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focusing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

3.4 Integrated growth timescale for a core at a = 20 AU as a function of core
mass. The growth timescale is integrated over sizes using a Dohnanyi
distribution with a maximum size corresponding to St = 10−1, as dis-
cussed in Section 3.3.3. The approximate e-folding time of the gaseous
component of the disk, τdisk, is marked as a dashed horizontal line. As
the core grows, it can accrete a larger fraction of the available small-body
sizes, causing the growth timescale to drop rapidly. Eventually, the core’s
mass becomes large enough that it can accrete all available particle sizes,
causing it to enter into a regime where growth timescale is independent
of M . We also note that once the core becomes massive enough that
the growth timescale drops below τdisk, subsequent growth at higher core
masses proceeds on timescales well below the disk lifetime. . . . . . . . . 169
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3.5 Graphical illustration of how gas giant core growth is limited for different
semi major axes. The monotonically increasing line (black) shows the
minimum mass needed for gas-assisted growth to produce a gas giant
core; for masses higher than the plotted mass, the growth timescale for
the core is less than the disk lifetime. The monotonically decreasing line
(blue) shows the maximum mass it is possible to achieve via planetesimal
accretion. Values lower than the indicated mass can be reached within the
disk lifetime, but for larger masses the disk will dissipate before the mass
is reached. The vertical line denotes the semi-major axis upper limit
on where growth of gas giant cores can occur; interior to this region,
planetesimal accretion can build a massive enough core rapidly enough
that pebble accretion becomes efficient and dominates growth at higher
masses. The green shaded region indicates where growth of gas giants is
ruled out, as both planetesimal accretion and pebble accretion are too
slow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

3.6 Minimum mass for which the growth timescale is shorter than τdisk =
2.5 Myr, shown for various values of α. Masses smaller than the values
depicted have growth timescales larger than τdisk, so if the core can exceed
this mass by other means, it should be able to reach Mcrit, but growth
by pebble accretion will be unable to exceed this mass within τdisk. A
mass for growth by planetesimal accretion is also shown, but this mass
has a different interpretation: it is the largest mass a core can grow to
via gravitational focusing within τdisk. . . . . . . . . . . . . . . . . . . . 181

3.7 Maximum semi-major axis at which growth to critical core mass is pos-
sible as a function of α. Curves are shown for a Dohnanyi distribution
with a maximum-sized particle corresponding to St = 10−1 (solid line)
and St = 1 (dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . 182

3.8 A comparison of our analytic expression for the maximal semi-major axis
where gas giant growth is possible (Equation 3.34), with the numerical
solution. Results are presented for two different planetesimal surface
densities, Σpla = Σp and Σpla = Σp/2. . . . . . . . . . . . . . . . . . . . 183

3.9 The blue region shows where growth of gas giant cores is possible for a size
distribution with maximal pebble size of rs = 1 mm, plotted as a function
of the strength of turbulence. In contrast to the size distributions which
used a fixed Stokes number as the upper limit, this distribution has a
lower limit on where core growth can occur as well as an upper limit.
The lower limit is the maximum of a fixed semi-major axis limit, and a
limit for a given α – an analytic expression for the latter (c.f. Equation
3.37) is also shown (black dashed line). . . . . . . . . . . . . . . . . . . . 184
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3.10 “Starvation” mass, past which growth of a gas giant halts, plotted as a
function of semi-major axis. Panel a): In this panel, the mass is obtained
by assuming that growth shuts off when the planet opens up a gap of
width ∆ = 5RH (see text for more details). Inside the gray region, the α
value required to prevent gap opening before the core reaches the given
mass is so large that a core will not be able to form within the lifetime of
the gas disk (see Section 3.4.2). The shape of this region is determined
using our upper limits on α taken from the Stmax = 0.1 in Figure 3.7. The
labeled curves show maximum masses for constant values of α. Panel b):
Here the starvation mass is determined numerically using fitting formulae
to numerical results for the gas accretion rate from 3D hydrodynamical
simulations by Lissauer et al. (2009). The starvation mass is determined
by solving for the mass at which Mstarve/Ṁ = τdisk. The dashed lines
again indicate the semi-major axes where turbulence prevents a gas giant
core from forming via pebble accretion. . . . . . . . . . . . . . . . . . . 191

4.1 A plot of the growth timescale of a planet at a = 0.5 AU undergoing
pebble accretion as a function of planet mass and small body radius. The
disk parameters used are described in Section 4.3.1. The two panels show
the growth timescale for two different levels of turbulence in the disk. In
the lefthand side of both panels, the red hatched region indicates where
growth cannot occur because pebbles flow around the core (see Section
4.2). The white regions indicate where particles do not dissipate their
kinetic energy relative to the core, and therefore cannot be accreted by
pebble accretion. Pebbles in this region could still be accreted by other
processes however (e.g. gravitational focusing). . . . . . . . . . . . . . . 201

4.2 The mass of a protoplanet undergoing pebble accretion as a function of
time, for three different values of initial mass. All particles are assumed
to have Stokes number of 10−2. The disk parameters used are given
in Section 4.3.1. In all cases the protoplanet’s solid mass runs away
to extremely large masses on timescales shorter than the lifetime of the
protoplanetary disk (∼ 3 Myr). . . . . . . . . . . . . . . . . . . . . . . . 203

4.3 A cartoon illustrating schematically how flow isolation operates. The
planet’s (black dot) atmosphere is shown by the gray shaded region, and
extends up to RB. The gas flows around the atmosphere, as shown by
the dashed blue lines. The larger, green particle, has maximal impact
parameter for accretion Rstab > RB, and thus can be captured at scales of
Rstab before encountering the modified gas flow. The smaller red particle
has Rstab < RB, and is diverted by the atmosphere’s modification to the
flow instead of being captured. . . . . . . . . . . . . . . . . . . . . . . . 208
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4.4 The atmospheric mass of a planet accreting at the maximal pebble ac-
cretion rate as a function of semi-major axis, using mixing length theory
to calculate the temperature gradient. While the atmospheric mass is
slightly reduced from the fully convective value, the decrease is relatively
modest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

4.5 A plot of the maximal mass a planet accreting pebbles can reach as a
function of semi-major axis, accretion rate, and maximum Stokes number
present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

4.6 A plot of the maximal Stokes number pebbles can reach as a function
of semi-major axis and particle fragmentation velocity. The maximal
particle size at a given semi-major axis is given by Equation (4.59). . . . 234

4.7 A plot of the maximal mass a planet accreting pebbles can reach as a
function of semi-major axis and particle fragmentation velocity. The
maximal particle size at a given semi-major axis is given by Equation
(4.59). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

5.1 The particle size dependence of pebble and flow isolation differs. Pebble
isolation (left) cuts off accretion of large particles more easily; in the
presence of a distribution of particle sizes, small particles can contribute
substantially to growth even when the largest particles have been cut
off. In contrast, flow isolation (right) blocks small particles first, halting
growth once the largest particles are blocked. The range of particle sizes
that can be accreted for each mechanism (top, green region), and the
resulting growth timescales (bottom, solid black lines) are shown for a
core located at r = 0.278 au. The disk has α = 10−3, and the maximum
particle size at the planet’s semi-major axis is Stmax = 10−1 (dashdot blue
line). In the upper panels, the particle sizes that can accrete are bounded
by Stpeb (left) and Stflow (right) (solid black lines). The mass at which

the gas is excited to super-Keplerian velocities is M †peb,iso (vertical gray
dashed line), and is calculated using the formula of Bitsch et al. (2018).
The planet’s final mass, Mpeb, determined by the point at which tgrow =
tdisk = 3 Myr (dashed red line), is indicated by the dashed black vertical
line. For flow isolation, the planet’s final mass is well approximated as the
mass at which particles of size Stmax are blocked. For pebble isolation this
is not the case, and calculation of the core’s integrated growth timescale
is required to determine the planet’s final mass. . . . . . . . . . . . . . . 250
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5.2 Comparison between the analytic expressions of Bitsch et al. (2018) for

the pebble isolation mass (M †peb,iso and Mpeb,iso) and numerically calcu-
lated final masses (Mpeb) determined by solving for the mass such that
tgrow = tdisk = 3 Myr. Each panel displays these masses as a function of
semi-major axis for a distinct value of the α parameter. Blue, orange, and
green refer to Stmax = 10−2, 10−1, and 100 respectively. The solid gray
line shows the value of M †peb,iso (Equation 5.14), i.e. the mass needed to
excite the gas to super-Keplerian velocities, the dashdot lines show the
value of Mpeb,iso(Stmax) (Equation 5.15), i.e. the mass necessary to block
particles of size Stmax, and the symbols show the value of Mpeb(Stmax)
for a pebble size distribution given by Equation (5.8). . . . . . . . . . . 257

5.3 The value of the flow isolation mass (dashed lines, Equation 5.22 with
f = 1.75) as a function of semi-major axis, level of turbulence, and
maximum particle size. Colors refer to the same values of Stmax as in
Figure 5.2. The final planet masses from pebble isolation alone (see
Figure 5.2) are shown for reference. . . . . . . . . . . . . . . . . . . . . . 260

5.4 Halting planetary growth by a combination of pebble and flow isolation.
Repeated style choices are the same as in Figure 5.1. The core is lo-
cated at r = 0.278 au, and the disk has α = 10−3, again as in Figure
5.1. Upper Panel : The range of particle sizes available for accretion as
a function of planet mass. The hatched regions correspond to flow isola-
tion (negatively sloped hatching) and pebble isolation (positively sloped
hatching). The two patterns are overlayed when flow and pebble isola-
tion act simultaneously. Lower Panel: Growth timescale of a core for the
range of particle sizes depicted in the upper panel. Two different max-
imum particle sizes are considered: Stmax = 10−2 (upper solid line and
dotted magenta line) and Stmax = 10−1 (lower solid line and dashdot
blue line). For Stmax = 10−2, flow isolation blocks all available parti-
cle sizes before pebble isolation kicks in, causing growth to rapidly slow
as Stflow → 10−2, i.e. as the planet approaches the mass necessary to
block particles of size St = 10−2. The planet’s final mass is extremely
well approximated by Equation (5.22), i.e. the situation is essentially the
same as if flow isolation acted alone. For Stmax = 10−1, pebble isolation
begins blocking particles of size Stmax before flow isolation can. Because
the allowed range of particle sizes is also being blocked from the bottom
by flow isolation, growth rapidly slows once this occurs, with the planet
ending its growth very close to M †peb,iso. . . . . . . . . . . . . . . . . . . 261
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5.5 Final planet masses when pebble and flow isolation act in tandem, de-
termined by numerically calculating the mass for which tgrow = tdisk =
3 Myr. Blue, orange, and green refer to Stmax = 10−2, 10−1, and 100

respectively. The solid gray line shows the value of M †peb,iso (Equation
5.14), i.e. the mass needed to excite the gas to super-Keplerian veloci-
ties, the dashed lines show the value of Mflow(Stmax) (Equation 5.22 with
f = 1.75), and the symbols show the value of Mfinal(Stmax), the numer-
ically calculated final planet mass when pebble and flow isolation both
operate, for a pebble size distribution given by Equation (5.8). . . . . . 262

6.1 Sketch of the disc surface density and accretion flow in the vicinity of a
planet. The planet is located at orbital radius rp, inside a gap having
surface density Σp. At r > rp, the disc surface density is Σ+ and mass
accretes inward at rate Ṁ+. Downstream of the planet, at r < rp, the
corresponding surface density and accretion rate are Σ− and Ṁ−, respec-
tively. The difference Ṁ+ − Ṁ− is the accretion rate onto the planet
Ṁp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

6.2 How the surface density profile of a viscous disc responds to a planet
that both consumes disc gas, and repels gas away by Lindblad torques.
Surface densities are calculated from our 1D numerical simulation of a
planet of fixed mass, either Mp = 0.3MJ (top panel) or Mp = 10MJ

(bottom panel), at t = 3tν,p when the disc near the planet at rp = 10 au
has viscously relaxed. When computing the planetary accretion rate Ṁp,
the gap is modeled as a single cell whose “true” surface density equals
the grid-level Σ lowered by a factor of (1 +B/ν) ' B/ν; plotted here are
the true sub-grid values Σp. Accordingly, the planet’s gap is not spatially
resolved and its width should not be taken literally from this figure. Red
double-tipped arrows have lengths equal to their associated variables in
dex, and demonstrate good agreement between numerics and analytics.
The planet of mass Mp = 0.3MJ, accreting at the Bondi rate, creates
an asymmetric gap, with the inner disc surface density Σ− lower than
the outer Σ+ by ABondi/(3πB) > 1; conditions are always consumption-
dominated for Bondi accretion and B as given by (6.27). The planet of
mass Mp = 10MJ, accreting at the Hill rate, creates a symmetric gap
where Σ−/Σ+ ∼ 1; conditions here are repulsion-dominated as Mp >
Mrepulsion,visc (equation 6.31). . . . . . . . . . . . . . . . . . . . . . . . . 286

6.3 Same as Figure 6.2 for the case Mp = 0.3MJ, but for different choices
of B scaled to ABondi. As long as ABondi/(3π) > B, the planet’s gap
is consumption-dominated and its surface density Σp is independent of
the repulsion coefficient B. The depression of the inner disc relative to
the outer disc is, however, sensitive to B for B > ν; Σ−/Σ+ ' (1 +
B/ν)/[ABondi/(3πν)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
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6.4 Snapshots of the surface density profile Σ(r) and disc accretion rate
Ṁdisc(r) = −2πΣurr (> 0 for accretion toward the star) for a planet
embedded at rp = 10 au in a viscous α = 10−3 disc. The planet mass is
allowed to freely grow starting from Mp(0) = 0.1MJ. At t = 0.3tν,p, the
planet resides in a consumption-dominated, asymmetric gap (top panel,
dashed curve) and accretes from regions both exterior and interior to its
orbit which have not yet viscously relaxed (bottom panel, dashed curve).
At the later time t = 3tν,p, the planet has grown sufficiently (see also
Figure 6.5) that its gap is now repulsion-dominated and more symmetric
(top panel, solid curve); the planet now accretes only from the outer disc,
reducing the flow of mass into the inner disc by less than a factor of 2
(bottom panel, solid curve. At this time we have multiplied Ṁdisc by a
factor of 5 for easier viewing). . . . . . . . . . . . . . . . . . . . . . . . . 294

6.5 Accretion history of a planet of initial mass Mp(0) = 0.1MJ embedded
at rp = 10 au (where h = 0.054) in a viscous disc of initial mass Mdisc =
15.5MJ. Transitions from Bondi accretion to Hill accretion (Mthermal,
equations 6.25–6.26 and 6.28), and from consumption to repulsion-dominated
gaps (Mrepulsion,visc, equation 6.31), are indicated. An analytic estimate
of the final planet mass is plotted as Mfinal,visc (equation 6.39), com-
puted assuming repulsion-dominated conditions (at rp = 10 au for this
disc mass, conditions are actually intermediate between the repulsion
and consumption limits, and so plotting equation 6.42 which assumes
consumption-dominated conditions would give a similar result as equa-
tion 6.39; see also Figure 6.9). . . . . . . . . . . . . . . . . . . . . . . . . 295

6.6 How the surface density profile of an inviscid disc responds to a planet
that consumes disc gas and repels gas away by Lindblad torques. The
planet, located at rp = 10 au, freely accretes starting from a seed mass
of 0.1MJ; the Σ profile shown here is taken at a time t = tadv = 3 Myr,
when the planet has grown to ∼0.3MJ (see also Figure 6.8). As is the
case throughout this paper, the planet’s gap is not spatially resolved,
but is modeled as a single cell. The “true” surface density inside this
cell equals the grid-level Σ lowered by a factor of B̃inv, whose magnitude
is given by the red double-tipped arrow. The gap is repulsion and not
consumption dominated (B̃inv > A/(2πr|c|), equation 6.52); as such, the
gap is symmetric in the sense that the surface density contrast with the
outer disc is practically the same as with the inner disc. This figure is
the inviscid counterpart to Figure 6.2 which was made for a viscous disc. 305
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6.7 Snapshots of the surface density profile Σ(r) and disc accretion rate
Ṁdisc(r) = −2πΣurr (> 0 for accretion toward the star) for a planet
embedded in an inviscid, wind-driven disc. The planet mass is allowed
to freely grow starting from Mp(0) = 0.1MJ; the masses corresponding
to the plotted times are 0.27MJ (t = 0.1 tadv = 0.3 Myr) and 0.34MJ

(t = 3 tadv = 9 Myr; see also Figure 6.8). At t = 3 tadv, the disc has
relaxed into a quasi-steady state in the presence of the planetary mass
sink, and Ṁdisc(r) looks essentially the same as it would without the
planet; the accretion rate onto the planet is negligible compared to the
disc accretion rate—the gap is repulsion-dominated—and so the disc is
not materially affected. Even at t = 0.1 tadv, the interior surface density
Σ− and Ṁdisc depress by only ∼15% because of consumption. . . . . . . 306

6.8 Mass evolution of a planet embedded at rp = 10 au in an inviscid
but still accreting disc of initial mass Mdisc = 15.5MJ. Within ∼1
disc advection time tadv, the planet, whose gap is repulsion-dominated
(B̃inv > ABondi/(2πrp|c|)), grows to a mass of ∼0.35MJ. The final planet
mass varies by only ∼10% when the initial seed mass Mp(0) varies by a
factor of 10. This figure is the inviscid counterpart to Figure 6.5 which
was made for a viscous disc. . . . . . . . . . . . . . . . . . . . . . . . . . 307

6.9 Final planet masses grown from viscous discs having α = 10−3 and vary-
ing total mass (top vs. bottom panels). Planet masses are initialized
at 0.1MJ and grown using the 1D numerical code of section 6.3, which
utilizes the repulsive gap contrast of Kanagawa et al. (2015; see also
Duffell & MacFadyen 2013 and Fung et al. 2014) and gas accretion that
switches from Bondi to Hill at the thermal mass. Points are plotted at
t = 50 t1 = 85 Myr, where t1 = r2

