
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
An introduction to Rich Services/Erlang

Permalink
https://escholarship.org/uc/item/9fp695hz

Author
Netherland, Tyler Elias

Publication Date
2009

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9fp695hz
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

An Introduction to Rich Services/Erlang

A Thesis submitted in partial satisfaction of the requirements for the degree of
Master of Science

in

Computer Science

by

Tyler Elias Netherland

Committee in charge:

 Professor Ingolf H. Krueger, Chair
 Professor Bill Howden
 Professor Ryan Kastner

2009

iii

The Thesis of Tyler Elias Netherland is approved, and it is acceptable in

quality and form for publication on microfilm and electronically:

__

__

__

Chair

University of California, San Diego

2009

iv

Table of Contents

Table of Contents .. iv

List of Figures ... x

List of Tables ... xii

Acknowledgements .. xiii

Abstract of the Thesis ... xiv

Chapter I Introduction ... 1

Chapter II An Introduction to Rich Services .. 3

Chapter III An Introduction to Erlang .. 6

Erlang Terminal Window ... 6

Expressions .. 7

Terms .. 7

Atom .. 7

Process Identifier .. 8

Tuple ... 8

List .. 9

String ... 9

Funs .. 9

Variables ... 10

Patterns ... 10

Modules .. 12

Processes ... 13

Inter Process Communication ... 13

Nodes .. 13

Process Links .. 14

Process Monitors .. 14

Node Monitors ... 14

Behaviors .. 15

Ports .. 20

Dynamic Code Loading ... 20

Chapter IV An Introduction to Rich Services/Erlang 21

v

IV. A Miscellaneous Features ... 21

Rich Service Roles... 21

The Message Format ... 21

Message Addressing ... 23

Hierarchical Addressing ... 23

Fault Tolerance .. 25

Multiple Service Data Connectors .. 26

Open Dynamic Sdc .. 26

Multiple Routers ... 26

Loading Rich Application Services ... 27

IV. B Service Data Connectors ... 27

Interface Implementations .. 27

Interface Definitions ... 27

Processing Received Messages .. 28

IV.C Business Logic Generic Server ... 29

IV.D Messenger Generic Server ... 30

Registering Rich Services .. 30

Un-Registering Rich Services .. 30

Receiving, Routing and Processing Messages .. 30

IV.E Router ... 34

Starting Rich Infrastructure Services.. 35

Registering Rich Infrastructure Services .. 36

Receiving Messages .. 37

Routing Messages and Applying Policies .. 37

Chapter V Rich Service/Erlang System Design and Implementation 39

V.A Design Guidelines for Rich Services Systems...................................... 39

V.B Implementation Guidelines for Rich Services/Erlang Systems 41

V.B.1 Configuration Basics .. 41

V.B.2 Component Implementation ... 45

V.B.3 Application Directory Structure ... 46

V.B.4 Miscellaneous Concepts .. 48

V.C Converting Traditional Erlang Process into Rich Services 49

Chapter VI Rich Services/Erlang Run-Time Description 51

vi

VI.A From Design Architecture to Run-Time Implementation 51

VI.B Run-Time Implementation Basics .. 53

VI.B.1 Nodes .. 53

VI.B.2 Processes ... 53

Chapter VII Enterprise Integration Patterns Case Study 60

VII.A Messaging Endpoints ... 61

Messaging Endpoints ... 61

VII.B Message Construction .. 62

Command Message ... 62

Document Message ... 62

Event Message .. 63

Request-Reply ... 63

VII.C Message Channel .. 64

Publish-Subscribe .. 64

Invalid Message Channel ... 66

VII.D Message Routing ... 67

Content-Based Router ... 67

Dynamic Router ... 67

Splitter .. 67

Aggregator ... 68

VII.E System Management ... 69

Detour .. 69

Wire Tap .. 69

VII.F Message Transformation .. 69

Content Enricher .. 69

Content-Filter ... 72

Chapter VIII Chat System Case Study ... 74

VIII.A Chat System Rich Infrastructure Services Descriptions 75

Chat System Session Activity Tracker ... 75

Chat System Message Coordinator ... 75

VIII.B Chat System Rich Application Services Descriptions 76

Account Manager ... 76

Session Manager ... 77

vii

Friendship Manager ... 77

Chat Manager .. 77

VIII.C Chat Client RAS .. 77

Chat Client Command Window .. 78

Chat Client Chat Window ... 80

VIII.D Chat System Router Selection Rules .. 81

VIII.E Chat System Policy Selection .. 81

Chapter IX Evaluation .. 84

IX.A Rich Services .. 84

IX.A.1 Separation of Concerns .. 84

IX.A.2 One-for-One Design to Implementation .. 86

IX.B Erlang .. 86

Concurrent Programming ... 86

Distributed Programming ... 87

Fault-Tolerance Support .. 87

Documentation ... 87

Community Support ... 87

Line Count ... 88

Debugging ... 88

Porting and Interfacing ... 89

IX.C Rich Services/Erlang ... 90

Implementation Complexity .. 90

SDC Implementation .. 90

Business Logic Implementation ... 90

Router Implementation ... 91

Messenger Implementation .. 91

Chapter X Thesis Summary ... 93

X.A Conclusion.. 93

X.B Future Work .. 94

Evaluation of Fault-Tolerance Capabilities ... 94

Dynamic Reconfiguration ... 95

Messenger Feature Set ... 95

Federation of Single Rich Services onto Multiple Nodes 95

viii

Messenger AMQP Implementation .. 97

Router RIS Selection and Application .. 98

Potential Performance Issues .. 99

Rich Service Nodes ... 100

Appendix A Chat System Rich Service Interface Specifications 102

A.I Chat System Rich Infrastructure Services ... 102

Activity Tracker .. 102

Message Coordinator ... 102

A.II Chat System Rich Application Services .. 103

Account Manager ... 103

Session Manager ... 105

Friendship Manager ... 106

Chat Manager .. 107

Chat Client ... 108

A.III Chat Client internal Rich Application Services 113

Command Window... 113

Chat Window ... 113

Appendix B Chat System Case Study Interaction Diagrams 115

B.I Chat System Interaction Diagrams .. 115

Create Account .. 115

Delete Account .. 116

Log In ... 117

Create Friendship .. 118

Delete Friendship ... 119

Start Chat ... 120

Get Friendship List ... 121

Log Out .. 122

B.II Activity Tracker Interaction Diagrams ... 123

Log Activity .. 123

Handle Timeout ... 124

B.III Message Coordinator Interaction Diagrams 125

Create Account .. 125

Delete Account .. 126

ix

Log In ... 127

Create Friendship .. 128

Delete Friendship ... 129

Get Friendship List ... 130

Log Out .. 131

Start Chat ... 132

B.IV Chat Client Interaction Diagrams ... 133

Add Friend ... 133

Broadcast Message ... 134

Create Account .. 135

Delete Account .. 136

Delete Friendship ... 137

Get Friendship List ... 138

Log In ... 139

Log Out .. 140

Process Chat Invitation .. 141

Session Timeout .. 142

Process User Timeout ... 143

Receive Message .. 144

Start Chat ... 145

Bibliography .. 146

x

List of Figures

Figure 1: Rich Service Architecture Diagram .. 4
Figure 2: Erlang Terminal Window .. 7
Figure 3: Example Erlang Module ... 12
Figure 4: Example Erlang Generic Server Module .. 17
Figure 5: Example Generic Server Calls ... 18
Figure 6: Erlang Finite State Machine State Definition Structure 18
Figure 7: Example Erlang Finite State Machine Module 19
Figure 8: Example Two-Level Rich Service .. 24
Figure 9: Rich Service with Multiple Service Data Connectors 26
Figure 10: Example SDC Interface Definition .. 27
Figure 11: Example Policy Selection Module ... 32
Figure 12: Rich Services/Erlang Messenger and Router Configuration 35
Figure 13: Example Policy Selection Module ... 37
Figure 14: Example Rich Services/Erlang Application Configuration File 42
Figure 16: Example Rich Services/Erlang Application Directory 47
Figure 17: Example Rich Framework Service Design 51
Figure 18: Example Rich Application Service Run Time Implementation 52
Figure 19: Rich Service Run Time Implementation Process Categories 54
Figure 20: Service Data Connector Run Time Implementation 56
Figure 21: Example Service Data Connector Interface Call 57
Figure 22: Business Logic Generic Server Run Time Implementation 58
Figure 23: Rich Services/Erlang Router Implementation 59
Figure 24: Example Rich Services/Erlang Message Endpoint 61
Figure 25: Publish Subscribe Register Channel Interaction 65
Figure 26: Publish Subscribe Subscribe to Channel Interaction 65
Figure 27: Publish Subscribe Publish to Channel Interaction 66
Figure 28: Example Rich Services/Erlang Conent-Enricher Implementation 70
Figure 29: Example Rich Services/Erlang Conent-Enricher Implementation 71
Figure 30: Example Rich Services/Erlang Conent-Enricher Implementation 72
Figure 31: Rich Services Chat System (Case Study) Design 75
Figure 32: Rich Services Chat System Chat Client RAS Design 78
Figure 33: Rich Services/Erlang Chat Client Command Window RAS GUI . 79
Figure 34: Rich Services/Erlang Chat Client Command Window RAS Run
Time Implementation .. 79
Figure 35: Rich Services/Erlang Chat System Router Selection Rules 81
Figure 36: Chat System Create Account Interaction Diagram 115
Figure 37: Chat System Delete Account Interaction Diagram 116
Figure 38: Chat System Log In Interaction Diagram 117
Figure 39: Chat System Create Friendship Interaction Diagram 118
Figure 40: Chat System Delete Friendship Interaction Diagram 119
Figure 41: Chat System Start Chat Interaction Diagram 120
Figure 42: Chat System Get Friendship Interaction Diagram 121

xi

Figure 43: Chat System Log Out Interaction Diagram 122
Figure 44: Activity Tracker Log Activity Interaction Diagram 123
Figure 45: Activity Tracker Handle Timeout Interaction Diagram 124
Figure 46: Message Coordinator Create Account Interaction Diagram 125
Figure 47: Message Coordinator Delete Account Interaction Diagram 126
Figure 48: Message Coordinator Log In Interaction Diagram 127
Figure 49: Message Coordinator Create Friendship Interaction Diagram .. 128
Figure 50: Message Coordinator Delete Friendship Interaction Diagram .. 129
Figure 51: Message Coordinator Get Friendship List Interaction Diagram 130
Figure 52: Message Coordinator Log Out Interaction Diagram 131
Figure 53: Message Coordinator Start Chat Interaction Diagram 132
Figure 54: Chat Client Add Friend Interaction Diagram 133
Figure 55: Chat Client Broadcast Message Interaction Diagram 134
Figure 56: Chat Client Create Account Interaction Diagram 135
Figure 57: Chat Client Delete Account Interaction Diagram 136
Figure 58: Chat Client Delete Friendship Interaction Diagram 137
Figure 59: Chat Client Get Friendship List Interaction Diagram 138
Figure 60: Chat Client Log In Interaction Diagram 139
Figure 61: Chat Client Log Out Interaction Diagram 140
Figure 62: Chat Client Process Chat Invite Interaction Diagram 141
Figure 63: Chat Client Session Timeout Interaction Diagram 142
Figure 64: Chat Client Process User Timeout Interaction Diagram 143
Figure 65: Chat Client Receive Message Interaction Diagram 144
Figure 66: Chat Client Start Chat Interaction Diagram 145

xii

List of Tables

Table 1: Example Erlang Atoms ... 8
Table 2: Example Erlang Tuples .. 8
Table 3: Example Erlang Lists ... 9
Table 4: Example Erlang Strings .. 9
Table 5: Example Erlang Variable Assignments and Results 10
Table 6: Example Erlang Function Definitions ... 11
Table 7: Example Erlang Function Calls and Results 12
Table 8: Example Erlang Module Function Calls ... 13
Table 9: Example SDC Interface Finite State Machine Selection Results ... 29
Table 10: Example Router Policy List ... 32
Table 11: Example Policy Selection Results ... 33
Table 12: Example RIS Specification Tuples .. 36
Table 13: Rich Service/Erlang Application Configuration Parameter List ... 45
Table 14: Chat System Messages .. 76
Table 15: Rich Services/Erlang Chat Client Command Window RAS
Commands 80
Table 16: Rich Services/Erlang Chat System RIS List................................ 82
Table 17: Rich Services/Erlang System Activity Tracker RIS Policy Selection
Rules 82
Table 18: Rich Services/Erlang Chat System Message Coordinator RIS
Policy Selection Rules .. 83

xiii

Acknowledgements

My complete appreciation and gratitude go out to Dr. Ingolf Krueger for

giving me the opportunity to participate in research under his supervision. In

addition I need to thank Massimiliano Menarini and Filippo Seracini for their

advice throughout my endeavor to produce this thesis. I would also like to

mention the support of my committee members, Bill Howden and Ryan

Kastner. I would like to thank the United States Navy for giving me the

opportunity to attend UCSD and earn a master’s degree. I think that it is also

important for me to publically recognize God for the blessings that I have

received through the opportunities and people I have experienced and met

while studying at UCSD.

xiv

ABSTRACT OF THE THESIS

An Introduction to Rich Services/Erlang

by

Tyler Elias Netherland

Master of Science in Computer Science

University of California, San Diego 2009

Professor Ingolf H. Krueger, Chair

 Rich Services addresses the challenges of building and integrating

distributed software systems. These include the need for managing multiple

stake holder concerns, for integrating distributed software systems as a single

entity into higher level distributed software systems behind interfaces, for

adapting to changing requirements and for providing scalability. There is a

need for software libraries that support the development of software systems

designed using the Rich Services architecture.

Rich Services/Erlang is the first software library that supports the

creation of distributed software systems designed using the Rich Services

architecture. Erlang is a functional programming language which explicitly

supports the development of distributed, concurrent software. The library

leverages the features of Erlang and the Rich Services architecture to

xv

empower developers to focus on the design and application logic of their

software systems, rather than the implementation complexity of the integration

and messaging system.

We begin with an introduction of the challenges encountered in the

creation of distributed software systems and with a discussion of the need for

the Rich Services architecture. We continue with an overview of Erlang and

then the introduction to Rich Services/Erlang. The following chapter includes a

description of the process used to develop Rich Services software systems

using the library. The final chapter about Rich Services/Erlang discusses the

run-time view of systems implemented with it. The next few chapters present

our enterprise integration patterns and chat system case studies. The thesis

finishes with our evaluation and our conclusion.

1

Chapter I Introduction

 The Rich Services architecture supports the creation of concurrent,

distributed software systems and addresses the various challenges facing

systems-of-systems integration projects [2,4,5,6]. At the outset of the

research presented in this thesis there was not a library that specifically

supported the development of Rich Services software systems.

One can make a simple statement about the main contribution of the

research presented in this paper: the author created the first library that

supports implementations of software systems designed using the Rich

Services architecture. The library is implemented using the functional

programming language Erlang, chosen for its support of concurrent,

distributed software systems.

Furthermore our research introduces a few modifications to the Rich

Services architecture (such as support for multiple Routers per Messenger).

In addition to introducing Rich Services/Erlang, this paper uses two case

studies to discuss the flexibility and feasibility of systems designed and

created using Rich Services/Erlang. Finally an evaluation of Rich

Services/Erlang, Rich Services and Erlang is provided for the reader.

