VASVAR SRS - VL SR Rl R 1S (2.26)
L I 4
and, in turn,
L F6
c!'&
(2.27)
. 6 .G v 8% L F, 8%
2 SV «V, S, - (D, = eV, 3)) E‘)
Analogously, we find
. F6
Q—IX
R ye Fe6 S5 s% 6 (2.28)
-451\/,‘ “'V,_ S,"‘ 5( :‘Du‘fsjvx)\>

2.2c. Effect of orbital motion

During the small time interval &t the dinuclear axis ﬁ turns a small

angle 0= wpdy around the E—direction. In order to refer the dynamical

quantities to an inertial system aligned with the new direction of R it is

thus necessary to perform a small rotation around that y-axis. The corre-

sponding rotation operator is

P ‘.": @ ctos @ [ -S;n¢
R, e = e 3 =( o J o ) (2.29)
Sin @ o cos @



where the spin matrix is

'
[ o1

00 c:
~——

OG
(e ole]

Thus, any vector transforms as

)7

(EF

n

n

> 4—:

523(¢)-S

Therefore, in the limit st » 0, we have

That is-

It follows that for a

<S§> = 0, there is no

. (3] =

N

="""RS

"
o

I~
wq Sx

standard spin distributioh, which has <S£> =

effect on the mean values.

&= '@
(T+iw¥ot) SF

(2.30)

(2.31)

(2.32)

(2.33)
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The spin covariances are seen to be affected as follows:

> t . « sy
(cFe)™ = (we [€,, TF¢]

(2.34)
That is
Rt ST TR Lo S
T L w (o < e (2.35)
O SR QP

with all the other components remaining unaffected for a standard distribution.
The above differential increments are to be added to the increments de-

termined in the preceeding, in order to obtain the total rate of change in the

moments of the spin distribution.

2.2d. Harmonic expansion around the mean trajectory

In the derived equations of motion the RHS contains averages bver the -
spin distribution. The general evaluation of these averages would be very
cumbersome and render the equations impractical. However, as is most often
the case, when the spin distribution is reasonably narrow one may evaluate the
averages to a good approximation by expanding the mobility coefficients to

first order around the mean spin values, ignoring the variation of other
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quantities such as t* and N. This method is referred to as the mean tra-
jectory method since it requires only information along the mean dynamical

trajectory. It consists in the following approximations: -

. o (2.36)
<D> 2D ey
=g = &5 <6 ,26 r)v’u
<EF UMy & 8T X (97-<8)Y e
[

Com) F’G c-,GH

= -5 G ™M /Y.
: e

where the RHS is understood to be evaluated for the mean spin values.

2.2e. Final dynamical equations

By combining the effect of the orbital rotation with the preceding equa-
tions and making the mean-trajectory approximation we can defivevthe Final
form of the dynamical equations for the spin moments. .

In deriving this final form, the occurrence of L in the denominator poses
a special problem. Under the general assumption thét the fluctuations are
small relative to the size of Ly:

F&

16 %

TR <Lyt VE G Vi, C 1 (2.37)

1/L can be expanded around its mean value, and we may neglect all terms con-

taining variances in the numerator, for example:
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When inserted into the equat1ons, the neg]ected terms w1]1 always be of the

order of o /<Ly>2 relat1ve to the main terms. Some of the retained
o : F. H 2
te f ' AT TN .
rms, for example <Sy><Sy>/<Ly>

size as the main terms a]fhough, in certain cases, they are:actually smaller

, may generally be of the same

o than the neglected terms.

Proceeding as just described, we arrive:at the following final equations

for the spin moments:

» =
Fo G \ F . Gt T FL Sy Lt
SF == (M S v = o Moy, » = am - DMt
) > + ) L5 ", t : G l."‘.l t Yy t
. FW FH Fo GH Fe oH Fu
EL e 2t LS MM T 0 g o e, )
€ et Sy
" - A
- L—” (1T*M', -{MLt et 19 y- (MY S e, /'JG)
s " | ¢ ) “3 (2. 39)
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Here we have omitted the bracket around the mean values of SF for nota-

tional simplicity, since confusion can hardly arise.

It can readily be verified that the equations satisfy the following nec-

essary conditions implied by our specific treatment:
. : >
i) the y-axis remains directed along L:

L= bl

sy - o = oy =0 L_;'.h #y) (2.40)

i1) The size of the angular momentum is conserved to the order of terms kept

in the equations:

- \ . 33 2 :u 33 33
iua’\) 33*%5"1[3:(6‘:3¢0'"3 caldy- RIS e S vl
4

(2%
s LoD et (EeN nS I TR M) (2
3
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Since Jy is of the order of Ly, the Tast expression for d<|J|>/dt is of
the order of the terms neglected in the expansion of 1/L, cf. equations (2.37)-
(2.38). Furthermore, it can be shown that the equations (2.39) ensure that
2 ; - 131 62 = g2 2 .
d<J>/dt = 0. Hence the variance of J = IJ1, of =<J% - <] J]>¢, which
is initially zero, remains so in time, and consequently the magnitude of J

remains sharply defined and equal to its initial value.

2.3 Transformation to external coordinate system

In the preceeding\we have derived the equations of motion.for the spin
moments with reference to a coordinate system defined in terms of the instan-
taneous values of ﬁ and E. However, the direction L can not be determined in
a collision experiment, so it is necessary to reexpress the results with
reference to a coordinate system which can be externally defined.

In a collision experiment two directions are readily determined: the
beam direction 1 and the asymptotic dinuclear direction ﬁ(m). In terms of
these two directions we definé the following external coordinate system XYZ:

5:R, Y=:=Rxt X =Yz (2.42)

2 b

Although ﬁ is only experimentally accessible at very large times we may gener-
alize the above defintion to yield an "external" coordinate system at an arbi-
trary time (by using the dinuclear direction R(t) at that particular time t).
Since the internal and the external coordinate systems have the same
z-axis, the two are related by a rotation around the z—axis,iRi(;). The
angle ¥ between the directions L and Y can be determined by exploiting the

fact that G is perpendicular to the dinuclear axis ﬁ and 3 is perpendicular to

-
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the beam direction %. We shall make the assumption that the directional dis-
persions in E and 3 are relatively small, as is consistent with the derived
equations of motion. In that case also ¥ is small and elementary trigono-

metric considerations, described in Fig. 1, yield o : ' )

A ] ) . . R A .
T ox 3, 0+ J, w6 : N (2.43)

where © is the angle between z and t, i.e., the CM scattering anglé for large
times.
With the ‘above relation between ¥ and J it s straightfofWérd‘to'dérive

the relevant transformations. For the mean values we find

F o F
‘<SY>=<SXS\WY+55M‘S‘>
2.44
= ¢s§ (3, +3, wtery« st
1.€.,
= = £3 £3 ,
Sy = s; +3(0,, + G, ctO) - (2.45)

where we again omit the brackets for convenience. Similarly it follows that

Si,Sg = 0 for a standard distribution, -

Furthermore, for the spin covariance we find,
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so that
e Fe T g 63 | ‘
Sxz2 ® S T LT v T wtO) (2.52)
.6 5 G G
<525, > = €5, (8 ta§ =S )Y
o - (2.53)
% ST S)S - <gsi> sy
so that
Fe F6 IF ar sﬁ
Tzx * Sax 7 (S + T, «t®) 3 (2.54)

and the rest of the elements remaining zero, for a standard spin distribution.
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3. Other observables

In the preceding section we have concentrated on- the description of the.
angular momentum observables in the dinuclteus. It is usually of interest to
consider other observables as well. In particular, it is necessary to con-..
sider the relative energy since the data is usually given as function of en-.
ergy loss.

3.1. Mass and charge partition

The partition of mass and charge in thetdinucleus is conVenient]y de-
scribed by specifying the neutron number N and the proton number Z associated
with the projectile-like nucleide (those associated with the partnek then fol-
low by conservation of the total baryon number and charge). The final values
“of N and Z are‘réadi]y determined experimentally by measuring the charge and
mass number of either fragmént, with due correction for sequential decay pro-
césses, of course (see the subsequent paper II).

The general expressions for the transport coefficients relating to N and

Z were derived in refﬁ). The key quantities are the mobility coefficients
Man 2 NL 4 Mz = N3 . My = My =0 (3.1)

for which explicit expressions are given in ref§) in our standard model. In

‘terms of these, the drift and diffusion coefficients are

Vi

Mun Py Dyn = Myun T

o]
N
N

"
=X
N
N
d
*
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with DNZ = MNZT* =

0.
veloping the mode]7), the diffusion coefficients mixing N or Z with any of

Furthermore, within the appkoximations made in de-

the other basic dbsekvableé vanish. Here FN = -3¥/aN and FZ = -3}/3l are

the driving forces écting on N and-Z;'explicit expressions for these are given

in ref8),
The mean values of N and Z then evolve according to

&

gt N> = <v> & M R
4 _ ) _ o ' (3.3)
dp $2% T <KVzp> = M., L

where the RHS is understood to be evaluated at the avekage’bosif%oﬁ’df the

ensemble. Furthermore, the covariences are governed by the foliowing three

coupled equations.

. ' oV, oV,
. SuN =-25(F1NN‘E* i-QLN 515 + . .E? )

. | IV, OVn . OV OV . 3.4
Tnz ¥ Sun >N + G2y 'E? + 0Lz ¢ 5;:‘ * Eﬁ; ) (3.4)
- V

G.zz = 2 ‘ Mzz -c* ‘)\& “) Z

*G.ZZD_Z'*G.N;‘%)
where again the quantities on the RHS are to be evaluated at the mean posi-

tion. Explicit expressions for the derivatives are given in ref.6) The

above dynamical equations were already giveh in ref.8) They can be solved

by integration along the mean trajectory.
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3.2. Radial motion

The dinuclear separation degree of freedom is described by the center
separation R and the conjugate radial momentum P. They are important to study
in order to obtain information on the loss of relative energy (see section
3.3) or the fluctuations in scattering angle (which we are not concerned with
in the present paper).

In the present theory, where recoil terms are consistently neglected, the

transport coefficients relating to the radial motion are given by

V =0 Dpe = O

(3.5)

"
]
»

V‘P ;"—: NP ’ Dﬂpp = QMN.C*

with DRP as well as the mixed diffusion coefficients coupling R or P to any
other basic observable vanishing. (In (3.5) N = Ny * N; is the total
nucleon current 6).)

The evolution of the observables R and P is complicated by the fact that
they are not constants of motion in the absence of the dissipative coupling.
Thus the equations of motion for the associated mean values and covariances
have addditional terms arising from the conservative propagation of the
system. These terms were included in the general equations given in ref.s)

for the mean values (eq. (2.4) and covariances (eq. (2.6)). The results below

follow from straightforward insertion into those formulas.
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Thus, the mean values of R and P evolve as

4 O
41<R> = <{R,n} *Vpg> = < ‘3—135
v
= < X5 217
/A .
: (3.6)
—_ = e -~ = ~2-= P
e <P CiP Wy «Vp> =< 5 " 1&N >
% FR-Q:{-: NP>

where, as usual, the quantitities in the last expressions are to be evaluated

at the mean position. In the above equations FR = - 3%/3R is the radial

driving force. The evolution of the associated covariances is governed by the

three coupled equations

Q-

aR <$oR AR, WY +2Dp, «+28RV]g >
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v P Ve
<A(ZFR+; AP « AR AP 39 >

?

o Fe wr

< {8PaP, Y +2Dpp + 24P Vp >

o
vo
1]

~ » o ()VP
2 < AP F, *+ 2w NT" «+ af af ;}—p>
OFa

x w



33

In the above equations the terms containing the Poisson bracket are those
arising from the conservative propagation of R and P. It is noteworthy that
the equations (3.7) do not couple to other observables than R and P.

3.3. Dependent observables

In the present transport theory the macroscopic variables

C = (C,, Cz,...) represent one-particle observables, specifically the
quantiffes E; E,XE, EA, EB, N, Z. Often it is of interest to also study
observables whjch are non-linear functions of these basic observables. The
most frequenf exémple is the relativé“energy of the two nucleides. Being
‘-éxpreséib]e in terms of.the basic obsekvab]es_¢, such dependent quantities are
of course redundant and need not be included in the dynamical equations.
Below wé first discuss the genéral eva]uation of mean values and covariances
for dependent observables and subsequently we consider specifically the

relative energy.