1/[3ν(r1)] is the viscous diffusion time
at r1 = 30 au. Analytic curves are given by equation (6.38) for the repul-
sion limit (dashed blue), and equations (6.42)–(6.43) for the consumption
limit (dotted orange), also evaluated at t = 50t1. At most orbital dis-
tances, planet mass growth is limited by repulsion-dominated gaps; only
at the largest distances, where the disc aspect ratio is large, are gaps rel-
atively harder to open and conditions remain consumption-limited. The
analytics, which are derived assuming the planet mass is small compared
to the disc mass, are a better guide for the more massive disc in the
bottom panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
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6.10 Final planet masses in an inviscid, wind-driven disc of varying mass (top
vs. bottom panels). Planet masses are initialized at 0.01MJ and grown us-
ing the 1D numerical code of section 6.4.4, which uses the time-dependent
gap contrast of Ginzburg & Chiang (2019a) to model repulsion, in a
purely advective disc whose height-averaged radial accretion velocity is
c = −4 cm/s and exponential drain-out time is tadv = 3 Myr. Points are
plotted after 5tadv = 15 Myr. They mostly respect equation (6.56), which
gives final planet masses grown in repulsion-limited and deep (B̃inv > 1)
gaps (dashed curve not including the drop-off at the largest distances).
At rp ∼ 100 au, the disc has such low density that the planet’s initial
growth timescale Mp/Ṁp is comparable to tadv; here there are not many
doublings before the disc drains away. In this regime the planet does not
open a substantial gap (B̃inv < 1) and its final mass can be estimated
analytically by integrating Ṁp = ABondiΣ with Σ given by the no-planet
solution (6.46); the dashed curve is the minimum of the resulting expres-
sion (not shown) and (6.56). . . . . . . . . . . . . . . . . . . . . . . . . 314

7.1 The four data sets for the radial velocity of HD 200964, along with the
theoretical radial velocity curve obtained using the parameters given in
Table 7.5. The data sets are: Lick (pink points), Keck11 (green points),
Keck (red points), and APF (blue points). Note that, as discussed in
Section 7.4.1, each data set has a constant offset that we fit separately.
Furthermore, the jitter term given in Table 7.5 is added in quadrature to
the quoted error bars to obtain the error bars shown in the figure. The
residuals between the theoretical velocity and the data are shown in the
bottom panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

7.2 A generalized Lomb-Scargle periodogram for the RV data of HD 200964.
Note the two strong peaks at ∼600 and ∼900 days, demonstrating that
the system likely features two closely-packed planets. The full width at
half maximum of each peak is indicated by the gray rectangle. . . . . . 333

7.3 A comparison of the radial velocity determined by numerically integrat-
ing the motions of the planets and by advancing the planets forward on
Keplerian orbits. The orbital parameters used are our best-fit long-term
stable solution, as discussed in Section 7.4.3. The top panel shows the
stellar radial velocity determined by the two methods, while the bottom
shows the difference in the two curves. There is substantial disagreement
between the integrated and Keplerian radial velocities due to the strong
planet-planet interactions present. . . . . . . . . . . . . . . . . . . . . . 334
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7.4 2D histograms of the posterior distributions for the planets’ periods, using
N -body integration to calculate the radial velocity but without long-term
stability (black points, see Section 7.4.1) and advancing the planets on
Keplerian orbits (red points). Lines denoting exact ratios of Pc/Pb are
shown for ratios of 3:2 (blue), 7:5 (gray) and 4:3 (orange). . . . . . . . . 340

7.5 2D histograms of the posterior distributions for the planets’ periods, using
N -body integration to calculate the radial velocity but without long-term
stability. The black points show the posterior produced by using the full
dataset, while the red points show the posterior obtained by analyzing
only the JPH11 data. Lines denoting exact ratios of Pc/Pb are shown for
ratios of 3:2 (blue), 7:5 (gray), 4:3 (orange), and 5:4 (green). . . . . . . . 341

7.6 Distance between planet b (black line) and planet c (blue line), and the
host star for our best-fit solution without long-term stability (see Section
7.4.1). The planets experience large, non-periodic fluctuations in dis-
tance from the star due to their strong mutual perturbations. The short
timescale of these fluctuations relative to the age of the host star makes
it unlikely, if the proposed best fit solution were correct, that the system
would be observed in the original orbital configuration. Furthermore,
these fluctuations are a strong indication that the system will become
unstable on timescales much less than the age of the system. This is
indeed the case—planet c is eventually scattered to a distance > 100 AU
on 105 year timescales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

7.7 Comparison of the theoretical radial velocity curves for our best-fit, long-
term stable solutions with different period ratios. Top Panel : Our overall
maximum likelihood solution, which has Pc/Pb ∼ 7/5. Middle Panel : An
example solution which shows clear libration of the 4:3 resonant angle.
Bottom Panel : Our maximum likelihood solution that also shows libra-
tion of the 3:2 resonant angle. . . . . . . . . . . . . . . . . . . . . . . . . 352

7.8 2D histograms of the posterior distributions for the planets’ periods with-
out long-term stability (black points, see Section 7.4.1) and the three
modes identified for fits conditioned on stability for 106 Pc (pink, purple,
and red points, see Section 7.4.3). Note that the plotted values refer to
the periods at JD 2453213.895. Lines denoting exact ratios of Pc/Pb are
shown for ratios of 3:2 (blue), 7:5 (gray) and 4:3 (orange). . . . . . . . . 353
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7.9 Posterior probability distributions shown in Figure 7.8, with the points
hexagonally binned and averaged. The points are colored by logP (D|θ).
The plotted values refer to the periods at JD 2453213.895. Note that the
probability has not been properly marginalized over the other parameters,
and is only meant to give a rough idea of the relative probability between
the peaks (see text). Lines denoting exact ratios of Pc/Pb are shown for
ratios of 3:2 (blue), 7:5 (gray) and 4:3 (orange). . . . . . . . . . . . . . . 355

7.10 Osculating period values averaged over 500Pc for 1000 draws from the
three modes of the posterior distribution identified by our MCMC search.
Each mode lies close to a different fixed value of Pc/Pb. Colors are the
same as those in Figure 7.9. Lines denoting exact ratios of Pc/Pb are
shown for ratios of 3:2 (blue), 7:5 (gray) and 4:3 (orange). See Section
7.4.4 for a discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

7.11 2D histogram of results from a Monte Carlo simulation of stable planetary
systems. Orbital parameters for the two planets are randomly drawn, and
systems that pass the stability criteria described in the text are recorded.
The non-stable posterior distribution of the planetary periods is shown
in red, and the three long-term stable modes are shown in pink. . . . . . 359

7.12 Value of the inner and outer 3:2 resonant angles for our best-fit 3:2 solu-
tion. Both angles clearly librate. . . . . . . . . . . . . . . . . . . . . . . 361

7.13 Value of the inner and outer 7:5 resonant angles for our best-fit solution,
which are defined in Equation (7.3). The angles do appear to show li-
bration, but the large masses of both planets involved in the resonance
complicate the libration pattern, as discussed in the text and demon-
strated in Figure 7.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

7.14 Evolution of φinner for the 7:5 MMR as the masses of the planets involved
in the resonance are increased. For low mass planets, libration of φinner is
easily discerned (middle left panel). As the mass of the perturbing planet
is increased, kicks on a synodic timescale distort the libration pattern
(bottom left panel; blue dashed lines denote conjunctions between the
planets). If both planets have comparable mass, the center of the libration
begins to circulate on the secular timescale (upper right panel). Finally,
for large, comparably massive planets, both these effects serve to “wash
out” the libration of φinner (lower right panel). . . . . . . . . . . . . . . 364

7.15 Value of the outer 4:3 resonant angle for two orbital configurations drawn
from our posterior distribution. In the upper panel, we plot φouter for a
case where the period ratio of the planets is close to 4:3, and φouter appears
to librate. In the lower panel we plot the 4:3 outer resonant angle for our
maximum solution; the angle appears to circulate in this case. . . . . . . 366
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7.16 2D histograms of the posterior distributions for our planetary parameters
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Abstract

Modeling the Early, Intermediate, and Late Stages of Planet Formation

by

Mickey M. Rosenthal

With the rapid increase in our ability to observe exoplanets and exoplanetary

systems over the past two decades, the amount of data available to planet formation

theorists has grown considerably. This in turn has spurred development in our under-

standing of the physics of planet formation. In this dissertation, I discuss the work

I have done to understand the physical processes that shape the architectures of the

planetary systems we observe. This work can broadly be broken down into studies

that cover three distinct epochs of planet formation, which I roughly term the “early,”

“middle,” and “late” stages.

Chapters 2 - 5 discuss a new paradigm for the early stages of planetary growth

generally referred to as “pebble accretion.” In Chapter 2, I discuss in detail an analytic

model I developed to calculate how planets grow through pebble accretion, with a

focus on how this process varies as a function of planetary mass, particle size, and the

level of turbulence in the protoplanetary disk. I demonstrate that over a wide range

of parameter space turbulence can greatly reduce the efficiency of pebble accretion.

In Chapter 3 I apply these considerations to the growth of gas giant planets at wide

orbital separations. I derive an inverse relationship between the level of turbulence in a

protoplanetary disk and the semi-major axis at which the core of giant planet can form.

In Chapter 4 I discuss how our modeling of pebble accretion naturally predicts an upper

xxvi



mass limit that planets can reach, which I term the “flow isolation mass.” I discuss

the characteristics of this mass scale, and discuss predictions for the architectures of

planetary systems that reach the flow isolation mass in the context of new observations.

Finally, in Chapter 5 I contrast growth limited by flow isolation to another limiting mass

scale known as the “pebble isolation mass.” I demonstrate that because of the top-down

manner in which pebble isolation inhibits particle accretion, analytic estimates of the

pebble isolation mass can be off by factors as large as ∼ 5, and analytic estimation of the

planet’s final mass is considerably more difficult. I also show that if pebble accretion is

simultaneously inhibited by pebble and flow isolation, growth generally stops at observed

super-Earth mass scales over a wide range of disk parameters, and final planet masses

can once again be estimated analytically in a straightforward manner.

Chapter 6 discusses the intermediate stage of planet formation, where the

cores of giant planets have reached sufficient size to undergo runaway gas accretion. I

discuss the two-way feedback process between the growing planet and the protoplanetary

disk it feeds from. I derive analytic expressions for the planet’s perturbation to the

surface density, which I broadly classify into the “consumption” and “repulsion” regimes.

These analytic expressions are vetted against 1D numerical simulations, both for viscous

disks that accrete due to local kinematic viscosity, and inviscid disks which accrete via

magnetized winds.

Chapter 7 is concerned with the late stages of planet formation, where giant

planets interact under their mutual gravity. I develop a method to fit radial velocity

signals of planets where the mutual gravitational interaction is strong and the system

xxvii



must be tested for long-term stability, and apply this method to the planetary system

around the star HD 200964. I demonstrate that the increased time baseline from addi-

tional observations moves the best-fit period ratio from 4:3 closer to 7:5, with the 3:2

also providing plausible fits that exhibit long-term stability. I discuss these different

period ratios in the context of different formation pathways.
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Chapter 1

Introduction

Planet formation theory has the distinction of being perhaps the only scientific

theory that, for a good deal of its life, grew out of analysis of a single data point, namely

our solar system. There is obviously a sense in which this statement is simplistic, as

there is a large and diverse set of data to be gained from analysis of the solar system.

Indeed, Lissauer (1993) begins his review of planet formation theory, written before the

discovery of the first exoplanet, by listing a huge number of observations that theories

of planet formation must explain. Furthermore this data is far more precise than what

can currently be obtained from exoplanetary systems, and will be for the foreseeable

future. However, for astrophysicists who wish to compare theoretical predictions for the

architectures of planetary systems with observations, the solar system was the only point

of comparison for a great deal of the growth of planet formation theory. Nonetheless,

prior to the discovery of exoplanetary systems, a great deal of work had been done in

understanding the physics of planet formation. Much of this work is still relevant today,
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and is used in our analysis of exoplanetary systems. In this introduction, I will briefly

discuss some basic idea in the theory of planet formation, all of which were developed

before the rapid discovery of exoplanets began in the 2000s. This discussion will be

supplemented by order of magnitude derivations of some of the relevant physics.

1.1 The Protoplanetary Disk

The first proposals that planetary systems form from disks which are the left-

over products of star formation are generally attributed to Kant (1755) and Laplace

(1796). While over the centuries this theory went in and out of favor, formation from

a protoplanetary disk is the currently favored paradigm for planet formation, partially

because modern day observational techniques allow us to not only verify that young

stars host disks of gas and dust, but to perform detailed observations of these disks as

well (see Andrews 2020 for a review).

Early observations suggested that lifetime of these protoplanetary disks were

short, . 3×107 years (Walter et al. 1988); this result is held up by modern observations,

which suggest protoplanetary disk lifetimes of order . 10 Myr (Mamajek 2009, Andrews

2020). If protoplanetary disks act as viscous accretion disks, then the evolution timescale

of the disk is roughly t ∼ r2/ν, where r is the semi-major axis and ν is the kinematic

viscosity. For these lifetimes to be produced by disk evolution, we would therefore

require viscosities of order

ν ∼ r2

t
∼ (1 au)2

1 Myr
∼ 1013 cm2s−1 (1.1)
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Figure 1.1: Cartoon sketch of the force on a gas parcel in a protoplanetary disk.
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These viscosities are far too large to be produced by molecular viscosity νmol, and it

thus common to parameterize the gas viscosity using the Shakura-Sunyaev α parameter

(Shakura & Sunyaev 1973)

ν = αcsH (1.2)

where cs =
√
kT/µ is the local isothermal sound speed, k is Boltzmann’s constant, µ is

the mean molecular weight of the gas, and H is the scale height of the gas. An estimate

of cs and H would allow us to estimate α.

Due to the low overall temperatures in protoplanetary disks, the disk is thin

(H/r � 1), which allows a simple estimation of gas scale height as follows: writing

down pressure balance for a gas parcel yields (see Figure 1.1)

GM∗
`2

cos θ =
1

ρ

dP

dz
(1.3)

where P is the local pressure and ρ is the local density. Assuming the disk is thin so

that ` ≈ r, and using an order of magnitude derivative, we have

GM∗
r2

z

r
=

1

ρ

P

z
(1.4)

Replacing P/ρ with the isothermal sound speed, cs =
√
kT/µ =

√
P/ρ, and using the
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fact that GM∗/r
3 = Ω2, we have

z =
cs
Ω

(1.5)

that is, the height of the disk is roughly H = cs/Ω. We can get a better sense of the

vertical density structure by solving the differential equation in (1.3)

GM∗
r2

z

r
= −1

ρ

dP

dz
(1.6)

c2
s

dρ

ρ
= −Ω2zdz (1.7)

ln

(
ρ

ρ0

)
= − z2

2c2
s/Ω

2
(1.8)

or

ρ(z) = ρ0e
− z2

2H2 (1.9)

so H = cs/Ω is the e-folding length of the vertical density profile.

The disk temperature profile is generally set by either viscous accretion or

passive irradiation (Chiang & Goldreich 1997). The profile from viscous heating can be

obtained by first noting that the rate of energy dissipation from shear per unit area is

Jin ∼ Σν (Rate of shear)2 = Σν

(
r
∂Ω

∂r

)2

∼ ΣνΩ2 (1.10)
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The rate that the disk can radiate out this energy is roughly

Jout ∼ σSBT
4 (1.11)

where σSB is the Stefan-Boltzmann constant. Equating these quantities, and using the

usual expression Ṁ ∼ Σν for a steady state accretion disk yields

T ∝ Ṁr−3/4 (1.12)

For passive irradiation, the disk receives a stellar flux of L∗/(4πr
2) over some area A.

Because the disk flares, the flux is absorbed at an angle ϕ ∼ H/r. Equating the heating

and cooling rates gives

L∗
4πr2

A
H

r
∼ σSBAT

4 (1.13)

T 7/2 ∝ 1

Ωr3
(1.14)

so

T ∝ r−3/7 (1.15)

Note that the profile from viscous heating falls off much more sharply with semi-major

axis than the profile from passive irradiation. Thus, the inner regions of protoplanetary

disks are likely dominated by viscous heating, with the outer regions dominated by

passive irradiation.
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Early analyses of the structure of the protoplanetary disk from which the

solar system formed suggest that the inner regions of disks contain far less mass than

the outer regions, which is an important component for predicting the architectures

of general planetary systems. Weidenschilling (1977b) and Hayashi (1981) discuss the

idea of a “minimum-mass solar nebula” (MMSN), which, as the name implies, is a

minimum mass estimate for the solar nebula. This estimate is obtained by enhancing

the composition of each planet to solar, and taking the resulting mass and spreading it

over non-overlapping annuli spanning the orbit of each planet. The resulting disk has

a mass of 1− 2× 10−2M�, and a surface density profile that scales as Σ ∝ r−3/2. This

r−3/2 scaling implies that the mass of the disk is an increasing function of semi-major

axis, as

Mdisk ∼
∫

2πrΣ(r)dr ∝ r1/2 (1.16)

Another estimate of the structure of the proto-solar disk can be obtained by modeling

the disk as a viscous accretion disk. Neglecting the self-gravity of the disk, the governing

equation for the time evolution of the disk is given by

∂Σ

∂t
=

3

r

∂

∂r

[
r1/2 ∂

∂r

(
r1/2νΣ

)]
(1.17)

If the viscosity can be written as a simple power law in r, independent of t, i.e. ν ∝ rγ

7



this admits a similarity solution

Σ(r, t) =
Mdisk,0(2− γ)

2πr2
1

(r1

r

)γ
(1 + t/ts)

−5/2−γ
2−γ exp

[
−(r/r1)2−γ

1 + t/ts

]
(1.18)

where r1 is a characteristic disk radius, Mdisk,0 is the initial disk mass and ts =

[3(2− γ)]−1 r2
1/ν(r1) is the viscous timescale at r1 (Lynden-Bell & Pringle 1974). If

we use the Shakura-Sunyaev α parameterization of the viscosity, ν = αH2Ω, where H

is the gas scale height and Ω is the local Keplerian orbital frequency, then for usual pro-

toplanetary disk conditions ν scales approximately as r1 (e.g. for a passively irradiated

disk ν ∝ T/Ω ∝ r−3/7r3/2 ∝ r15/14). This in turn implies that the surface density scales

as approximately Σ ∝ r−1 and the mass profile scales as M ∝ r1, again implying that

most of the mass is the in outer regions of the disk.

1.2 Early Solid Growth

The early stages of solid growth, up to . km sized objects, dubbed “planetes-

imals,” was not given as much attention in early studies of planet formation theory as

the later stages. It was generally thought that particles grew collisionally from µm sized

grains inherited from the ISM up to planetesimal sizes. There are serious problems with

this scenario however. A chief issue is the radial drift of solids due to the sub-Keplerian

rotation of the gaseous component of the disk (Weidenschilling 1977a, Nakagawa et al.