In sum this paper presents the contributions made by the author to the

Rich Services architecture. Chapter II introduces the Rich Services

2

Architecture while Chapter III introduces Erlang. Chapter IV introduces core

features of Rich Services/Erlang. Chapter V discusses how designers take a

system’s requirements to design a system and then how to implement that

system using Rich Services/Erlang. Chapter VI reveals the run-time

implementation details of Rich Services implemented using Rich

Services/Erlang. Chapter VII presents a case study that discusses the use of

various enterprise integration patterns with the Rich Services/Erlang library

while Chapter VIII introduces a chat system case study built using the library.

Chapter IX provides an evaluation for the topics discussed in this paper.

Finally Chapter X leaves the reader with a conclusion for this paper and a brief

discussion of future work.

3

Chapter II An Introduction to Rich Services

 Systems-of-systems integration poses many engineering challenges.

Solutions must provide interfaces for distributed subsystems, address the

need for scalability, accommodate the concerns of multiple stakeholders,

allow for the integration of legacy systems and easily adapt to changing

requirements over time [5,6]. Service oriented architectures (SOA) try to

address at least some of these challenges.

 Web services (and SOAs in general) enable systems-of-systems

integration but do not address some challenges adequately. Specifically,

cross cutting concerns (policy management, governance, and authentication)

frustrate the integration task, forcing solutions that are not true to the light

weight nature of web services [2,4,5,6]. They are dealt with using fragmented

standards that make it difficult to re-integrate the resulting services [5].

 Rich Services is a service oriented architecture that addresses the

concerns present in horizontal and vertical service integration and that

provides a direct mapping between a system’s logical architecture and its

implementation [5,6]. Horizontal integration refers to the management of

services in the same logical deployment level. Vertical integration refers to the

hierarchical decomposition of one service into a set of sub-services.

4

Figure 1: Rich Service Architecture Diagram

Figure 1 shows the Rich Services architecture. The main components

of the architecture are the Messenger/Router, Service Data Connector (SDC)

and Rich Service [2]. A Rich Service exports an interface through a SDC [6].

Rich Application Services (RAS) connect to the Messenger, and Rich

Infrastructure Services (RIS) connect to the router. The Messenger/Router

provide a core message-based communication infrastructure to connect a set

of Rich Application Services.

A Rich Service can be simple, implementing a feature or functionality,

or it can be composite, implementing a feature through a subset of internal

services. These are exported through a SDC interface. Any composite Rich

Service could have its own SDC to support its integration into a higher level

Rich Service. Therefore vertical integration is supported by designing the

architecture in such a way that it is replicated across hierarchical layers [2].

5

 The communication infrastructure is derived from an enterprise service

bus (ESB) messaging strategy. ESBs have three advantages. They benefit

from the strengths of message-oriented middle ware, from the flexibility of

plug-in architectures and from the convenience of data adaptors/connectors

for integrating data sources, applications and services [2]. Furthermore they

support the use of multiple routing strategies (such as dynamic or static

routing).

 The Messenger layer transmits messages between endpoints using

asynchronous message passing and provides the decoupling of services [2,6].

The Router intercepts messages in the Messenger to facilitate dynamic policy

injection [2]. It is responsible for routing messages to the appropriate

destination(s) [6].

 SDCs connect Rich Services to the communication infrastructure and

encapsulate their internal structures [2,6]. The communication infrastructure

only requires knowledge of a Rich Service’s SDC. Rich Services therefore can

hide the architecture pattern behind the SDC to support vertical integration.

Designers could attach an SDC to any Rich Service [2].

 The Rich Service is the main entity of the architecture [2,6]. Rich

Application Services provide core application services and communicate

directly with the messenger. Rich Infrastructure Services provide

infrastructure services and communicate directly with the router [6].

6

Chapter III An Introduction to Erlang

 The purpose of the research presented in this paper was to use and

evaluate Erlang as a potential implementation language for a Rich Services

infrastructure. The result is the Rich Services/Erlang library. This chapter

focuses on key Erlang concepts to provide the reader with a basic

understanding of Erlang.

 Erlang is a functional programming language that supports the creation

of concurrent, distributed software. According to Joe Armstrong, Erlang is

useful for the following reasons [8]. It supports the creation of concurrent,

distributed software more efficiently than other languages, provides fault-

tolerance primitives, allows dynamic code loading and boasts successful

deployment in commercial grade software systems. In addition, Erlang

programs require less code than the same programs written in other

languages.

Erlang Terminal Window

 Programmers can execute Erlang functions by typing commands into

an Erlang terminal [1]. Figure 2 is an image of a terminal window. The top

line shows how to open the shell in linux using the erl command. The

assignment statements demonstrate how commands are entered in the shell.

7

Figure 2: Erlang Terminal Window

Expressions

 Erlang expressions include many different concepts including terms,

variables and patterns [9].

Terms

 Erlang terms describe any Erlang data type [10]. These include atoms,

process identifiers (Pid), tuples, lists, strings and fun expressions.

Atom

 Erlang atoms represent “non-numerical constant values” [1]. The value

of an atom is itself. Table 1 lists example atoms. They are similar to global

constants in C.

8

Table 1: Example Erlang Atoms
Example Erlang Atoms

exampleatom

example_atom

example@atom

exampleAtom

‘ExampleAtom’

Process Identifier

 Processes are assigned process identifiers (Pid). They are used to

uniquely identify each process (especially for use with inter-process

communication) [11].

Tuple

 A tuple is a “compound data type with a fixed number of terms” [12].

Tuples start with an open curly brace ({) and end with a close curly brace (}).

They have the form: {term1, …, termx}.

Table 2: Example Erlang Tuples
Example Erlang Tuples

{one}

{two}

{three}

{a,b}

{c,d}

9

List

 A list is a “compound data type with a variable number of terms” [13].

Lists have the form: [term1, …, termx].

Table 3: Example Erlang Lists
Example Erlang Lists

[one]

[two]

[three]

[a,b]

[c,d]

String

 Similar to other languages, Erlang strings can be written with double

quotes; they are actually stored as lists of ASCII values [14].

Table 4: Example Erlang Strings
Example Strings

“hello world”

“Erlang is awesome”

“You should learn Erlang too!”

Funs

 Fun expressions are use to declare functions, except that the functions

are not named [16]. Fun expressions can be saved and referenced using

variables. The following line shows an example:

 FunExpression = fun(param1,…,paramx) -> true end.

10

Variables

 Erlang is different from many programming languages in that variables

are single assignment, and the ‘=’ operator tries to match the patterns of the

two operands [1]. Only on the first use of ‘=’ does a variable receive a value; it

becomes permanently bound to that value. Only in patterns can variable

expressions be unbound (have no value). Table 5 shows various Erlang

variable statements and their results. Notice that the names of variables

always start with a capital letter.

Table 5: Example Erlang Variable Assignments and Results
Variable Assignments and Results

Erlang Statement Comparison Result

X=5. Unbound=5 True

X=6. 5=6 error

Y=8. Unbound = 8 True

Z = 8. Unbound = 8 True

Y=Z 8=8 True

X=Y. 5=8 False

Patterns

 Patterns are used in multiple structures in Erlang (if statements, case

statements, fun expressions). To describe what patterns are and how they

work this section focuses on their use with Erlang functions. Pattern matching

is a key feature used by Rich Services/Erlang; it drives router selection, policy

selection and SDC message to interface binding [1].

11

Table 6: Example Erlang Function Definitions
Example Erlang Function Definitions

op({addition, Operand1, Operand2}) -> Operand1 + Operand2;

op({subtraction, Operand1, Operand2}) -> Operand1 - Operand2.

op(multiplication, Operand1, Operand2) -> Operand1 * Operand2;

op(division, Operand1, Operand2) -> Operand1 / Operand2.

Table 6 lists a set of functions that could be defined and exported by

some Erlang module. Notice that the first two functions have only one

parameter (a tuple with three terms) while the second two functions have three

parameters. The first two functions match a three term tuple where the first

term is the atom addition or subtraction. The second two functions match any

three inputs where the first input is the atom multiplication or division.

The Operand1 and Operand2 parameters in the function definitions in

Table 6 are unbound variables; they bind to any matching value of the input

parameter when the function is called. A successful function call binds the

input to the parameter patterns.

12

Table 7: Example Erlang Function Calls and Results
Example Erlang Function Calls

Function Call Result

op({addition, 1,2}) 3

op({subtraction,4,2}) 2

op(multiplication, 5, 6) 30

op(division,10,2) 5

op(x) Undefined

op({subtraction}) Undefined

op(d,5,6) Undefined

Modules

 Modules contain functions and attributes, each followed by a period.

Attributes are settings of the module (such as the name) and begin with the

single dash (-) character [18]. Figure 3 shows an example Erlang module.

The module attribute should be the same as the file name and specifies the

reference used to call functions defined in the module.

-module(my_first_module).

-export([english/0,spanish/0]).

english() -> “hello world!”

spanish() -> “hola el mundo!”

Figure 3: Example Erlang Module

13

Table 8: Example Erlang Module Function Calls

Example Module Function Calls and Results

Function Call Return value

my_first_module:english() “hello world!”

my_first_module:spanish() “hola el mundo!”

Processes

 Erlang processes are “small self-contained virtual machines that can

evaluate Erlang functions.” All code is executed within an Erlang process.

Their use is extremely efficient relative to operating system processes.

Because they are Erlang run-time process and not operating systems

processes, using them simply requires knowledge of a few simple primitives

[1].

Inter Process Communication

 Processes communicate with each other using the send and receive

primitives [1]. Each process has a mailbox in which messages are placed.

Processes extract messages using pattern matching in the receive structure.

For example, the receive {test_message} -> received end code waits for the

message {test_message} to enter a process’s mailbox and extracts it from the

mailbox.

Nodes

 An Erlang node is defined as an “executing Erlang runtime system.”

Nodes use names of the form name@host for distributed communication [15].

Processes run inside Erlang nodes. Processes are able to communicate with

14

process on the same node, and processes are also able to communicate over

a network with processes on other nodes.

Process Links

 Process links allow processes to monitor each other’s aliveness. In

other words, if two processes are linked when either dies, the Erlang run-time

system will send an exit signal to the remaining process [1]. This mechanism

helps implement fault-tolerant systems.

 By default when a process receives an exit signal from a process it is

linked to, it will crash. But the process can avoid crashing by trapping exit

signals. Exit signals will then be placed in the process’s mailbox.

Process Monitors

 Process links are two-way. Processes must become system processes

to trap exit signals and avoid crashing. A monitored process may not care if

the monitoring process crashes. A process can place a monitor on another

process. If the monitored process dies then the monitoring process will be

sent an exit signal; it must trap exits to process the signal or it will crash. If the

monitoring process dies the monitored process will not receive an exit signal

and will not crash.

Node Monitors

 Processes can place monitors on nodes. If a node dies then the

process receives a node down message that contains the name of the node.

15

Behaviors

 An Erlang behavior is an “application framework that is parameterized

by a callback module.” Erlang provides the framework and the programmer

provides a callback module. The callback module consists of custom code

and implements the functional pieces of the behavior [1]. The next few

sections discuss the application, supervisor, gen_server and fsm behaviors.

1. Application

 Erlang applications help to control complex applications. Mostly the

behavior provides a central point for inserting and modifying configuration

settings and interfaces for starting and stopping the application [1]. Every

application must define a configuration file (application_name.app) as well as

a callback module that defines the start/1 and stop/1 functions. Programmers

put the code to start the application and to stop the application inside these

functions. The framework also requires that application files be saved in a

specified directory structure [22]. Applications are started and stopped on

nodes using the application module. Callings

application:start(application_name) and application:stop(application_name)

will causes the start/1 and stop/1 functions to execute.

2. Supervisor

 The supervisor behavior supports the creation of supervision trees.

The concept is simple. Processes are placed in a logical tree hierarchy where

parent processes monitor their children processes. The parent process keeps

a specification for each of its children that its uses to restart them when they

16

crash. It also follows a specified restart strategy when one or more child

processes crash [1]. For instance, it can restart a single crashed process or

terminate and restart all processes when a single process crashes. The

callback module defines the init/1 function, which contains all initialization logic

for the supervisor, including the definition of a set of child specifications.

3. Generic Server

The generic server behavior helps to implement the server piece of a

client-server architecture [19]. The callback module must define an init/1

function that starts the server process, conducts any appropriate initialization

tasks and sets the server state. It may also define the handle_call/3 and

handle_cast/2 functions for providing synchronous and asynchronous

communication with the server. The function handle_info/2 allows the server

to process any other messages. Figure 4 contains an example generic server,

and Figure 5 demonstrates calls to the sever using an Erlang terminal.

17

-module(example_gen_server).
-export([start/0,init/1,handle_call/3,handle_cast/2,handle_info/2]).

-behavior(gen_server).

start() ->

io:fwrite(user, “Starting the generic server.~n”,[]),
 gen_server:init({local, process_name}, example_gen_server,[],[]).

init(_Args) ->

io:fwrite(user, “Initializing the generic server.~n”,[]),
 {ok, []}.

handle_call(synchronous_call, _From, State) ->

io:fwrite(user, “Made it to the synchronous call.~n”,[]),
 {reply,hello_world,State}.

handle_cast(asynchronous_call, State) ->

io:fwrite(user, “Made it the asynchronous call.~n”,[]),
 {noreply,State};

handle_cast(shut_down, State) ->

io:fwrite(user, “Made it to the shut down call.~n”,[]),
 {stop,normal,State}.

handle_info(AnyMessage,State) ->

io:fwrite(user, “Processing a random message.~n”,[]),
 {noreply, State}.

terminate(Reason,State) ->

io:fwrite(user, “Terminating the generic server.~n”,[]),
 ok.

Figure 4: Example Erlang Generic Server Module

18

Figure 5: Example Generic Server Calls

4. FSM

 Finite state machines consist of a set of relations where each is defined

as a state-event pair that causes the execution of an action(s) and transition

into a new state [21]. In Erlang a finite state machine is represented with an

Erlang module that uses the gen_fsm behavior.

StateName(Event, StateData) ->

 // code for actions goes here

 {next_state, NewStateName, NewStateData}.

Figure 6: Erlang Finite State Machine State Definition Structure

19

-module(example_fsm).

-behavior(gen_fsm).

-export([init/1, door_shut/2, door_open/2, terminate/3]).

init ([]) -> {next_state, door_shut, [no_key]}.

door_shut ({insert_key, Key}, [no_key]) -> {next_state, door_shut, [Key]}.

door_shut ({insert_key,Key}, [OtherKey]) -> {next_state, door_shut, [OtherKey]}.

door_shut (remove_key, [no_key]) -> {next_state, door_shut, [no_key]}.

door_shut (remove_key, [Key]) -> {next_state, door_shut, []}.

door_shut (open, [no_key]) -> {next_state, door_shut, [no_key]}.

door_shut (open, [correct_key]) -> {next_state, door_open, [correct_key]}.

door_shut (open, [wrong_key]) -> {next_state, door_shut, [wrong_key]}.

door_open ({insert_key, Key}, [no_key]) -> {next_state, door_open, [Key]}.

door_open ({insert_key,Key}, [OtherKey]) -> {next_state, door_open, [OtherKey]}.

door_open (remove_key, [no_key]) -> {next_state, door_open, [no_key]}.

door_open (remove_key, [Key]) -> {next_state, door_open, [no_key]}.

door_open (shut, [no_key]) -> {next_state, door_shut, [no_key]}.

door_open (shut, [correct_key]) -> {next_state, door_open, [correct_key]}.

door_open (shut, [wrong_key]) -> {next_state, door_open, [wrong_key]}.