3.3.a. General treatment of dependent observables

We consider a dependent observable F(L ) which is locally harmonic. In

the region of interest it then has the form

F(€)=F +Z F sl + éz‘;' Ei ol oL (3.8)

(3

where At} = [i - <5i> is the deviation of C} from the ensemble average

2
= F/aCiaL'J-.

value, as usual, and the derivatives are F% = aF/aCi and F;j
A bar under a quantity indicates that it should be evaluated at the mean value

Cl= <€>.

The ensemble average of F is then given by
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3 (3.9)

Moreover, the covariance between two dependent observables F(€') and G(€') is
Ce, = <FG> -LF5¢6E>

2R + 2 F/G. 6. -«--\i: (F G;“. +FE' Gy,
-= i B i I |

AT IRS _:g < 8%, 8L, oL, 4L, >

, : (3.10)
(PG +LS(EG,. +F" . i S =" 6" &.
- = a ii =iy -.é(_’.) LB L ;j hzl —Is 9\12 G.l‘ Wh.‘ )
- z Y] 'I . l " “
T I ‘.?Ex Cij Sua S G
where we have invoked that
24, 8%, AL, aly> = Gy Sua + v 1 + Gy Tin (3.11)

for a gaussian ensemble. A special case of the above formula is when G is

taken as one of the basic observables . Then

Ste = £ F/ Gy (3.12)

. ] 1]
Si t = 5. .. = 0.
| nce then GJ ch and G1J 0
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The above expressions can be used to calculate mean values and covari-
~ances for any (locally.harmonic)~dependent.observab1é of interest. While thus
strictly unneeded, it is instructive to consider the form of the time deriv-

ative of the mean value of a.dependent observable:

_d_ . [ o . . ..
o <EY 2 “T Ei <V, + i E‘i 4\/‘52;‘. "D‘A_..>
:SE'V +3 F! = & > FD
; - 03“ - ‘)&k \“ i -~ 6

This expression can be .obtained either by using the Fokker-Planck equation forb
the evolution of the distribution function f(€) or by simply taking the time
derivati?e of (3.9). [For simplicity, the possible occurrence of .conservative
terms has been ignorgd.] fhe<first'term-is the rate of change in <f>, induced
by the motion of the system along the mean . trajectory; this is usually the
dominant termiaway from‘equi]ibrium. The,sécond term is the (second-order) o
correction due to the finite width of the distribution f(@) as given through
the covariances °kj" The third term is the contribytion arising from the
diffusive growth of the distribution; it woul&.be the dominant term if the
ensemb]e was prepared as a narrow distribution close to the equilibrium
point. It is readily verified that (3.13) vanishes for the equilibrium dis-
tribution, as it shbu]d be.

3.3b. Relative energy

The loss of relative energy, usually denoted TKEL (for Total Kinetic
Energy Loss), is an important observable in the study of damped nuclear

reactions. Loosely speaking, it can be thought of as a generalized time
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parameter which expresses the degree of intimacy achieved in a given reaction
and it is instructive to consider the other observables as functions of TKEL.
After the two reacting nucleides have lost contact, i.e., after their

mutual nuclear interaction has ceased, their relative energy is a constant of

motion given by

€. 2 +$Rz_;+ve‘ 2 JCRT

Of course, any sequential decays of the primary reaction products will modify
this quantity but this need not concern us here; this aspect :is discussed in
the subsequent paper II. The formulas derived above cah be used to calculate
the ensemble average of E and its covariances.:

" Since E only depends on the basic observables R, P,:L (neglecting the
usually very small effect from the dependence on mass asymmetry through the
reduced mass u), the summations ih-(3;9—10) only’ekténd’bverfthesevvarﬁables.

For the first derivatives of E wé then have

, o 98 __a LY _ 1,
Ea =R TR g,.u‘ ,11.Y2
o€ P o
€ 2 5% = = (3.15)
- B
U TR L

The second derivatives are
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" & L . 2
e * qr L Yt |
Eu . L E“‘ . AN . (3.16)
1 M. v 9 L. /VAR
1] 2 -l__
ERL = -2 ,Jl"

with the remaining ones vanishing. Therefore, we find the mean value
- — 1 " o " ]
<E>=E *1(.E-nR¢hn *EP?'G‘PP "'ELL S ) ’ - (3.17)

the variance

ee = (En)'Gaa *(Ep) Spp *(BLVG, * 2ELE Ske

EE
(3.18)
I P 0w S - 2 " %L
+5.'"((Enu G'nr'a.“' *(E'PP Q_PP) * (Eu. G-l.t.) )
f " . PR TR ) .
+ ..E.t;.a Ere Gae + (Egqu )" Gpq S,
and the covariances with the spin observables
' : P - (3.19
L.GT.F sp'snas-;)l'ﬂ ( )

EF

The above results can be'used to calculate the mean value and covariances
of TKEL = E(0) - E(«) (by simply performing the proper sign change in (3.17)
and (3.19))resulting from a reaction with a specified impact parameter. These
quantities, in turn, make it pdssib]e'to express the results as functions of
TKEL, after integration over the impact parameter, as the experimental con-

~ditions dictate. This is described .in the next section.



38

In the original deve]opments) of the theory of transfer-induced trans-
port in damped nuclear reactions the dissipated energy was treated in a simple
approximate manner: the heat Q was represented as an effective one-body ope-
rator, using for the matrix elements the exciton energies w associated with
individual nucleon transfers. This approach is strictly valid when the macro-
scopic hamiltonian ¥ is a linear function of the basic one-body observables
€. Hence, whenH can be idealized as locally linear, the dependent observable
vQ can be treated on an equal footing With the baéicvobservablesd?. The
resulting mean dissipated energy <Q> then corresponds to the energy dissipated
along the mean trajectory in@-space. This is usually a reasonably good ap-
proximation since thevsecond-order corrections appearing in (3.17) tend to be
at the percentage level. However, the idealized treatment is unsatisfactory
for the covariances associated with Q and when they are needed recourse must
be taken to the above formulas (3.18) and (3.19).

3.3c. Scattering angle

It is of some interest to estimate the variance in the scattering angle &
for a given value of the total angular momentum J. There are two contri-
butions to this quantity: One is the variance accumulated in the orientation
angle & during the reaction phase; this contribution is quite analogous to the
variance accumulated in the separation R. The other contribution arises from

“the fact that there are fluctuations in N, Z, R, P, L. at the time of neck
rupture when contact is lost between the two nucleides; these fluctuations are
propagated along the respective Coulomb trajectories, thus resulting in dif-
ferent increments of & during the exit phase. The two contributions are of

comparable magnitude and therefore need both be considered.
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The variance in the angle @, which orients the dinuclear. axis in the
(instantaneous ) reaction plane, can be calculated by employing the same method
as in section 3.2. We thus obtain the following dynamical equations for the

relevant covariances,

. Gy

= o ‘
%o = X3, (3.20)
“ LF ‘ .
= Zay Mo ¢ F62m8,L
Cor A % t 4, s F,62

where %91:5 <@S§> - «9><S§> is the covariance between (¥ and the

spin component S§. - These equations can be solved along with the other
-moment’ equations of motion to yield the value of %9c9the exit time texit
when the neck vanishes. .

In order to-'calculate the variance in the scattering angle arising from
the fluctuations in the starting conditions for the exit orbit we make use of

the fact that the scattering angle is given by 6= -J(t - Aﬁ%ut

exit)
where Aa%ut is the increment in & accumulated along the outgoing Coulomb

orbit. This quantity is

t

= L b - are L
ac . arg.os A (+ e ) - arccos p (3.21)
where the eccentricity of the orbit is
2eL” " (3.22)
e = [1+ —2EL__ ]
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with the relative energy E given by (3.14). The scattering angle o can thus

be considered as a function of the exit values of the basic variables N, Z, R,
P, L and the general formula (3.10) for the variance of a dependent observable
can be employed. - Since ©(N, Z, R, P,L) is fairly well-behavied, only the |

first-order terms in (3.10) need be included. So we arrive at the resuit

G,

66 ~ G}p (toit) + (Q:q)to-NN M ‘g;)fc'—zz *ZQL e; G;z (3.23)

Q2
(@ o, v(By) Gy v (Qp ) G v %0 8 e

where the partial derivatives Ql\ll’ o, , QL, Q;z, Q,I, are readily ca1<‘:u—‘

lated on the basis of (3.21). Usually the largest term in the exit-phase con-
tribution to %o is that arising from the fluctuations in the orbital an-
gular momentum L, but the other terms are typically of the same order of mag-

nitude_and should therefore be retained.
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4, Differential cross sections

In the pkesent study, the calculated results are obtained by solving the
coupled moment equations of motion, starting from an initial condition spec-
ified by a definite impact parameter s. This procedure yields the normalized
probability distribution f(i%, as characterized by the mean values <:1 and as-
sociated covariancescii In this section, E?denotes a set of observables in
which some of the basic one-body observab]es‘may have been replaced by de-
pendent observables. These dependent observables are assumed to be suffi-
ciently smooth functions of the independent ones so that the distribution in E?
can be considered as gaussian. Especially, the observables R and P may have
been replaced by the relative energy‘E whose mean value and covariances are
given by (3.9) and (3.12).

Since experimental conditions preclude measurement of the impact param-

eter s, this variable must be eliminated by integration. This yields the

multi-differential cross section
=> =iy
iy stw)ds (4.1)

which is practically amenable to experimental observation. The above ex-
pression is of course singular since the s-integration is unbounded. However,
this standard problem is purely formal, since in practice one is only in-
terested in cross sections for non-trivial reactions leading to a finite
energy loss TKEL. Therefore, this quantity, or, equivalently but notationally
more conveniently, the final relative energy E, takes the place of s as a pa-

rameter for the distribution function.
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4,1 Analytical approximation

When the interest is focussed on a reaction leading to a specified final
relative energy E, the integrand in (4.1),15 peaked around that impact param-
eter So which Teads to the specified energy E on the:éverage. . Therefore it
is natural to attempt an .analytical approximation by expansion,around that

value. Thus one may assume

= . @ il
<C> = € +(s-3.C,
: i?? X~ , - o - (4.2)
[ a -]
=> : <= <> L my prig -
where €, = <¢‘> o 0‘:'.5 G, and C, = (<> /’AS)S;S.;.'

Insertion of th1s approx1mat1on into the gaussian integrahd in (4.1) yields an
exponent which is a second-order po]ynom1a1 in s. AssUmiﬁg furthermore that
s ~ 2nS ds, the S— 1ntegrat1on can be carr1ed out by "comp]et1ng the

square", This 1eaves the exponent -

= < i b . V
(Z:'- =5 <.>_. ((I>- ! f, S : ) (‘E _czo) (4.3)
N .
0" % %o
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In order to proceed it is useful to write the N macroscopic variables as
2?: (E,E) where E is the final relative energy and E denotes the remaining N-1
macroscopic variables.

When the expansion (4.2) is made around that impact parameter which leads
to the specified final relative energy on the average, the E-conditioned dif-

ferential cross section do/dEdE is characterized by the N-1 mean values

<] = C (4.4)

[

and the (N-1)x(N-1) covariance matrix

& 7{’ E?’ %;?" ( ¢=; |
> > ° ' -
T | =[cr- 5 2 )-6‘.,] (4-5)
E =, &, <, (N-~1)% CN=1)
- C.-c,C,

where the row and column associated with E is to be eliminated from the matrix
in the brackets.
In order to illustrate the above result (4.5) we consider the simplest
‘non-trivial case, when there is only one macroscopic variable in addition to
- the energy E, for example the total fragment spin S. We then have 2?; (S,E)
-~ and expand around that impact parameter for which <E>s = E. The relevant
derivatives are 8, = (A< $> /ds),. s, and €l = (ACEY /&dsYgas, .

Insertion into (4.5) then yields, after some elementary manipulation,

1

s/t Ss (2
- - ° —_— 4,
Ssle = S -2 O;E*'(E,)G;E (4.6)
o o
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This result illustrates how the variance of the E-conditional differential
cross section is modified relative to the unconditional variance associated
with the corresponding mean-trajectory calculation.

The method outlined above provides a general analytical approximation to
the E-conditioned differential cross sections. waever, the Eegult is mostly
of instructive value since the linear expansion (4.2) is not.generglfy suffi-
ciently accurate. Therefore, in our actual calculations we resort‘to the es-
sentially exact numerical method described in the following.