1986). This issue is straightforward to demonstrate using order of magnitude calcula-

tions: due to the pressure gradient in the disk, the net force on gas parcel on a circular
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orbit is

GM∗
r2

=
1

ρ

dP

dr
+
v2

gas

r
(1.19)

where P is the local pressure, ρ is the local gas density and M∗ is the mass of the central

star. Approximating dP/dρ ∼ P/ρ and solving for vgas gives

vgas ∼
√
v2
k − c2

s (1.20)

= vk

√
1−

(
H

r

)2

(1.21)

≈ vk
(

1− H2

2r2

)
(1.22)

where we’ve performed a binomial expansion assuming H/r � 1. This is generally

written as

vgas = vk (1− η) (1.23)

where η ≡ H2/
(
2r2
)

= c2
s/
(
2v2
k

)
.

Becuase of the gas’ sub-Keplerian velocity, particles will experience a head-

wind, which will cause them to drift inwards. For this derivation, we assume that

particles are well coupled to the gas, in the sense that their azimuthal velocity relative

to Keplerian is ∼ ηvk. We write the drag force on the small body as Fd/m = vrel/ts,

where ts is the “stopping time” of the small body, defined as ts ≡ mvrel/FD and vrel

is the relative velocity between the small body and the gas. Note that we can always
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write the gas drag force in this manner, but for drag laws which are linear in vrel, ts is

a function only of the disk and particle properties, making this form much more conve-

nient. Assuming this is the case for our small body, we can write down force balance in

the radial direction and simplify. Noting that for radial drift vrel = Ṙ, where R is the

radial distance from the star, we have:

GM∗
R2

= −Ṙ
ts

+
v2
φ

R
(1.24)

GM∗
R2

= −Ṙ
ts

+
v2
k

R
(1− η)2 (1.25)

Ṙ

ts
=
v2
k

R
(1− η)2 − v2

k

R
(1.26)

Ṙ

ts
≈ −2

ηv2
k

R
(1.27)

where in going from the penultimate line to the last we’ve performed a binomial expan-

sion on η. Solving for Ṙ gives:

Ṙ = −2ηvkτs (1.28)

where τs ≡ tsΩ.

Noting that η ∼ 10−2 − 10−3 we therefore predict that solids with τs ∼ 1 wil

inspiral into the star on timescales of ∼ 103Ω−1, which is much shorter than the lifetime

of the disk. This is clearly an issue if we wish to collisionally grow particles, as it implies

that particles must rapidly grow past τs = 1 in order to save themselves from being lost

in the central star.

Because of this and other issues with collisonal growth, a competing theory is
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direct collapse of particles to sizes large enough to prevent this inspiral. One mecha-

nism for this collapse was proposed by Goldreich & Ward (1973), who proposed that

particles settling to the disk midplane could reach high enough densities to trigger grav-

itational collapse. While it was later pointed out that fluid instabilities such as the

Kelvin-Helmholtz instability would prevent this mechanism from reaching large enough

densities to trigger gravitational collapse, the idea of directly collapsing solids to plan-

etesimal sizes continues to be well studied today, with the streaming instability (Youdin

& Goodman 2005) being a particularly promising mechanism to produce planetesimals.

1.3 Growth from Planetesimals

A good deal of early planet formation research focused on the formation of

planets via accretion of planetesimal sized objects (e.g. Safronov 1972, Petit & Henon

1986, Dones & Tremaine 1993, see Goldreich et al. 2004 for a review). For objects

of this size, gravitational interactions become extremely important. The approximate

gravitational sphere of influence between bodies can be estimated as follows (see Figure

1.2):

Imagine a small body entering from ∞ with velocity v∞ towards a large body

of mass Mp. What is the impact parameter b needed so that the small body will just

graze the surface of the large body? From conservation of angular momentum, we have

bv∞ = Rpvsurf (1.29)

where Rp is the radius of the large body and vsurf is the velocity of the small body when
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Figure 1.2: Problem setup for estimation of the gravitational focusing radius.
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it grazes the surface. Using conservation of energy, we have

1

2
v2
∞ =

1

2
v2

surf −
GMp

Rp
(1.30)

vsurf = v∞

√
1 +

v2
esc

v2
∞

(1.31)

where we’ve used the fact that 2GMp/Rp is the escape velocity from the large body.

Thus, the impact parameter b for grazing the large body is

b = Rp

√
1 +

v2
esc

v2
∞

(1.32)

This is minimal impact parameter needed to “gravitationally focus” small bod-

ies into a collision with a larger one. If the velocity dispersion (v∞) of the small bodies is

comparable to the escape velocity from the large body, the large body can only accrete

small bodies that are within its geometric cross section. As the velocity dispersion of

the small bodies decreases the cross section for accretion can be much larger than the

physical radius of the large body.

Because the largest bodies grow the fastest, if we begin with distribution of

planetesimal sizes the largest ones will quickly run away, dominating their local region.

These large bodies are referred to as “oligarchs”, with different oligarchs dominating

their respective feeding zones. We can get a sense of how large these feeding zones are

by calculating these protoplanets’ gravitational sphere of influence, also known as the

“Hill radius.” This radius is determined by equating the stellar tidal gravity with the
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planet’s gravity:

GM∗
a2

RH
a

=
GMp

R2
H

(1.33)

RH = a

(
Mp

M∗

)1/3

(1.34)

A more careful derivation would give a factor of 31/3 in the denominator.

Planetesimals that undergo close encounters with an oligarch have their ran-

dom velocity excited to ∼ RHΩ ≡ vH (Petit & Henon 1986), which is known as the

“Hill velocity.” This velocity provides a lower bound for the velocity dispersion of the

planetesimals, and therefore provides an upper bound for the protoplanet’s growth rate.

If we assume that planetesimals’ vertical velocity is roughly vH as well, leading to scale

height of Hp ∼ vH/Ω = RH, then the protoplanet’s growth rate is roughly

Ṁp ∼ ρσv∞ ∼
Σp

RH
R2

p

(
1 +

v2
esc

v2
H

)
vH (1.35)

where ρ is the mass density of planetesimals, σ is the accretion cross section, and Σp

is the surface density of planetesimals. Noting that v2
esc/v

2
H ∼ rM

1/3
p /(RpM

1/3
∗ ) ∼

(r/R∗)(ρP/ρ∗)� 1, where ρP and ρ∗ are the densities of the protoplanet and the star,

we have

Ṁp ∼ ΣpRpRHΩ (1.36)

Note that because RHΩ ∝ r−1/2, and Σp very likely decreases as we move outwards in
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the disk, growth rates are faster closer to the star, and slow down as we move to larger

semi-major axes.

Eventually the oligarchs will consume all of the material in their local feeding

zone, ending their growth at the “isolation mass.” Assuming that each embryo can feed

on scales ∼ RH, the isolation mass is roughly

Miso ∼ Σpr∆r ∼ Σpr
2

(
Miso

M∗

)1/3

(1.37)

or

Miso ∼
(
Σpr

2
)3/2

M
1/2
∗

(1.38)

Note that unless the scaling on Σp is steeper than r−2, the isolation mass will increase

as we move outwards in the disk.

The spacing between isolation mass embryos is not expected to be large enough

that the isolation mass embryos are dynamically isolated. These embryos will eventually

excite each other onto crossing orbits, where they will eventually collide and merge. This

phase of growth is known as the “giant impact” phase, and proceeds on timescales much

longer than the lifetime of the gaseous component of the protoplanetary disk (∼ 108

years, e.g. Lissauer 1993).
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1.4 Growth of Gas Giants

In the early stages of the protoplanetary disk, while the gaseous component is

still present, solid protoplanets that reach sufficient mass will be able to gravitationally

bind local gas and accrete an atmosphere. The distance interior to which the planet

can gravitationally bind gas, i.e. the extent of the planet’s atmosphere, can be roughly

estimated by equating the escape velocity from the planet with the local isothermal

sound speed

cs ∼
√
GMp

R2
B

⇒ RB =
GMp

c2
s

(1.39)

which defines the planets’ “Bondi radius.” The planet will be able to accrete an atmo-

sphere if RB & Rp.

As the planet grows the mass of its atmosphere will increase. As early as

the 1970s, it was recognized that if the atmosphere reaches sufficient mass, then a

hydrostatic solution is no longer possible, and the atmosphere will collapse onto the

planet, triggering rapid accretion (Cameron 1973, Perri & Cameron 1974). Early esti-

mates of the critical core mass required to trigger this runaway accretion were around

Mcrit ∼ 10−15M⊕ (Mizuno 1980,Pollack et al. 1996), though the value of Mcrit remains

an open question (see e.g. Piso et al. 2015, Lee & Chiang 2015).

This mechanism for forming gas giant planets is known as the “core accretion”

scenario. Note that the idea that a gas giant can form only if a sufficient mass in

solids is accumulated, combined with the short lifetime of the gas disk and the long
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timescales for embryos to grow past isolation mass, is in qualitative agreement with

the architecture of the solar system: in the inner solar system, isolation masses are low

(Equation 1.38), but growth rates are fast (Equation 1.36). Planets therefore rapidly

become stuck at their isolation mass, resulting in lower mass rocky planets with little

mass in gas. In the outer solar system, isolation masses are large but growth is slow.

Thus we end up with the ice giants – massive embryos that grew too slowly to reach

Mcrit within the lifetime of the gas disk but still accreted some mass in gas from the

nebula. It is only at intermediate semi-major axes that growth rates are fast enough

and isolation masses large enough that isolation mass embroys can reach Mcrit while

the gas disk is still present and trigger runaway gas accretion.

An alternative to core accretion, where giant planets directly collapse from the

gas disk due to gravitational instability, has been proposed as well, and continues to be

studied today (see Kratter & Lodato 2016 for a review).

1.5 Ending Runaway Accretion

What halts the stage of runaway gas accretion once it starts? The possibility

of giants planets opening gaps in disks has long been considered a possible way to cut

off runaway accretion (Goldreich & Tremaine 1980, Lin & Papaloizou 1993). With more

modern studies showing that protoplanetary disks may be quite massive (e.g. Tripathi

et al. 2017, Powell et al. 2017), and observations showing annular gaps in protoplanetary

disks (Zhang et al. 2018), research into the details of the gap opening process continue

to be important.
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At its core, the process of gap opening stems from the torque imparted to

the protoplanetary disk. The magnitude of this torque can be estimated to order of

magnitude as follows: consider a planet embedded in a gas disk, with semi-major axis

r. A gas parcel comes by and encounters planet, so that its velocity is deflected by an

angle β, as shown in the figure.

r
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Figure 1.3: Setup for the calculation of the torque from a gas giant on the surrounding
disk.

We want to calculate the angle β, and then use this angle to calculate the

torque exerted on the parcel. We use an impulse approximation to calculate the angle,
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that is

∆p = F∆t (1.40)

m∆v =
GMpm

x2

x

Ωx
(1.41)

∆v =
GMp

x2Ω
(1.42)

where we’ve used the Keplerian shear v0 = Ωx to calculate the parcels velocity relative

to the planet, and Ω is, as usual, the local orbital frequency. Assuming that this

perturbation to velocity is small, we have

tanβ ∼ β ∼ ∆v

Ωx
=
GMp

x3Ω2
(1.43)

so

β ∼ Mp

M∗

r3

x3
(1.44)

where we’ve used Kepler’s 3rd law, GM∗ = Ω2r3. The change in the particle’s ŷ velocity

is therefore

∆vy = v − v cosβ ≈ vβ2 (1.45)

where we’ve used the second order Taylor expansion of cosine, cosβ = 1−β2/2+O(β4),

and dropped the factor of 1/2.
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The change in angular momentum from the encounter is therefore

∆J = mr∆vy ∼ mrΩxβ2 (1.46)

This is the torque on a single parcel. If we want the total torque on the disk, which will

also be the torque on the planet, we need to include the encounter rate of the planet

with the gas parcels.

T = ∆J ×
(

Encounters

Time

)
= ∆J

(
Σ

m

)
x (Ωx) (1.47)

Thus

T = mrΩx

(
Mp

M∗

)2 r6

x6

(
Σ

m

)
Ωx2 (1.48)

Rearranging this equation

T = q2
( r
x

)3
ΣΩ2r4 (1.49)

where q ≡Mp/M∗. To complete this calculation, we’d need to integrate over all values

of x. The way this is often done is to note that the torque is larger at smaller x, and that

the smallest location where the torques from different orbital phases add coherently is

on the scale of the disk scale height H. The torque is then

T =
q2

h3
ΣΩ2r4 (1.50)
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where h ≡ H/r.

Calculation of the surface density local to the planet, i.e. the surface density

available for accretion, is complex, and generally must be done with hydrodynamical

simulations. However, it turns out, as demonstrated by Fung et al. (2014), that a good

approximation for the local surface density can be found by equating the planetary

torque, evaluated inside the gap, with the viscous torque evaluated outside the gap,

Tν ∼ Σ0νΩr2. That is

q2

h3
ΣgapΩ2r4 ∼ Σ0νΩr2 (1.51)

Using an α disk model, i.e. ν = αh2r2Ω, gives

Σgap

Σ0
∼ αh5

q2
(1.52)

which agrees well with simulations for sub-thermal planets, i.e. Mp < 3h3M∗.

Modern research into gap opening focuses on the exact mechanisms by which

gaps are opened (e.g. Goodman & Rafikov 2001, Ginzburg & Sari 2018), the depths

of gaps opened by planets (e.g. Tanigawa & Tanaka 2016) and final planet masses of

planets.

1.6 Outline of Dissertation

In this dissertation, I will discuss work I have done investigating how planets

form, which builds off the ideas presented in this introduction. In Chapters 2 - 5 I
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discuss modeling of a theory for forming rocky planets known as “pebble accretion.”

These pebble sized objects interact strongly with the nebular gas, allowing them to

be captured on far shorter timescales than the timescales for planetesimals discussed

above. In Chapter 6 I discuss how an accreting planet affects the structure of the gas

disk from which it accretes, and how this two-way feedback process can be used to

determine the final mass that gas giant planets are able to reach. Finally, in Chapter

7 I discuss work I have done modeling the radial velocity signals of gas giant planets

in mean-motion resonances. Giant planets in such resonances provide evidence of the

dynamical interactions these bodies underwent after they finished growing, in the late

stages of the planet formation process.
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Chapter 2

Gas Assisted Growth of Planets

in a Turbulent Medium

2.1 Introduction

In the core accretion model of gas giant formation, the growth of a gas giant

is constrained by two main factors: the growth timescale of the planet relative to the

lifetime of the gas disk, and the amount of solid material available for a growing planet

to accrete. Because early stages of formation were not well understood, many classic

models of planet formation focus on later stages of growth, beginning with solid “plan-

etesimals” of size & km. In these models, growth is too slow to produce gas giants at

wide orbital separations. In contrast, close to the host star there is insufficient material

locally available to produce a solid core massive enough to grow a gas giant. While

these processes can produce architectures similar to the solar system, they are not suf-
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ficient to explain the diverse system architectures that are observed around other stars.

In particular, recent theoretical work has pointed to the possibility that accretion of

“pebble” sized bodies may be important in both determining the growth timescale of

cores and providing a reservoir of solid material through radial drift (Ormel & Klahr

2010, Perets & Murray-Clay 2011, Ormel & Kobayashi 2012, Lambrechts & Johansen

2012, Lambrechts et al. 2014, Levison et al. 2015a, Morbidelli et al. 2015, Visser &

Ormel 2016, Ida et al. 2016, Xu et al. 2017). In this paper we will introduce an order of

magnitude model of protoplanetary growth by pebble accretion, focusing on the regime

in which the core is sufficiently massive that the gravity of the core is non-negligible.

In what follows we will use the term “protoplanet” to refer to cores in this regime. We

will focus on incorporating the effects of local disk turbulence into the various length

and velocity scales that set the growth timescale.

Before proceeding, we briefly define a number of standard terms that will be

used throughout this work. Within the context of a bottom up formation model, the

growth of gas giant planets proceeds by “core accretion” – a gas giant core grows until

it reaches a large enough mass, Mcrit, that its atmospheric mass is comparable to its

core mass. At this point the core rapidly accretes gas from the nebula, culminating in

a gas giant (see e.g. Pollack et al. 1996). In this work we will not address the physics

that set Mcrit (see e.g. Rafikov 2006, Piso et al. 2015), and will instead consider growth

timescales as a function of core mass. In the absence of some dissipative mechanism, the

largest enhancement to the collision cross section comes from “gravitational focusing” by

the large cores. Gravitational focusing refers to the effect where large bodies can accrete
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material with impact parameters far outside their physical radius through the influence

of gravity. This effect is significant for particles with velocity dispersions smaller than

the large body escape velocity. In what follows we will refer to models of core accretion

where gravitational focusing is the largest enhancement to the accretion cross section

as “canonical core accretion” or “planetesimal accretion.”

Two particular challenges to planetesimal accretion stem from the existence of

directly imaged planets at wide orbital separations and “Super Earths” close in to their

host stars. The star HR8799 has a system of four gas giants orbiting at a ≈ 15− 70 AU

(Marois et al. 2008, Marois et al. 2010). N -body integrations show that it is unlikely

that this system was formed by scattering (Dodson-Robinson et al. 2009), indicating

that these planets likely formed in situ. Gravitational instability may be an alternative

way to form the HR8799 planets, as reviewed by Kratter & Lodato (2016). However,

Kratter et al. (2010) argue that, if formed by gravitational instability, the wide orbital

separation gas giants should represent the low-mass tail of a distribution of stellar

companions. Thus far, observations do not clearly connect the population of wide

orbital separation gas giants to the Brown Dwarf population (Bowler 2016). There exist

a number of other wide separation gas giants, but whether they formed in situ is less well

constrained. Super Earths are difficult to explain through local isolation mass due to

their large masses and proximity to the central star. At such small orbital separations,

there is not enough material locally to grow such massive planets without causing the

protoplanetary disk to become unstable to collapse (Schlichting 2014), indicating that

radial drift of particles may be an important factor in planet formation. More massive
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particles can also move radially due to Type I migration and/or gas dynamical friction

(e.g. Grishin & Perets 2015).

These difficulties can be amended through a more detailed consideration of

the interaction between the gas present in the disk and the material accreted by the

growing cores. While the effect of gas drag on smaller (. 0.1− 1 km) planetesimals can

be substantial (Rafikov 2004), even more striking is the effect of drag on smaller, mm—

cm sized particles. For these bodies gas drag can enhance accretion rates by dissipating

the relative kinetic energy between the small bodies and growing cores during their

interaction. Due to the sizes of bodies for which this is possible, this processes is

commonly referred to as “pebble accretion.” We will alternatively refer to this process

as “gas-assisted growth,” to highlight the idea that enhancements to growth come from

the constructive effect of collisions between the small bodies being accreted and the

gas particles, and to avoid confusion with the geological use of the term “pebble.” We

also note that “pebbles” need not necessarily be particles of small sizes, but could also

include “fluffy” aggregates of low density that have similar aerodynamic properties to

rocky mm–cm sized particles. Because the term “pebble accretion” is well established,

we use these two terms interchangeably.