Figure 7: Example Erlang Finite State Machine Module

 Figure 6 shows the syntax for a state. The function names separate the

individual states. The behavior passes state data through the second

parameter of the function definition. For each state there can be any number

of events; the first parameter defines each event with an Erlang pattern. After

20

the actions are executed the finite state machine transitions to a new state or

terminates. The terminate/2 function contains termination logic.

Ports

 Erlang’s connects to the outside world through ports; these are primitive

mechanisms by which Erlang communicates with external entities. An Erlang

process can open a port and use it to send and receive lists of bytes. External

programs in operating system processes are also able to read bytes from and

send bytes to the port [20].

 Unfortunately, ports support only primitive byte passing. Interpreting

the bytes is a painful process. But there are a number of libraries that provide

a higher level view to the programmer. These include the Java JInterface,

Erlang IDL compiler and Erl Interface (for c) libraries [1].

Dynamic Code Loading

 Erlang supports dynamic code loading. Processes execute Erlang

functions. During run-time one can freeze the execution of a process and

change the function it is executing. After unfreezing the process it will begin

executing the new code.

21

Chapter IV An Introduction to Rich Services/Erlang

 Our main contribution is the creation of Rich Services/Erlang. It is the

first library to support the creation of Rich Services software systems. It is a

set of Erlang modules that allow programmers to create Rich Services

systems in Erlang. This chapter discusses the more critical features

implemented by the library.

IV. A Miscellaneous Features

Rich Service Roles

The term Rich Service describes two different roles: Rich Application

Service and Rich Infrastructure Service. In addition this paper identifies the

Rich Framework Service for describing services that do not have a SDC.

These reside in the highest level of a Rich Service’s hierarchy.

The Message Format

 Erlang messages are tuples. Programmers have direct access to each

field in the tuple. Rich Services/Erlang message tuples consists of the Type,

Tag, Dest, Src, RouterSelection, PolicySelection and Content fields.

 The Type field is used to assist the messenger in interpreting the format

of the Content field. Currently the atom erlang is the only Type value that the

messenger recognizes. This message type does not force a specific format

on the Content field.

22

 The Tag field is used to mark individual messages with a unique

identifier. The Tag field is most useful for capturing sequences of related

messages in the SDC. This field does not require any specific format but user

defined tags should be unique.

 The Dest field stores message destinations. A message’s destination is

defined using a list of lists. Individual Rich Service destinations are

represented using a list, and the Dest field is a list of one or more Rich Service

destinations; therefore the Dest is a list of lists.

 The Src field saves the source of a message. Sources can include the

address of every SDC the message passes through; the field is saved as a list

of RAS addresses.

 The RouterSelection field supports the router selection process in the

Messenger. The format of the field is determined by the designer of the

messenger handling the message.

 The PolicySelection field can be used to help select Rich Infrastructure

Services in the router. The format of this field is set by the designer of the

router that is handling the message.

 Finally, the Content field is where the content of the message is placed.

It is a completely customizable field that matches with SDC interfaces.

23

Message Addressing

 Message destinations are saved in the Dest field of a Rich

Services/Erlang message. The Messenger recognizes the following four

addresses:

1. [{ras, RasName}]

2. [{ras, RasName, SdcName}]

3. [{sdc}]

4. [{sdc, SdcName}]

 The 2nd and 4th tuples are placed in the Dest field by Service Data

Connectors when they forward a message to the communication

infrastructure. If the message is sent externally the 2nd tuple is used,

otherwise the the 4th tuple is used. The 1st and 4th tuples are available to

programmers for sending messages without specifying a specific SDC.

The Messenger knows that tuples 1 and 2 refer to a RAS and that

tuples 3 and 4 refer to Service Data Connectors of the Messenger’s Rich

Service. The various address formats tell the messenger which algorithm to

use for sending the message.

Hierarchical Addressing

 The Rich Services architecture supports hierarchical decomposition of

services. Some information may be necessary to specify a path through a

series of Rich Services. The addressing mechanism supports multi-level

addressing to provide this information.

24

Figure 8: Example Two-Level Rich Service

The Dest field is a list of lists. It can address multiple destinations and

each destination is a list of Rich Service addresses. Consider the message

path from RAS A to RAS B in Figure 8. The message will pass through the

Service Data Connectors of three Rich Application Services before reaching

the SDC at its destination RAS. Moments before sending the message to the

Messenger the SDC of RS A will set the source to:

 [[

{ras, RS_A, SDC_A}

]]

The next SDC will contain custom implementation logic for handling the

message. If it forwards the original message without changes, the message

source field would then be set to:

[[

{ras, RAS_C, SDC_C},

RS A RS B RS C RS D

25

{ras, RAS_A, SDC_A}

]]

Upon accepting and processing the message the third SDC forwards it

again. After sending the message the source would then be:

 [[

{ras, RAS_D, SDC_D},

{ras, RAS_C, SDC_C},

{ras, RAS_A, SDC_A}

]]

 Above is the value of the message’s source that the SDC of RAS B

would have. Any reply sent to the original source would use this address to

exactly recreate the path through the hierarchy. The return path cannot

always be reached though. The Service Data Connectors in the path must

have logic (usually the SDC conversations wait for a response) to handle any

replies.

Fault Tolerance

 Rich Services/Erlang uses multiple, concurrent processes to implement

every Rich Service. Unforeseen circumstances as well as programmer error

present increases risk for the unsuccessful operation of any Rich Service. The

integrity of every Rich Service is upheld using the supervisor behavior,

process links and node monitors. The only event that should completely crash

a Rich Service is the crash of the node it is running on.

26

Multiple Service Data Connectors

 Rich Services/Erlang does not place a limit on the number of Service

Data Connectors of a Rich Service. Multiple Service Data Connectors allow

communication with multiple messengers or multiple connections to a single

Messenger. The only constraint is that each SDC communicate with only one

messeger.

Figure 9: Rich Service with Multiple Service Data Connectors

Open Dynamic Sdc

 Rich Service designers may want to leverage the existence of external

Rich Services. But the designers of these external services cannot possibly

open every SDC connection. These designers are able to provide SDC

definitions that clients of the Rich Service use to open new SDC connections

as needed. The Rich Service uses unique identifiers for each definition

referred to as a Sdc Selector. Clients simply call into the Rich Service,

providing the SdcSelector and connection information. The Rich Service

starts a SDC and connects it to the specified Messenger.

Multiple Routers

 Rich Service designers can define multiple routers, each with its own

set of policies and policy selection rules. To accommodate multiple routers

Rich Service

SDC1 SDCX …

27

the Messenger must include Router selection rules. An interesting design

choice allows for sending messages to multiple Routers. In this case a copy is

sent to each selected Router.

Loading Rich Application Services

 Complex Rich Services may statically define a set of internal Rich

Application Services. These are loaded by the Rich Service at start up. They

may also be reloaded during run-time.

IV. B Service Data Connectors

Interface Implementations

Service Data Connectors export both an external and internal interface.

Later we describe the run-time implementation details of an SDC. Basically,

an interface consists of a set of finite state machines and for each of those a

set of initiation events (messages). The SDC matches incoming messages to

one or more finite state machines using the pre-defined events, starts each

selected finite state machine and sends them the message (as the first event).

Interface Definitions

 [{external, fsm_ex, [fun({msg, one}) -> match end], closed, {limit, null}},

 {internal, fsm_in, [fun({msg, two}) -> no_match end], closed, {limit, null}}]

Figure 10: Example SDC Interface Definition
 Interfaces are defined using a list of tuples; the list includes one tuple

per finite state machine. Figure 10 gives an example interface definition. The

first field states to which side the SDC should bind the finite state machine.

The second field specifies the module name of the finite state machine. The

third field is a list of Erlang fun expressions that specify what messages should

28

and should not activate the finite state machine. The meaning of the fourth

field is a little more complicated. Closed interfaces start a new finite state

machine for every matching initiation message. Open interfaces start one

finite state machine that collects every message. The final field limits the

number of finite state machines that can run concurrently.

Processing Received Messages

Every message received by a SDC either initiates a new conversation

or belongs to an existing conversation (or is dropped). The external and

internal SDC interface both process messages using the same algorithm,

partly given in Equation 1.

n = number of finite state machines

tp = number of fun guards for finite state machine t

FunGuardt = list of fun guards for state machine t

∑ ∑
��
� ����	
������ � ��������������� � ����	��_����	
������ � �������������� � ��_����	����	
������ � ��������������� � ���������

�� !"#$�"#

Equation 1: SDC Interface Finite State Machine Selection Algorithm

Equation 1 shows that the SDC iterates through the list of n tuples (the

interface definition); for each tuple t, it iterates through a list of tp functions.

Finally for each function, f, it calls FunGuardt[f](MsgContent). MsgContent

represents the content field of the message. The functions use pattern

matching against the content field only.

29

Table 9: Example SDC Interface Finite State Machine Selection Results
Message

Content

Conversation Function

Guard

Return Value Result

{msg, one} fsm_ex fun({msg, one}) match Select

CM

{msg, one} fsm_in fun({msg, two}) undefined Dismiss

{msg, two} fsm_ex fun({msg, one}) undefined Dismiss

{msg, two} fsm_in fun({msg, two}) match Select

CM

Table 9 shows some SDC message to interface binding results using

the interface definition provided in Figure 10. If a message causes the

successful execution of at least one of the function guards and returns match,

the SDC starts the finite state machine and sends it the message. If the

function call returns no_match or results in a run-time error (the function call is

undefined), then the message is not sent to the corresponding conversation

manager.

 Messages that do not initiate a conversation may still belong to an

existing conversation. Using the message‘s Tag field the SDC selects which

finite state machine is expecting the message. If it does not belong to a finite

state machine the message is discarded by the SDC.

IV.C Business Logic Generic Server

Some Rich Services directly implement application/business logic.

Designers could place this logic within the SDC finite state machines, but for

30

the purpose of separating service interaction logic and application logic. Rich

Services/Erlang provides the Business Logic generic server. Simple Rich

Services use the business logic component to implement business/application

logic internally and outside the SDC.

IV.D Messenger Generic Server

Registering Rich Services

 Rich Application Services “connect” with, or plug-into, a higher level

Rich Service by registering their Service Data Connectors with an external

Messenger. The Messenger maintains a list of registered Service Data

Connectors and important connection data. As discussed earlier, Rich

Services can have multiple Service Data Connectors, making it possible that

any one RAS have multiple connections to a single Messenger.

Un-Registering Rich Services

At the moment there is not a function for explicitly un-registering a RAS

from the Messenger. Although, when a RAS’s node stops or crashes a node

down message is generated and sent to the Messenger. Consequently, the

RAS’s information is erased from the Messenger. When a Rich Services is

stopped using the Erlang application behavior, the node is immediately

stopped to generate this message.

Receiving, Routing and Processing Messages

 In Rich Services/Erlang, messages are handled by the communication

infrastructure in three steps. The Messenger receives a message from the

source and selects one or more routers to forward it to (it could be duplicated).

31

Each Router processes the message and then sends it back to the

Messenger. The Messenger sends the message to its destination(s).

When the Messenger receives a message it checks the message

against the guard of every Router. The Messenger stores the name of an

Erlang module and a list of Router identifications. The Erlang module defines

at least one function for each router identification (the function name is the id)

with a message pattern that the router accepts.

 n = number of routers

 m = Message,

 rsm = Erlang Router Selection Module

RouterID = List of Router Identifications

 ∑ % ��&����� ���:)�����*+������ � ����	��� ��&����� ���:)�����*+������ � ��_����	��� ��&����� ���:)�����*+������ � ���������
�$,"#

Equation 2: Route Selection Algorithm

 The Messenger uses the algorithm in Equation 2 for selecting the

appropriate routers. The router ids are Erlang atoms. For each router id there

should be at least one function in the router selection module whose name is

the id. Function calls that return match result in sending the message to the

router specified by the given id; the Messenger uses the Router Id to select

the reference of the corresponding Router. If the call returns anything other

than match, the message is not sent to the router. The Messenger will

duplicate a message when sending it to more than one Router.

32

Table 10: Example Router Policy List
Router Ids

[router_one, router_two]

-module(rsm).

-export([router_one/1, router_two/1]).

router_one({_,_,_,_,{router, one},_,_}) -> match.

router_two({_,_,_,_,{router, two},_,_}) -> match.

Figure 11: Example Policy Selection Module

33

Table 11: Example Policy Selection Results
Test Messages

{erlang, tag, dest, src, {router, one}, ps, msg}

{erlang, tag, dest, src, {router, two}, ps, msg}

Router Selection Results

Message Function Calls Return Value Result

rsm:router_one(

 {erlang, tag, dest, src, {router, one}, ps, msg})

match Select

rsm:router_two(

 {erlang, tag, dest, src, {router, one}, ps, msg})

undefined Ignore

rsm:router_one(

 {erlang, tag, dest, src, {router, two}, ps, msg})

undefined Ignore

rsm:router_two(

 {erlang, tag, dest, src, {router, two}, ps, msg})

match Select

Table 11 shows the result of sending two messages to a Messenger

with the router selection module given in Figure 8. The functions (router

selection rules) filter messages for the routers. The router selection rules

reflect the routing strategies created by the designer of the system.

 Routers pass messages to the Messenger when they are finished.

When a Rich Service registers a SDC with the Messenger it provides it’s Send

Parameters - Erlang tuples containing the necessary information for the

Messenger to send the Rich Service messages. For example, the Send

Parameters of an Erlang Rich Service SDC uses the form: {gs, Reference}.

34

The Messenger knows that it is sending the message to a generic server

referenced by Reference.

A message destination may specify a RAS or internal SDC interface

without specifying an individual SDC. In this case the Messenger sends the

messages to every SDC of the destination RAS or every internal SDC of the

Rich Service. If a SDC is specified, the message is sent only to that SDC.

The Messenger uses the Type field of the message to interpret the

format of the Content field of the message. At the moment it only supports a

Type definition of erlang and does not care how the Content field is structured.

The Messenger will eventually support communication mediums other than

those based strictly on Erlang. For instance, designers may want to integrate

web services using soap. The Content field will then be forced to contain

relevant information for communicating via soap, and the Type field would be

defined with an atom that tells the Messenger to apply this format and forward

the message using soap protocols.

IV.E Router

A Router enforces routing logic and routing level policies on messages.

Rich Infrastructure Services implement both concerns. Rich Service/Erlang

permits multiple Routers per Messenger for the purpose of separating routing

concerns to reduce the complexity of individual Routers. Figure 12 shows that

one Messenger can have any number of Routers. An interesting design

choice allows messages to be duplicated and sent to multiple Routers.

35

Figure 12: Rich Services/Erlang Messenger and Router Configuration

Routers belonging to the same Rich Servies share one code repository

of Rich Infrastructure Services; these are saved in a specified location in the

Rich Service’s directory structure. Individual routers may include the same

RIS in their specifications, although a separate, private instance runs per

Router.