4.2 Exact method

4.2a Conditional distributions

It is often of interest to study the distribution of some of the macro-
scopic variables under the condition that the remaining ones be equal to de-
finite specified values. For example, one may study the isotopic distribution
of a specified element or one may study the spin distribution for a specified
energy loss. When the unconditional distribution is of gaussian form, the
same is true for such conditional distributions and these can therefore be
characterized by their zeroth, first and second moments.

Let now Eidenote all the N macroscopic variables considered and assume
that we wish to specify the last N-n of them and consider the corresponding
‘conditional distribution at the first n variables. We shall then write ? =
(E,E) where E = (Cl,...,Cn) are the n unspecified variables and E =
(Cn+1,...,CN) are the N-n specified ones.. If we let o denote the N x‘N

covariance matrix for the unconditional distribution, the conditional distri-

bution can be written



P => ua;u -t -1 e
e Ay =Ta™&) e ()

where Aﬁ?: E?— «;i,was usual, and<ﬁ>=<:;l. Thfs'di;tr%bqfioh f; fb,be con-
sidered as a function of the n variab]es E,.dependiné_paréhéfriééf]y on the

- “specified N-n variables C. We therefore rewrjfe théksgélaf.?rQQUct in the ex-
ponent as follows, with a self-explanatory notatibn fokitﬁé vérighs sub-

. <&
matrices of M,
= (=Y &

o€ - M -aC
~ & « RS s M

=A&T'\‘AC +A?-P_1'2_C . A_S«'E'Ac 'A_E-"‘_"’ 2_C (4.8)
ey = ;.3' @(— L f_f_di—’o .’e'w’ €

=(aC-8§)- M- (o -5)*5;&:_4,-39-5-‘&-5

i

. . R g
The last relation holds proyided the_shift.5 is given by
>, & -
-éh T -‘F"-'- M. aC (4'9)
- =

Therefore, the conditional distribution has the n x n covakianceﬂmatrix

g, = M (4.10)

c
-y
and the mean values

- - > - ‘ "
<c>‘ = £C> - G- M. aC S (4.11)
c, - |

2]
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Thus, as is intuitively clear from the simple two-dimensional case, the coh-
ditional covariance matrix is independeht of the specific value of the con-
ditioning variables E while the conditional mean values are shffted by amounts
proportional to the deviation of E from the mgan va]ue <g}. _
Furthermore, we note that the noma]ization ofAthe conditional distri-
bution is given by the projected, or inclusive, distribution of the N-n variai®

bles C,
-

{ccy - (02 ¢ra?

‘-\e:e-

My Y 1(Ac .aC =3:M-J)
--[(zw\ S ] [(u) \et] e &€ .
‘ (4.12)
ety =y G
‘ ‘ o Th -;oc (M-M.S.N)-4aC
= [Camy \crt/m-\] e el <

In order to illustrate the above results, we consider a two-dimensional
N .

case, for example C = S and Q = E, as in Section 4.1. We then have

c=> (G'ss Sie )" ) &L ( Se ‘“—Se) (4.13)

Ee
S GEE» 'GES 625

where d = OSSOEE - OgEOES . Consequently we find thevconditiona] vari-

ance -
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Gee |- L S S 4.14
Ses | : (jf-e) = Gy - _igf ‘ (4.14)

and the conditional mean value

1

4 -5 Ses
¢SS|L im 48> = = —E2 s a<s>+ £ (g -cE>) (4.15)
E 77 G d . See

‘Finally, the conditional norm is

{ce
) X -G S =
a T cie(Tr. e 2 -Er) a8
=[awd/(5_;e-x] e Cee (4.16)
_ =1lq ff.t
= [iﬁ G—EE- ] - 2 Cee

as it should be,

4.2b Energy-conditioned cross sect%ons
We are now in a po§ition td‘descfibe,thé‘ca1cu1atidn of the E-conditioned
differential cross section. _The_sQ]utioniof the moment equatiohs yields the
’“unconditional distribution fs(23 fok any specified impact parameter s, as
7;tH§F5Eteriiéd’by the mean values <2§S and-covariances<§;.A By use of the
results in:d;Zé‘ft is possible to calculate the associated conditional norms,
mean values gnd covariances corresponding to specifying a defin{fé final re-
lative energy E: fS(E), <E>SIE and.§;|E. These, in turn, can be used

to express the zeroth, first and second moments of- the conditional distri-

. -
bution f (C3E):
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g (E) = ﬂ(,(‘é’;e\di’ = { ()
P 1z (T 4 (T;EVAC = <To | {cE)
(4.17)

L
.V = (CT g Cerac

-9 )
(&5l <%, + €l) §cer

The E-conditioned differential cross section is obta1ned by 1ntegrat1ng

the conditional distribution fS(C,E) over the impact parameter S:

de O T S -
c—— = = - = : S(C - E d ) . . 4,
A&  AC A€ (§Zieras | (4.18)

Therefore, the correspond1ng moments of do/dC are g1ven by a s1m11ar impact-

parameter 1ntegrat1on of the moments in (4.17),

a¢
MY = § Fue 4 = [m, @148 =
- - - s - . _). s -—) L ‘
M(E) = SC-A-?,‘—:E AC = S g (E) d;s_ | (4.19)
& N = = JG- -9 P -
= = = )
Mte» Sccdc Eolc Vg (E) oS

This integration is readily performed numerica}]y by addition of the moments
associated with a.specified impact parameter. The E-conditioned differential

cross section is. thus characterized by the mean values

<Ty|, = M@ /MYy | (4.20)
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and the covariance

-

Sl = M@y ne - @y ey, @)
while the total cross section leading to the final energy E is given by do/dE
- M(E). T

The above method is essentially exact for calculating the moments‘of the
differential cross section up to second order, relying as. it does only onlthe
gaussian approximation to ‘the individual distributions fs(;s; The hethod
can readily be used to calculate higher moments»oﬁ.do/dii should that appear

of interest.
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5. Characteristic features of the spin evolution

In the preceding sections we have outlined how the dynamical evolution of
the dinuclear spins can be calculated. The resu]ts of such calculations can
best be understood in terms of the appropriate equilibrium solutions and the
associated relaxation times. Therefore, before presenting the numerical
results (Section 6), we discuss some instructive situations amenable to ana-
lytical treatment.

5.1 Stationary solution

In analogy with the treatment of the two-particle problem, we introduce

the following spins and associated moments of inertia,

S*: 32 .8 | J,2 Yp v Tg
-. oA g6 P | (5.1)
- =y (2 - 2y . Y= —h=e

A In Ia + Jg

They are analogous to the total and relative motion, respectively. The trans-
—>A —)B >4 >
formation from the individual fragment spins S™ and S to S and S™ has a
>
Jacobian equal to minus one; this choice of sign is made in order that S~ be
positive, under normal circumstances.

L1 s . . + z_
The mobility tensors involving %" and §” are

-~ Py 6 PR
M** s M - w‘NRzT = -Hﬂa

&~
B n aboTee v L o ¥
Ta g (5.2)
T - NR(Q"‘“""S“) T--wm-t
In +Jn



51

< AN AN

where T = xx + yy projects onto the plane perpendicular to the dinuclear

axis. Furthefmore, in the equations of motion the sums over G = SA, SB, L

can be replaced by sums over G = S+, ST, L.

Fé 6
Z M'l& G_GH - Z M .'s Gu
—— .\‘ —— 'h
GaABL g" ) G 4,-,L ’:l(, :

(5.3)

For a given total angular momentum J, and under the standard assUmption
that the variances are small compared to <Ly>2, it is straightforward (al-
beit tedious) to demonstrate that the dynamical spin equations (2.39) have a

unique Stationary solution given by

 <Ly> = Je 5

3 T |

RS

<S;> N (5.4)
cw = ¢¥ J. gi 99

S ox ThY T RELEEY « TN T 5

- «z*1 T

where we have included terms to the first order in the effective temperature

T*,

During the reaction, the moments of the spin distribution will at each

instant evolve towards these equilibrium values, which in turn vary in time
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due to the time dependence of the relative moment of inertiakUR and the ef-
fective temperature T*, Below we shall fifst discuss the stationary solution
in terms of a statistical model, and next we shall discuss the time scales for
~the approach towards equilibrium.

5.2 Statistical equilibrium

The part of the macroscopic hamiltonican ¥ containing the angu]ar—“’

momentum variables in the disphere is

_1A7_ -‘O'L" -) W
s s . L (5.5)

= — “*
}("t 23, 23& 2Tp

. T A LB LT
For a given value of the total angular momentum J = S© + S° + L., the
Towest-energy mode of rotational motion in the disphere is a rigid rotation
- >

with each of the three angular momenta given by SF ==9FJ/:b where 30 =
.UA + UB + JR. Relative to this yrast mode of motion, intrinsic rota-
tional excitations are possible. These excitations carry no net angular mo-
mentum and can be classified in two groups according to whether the two
spheres turn in the same or in the opposite sense, i.e., a purely positive

> > >, > ++ ->
mode has ST = 0 and a purely negative mode has S = 0, where S and S~

are given in Equation (5.1).

5.2a I-aligned coordinate system

We first consider the problem using the coordinate system x'y'z' defined

AN
>

~ ~ -
by z' =R, y' =1, x' =y'" x2z', where I =J - J-R R is the projection of the

) N N
~ ~ -

~

total angular momentum j-on the plane perpendicular to R. In order to bring
the rotational hamiltonian (5.5) on normal form we introduce the following

auxillary spin variable
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- %_* 3§ T ‘('55.’6‘)

This transformation has unit jacobian since § 1s 1ndependent of S By

1nvert1ng the transformation (5.2) and 1nsert1ng into (5. 1) we then obtain

= L S, -‘- j"' Se.37 )+ & (3-8
(5.7)
N | Y .r . ST
. —_—s = “. S I) — ~ 'y
TP T AL PT. W NPT

“nge the first term:represents fhe‘yrast energy assdcieted with a rigid rota-
tion whi]evthe additioned terhs arise from the sik normal modes of intrinsic
rotational excitation of the disphere. The first of these terms is'thetenergy
of the'thﬁdegenErate "hrigg]ing“ modes, where. the two spheres rotate in the
same sense around an axfsvperpendicu]ar to ﬁ. The next term is associated
with the "tilting" mode akisihg Wheh.shhas a componehfﬂalong the dinuclear
ax1s ﬁ the two spheres thus .turn in the same sense around R These three are
the positive modes. The last term arises from the three degenerate negative
,?mbdes the ”tw1st1ng" mode, where the two spheres rotate opp1s1te]y around R
and the two "bend1ng“ modes where the spheres turn oppos1te]y around an axis
, perpend1cu]ar to R. | |

| Assume that the rotational modes are weakly coupled to the remainder of

the system, which is considered as a heat reservoir with the temperature T.
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When T << J2/23L the six normal rotational modes are approximately har-

monic. Therefore, the ensuing thermal equilibrium distribution is charac-

terized by

<3y = SL%flﬁ T

AN
~~
V)
[
x
)
v
o

- -

<@gy = (33> = Jade o
SN S ' Je
with all cqvariances vanishing Th1s implies the fol]ow1ng resu]ts, to f1rst
order‘in T‘ We f1rst cons1der the y -components which are the most com-

:,’_.

p]1cated ones

L 7 4 . EY -2 ',l:. - 4531 > - bg,j.‘:_ .
<35.> = LT>=2<(I-3,7) > = 7 23 S Sn 23
<ILy = LI eca-ny =3 e g

, ] . ) N : »J“ R
X ‘ (5.9)
—3 - 1 - = ? )
Gy = Gpp T 4T >-¢I2> oz’

9
Lgd> = <I-S}> =

B
41-(:’ I655:)> = ::"- IS = _n;:""jfaa
ZLYS = <L(I-S5tS = <c—"r-s-s‘>=,‘?-“’ Ty wLsy>
3 ¢ ° - C(5.10)
syt e T (g Loz
T ng o 4
G_LL - <L,1I> - 4'-.’ ‘>1 = ﬁ"jﬂ.
3y 3 3

5, ¢
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'34 jit t‘
<$ >-<-I~s,>-. - 2 -
’Jo "j\" 2 v
| | o _— _
. : ?f . 3 R jnﬂo S
ot = <shts - LshSt 2 Fue ¢
X ‘ 'y T 9 3.
-l ! e, O + .
= L ' L
ey < E}y Ly > <~§3 > <. 9 }H
=<62*T*s IR T Cey> - < . ><§5 csas
s ¥ 3., 8 "3'.,1 sy T s
R T SO B o)
'jot 53 3 tj’