Models of gas-assisted growth in the context of planet formation find that gas

drag acting on pebble sized particles can lead to substantially higher growth rates than

models that rely on growth by planetesimal accretion. For a wide range of disk pa-

rameters, massive (M & 10−3M⊕) cores can accrete pebble sized particles at impact

parameters comparable to the core’s Hill radius (Ormel & Klahr 2010; Lambrechts &
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Johansen 2012). If particles of these sizes are present, cores accreting at these rates can

easily grow a gas giant at wide orbital separation, as opposed to cores undergoing plan-

etesimal accretion. The presence of these smaller pebbles is supported by observations

of protoplanetary disks. Matching observations of the spectral energy distribution of

disks requires a dust size distribution where most of the mass is in ∼ 1 mm sized par-

ticles (D’Alessio et al. 2001), while sub-mm images of disks find solid surface densities

in this size range which are comparable to the minimum mass solar nebula (Andrews

et al. 2009, Andrews 2015).

While these rapid growth timescales can solve some of the issues present in

growing wide orbital separation gas giants, they present issues of their own. Chief

among these is that pebble accretion is, in some respects, too efficient. Because the

growth rate at large masses is so fast, the last doubling timescale to Mcrit is extremely

short in pebble accretion. Thus gas-assisted growth seems to predict that growth of

gas giants should be a ubiquitous phenomenon. Direct imaging surveys, however, place

severe constraints on the existence of gas giants at wide orbital separation (e.g. Brandt

et al. 2014, Chauvin et al. 2015, Bowler 2016, Galicher et al. 2016). Pebble accretion

must therefore be inhibited in some manner from what current models naively predict.

One commonly neglected effect in models of the pebble accretion is the effect

of turbulent gas velocities on planetary accretion efficiency. Turbulence can increase the

velocity of the gaseous component of the disk. This in turn has a number of ramifications

for gas-assisted growth: pebble velocities are now higher as well, accretion cross sections

can shrink substantially, and the scale height of particles can increase. These effects
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can greatly decrease the efficiency of accretion.

The effects of turbulence on pebble accretion have been discussed in a number

of different regimes. The majority of works including turbulence discuss the growth of

lower mass planetesimals – in these models the growing body is assumed to be of low

enough mass that its gravity is negligible, i.e. these models discuss the effect of turbu-

lence for accretion where the cross section is comparable to the body’s geometric cross

section (e.g. Homann et al. 2016). Previous models of pebble accretion for higher mass

protoplanets generally neglect the effects of turbulence, or include it only by modifying

the scale height of small bodies. A few works do modify the particle velocities or im-

pact parameters due to the influence of turbulence. Ormel & Kobayashi (2012) examine

growth over a large range of large body sizes, and include a turbulent component to the

velocity through “turbulent stirring” on the random velocities of small bodies (Ormel

& Kobayashi 2012). Guillot et al. (2014) include the effect of turbulence on the radial

motion of small bodies. Chambers (2014) employ a methodology more similar to our

own, using asymptotic expressions from Ormel & Cuzzi (2007) for the relative velocity

between the small bodies and gas due to turbulence, and extending the Ormel & Klahr

(2010) expressions for impact parameter and accreted particle sizes to include this tur-

bulent component. In this formulation however, the impact parameter, as well as the

sizes of small bodies that can be accreted, are functions solely of the relative velocity

between the small body and the core at infinity. Our approach, which separately cal-

culates the parameters relevant to growth, as well as the velocity preceding and during

the encounter between the small body and the core, can be more naturally extended
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to include turbulence, and captures facets of the problem not covered by the Chambers

results. Furthermore, the focus of our study is distinct from those described above:

these papers are concerned with holistically studying growth of planets at a few points

in parameter space by including a wide variety of processes and modeling the problem

numerically. Our methodology instead focuses on studying the effects of turbulence over

a broad parameter space, and understanding the conditions under which turbulence is

important to pebble accretion.

With these considerations in mind, in this paper we present an order of mag-

nitude model of pebble accretion. We approach the problem in a different manner than

past theories have, allowing separate changes to the different parameters that set the

growth timescale, as opposed to grouping growth timescales into a few regimes. This

allows us to more fully take into account the effects of turbulence than previous studies,

including the effects of turbulence on not just the particle scale height, but also the

velocity dispersion of the small bodies as well as the impact parameters for accretion.

This model can be applied over a wide range of parameter space to give results accurate

to order of magnitude, and can accurately describe the trends present in gas-assisted

growth. We use this model to discuss the overarching features of pebble accretion,

as well as to investigate how turbulence modifies these features. We also discuss how

pebble accretion operates in different regions of parameter space, particularly at wide

orbital separations and low core masses. In these regimes growth at intermediate masses

may dominate the timescales for gas giant growth, which we will discuss in more detail

in Chapter 3.
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In Section 2.2 we give an overview of how growth operates in the presence of

nebular gas, and discuss broadly how we calculate the growth timescale in our model.

In Section 2.3 we discuss our choices for modeling the velocities that enter into our

calculation. Section 2.4 details how the length scales relevant to the accretion cross

section are calculated. In Section 2.5, we give an overview of the output from our

model, in particular discussing the broad features of pebble accretion as well as the

effects of turbulence. We also give a detailed comparison between our modeling and

other works on pebble accretion. Readers that are not concerned with the details of our

model can find a summary of our algorithm in Appendix A.1, and may skip directly to

Section 2.5 for our results. In Section 2.6 we discuss how gas-assisted growth operates

when various parameters are adjusted. In Section 2.7 we note how the relatively simple

assumptions on which our model is based lead naturally to a “Flow Isolation Mass,”

past which accretion of pebbles ceases. Finally in Section 3.6 we summarize our results

and discuss future extensions of our model.

2.2 Model Overview

2.2.1 Accretion in the Presence of Gas

We begin by discussing generally how we model growth of planets in the pres-

ence of nebular gas. The details of how specific quantities are calculated are deferred

to subsequent sections.

Our calculation proceeds in an order of magnitude manner – i.e. the approx-

imations made and the neglected effects mean that quoted values should be correct to
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within an order of magnitude. In what follows, we consider two types of bodies. The

large bodies, or protoplanetary cores, are assumed to be massive enough that they are

unaffected by gas drag and thus move at the local Keplerian orbital velocity. This con-

strains our cores to have radii & 10 km, in which case their velocity will deviate from

Keplerian by at most 10−3 of the gas velocity, with a weak dependence on stellocentric

distance for fiducial disk parameters. In practice we rarely consider cores of such small

size. We note also that while these cores are insensitive to aerodynamical gas drag,

large bodies with masses in the range 1021 g < M < 1025 g can still be affected by

gas dynamical friction (Grishin & Perets 2016). We do not include these effects here.

The second type of particles considered are “small” bodies, which can be substantially

affected by gas drag. The growth timescale in pebble accretion is strongly dependent

on the size of small body under consideration, unlike canonical core accretion where

the size of the planetesimals enters only through its effect on the small body velocity

dispersion. Thus, all calculations are performed as a function of small body radius, rs.

Quantities of interest can later be averaged over size by assuming a size distribution

for the small bodies. Note that quoted values of the growth timescale tgrow implicitly

assume that all of the surface density is contained in particles of the given value of rs.

For a size distribution where most of the mass is in the largest sizes of particles present

(e.g. a Dohnyani size distribution, Dohnanyi 1969), this value of tgrow is approximately

equal to the growth timescale for a distribution of small body sizes where the maximum

size present is the given value of rs. In this paper we will not perform integrations over

small body size explicitly; see our Chapter 3 for examples of this process as well as a
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discussion of the effects of altering the size distribution.

In gas-assisted growth, the interaction between the small body and the nebular

gas modifies the accretion process substantially. As the small body approaches the

core, gas drag will dissipate the kinetic energy of the small body relative to the large

body. This loss of energy can cause small bodies on non-collisional trajectories to

become bound to the core and eventually be accreted. This process is similar to the L2s

mechanism identified by Goldreich et al. (2002) for formation of Kuiper Belt binaries,

with gas drag as the source of dissipation in the place of dynamical friction. Gas drag

can also stop small bodies from accreting – if particles couple strongly to the gas as

they flow around the core then they will be unable to accrete.

Which of these processes occur depends on the relative size of two different

length scales: the stability radius, Rstab and the Bondi radius, Rb. The stability radius

is the smallest radius at which stable orbits by the small body about the large body are

possible: outside of Rstab interactions between the small body and either the nebular

gas or the central star will shear the small body away from the large body’s gravity.

Inside of Rstab the small body can safely inspiral onto the core. The details of how

Rstab is calculated are discussed in Section 2.4.1. The Bondi radius, on the other hand,

is approximately the radius at which the escape velocity from the core is equal to the

speed of sound in the gas:

Rb =
GM

c2
s

, (2.1)

where M is the mass of the core and cs =
√
kT/µ is the isothermal sound speed of the

gas. Here k is Boltzmann’s constant and µ is the mean molecular weight of the nebular

32



gas. We consider the Bondi radius because it roughly tells us the length scale interior

to which the the core can have a stable atmosphere, which has substantial effects on

the flow pattern. For the lowest mass cores we consider, the Bondi radius may be less

than the physical radius of the core, R. This occurs roughly at a core mass of:

Ma ≡
c3
s

G

(
3

4πGρp

)1/2

(2.2)

≈ 2× 10−4M⊕

( a

30 AU

)−9/14
(

ρp
2 g cm−3

)−1/2

,

where ρp is the density of the protoplanet (e.g. Rafikov 2006), and for the expression in

the second line we’ve used our fiducial disk parameters (see Section 2.5.1). If Rb < R,

then the effects discussed below are unchanged, with R taking the place of Rb. In what

follows, we will discuss accretion for Rb < RH , where RH is the core’s Hill radius (see

Section 2.4.1). We discuss accretion in the regime Rb > RH in Section 2.7.

Given these considerations, we center our model around two main ideas about

accretion in the presence of gas, which are summarized in Figure 2.1:

1. If the radius for stable orbits exceeds the Bondi radius, i.e. Rstab > Rb, then

the flow pattern of gas is not substantially altered in the region where particles

can stably orbit the core. In this case any small bodies that deplete their kinetic

energy relative to the core within Rstab will inspiral onto the core and be accreted.

On the other hand any particles that are unable to dissipate their kinetic energy

in this regime will pass out of Rstab and will not be accreted.

2. If instead the Bondi radius exceeds the stable orbit radius, i.e. Rb > Rstab, then
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particles which are able to deplete their kinetic energy relative to the core will

not accrete. This is due to the fact that in this regime, well coupled particles will

tend to flow around the core’s atmosphere, which extends up to Rb. If instead

particles are unable to dissipate their kinetic energy, so that they penetrate into

the atmospheric radius, the increase in density as the particle enters the growing

planet’s atmosphere is taken to be so substantial that the particle will now be able

to dissipate its kinetic energy and will accrete onto the core.

The first point is supported not only by order of magnitude considerations, but

also by detailed numerical simulations of growth of protoplanets in the presence of gas

(e.g. Ormel & Klahr 2010, Lambrechts & Johansen 2012). Analytic calculations also

show that even for small bodies several orders of magnitude larger than the sizes we will

be concerned with, small bodies inspiral on times shorter than the disk lifetime. Thus

we are justified in neglecting this part of the accretion process (Perets & Murray-Clay

2011). We also neglect the possibility that the core’s envelope is periodically replenished

by the protoplanetary disk; see Ormel et al. (2015) for a discussion of this possibility,

and Alibert (2017) for an application of this replenishment to pebble accretion.

Our second point invokes the classical solution of flow around an obstacle: for

Rb < RH the flow of the nebular gas is subsonic, meaning the core’s atmosphere is

approximately incompressible. See Ormel (2013) Figure 5A for an example of this flow

pattern in the context of a planet embedded in a protoplanetary disk. We note here

that more detailed simulations of the flow show structure that may produce circulation

into Rb (Ormel 2013, Fung et al. 2015), which we assume we can neglect for the level of
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accuracy we desire in this model. In addition, we do not explicitly calculate the work

done on particles interior to Rb – our assumption that particles with KE > W will

always be accreted for Rstab < Rb will eventually be violated for large enough particle

sizes. See Inaba & Ikoma (2003) for an in depth discussion of accretion in this regime.

While the criteria above are used throughout parameter space, in order to

better illustrate how we model gas-assisted growth we also provide a simplified “sketch”

of how accretion in our model operates, which accurately describes pebble accretion

over a large amount of parameter space. 1 Figure 2.2 shows a “cartoon” of gas-assisted

growth for a fixed core mass and semi-major axis in the disk, with small body radius

increasing from left to right. Each panel shows the core’s Bondi radius, Rb as well as

the two radii that are used to determine Rstab – the Hill radius RH (see Section 2.4.1),

which is the distance past which the stellar gravity will pull particles off the core, and the

radius R′WS (see Section 2.4.1) beyond which gas drag pulls particles off the core. Since

smaller particles have a higher surface area to volume ratio and therefore experience

larger gas drag accelerations, R′WS is smaller for smaller particles. In the far left panel,

the particles are low mass, meaning gas drag can easily pull them off of the core, and

R′WS lies inside the core’s atmosphere. Because these particles have low mass they easily

dissipate their kinetic energy during the encounter with the core, meaning they are in

1The main assumption in this description is that particles that have Rb > Rstab will always
have KE < W . To see this, note that Rstab < Rb implies that FD(vcg) > GMm/R2

b , where
vcg = max(vgas, vshear) is the relative velocity of the gas and the core at the Bondi radius (see
Section 2.3 and Equation 2.39). This can be rewritten as m/Rb < Fd(vcg)/c

2
s. Taking the ratio

KE/W = mv2
∞/(4Fd(venc)Rb) (see Equations 3.17 and 3.18) and inserting this inequality implies that

KE/W <
(
v2
∞/c

2
s

)
Fd(vcg)/Fd(venc) < 1. For the case Rb < R, cs → v∞ in the last inequality, which

still implies KE/W < 1 as long as the escape velocity from the planet’s surface is larger than the veloc-
ity of the gas flow at the planet’s surface, which is typically satisfied for planetary radii R & 10 − 100
km.
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the regime in the lower righthand panel of Figure 2.1 and do not accrete. As particle size

grows, R′WS increases as well, until it exceeds Rb, the scale of the core’s atmosphere,

i.e. there now exists a region exterior to the core’s atmosphere where particles can

stably orbit the core. Because these particles are still of relatively low mass they are

able dissipate their kinetic energy through gas drag. We therefore fall into the upper

lefthand panel of Figure 2.1, which signals the onset of pebble accretion (middle panel

of Figure 2.2). Finally, as particle size continues to increase we eventually reach a point

where the particles are so massive that they no longer dissipate their kinetic energy.

As particle size increases, R′WS will continue to increase, meaning we clearly still have

Rstab > Rb. These particles are therefore in the upper righthand panel of Figure 2.14

and will not accrete (righthand panel of Figure 2.2).

Given this formalism, for the purposes of discussing whether a given small

body will accrete, we simply need to compare the magnitude of the kinetic energy of

the particle relative to the core and the work done on the particle during its encounter

with the core. The kinetic energy of the particle relative to the core before the encounter

is

KE =
1

2
mv2
∞ , (2.3)

while we take the work done by gas drag to be simply

W = 2RaccFD(venc) , (2.4)
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where Racc = max(Rstab, Rb), and FD(venc) is the drag force on a small body moving

at a velocity venc, which is the relative velocity between the small body and the large

body during the encounter. Calculation of venc and discussion why Racc is used for

determining the work done by gas drag are located in section 2.3.6.

Our consideration of the ranges of particle sizes that can be accreted is an

important aspect to our modeling that is often not present in other works. See section

2.5.5 for a detailed discussion.

Given the uncertainties in the size distribution of small bodies present in proto-

planetary disks, understanding the extent of particle radii for which gas-assisted growth

is possible is an important facet to studying the role of pebble accretion in planet for-

mation. Furthermore, an important effect of nebular turbulence is to change the range

of small body sizes that can be accreted (see Section 2.6.1), which makes a detailed con-

sideration of the small body sizes where pebble accretion can operation an important

facet of our model.

In summary, a particle will be able to accrete if one of the following criteria

are met:

1. Rstab > Rb and 2FD(venc)Racc >
1
2mv

2
∞

2. Rstab < Rb and 2FD(venc)Racc <
1
2mv

2
∞

Small bodies which do not satisfy either of these criteria will not be able

to accrete, that is we set tgrow = ∞ for these particles. We emphasize that setting

tgrow = ∞ refers only to the timescale for growth by pebble accretion: it is possible

these particles could still be accreted via less efficient processes, such as capture by
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gravitational focusing unassisted by gas drag or by collisions unaffected by gravity (see

Equation A.42). In particular, having tgrow = ∞ does not imply that growth literally

halts. See Section 2.5.5 for further discussion. While in principle our model could be

extended to include these effects, in this work we are concerned primarily with gas-

assisted growth, and therefore we do not explicitly include these other timescales.

2.2.2 Growth Timescale for Protoplanets

We now discuss in more detail how the growth timescales for cores are com-

puted. In order to calculate the growth timescale for the large bodies for a given core

mass M , we use the usual expression (see e.g. Goldreich et al. 2004, hereafter GLS)

tgrow ≡
(

1

M

dM

dt

)−1

. (2.5)

The rate that small bodies encounter the core is given by nσaccv∞, where n is the

volumetric number density of small bodies of a given size, σacc is the cross section for

accretion of the small body by the large body, and v∞ is the velocity at which small

bodies encounter the large body. Note that v∞ is not necessarily the velocity of the

small body during its encounter with the core, since this encounter can change the

relative velocity; v∞ is the relative velocity between the two bodies at large separations.

The number density of solids is simply n = ρs/m = fsΣ/(2mHp) where ρs is the mass

density of the small bodies, Σ is the surface density of the gaseous component of the

disk, fs is the solid to gas mass ratio, m is the mass of the small body, and Hp is the

scale height of solids in the disk. Since each accretion of a small body increases the
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mass of the large body by m, the growth timescale is given by

tgrow =
MHp

2fsΣv∞RaccHacc
, (2.6)

where we’ve decomposed σacc into the product of lengthscales in the plane of the disk

and perpendicular to it: σacc = (2Racc)(2Hacc). Thus, the aim of our calculation is

to determine the quantities Racc, Hacc, Hp, and v∞. Once these quantities are known

we can immediately determine the growth timescale. The role each of these quantities

plays in the growth timescale is illustrated graphically in Figure 2.3.