Starting Rich Infrastructure Services

 A Rich Service designer must create a configuration file for each Router

they create. This file contains a set of tuples, each being a specification for a

RIS connected to the Router. The tuple has the form:

{Location, Name, ConnectionCount}

 The Location field specifies the directory location of the service. At the

moment only a value of local is supported; the RIS must exist within the

directory structure of the Rich Service that uses it. The Name field identifies

the RIS with an atom. The Router uses this atom in its routing algorithm. The

ConnectionCount specifies how many SDC connections will be opened

between the RIS and the Router.

Messenger P

Router 1 Router X
. . .

36

Table 12: Example RIS Specification Tuples
Example RIS Specification Tuples

{local, ris_one, 1}

{local, ris_two, 2}

An example of a Router’s RIS specification tuples is given in Table 12.

While the values of the Location and Name fields are straightforward, the

values of the ConnectionCount field might require further explanation. The

first has a value of 1, meaning that the Rich Infrastructure Service connects to

the Router with one SDC. The Router passes the RIS one connection to the

RIS at start up. A connection includes a reference to the Router. The second

specification tells the Router to pass two connections to the RIS.

 Starting each RIS is simple. The Router must start a node, giving it a

unique name. It then links each node to the code path of the Rich

Service/Erlang library and to the directory of the RIS. Finally it will use Erlang

rpc to start the service on the node.

Registering Rich Infrastructure Services

 Newly started Rich Infrastructure Services must register their Service

Data Connectors with the Router that started them. The Router saves the

connection information and places a monitor on the RIS’s node at registration.

The RIS also places a monitor on the Router’s node. If the Router dies so do

the Rich Infrastructure Services. If one of the Rich Infrastructure Services dies

then the Router will restart it.

37

Receiving Messages

 A Router receives messages from its Messenger. Since it is a generic

server this feature is implemented using a generic server cast.

Routing Messages and Applying Policies

 This paper defines message routing as determining the destination of a

message. It defines policy enforcement as determining and activating the

correct policies for a message; those policies may transform the message,

influence routing decisions or generate some other set of actions.

 Rich Service/Erlang designers impose routing logic and policy

enforcement using Rich Infrastructure Services. Each Router uses a policy

selection module that must define the ris_list/0 function and a function for each

RIS. Figure 13 shows an example of such a module.

-module(one_policy_selection_module).

-export([ris_list/0,ris_one/1,ris_two/1]).

ris_list() -> [ris_one,ris_two].

ris_one({erlang, Tag, [[{ras, big_ben}]], Src, _, _, Content}) -> match.

ris_two({erlang, _, _, _, _, _, _}) -> match.

Figure 13: Example Policy Selection Module

The module name begins with the unique atom identification of the

Router it belongs to and ends with _policy_selection_module. The ris_list/0

function returns a policy list of RIS atom identifications. These must match

with the names given in the tuple specifications. Most importantly, this list

determines the order in which policies are applied to messages.

38

 For each RIS identification in the policy list there must be at least one

function definition named with the identification. These functions guard the

Rich Infrastructure Services they represent using Erlang function-based

pattern matching.

n = number of policy RIS

SelectedRisList = [],

m = Message

psm = PolicySelectionModule,

RisList = rist_list(),

 n = RisList.length,

- % .�&���)��/���. ��������, 2��3�, 4��:)��/��������� � ����	.�&�����)��/���, 4��:)��/��������� � ��_����	.�&�����)��/���, 4��:)��/��������� � ����������$
,"#

Equation 3: Policy Selection Algorithm

 Routers use Equation 3 to filter out the appropriate policies for each

message, resulting in a subset of the policies avaliable in the Router. The

Router then proceeds to send the message to each RIS (one at a time) in the

order they are selected. The Router uses a send and forget strategy. It

removes the first item from the list, looks up the RIS’s information and sends it

the message as well as the remaining policies in the list. The RIS must send

the message and policy list back to the Router when it is finished. The Router

then continues moving through the selected policies.

39

Chapter V Rich Service/Erlang System Design and
Implementation

 The creation of a Rich Services/Erlang system first involves designing

an architecture using Rich Services that meets the requirements. The next

step is to implement the system using Rich Services/Erlang. This chapter

provides the reader with the process for creating and implementing any Rich

Services system.

V.A Design Guidelines for Rich Services Systems

 The authors of Rich Services have created a service-oriented

development process to be used with Rich Services that creates a clean

separation between the logical model of a system and its implementation [6].

They introduce an iterative, three phase process (where each phase may have

multiple iterative stages). Designers use it to refine a system’s architecture so

that it meets the specified requirements. Cross-cutting concerns are

abstracted and dealt with in later points in the development process [4,6].

 The first phase is Service Elicitation. The process results in a service

repository representing system requirements and a domain model that

includes cross cutting concerns (such as security and encryption). The

domain model is used to identify roles - unique entities that interact with each

other. Using message sequence charts the interactions between roles are

specified. A service is defined as an interaction between roles. Cross cutting

40

concerns are then injected into the interactions. The result is the system’s

service repository which is used to identify the role domain model.

 The second phase is Rich Services Architecture. The phase uses the

service repository and the role domain model to define a hierarchical set of

Rich Services as a logical model of the system. One can map the services

and roles to the Rich Services architecture by either mapping roles to Rich

Application Services and services to the routing mechanisms in which the Rich

Application Services participate and then wrapping the resulting system with

an SDC or by mapping each service to a composite or simple RAS. Cross-

cutting concerns should always be introduced as Rich Infrastructure Services

in the router. Throughout this process the designer chooses the

communication channels, the location of concerns, the routing strategies and

what messages are published through the Service Data Connectors. The

resulting Rich Services architecture makes up the Rich Services model.

 The third phase is Rich Service Architecture Implementation. The

phase establishes a relationship between the Rich Services model and its

implementation. For the most part this can be done using the Rich

Services/Erlang architecture. In some cases though application logic may be

implemented using resources outside the Rich Services/Erlang library. The

final step is to create the physical implementation using the Rich

Services/Erlang library.

41

V.B Implementation Guidelines for Rich Services/Erlang Systems

 Rich Services are concurrent, distributed systems; concurrent and

distributed software systems are complex. Erlang offers the application

behavior to provide a central point of control and configuration for managing

complex Erlang-based software [22]. Rich Services/Erlang uses the

application behavior to ease the implementation process for every Rich

Service. This chapter discusses the characteristics and use of Rich

Services/Erlang for Rich Services implementations.

V.B.1 Configuration Basics

Configuration File

The Rich Services programmer must create a rich_service_app.app

configuration file, which is the appropriate place for the configuration

parameters required by an Erlang application. Figure 14 shows the basic

contents of every rich_service_app.app file. The {env,[]} tuple contains a list of

the required and optional configuration parameters.

42

{ application,
 rich_service_app,
 [{ description, "App Config Example”},
 { vsn, "1.0"},
 { modules,
 [rich_service_app,
 rich_service_supervisor,
 rsgscRichService,
 rsgscServiceDataConnector,
 rsgscRouter,
 rsgscMessenger,
 rsgscBusinessLogic,
 rshMessageCreator,
 rshGscCalls
]
 },
 { registered, []},
 { applications, [kernel, stdlib]},
 { mod, {rich_service_app, []}},
 {env, []}]
}.
Figure 14: Example Rich Services/Erlang Application Configuration File

Envelope Configuration Parameters

{top_level_code_path, Path}

The top level code path points to the top level directory where

the Rich Service exists. The Path parameter is the absolute path of this

directory.

{rich_services_code_path, Path}

The Path parameter is the absolute path where the compiled

Rich Services/Erlang files are placed.

{composition, Composition}

Every Rich Service must include this parameter. Composition

can be complex or simple.

43

{ sdc_start@initANDconnectionIStatic, List}

This tuple provides a means for defining Service Data

Connectors that have statically defined connections and that are started

when the Rich Service starts. The List contains a tuple defition for all

such SDCs.

{ sdc_start@initANDconnectionISdynamic, List}

This tuple provides a means for defining Service Data

Connectors that have dynamically defined connections and that are

started when the Rich Service starts. The List contains a tuple defition

for all such SDCs.

{ sdc_start@run_timeANDconnectionISdynamic, List}

This tuple provides a means for defining Service Data

Connectors that have statically defined connections and that are started

when a client requests a connection. The List contains a tuple defition

for all such SDCs.

{router_selection_module, List}

The List parameter is the file name of the Erlang module that

contains the router selection logic used by the Messenger.

{routers_ids,List}

The List parameter is a list of Erlang atoms where each atom is

the unique id used by the Messenger to reference the Routers defined

in the Rich Service.

44

{ras_specs, List}

The List parameter is a list of tuples defining the Rich Application

Services that are started and connected to the Rich Framework Service

at start time. These definitions include a unique id (Erlang atom) for

each RAS.

{messenger_reference, Atom}

This tuple is optional. It may be the case that the Rich Service’s

Messenger should have a named reference. In this case the

Messenger gen_server would be referenced by the Erlang atom, Atom.

{reference, Atom}

This tuple is optional. For Rich Services that should be

addressable this parameter forces the initialization process to give the

Rich Service gen_server the reference Atom.

Table 13 provides a quick reference for the configuration parameters.

The first column lists the configuration parameters. The second column states

the Rich Services roles that use the parameters. The third column specifies if

a parameter is required.

45

Table 13: Rich Service/Erlang Application Configuration Parameter List
Configuration Tuple Used In Requi

red

{top_level_code_path, Path} RAS,RIS,RFS RFS

{rich_services_code_path, Path} RAS,RIS,RFS RFS

{composition, Composition} RAS,RIS,RFS RFS

{ sdc_start@initANDconnectionIStatic, List} RAS,RIS Yes

{ sdc_start@initANDconnectionISdynamic, List} RAS,RIS Yes

{ sdc_start@run_timeANDconnectionISstatic, List} RAS,RIS Yes

{router_selection_module, List} RAS,RIS,RFS Comp

osite

{routers_ids,List} RAS,RIS,RFS Comp

osite

{ras_specs, List} RAS,RIS,RFS Comp

osite

{messenger_reference, Atom} RAS,RIS,RFS No

{reference, Atom} RAS,RIS,RFS No

V.B.2 Component Implementation

Service Data Connector

 Configuration parameters for each SDC are defined in an Erlang

module. The name of this module has the form sdcid_sdc_configuration. The

sdcid part of the module name is the unique identifier used by the Rich Service

at run-time to reference the SDC. The module contains a definition for each

internal and external conversation. This includes the name of the finite state

46

machine module that implements each conversation and the message

patterns that initiate the conversation.

 The interface of each SDC is implemented using finite state machines.

The system implementer must create an Erlang finite state machine module

for each interface definition. The names of these modules are used in the

configuration file to match messages patterns to conversations.

Messenger

 Certain configuration parameters for the messenger, such as a

statically defined reference, are placed inside the application file for the entire

Rich Service. The router selection rules for the Messenger are defined inside

of an Erlang module.

Router

 Certain configuration parameters for the router are defined within the

configuration file for the Rich Service. The policy selection rules are placed

inside of an Erlang module.

Business Logic

 The Business Logic component is implemented using an Erlang generic

server. The system implementer therefore places the application logic inside a

callback module that parameterizes the generic server.

V.B.3 Application Directory Structure

 Erlang component implementations are saved in a pre-determined

directory structure. It is a derivative of the directory structure for Erlang

applications that better supports the implementation of its components. It

47

includes the ebin folder and may include the following folders: messenger,

sdc, router, business_logic and ras.

Figure 15: Example Rich Services/Erlang Application Directory

The ebin folder is taken from the Erlang application directory structure.

It contains all of the compiled Erlang modules for the Rich Service. The Rich

Service’s node must have this directory in its code path.

The messenger folder contains all Erlang modules that make up the

Messenger logic. At the moment it only contains the router selection module.

The sdc folder contains folders and files. For each SDC belonging to

the Rich Service there is a folder containing its interface implementations. For

each SDC there is a configuration file that contains the interface definition.

 The router folder contains files and a folder. The configuration files for

each router defined inside the Rich Service reside in the router directory. The

48

single sub-folder in this directory is named ris. For each RIS there is a folder in

the ris folder containing it application directory and files.

The configuration file for each router specifies the policies that the

Router uses. For each RIS the file contains a tuple that provides the RIS’s id

(assigned and used by the routers) and the number of Service Data

Connectors that will connect to the Router. The id is used to find the correct

RIS folder in the router folder; the names of these folders are the ids of the

RIS they contain.

The business_logic folder contains the business logic modules for

simple Rich Services. The only required file is named code_implementation,

and is the callback module for the Business Logic generic server.

The last folder is named ras. It contains the directories for each RAS

defined in the Rich Service. These folders are named using the unique id

assigned to the Rich Application Services in the configuration file of the Rich

Service.

V.B.4 Miscellaneous Concepts

Naming Scheme

 Every Rich Service uses the application name rich_service_application.

Because every Rich Service executes within its own private node, there will

not be a name conflict among Rich Services. Application name scoping

occurs at the node level.

49

Execution Control (starting and stopping)

 Rich Services are started and stopped using the application module.

The start and stop functions are always passed the application name

rich_service_application.

V.C Converting Traditional Erlang Process into Rich Services

 How can a person convert a traditional Erlang process into a Rich

Service or use it as an RIS/RAS? We have two basic options. The simple

option would be to implement a simple SDC and Business Logic component.

The SDC must export some interface that controls access to the original

process. Active conversations started through the SDC send messages to

the Business Logic component. This component cannot directly interact with

the original process because it cannot handle the messages from the original

process. To handle these messages communication with the original process

should be handled in a process spawned by the Business Logic component.

The spawned process mediates communication between the two. In this

implementation the user must add the SDC interface messages, Business

Logic components messages, SDC interface implementations, Business Logic

component implementations and the messages and logic for the mediator

between the Business Logic component and the original process.

 In the second option the service of the traditional process should be

converted entirely into a Rich Service. Its logic should be implemented directly

in the Business Logic component. The SDC would be exactly the same as

that described in the first option. The advantage is that the complexity of

50

implementing a mediator process between the traditional process and the

Business Logic component is removed.

51

Chapter VI Rich Services/Erlang Run-Time Description

VI.A From Design Architecture to Run-Time Implementation

 The Rich Services architecture allows the system designer to create a

logical view of a system. Figure 16 shows the logical architecture for an

imaginary Rich Services system. A convenient property of Rich Services is

that each component in the architecture is implemented one-for-one. For

example, the Messenger drawn in Figure 16 could be implemented directly by

an off the shelf messaging system [6]. Realizing the logical architecture with

an implementation is not a complicated or mysterious process.

Figure 16: Example Rich Framework Service Design

Messengery

RIS
A

RIS
B

RAS
A

RAS
B

Routery

RS RS

Rich Service
Y

52

 Logically Rich Services/Erlang implements the Rich Services

components one for one in software, although the implementation of any

component may consist of multiple concurrent processes. Figure 17

represents the same Rich Service Y as Figure 16, accept that RS X is shown

as the set of concurrent process of its running implementation in Erlang.