S

The components along the other axes are simpler to treat:

S < l:,"o > = _‘ s‘c > = O

SERTES S + +L _
s 2 et -Gl 2iskiy = d'j"’t
x'x o ‘ L3R S ~y :
L - ° (5.13)
+ ¢ 33 - «3 kS - j*do -
Sz ® Tapr = T 2 48> = "7 T
[ 3

These results correspond to those derived in6)and also in accordance with

the analysis by Moretto.ll)

We note that there is isotropy in the plane
perpendicular to ﬁ, where the spin variances are given by J+§Q/§o T
while the variance in the R-directon j+35/jR 7, i.e., larger by a

fractor of ('JO/‘JR)2 ~
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5.2b L -aligned coordinate system

The above analysis was carried out with reference to the I-aligned coor-
dinate system x'y'z'. For the dynamical studies it is of greater interest to
employ the fluctuating intrinsic coordinate system xyz which is aligned with
1: ; = ﬁ, ; = E, ; = ; X ; (see Chapter 2). The xyz results can be‘obtained
from the above x'y'z' results by averaging over the small fluctuating rotation
around the common z-axis which aligns one.coordinate system with the other;
this method is analogous to the transformation from the 1ntrinsic xyz system
to the external XYZ system discussed in Section 2.4. The associated fluc-
tuating rotation angle Z' is given by sin ¢'; = —Lx'/Lo where Lo ; <L> -
in x'y'z'. For the mean values we then find

F ‘
¢sf> = <-50 sing’ v S5 ws$'>

L eL
(5 ’ G:«;l G.‘c‘o (5014)
LS. . > (- + X
® 9 23 ) L,

and expressions for the covariances also fo]]ow.lz)

An alternative method is to proceed in analogy with the treatment in 5.2a
and bring the rotational hamiltonian on normal form with respect to thé Xyz

system. For this purpose we need to introduce the auxillary spin variable

D= o% .3 5 ‘ (5.15)

and obtain
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+ .2
L Y, 2. L gD, o (3y-53)
et (BT Ty el (Pgtogty 4 a3
Hoe =3 ('J,S s$7) 2%, 5, % ) 2%
- (5.16)
% | )2
B - T SRS 3o sy + S
2% 23+ T 24, I 29.

This result is quite similar to (5.7) for the x'y'z' system with the notable
exception of the x-component of the positive modes, Sys the in-plane com-
ponent of the wriggling mode. This mode is no longer degenerate with the nor-
mal component of the wriggling mode, sy, but rather with the tilting mode

S Thus the previous isotropy in the plane perpendicular to the dinuclear

z°
axis ﬁ is replaced by isotropy in the plane perpendicular to the orbital an-
gular momentum E.

However, when proceeding to derive expressions for the moments of the
equiiibriﬁm spin distribution it must be taken into account that the jacobian
of tﬁe tfaﬁsfdrmation (5.15) is not constant since y depends on §+ through
the direction of I. As a consequence, the mean value of sy is not zero, as

one might naively have expected from (5.16), but smaller than zero by an
amount proportional to the temperature; this is of course a consequence of the
fact that the y-axis is always aligned with Z.

‘Using either method, the following results can be obtained. The mean

values are given by
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Judo T

< Y = - a— —

3, 3 =3
LLy> = EL (5.17)

o

—

T
< $+> - ’j-r - ’J-:_’_jc —
3 Yo J PO

We note that <L > is greater than <L '> while <Jy> and <S.> are

y y
'>, respectively, as one would expect.

Y

smaller th -
ma r an <Jy > and <Sy

As expected,from the normal form (5.16) we find for F,G = S+, L, J

:é F6
65‘3 - 0-5'5l

c6 o (5.18)
G.zz = G.z':.‘

For the z-components this also follows immediately from the fact that the

fluctuating rotation leaves the z-components unaffected. Furthermore,

LF . . _ . +
Oy vanishes since LX = 0, and, since then JX = SX,
33 LA 3 3 10. -
Thn TG, TSl = TZ0T (5.19)
T

Thus, the xx-variance is increased by the factor (36/3R)2

~ 2, relative
to the x'x'-variance.

5.2c Individual fragment spins

The preceding discussion has been made in terms of the normal rotational
modes in the disphere, as is most instructive. It is, of course, ultimately

of interest to calculate the distribution in terms of the individual fragment
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>
spins SF, F=A, B. It easily follows that at thermal equilibrium the mean

fragment spins are given by

£y . JF _ Jede T
<Sy>* 5 9 I 23
in the I-aligned system and
fy . Jr - TJeJo E_
< 55 > ’Jo 3 ’JR J

in the L-aligned system. Furthermore, the various variances are

FG 3 T
. 6'“’\ a ( 5‘: jF jG + e?(’ jA jg ) jAO‘JG
f6 .( da .
6-5'5' = a’o jp :’(, éEeo :‘A 'j(s )jA"jg
N
G.‘:z: = ( gﬂ ':!': :‘6 < 6% jA 1&\ 5’;‘:3';
in the I-aligned internal system and
3 T
e : =
G = ( ‘JP:’L, * &= 'JAj ‘

- Ja A RN
F6 da ' T
¢55 = (,‘5’ j‘:j(’ #éFCv 'jA 36) SA *js

Fe L (P _r
¢ a2 ('3& 39'3(,"695_ ’3A'3&33A*35

(5.20)

(5.21)

(5.22)

(5.23)

.in the L-aligned internal system. (The symboléFG is one if F = G and minus

one otherwise.) We note that the L-aligned results (5.21) and (5.22)

are identical to the stationary solution (5.4) of the dynamical equations

(2.39). The second terms arise from the isotropic negative modes

(bending and twisting) while the first terms arise from the
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positive modes (wriggling and tilting). We note again that the in-plane vari-
ances of the postive modes interchange their sizes under the transformation
between xyz and x'y'z'. A different normal form of the rotational hamiltonian
(5.5) for an asymmetrical disphere has been introduced by Schmitt and

Pacheco.13)

This leads to different definitions of the wriggling and
bending modes, but the result expressed in the original variables, eq. (5.22),
is of course the same.

5.3 Dynamical evolution of the spins along the reaction normal

.)
In this section we consider the components of the fragment spins SA and

B

S” in the direction perpendicular to the reaction plane, SA and SB,

y y
respectively. In order to bring out the essential features as simply as

possible, we assume that the nuclear geometry is fixed, i.e., the form factor

N as well as a,b,R,c UA, 38, ﬂR are all constant in time. It is

ave’
convenient to introduce a two-dimensional vector notation, so that the mean

components are given by S = (<S§>, <S§>) and the associated covari-
>

ances are
AA Al
( Gay T oyy )
<3 =
& 8A 3
0-55 S 0y (5.24)
where 035 = 059 so that g'is symmetric.

5.3a Dynamical equations

In present discussion we ignore the small correction terms proportional
to 1/Ly in the dynamical equations for the mean values. The temporal evo-

lution of the above quantities can then be written as
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& = d -5
> -

bt ]

K
>
2D ~ e K - KleGa

- = (5.25)
&> B & &= Py
where we have introduced - , o - . T FERNR R S
v R NS o ‘1 L .3
d = wmNZ I (a,b) - T (5.26)
A at e Cae alo - c“:.’ ‘
D - W\N'c*( ' (5.27)
> “b - Cp.}_, b‘ + }C,;u" ) ‘
ate . . ok ab -c o, . bR | |
K = wN ( Sa I8 W BaA s e (5.28)
o - .
f‘,:._“b'_catt_:*_ all e b._;,-&c,,:.,;__ﬁ,
e In n I

We note that while the diffusion matrix‘ll is symmefnic,,this is-only so' for X

when A = B. We note thatlilwas the detérminant

(5.29)

:5.3b  Equilibrium. . ...
As time grows, the solutions to the dynamical equations approach their
equilibrium values, which are characterized by the stationarycondition S = 0
>

>

a"dél:=£l’ Thus the equilibrium values are determined by the equations
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S oK = d
- e -
_ . (5.30)
GC oW + K o6 =27D
- &> &> > ->
It can readily be verified that the corresponding solutions are
_ .3 I 4y
§’¢~n < (:“-03, 303
- ?3_,; el -1 (5.31)
G (o) = AS T A “n
&= - - ;TS + |
)

in accordance with our previous discussion of thermal equilibrium in section
5.1.

5.3c. Evolution of the mean values

The dynamical equation (5.25) for §.ha$ the general solution

cK‘t

' -t
Sty =5, (1-e )-»§.,‘v(\-e-

-

) (5.32)

where K, and K, are the eigenvalues of K determined by |K'—K'I| = 0.
1 2 : <> <> <>
In order to determine E ~and S, we exploit the facts that at long
times we have
S+ % 8

-2 -

=g cwy = d ,5"»‘ (£ =>e0) (5.33)

and at short times we have
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Sivat v+ S vt =4t (t = 0)

These two linear equations can'ea§i1y be solved to give

24 LITE N ( é\ - ¥ ﬁ(“) ]
21 : « -K;[K S ¢°°)-vd] Sa‘“““_zsk..nv

The two elgenvalues Ki are determ1ned by

0 lK-uI‘

. (KAA-K)(K B% w) - KARKRA

K - (KAA*:‘K‘?B)‘K.‘ PR

Thereforé,

Awe WMok (M k™Y -y K]

, 2 \ IR Y 4. Rl ‘h
g(-l-'*ff—"'t[(:*‘;-?%)i‘"/'o = ] YN
n &~ G P -:’ . ’3[\151“ ] T
where

R P & + LA E} '

,7 '3A '3(; :’R

AR \ ._'. d

o :_,= ad & el =

") ‘jA 'Jrs 3.

(5.34)

> (5.35)°

(5.36)

(5.37)

: (5.38)
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In the 1imit where Cgve << R2 we thus find

1 2

1

[4 1 ‘Rcm,‘ wa N -~

K‘E\(,%’-(‘L‘* ot . 24 JvaN = —— 3= §,
3 a3 Ve ~

(5.39)

T

h Y
- €
Ww.w AR o3 g

2

- i.e., there is a short re]axation time, t1 = l/Kl; associated with the

temporary establishment of a rolling motion, and a long relaxation time, t2

= 1/K2, associated with the ultimate approach to the thermal Timit. It is
=R
Lol

useful to introduce the rolling Spi".fro]] = Sa J(a,b). It then fol-
lows that

s d Cove | |

Si 24t o=y 2o (5.40)

so that we have approximately the simple result

-

Sth=g yU-e '_>+¢§,¢g)-§,"us(\-en’ ) (5.41)

5.3d Evolution of the covariances

In the special case of a symmetric dinucleus, A = B, the matrix E.is Sym--

metric and the same transformation diagonalizes ﬁ_and ﬁf simultaneously.
Hence, in that simple case the spin covariances can be treated within the same
twoédimensioﬁal formalism. However, in general A # B and it is necessary to

employ a three—dimensionél formulation. Thus, the spin covariances are repre-

sented by the quantity
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AA A® e (5.42)
S T Ty e Sy 0 Ty

Furthermore, we need the diffusion coefficients

AA AD 113

D = (0“”,’ D-u . D.“ ).
oy | 5.43
= MNt*(a‘l“'C‘:wq ab-cl, , ble ) ( )
and the coupling matrix
kM kAt 0
K = ( ZKM KAA*KBQ QKAG
, &= o KM Q‘KB‘S (5°44)

where the elements are those of the 2 x 2 matrix K introduced in the treatment
<>

of the mean values, eq. (5.28).