In the next few sections we will discuss in detail how each of the above quan-

tities are calculated in the context of pebble accretion. Our algorithm is summarized in

Appendix A.1.
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KE > WKE < W

Rstab > Rb

Rstab < Rb

Rstab

Rb

Rstab > Rb

Rstab < Rb

Figure 2.1: A graphical illustration the energy regimes used to determine whether small
bodies are able to accrete. Upper Left Panel : Here Rstab > Rb, so particles can inspiral
onto the core in a region where the gas flow is not substantially altered by the core’s
gravity. Particles that deplete their kinetic energy relative to the core via gas drag will
inspiral onto the core and be captured. Upper Right Panel : If the particle is unable to
deplete its kinetic energy during the interaction then it will simply have its trajectory
deflected before exiting Rstab, and will not accrete. Lower Left Panel : Here Rb > Rstab,
so the gas flow is altered substantially when the small body is accreting. The gas
will tend to flow around the atmospheric radius, so particles that have KE < W ,
i.e. particles that deplete their kinetic energy, will couple to the gas and flow around
the core without accreting. Lower Right Panel : Larger particles which do not deplete
their kinetic energy and instead penetrate into the atmospheric radius will experience a
rapid increase in gas density as they enter the atmosphere of the nascent planet. This
increased density may rapidly deplete the kinetic energy of the small body, which will
then inspiral and accrete, similar to what occurs in the upper left panel.
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Larger Particles

Rb

RH

R0
WS

Figure 2.2: A cartoon illustration of the typical manner in which pebble accretion
operates as the small body size is increased. The black circle represents the planet,
while the blue circles depict incoming particles. The extent of the planet’s atmosphere is
denoted by the grey shaded region, and the yellow shaded region shows the region where
incoming particles can be accreted. Left Panel : For small particles, R′WS = Rstab < Rb,
so the core’s gravitational sphere of influences lies inside its atmosphere. In this regime
particles couple to the local gas flow and flow around the core without being accreted.
Middle Panel : For intermediate sizes of particles, R′WS > Rb, meaning particles can
be bound to the core in a region outside the core’s atmosphere. For these intermediate
sizes of particles the work done by gas drag exceeds the incoming kinetic energy of
these small bodies, meaning that particles that pass interior to Rstab will be accreted.
Particles with impact parameters > Rstab will be sheared off the core by gas drag. Right
Panel : Finally, large particles will be so massive that their incoming kinetic energy is
too large to be depleted by gas drag. These particles will not be accreted via pebble
accretion, regardless of impact parameter. For the case shown here R′WS has grown so
much that Rstab = RH , but this is not always the case for particles with KE > W .
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Small Body

M
Racc

HaccHp

n =
fs⌃

Hpmp v1

Figure 2.3: A graphical illustration of the quantities used to determine the growth
timescale for the planetary core.
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2.3 Velocity of the Small Bodies through the Disk

As small bodies move through the disk their velocities are affected by drag

from the nebular gas as well as gravitational interactions with both the central star and

the core. In order to calculate tgrow we need to understand what sets v∞, the velocity of

a small body relative to the big body, and venc, the velocity of the small body during its

encounter with the core. Calculating these velocities requires us to treat not only the

gas drag force on the small bodies, but also to understand how drag from the laminar

and turbulent components of the gas velocity each contribute to the velocity of the small

bodies. Furthermore the gas velocity influences the size of both Racc and Hacc, in ways

that can have substantial impact on tgrow.

We begin by reviewing our choices for modeling gas drag regimes and introduce

the stopping time to parameterize the coupling between the small bodies and the gas

(Section 2.3.1). The gas is taken have both a bulk, laminar component that is indepen-

dent of time, and a fluctuating, turbulent component that time averages to zero. Both

of these components can have an effect on the small bodies’ velocity, and we discuss

each separately (Sections 2.3.2 and 2.3.3). These two components can be combined to

give the average velocity between the small body and the large one due to gas drag,

vpk. (Section 2.3.4). Gas drag is not the only source of relative velocity in the disk –

the shear present in the disk due to the dependence of the Keplerian orbital frequency

on semi-major axis can also affect these relative velocities (Section 2.3.5). Gas drag can

also have a strong effect on the relative velocity between the small body and the core

during their encounter, venc, as can the gravitational force from the core (Section 2.3.6).

43



These sections synthesize results from many works, which we present in detail so that

the framework and assumptions our model is based on are clearly laid out. Readers who

only wish to review our choices for modeling the velocity may consult the summary of

our calculation in Appendix A.1.

2.3.1 Gas Drag and Stopping Time

Gas drag is generally treated by breaking the drag force, FD, into a number

of different regimes. We summarize our choices below; for a more in depth discussion,

see Batchelor (2000). First, we distinguish between the “diffuse regime,” which applies

for particles with rs < 9λ/4, and the “fluid regime,” rs > 9λ/4. Here rs is the radius

of the small body and λ is the mean free path of the gas particles. In the diffuse,

non-supersonic,2 regime, the drag force on the particle is given by the Epstein drag law

FD =
4

3
πρgvthvrelr

2
s , (2.7)

where ρg = Σ/(2Hg) is the density of the gas, vth =
√

8/π cs is the thermal velocity of

the gas, and vrel is the relative velocity between the gas and the object. For a particle in

the fluid regime, we must consider an additional parameter – the Reynolds number of

the particle, given by Re = 2rsvrel/ (0.5 vthλ). For Re < 1 the particle is in the Stokes

2It is easy to see we can in general neglect the super-sonic regime (vrel > cs): since vrel . vgas ≈ ηvk
(see section 2.3.2 for a discussion of the notation), we have cs < ηvk ⇒ Hg/a > 1, where Hg ∼ cs/Ω
is the gas scale height, and Ω is the local Keplerian orbital frequency. Thus for the super-sonic case
the protoplanetary disk has an aspect ratio greater than 1, in strong opposition to observations of
protoplanetary disks.
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drag regime, and the drag force is given by

FD = 3πρgvthvrelλrs , (2.8)

where λ is the mean free path of the gas particles. For Re > 1, the particle is in the

Ram pressure regime, and

FD =
1

2
ρgπr

2
sv

2
rel . (2.9)

To mitigate discontinuities in the drag force we use a smoothed drag force law

in the fluid regime given by Cheng (2009):

FD =
1

2
CD(Re)πr2

sρgv
2
rel , (2.10)

where

CD(Re) =
24

Re
(1 + 0.27Re)0.43 + 0.47

[
1− exp

(
−0.04Re0.38

)]
. (2.11)

As Re→ 0 we have CD → 24/Re, so FD reduces to the Stokes drag law given in (2.8).

As Re→∞, CD → 0.47, in which case FD becomes the Ram drag force given in (2.9)

(with a slightly different prefactor).

We can define a timescale from the drag force, known as the “stopping time”
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of the particle

ts ≡
mvrel

FD
. (2.12)

The Epstein and Stokes drag laws are both linear in velocity – in these linear drag

regimes, it is straightforward to show from Equations (2.7) and (2.8) that for spherical

particles of uniform density ρs:

ts =





ρs
ρg

rs
vth

, Epstein

4

9

ρs
ρg

r2
s

vthλ
, Stokes

(2.13)

In these regimes the stopping time of the particle is a function only of the properties

of the particle and the gas, and in particular is independent of the particle’s velocity.

Hence ts is often used as a parameterization of the particle’s size, rs, in terms of how

well the small body is coupled to the gas flow (e.g. Chiang & Youdin 2010). If the

drag law is instead quadratic in velocity, as in Equation (2.10), we numerically solve for

the stopping time using Equations (2.18), (2.23) and (2.25). In practice we solve these

equations iteratively to calculate a self-consistent solution.

2.3.2 Laminar Velocity of Small Particles

Due to the internal pressure of the gas, the gas component of the protoplan-

etary disk will move at a sub-Keplerian orbital velocity. Weidenschilling (1977a) gives
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the difference in velocity ∆v as ∆v ≈ ηvk, where vk is local Keplerian orbital velocity,

vk = aΩ, and η is a measure of the local gas pressure support, with approximate value

η ≈ c2
s/
(
2v2
k

)
. Due to this sub-Keplerian rotation, small bodies experience a “head-

wind” from the gas, which produces a drag force on the small bodies. If we use a polar

coordinate system such that r̂ denotes the direction pointing away from the central star

and φ̂ denotes the direction of the disk’s rotation, then the drag force causes the small

bodies to move with a sub-Keplerian velocity in the φ̂ direction, and to drift in the −r̂

direction. In the above notation, the particle acquires a laminar velocity relative to the

gas given by

vr,gas = −2ηvk

[
τs

1 + τ2
s

]
, (2.14)

vφ,gas = −ηvk
[

1

1 + τ2
s

− 1

]
, (2.15)

where τs = tsΩ. See Nakagawa et al. (1986) for further details. 3

Since the laminar gas velocity relative to Keplerian is simply vgas,k = −ηvkφ̂,

3There will also be turbulent component to vr, which stems from the inward diffusion of the gas
due to the turbulent viscosity ν = αcsHg (see Section 2.3.3 for a discussion of the notation.) Guillot
et al. (2014) give this velocity as vr,turb = vν/(1 + τ2

s ), where vν ∼ αcsHg/a is the radial velocity
of the gas due to turbulence. Following Guillot et al., the turbulent component vr dominates for
τs < τs,ν = αc2s/(2ηvk) ≈ α. Lambrechts & Johansen (2014) show that, for the parameters they consider,
this velocity is negligible compared to vr,k because the diffusive lengthscale ` is always less than the global
scale of the disk a. However, their expression for ` can be rewritten as `/r ≈ α(Hg/a)2/(2τsη) ≈ α/τs,
which leads to the same conclusion as above for the size at which turbulence dominates. For our purposes
we neglect this effect, since the small particles for which vν > vr,k move at velocities comparable to the
fluctuating turbulent velocity vt, which dominates: vν/vt ∼

√
αHg/a� 1.
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the velocity of the particle relative to Keplerian is

vr,k = −2ηvk

[
τs

1 + τ2
s

]
, (2.16)

vφ,k = −ηvk
[

1

1 + τ2
s

]
. (2.17)

It is straightforward to show that the magnitude of the laminar component of the

particle’s velocity is

vpg,` = ηvkτs

√
4 + τ2

s

1 + τ2
s

, (2.18)

relative to the gas, and

vpk,` = ηvk

√
1 + 4τ2

s

1 + τ2
s

, (2.19)

relative to Keplerian.

2.3.3 Turbulent Velocity of Small Particles

In order to describe the strength of the turbulence in the disk, we use the

standard Shakura-Sunyaev α parameterization of the effective kinematic viscosity. We

employ α simply as a convenient parameterization of the strength of turbulence; for

our purposes α is fundamentally a local quantity, and is not necessarily connected with

the accretion rate onto the star. In terms of α, the effective kinematic viscosity of the

turbulent gas, νt, is given by (Shakura & Sunyaev 1973):
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νt = αcsHg , (2.20)

where Hg = cs/Ω is the scale height of the gas. If we write the viscosity as the product

of the local turbulent velocity and the largest scale turbulent eddies, νt = vt`t, and have

lt ≈ vt/Ω, then vt =
√
αcs.

We use the Kolmogorov theory of turbulence to determine the turbulent energy

spectrum. As described in Cuzzi & Hogan (2003), in the Kolmogorov theory turbulence

exists over a range of scales or “eddies,” which are characterized by their wave number

k` = 1/`. The largest scale eddies, which occur on the lengthscale lt, are the scale on

which energy is supplied by the turbulence; these large scale eddies “turn over” and

transfer their energy to smaller scale eddies, until energy is finally dissipated by kine-

matic viscosity on some smallest scale η̃. If we assume that the rate of energy transfer

between scales is independent of eddy size, we can show that the energy spectrum of

the turbulence is given by E(k) ∝ k−5/3, where E(k) has units of energy per mass

per wavenumber. The velocity associated with k is then v(k) = (2kE(k))1/2 ∝ k−1/3,

and the overturn time for an eddy of wavenumber k is tk = 1/(kv(k)) ∝ k−2/3. Thus

the larger scale eddies overturn more slowly and contain more of the turbulent kinetic

energy. The size of the smallest scale eddies can be determined by setting the rate

of energy loss from molecular viscosity equal to the eddy turnover time, which gives

η̃ =
(
ν3/ε

)1/4
, where ν ∼ vthλ is the molecular viscosity and ε the rate of energy dis-

sipation. The length η̃ is known as the “Kolmogorov microscale” of length. We can
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determine the relation between the smallest and largest scale eddies by setting the rate

that energy is supplied at the largest scales, v2
t /tL ∼ v3

t /lt equal to ε, the rate that

energy is dissipated at small scales. Plugging in our expression for ε in terms of η̃ and

ν gives η̃/lt ∼ (vtlt/ν)−3/4 = Re
−3/4
t , where we’ve defined the Reynolds number of the

turbulence, Ret ≡ νt/ν. In terms of α we have Ret = αcsHg/(vthλ).

Qualitatively, the behavior of a small body in response to an eddy of wavenum-

ber k depends on the ratio of the particle’s stopping time to the eddy turnover time tk.

Particles with ts < tk will come to equilibrium with the eddy before it turns over, and

will follow the large scale motion of the eddy. On the other hand particles with ts > tk

will not come to equilibrium with the eddy before it turns over, and will therefore only

receive a small perturbative kick from the eddy. To characterize the small body’s re-

sponse to the turbulence, most authors use the Stokes number, St ≡ ts/tL, where tL is

the overturn time of the largest eddies. We make the usual assumption that tL = Ω−1,

in which case St = τs, the parameter used in describing the particle’s interaction with

the laminar gas flow. This permits the use of one parameter, which we will hereafter

refer to as St, to characterize the particle’s interaction with both the laminar and tur-

bulent components of the nebular gas flow. See Youdin & Lithwick (2007) for a more

in depth discussion of the effect of varying tL.

Due to their interaction with the turbulent gas, small bodies will move relative

to inertial space with some non-zero root-mean-square (RMS) velocity, vpi,t. The RMS

velocity can be calculated through order of magnitude means as follows (Youdin &

Lithwick 2007): For St � 1 we have ts � tL; in this regime particles receive many
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uncorrelated “kicks” from the largest scale eddies over a single stopping time, causing

the particle to random walk in velocity. Since the particles’ velocity damps out over

a time ts, the particle receives approximately N ∼ ts/tL ∼ St kicks of amplitude

v ∼ vt tL/ts = vt/St resulting in a velocity vpi,t ∼ vt/
√
St. On the other hand, for

St � 1, we expect vpi,t ∼ vt. The simplest expression that has the correct behavior in

each of these limits is given by

vpi,t =
vt√

1 + St
. (2.21)

In order to better calculate the velocities of smaller particles, i.e. particles with

St < 1, we employ expressions from Ormel & Cuzzi (2007) (hereafter OC07), who give

closed form equations for the RMS velocity of solid particles suspended in a turbulent

medium. By following the methodology of Voelk et al. (1980), but also using results

which take into account the finite inner scale of eddies at kη = 1/η̃, 4 OC07 arrive at

an analytic expression for the RMS inertial space velocity of particles suspended in a

turbulent medium

v2
pi,t = v2

t


1− St2(1−Re−

1
2

t )

(St+ 1)(St+Re
− 1

2
t )


 . (2.22)

4The OC07 results also use a different auto-correlation function (ACF) for the gas velocity of an
eddy with turnover time tk. Markiewicz et al. (1991) encapsulate the Voelk et al. (1980) ACF in the
more general form

R(t, t′; k) =
E(k)

2πk2

(
1 +
|t− t′|
tk

)n
e−|t−t′|/tk ,

The Voelk et al. results use n = 0, but Markiewicz et al. instead use n = 1 because of the zero slope
behavior at t = t′. Fits to the results of numerical simulations by Cuzzi & Hogan (2003) further validate
the choice of n = 1 over n = 0.
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Relative to the gas, the velocity is:

v2
pg,t = v2

t


 St2(1−Re−

1
2

t )

(St+ 1)(St+Re
− 1

2
t )


 . (2.23)

Equation (2.23) was originally derived by Cuzzi & Hogan (2003) for particles

with St � 1. OC07 however, argue from the results of numerical calculations and

comparison with simulations, that Equations (2.22) and (2.23) hold to order unity for

particles of arbitrary Stokes number. We are therefore justified in applying this equation

to determine the RMS turbulent velocity of arbitrary sized accreting particles, with one

caveat. We first note that, for large Stokes numbers, we have vpi,t → vt/Re
1/4
t which

cannot be completely correct, as in the limit as St→∞ we expect for the particles to

be so massive that they are completely unaffected by turbulence, and thus vpi,t → 0.

In addition, we note that, for St � Ret, as long as we do not have St � 1, Equation

(2.22) reduces to (2.21). Thus we can use (2.21) to determine the velocity of larger St

particles; in practice we use (2.21) for St ≥ 10. This form should connect smoothly to

the more precise form given in equation (2.22) as long as Ret � 10. Using the fiducial

values given in Section 2.5.1, the Reynolds number of the turbulence is given by

Ret = 4.07× 1010α
( a

AU

)−1
. (2.24)

Thus, unless we are at extremely large orbital separations with weak turbulence, we can

model the full range of Stokes numbers in this manner with little error.
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2.3.4 Combining Velocities and Changing Frames

We have previously discussed how to calculate the laminar and turbulent com-

ponents of the particle’s velocity. However, in order to calculate the total RMS velocity

we need to understand how to combine these two components. Furthermore, calcula-

tion of drag forces requires knowledge of the velocity of the particle relative to the gas,

whereas calculation of v∞ will require the velocity of the particle relative to the local

Keplerian velocity, since this is the velocity at which small bodies approach the core.

We therefore also need to understand how to convert our velocities from one frame to

another. The methodology necessary for our calculation is summarized here; for a more

detailed derivation see Appendix A.

We let δv represent the “fluctuating” or turbulent component of the gas veloc-

ity and v̄ represent the laminar component – i.e. if we write v = v̄ + δv then 〈v〉 = v̄.

We can then show that

v2 = v̄2 +
〈
δv2
〉
, (2.25)

i.e. the turbulent and laminar components combine in quadrature.