Rich Service Y, Rich Service X and all of the Rich Application Services

and Rich Infrastructure Services in Rich Service X are distributed and running

on six separate nodes. Seven processes alone realize Rich Service X. There

are seven two-way paths of communication, five open node monitors and six

process links.

Figure 17: Example Rich Application Service Run Time Implementation

RAS B RAS A

RIS
B

RIS
A

RAS A Node RAS B Node

External
Conversation
Manager

Internal
Conversation
Manager

RS X Node

RIS A Node

RIS B Node

RS Y Node

Rich Service
Gen Server

supervisor

Router
Gen Server

Messenger
Gen Server

SDC
Gen Server

RS Y

53

All of these processes, process links, node monitors and

communication paths implement and integrate one node in a Rich Service

system. Imagine the complexity of an implementation diagram for the entire

Rich Framework Service Y. This section focuses on the run-time

implementation of any Rich Service using the Erlang-based infrastructure.

VI.B Run-Time Implementation Basics

VI.B.1 Nodes

One must first start a node before starting a Rich Service application.

Very important is that the node is given a short or long name that can be

recognized across the network that the Rich Service use to communicate.

The node for any Rich Service is either started manually or from within the

Rich Service/Erlang library. The second case occurs when a RAS or RIS

service is listed in the configuration of a higher-level Rich Service and is

started by a Rich Service generic server or Router generic server.

VI.B.2 Processes

Each Rich service exists within a private node and executes as a

number of concurrent processes. Figure 17 shows that RS X runs within a

node labeled Node X. Notice also that in Node X there are a number of

processes (drawn as circles and ovals).

 If we abstract its processes into single entities, according to function,

any Rich Service could be represented using Figure 18. These entities form a

hierarchical ordering of two-way process links that improve fault-tolerance. At

the top of the tree an Erlang supervisor process keeps the Rich Service

54

running. At the next level the Rich Service Generic Server provides the single

point of control for a Rich Service. At the bottom some set of peer processes

implement the core Rich Service components (Messenger, Router, Service

Data Connector and Business Logic Generic Server).

Figure 18: Rich Service Run Time Implementation Process Categories

VI.B.2.a Supervisor

Once the node begins running, the Rich Service is started by calling

application:start(rich_application_app). The first Rich Service process that

starts is the supervisor. Its main purpose is for starting and monitoring the

Rich Service Generic Server process. If the Rich Service Generic process

dies then the supervisor will restart it to keep the Rich Service running. The

only failure it cannot protect against is a crashed node.

VI.B.2.b Rich Service Generic Server

Every running Rich Service has a Rich Server Generic Server process.

This process will implement slightly different features depending on the role of

the Rich Service. This process ties the entire Rich Service together. It uses

the application configuration variables and configuration files of the Rich

Service to spawn and link to the next tier of generic server processes. These

Rich Service
Gen Server

Supervisor
Process

Other
Gen Servers

55

are the Messenger, Router, Service Data Connector and Business Logic

Generic Servers of the Rich Service.

VI.B.2.c Rich Service Component Generic Servers

Service Data Connector

The SDC implementation consists of one generic server process and

some number of other processes. Rich Services/Erlang refers to the other

processes as conversation managers. They help implement the interface.

Interfaces in the SDC manage interactions (conversations) with internal

Rich Application Services and external Rich Application Services rather than

implement application logic; they are implemented using finite state machines.

SDCs may implement one finite state machine for each accepted message or

implement a smaller set of finite state machines where some accept more than

one accepted message. Finite state machines may accept the same

message.

An interface call is simply the receipt of a message. The SDC binds a

set of message patterns to each finite state machine. The receipt of one of

these messages results in the spawning of all matching Erlang finite state

machine processes. A conversation manager process handles the execution

of interface calls for each finite state machine. It begins a conversation by

starting the finite state machine and sending it the message, terminates

conversations and manages message flows through active conversations.

56

Figure 19: Service Data Connector Run Time Implementation

An executing finite state machine is a conversation. Conversations

receive and send messages throughout their lifetime. When a conversation

starts, the SDC generic server and the conversation manager save the Tag

field of the original message. All outgoing messages should have this tag if

they generate replies, which map to the correct conversation manager using

the Tag value in their tag fields.

 The conversation manager receives two types of messages from the

SDC Generic Server. Both contain the received message. The first specifies

messages that are initiating new conversations. The second specifies

messages that are part of an existing conversation.

SDC

Gen Server

CM1
.
.
.
CMn CMnC1

.

.
CMnCn

CM1C1
.
.
CM1Cn

57

Figure 20: Example Service Data Connector Interface Call

Figure 20 shows a message sequence chart representing a small

conversation within one SDC. Some external source (Src) sends a message

to a Rich Service (Dest). The SDC at Dest matches the message content

(Init) to the interface and saves the conversation tag (Tag). It then forwards

the message to the conversation manager of the selected conversation. The

conversation manager saves the conversation tag (Tag), starts the finite state

machine and forwards the message. The finite state machine receives the

message and initiates a request to NewDest. Eventually the NewDest sends a

reply (with content Response). It is forwarded through the SDC and

58

conversation manager to the finite state machine. The conversation sends a

reply to the initial request and terminates. The external end point will forward

the last reply to Src.

Business Logic Generic Server

Figure 21: Business Logic Generic Server Run Time Implementation

In simple Rich Services designers should implement application logic

using the Business Logic Generic Server. The application logic is placed

inside the callback module of the generic server. Messages flow into the

process through the Service Data Connectors and through external sources.

Messenger Generic Server

A running Messenger consists of a single generic server process. This

process places monitors on the nodes of all registered Rich Application

Services, as shown in Figure 17. If those nodes crash it will remove their

SDC Generic
Server 1

Business
Logic

Generic

SDC Generic
Server X . . .

External Erlang Sources

59

registered data from its state and send a message to the Rich Service generic

server for further fault recovery.

Router Generic Server

 A single generic server process implements each Router within a Rich

Service. When a Rich Infrastructure Service registers with the Router, the

Router places a node monitor on its node. If the node crashes the Router will

restart the RIS. The RIS also places a node monitor on the Router’s node. If

the Router node crashes then the RIS will shut down.

Figure 22: Rich Services/Erlang Router Implementation

Router Generic Server

 RIS
1

 RIS
X . . .

RIS 1
Node

RIS X
Node

Router Node

60

Chapter VII Enterprise Integration Patterns Case Study

Rich Services/Erlang supports the use of many common software

design patterns. We present the use of various enterprise integration patterns

within a Rich Services/Erlang system as a case study within this chapter. Our

discussion leverages material from the book Enterprise Integration Patterns.

The authors classify enterprise integration patterns into six categories.

Messaging end points, message construction, message routing, message

transformation, messaging channels and system management make up the

complete list [3]. They specify at least sixty different patterns. Time

constraints prevented this paper from presenting the use of each of these

patterns. Therefore we attempted to introduce an interesting subset that

highlights the features of Rich Services and/or was implemented in our case

study.

We would like to point out a few patterns that would be difficult,

impossible, or irrelevant to implement using Rich Services/Erlang. The first is

a dead letter channel, which handles messages that the messaging system

cannot deliver. At the moment undeliverable messages are dropped and the

system designer cannot specify actions for those messages. It is impossible

to implement a dead letter channel. The file transfer pattern specifies how

61

software systems interact using shared files. This pattern is entirely irrelevant

for software systems implemented as Rich Services and interacting through

Service Data Connectors.

VII.A Messaging Endpoints

Messaging Endpoints

 Messaging systems provide an API that clients communicate with. But

the client software must still use some custom piece of code that connects

itself to the messaging system. This piece of code is a messaging endpoint.

Figure 23: Example Rich Services/Erlang Message Endpoint

The first two rows in Figure 23 show pure Erlang implementations –

application logic is code entirely written in Erlang. In these configurations the

SDC provides the services of a message endpoint. It connects the Rich

Service to the external Messenger.

In certain situations external operating system processes implement the

Rich Service’s application logic. The third row in Figure 23 demonstrates this

situation. Logically the Business Logic component and SDC belong to the

Erlang Run-Time Environment External
Environment

Business
Logic

SDC External
Messenger

Internal
Messenger

SDC External
Messenger

Business
Logic

SDC External
Messenger

End
Point

62

messaging system. A messaging endpoint is needed to connect the external

environment to the erlang run-time system and the Rich Services/Erlang

messaging layer.

Erlang Ports provide the primary mechanism for communicating with

non-Erlang processes. Unfortunately they are low-level and primitive, but a

number of more sophisticated libraries hide their use. These libraries support

the construction of messaging endpoints that know how to communicate with

Rich Services/Erlang and include the jinterface, erl_interface and Erlang IDL

compiler libraries.

VII.B Message Construction

Command Message

 Command messages invoke functions in remote applications. These

are easily created and used in Rich Services/Erlang systems. Our chat

system uses command messages in multiple interfaces. As an example,

consider the message for resetting a session timer for a user in the session

manager. The message causes the session manager to invoke a method in

the Business Logic component that resets the session timer for the specified

user.

Document Message

 Document messages transfer data between applications. These are

easily created and used in Rich Services/Erlang systems. Our chat system

uses documents messages to push chat messages between users.

63

Event Message

 Event messages move event notifications between applications. These

are easily created and used in Rich Services/Erlang systems. Our chat

system uses event messages to log out users when they timeout. When a

user’s session timer expires, the session manager sends a message to the

chat_server. The Rich Infrastructure Services consume the messages and

notify the user and person the user is chatting with of the timeout.

Request-Reply

 Request-reply messaging describes simple two-way communication

between two applications and includes three different patterns. Messaging

RPC mimics remote procedure calls. The request is a command message

and the reply is a document message with a return value or exception.

Messaging Query is a type of remote query. The request is a command

message and the reply is the result. In Notify/Acknowledge the request is an

event message and the reply is a document message to acknowledge the

event.

Our chat system implements the first two messaging patterns

discussed. The account manager uses messaging rpc to add user accounts.

The friendship manager uses messaging query to return the friend list of any

existing user account.

Notify/Acknowledge could be easily implemented as well. These

patterns are implemented using finite state machines within the Service Data

64

Connectors. The designer of the Rich Service can implement any messaging

pattern described by a finite state machine.

VII.C Message Channel

 Applications communicate through various statically defined and

controlled connections within the messaging system. These connections are

generally referred to as channels or logical addresses. Channels support

multiple communication patterns, a few of which this paper discusses in this

section. By default the Rich Services/Erlang library implements a messaging

bus channel, but logical implementations for a number of other channel

strategies could be created using a combination of Rich Application Services,

Routers and Rich Infrastructure Services.

Publish-Subscribe

 With publish-subscribe channels zero or more subscribers consume

messages from a publisher. There is generally one input channel and multiple

output channels, one for each subscriber. Messages are duplicated and sent

to multiple receivers; each channel receives a copy.

 Our case study does not use a publish-subscribe channel, although an

implementation for one is straight forward. Figure 24 through Figure 26 show

the basic configuration and messages required to implement publish-

subscribe. The Channel Coordinator drives the publish-subscribe

implementation. The Register Channel, Subscribe and Publish messages

support the entire scheme. Register Channel allows publishers to create

65

channels. Subscribe allows recipients to subscribe to those channels. Publish

allows publishers to push out messages that the Channel Coordinator

forwards to registered receivers.

Figure 24: Publish Subscribe Register Channel Interaction

Figure 25: Publish Subscribe Subscribe to Channel Interaction

M
E
S
S
E
N
G
E
R

R
O
U
T
E
R

Publisher

Receiver

Receiver

Channel
Coordinator 1. Subscribe

2. Subscribe 3. Subscribe

4. Ack 5. Ack
6. Ack

M
E
S
S
E
N
G
E
R

R
O
U
T
E
R

Publisher

Receiver

Receiver

Channel
Coordinator

1.

2. 3.

4. Ack 5. Ack

6. Ack

66

Figure 26: Publish Subscribe Publish to Channel Interaction

Invalid Message Channel

 Sometimes a receiver may receive a message it does not recognize. In

Rich Services/Erlang, messages that do not match at least one of the

conversations defined in a SDC are consumed and dropped by the receiver.

In certain situations these lost messages should be handled in some specific

way, especially to help solve errors in the messaging system. An Invalid

Message Channel accepts these messages for such processing.

 Our case study does not implement an Invalid Message Channel, but

one could easily be done. One possible implementation includes a RAS that

accepts and processes invalid messages. Each participating receiver requires

a special conversation that catches all unexpected messages. The receivers

and consumer must be connected using some channel implementation as

well. The easiest would be to statically name the consumer of invalid

messages and then have all invalid messages sent directly to it by the

message receivers. Of course a change to the invalid message consumer

M
E
S
S
E
N
G
E
R

R
O
U
T
E
R

Publisher

Receiver

Receiver

Channel
Coordinator

2. Publish 3. Publish

4. Publish 5. Publish
6. Publish

1. Publish

6. Publish

67

interface or address would require changes in every receiver. A slightly more

complicated scheme could use the router and a RIS to create a virtual channel

that redirects the messages to any physical consumer.

VII.D Message Routing

Content-Based Router

 Content-based routers use the content of messages to determine their

appropriate destination channel. They are purely static and must be changed

as recipients change. Our case study does not use content-based routing to

select destination Rich Application Services. But Erlang pattern matching

easily supports content-based routing logic in the RISs.

Dynamic Router

 With Dynamic Routing recipients notify the router of their presence and

provide a set of conditions under which they will accept a message. One

could define special conversations that support dynamic routing, possibly by

saving information in a database. These conversations match control

messages that recipients use to send the conditions under which they will

accept messages. In other words, the recipients send messages directly to a

routing policy in the router. The policy would then use the saved routing

conditions to select the destinations of messages.

Splitter

 A Splitter divides single message into multiple messages that are

processed by multiple, usually different consumers. Think of an internet

68

purchase filled with multiple items. Each item may be of a particular type,

containing different pieces of information. Each type of item may be

processed by a different application. But the order is sent to the messaging

system in one message. A splitter could divide the order into separate

messages, one for each processing application.

 Our case study does not implement a splitter, but one is easily added to

a Rich Services/Erlang system. Rich Infrastructure Services can place any

number of messages into the router. To create a splitter a RIS must collect

messages in the router and split their contents into multiple messages. It can

then place these new messages back into the router.

Aggregator

 Aggregators collect multiple related messages and combine them into

one message. Our case study does not use an aggregator, but one is easily

implemented using Rich Infrastructure Services. The aggregator needs a way

to capture related messages in the same conversation finite state machine

instance when the messages may not have the same Tag. This can be done

by first defining a set of messages in the SDC interface that bind to one finite

state machine. If the conversation is defined as open then a single executing

conversation constantly consumes and processes every instance of these

messages. Once the state machine has captured the necessary set of

messages it can combine their contents into one message and place it back

into the router.

69

VII.E System Management

Detour

 Sometimes intermediate processes should be performed on messages

as they travel between endpoints (for validation, testing, debugging). These

processes are referred to as detours. Routing policies are a core component

in Rich Services and naturally fill the detour role. One can use routing level

policies to implement any concern addressed with detours.