With these notational tools, the equation of motion for the covariances
can be written

¢ =2D - G *K (5.45)

Furthermore, the equilibrium solution is given by

~ . - Y9 . ,On I
= K = 2 = el =1, = ¢ (5.46)
SR 9'95*@5 Jo - (jb* RERNCT )

in accordance with our previous result.
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The general dynamical solution has the form

M

G (t) =
=

¢

where ki_are the eigenvalues of K determined by [K - k I |=0. In order to
c-_-> ) <2> =
determine:gi we proceed in analogy with the’treatment of the mean values and

exploit the relationship

> e
T w'a. =20 =K o (5.47)
e=t =3 ¢ = [~/

for n = 0,1,2. [For n = 0 the relation follows when t > ©, and for n > 0 it

follows by expansion in pQwéfs of t fOr_f-a 0.] We thus have the three equa-

tions

*+ G, « S, a 20 » K = G (20)
=51 = = = .¢md> L=

‘2.3'.v*v\il<r' *fﬁ .G' - 20
= ‘=’2 3:)‘5 = (5.48)

2 2 k) -
w, S:\ vk, G=-’1+\136=:3 - '19’ *2:’

They have the following solution

[2p *5,"“' 2k, Yy D+ gk 8 (o] /g, e,

39
[}

(5.49)

S’- ['19’ 9‘;(, 4-1(,"‘*‘,‘\1'")» 2} _ \2‘\1$ g; ¢ .\0\1 /kn \'l;s

g1 [20k, 2w @, « Wi g el i b
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where kij = ki - kj. The three eigenvalues k; are determined by

D=z {K -%1\
&S &>
(5.50)
e [(2k* e 1026 ke ) - kA% K*A T koK™t e ] :
so that
R, = 2«
h, =k, *+ «, (5.51)
hay? 2k,

where K; are-the eigenvalues of_ﬁ_pertaining to the mean values. It then
follows that

Cave
So T DY alRR ) ® S
2 (5.52)
Cava Hea ) ,
=51=a(ET)0( R.)“g;\‘\g:t
Con
O
S+ TSNS et )
where Sroll = ﬁr*(az,ab,bz). Consequently, we have approximately the

simple form

‘2ga£ —Q:tt 5 5 )
S aS ul-¢ Y+(G )-8 uiti-e ) (5.53



68

Thus, the evolution of the covariances also exhibits a quick relaxation to-

wards a rolling situation followed by a slower relaxation towards the true

equilibrium. The intermediate relaxation assoﬁiated w%th the eigenvalue kp=
%‘kl *;Kl plays ho eésehtfa]nfoié'becausé‘b%'the réiétfve smallness of

the corresponding eigenvector:gz; in the symmetric case g, vanishes en-

tirely. We note that aﬁg]] is positive while oAB(m) is negative, so
that 095 first increases relatively quickly and theh; more STow]y, decreases

| towards the negatiye asymptotic value.

5.4 Evolution in a symmetric disphere

>

In Section 5.1 we introduced the spins §+.and S; .they are parti-
cularly convenient variables when the two spheres are equal. :In the symmetric
case, where a = b and JA = ﬂB, the mixed mobility tensor M+- (5.2)
vanishes so that the dynémifal equafidns for‘g"'decbupie from the rest;
furthermore, the mobility tensof ;}f is then isotropic. For the remaining
system it is adQéntageous to employ theytotaf'angular momen tum 3 as a variable

> >
rather than S+ since the mobility tensors involving J all vanish due to the

+
absolute conservation of J.
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The equations of motion for the symmetric disphere are then as follows.

First, for the mean values,

in}

. J T &

- (N ¥ __5 - L1
33 = ™M (-t L;. + L‘3 j* )
: e 1.3 3o Ly .E_- \ (5.54)
3 '_‘[* jn 31- L‘ﬁ
.. M T* -

s = — + =
Ss = = J. Ly ) Sy

Furthermore, the normal variances decouple from the rest of the equations,

- 33 - * 72
o-" = oUT )
P M- S |:1_"L 7. EIS

43 . 949 3, Ja 9y

w g M s (5.55)

. L #a, Ll _ t‘_ 20 cU- +2 — @ L
4 ° 2Tt M 2 . J Oy 7. Sy
. ou * pa= = t'.“ -
Cyy 2t'M 2 5. S

Here the last equation is decoupled entirely. The evolution of the in-plane

covariances is governed by

kS L
= 3 walt Iy, Mt J CH 33
s, = 2Tt M -—""\ 2 3‘ Eﬂ Cun - zwn O «a

d + ]

(5.56)
LL 3J

i 1 | J3 ) ':1- 9 33
S, T Wwp (G5 = Gaa) 3. I-::\ G a
bl 0 } 33
c-z'z = 2 "“’R crxz

for the positive modes and by the decoupled system
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- Sz ™M - -
oy = 2T*M at Mt 22 -2 N T
3 (5.57)
- [ mem --
G-x'l ==-13 ‘-3-' G_:z + Wwq ‘6-!' = ¢1z 1
;7 = 2tMT -2 3 Tl + 2wy 6]

o d
for the negative modes. The results can be expressed in terms of st by use

of the relations

3 3 3

(5.58)
c":; 2 G'D‘: \ i,"é = K2
e s e Lo Lt s et .ot

e I 39 99 9

We now investigate the above equétiohs'in the same idealized case of
fixed coefficients as was considered in Section 5.3 (except that now we need
also explicitly assume that the rotational frequency wR'remains Constahf);
The initial condition is that Jy = Ly = J with all the covariances being
equal to zero. |

Typical time sca]es for. the approach to equilibrium can be obtained by
dividing the asymptotic values by the'respective initial time derivatives.

This yields for the transversal spin components ot and o' the

XX yy
time scales §° t,., and %" t., , respectively, where
(8 o
** 7, J.
= = —-— s

5.59
2';' MLt 2MNR" ( )
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while for the components ofng;' we find

. |
e =22, 3 (5.60)
=< 2e*M™° AmNel,,

Thus, t ./t =¢r(c2 /R2) << 1, as we also found in Section 5.3.

ave .
e PR ' . L o
We note that ¢t.. = 3, 2% and L S 2e. where &, are the

quantities introduced in (5.36). For two equal touching spheres the ratio
JolﬁR equals 5/7 so this factor is not of qualitative -importance.

The normal variance o;;,= ogg does not receive contributions
directly through the transfer process but only indirectly by the orbital rota-

tion of oﬂg via cig. The time development at early times is
ot = %1:' MY W 3 (5.61)

- which indicates that the time scale for the relaxation of the tilting mode is
inversely proportional to the square of the orbital frequency wp. It should
~ be added-in this connection, that although the above expansion only remains
Qa11d-during relatively early times the time scale for the equalibration still
contains the factor 1/mR2.

After these introductory considerations, we proceed to investigate the
dynamical solution to the equations. Neglecting terms of the order 3.t re-

2

lative to terms of the order ty, we obtain the following leading-order

solution for the mean values,
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33 = J = ctomstant
% t
Je . In 2tes
2 - { -
Lyr S 3bie 5 e ] (5.62)
do
3 T Fa 2t
+ - o3 - n -t
S5 = Jn' L.5 z j J [ e ]
5; = 0
where t,, is the relaxation time given in (5.59).
For .the covariances in the y-direction we find
Jo t
JeIn o=z =
+ 4 [ - + - ¥ - ': 'b.
SR el 5 ° [1-e 3 ]
(5.63)
AL * 2 33 - * 2
T yy =0T ), Oy =0T )

These results also follow from the analysis in Section 5.3 by considering the

special case of symmetry, A = B. In this case the rolling spin §ro]]‘is

equal to the sticking spin §(w) so that the second eigenvector §(w) - §ro]]
vanishes and the mean values exhibit a pure relaxation with the short time
scale tl' For the covariances, the intermediate eigenvector vanishes due to
the symmetry and the simple form (5.53) for the evolution of the covariances
is exact. Furthermore, grg1) is equal to g**(«) so that the:gf+ exhibits a
pure relaxation with the short time scale %tl and the above result follows.
Furthermore,:g;all vanishes so that:g;‘ exhibits a pure relaxation with

the long time scale %tz and the result (5.67) follows.
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Jdd Jd JJd

w® %xz® 922 contain the

The equations (5.56) for o
time- dependent quantity Ly, both impliqjtely throughvthe orbitaﬁ‘freduency
wp and expljcite1y.’ Theréfore, the exadtisolﬁtion iéira?her intransparent.
Fortunqtely; it .is a fairly good approximation to fir;t.tféat Lyias‘a time-
independent pérameter while so]vingﬂ;he equation; qnd’then subsquently
substitute the'timéédepéndénfﬁL; giQén above in (§:62). We then need to
solve three coupled linear equations with cdnéthntféoéffitiehts; thfs can be
done by the:sqme method as employed in Section 5.3. . )

The. appropriate. relaxation times are given by the inVérse 3? fhélefgeh-

values of the coefficient matrix which are found to be

o,
2k, v Dy el o=o2n

\
.k‘ 2 Ly tes

(5;64)

Yo i
h; = h—;' [\'L: - "‘w;] z:“-{w,}"- + =

" The abproximate expressions for k; and k; hold: provided the dimensionless
;qUantityxegls ‘H;o"t,,=L5/-Js . is :small ‘compared to unity;"aé is thé case

+ when the orbital rotation, which is characterized by the time Scale*wal, |

is slow in comparison with the short relaxation time t*;Lin (5.59).  we note

that asymptotically, when Ly/Jy = 3R/35’ the large eigenvalue kl is

~equal to the one derived in 5.3 for the y—éompdhents,'seequs; (5.51 and 5.39).

The dynamical solution for the in-plane variances is given by
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G':: h.t+¢ E' - 61 éz “ \!‘ ‘L.. -.é.s
jt"-" - - -
* - -— -—
e hate &, - &TE, R t,, &y

where we have used the shortfhand notation € =1 - exp (-kit) for i =
1,2,3. The time scale for the relaxation of u;; is~ t,, (to within
the factor JR/JB)' When this time is short compared to the orbital rota-

~tion, i.e., when ¢ << 1, the main part of L relaxes on the time scale

-} t'. ).' _.z ﬂ £’* . (5-66)

wr

o T, B Hwn

We note that this time scale is proportional to the square of the orbital

frequency wp and hence usually fairly long.
Fina]ly,vlet us consider the negative modes. The equations for the co-

va;iances of g;'are very simple due to the isotropy of the associated mobi-

lity tensor. Since the initial distribution is isotropic (namely "6(§;))

the dynamical solution remains isotropic at all times and we readily find (for

example by considering the equation for 0;;)

R AP, S L e-t”'"] T - (5.67)

where t_ is the relaxation time (5.60) for the covariances of the negative

spin modes.
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6.  Illustrative applications

In the proceding section we have discussed theﬂéharacteriStTC‘features of
the spin evolution with an emphasis on the qualitative aspects. We now wish
to illustrate the theory quantitatively by making applications to some cases
of actual experimental interest. The ultimate comparison:with the data is
postponed to the subsequent paper II since the sequential ‘decay process need
to be discussed first. ' o R

6.1 Time evolution of the geometry

The mobility tensors, and hence the transport coefficients, for the an-
gular momenta depend on the dinuclear geometry through the center separation R
.and the neck radius c. It is therefore instructive to start'by.considering
the time evolution-of these two quantities. In Fig. 2 they are shown as func-
tions of time for a number of specified angular momenta J in the reaction 1400
MeV 165H0 +nl§5Ho.'wThe'two’nuclei'approach each other on a Coulomb tra-
jectory and R: decreases steadily. - When the two surfaces are about 1.7 fm
apart the neck degree of freedom is activated and ‘the neck radius grows
rapidly. The maximum neck opening is achieved around the time of closest ap-
proach and .is maintained for a while as the-two nuclei recede. Towards the
.end of the reaction phase the neck shrinks rapidly and finally vanishes rather
abruptly. After this time the two nuclei separate on another Coulomb tra-

. jectory.

‘A pictorial impression of the evolution of the dinuclear geometry can be
gained from Fig. 3 which displays the overall dinuclear shape at three dif-
ferent points in time (shortly after the neck ‘has opened, at the time of

turning, and right before the neck collapses), for three selected angular
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momenta in the same Ho + Ho reaction. The dots indicate previous and future
~ locations of the nuclear centers at equidistant points in time separated by
10'22 sec. (The dashed contours indicate the spin distributions and are
discussed in Section 6.2).

The present model contains essentially only one shape degree of freedom,
namely the neck radius ¢, and the shapes in Fig. 3 look rather crude relative
to shapes obtained with models including more shape variables. Therefore, it
is of interest to compare the calculated evolution of R and ¢ with the evo-
lution obtained with models of damped reactions which leave more freedom for
the nuclear. shapes. Fig. 4 shows the time evolution of R and ¢ for a head-on
co]]isioh in the reaction 1535 MeV 208Pb + 208Pb. Comparison is made with
.the Time-Dependent Hartree-Fock model ~and the Coherent Surface Excitation

mode1.14)

Closest correspondence is obtained between our model and TDHF,

both as regards the neck radius and the reaction time as the overall evolution
of the center separation. The CSE model yie]ds a somewhat smaller neck
opening and a somewhat shorter reaction time. .