If the subscripts p, g, and k denoted the velocity of the small bodies, the gas,

and the local Keplerian velocity respectively, then
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v̄pk = v̄pg + v̄gk . (2.26)

So the laminar component of the particle’s velocity can be changed from one frame

to another in the usual manner (i.e. the φ̂ component is altered by ηvk while the r̂

component is unchanged) independent of the turbulent velocity.

For the turbulent component of the velocity, one can show

〈
δv2
gk

〉
=
〈
δv2
pk

〉
+
〈
δv2
pg

〉
, (2.27)

which is given in a number of works (e.g. Csanady 1963, Cuzzi et al. 1993, and OC07),

and is usually derived by considering the Fourier components of the turbulent velocities

in frequency space. An alternate derivation is given in Appendix A.

Neglecting the effects from the fact that the Keplerian velocity is not truly an

inertial reference frame (see Youdin & Lithwick 2007 for a discussion of non-inertial ef-

fects), Equations (2.25), (2.26) and (2.27) fully specify how to calculate all the velocities

relevant to the problem from the input given by Equations (2.14), (2.15) and (2.22).

2.3.5 vshear

Because the Keplerian velocity of the disk varies as vk ∝ a−1/2, bodies that

are separated substantially in the radial direction will move relative to one another

in the azimuthal direction even in the absence of other effects. For our purposes we

54



approximate this “shear” velocity as

vshear = Ωr , (2.28)

where r is the separation between the two bodies in the radial direction. For small

bodies encountering growing protoplanets we have r ≈ Racc. If this velocity is larger

than the drift-dispersion velocity of small bodies, vpk, then vshear will set v∞, the velocity

at which small bodies encounter cores. That is, we set

v∞ = max(vpk, vshear) . (2.29)

We will refer to particles with v∞ = vpk as begin “drift-dispersion” dominated, and

particles with v∞ = vshear as being “shear dominated.”

2.3.6 venc and Calculating Work

It remains to determine the relevant velocity for calculating the drag force.

Note that this velocity is relative to the gas (in contrast to v∞, which is relative to the

local Keplerian velocity) and cannot be set by shear, since the gas and the particles

will have the same shear velocity.5 For particles that approach the core with velocities

5Particles that are in the regime depicted in the lower lefthand panel of Figure 2.1 may experience
the full shear velocity over an extended distance as they are turned relative to the core. Because these
particles already deplete their kinetic energy this effect does not affect our conclusions about the relative
size of KE and W .
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faster than the local circular orbit velocity about the large body, i.e. for particles with

v∞ > vorbit =
√
GM/Racc, the dominant effect of the gravitational force from the core

will be to give the particle a small “kick” in the direction perpendicular to its motion.

By using the impulse approximation, one can show that the magnitude of the resultant

perpendicular velocity is of order vkick = GM/(Raccv∞) (see e.g. Binney & Tremaine

2008). This effect is illustrated in Figure 2.4 (solid curve). As also shown in Figure 2.4,

particles that approach the core with velocities such that v∞ < vorbit will experience a

substantial change in their total velocity during their interaction with the core (dashed

curve). During the encounter, the magnitude of the particle’s velocity when the particle

is a distance r from the core is approximately |v| ≈
√
GM/r (see the lower righthand

panel of Figure 2.4). If the magnitude of the work done on the particle can be expressed

as W (r) = FD(r)r, then for a particle in a linear drag regime we have W (r) ∝ r1/2, i.e.

the majority of the work done during encounter occurs when the particle is at the largest

scales. If the particle is in a quadratic (Ram) drag regime, then FD is independent of r,

so the work done at all scales is approximately equal. In either regime we are therefore

justified in approximating the work done during the encounter as W = 2FD(venc)Racc,

where venc = vorbit(Racc) =
√
GM/Racc.

Finally, if the particle’s drift velocity relative to the gas, vpg, is larger than

the velocity from the gravitational influence of the core, then vpg will set the velocity

during the encounter.

In summary, we define the relevant velocity for the work calculation, venc to
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be

venc =





max (vorbit, vpg) , v∞ < vorbit

max (vkick, vpg) , v∞ > vorbit

(2.30)
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Figure 2.4: An illustration of the effects of the gravitational interactions between the
small body and the core on the velocity between the two bodies during their encounter,
venc. Left Panel : Both particles enter from the lower left, as indicated by the ar-
row. The upper particle (dashed curve) has v∞ < vorbit while the lower particle (solid
curve) has v∞ > vorbit. The upper, slow moving particle has the direction of its ve-
locity substantially changed during the interaction, while the lower, fast moving par-
ticle only receives a small perturbation to its velocity in the direction perpendicular
to its motion. Lower Right Panel : The slow moving particle is excited to a velocity
comparable to vorbit(r) =

√
GM/r during its interaction with the core. Upper Right

Panel : The fast moving particle receives a small perturbation to its velocity, of order
vkick = GM/(Raccv∞). As can be seen in the figure, the actual perturbation is ap-
proximately a factor of 2 larger than vkick. Including this factor of 2 does not have a
substantial effect on our results.
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2.4 Calculation of Accretion Cross Section

We now turn to how the particle velocities discussed in the previous section

are used to calculate the growth timescale of the core. We discuss how the length and

width of the accretion cross section, Racc and Hacc, are calculated, as well as how the

scale height of the small bodies, Hp, is determined.

2.4.1 Determining Racc

The capture radius, Racc, is the radius interior to which a small body will

accrete if certain energy criteria are met, as discussed in Section 2.2.1. The scale Racc

is also used to determine both the incoming kinetic energy of a small body and the

work done by gas drag during the encounter. In this work we assume that particles that

cannot dissipate their kinetic energy at Racc will not be able to accrete on a smaller

length scale. To see this, we note that, for a general impact parameter b, we have

KE

W
=

mv2
∞

4FD(venc)b
. (2.31)

If the small body’s velocity is shear dominated, so that v∞ = vshear, then it can be

shown analytically that the only particles that may have KE/W > 1 are those shearing

into RH . In this case particles with substantially smaller impact parameters will not

penetrate into RH due to the nature of three-body trajectories (see e.g. Petit & Henon
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1986). If instead v∞ = vpk, then we have

KE

W
∝ 1

FD(venc)b
∝





(vencb)
−1 , Epstein, Stokes

(
v2

encb
)−1

, Ram

(2.32)

The maximal possible scaling of venc with impact parameter is venc = vkick ∝ b−1.

Therefore, Equation (2.32) implies that KE/W is always minimized at large b when

gas drag is in the Epstein or Stokes regime, and our calculation of the energy criterion

at the largest possible accretion scale is sufficient. The only case for which gas-assisted

growth may be ruled out by the energy criterion at a large scale and yet possible at a

smaller impact parameter is in the Ram pressure drag regime. We do not include this

possibility in our calculation of the accretion rate. This cases holds over small amount

of parameter space, as it requires particles to have both rs > 9λ/4 and Re � 1. Our

modeling may rule out accretion of large particles in the inner disk (where the Ram

regime is most important) that would be able to accrete at smaller scales.

To determine Racc, we note that capture is in principle possible either within

the planet’s atmosphere, where the gas density increases substantially, or within the

radius at which a small body can stably orbit the core. Thus the capture radius is set

by the relative size of the atmospheric radius, which extends up to Rb (for Rb < RH ;

see Section 2.7 for Rb > RH), and the stability radius, Rstab:

Racc = max (Rstab, Rb) . (2.33)

The stability radius is determined by requiring the that the force on the small body is
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dominated by the gravity of the core. We consider two other forces that can disrupt

accretion, which leads to two different length scales that can set Rstab.

The Hill Radius

The first scale is set by demanding that the small body not be sheared off by

the gravity from the host star; this leads to the traditional measure of stability, the

Hill radius, where the gravitational acceleration from the core is balanced by the tidal

gravity from the star (Hill 1878). For M∗ � M , where M∗ is the mass of the central

star,

RH ≈ a
(
M

3M∗

)1/3

, (2.34)

where a is the semi-major axis of the core’s orbit.

The fact that accretion can occur for impact parameters of order RH is one

of the main enhancements to growth rate that comes from pebble accretion. In the

absence of gas, the maximal impact parameter for accretion is smaller than RH by

a factor (R/RH)1/2, where R is the radius of the planet (see Appendix A.3). Both

Lambrechts & Johansen (2012) (hereafter LJ12) and Ormel & Klahr (2010) (hereafter

OK10) and ) find regimes where Racc ∼ RH in their numerical calculations of pebble

accretion. In LJ12’s framework, accretion at RH occurs for core masses greater than

Mt =
√

1/3v3
gas/(GΩ) and particle sizes St & 1.6

6LJ12 do not explicitly detail the Stokes number range where accretion at RH occurs – because
they run their simulations only for particles of size St = 10−2, 10−1, 100, they merely note that only
particles with St = 10−2 appear to accrete at an impact parameter less than the Hill radius (see below).
Following Xu et al. (2017), we take their regime where Racc = RH to hold only for St & 1.
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In OK10’s framework, impact parameters comparable to RH occur in what

they refer to as the “three body regime”, which occurs for St > 1, and St > ζw ≡

ηvk/vH , where vH ≡ RHΩ is the Hill velocity. In this regime, OK10 give the impact

parameter as b3b/RH = 1.7p1/2 + 1.0/St, where p ≡ R/RH . This agrees generally with

our results that Racc ≈ RH in the Hill accretion regime.

The 1/St dependence given by OK10 appears to encapsulate the chaotic nature

of trajectories for particles that shear into the Hill sphere: often particles will orbit the

core many times before exiting the Hill sphere. This effect can cause particles that would

not accrete according to our energy criterion to be captured, since in our modeling we

only include particles that dissipate their energy over one orbital crossing. If we use the

result from Goldreich et al. (2002), who studied binary capture of Kuiper Belt objects

by dynamical friction, that the probability of capture, Pcap, for a particle that shears

into the Hill radius is equal to the fraction of energy it dissipates over one orbit, then

this leads to an effective accretion rate of

dM

dt
∼ RHvHΣp

W

KE
. (2.35)

For high mass cores, the gravitational force from the core dominates the velocity of

the small body during the encounter, and the encounter velocity is venc ∼ vH . This in

turn implies that W/KE ∝ 1/St. For 2D accretion (Hp < Racc), which is the regime

modeled by OK10, our expression therefore agrees with their results. For low mass cores

however, the particle-gas relative velocity will instead dominate the velocity during the

encounter, which will lead to scaling that differs from 1/St in this regime.
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In summary, particles that have Rstab = RH and v∞ = vH accrete with

timescales given by

t′grow =
tgrow

min(1,W/KE)
(2.36)

where tgrow is given by Equation (2.6). In what follows Equation (2.36) is used to modify

tgrow for particles that shear into RH .

The WISH Radius and Shearing Radius

In the presence of gas, even if the gravity from the core dominates over the

tidal gravity from the star, it is possible that the relative acceleration of the core and

the small body will be strong enough to strip the small body away from the core. In

this regime, Rstab is set not by the Hill radius, but by what Perets & Murray-Clay refer

to as the wind-shearing (WISH) radius (Perets & Murray-Clay 2011). At the WISH

radius, the differential acceleration between the large and the small body due to gas

drag is balanced by the gravitational acceleration. That is

R′WS =

√
G(M +m)

∆aWS
, (2.37)

where m is the mass of the small body, and ∆aWS is the differential acceleration between

the small and the big body, given by

∆aWS =

∣∣∣∣
FD(M)

M
− FD(m)

m

∣∣∣∣ , (2.38)
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where FD is the force exerted on the particle due to gas drag. For the mass ratios

considered here the first term in Equation (2.38) is generally negligible. To determine

the relevant velocity for calculating the drag force FD, we note that particles that are

accreted by the core will have their velocity modified by the core’s gravity, increasing

their velocity relative to the gas during the encounter. The most extreme case occurs

when the velocity of particles match the local Keplerian velocity at which the core is

moving. These particles temporarily experience the full gas velocity with respect to the

core, which is a combination of the sub-Keplerian and turbulent velocities, as well as

the Keplerian shear in the disk. We can encompass this behavior, in the limit M � m

by writing R′WS as

R′WS ≈
√

GMm

Fd(max[vgas, vshear])
(2.39)

where vgas =
√
η2v2

k + αc2
s is the RMS velocity of the nebular gas, and we use the

prime to differentiate this radius from the definition of RWS used below. The case

vgas > vshear is discussed in detail by Perets & Murray-Clay (2011). In the three drag

regimes discussed in Section 2.3.1, Perets & Murray-Clay (2011) give RWS as

RWS = (GMρs)
1/2 ×





(
1

ρgvthvgas

)1/2

r1/2
s , Epstein

(
4

9

σ

µvthvgas

)1/2

rs, Stokes

(
1

0.165

1

ρgv2
gas

)1/2

r1/2
s , Ram

(2.40)
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where ρs is the internal density of the small body. We will use the term WISH radius and

the symbol RWS to refer solely to the case vgas > vshear. For the case vshear > vgas on the

other hand, the righthand side of Equation (2.39) now depends on impact parameter.

In this regime we will refer to the impact parameter as the “shearing radius”, Rshear.

In general, Rshear is determined by numerically solving the equation

Rshear =

√
GMm

Fd(RshearΩ)
(2.41)

For a particle in a linear drag regime, the particle’s Stokes number is independent of

velocity, which allows us to solve for Rshear analytically:

Rshear = (3St)1/3RH . (2.42)

In Section 2.5.5 we will compare our results to OK10 and LJ12 in the laminar

regime – for now we translate their impact parameters into our notation.

The WISH radius is equivalent, in the laminar regime, to the effective accretion

radius, rd, used by LJ12, as well as to the settling radius bset, used by OK10. LJ12 give

the effective accretion radius as rd = (tB/ts)
−1/2rB. Here tB = rB/v∞ is the drift time

across the “Bondi radius” – rB = GM/v2
∞.7 As LJ12 note, rd is equal to the WISH

radius, as can be seen from that fact that

rd =

√
tsηvk

GM

(ηvk)2
= RWS . (2.43)

7As LJ12 note, their definition of the Bondi radius differs from the definition used in other works
(including this one), which uses cs in the place of v∞.
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LJ12 also give a radius equal to Rshear (up to a factor of 31/3) for particles with St = 10−2

and M > Mt.

In their “settling” regime, OK10 determine the impact parameter bset = Racc/RH

by solving the cubic equation

b3set +
2ζw
3
b2set − 8St = 0 (2.44)

If the cubic term in the above equation is negligible, then we get the solution

bset =
√

12St/ζw . (2.45)

In terms of ζw, we can rewrite RWS as

RWS =
√

3

(
St

ζw

)1/2

RH , (2.46)

so bset = 2RWS in the laminar regime. If the middle term is negligible on the other

hand, the solution is

bset = 2St1/3 (2.47)

which is ∼ Rshear. One can verify by inspection that the solution to Equation (2.44) is

approximately the minimum of Equations (2.45) and (2.47).
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Combining Length Scales

Once RH , RWS , and Rshear are calculated, we take the stability radius to

simply be the smallest of these three radii:

Rstab = min(RWS , Rshear, RH) (2.48)

We now have the pieces necessary to determine Racc – we first compute RWS

and Rshear – the minimum of these two length scales determines the scale on which gas

drag will pull small bodies off the core before they can be accreted. We then calculate

RH – the scale on which the stellar gravity disrupts accretion – and calculate Rstab by

taking in the minimum of these scales. Finally, we take Racc to be:

Racc = max(Rstab, Rb) . (2.49)

Note that accretion within Racc only occurs when additional energy criterion are met,

as discussed in Section 2.2.1.

2.4.2 Determining Hacc

We now turn to the height of the accretion rectangle. The height of this

rectangle will be the minimum of the dust scale height and the capture radius, since

any particle outside the capture radius will not be able to accrete on to the core:

Hacc = min (Racc, Hp) . (2.50)
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In general, the solid particles will tend to the settle to the midplane of the disk due

to the vertical influence of gravity and the lack of pressure support. However, several

processes will tend to oppose this settling, giving the particles some finite vertical extent.

In our model, we include two different processes that drive particles vertically – the first

is turbulent diffusion due to the isotropy of the small body’s turbulent velocities.

For St > α, the scale height of the particles due to their interaction with

turbulence is given by (Youdin & Lithwick 2007):

Ht =

√
α

St
Hg . (2.51)

We can understand this expression by separately considering larger particles with St� 1

and small, well coupled particles with St � 1. For the larger particles, as discussed in

Section 2.3.3, we can think of the particle’s velocity as resulting from the large number

of uncorrelated kicks it receives from the eddies. In this case we have vpk,t ∼ vt/
√
St,

which gives a scale height of

Ht ∼
vt

Ω
√
St
∼
√

α

St
Hg , (2.52)

since vt =
√
αHgΩ.

As described in the Youdin & Lithwick (2007), for St� 1 we expect the par-

ticles to be well coupled to the gas, and thus expect the particles’ diffusion coefficient

to be approximately equal to the gas value. We can express the turbulent diffusion
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coefficient of the gas as Dg = αzcsHg. In what follows we take αz ≈ α unless oth-

erwise stated. While α and αz can differ, since α enters our calculation mainly as a

parameterization of the turbulent gas velocity, we are more interested in the relative

size of αz and vz, the vertical turbulent gas velocity. Magnetohydrodynamic simu-

lations find that these two values are similar to order of magnitude (e.g. Xu et al.

2017). Tightly coupled particles should settle to the midplane at approximately their

terminal velocity, so their time to settle to the midplane from a height z is approxi-

mately tset ∼ z/vterm. At terminal velocity the drag force balances the vertical com-

ponent of gravity, Fg,z ∼ (GMm/r2)(z/r) ∼ mΩ2z. Setting Fd ∼ mΩ2z implies that

vterm ∼ StΩz, which gives tset ∼ 1/(StΩ). Finally, setting tset equal to the particle

diffusion time H2
t /Dp gives Equation (2.51). Carballido et al. (2006) derive (2.51) for

St� 1 by more rigorous means, whereas Dubrulle et al. (1995) do the same for St� 1.

Note that for St > α we have Ht > Hg which is clearly incorrect; turbulence

cannot drive particles to heights larger than the extent of the gas disk. We therefore

cap Ht at Hg. Dubrulle et al. (1995) derive (2.51) as the scale height of the dust to

gas ratio ρs/ρg, and note that this height h is related to the dust scale height by the

equation

Ht = h

[
1 +

(
h

Hg

)2
]−1/2

, (2.53)

which has the expected behavior that Ht → Hg as St→∞. Equation (2.53) can be used

in the place of equation (2.51), though this does not substantially change the results.