Wire Tap

 Wire taps use a recipient list to duplicate a message and publish it to

multiple output channels. Duplicate messages are consumed and processed

for the purpose of inspecting, testing, monitoring, etc. In Rich Services/Erlang

a wire tap could be implemented in multiple ways, depending on where the

message duplication should occur. One could design two routers, one for the

intended destination and one for the wire tap. The Messenger would match a

message to both routers, giving each a copy. One could design a RIS that

creates a copy of the original message and sends it to additional destinations.

In either case the extra processing should be encapsulated within a Rich

Application Service.

VII.F Message Transformation

Content Enricher

Content Enrichers use external data sources to supplement the

information contained within messages. This capability may be needed for a

70

variety of reasons. Usually the publisher does not contain all of the

information required by the receiver.

Our case study does not implement a Content Enricher. Of course one

is easily implemented using routing level policies. One can imagine at least

three different configurations for a content enricher. Figure 27 through Figure

29 show each of these.

Figure 27: Example Rich Services/Erlang Conent-Enricher Implementation

Figure 27 shows a RIS and RAS that implement the content enricher.

The RIS intercepts the message and requests the extra information from the

outside source RAS by sending it a message. The source must send a

response back. The RIS can then construct a new message with the

combined information and send the new message to the receiver.

Publisher

MESSENGER

ROUTER

Content Enricher

Receiver Source

71

Figure 28: Example Rich Services/Erlang Conent-Enricher Implementation

Figure 28 shows a second implementation for a content enricher. This

time only a RIS is used. The RIS encapsulates Rich Application Services that

provide the supplemental content. The conversation handling the enrichment

sends an internal messages and collects internal responses. It then forms a

new message with the additional content and republishes it into the external

router.

Content Enricher

Publisher

MESSENGER

ROUTER

Receiver

 Source

72

Figure 29: Example Rich Services/Erlang Conent-Enricher Implementation

Figure 29 shows a third configuration for implementing a content

enricher. It uses some more interesting features available within Rich

Services/Erlang. Rich Services can ask a statically addressable Rich Service

to open a SDC that communicates with its own internal messenger or router.

The source could be a peer RAS of the publisher and receiver. The content

enricher RIS could open a private SDC to the source that connects to its own

internal messenger. The advantage is that the high level communication

infrastructure is not aware of the interaction.

Content-Filter

Content-filters remove information from messages before they reach

their destination. Our case study does not implement a content-filter, but one

is easily created using routing level policies. The designer must simply create

Content Enricher

Publisher

MESSENGER

ROUTER

Receiver

Source

73

a RIS that collects the messages and constructs a new message with only the

required content. It then can publish the new message to the router

74

Chapter VIII Chat System Case Study

We evaluated Rich Services/Erlang through the development of a

distributed chat system. Specifically the chat system is used to evaluate Rich

Services with respect to its benefits as presented by the Rich Services

creators (such as separation of concerns and system development process).

Furthermore the case study allowed us to look at the complexity of

implementing Rich Service using Rich Services/Erlang. The evaluation is

presented in Chapter IX of this paper.

A Rich Framework Service consisting of four Rich Application Services,

one Router and two Rich Infrastructure Services implement the Chat Server

functionality. A fifth complex Rich Application Service, the Chat Client,

introduces a hierarchical depth of two to the entire Rich Service and connects

users through a command line interface and multiple chat windows. Figure 30

the high level architecture view of the chat system.

75

Figure 30: Rich Services Chat System (Case Study) Design

VIII.A Chat System Rich Infrastructure Services Descriptions

Chat System Session Activity Tracker

 The session activity tracker intercepts certain user messages and

generates a message for the session manager to register user activity. It

guarantees that a user will not timeout if they are actively using the chat

system.

Chat System Message Coordinator

 The Chat Client must set the destination of chat system messages to

[[chat_server]]. There is not any particular entity that this address belongs to;

instead the routing logic and policy selection logic determine how messages

sent to this address are processed.

 Currently the Chat System Message Coordinator Rich Infrastructure

Service accepts all messages sent to [[chat_server]]. It consumes the chat

Chat
Client

MESSENGER

Account
Manager

Friendshi
p

Manager

Session
Manager

Chat
Manager

ROUTER

Activity
Tracker

Message
Coordinat

or

0…X

Chat Server Rich Service

76

system messages and coordinates the use of the chat system’s Rich

Application Services to provide the features expected from those messages.

Table 14 shows a list of the messages that the chat system recognizes (these

should be placed in a message’s content field).

Table 14: Chat System Messages
Chat System Messages

[From, To, [startFriendship, FriendName]]

[From, To, [add_user_account, UserName, Password]]

[From, To, [delete_user_account, UserName, Password]]

[From, To, [findAllFriendships]]

[From, To, [logIn, UserName, Password]]

[From, To, [logOut]]

[From, To, [endFriendship, FriendName]]

[From, To, [startChat, FriendName]]

The messages are all a list with three fields: From, To and Request.

The From field is always one of the patterns {user, UserName}, {user,

anonymous} or server. The To field is always one of the patterns {user,

UserName} or server. The Request contains the request.

VIII.B Chat System Rich Application Services Descriptions

Account Manager

 The Account Manager manages user accounts in the chat system.

Besides the basic capabilities of adding and deleting user accounts, one can

77

also search for an account name; these basic features help to support

additional chat system level policies such as session management.

Session Manager

 The Session Manager helps maintain sessions for logged in users.

Capabilities include explicitly starting or stopping session when asked,

generating session timeouts, resetting session timers for users and overriding

session timer values. The session manager is extremely important for timing

out inactive users.

Friendship Manager

 This service administers the friendships that users create between

themselves. The interface is fairly simple. It allows for creating and removing

friends as well as viewing one’s friendship list.

Chat Manager

 The chat manager provides administrative services over the chats that

users open amongst themselves. Most critically it saves important state for

chats, including the participants and the chat client addresses of the

participants. This state supports starting, ending and timing out chat sessions.

VIII.C Chat Client RAS

 The chat client allows users to connect to the chat system. It is a

complex RAS. Internally the chat client Rich Services includes one Command

Window RAS and zero or more Chat Window Rich Application Services. The

former provides a graphical user interface that the user needs to communicate

78

with the chat system while the latter provides a graphical user interface for

each chat the user joins.

Figure 31: Rich Services Chat System Chat Client RAS Design

The internal interface of the Chat Client RAS converts messages from

the Command Window RAS and Chat Window RAS into chat system

messages. It must implement one finite state machine for each chat system

message. The Command Window RAS and Chat Window RAS are unaware

of the chat system messages; instead they are only aware of the internal SDC

interface.

Chat Client Command Window

 The Chat Client Command Window is a simple RAS. Users submit text

commands through a graphical user interface that communicates with the

Business Logic component of the Chat Client Rich Service. The GUI serves

as an example of an external source that connects to a Rich Service directly

through a Business Logic component.

Comman
d Window

MESSENGER

Chat
Window

ROUTER

0…X

79

Figure 32: Rich Services/Erlang Chat Client Command Window RAS GUI

Figure 33: Rich Services/Erlang Chat Client Command Window RAS Run Time
Implementation

Figure 33 shows the run-time implementation of the Command Window

RAS. User input flows from the gui command line and through some Erlang

libraries to a process that mediates communication between the gui and the

Business Logic component of the Command Window. This process has the

SDC Gen Server

Business Logic Gen
Server

GUI Input Controller

GUI

Erlang GUI Library

Command Window

80

reference of the generic server and the generic server has the Pid of this

process. String output can flow from the Rich Service to the gui as well.

The Business Logic component forwards user input to the SDC (listed

in Table 15). The SDC matches user input to a command in the set of chat

system commands listed in Table 15. Successful matches cause the SDC to

generate the messages that call into the internal interface of the Chat Client

RAS. Unsuccessful matches result in an error message being displayed in the

GUI.

Table 15: Rich Services/Erlang Chat Client Command Window RAS Commands
Chat Client Command Window GUI Commands

command create user account USERNAME PASSWORD

command delete user account USERNAME PASSWORD

command login USERNAME PASWORD

command logout

command add friend FRIENDNAME

command remove friend FRIENDNAME

command view friend list

command start chat FRIENDNAME

Chat Client Chat Window

 The Chat Window RAS collects and forwards string input from the user

and displays string input from the person the user is chatting with. It is the

chat window. The internal interface of its SDC implements a finite state

machine for collecting the text input and publishing it to the internal SDC

interface of the Chat Client RAS. The external interface of the SDC collects

81

messages sent to it from that Chat Client RAS SDC and forwards the string

input in their contents to the Business Logic component, which passes it to the

GUI controller. These inputs are the chat messages from the person the user

is chatting with.

VIII.D Chat System Router Selection Rules

 The router selection rules for the chat system are fairly simple because

one router processes all messages. One router is sent all messages which

are all processed by at least one RIS (depending on the message). The three

router selection rules are listed in Figure 34.

{Type, Tag, [[chat_server]], Src, RouterSelection, PolicySelection, Content}

{Type, Tag, Dest, Src, _, _, [From, To, [message, Message]]}

{Type, Tag, [[{ris,_}]], Src, _, _, Content}

Figure 34: Rich Services/Erlang Chat System Router Selection Rules

VIII.E Chat System Policy Selection

 Chat Clients can send any message from the set of chat system

messages; these are addressed to [[chat_server]]. This is not a valid RAS

address. A valid address is not used because there is not a physical RAS that

administers the features of the chat system. Instead the chat system uses a

policy RIS (Chat System Coordinator) to intercept these messages and to

coordinate the chat system RASs.

Table 16 shows the policy list in the router; if a message will be sent to

both policies the chat_server_activity_tracker is always the first to receive the

message. Table 17 shows the message patterns that the

82

chat_server_activity_racker matches and Table 18 shows the patterns that the

chat_server_services_coordinator matches.

Table 16: Rich Services/Erlang Chat System RIS List
Chat System RIS List

[chat_server_activity_tracker,

chat_server_services_coordinator]

Table 17: Rich Services/Erlang System Activity Tracker RIS Policy Selection Rules
Policy Selection Rules For chat_server_activy_tracker

{_,_,_,_,_,_,[{user, anonymous},_,_]}

{_,_,_,_,_,_,[{user,_},_,_]}

{_,_,_,_,_,_,[timeout, UserName, Address]}

{_,_,[[{ris,chat_server_activity_tracker}]],_,_,_,_}

83

Table 18: Rich Services/Erlang Chat System Message Coordinator RIS Policy Selection
Rules
Policy Selection Rules for chat_server_services_coordinator

{_,_,_,_,_,_, [From, To, [login, UserName, Password]]}

{_,_,_,_,_,_, [From, To, [logOut]]}

{_,_,_,_,_,_, [From, To, [add_user_account, UserName, Password]]}

{_,_,_,_,_,_,[From,To,[delete_user_account, UserName, Password]]}

{_,_,_,_,_,_, [From, To, [findAllFriendships]]}

{_,_,_,_,_,_, [From, To, [startFriendship, FriendName]]}

{_,_,_,_,_,_, [From, To, [endFriendship, FriendName]]}

{_,_,_,_,_,_, [From, To, startChat, FriendName]}

{_,_,[[{ris,chat_server_services_coordinator}]],_,_,_,_}

84

Chapter IX Evaluation

IX.A Rich Services

IX.A.1 Separation of Concerns

System Design and Implementation

The chat system case study is a simple system, and we therefore did

not explicitly follow the design process suggested by the Rich Services

authors. But the resulting system is conveniently divided into a horizontal and

vertical set of services that meet the basic functionality of any chat system. All

session management logic was implemented by the Session Manager and all

user account logic was implemented by the Account Manager. The physical

separation of services by concerns made the system more manageable to

implement. Unrelated features were completely isolated from each other.

Different Rich Applications Services could be implemented concurrently by

multiple people and in complete isolation, without worry that the work of one

person might break the work of another.

Integration of Cross-cutting Concerns

The chat system benefited greatly from the placement of cross-cutting

concerns in the Router. For example, user timeouts involved the Session

Manager, Chat Manager, Friendship Manager and Chat Client Rich

Application Services. Each only implemented its own logic for dealing with

85

timed out users without knowledge of the others. A policy RIS (Message

Coordinator) coordinated the activity of these services to implement the

system feature for timing out users. Furthermore, changes to this feature

could be changed in the single RIS without affecting any of these RASs.

Debugging

 The division of Rich Services according to the separation of concerns

makes debugging and validation of systems more efficient. Specifically,

testing the correctness of a Rich Service when its internal structure changes

requires that only its Service Data Connector’s interface be validated. If the

interface returns the correct results for all inputs then one must only concern

himself with validating the correctness of the level that the Rich Service

connects with.

Debugging of the chat system went well due to the separation of

features into Rich Application Services and Rich Infrastructure Services. By

placing related features of the chat system into different Rich Application

Services, one could be confident that working Rich Application Services would

not be affected by logic implemented in other Rich Application Services.

Changes to the session manager could not break the account manager.

 A properly design Rich Service makes debugging more manageable.

The process of debugging could be divided into several related tasks, one for

each RAS and one for the Rich Framework Service coordinating the chat

system Rich Application Services. This makes the assignment of debugging

86

amongst multiple persons efficient. Furthermore each debugging task need

only to worry about the relevant concerns of the Rich Service being debugged.

IX.A.2 One-for-One Design to Implementation

 The one-for-one design to implementation property of Rich Services

make the design and implementation process more efficient. The logical and

physical organization of our chat system was exactly specified using the

architecture. The specification of the Rich Services in our chat system was

used by directly defining the SDC interfaces. The interactions of the Rich

Services in our chat system were defined by directly placing Rich Service

components one-for-one in message sequence charts. The programming of

the code for our chat system corresponded exactly to the components of the

Rich Services.

IX.B Erlang

Concurrent Programming

 Writing concurrent programs is simple in Erlang. The programmer

needs to know how to spawn processes (which can be done in one line), send

messages (which can be in one line) and receive messages (which requires

only a two line structure). A one page introduction of these three concepts is

enough to begin writing concurrent software [1].

 Joe Armstrong claims concurrent software programs written in Erlang

are efficient. Joe spawns 300,000 Erlang processes in 74 microseconds and

20,000 processes in 9 microseconds. In one published benchmark, Erlang

consistently sends messages 6x faster than Java [23].

87

Distributed Programming

 The distributed programming primitives are directly built into the

concurrent communication primitives. Programmers only need to assign

nodes names that can be used across a network, set up the correct

permissions on host machines and register atom names with processes where

appropriate. The distributed communication primitives are simple and do not

require a steep learning curve.

Fault-Tolerance Support

 The fault-tolerance primitives are simple and easy to work with. The

supervisor behavior, process links, process monitors and node monitors seem

sufficient to create fault-tolerance strategies for any set of executing

processes.

Documentation

 The online documentation covers Erlang in great breadth; unfortunately,

programming more complicated tasks could be daunting. The man pages

completely specified the available modules but often lacked examples. The

reference manual provided examples for only the core features.

Community Support

 The Erlang website did not have a community forum and web searches

were usually lacking. Expect to spend the majority of your time reading

through documentation on the Erlang website.

88

Line Count

 Depending on the application Erlang requires 4-10x less lines of code

[23]. Erlang reduces the line count for programs that require concurrent,

distributed features. For example, processes send messages to other

processes using a single line.