The information in Fig. 4 can be represented in a different manner by
plotting the dynamical trajectory of the system in the Rc-plane, as shown in
Fig. 5. The early time evolution is seen to be very simitar in our model and
TDHF. During most of the recession, our neck radius exceeds that of TDHF, for
the same value of R, while that of the CSE is considerably smaller. Towards
the end of the reaction our neck radius collapses at a ®10% smaller R-value
than the other two, which are rather similar to one another at this stage.

The fact that more elongated shapes can be achieved in TDHF and CSE is due to

the incorporation of more shape degrees of freedom in these models. Some idea
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of how a more detailed treatment of the nuclear shape degrees of freedom would
affect the transfer-induced angular-momentum transfer can be gained by con-
sidering the expressions for the asymptotic values and relaxation times given
in Section 5. A smaller neck radius, as obtained with the CSE, would Tead to
longer relaxation times, especially for the negative spin modes for which the
relaxation time would exceed the reaction time by about a factor of four.
Furthermore, more elongated shapes, as obtained with both TDHF and CSE, would
lead to smaller values of the final mean spin in the fragmehts{ - Of iﬁpdftéhce
is. also the fact that both the CSE and the TDHF models contain degrees of
freedom associated with the shape of the nuclear surfaces. These'may'éarfy
angular -momentum and thus have a substantial effect on the dynamics and the
final values of the fragment spins. Fina]ly; we note that the static deforma-
tion of nuclei such as Ho may also affect the angular-momentum dynamics. In
the present model we include only the minimum number of angular-momentum de-
grees of freedom, namely those associated with the total spins of the the two

final fragments.

6.2 Dynamical evolution of the angular momenta

- We now consider in some detail the calculated dynamical evolution of the
angular momenta during the reaction phase. -

6.2a The reaction 1400 Mev 16540 + 16540

In order :to illustrate the transport of angular momentum in realistic

cases, we first consider the symmetric reaction Ho + Ho at 1400 MeV bombarding

energy. This reaction has been studied»experimenta]]y.ls)
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As an introducton, we consider the various relaxation times introduced in
Section 5. They are shown in Fig. 6 as functions of time, for a number of
different values of the total angular momentum J. We note that throughout the
reaction phase the relaxation times t,  associated with the two wriggling
modes are considerably shorter than t__ associated with the negative modes,
as already expected since c2 << R2. The relaxatin time for the tilting
mode is fairly long but has an opposite behévior, both as a function of time
and in its dependence on J. By:comparing the relaxation times with the re-
action times it is possible to obtain an expectation for how far the various
modes will evolve towards equilibrium.- Thus, for not too large impact param-
eter, we expect the wriggling modes to achieve nearly complete relaxation,
contrary to the negative modes for which this is at most expected for the
smallest impact parameters. The tilting mode is generally expected to gain
Tittle excitation.

.The calculated dynamical evolution of the mean fragment spin projection
is shown in Fig. 7, for three selected J-values. For the highest value, J =
400+, the reaction is over before the equilibrium mean value can be reached.
For the intekmediate value, J = 320 %, the equilibrium value is nearly
achieved around the time of closest approach. This equilibrium mean spin de-
creases as the two fragment recede and the relative moment of inertia grows.
Therefore,rthe mean spin exhibits a maximum as a function of time. The same
is true at the most central reaction, J = 100%, but here the equilibrium
values are of course smaller.

The calculated spin covariances are displayed in Fig. 8 as functions of

time. The figure has three parts. The first shows the dynamical evolution
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FG FG .
X and oyy in-

crease rapidly at early times; this is a reflection of the fast wriggling

relaxation time (see Fig. 6). The local bumps in Uig ;g

time of closest approach (t= 3-10~22 sec.) are caused by a minimum in the

during the reaction phase. It is clearly seen how o

and o around the

effective temperature T [The effective temperature is initially nearly
proportional to the relative nuclear velocity and hence at first it de-
creases. Later on, when the re]ative_motion has subsided,T* is close to the

intrinsic temperature T which increases in time. Thus T* exhibits a minimum

which occurs approximéte]y at the turning point of the relative motion.] The

FG

77 is considerably slower, as expected from Fig. 6. Most

evolution of ¢

of "6 is associated with the negative twisting mode as evidenced by the

2z
fact that the covariance cég is negative, but, as the difference between
ogé and oég indicates, there is also a fair amount of tilting. The

second part of the figure shows, on a condensed time scale, the rotation of
the covariances along the exit Coulomb trajectory. Finally, the third part
shows the result of transforming to the external coordinate system XYZ. This

transformation is seen to have a substantial effect on the x-components; in

AB
XX

The equiprobability contours of the fragment spin distribution are el-

fact o, becomes negative.

lipsoids whose common shape and orientation are determined by the appropriate
covariances. In order to given a visual impression of the spin evolution we
have included in Fig. 3 contours of the spin distribution projected onto the
xz-plane. The contours are drawn at a distance of one standard derivation
from thé mean (which is zero in the xz-plane). One notes how the fairly peri-

- pheral collision (J = 4404 ) inhibits the build-up of negative spin modes so
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the distribution is very elongated. Furthermore, the smallness of the form
factor prevents the distribution from aligning itself relative to the di-
nuclear axis. For J = 320 % the window grows wider and the isotropic negative
modes are more readily excited; the distribution also follows better the
turning dinuclear axis. These features are even more apparent for J = 100 #.

v 86 209

6.2b The reaction 610 Me Kr + Bi

In order to illustrate the dynamical spin evolution in an asymmetric case

86 209

we consider the reaction 610 MeV ~“Kr + 81 which has been studied ex-

perimentally.16)

The practically similar reaction has also been
studied.17)

Fig. 9 1ds analogous to Fig. 7 and shows the time evolution of the mean
spin projections for three selected values of J. The qualitative features of
the evolution are the same as in the symmetric case (Fig. 7). We note that at
early times the two spins are more similar than at Tater times. This is be-
cause the rolling spins towards which the values tend at first, scale as the
nuclear radii while the sticking spins, towards which the values tend ulti-
mately, scale as the fifth power of the radii.

In Fig. 10 the time evolution of the spin covariances are displayed, in
analogy to Fig. 8 for Ho + Ho. The features are similar to those of Fig. 8

and we note that at early times the variances grow in proportion to the

rolling value (5.52).

6.3 Energy-conditioned cross sections

We now wish to illustrate the dependence of the final spin distribution
on the kinetic-energy loss TKEL, as obtained by integrating of all J-values
and exploiting the calculated covariance between the relative energy and the

spins.
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First, in Fig. 11, we show the normal component of the fragment spin;
sA - 35, for the Ho + Ho reaction. The figure displays the distri-
bution in the TKEL-Se plane calculated for specified values of the total
angular momentum J. The distribution of S¢ for a specified value of TKEL
is obtained by adding up the contributions from all the J-values, properly
weighted, and then cutting along the devised value ‘of TKEL. This procedure
leads to the conditional mean values shown in Fig. 12. One notes how the mean
spin first rises with TKEL, then drops off as the contributing impact param-
eters grow smaller.

G

- . . > .
The associated spin covariance tensors ¢ ~ are also readily calculated

<AA
g

L]

using the methods discussed in Section 3. Each of the three tensors
gAB,-gBB can be characterized by the orientation of the corresponding
principal coordinate system, XdYoZo’ in which it is diagonal, and its
. three principal variances o;gxo,ongo, oggzo.
Due to the up-down symmetry of the scattering problem the principal
. systems are aligned with the reaction normal so their orientation can be
specified by a single angle, e.g., the angle 90 between the beam axis and
the axis of the largest in-plane variance. For a symmetric system, all three
covariance tensors have the same principal orientation. The same simple
feature remains true in asymmetric cases as well to within a few degrees. The
principal angle 60 for the Ho + Ho case is shown in Fig. 13 as a function of
TKEL. .Also shown on this figure is the scattering ahg]e<9CM together with
the calculated varianceé in QCM and TKEL for selected values of J.
It is an important simplifying feature that the angle 95 is

approximately equal to HCMIZ. This is to be expected since most of the

exchange occurs
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around the turning point where the dinuclear axis is perpendicular to

8cw/2. For small TKEL 8, is slightly larger than GCM/Z. This is be-

cause the transformation from the internal to the external reference frame re-
duces the spin variance perpendicular to the emission direction and thus ef-
fects a slight rotation of the principal system towards the ejection direc-
tion. For larger TKEL this effect is counteracted and ultimately dominated by
a shift of 90 away from the ejection direction due to the asymmetry of the
relative trajectory around the turning point: the system spends longer time
together after the turning than before and, furthermore, since better contact
is established the relaxation times are shorter and the principal frame will
be oriented more forwards.

For our discussion of the in-plane spin covariances it is convenient to
adopt the major principal direction as the X-axis. (We drop the subscript o
for notatinal convenience.) It follows from the above discussion that the
Z-axis is then approximately aligned with that direction the dinuclear axis
had at the time of closest approach. Furthermore, the relaxation time rele-
vant for the positive modes along the X-direction is the wriggling time t
while the relevant time scale for the positive modes along the Z-axis is well
approximated by the tilting time t+z. These times were shown in Fig. 6.

The corresponding principal covariances are shown in Fig. 14. The prin-
cipal variances o?$va11 increase steadily with TKEL, except for a slight
decrease in oee at the largest TKEL. [This latter feature may be an
artifact of the upper bound imposed in TKEL by our limited shape parametri-

A

zation.] Due to the strong correlation between SY and TKEL at small

TKEL, the conditional value of °¢¢ for fixed TKEL becomes smaller
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than c¢¢ calculated for the corresponding value of J, and °¢¢

builds up.less rapidly than oM for small TKEL. Of special -importance

XX
are the covariances o??. The covariance .along the normal direction,

o¢$, is always positive, due to the dominance of the positive wriggling
mode for small TKEL, and due to the contributions from-quite a wide range of
angular momenta J- at large TKEL. The dependence of the relaxation-times on-d,:: -
as shown in Fig. 6, is reflected in the dependence of the in-plane covariances -«
093 and cég on TKEL. The larger in-plane component, aﬁg first increases

to substantial positive values for small TKEL, due to the very short relax-:

ation time for the wriggling mode, and for-large TKEL, oQE-decreases and

finally becomes rather small due to the: increasing excitation of the negative

in-plane bending mode: For large.J, the tilting relaxation time, t_, is

- smaller than the twisting relaxation time t: , and the smaller in-plane com- -

ponent of the covariance,.oég, attains small positive values for small

.TKEL. With decreasing J the twisting relaxation time becomes smaller and the
tilting time longer. .Consequently, with increasing TKEL, oég,changesi

. .sign and finally, for-large TKEL, attains substantial negative values.

6.5 Comparison to:a statistical model

We wish to compare our dynamical results from Figure 15 for the covari-
ances with the results of a statistical model, in which the relaxation times
are so short that the equilibrium values (5.23) for the covariances are

reached towards the end. of the collision for all impact parameters. .
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As input infbrmation to the statistical model one needs to know, as a
function of TKEL, the effective temperature t*and the moments of inertia UA,
38, jR at the time when the distribution freezes, as the two nuclei loose
contact. To carry through the transformations (2.47-54) to the external
frame, the scattering angle should be known, too. A special problem is the
assignment of .the average spin and total angular momentum, also entering the
transformation. |

Our objective here is not to formulate and apply a statistical model to
the Ho + Ho collision, but to compare the covariances of the statistical and
dynamical models under similar circumstances. Therefore, we adopt for the
statistical model the calculated total angular momenta and scattering angles
as given in Figure 13. To calculate the relative moment of inertia 5R'at
the time when the two nuclei loose contact, we use an average value of R = 18
fm, as can be inferred froh ngure 2. For the mean values of the spins, we
adopt two alternative prescriptions: (i) the equilibrium value, as given by
equationé (5.21), once J and 3§ are'specifiéd. This is what we expect to be
the most reasonable prescription when the relaxation times for mean values and
covariances are related to each other. For the purpose of illustrations we
also apply another presentation: (ii) the mean values from Figure 11, as
calculated dynamically. As the effective temperature is concerned, we do not
include the effect of the relative motion, but insert the temperature T as-
sociated with the heat content in the two nuclei at the time of separation as
calculated dynamically. This temperature is to a good approximation propor-

tional to the square root of the total kinetic energy loss.
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In equilibrium, the in-plane covariances are isotropic in the intrinsic
frame, and the transformation to the external frame introduces an anisotropy.
Inserfing into the expression.(2.47-54) we find that the angle ¢ from the
final direction of motion after the collision to the major principal axis of

the iﬁfplane covariance matrix is -given by:

++ ' ‘ ' '
2 G, - [57:4:% ew .
V= §arcton ( ——22— ) = 1, arctan ( = ) (6.1)
Gt - o2 6~
22 .XX . . IsimBp, -

where eCM is the center-of-mass scattering angle. For the angle between the
beam direction and the principal axis, We find,expanding the arctan and.keeping

terms to first order inbs;/J:

oD
b ¢
+
S,
g
D

(6.2)

§D
hm ’
3
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Thus, the X-axis of the principal system forms this angle with the beam axis,
and we obtain for the principal variances of the positive modes, to second

order in S'/J:
er in y/J,.