We employ (2.51) in order to maintain relative simplicity in our analytic results.
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Turbulence’s modification to the particle scale height is discussed in a number

of works, including OK10 and LJ12, though it is often not explicitly included in calcu-

lations of growth rate; instead, authors generally note that for Ht > Racc, the growth

timescale is increased by a factor of Ht/Racc. We also note that equation (2.53) can be

written as

Ht = Hg

√
α

α+ St
, (2.54)

which is employed by Ormel & Kobayashi (2012) for the dust scale height in the presence

of turbulence. Equation (2.54) agrees with Youdin & Lithwick (2007), Equation (28)

without their factor of ξ−1/2, where ξ ≡ 1 + St/ (1 + St) for the values chosen in this

paper.

Even in the absence of strong turbulence, the Kelvin-Helmholtz shear instabil-

ity prevents small bodies from settling too close to the midplane. For small particles,

which are well-coupled to the gas flow, this leads to a scale height of

H ′KH =
H2
g

a
=

2ηvk
Ω

, (2.55)

(see for example Lee et al. 2010). In order to extend this scale height to include larger

particles, we assume that even when large bodies dominate the mass distribution, a pop-

ulation of small bodies exists that is substantial enough to drive the Kelvin-Helmholtz

shear instability, and therefore turbulence, close to the midplane. We expect the tur-

bulent velocity in this case to be comparable to the vertical shear rate, which is ∼ ηvk.
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In this case, we can make arguments analogous to the ones preceding Equation (2.52),

which leads to a scale height Hp ∼ ηvk/(Ω
√
St). Thus, we can describe HKH over the

full range of particle sizes using the expression

HKH =
H2
g

a
min(1, St−1/2) . (2.56)

If only large bodies are present, they may need to settle further in order to excite the

Kelvin-Helmholtz instability, which would change the dependence on St. We leave a

self-consistent calculation to another work. Furthermore, by employing this expression

for larger particle sizes, we are neglecting the possibility of dynamical stirring of the

large bodies. Mutual scatterings and/or the gravitational force of the core can drive

small particles vertically, and may be more important than interactions with the gas for

determining the scale height of larger particles, which are decoupled from the gas.

Finally, we take the solid scale height to simply be the maximum of these two

heights

Hp = max (Ht, HKH) . (2.57)

The possibility of 3D accretion (Hp > Racc) in the non-turbulent regime is generally

neglected in works on pebble accretion, but we find that it has non-trivial effects on the

growth timescale.
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Table 2.1: Summary of Symbols Used in Text

Parameter Symbol Formula/Value

Mass of large body M –
Mass of central star M∗ –

Keplerian orbital frequency Ω
√

GM∗
a3

Radius of small bodies rs –
Density of solid bodies ρs 2 g cm−3

Mass of small bodies m 4
3
πρsr

3
s

Stopping time of small bodies ts
mvrel
FD

Small body Stokes number/dimensionless stopping time St tsΩ
Shakura-Sunyaev α parameter α –

Large body Hill radius RH a
(

M
3M∗

)1/3

Wind-shearing (WISH) radius RWS ≈
√

GMts
vgas

Shearing radius Rshear ≈ RH (3St)1/3

Large body Bondi radius Rb
GM
c2s

Largest radius for stable orbits about large body Rstab min(RWS , Rshear, RH)
Extent of large body’s atmosphere Ratm min(Rb, RH)

Impact parameter for accretion Racc max(Rstab, Ratm)
Scale height of small bodies due to turbulence Ht

√
α
St
Hg

Scale height due to Kelvin-Helmholtz shear instability HKH
H2

g

a
min(1, St−1/2)

Scale height of small bodies Hp max (Ht, HKH)
Vertical extent of accretion cross section Hacc min (Racc, Hp)

Velocity of small bodies relative to nebular gas vpg See Appendix A
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Table 2.1 (cont’d): Summary of Symbols Used in Text

Parameter Symbol Formula/Value

Velocity of small bodies relative to Keplerian vpk See Appendix A
Keplerian shear velocity vshear RaccΩ

Approach velocity of small bodies v∞ max(vpk, vshear)

Orbital velocity about large body vorbit

√
GM
Racc

Impulse approximation velocity perturbation by large body vkick
GM

Raccv∞
Velocity of small body during encounter with large body venc See Appendix A

2.5 Overview of Results

Having discussed in detail how our model operates, we can now present the

output from our model. For reference, we also provide a table detailing the symbols we

use (Table 2.1). In this section we discuss our results broadly in order to introduce how

gas-assisted growth operates in the presence of turbulence.

2.5.1 Model Parameters

We begin by providing the values of the fiducial parameters used for describing

the protoplanetary disk, which are necessary to provide concrete numerical results. A

discussion of the effects of varying some of these parameters is given in Section 2.6.

We assume a surface density profile of

Σ(a) = 500
( a

AU

)−1
g cm−2 , (2.58)

where a is the semi-major axis in the disk. This profile is chosen to be consistent with

measurements of the surface density in solids of size 0.1-1 mm, taken from sub-mm

observations of protoplanetary disks (Andrews et al. 2009, Andrews 2015), which probe
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these particle sizes. In order to calculate the surface density profile of solid bodies, Σp,

we assume a constant dust to gas ratio of fs ≡ Σp/Σ = 1/100. The semi-major axis

dependence of the temperature profile is taken from Chiang & Youdin (2010)

T = T0

( a

AU

)−3/7
. (2.59)

For most purposes we will take the prefactor to be T0 = 200 K, which would place

the Earth outside of the water ice line during its formation (e.g. Powell et al. 2017).

We also note this prefactor is consistent with assuming the disk is heated primarily by

irradiation from a central star with luminosity L∗ ∼ 3L� (e.g. Ida et al. 2016), which

is appropriate for a solar mass star of age 1 Myr (Tognelli et al. 2011). The effects of

varying T0 are discussed in Section 2.6.2.

From here we can then calculate the isothermal sound speed and scale height

of the disk in the usual manner: cs =
√
kT/µ and Hg = cs/Ω. Here µ is the mean

molecular weight of particles in the disk; we take µ = 2.35mH ≈ 3.93× 10−24 g, which

assumes a disk composed of 70% H2 and 30% He by mass. We can also calculate the

gas density ρg = Σ/(2H), and the mean free path of gas particles, λ = µ/(ρgσ), where

σ is the neutral collision cross section, which we take to be σ ∼
(
3Å
)2 ∼ 10−15 cm2.

In order convert from Stokes number, which is the relevant parameter for calculating

tgrow, to physical size, we need to specify the internal density of the pebbles, ρs. We

take this density to be ρs = 2 g/cm3 unless stated otherwise, which is appropriate for

rocky bodies. Note however, that the solids in protoplanetary disks may be fluffy, i.e.

their densities may be low, which can have important ramifications for planet formation
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Table 2.2: Fiducial Disk Parameters

Parameter Symbol Formula/Value

Solid to gas ratio fs 0.01
Mean molecular weight of gas particles µ 2.35mH ≈ 3.93× 10−24 g

Neutral collison cross section σ 10−15 cm2

Gas surface density Σ Σ(a) = 500
(
a

AU

)−1
g cm−2

Protoplanetary disk temperature T T (a) = 200
(
a

AU

)−3/7
K

Isothermal sound speed cs cs =
√

kT
µ

Average thermal velocity vth vth =
√

8
π
cs

Gas scale height Hg Hg = cs
Ω

Gas density ρg ρg = Σ
2Hg

Gas mean free path λ λ = µ
ρgσ

(see e.g. Kataoka et al. 2013). While we consider the effect of varying M∗ in Section

2.6.4, unless otherwise noted all values quoted in the paper are for a solar mass star,

M∗ = M�. As noted in Section 2.2.1, the radius of the large body needs to be & 10 km,

which corresponds to M ∼ 10−9M⊕ for a density of 2 g/cm3. In practice we do not

consider cores that are close to this lower limit.

A summary of our fiducial disk parameters is given in Table 2.2.

2.5.2 Basic Model Output

For the purposes of understanding the broad features of pebble accretion, we

present a typical output of our model in Figure 2.5. Figure 2.5 plots the growth timescale

(Equation 2.6) as a function of the small body radius, rs, for a core of massM = 10−1M⊕

at a = 1 AU. The growth timescales for several α values, ranging from purely laminar

flow to extremely strong turbulence, are shown. The timescale is set to ∞ for particles

that do not satisfy the energy criteria discussed in Section 2.2.1, so the plotted range for

each value of α indicates the range of small body radii the core can accrete via pebble
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accretion. The Stokes numbers corresponding to the given values of radius are shown

for reference (the laminar drift velocity is used to calculate St for particles not in a

linear drag regime).

We begin by examining the laminar case, where α = 0. For large values of rs,

particles shear into the Hill radius. However, growth is slow because particles are large

and cannot fully dissipate their kinetic energy relative to the gas, which increases tgrow

by a factor KE/W . Once particles are small enough that KE ∼W they can accrete on

rapid timescales. In terms of the small body’s Stokes number, we can in general write

the criterion for particles to be able to deplete their kinetic energy as

St <
4vencRaccΩ

v2
∞

. (2.60)

For particles of this size, gravity dominates over gas drag effects – therefore RH deter-

mines Racc, as opposed to RWS . The large size of these particles also means that their

velocity dispersion and drift velocity are low, so the approach velocity is set by shear,

i.e. v∞ = vH . Using these values to calculate venc and plugging the result into Equation

(2.60) gives

St < 4
√

3 , (2.61)

which will be a general upper limit on Stokes numbers that the core is able to accrete

rapidly. Note that if the small body is not in a linear drag regime then the Stokes

number is no longer independent of velocity. In this case the Stokes number calculated
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for the small body moving through the disk (which is relative to vpk) will not necessarily

be the same as the Stokes number during the encounter with the core (which is relative

to venc).

Growth for Racc = RH and v∞ = vH is extremely rapid in comparison to the

planetesimal accretion timescale. As small body size continues to decrease however,

eventually gas drag considerations overtake three body effects, and the shear radius

shrinks below the Hill radius. This causes the growth timescale to increase for rs .

20 cm. From this point the shear radius continues to shrink with small body size,

slowing accretion. The first kink in the slope around rs ∼ 15 cm comes from small

bodies changing from the fluid regime to the diffuse regime, while the second kink

around rs ∼ 0.2 cm stems from Rshear shrinking below Hp, which dilutes the density

of small bodies, in turn slowing accretion. Eventually, the shear radius shrinks below

the Bondi radius, which signals the point at which particles are so small that they will

couple to the gas and flow around Rb. This causes growth to cut off for small values of

rs.

As increasingly strong turbulence is taken into account, the picture becomes

more complicated. For the α = 10−1 case, growth for large particle sizes is quite similar

to the laminar case, since the growth parameters are solely determined by the core’s

mass for high St. As the particle size shrinks, we still find a small range of radii where

growth occurs at Racc = RH , v∞ = vH . Rather rapidly however, several new features

emerge that were not previously present. First, the strong turbulence greatly increases

the particle scale height. As particle size decreases this scale height increases until it
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becomes larger than RH , slowing down growth. As particle size decreases, for St < 1

the drift-dispersion velocity of particles increases as they couple more strongly to the

gas. Due to the rapid turbulent velocity of the gas, vpk actually overtakes vH around

rs = 100 cm, slightly mitigating the increase in growth timescale. The WISH radius is

also decreased due to the strong turbulence, which makes it easier to pull particles off

of the core. Because of this the radius at which RWS < RH is much higher than in

the laminar case, and around rs = 50 cm growth is again inhibited as the WISH radius

begins determining Racc. Another kink in the slope appears around rs = 20 cm as the

scale height of particles becomes so large that Hp = Hg, at which point the particle

scale height stops increasing. The final kink occurs at rs ≈ 15 cm, and is again due to

the particles switching from the fluid to the diffuse regime. Growth again stops when

RWS < Rb, but because of the decreased values of WISH radius relative to the laminar

case, this occurs at a larger value of rs. Similar features occur for the smaller values of

α, but due to the weaker turbulence these features occur at smaller values of rs. The

only exception is the domination of the turbulent RMS velocity over vH , which for these

values of parameters only occurs for the α = 10−1 case. As can be seen in the figure,

for lower values of α wider ranges of small body sizes can accrete at what appears to

be a minimal value of timescale, which we discuss in the next section.

2.5.3 tHill

The floor to the growth timescale in Figure 2.5 corresponds to a minimum

value of tgrow, which cores reach when they can accrete over their entire Hill sphere. The
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appearance of this minimum growth timescale, or maximal growth rate, is a consistent

thread throughout the parameter space probed by our model.

We refer to this timescale as the “Hill timescale,” or tHill. This timescale is

reached when all aspects of the accretion processes are set by the core’s gravity – that

is when we have Racc = RH > Hp, and v∞ = vH . From Equations (2.6) and (2.50) it

is easy to see that if Hp < Racc then tgrow is independent of Hp. Using these values for

our timescale parameters in (2.6) gives the value of tHill as

tHill =
M

2fsΣR2
HΩ

. (2.62)

A similar regime is identified by Lambrechts & Johansen (2012), Section 3.2, who refer

to it as “Hill Accretion.” They however, only use this term to differentiate between

the drift dominated and shear dominated regimes, which roughly corresponds to where

Racc = RH for their model. Within their Hill regime, the growth timescale is not

necessarily equal to tHill. See Section 2.5.5 for a more in depth comparison of the two

models.

In general, tHill represents an extremely rapid timescale for growth. Scaled to

fiducial values, the minimum timescale can be expressed as

tHill ≈ 4300
( a

AU

)1/2
(
M

M⊕

)1/3

years . (2.63)

This represents a significant enhancement over the timescale achievable via canonical

core accretion, as can be seen by comparing equation (2.63) to (A.44).
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This is the substantial decrease in growth timescale promised by gas-assisted

growth. The source of this decrease can be mostly attributed to an increase in Racc.

As previously stated, the minimum timescale indicates accretion in a regime such that

essentially all particles that encounter the Hill radius of the growing planet are accreted.

In contrast, in the absence of gas the trajectories of particles that enter the Hill radius

are chaotic, and whether a collision occurs is extremely sensitive to the value of the

small body’s impact parameter. See for example Petit & Henon (1986). For this reason

encounters with the core in this regime are often treated probabilistically, with the

collision rate of small bodies equal to the product of the rate at which small bodies

encounter radius and the probability that a particle inside the Hill radius will accrete.

Performing such a calculation leads to an effective impact parameter for accretion in the

so called “3-body regime” that is to order of magnitude equal to the geometric mean

of the Hill radius and the planetary radius - b ∼ √RRH . See GLS and Ormel & Klahr

(2010) Equation (5). From comparison with Equation (A.43) we see that the maximal

increase in accretion rate that can be provided by pebble accretion is of order RH/R.

To see why tHill is in general the fastest rate of growth possible, we first note

that since Rstab = min (RH , RWS , Rshear), it is clear that the maximal accretion cross

section is of order σgas,max ∼ R2
H . Since turbulence can increase the RMS velocity of

small bodies to values substantially larger than vH however, it is conceivable that strong

turbulence could increase the growth rate by increasing v∞, i.e. by increase the rate at

which small bodies encounter the core. However, increasing the velocity of small bodies

drives them vertically as well as horizontally, which decreases the density of small bodies
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and slows accretion. This trade off rules out accretion on timescales faster than tHill,

which we demonstrate to order of magnitude below. We first note that

HKH =
2ηvk

Ω
max(1, St−1/2) &

vpk,`
Ω

, (2.64)

Ht ≈
vpk,t

Ω
, (2.65)

we also make the approximation that

vpk = max (vpk,`, vpk,t) . (2.66)

rather than the quadrature of vpk,` and vpk,t. We separately consider “2D accretion,”

defined by Hp < Racc, and “3D accretion,” where Hp > Racc.

For 2D accretion, we can write tgrow as

tgrow =
M

2ΣpRHv∞
(2.67)

= tHill

(
RHΩ

v∞

)
, (2.68)

where tHill ≡ M/
(
2ΣpR

2
HΩ
)

and Σp ≡ fsΣ. Thus tgrow < tHill requires v∞ > vH while

still having RH > Hp. But from Equations (2.64) - (2.66) we see that RH > Hp implies

that vH > vpk, so v∞ = vH . Thus the timescale for growth cannot drop below tHill for

2D accretion.

We now consider the 3D accretion regime when the Hill radius sets the ge-

ometry, that is Hp > Racc = RH . In this case, we can write the growth timescale
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as

tgrow =
MHp

2ΣpR2
Hv∞

= tHill

(
HpΩ

v∞

)
(2.69)

If the particle is shear dominated, then tgrow > tHill since RH < Hp. Furthermore,

since Equations (2.64) - (2.66) imply that HpΩ & vpk, if the particle is drift-dispersion

dominated we again have tgrow > tHill. Thus, in the 3D accretion regime tHill also

represents the smallest possible timescale.

2.5.4 Gas Mitigated Growth

While growth at tHill is extremely rapid, it is important to realize that in

practice the minimum timescale can only be achieved for a certain range of small body

sizes. Maximal accretion efficiency occurs for particles where the dominant effect of

the gas is to dissipate particles’ kinetic energy as they encounter the growing core, and

all other aspects of the accretion process are set by the gravitational influence of the

core. When the mass of small or large bodies is low enough that gas determines aspects

of the accretion process, the timescale for growth will increase, in many cases quite

substantially.

To examine in more detail what causes the timescale to increase above tHill as

the interaction between the gas and the small bodies increases in importance, we plot the

four quantities that go into the calculation of tgrow along with timescale itself in Figure

2.6. As α increases, the gas-particle interaction will dominate over the gravitational

interaction between the small body and the core. For low values of α we have RWS >
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RH > Hp and v∞ = vshear (as expected for RH > Ht), so the particle is in the 2D

accretion regime and is able to accrete at tHill. As α increases, the particle scale height

begins to increase, until eventually Hp > RH . At this point accretion becomes less

efficient, and the timescale correspondingly increases. There are several other kinks in

the timescale graph, which are caused by, in order of increasing α:

1. RWS decreasing to the point that RWS < RH .

2. v∞ being set by dispersion instead of shear, i.e. switching to the drift-dispersion

dominated regime.

3. Reaching Hp = Hg, at which point Hp stops increasing.

For large α values, the growth timescale is almost an order of magnitude larger

than tHill, indicating a substantial slow down in growth rate.

2.5.5 Correspondence with Previous Models of Pebble Accretion

In this Section we compare our model to the analytic results from OK10 and

Johansen & Lambrechts (2017) (hereafter JL17) 8 in the laminar (α = 0 regime) as well

as the extension of the OK10 model by Chambers (2014) to include turbulence. We

discuss why our framework is more useful for incorporating the results of turbulence.