Single assignment increased the line count in code blocks where the

values of the fields in a tuple change multiple times. When a tuple with many

fields was constructed doing so in a single at a time line could mean long

lines. One could either break the line into multiple lines, sometimes reducing

the readability. One could make one change at a time, assigning each result to

a new variable. In either case one often wished for a more object oriented

solution.

Many modules in the Rich Services/Erlang library and chat system have

multiple lines that are at least twice as long as lines in other languages. Rich

Services/Erlang messages consist of seven fields. Patterns written to match

particular messages often extend beyond 100 characters. Breaking the

patterns into multiple lines increases the difficulty of reading and

understanding the code.

Debugging

 Erlang/OTP provides a debugger but it was not used throughout the

research process presented in this paper [7]. We debugged our libraries using

print statements to display information in a terminal window. The debugging

process was often frustrating.

89

Each Rich Service executes as multiple processes and if more than one

of these processes printed to the same terminal, the output would be

interleaved. Picking out the desired lines could take time. The print

statements in working sections of code were removed to reduce the clutter in

the terminal windows. Unfortunately when these sections were later modified

the print statements would need to be reinserted, increasing the inefficiency of

debugging.

In Erlang function callers always handle function errors. Many errors

messages included information compounded through multi-level function calls.

These could be difficult to understand. In addition the online documentation

did not completely specify the meaning of errors, making it difficult to

determine why functions would crash.

Porting and Interfacing

 The case study does not interface with an external operating system

process. But the Rich Services/Erlang library was used to successfully create

a Rich Services system that integrated a physical wireless sensor network.

The sensor devices in the network communicated with a base station device

plugged into a computer via USB. A Java program communicated with the

base station via the USB Port and used the JInterface library to connect to

Erlang. JInterface allowed the the Java program to call into an Erlang generic

server as easily as a native Erlang program. JInterface simplifies the process

of connecting Java and Erlang via message passing.

90

IX.C Rich Services/Erlang

Implementation Complexity

 The code of a Rich Service is spread through multiple files. One must

understand the organization and purpose of these files as well as how Erlang

applications work. Rich Services/Erlang requires a relatively steep learning

curve. Fortunately when the process for creating a Rich Service is understood

they seem to form quickly.

SDC Implementation

Using the finite state machine behavior to implement an SDC interface

makes defining interactions extremely easy. One advantage is that an SDC

conversation can coordinate its internal Rich Application Services; this can be

more convenient than implementing routing policies to implement the same

logic. In our chat system the finite state machine conversations made the

coordination of multiple Rich Application Services simple. Finally, the finite

state machine enables the creation of a variety of enterprise integration

patterns (such as the aggregator).

Business Logic Implementation

 Implementing simple application logic in the Business Logic component

was often an annoying task during the development of the chat system. But

the separation of interaction logic and application logic generally improves the

readability of both. In addition, the Business Logic component handles one

request at a time on a first come first serve basis and saves state for the Rich

91

Service. Programmers can leverage this feature to provide sequential,

uninterrupted access to the Rich Service state.

Router Implementation

 Allowing the specification of multiple routers improves the potential of a

Rich Services system. They support the integration of various enterprise

integration patterns. In addition the implementation of multiple, unrelated

routing strategies reduces the complexity of individual routers and improves

opportunities for router reuse in different Rich Services systems.

 The use of Rich Infrastructure Services within the router is not efficient

and difficult to understand. Creating a workflow from a set of Rich

Infrastructure Services cannot be done using one mechanism but rather

requires creating Rich Infrastructure Services that are aware of the work flow

and manipulate knowledge of policy selection in the router. This is not

appropriate.

Messenger Implementation

 Programming for the Messenger requires minimal effort; the router

selection module is the only significant programming needed. The features

implemented are less than desired. Unfortunately the Messenger only

communicates with Rich Services implemented using Rich Services/Erlang. It

should be extended to communicate with other services (such as web

services).

92

The type field of the message could support communication protocols

other than those based on Erlang. At the moment this has not been

implemented. For example, existing web services are useful resources. Web

services do not register with the Messenger. The type field could force the

content field to contain the necessary information to communicate with a web

service. The Messenger needs modifications that support communication with

the web services.

93

Chapter X Thesis Summary

X.A Conclusion

This paper introduces Rich Services/Erlang, the first software library

enabling the implementation of Rich Services systems. It presents a

description of the Rich Services architecture and an overview of the functional

programming language Erlang; we show how the Rich Services/Erlang library

is implemented and how designers use it to create Rich Services systems.

The chat system case study and the discussion of enterprise integration

patterns case study evaluate and validate the usefulness of the Rich

Services/Erlang library.

Rich Services/Erlang provides Rich Services designers with a few

convenient features. One can easily design multiple Service Data Connectors

per each service; affording the opportunity to separate interfaces according to

concerns. Similarly, designers can create Rich Services with multiple routers.

Most important the library allows the implementation of actual Rich Services

systems.

Erlang brings multiple features to the Rich Services/Erlang library.

Most important Erlang supports efficient and simple primitives for writing

concurrent, distributes software. Rich Services/Erlang leverages these

features to implement services that run in physically separated locations and

94

are protected via fault-tolerance primitives. In addition Erlang pattern

matching and finite state machines provide a powerful combination for

managing the interaction of services through the SDC.

Our enterprise integration patterns case study shows the flexibility for

Rich Services/Erlang to implement systems using common strategies. The

chat system case study evaluates the Rich Services/Erlang library according

to a set of criteria. In both instances we find that Rich Services/Erlang

supports the creation of flexible and complex distributed software systems.

Our evaluation discusses Rich Services, Erlang and Rich

Services/Erlang. In one statement we can say that Rich Services/Erlang

proves to provide a positive opportunity for creating Rich Services systems.

The library, the chat system case study and the enterprise integration case

study support the published arguments for Rich Services and show potential

for additional opportunities, such as the implications of multiple routers and

multiple SDCs.

X.B Future Work

Evaluation of Fault-Tolerance Capabilities

 Every Rich Services implemented using the Rich Services/Erlang

library has multiple process links and node monitors. The library implements a

specific crash recovery strategy. A number of systems and tests need to be

designed to validate the strategy implementation.

95

Dynamic Reconfiguration

 The Rich Services/Erlang library was developed with the intent of

providing dynamic code loading and dynamic reconfiguration. The

specification for Routers, Rich Application Services and Services Data

Connectors should be changeable at run-time. Currently the configuration

modules of every Rich Service compile at start time. The logic for compiling

these files and dynamically changing the configuration of any Rich Service is

programmed into the library code but not tested.

Messenger Feature Set

 The Messengers needs to support different communication protocols

(such as soap) so that Erlang Rich Service can communicate directly with

existing services (such as web service) through the Messenger.

Federation of Single Rich Services onto Multiple Nodes

Every Rich Service runs on its own node, but if the node crashes and

cannot be restarted then access to it is lost. Erlang could easily support the

federation of a single Rich Service onto multiple nodes to protect against this

situation. We would like to duplicate the service among multiple nodes to

increase redundancy and thereby increase availability.

We need to address a few different concerns for management of the

node cluster for each Rich Service. The first concern is for how to specify the

location of the nodes in the cluster. The second concern is for how to manage

the cluster (starting, stopping, reconfiguring). The third concern is for how to

96

deal with the flow of messages through the cluster. We feel that these

concerns are easily dealt with in changes to the Rich Services/Erlang library.

A specification for the cluster would be done using a configuration

setting. This specification could be added to the configuration file to support

static settings. It could be passed to the service at start up, or it could be

specified dynamically at run time. In each case the specification is saved

using a configuration setting.

The configuration for the cluster is consumed by some mechanism for

starting, stopping and dynamically reconfiguring the cluster. This mechanism

should also contain the logic for dealing with crashed nodes. A sub-concern is

how to delegate authority and control across the cluster. We suggest that

configuring the cluster using a ring and electing a leader would work well. If

the leader crashes the instance of the Rich Service monitoring the crashed

instance would become the leader. This mechanism guarantees that only one

point of control (or Rich Service) takes action to manage the cluster,

simplifying the implementation. The logic for managing the cluster should be

built into the Rich Service generic server process.

A third concern is for how to handle message flows through the cluster.

We suggest one of two implementations. Messages can be duplicated and

sent to each instance of the Rich Service. Or messages can flow through one

physical path. In either case a single path is chosen as the valid path. The

advantage of the second is that if a link in the valid path crashes, the

97

messages flow does not break because a redundant link can immediately join

the valid path. The second option has the advantage of simplicity but on

crashes the message flows may be lost. The logic for handling the message

flows should be built directly into the Messenger.

Messenger AMQP Implementation

 We would like to explore the use of an existing messaging system, such

as RabbitMQ, as an implementation for the Messenger in Rich

Services/Erlang. RabbitMQ is a promising substitution for the Messenger as it

is built using Erlang/OTP and supports Erlang based clients [24]. To support

RabbitMQ the SDC and Router implementations must be changed. Both must

connect to a RabbitMQ server. RabbitMQ provides libraries to connect both

as a client to the server. In addition to establishing the connection the logic in

both components must be changed to receive and send messages to and from

RabbitMQ rather than an Erlang generic server.

In addition to connecting the Router and SDCs to RabbitMQ there are a

few more concerns to be addressed. We need a solution for logically

implementing the Rich Services architecture. Should the Routers and Rich

Application Services connect to the server as peers? In this case the Rich

Infrastructure Services connect directly to the Routers and the RabbitMQ

server sends messages to the appropriate Router(s) before sending them to

their destinations. In another instance the Rich Infrastructure Services,

Routers and Rich Application Services all connect to the server as peers,

98

which handles every physical transmission of a message and directs the flow

between the destinations, routers and Rich Infrastructure Services.

The address and naming scheme used in Rich Services/Erlang may

need adjustment to support RabbitMQ, The configuration parameters will be

extended to save the state for connections to a RabbitMQ server. The server

itself must somehow be packaged with the RabbitMQ library.

A RabbitMQ Messenger implementation will not always be the best

option. The server is not lightweight compared to the current implementation.

For Rich Services that are started and stopped regularly it would be

convenient to support a version of the current Messenger. At the very least a

strategy for allowing multiple Rich Services to share the same server would

help to reduce the overhead of using RabbitMQ.

Router RIS Selection and Application

 To create workflows involving a set of Rich Infrastructure Services the

router must be reengineered. Using Erlang finite state machines, similarly to

the way they are used in Service Data Connectors, seems to be the best

solution. A workflow is simply the application of a series of policies on the

receipt of a message in the router. Incoming messages should be matched

with a single workflow definition (an Erlang finite state machine module). The

router and finite state machines can use the message tag field to correlate

messages with active workflows, similar to the way the SDC handles a

message flow through a conversation. This mechanism allows one to

99

construct complex workflows through the use of finite state machines and

removes the need to implement workflow logic in the Rich Infrastructure

Services (which is currently required).

Potential Performance Issues

 This paper does not present a quantitative evaluation for the

performance of systems implemented using Rich Services/Erlang. But

performance factors should be explored in the future. In general we would like

to consider throughput through the Messenger, Router and Service Data

Connectors as well as message latencies through these components. In

addition the fault-tolerance features should be evaluated.

 Throughput and latency through the various components is important.

At the moment the Messenger is implemented using one process but to

increase throughput the logic for selecting a message’s router and RAS

destination is handled in a separately spawned process. The Messenger

simply receives messages and spawns the correct process.

 The Router is implemented using a single process. Policy selection

and policy application are done using spawned processes started when the

Router receives a message. We need to know the throughput through the

Router as well as the latencies of receiving a message, selecting policies for a

message, applying policies on a message or as a result of a message and

forwarding a message back to the Messenger.

100

 Currently the SDC interfaces are implemented using Erlang finite state

machines and calls into the SDC spawn those finite state machines. The

function of the SDC generic server process is to match incoming messages

with the correct interface call and to send messages externally and internally.

Besides finding the maximum throughput it would interesting to know what the

upper bounds are for how many conversations can be active in a single

instance of time.

 The fault-tolerance features in Rich Services/Erlang should guarantee

that any crashed process be restarted so that live Rich Services do not

completely fail. These features have not been tested. The impact of crashed

processes should be evaluated. In addition the restart strategies should be

tested and new restart strategies should be implemented for comparative

purposes.

Rich Service Nodes

 In the version of Rich Services/Erlang described in this paper, each

Rich Service runs within its own node. In Erlang the node is the heavyweight

deployment concept. We can get away with running each Rich Service on its

own node when they are realized as continuously running instances. But if

one would like an approach where Rich Service are started when needed and

stopped when not needed, then running them on private nodes will hurt

performance

101

 The library needs slight alterations to support running multiple Rich

Services on a single node. Each Rich Service is implemented as an Erlang

application. The module for this implementation needs to be changed so that

instead of controlling the deployment of a single Rich Service, it manages the

deployment of multiple Rich Services. In other words, starting the Rich

Services application does not start a single Rich Service. It should start a

central point of control that manages the deployment of multiple Rich Services.

In addition the start logic for each Rich Service needs to be slightly changed;

at the moment it starts a node for each Rich Service. This would no longer be

required.

102

Appendix A Chat System Rich Service Interface
Specifications

A.I Chat System Rich Infrastructure Services

Activity Tracker

SDC ID one

External Interface

1 Message Pattern [{user, UserName}, To, Content]

Description This conversation intercepts user messages to assist

in resetting timeouts.

2 Message Pattern [timeout, UserName, Address]

Description This conversation handles timeout message from the

session manager.

Message Coordinator

SDC ID one

External Interface

1 Message Pattern [From, To, [startFriendship, FriendName]]

Description This conversation communicates with the Friendship

Manager to add a friend for the requesting user.

2 Message Pattern [From, To, [add_user_account, UserName,

Password]]

Description This conversation coordinates the appropriate

103

services to add a user account.

3 Message Pattern [From, To, [delete_user_account, UserName,

Password]]

Description This conversation coordinates the services that

delete user accounts.

4 Message Pattern [From, To, [findAllFriendships]]

Description This conversation coordinates the services that find

all friendships for the user specified in the From field.

5 Message Pattern [From, To, [logIn, UserName, Password]]

Description This conversation coordinates the appropriate

services to log a user in.

6 Message Pattern [{user, UserName}, To, [logOut]]

Description This conversation coordinates the services that log

out the user.

7 Message Pattern [From, To, [endFriendship, FriendName]]

Description This conversation coordinates the services that

remove a specified friendship.

8 Message Pattern [From, To, [startChat, FriendName]]

Description This conversation communicates with the Friendship

Manager to add a friend for the user.

A.II Chat System Rich Application Services

Account Manager

SDC ID one

External Interface

104

1 Message Pattern [add_user_account, UserName, Password]

Description Adds the user UserName with password Password to

the user account database.

Return Messages [ok, [add_user_account, UserName]]

[fail, [add_user_account, UserName,

dbManagerFailure]]

[fail, [add_user_account, UserName, timeout]]

[fail, [add_user_account, UserName, Reason]]

2 Message Pattern [delete_user_account, UserName, Password]

Description Deletes the user UserName with the password

Password from the user account database.

Return Messages [ok, [delete_user_account, UserName]]

[fail, [delete_user_account, UserName,

dbManagerFailure]]

[fail, [delete_user_account, userManagerFailure]]

[fail, [delete_user_account, timeout]]

3 Message Pattern [findUserAccount, UserName, Password]

Description Searches for the specified user and password in the

user account database.