.

' s ot
St oy, [ —2— (1 -5ie0 @, + =3
Syy =T Y. I [1 T o ( s e ) 516, 3 )]

(6.3)

o L + . ) . . st .
e ey, 1. . o . S5
c7; =t 5ﬂ[1 " Tore. wamc\ . M 50, ij] |
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Figure 15 shows the angle 5% and Fiqure 16 shows the spin covariances
in the principal system obtained with the statistical model. For the figures,
an exact diagonalization was carried out, but the approximate expressions
(6.2) and (6.3) are accurate to within 1ess than one percent for all the
quantitites shown, except for the largest TKEL, where the scattering angle ap-
proaches 180° andval] expressions diverge.

As expected for a statistical model, the disperéions:grow roughly as the
fourth root of the total kinetic energy loss. ‘This is esﬁceia]]y true for the
dispersion in the normal direction,'o$$ which is unaffected by the
transformation to the external frame. For all variances in one nucleus
' o??, only a rather small anisotropy is introduced by the transformation
to the external frame, whereas the covariances are affected in the most dra-
matic way. The covariances-o?? are; however, small compared to the
variances within one nucleus o??.

From the expression (6.3), it is evident that the smallest in-plane co-
FG is most sensitive to the actual value of'S;/d, and

7’
in Fig. 16 the dashed curves shown ogg when the dynamical value is used

variance, ¢

for S;/J. Generally, the result is not very sensitive to which value is

used. For ]arge‘J, and hence small average TKEL, the smallness of the values
obtained for S;/J with the dynamical results from Figure 11; implies that
hardly any change is introduced by the transformation from the intrinsic frame
to the external frame. For J smaller than 420+ (average TKEL larger than 140
MeV), S; becomes practically equilibrated at the time of closest approach

and overshoots the value corresponding to rigid rotation at
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the separation distance. So the dashed and full curves on Fig. 16 cross each
other at a TKEL of 140 MeV.
By inserting the equilibrium value of S;/J into the expression (6.3)

for ozz, we obtain approximately:

v -;j+§.° [1-1%“'] =tld, " =¢a (6.4)
° °

Iy
22
Ir

{3

Thus, these variances look much like the variances in the internal I-aligned
coordinate system, c.f. equation (5.22), namely with one of the in-plane vari-
ance being large and the two other variances being small and equal. The es-
sential difference between the I-aligned and the external system is the orien-
tation of the principal system. 1In the I-aligned system, the direction of the
largest variance is given by the axis connecting the nuclei at separation. 1In
the external system, which is the one relevant for experiments, the direction
of the largest spin variance is given by the expression (6.1), or, to within
approximately #5°, it is at an angle eCM/Z + 45° to the beam direction.
This is a characteristic feature of the statistical model, both for a sym-
metric collision, such as the Ho + Ho collision, and for asymmetric collisions
as well.,

Comparing the dynamical and statistical results, several differences are
apparent. First of all, the direction of the principal system for the statis-
tical model is shifted by 45° re]étive to the dynamical results. Secondly,

the dynamical results display a much larger in-plane anisotropy of the
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covariances. For the normal covariances, 053, on the other hand, we do

not attach so much significance to the difference since part of the result in
the dynamical case comes from the integration over impact parameter at fixed
TKEL. A similar integration in the statistical model would diminish the

difference between the two results,
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7. Discussion

We conclude this paper by discussing various other models addressing an-
gular momentum in damped nuclear reactions. We do not wish to give a full
discussion of those models but concentrate on the aspects relevant to the

topic of the present work.

7.1 Other transport models

Although several other transport models have been developed for damped

18—20))

nuclear reactions (e.g;, refs. , none of those include a sufficient

number of spin variab]és to specify'completely the final angular momenta of
the two reaction products. The most detailed model so far is the one
discussed below.

" 7.1a Trénsport model of Wolschin et al.

Wolschin et a1.21) have studied the aligned compohents of the fragment
spins within a transﬁort model Which has its origin 1n‘the quantum-stétistical
treatment of dissipation proceéses formulated by Norenberg et a1.22’23).

The form factors for angular momentum transport are estimated on the basis of

a gaussian parameterization of the dependence on single particle energy and

angular momentum of the interaction matrix elements for exciting and

transferring nucleons during a reaction18). In actual calculations, the

form factoré are takeh to be constant during a phenomenologically determined

effective interaction time. Applied to mass transfer, this‘formalism gave the
24)

first quantitative account of the mass diffusion® /.

In treating the time evolution of the individual spins in ref.ZIZ the

AA

vy and

diffusion coefficients for the two normal spin components, D
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DBB
yy
y-muitiplicities for the Kr and Sm case cons1dered while the m1xed diffusion

in our notation, are taken in accordance with the measured mean

coefficient, Qﬁg, is assumed to be negI1g1bIe ActuaIIy, th1s Iatter
ansatz appears to be in conflict with the under]y1ng scheme for caIcuIat1ng

the form factorslS)

with nucleon transfer between the two nucIldes be1ng
responsible for a specific part of the d1ffus1on coeff1c1ent Indeed the
mixed diffusion coefficient Dﬁg is generally expected to be of a s1ze
comparable to QCC and DBs In our model, as we have seen in the |

preced1ng, the m1xed coefficient is respons1b1e for the bu11d—up of strong
positive sp1n correlations at early times (the roI]1ng s1tuat1on, cf Sect1on
5). Only Iater on, on a longer tlme sca]e does the sp1n covar1ance approach
its slightly negative equilibrium value. In contrast to this character1st1c
evolution, the calculations by WOIsch1n et al. yield a monotonic'decrease of
the sp1n covar1ance from the initial vaIue of zero towards the final equ111—
br1um vaIue due to the absence of the m1xed d1ffus1on coeff1c1ent there is no
1ntermed1ae excursion of the covariance 1nto the pos1t1ve reg1me There 1s:
thus an essent1a1 quaI1tat1ve d1fference between the results by WO1$ch1n et
al. and ours.

7.2 Time-dependent Hartree-Fock modeI

125) is seIf-cons1stent microscopic and quantal. It

The TDHF mode
g1ves a parameter free descr1pt1on at the time evo]ut1on of the one- body
dens1ty matr1x In part1cuIar the model prov1des a good 1mpress1on of the
‘evqut1on of the nucIear den51ty d1str1but1on, and the mean field, dur1ng a
damped react1on and may thus offer valuable gu1dance for 1dent1fy1ng the

proper macroscop1c var1abIes.
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Due to its inherently one-body nature, the TDHF model cannot address
fluctuations and correlations in a realistic manner and it is thus most useful
in dynamical situations where fluctuations are expected to be of only minor
importance.

Since it is relatively costly to perform TDHF calculations, certain sim-
plifications are usually imposed. Thus, the spin-orbit force is neglected and
often no distinction is made between neutrons and protons, so that each or-
bital has a four-fold spin-isospin degeneracy. This of course reduces the
number of degrees of freedom in the system.. Furthermore, the wave functions
have often been restricted to have axial symmetry (possibly in a rotating
frame). It is clear that fully three-dimensional calculations are of largest
interest for studies of the angular-momentum dynamics. However, even this
most general TDHF treatment can only calculate the aligned angular momentum
components while no reliable information can be obtained about depolarization,

misalignment, etc.

7.3 Models with nuclear deformations

7.3a Coherent Surface Excitation model

The Coherent Surface Excitation:nnde114) describes the reaction system
as two deformable nuclei. The deformation degrees of freedom are those
associated with the standard coherent surface excitations of various
multipolarities; for each particular mode the strength function is idea]i;ed
as an essentially undamped lTow-frequency mode plus a high-frequency mode with
a substantiai width. The multipole-multipole interaction due to the mutual

Coulomb and nuclear forces provide the coupling mechanism which exchanges
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energy between the relative motion and the intrinsic vibrations. In addition,
a proximity friction is added (but the associated fluctuating force has nof'
been included so far). The ensuing coupled classical equations of motion‘are
solved for an ensemble of initial conditions representing the classical
approximation to the zero-point motion of the 'vibrational modes; in this way
finite dispersions are produced even for a single impact parémete?; R
This model was employed in ref.26) to investigate the an@dﬁdf—moméntuﬁ;
transfer in the Kr + Pb reaction at 610 MeV. The FrégmehtASpﬁn'distfibdffoﬁ
was calculated as a function of either impact parameter or ehergy Toss and
subsequently the angular distribution of fission fragments from the’target—
like reaction product was derived. |

The simultaneous inclusion of surface vibrations coupling via the nuclear
proximity force and the stochastic transfer of nucleons is notustraighthkward
and in their attempt to accomplish this the authors have made sévera]rapprdxi—
mations. Perhaps most severe in the present context is the tbmp]eté>neglect
of the fluctuating component of the dissipative force produced by the nucleon
transfers. As the present study demonstrates, this force gives rise to sub-
stantial dispersions in the angular momenta, in fact being of sizes similar to
those obtained in ref.26)'resu]ting exclusively from the zero-point vibra-
tions.

For the same reaction, the present nucleon-exchange generated angular
momentum dispersions are typically 50% larger than those obtained in

.27), except for the normal direction in which the zero-point motion V

ref
generates large fluctuations. It is not obvious how the simultaneous
inclusion of both sources of fluctuation would affect the results. For those

modes which have short relaxation times with respect to the nucleon-exchange



93

process, the effect of the zero-point fluctuations would probably quickly be
forgotten by the system. On the other hand, the large normal spin dispersions
caused by the zero-point fluctuations might well survive the inclusion of the
exchange-induced fluctuations. If so, even rather large impact parameters
would still contribute to a wide range of energy losses.

The coherent surface excitation model, with or without some form of:
nucleon transfer, is readily capable of yielding predictions about the cor-
relations between the two fragment spins. This would seem a worthwhile task
in view of the several specific qualitative predictions made by the present
nucleon-exchange model.

7.3b Collision of deformed nuclei

In a]T’preceding models the nuclei are initially assumed to have a
spherical equilibrium shape. To study the effect on angular momentum transfer

27) In that

of static deformations a model has been developed by Min et al.
"model two spheroids, capable of undergoing damped vibrations, collide under
the action of conservative Coulomb and nuclear forces as well as a proximity
friction force.

In the case of Ho + Ho, their prime case, they obtain appreciable spin
transfers and misalignments, of sufficient magnitude to account for the data.
They take this as an indication that this agency is the dominant source for
the spin transfer in damped reactions.