Return Messages [ok, [findUserAccount, UserName]]

[fail, [findUserAccount, UserName,

dbManagerFailure]]

[fail, [findUserAccount, UserName, timeout]]

[fail, [findUserAccount, UserName, Reason]]

105

Session Manager

SDC ID one

External Interface

1 Message Pattern [startSession, UserName, Address]

Description Stars a session for the specified user and saves the

address of their chat client Rich Service.

Return Messages [ok, [startSession, UserName]]

[fail, [startSession, UserName, Reason]]

2 Message Pattern [stopSession, UserName]

Description Stops the session of the specified user.

Return Messages [ok, [stopSession, UserName]]

[fail, [stopSession, UserName, Reason]]

3 Message Pattern [resetTimer, UserName]

Description Resets the timer of the specified user.

Return Messages

4 Message Pattern [checkUserActivity, UserName]

Description Tells the inquirer if the user is logged in or not.

Return Messages [ok, [checkUserActivity, UserChatClientAddress]]

[ok, [checkUserActivity, inactive]]

[fail, [checkUserActivity, Reason]]

Internal Interface

 Message Pattern [timeout, UserName, Address]

Description This message is generated internally. The interface

implementation forwards the message externally so

106

the chat system can deal with the user’s timeout.

Return Messages

SDC ID two

External Interface

1 Message Pattern [setTimeout, Timeout]

Description Sets the timeout length to Timeout.

Return Messages [ok, [setTimeout, Timeout]]

[fail, [setTimeout, Timeout, Reason]]

Friendship Manager

SDC ID one

External Interface

1 Message Pattern [startFriendship, UserName, FriendName]

Description Starts a friendship where the user specified by

UserName has request to be friend with the user

specified by FriendName.

Return Messages [ok, [startFriendship]]

[fail, [startFriendship, UserName, dbManagerFailure]]

[fail, [startFriendship, timeout]]

[fail, [startFriendship, Reason]]

2 Message Pattern [endFriendship, UserName, FriendName]

Description Ends the friendship of the two specified users.

Return Messages [ok, [endFriendship]]

107

[fail, [endFriendship, UserName, dbManagerFailure]]

[fail, [endFriendship, timeout]]

[fail, [endFriendship, Reason]]

3 Message Pattern [findAllFriendships, UserName]

Description Returns a list of the user’s friend’s name specified by

UserName.

Return Messages [ok, [findAllFriendships, FriendList]]

[fail, [findAllFriendships, UserName,

dbManagerFailure]]

[fail, [findAllFriendships, timeout]]

[fail, [findAllFriendships, Reason]]

Chat Manager

SDC ID one

External Interface

1 Message Pattern [addChat, Initiator, Initiatee]

Description Adds a chat to the database with the users specified

by Initiator and Initiatee.

Return Messages [ok, addChat]

[fail, [addChat, dbManagerFailure]]

[fail, [addChat, Reason]

2 Message Pattern [findChats, Participant]

Description Finds all of the chats that the user specified by

Participant is involved in.

Return Messages [ok, [findChats, Chats]]

108

[fail, [findChats, dbManagerFailure]]

[fail, [findChats, Reason]]

3 Message Pattern [removeChat, Initiator, Initiatee]

Description The message causes the chat start by Initiator and

involving Initiatee to be removed.

Return Messages [ok, removeChat]

[fail, [removeChat, dbManagerFailure]]

[fail, [removeChat, timeout]]

[fail, [removeChat, Reason]]

4 Message Pattern [removeChats, Participant]

Description This messages causes all chats to be removed that

the user specified by Participant is involved in.

Return Messages [ok, removeChats]

[fail, [removeChats, dbManagerFailure]]

[fail, [removeChats, Reason]]

Chat Client

SDC ID one

External Interface

1 Message Pattern [server, {user,UserName},[log_out, IChats, AChats]]

Description This conversation tells the chat client that the user had

been timeout out. It sends a message for display at the

command window and sends an exit message to all

open chat windows.

Return

109

Messages

2 Message Pattern [chatInvitation, HostName, HostSrc]

Description This conversation process chat invitations directed at the

user. It attempts to open a chat window and if

successful sends an accept message to the source of

the initiating message. Otherwise its send a failure

message.

Return

Messages

{acceptChatInvite}

{chatInvitation, error}

3 Message Pattern [server, {user, UserName}, [offline, FriendName]]

Description This conversation processes timeout notifications for

persion the user is chatting with.

Return

Messages

4 Message Pattern [{user, FriendName}, {user, UserName}, [message,Msg]]

Description This conversation processes messages sent from

persons the user is chatting with.

Return

Messages

[{user, UserName},{user,FriendName},[message,error]]

Internal Interface

1 Message Pattern [addFriend, FriendName]

Description This conversation handles communicating with the chat

system to add a friend.

Return [displayMessage, “Successfully added friend.”]

110

Messages [displayMessage, “Failure: Could not send message to

chat server.”]

[displayMessage, “Failure: You must be logged on to

complete that action.”]

[displayMessage, “Unable to add friend.”]

2 Message Pattern [message, Address, Message]

Description This conversation handles sending a message from the

user to a person he is chatting with.

Return

Messages

[displayMessage, “Failure: Could not send message to

chat server.”]

[displayMessage, “Failure: You must be logged on to

complete that action.”]

3 Message Pattern [createUserAccount, UserName, Password]

Description This conversation handles creating a user account in the

chat system.

Return

Messages

[displayMessage, “User account successfully created.”]

[displayMessage, “Failure: Could not create user

account .”]

[displayMessage, “User account not created: “+Reason]

[displayMessage, “User account not created: command

timeout out.”]

4 Message Pattern [deleteUserAccount, UserName, Password]

Description This conversation handles asking the chat system to

delete a use account.

111

Return

Messages

[displayMessage, “User account successfully deleted.”]

[displayMessage, “Failure: Could not send message to

chat server.”]

[displayMessage, “User account not deleted: “+Reason]

[displayMessage, “User account not deleted: command

time out.”]

5 Message Pattern [login, UserName, Password]

Description This conversation handles asking the chat system to log

a user in.

Return

Messages

[displayMessage, “Logged In Successfully.”]

[displayMessage, “Failure: Could not log in.”]

[displayMessage, “Failure: You must be logged off to

complete that action.”]

[displayMessage, “LogIn failed.”]

6 Message Pattern [logOut]

Description This conversation handles asking the chat system to log

the user out.

Return

Messages

[displayMessage, “Logged Out Successfully.”]

[displayMessage, “Failure: You must be logged on to

complete that action.”]

[displayMessage, “Failure: Could not send message to

chat server.”]

[displayMessage, “LogOut failed.”]

7 Message Pattern [removeFriend, FriendName]

112

Description This conversation handles communicating with the chat

system to remove a user’s friend from his friend list.

Return

Messages

[displayMessage, “Successfully removed friend.”]

[displayMessage, “Failure: You must be logged on to

complete that action.”]

[displayMessage, “Failure: Could not send message to

chat server.”]

[displayMessage, “Unable to remove friend.”]

8 Message Pattern [startChat, FriendName]

Description This conversation handles asking the chat server to start

a chat with a friend.

Return

Messages

[displayMessage, “Failure: You must be logged on to

complete that action.”]

[displayMessage, “Failure: You could not send that

message to the chat server.”]

[displayMessage, “Failure: Could not start chat.”]

[displayMessage, “Failure: timeout.”]

9 Message Pattern [viewFriendList]

Description This conversation handles asking the chat server to send

the user his friend list, including the status of each friend.

Return

Messages

[displayMessage, FriendsList]

[displayMessage, “Failure: You must be logged on to

complete that action.”]

[displayMessage, “Failure: Could not send message to

113

chat server.”]

[displayMessage, “Unable to find friends.”]

A.III Chat Client internal Rich Application Services

Command Window

SDC ID one

External Interface

 Message Pattern [displayMessage, Msg]

Description This conversation forwards the string message Msg to

the business logic generic server to process for

displaying on the gui

Return Messages

Internal Interface

 Message Pattern [parseInput, Input]

Description This conversation takes input from the gui, matches it

to a command and forwards the corresponding

message. Non matches result in an error message

being sent back to the gui.

Return Messages {display, “Command Not Recognized.”}

{display, “Failed to publish message.”}

Chat Window

SDC ID one

External Interface

1 Message Pattern [display, Msg]

Description This conversation accepts and processes a message

114

to display in the GUI.

Return Messages

 Message Pattern [exit, normal]

Description This conversation shuts down the Chat Window.

Return Messages

Internal Interface

1 Message Pattern [message, Address, Message]

Description This conversation forwards a string message to the

person identified at the address Address.

Return Messages

115

Appendix B Chat System Case Study Interaction
Diagrams

B.I Chat System Interaction Diagrams

Create Account

Figure 35: Chat System Create Account Interaction Diagram

116

Delete Account

Figure 36: Chat System Delete Account Interaction Diagram

117

Log In

Figure 37: Chat System Log In Interaction Diagram

118

Create Friendship

Figure 38: Chat System Create Friendship Interaction Diagram

119

Delete Friendship

Figure 39: Chat System Delete Friendship Interaction Diagram

120

Start Chat

Figure 40: Chat System Start Chat Interaction Diagram

121

Get Friendship List

Figure 41: Chat System Get Friendship Interaction Diagram

122

Log Out

Figure 42: Chat System Log Out Interaction Diagram

123

B.II Activity Tracker Interaction Diagrams

Log Activity

Figure 43: Activity Tracker Log Activity Interaction Diagram

124

Handle Timeout

Figure 44: Activity Tracker Handle Timeout Interaction Diagram

125

B.III Message Coordinator Interaction Diagrams

Create Account

Figure 45: Message Coordinator Create Account Interaction Diagram

126

Delete Account

Figure 46: Message Coordinator Delete Account Interaction Diagram

127

Log In

Figure 47: Message Coordinator Log In Interaction Diagram

128

Create Friendship

Figure 48: Message Coordinator Create Friendship Interaction Diagram

129

Delete Friendship

Figure 49: Message Coordinator Delete Friendship Interaction Diagram

130

Get Friendship List

Figure 50: Message Coordinator Get Friendship List Interaction Diagram

131

Log Out

Figure 51: Message Coordinator Log Out Interaction Diagram

132

Start Chat

Figure 52: Message Coordinator Start Chat Interaction Diagram

133

B.IV Chat Client Interaction Diagrams

Add Friend

Figure 53: Chat Client Add Friend Interaction Diagram

134

Broadcast Message

Figure 54: Chat Client Broadcast Message Interaction Diagram

135

Create Account

Figure 55: Chat Client Create Account Interaction Diagram

136

Delete Account

Figure 56: Chat Client Delete Account Interaction Diagram

137

Delete Friendship

Figure 57: Chat Client Delete Friendship Interaction Diagram

138

Get Friendship List

Figure 58: Chat Client Get Friendship List Interaction Diagram

139

Log In

Figure 59: Chat Client Log In Interaction Diagram

140

Log Out

Figure 60: Chat Client Log Out Interaction Diagram

141

Process Chat Invitation

Figure 61: Chat Client Process Chat Invite Interaction Diagram

142

Session Timeout

Figure 62: Chat Client Session Timeout Interaction Diagram

143

Process User Timeout

Figure 63: Chat Client Process User Timeout Interaction Diagram

144

Receive Message

Figure 64: Chat Client Receive Message Interaction Diagram

145

Start Chat

Figure 65: Chat Client Start Chat Interaction Diagram

146

Bibliography

[1] J. Armstrong. Programming Erlang. The Pragmatic Bookshelf, 2007.

[2] M. Arrott, B. Demchak, V. Ermagan, C. Farcas, E. Farcas, I. H. Krüger,

and M. Menarini, “Rich Services: The Integration Piece of the SOA
Puzzle,” in Proceedings of the IEEE International Conference on Web
Services (ICWS), Salt Lake City, Utah, USA. IEEE, Jul. 2007, pp. 176-
183.

[3] K. Brown, C D’Cruz, M. Fowler, et. al. Enterprise Integration Patterns.
Pearson Education Inc, 2004.

[4] B. Demchak, V. Ermagan, E. Farcas, T.-J. Huang, I. Krüger, and M.
Menarini, “A Rich Services Approach to CoCoME,” The Common
Component Modeling Example: Comparing Software Component
Models, A. Rausch, R. Reussner, R. Mirandola, and F. Plasil (Eds.),
Lecture Notes in Computer Science, no. 5153, ch. 5, pp. 85-115,
Berlin/Heidelberg: Springer-Verlag, Aug. 2008.

[5] B. Demchak, V. Ermagan, C. Farcas, E. Farcas, I. H. Krüger, and M.
Menarini, “Rich Services: Addressing Challenges of Ultra-Large-Scale
Software-Intensive Systems,” in Proceedings of the ICSE 2nd
International Workshop on Ultra-Large-Scale Software-Intensive
Systems (ULSSIS 2008), Leipzig, Germany. New York, NY, USA: ACM
Press, May 2008, pp. 29-32.

[6] B. Demchak, C. Farcas, E. Farcas, and I. H. Krüger, “The Treasure
Map for Rich Services,” in Proceedings of the 2007 IEEE International
Conference on Information Reuse and Integration (IRI), Las Vegas,
USA. IEEE, Aug. 2007, pp. 400-405.

[7] Comprehensive Erlang Archive Network. http://cean.process-
one.net/packages/index.yaws?action=category&name=Erlang/OTP

[8] Erlang Online Publication.
http://www.erlang.se/publications/Ulf_Wiger.ppt

[9] Erlang Reference Manual.
http://erlang.org/doc/reference_manual/expressions.html#6

[10] Erlang Reference Manual.
http://erlang.org/doc/reference_manual/data_types.html#2.1

147

[11] Erlang Reference Manual.

http://erlang.org/doc/reference_manual/data_types.html#2.8

[12] Erlang Reference Manual.
http://erlang.org/doc/reference_manual/data_types.html#2.9

[13] Erlang Reference Manual.
http://erlang.org/doc/reference_manual/data_types.html#2.10

[14] Erlang Reference Manual.
http://erlang.org/doc/reference_manual/data_types.html#2.11

[15] Erlang Reference Manual.
http://erlang.org/doc/reference_manual/distributed.html#11.2

[16] Erlang Reference Manual.
http://erlang.org/doc/reference_manual/expressions.html#funs

[17] Erlang Reference Manual.
http://erlang.org/doc/reference_manual/expressions.html#6.4

[18] Erlang Reference Manual.
http://erlang.org/doc/reference_manual/modules.htm#4

[19] Erlang Reference Manual.
http://erlang.org/doc/design_principles/gen_server_concepts.html#2

[20] Erlang Reference Manual.
http://erlang.org/doc/reference_manual/ports.html#13

[21] Erlang Reference Manual.
http://erlang.org/doc/design_principles/fsm.html#3

[22] Erlang Reference Manual.

http://erlang.org/doc/design_principles/applications.html#7

[23] Performance Measurements of Threads in Java and Processes in

Erlang. http://www.sics.se/~joe/ericsson/du98024.html

[24] RabbitMQ FAQ. http://www.rabbitmq.com/faq.html#performance-
latency