We wish to express some reservation about this conjecture. If the ini-
tial static deformations were the main source of spin transfer and misalign-
ment one should observe drastic differences between reactions involving de-

formed and spherical nuclei. This appears not to be the case. Furthermore,

static deformations are a consequence of shell effects and are thus expected
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to disappear at the high excitations.usually achieved in a damped reaction.
Thus, towards the end of the reaction phase there is no particelar stabi- H
Tization around a deformed shape and the employed equations of motion are in-
adequate. However, there is little doubt that at the ear]y react1on stage the
presence of initial deformations are of 1mportance and it wou]d be 1nterest1ng

to pursue this question theoretically as well as exper1menta11y

7.4 Statistical models .

The preceeding models discussed are all dynamical in thet no e priertvas—
sumption is made about the relaxation times for the consideﬁed‘angulef-mo—
mentum variables: their‘final value is a result of a'calcu1ated.dyhahtce]
evolution during the reaction phase. It isrfnstructtve'to contrast thete
dynamical results with those obtained in a purely stat1st1ca1 treatment At
“any time during the reaction phase, a well-defined equ111b1rum d15tr1but1on
exists, associated to the instantaneous geometrical conf1guratjon of the di- .
~nucleus. The instantaneous equilibrium distrtbqtion:can be obteihed from the.
dynamical equation by artifically increasing the form factofs'for the angular-
momentum transport, so that the relaxation times become jnfinitesiﬁa]. The
angular momenta will then instantly adjust to the'ever changing einuclear
- configuration and one obtains a time-dependent equilibrium distributiee as an
instructive reference. In such a statistical model the observed dittritution
then arises from the instantaneous equilibrium at the time of neck collapse
when the form factors go abruptly to zero and the two feaction partners loose
contact. .

The above described model appears to be the conceptua]]y c]earest

statistical model. The stat1st1ca1 spin d1str1but1on has a genera] va11d1ty



95

peyond the specific mechanisms which are responsible for the angular momentum
dynamics during a reaction, and therefore the statistical model bffers a
valuable reference distribution when discussing dynamical models. It ié worth
noticing, though, that the statistical model is not self-contained since it
require; the_specification of the separation between the two nﬁc]ei at the
time when the spin distribution is determined. |

For the mean spin vectors the statistical model yields the figid rotation
values (subject to small corrections). In actual reactions it is clear that
rigid rotation is not achieved for the smallest energy losses. Therefore, in
discussing the statistical model, separate recipies have been emp]oyedlfor the
“mean spin vectors and the attention has ‘focussed on the equilibration of the
variances. |

In the literature various statistical models have been formulated and we
discuss them in turn below.

7.4a Moretto's treatment

The formulation of a statistical model for damped reactions was first

made by Moretto et al.1 . 1n actual comparisons with datal®»%8)

the meén
spin vector dominates most of the measured observables. The average
y—mﬁltiplicity has therefore been used to estimate the mean spiﬁ vector (as a
functioﬁ of energy loss) under the assumption of fully equilibrated spin
variahces; and the out;of—plane correlation of sequential decay has
subsequently been invoked to provide a consistency check.

As we have discussed and displayed in figures 13-16, the rather long
relaxation times obtained for some of the modes with the present transfer

induced transport theory imply significant differences between our results and

the results of the statistical model. One such difference is obtained for the
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direction of the major in-plane variance. The analysis by Moretto et al. is
carried out in the body-fixed I-aligned coordinate.system. In‘the'I-a]igned
frame the major axis is along the line connecting the-centers of the nuclei
when the spin distribution is determined and thus a discussion of the.reaction
dynamics is required. In contrast to this, we transform to the external
frame, as is necessary in order to:make contact with observed quantities. In
the L-aligned frame the statistical in-plane variances are isotropic while the
transformation to the external frames introduces an anisotropy. whose: major
direction is determined kinematically rather than dynamically; being a:simple
function of the scattering angle. -

On the other hand the transformation to the external frame leaves the"
spin magnitude invariant and the alignment practically unchanged, so the -
ranalysis of the y-multiplicity and the out-of-plane angular correlations is
not affected.

It is also worthwhile noticing that Moretto's statistical model focusses
on a certain limited aspeét of the data only and many basic observables, such
as angular distributions :and cross sections, can not be addressed.

Within the framework of the transfer-induced transport theory, it is not
possible to justify the underlying assumption of quick relaxation for all the
dinuclear spin mddes. According to our analysis of relaxation times (Section
5), only the two wriggling modes are generally expected to have relaxation
times sufficiently short in comparison with the reaction time to permit

equilibrium to be established.
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7.4b Friedman's treatment

d29)’ a statistical treatment of angular momenta

Friedman has presente
in damped reactions which has a starting point conceptually close to ours but
which deviates essentially with respect to a key result. The object of study

is a disphere with given energy

1 Y Al Rt
u] — L S S
= +7 RV 2 - - & —  — + Q , .
Bif g, TR VR T, TR 29, 2%p (7.1)
- Jz nn*-"
"Emt*Vn"aaﬁo*'Ewt +Vg *Q

Here the relative radial energy consists of a fixed barrier energy VR and a
kinetic energy TR which is totally dissipated. For a specified value of the

total angular momentum J, the statistical distribution of the spin variables is

P (3,88 Uy ~ @ (7.2)

E1ntr‘

. . 2
where p is the level density and Q = Ei -J /2:% - V12 - Epot

is the generated internal excitation (the heat). It is then clear that Pj*

has a maximum when Q is maximal, i.e. when E;gtr, the energy carried by

the six normal modes of intrinisic dinuclear rotation, is minimal. This of

intr

rot = 0, i.e., for a rigid rotation of the

system. Therefore, the most probable value of the spinlgF is

course, occurs for E

= e El’ « 0(T) (7.3)

< 3F>»
J Yo
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Furthermore, the most likely energy loss is

~

AE] = E' "VR - %“ — + a‘t) . (7°4)

(3

These results are in accordance with the treatment by Friedman.
: v N N
The above analysis pertains to a specified value of J. The observable
probability distribution is a sumof such contributions. -

-

P 8 Ty = (4T PpEr 800y 0 09

Here the specific measure on J is dictated by the conditions associated with a

collision experiment, but the_fo]lowihg‘considerations remain yalid a];orif'_
the measure is distorted not too violently. “ |

It is of experimental interest to gate on the‘energy‘1oss,TKEL. For a
specified value TKEL, the dominantly contributing J-value, JTKEL’ is

approximately determined by

TKEL = B,

so that

. ' n/‘
~ - Jo ™ - L1t (7.7
Jrwer = {290 5 T omven - ety (7.7)
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Consequently, the corresponding. conditional mean values of the spins will be

close to the dominant spins associated with J = 5,

e

£ 2F J
<S >Tueu' ? 3, Jtueu (7.8)
. . ‘It
3 —_ : _
= { 2 3¢ 5‘; [ cTeL) ., ~ TKul.]} |

This approximate treatment s valid as 16ng as the spin distribution 15 not
fluctuation dominated, i.e., as long -as the mean spins are larger than the
fluCtuations; this covers most of the energy-loss range.

The result obtained by Friedman is in striking contrast to the above
result. In his attempt .to obtain a conditional distribution he replaces the
'?speciffcation of J with a specification of TKEL. This procedure amounts
effectively to abandoning the conservation of'angular momentum in each thermal
ensemble (or, equivalently, permitting exchange of angular momentum with the
thermal reservoir). Not surprisingly he finds that the mean spins are

proportional to the square root of the temperature, as is typicai of a thermal
distribution in the absence of an overall conserved angular momentum. It
seems clear to us that the employed procedure is not justified for the

physical situation encountered in.a reaction process.
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Fig. 1 The spherical triangle spanned by the directions L= §, J, ¥ ~ R E

b

A

where T is the beam direction. The angle at Y is equal to the scattering
angle ©, which is the angle between § and % , Since ﬁt = 0 and :]\E =
0.. The direction of J relative to i is given by the polar cdordinates
(@,¢). When ¢ and % are small we may employ planar trigonométry:énd
obtain § = Osin(¢+8)/sin @ =0’cos¢+0sin¢cofevz 3x + 32 cbé@,
since 3x = sinfcos @ = Gcosp and 32 - sinfsing s Jsing.

Fig. 2. | The time evolution of the dinuclear separation R and the radius of
the small cylindrical neck ¢ joiﬁing the two sphefes, for various
values of the total angular momentum J in the reaction 1400 MeV
165, + 165,

Fig. 3. For three different values of the total angular moméntum J, the
dinuclear complex produced in the reaction 1400 MeV 165Ho +
165Ho is shown at three different points in time: shortly after
the neck has opened, at the time of closest approach, and right
before the neck collapses. (The actual times indicated are measured
from the time of the nuclei approach to a surface separation of s =
4 fm.) The dots indicate past and future locations of the nuclear

centers at intervals of 10_22 S

ec. The dashed ellipses indicate
the one-sigma contours of the in-plane distribution of the nuclear
angular momenta gA and §B scaled so that one fm corresponds to

two % (the nucleides have a radius of 6.3 fm).



Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

| Calculated local relaxation times for.the reaction 1400 Me

103

The time evolution of the dinuclear center separation R and the neck
radius ¢ as obtained in three different calculations of the head-on
reaction 1535 MeV 208Pb and + 208Pb. TDHF: The Time-Dependent
Hartree;Fock mode1l3), CSE: The Coherent Surface Excitation:

dee114)

and NET: the present Nucleon Exchange Trahsport model.
The information from Fig. 4 combined to a dynamical trajectories in

the R-c plane.

v 165Ho

+ 165Ho for various values of the totalvangular.moméntum J. The
relaxation times for the two positive perpendicular modes
(wrigglihg) are denoted t ., whil€e the one of'fhé'positiJé
Tongitudinal mode (tilting) is denoted_t+z. The reiaxation fime
for the three negative modes (bending and twisting) is denoted t .

Calculated time evolution.of the mean fragment spin-<Sy$ in the

reaction 1400 MeV angular momentum J. The neck snapping, after

which the spins remain constant, is indicated by a small vertical

bar.

Calculated time evolution of the various spin covariances 05?

in the reaction 1400 Mev 165Ho + 165Ho, for a total angular
momentum of J = 320 fi. At the time of neck snapping (t = 12.6
10‘22) the time scale is changed by a factor of ten. After the
asymptotic values have been reached, the effect of tr&hsforming to

the external reference frame XYZ is shown on the right.
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Fig. 14,
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11.

12.

13.
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The time evolution of the mean fragment spins <S§> in the

y 86 209

reaction 610 Me Kr + Bi, for three values of the angular

momentum J.

The time evolution of the spin covariances 0§? in the reaction

610 MeV 86Kr + 20981, for J = 160 . Analogous to,Fig. 8.

The distributions in the TKEL—S? plane in the reacion 1400 MeV

105 105

Ho + Ho, calculated for specified values of. the total

angular momentum J; TKEL is the total kinetic energy loss and

SA is the component of the final fragment spin along the

" reaction normal.

The mean normal spin <SC> as a function of the incurred energy

loss TKEL, as calculated by integrating over all J-values. The

105

reaction 1400 MeV 105Ho + Ho.

165

For the reaction 1400 MeV 1655 + Ho, various angles of

interest are shown as functions of the total kinetic energy loss

TKEL: The CM scattering angle 6%M (together with the dispersions

~in TKEL and 6%M for the corresponding dominant J-value), half this

quantity, 6%M/2’ and the angle 65 (dashed curve) required to
align the major in-plane principal axis with the beam.

The spin dispersions along the principal directions as functions of

the incurred energy loss TKEL, as calcuated for the reaction 1400

MeV 165Ho + 165Ho by integrating over all J-values.



Fig. 15.

Fig. 16.

105

As a function of kinetic energy loss TKEL in the reaction 1400 MeV

165 165

Ho + Ho the following angles are shown: 1) The calculated

CM scattering angle G%M’ 2) the principal angle & for the spin

covariance tensor in the statistical model (&

5 s the angle

between the beam and the largest printipa] axis), 3) the
approximation n/4 + E%M/Z to 6%.
The principal spin dispersions calculated in the statistical model,

as functions of kinetic energy loss TKEL in the reaction 1400 MeV

165 165H0.

+
Ho + The values of G%M, R, S, and J are as

dynamically calculated. The dashed curves show the results for

P and "B

.. +
77 77 when the statistical values are used for Sy.-
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1400 MeV '5Ho +'65Hg
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1400 MeV 'SHo + '®°Ho

)
S
|
|

Mean spin (S5 (

| | 1 ! 1
OO 100 200 300 400
TKEL (MeV)

XBL836- 1874



118

1400 MeV '©OHo+19%Hg

150} ﬁ
J=80
120+ _
®cm
90 J=160 |
| ®cm/2
60 dizy il
J=480 J=440 J=400 el
30 _-----=oeo | """ ®principal -
- .- . ~axis
0 | L IS
0 100 200 300 © 400
TKEL (MeV)
XBL 837-422



119

1400 MeV "*°Ho +'*°Ho
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Statistical model
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Statistical Model

1400 MeV '6Ho + 165
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