In order to facilitate comparison between the various models, we begin by

highlighting some important features that emerge in our modeling of the growth rate.

Figure 2.7 shows a plot of Pcol ≡ 2Raccv∞ for α = 0 in our model as a function of rs and

8We compare to JL17 as opposed to LJ12 because the JL17 expressions are extensions of LJ12’s
analytic model, but their framework is more clearly laid out. In generating the comparison we use their
Equations (30) and (31) to determine Racc for M < Mt and M > Mt respectively.
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M . Several features, along with their analytic formulae, are marked on the plot. We

discuss these features in detail below. Note that in calculating the analytic expressions

for these features we implicitly assume a linear drag regime so that we can employ the

analytic expressions for RWS and Rshear (see Appendix A.1).

In the upper lefthand corner of the plot, we see that accretion is cut off once

Rb > Rstab. At low core mass, Rstab = RWS when this cutoff occurs, but at high core

masses Rshear dominates, which causes the kink in the slope seen in the figure. The

combination of these two scales causes a cutoff in accretion for

St < min

(
3
v3
Hvgas

c4
s

, 9
v6
H

c6
s

)
. (2.70)

In the bottom of the plot, we see that, at low core masses, accretion shuts off for particles

that pass a certain maximum size. In this regime we have Racc = RWS , v∞ ≈ vgas, and

venc = vkick, which leads to a maximum size of

St = 12

(
vH
vgas

)3

. (2.71)

However, as particle size continues to increase, we see that accretion actually resumes

once particles become large enough. This is caused by these large particles decoupling

from the gas, which lowers v∞ = vpk and raises venc = vpg enough to overcome the

increased mass of these particles. If we set Racc = RH , vpg ≈ vgas and approximate vpk

by its Taylor Expansion at∞ in the laminar regime, vpk ≈ 2vgas/St, then we can derive
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an approximate expression for the Stokes number at which accretion commences again:

St =
vgas

vH
. (2.72)

Note that as particle size continues to increase, the energy criteria are only satisfied

for a small range of particle sizes. However accretion continues probabilistically in this

regime in accordance with Equation (2.36).

The gap in particle size where accretion is not possible disappears once the

core surpasses a certain mass. If particles that have their encounter velocity dominated

by the particle-gas relative velocity, venc = vpg, become available for accretion, then

the range of particle sizes the core can accrete will be extended, since these particles

can dissipate more of their kinetic energy due to their larger encounter velocities. See

Section 2.6.1 for more discussion of this effect. For these particles to be available, the

previously derived upper limit on particle size, St = 12v3
H/v

3
gas, must occur after the

transition where vpg = vkick. Using the Taylor expansion of vpg about 0 in the laminar

regime, vpg ≈ 2vgasSt, we see that the latter transition occurs at St ≈ (3/4)1/3 (vH/vgas)

Therefore, the mass scale where this transition occurs is given by

vH
vgas

= 48−1/3 . (2.73)

Finally, as discussed in Section 2.5.2, at high core masses the transition where KE = W
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occurs at a fixed Stokes number of

St = 4
√

3 , (2.74)

which is noted on the plot as well.

We now contrast the output from our model in the laminar regime with the

analytic models of OK10 and JL17. Figure 2.8 below shows plots of both Pcol ≡ 2Raccv∞

and tgrow for a core at 30 AU, using our model, OK10’s, and JL17’s 9 (for a discussion

of how the parameters of the protoplanetary disk are modeled, see Section 2.5.1). We

plot Pcol to disentangle the effects of particle scale height on the growth timescale, as

we discuss below.

In all three figures, we see the same broad features: while pebble accretion

operates for a broad range of particle sizes, there exists an “optimal” range near St = 1

(rs ≈ 10 cm) at which accretion reaches its maximal possible rate, and the growth

timescale becomes comparable to tHill = M/(2R2
HΩΣp). In all three models, optimum

accretion at St ≈ 1 does not begin until the core has reached a “large enough” mass.

Furthermore, as the core mass increases, the core’s growth rate grows as well, in large

part due to the increasing size of the core’s Hill radius. The growth timescale, however,

increases as the core grows, because the core’s growth rate scales with M to a power

9OK10 include a “Hyperbolic” regime in their modeling, which uses the gravitational focusing cross
section for accretion but the laminar terminal small body velocity (our Equation 2.19) for v∞. Because
we explicitly do not include gravitational focusing in our model, we similarly do not include this regime
when comparing with OK10. We therefore also neglect their exponential term for Racc (OK10 Equation
32), which is included in their model to smooth between the settling and hyperbolic regimes, and instead
solve their Equation (27) to determine Racc. JL17 use a similar exponential smoothing term to smooth
Racc for all Stokes numbers larger than a given value (for fixed core mass). For the same reasons as
above, we neglect this term in our comparison.
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less than one.

In our and OK10’s modeling, we see two other notable features as well: firstly,

there exists a gap in the range of particle sizes that can be accreted for low core masses,

which in our framework cannot accrete because their incoming kinetic energies are

too high. Secondly, in the righthand side of the plots (rs & 100 m) particles have

RH < RWS , Rshear (i.e. Racc = RH), but accretion is inefficient. This is due to the fact

that these particles cannot fully dissipate their kinetic energy during a single orbital

crossing; but because of the chaotic nature of trajectories for particles with impact

parameter ∼ RH their growth timescale is increased by a factor of KE/W (see Section

2.4.1 for more detail.)

As can be verified from the plots, in the regions of parameter space where our

model predicts that pebble accretion should operate, our results agree within factors of

a few with both of these analytic models. This main disagreements are:

1. The mass scale above which accretion occurs on timescales comparable to tHill is

not exactly the same in the models. As discussed previously, in our model there is

a transition in behavior past vH/vgas ≈ 48−1/3. In JL17’s model, the parameters

that set tgrow change for a mass M > Mt, where Mt =
√

1/3v3
gas/(GΩ). This

is equivalent to vH/vgas =
√

1/3, which is clearly comparable to the cut in our

model. In OK10’s modeling, the size of the gap progressively narrows, as the

borders between the two regimes – St = 12v3
H/v

3
gas, and St = vgas/vH – become

comparable. Eventually the gap disappears for vH/vgas = 1.

2. As discussed above, in our modeling accretion shuts off for particles below a certain
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radius, which stems from the fact that once Rstab shrinks below Rb we expect

particles to flow around the core’s atmosphere (see Figure 2.1, in particular the

lower righthand panel). The regions where this effect occurs are denoted by red

hatching. We note that in these regions we expect growth by all mechanisms

to be inhibited, e.g. capture by gravitational focusing or even physical collisions

with the core will not occur. (In contrast, in the white regions of the plot we still

expect capture mechanisms other than gas-assisted growth to operate.) Because

this process is set by the modification of the flow by the core’s gravity, we would not

expect OK10’s integrations to capture it, since they assume a constant headwind

velocity in their integrations. LJ12’s simulations do not appear to go to high

enough core masses with small enough particle sizes to capture this effect.10 This

effect does appear to be consistent with the results of Ormel (2013), who find

minimal accretion for small particle sizes at high core masses (see their Figure 12)

11

3. JL17 define a “weak coupling” regime, where the stopping time of the particle

exceeds the time to pass the protoplanet, tp = GM/ (vgas + vH)3. For vgas � vH

this criterion is equivalent to St > 3v3
H/v

3
gas, which is line with our and OK10’s

criterion St > 12v3
H/v

3
gas. For vH � vgas, the passing time criterion reduces to

10LJ12’s 1e-1 0.01 simulation, which is the highest core mass and smallest particle size they simulate,
is actually marginal in the sense that Rshear = Rb in our notation. While there is a reduction in accretion
in this run, it is unclear whether accretion is actually substantially reduced in the way we would expect in
our modeling. It is also unclear whether LJ12’s resolution is fine enough to resolve the core’s atmosphere
and therefore the modification of the flow pattern.

11In the bottom panel of Figure 12, Ormel (2013) almost all particle streamlines are unable to accrete
for St = 10−4 (in our notation). For St = 10−3 however, particles over a range of impact parameters
are able to accrete. For the parameters used by Ormel (2013) the particle size where Rstab (= RWS in
this region of parameter space) is less than Rb is St < 5× 10−4.
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St > 3, which is again similar to our St > 4
√

3 limit. For particle sizes exceeding

this critical Stokes number, JL17 exponentially smooth Racc to zero, which differs

from our and OK10’s modeling.

4. In the lower righthand region, OK10’s results and our diverge. In this regime,

particles that shear into RH cannot fully dissipate their kinetic energy over one

orbital crossing. This makes them accrete probabilistically, in accordance with

Equation (2.36), i.e., instead of shutting off accretion because W < KE in this

regime, we increase the growth timescale by a factor KE/W . For particles with

venc ∼ vH , which holds for larger cores, this increases the growth timescale by

a factor of St, which agrees with OK10’s expression for Racc in this regime –

Racc = RH/St. However, for the low mass cores in the bottom righthand corner

of the plot, the particle gas relative velocity dominates over the core’s gravity,

changing the Stokes number dependence.

Thus while our results are generally in order of magnitude agreement with

other modeling in the laminar regime, there are few notable regions where our results

diverge. It can be shown analytically that the agreement between our model and the

other two essentially stems from the fact that, to order of magnitude, many of the

transitions between length and velocity regimes occur in the same region of parameter

space. For example, the transitions where RH = RWS and where vpk,` = vH both occur

for St ∼ ζw. In the laminar case, there are therefore essentially fewer regimes that need

to be covered.

When turbulence is included however, this is no longer the case. As an example,
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in Figure 2.9 we compare our modeling to the pebble accretion modeling of Chambers

(2014). The expressions used in Chambers are analogous to the OK10 expressions,

with the replacement of OK10’s ζw ≡ ηvk/vH parameter with vgas/vH , where vgas =

max(ηvk,
√
αcs). In our comparison, we neglect the exponential smoothing term they

carry over from OK10, as well as terms involving eccentricity and inclination, as they

are not included in our model. 12 As can be seen from the figure, for low core masses

and small body sizes, our models are in order of magnitude agreement. Again, analytic

calculations can be used to demonstrate that for low core masses and small particle sizes,

the expressions between the two models agree to order of magnitude. For example, the

cutoff in Stokes number employed by Chambers – Stcrit = 12(vH/vgas)
3 is replicated

in our model for small cores and small particle radii. However, as can also be seen in

the figure, there are numerous regimes covered in our modeling that aren’t captured

by extending the OK10 expressions. A prominent example is the feature in the lower

righthand corner, where low mass core can accrete “large” particles (∼ 102 − 103 cm)

on rapid timescales. This features results from the fact that, for low core masses, the

velocities of these larger particles are set by their interactions with the nebular gas.

Because these large particles are not well coupled to the gas flow, they have low kinetic

energies relative to the core, but high velocities relative to the gas, allowing a certain

12The Chambers (2014) modeling of the velocity of small bodies induced by turbulence appears to
use expressions for the RMS particle-particle relative velocity, as opposed to the velocity of small bodies
relative to the local Keplerian orbital velocity. This may be an error in the text, as other expressions
used by these authors to model the relative velocity between a small body and an embryo (e.g. their
Equation 8), are expressions for a particle relative to the local Keplerian velocity. In particular, their
expression tends toward 0 for small Stokes number particles, whereas we would expect that small,
well-coupled particles move relative to the embryos at velocities comparable to the RMS turbulent
gas velocity (assuming the embryos are decoupled from the gas, which is a good approximation since
Memb ≥ 5 × 10−6M⊕ in their work). This appears to underestimate the incoming velocities of small
bodies for strong turbulence (α & η). In our comparison with Chambers (2014) we therefore use the
expression v2

turb = αc2s/(1 + St) in place of their Equation (9).
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range of particle radii to dissipate energy during the encounter that is comparable

to their kinetic energy. The shape of this feature depends on the transitions where

KE ∼ W as well as where RWS ∼ RH and vpk ∼ vH . In the presence of turbulence

these transitions no longer need occur at similar regions of parameter space, leading to

a more complex model of pebble accretion that is not well captured by extending the

OK10 expressions.

2.5.6 Comparison to Xu et al. (2017)

We close this section by comparing the results of our model to numerical

simulations of pebble accretion in the presence of turbulence. Xu et al. (2017) performed

magnetohydrodynamic (MHD) simulations of gas-assisted growth of turbulence due to

the magnetorotational instability (MRI). These simulations provide an excellent point

of comparison for our order of magnitude model, since they use much more detailed

physics but apply over a narrower range of parameter space. As we will show below,

our model agrees with the Xu et al. results to order of magnitude, as we would expect.

Xu et al. perform six sets of simulations; they use two different values of

core mass, at three different levels of turbulence for each core. The core masses are

parameterized in terms of the “thermal mass,” which Xu et al. give as

MT ≈ 160M⊕

( a

30 AU

)3/4
. (2.75)

Note that this is the same as the flow isolation mass (see Section 2.7) for

the values used in their work. The simulations are performed at core masses of µc ≡
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M/MT = 3 × 10−3 and µc = 3 × 10−2. The three levels of turbulence are achieved

by performing a pure hydrodynamic simulation, a non-ideal MHD simulation with am-

bipolar diffusion, and an ideal MHD simulation. While thus far in our work we have

assumed that α ≈ αz, where αz is the diffusion coefficient for the particle scale height,

Xu et al. are able to separately calculate α and αz. We also use their value for vz to

calculate our α value, as we use α to parameterize the turbulent gas velocity. For the

pure hydrodynamic run they have vz = αz = 0. For the ambipolar diffusion run the

authors give
〈
v2
z/c

2
s

〉
= 3.0× 10−4, αz = 7.8× 10−4, while for the ideal MHD simulation

they give
〈
v2
z/c

2
s

〉
= 1.21× 10−2, and αz = 4.4× 10−3.

A comparison between our analytic model and their simulations is shown in

Figure 2.10. This figure plots kabs ≡ Ṁ/ṀHill as a function of the particle Stokes

number St. Here Ṁ = M/tgrow is the growth rate of the core, and ṀHill = M/tHill is

the growth rate for Hill accretion. The solid lines depict the model presented in this

paper, while the data points show the results from the Xu et al. paper. For the purposes

of matching their model, we’ve used a temperature profile consistent with their results,

used their values of αz for the calculation of Hp (as opposed to using α), and set the scale

height in the laminar case to be Hp,lam = 0.01H to be consistent with these authors’

choice.

As can be seen in Figure 2.10, our model nicely achieves the intended goal of

reproducing the trends found by the numeric results, as well as being accurate to within

a factor of 2 for all of the values found in the numeric simulations. It is worth noting here

that the simulations are carried out at quite large values of core mass, and serve mostly
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to confirm our prediction that the efficiency of pebble accretion is not hugely reduced

by increasing turbulence. It would be interesting to investigate in future simulations

whether the drop off in efficiency for lower core masses predicted in our model (see

Section 2.6.1) is reproduced in the numeric simulations.
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Figure 2.5: A plot of the timescale for growth of the protoplanetary core as a function
of small body radius, plotted for various values of α, which measures the strength of
turbulence. The values shown are for a = 1 AU and M = 10−1M⊕. Also shown are the
Stokes numbers for the plotted values of small body radius. Note that in a non-linear
drag regime there is no longer a velocity independent relationship between radius and
Stokes number; in this case the given values are calculated for drift velocities in the
laminar (α = 0) case. The timescale is set to ∞ for particles that are unable to accrete
according to the energy criteria discussed in section 2.2.1, i.e. the range of radii plotted
shows the range of particle sizes the core is able to accrete via pebble accretion.
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Figure 2.6: A plot of the timescale for growth of the protoplanetary core as a function
of α, along with plots of the four quantities used to determine tgrow (c.f. Equation 2.6),
which are also plotted as a function of α. The values shown are for a = 1 AU,M∗ = M�,
M = 10−1M⊕ and rs = 35 cm. The minimum timescale tHill is also shown (red dashed
line).
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Figure 2.7: A plot of Pcol ≡ 2Raccv∞ as a function of rs and M for a core at a = 30
AU with α = 0. Several important features along with their formulae are marked on
the plot. See the text for a discussion of what causes these features to emerge.
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Figure 2.8: Comparison of results from our model in the laminar regime (α = 0) with
analytic models of Ormel & Klahr (2010) and Johansen & Lambrechts (2017). The
upper row plots Pcol = 2Raccv∞ for a core at a = 30 AU as a function of small body
radius and core mass, while the lower panels instead plot the growth timescale, tgrow.
The red hatched region denotes where growth is completely shut off in our modeling,
whereas the white regions show places where gas-assisted growth will not operate, but
the core can still grow by other means (e.g. gravitational focusing). The upper panels
show agreement to order of magnitude between the three models, with exceptions in a
few regions (see text for more details). The bottom panels highlight the effect of particle
scale height, which is included in our model even in the laminar regime, but not in the
other two analytic models.
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Figure 2.9: Comparison of results from our model with turbulence included (α = 10−3)
with modeling of pebble accretion by Chambers (2014). The upper row plots Pcol =
2Raccv∞ for a core at a = 30 AU as a function of small body radius and core mass,
while the lower panels instead plot the growth timescale, tgrow. The red hatched region
denotes where growth is completely shut off in our modeling, whereas the white regions
show places where gas-assisted growth will not operate, but the core can still grow by
other means (e.g. gravitational focusing).
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Figure 2.10: A comparison of the growth rate kabs from our model and the MHD
simulations of Xu et al. (2017), plotted as a function of the Stokes number of the
particles the cores are accreting. Here kabs ≡ Ṁ/ṀHill, where Ṁ = M/tgrow, and
ṀHill = M/tHill, i.e. kabs represents the growth rate of the core in units of the accretion
rate for growth at tHill. The two panels depict growth for two different values of core
mass – µc ≡ M/MT = 3 × 10−3 and µc = 3 × 10−2, where MT is the thermal mass,
defined in Equation (2.75). Each panel shows the growth rate for three different levels
of turbulence, which are listed in the legend. The solid lines show the output from our
model, while the data points show the Xu et al. results.
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Figure 2.11: The growth timescale as a function of core mass, for a = 5 AU. The red
hatched region denotes where growth is completely shut off in our modeling, whereas
the white regions show places where gas-assisted growth will not operate, but the core
can still grow by other means (e.g. gravitational focusing). The feature in the upper
right emerges for Rb > RH (see Section 2.7).
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Figure 2.12: The growth timescale as a function of core mass, for a = 50 AU. The red
hatched region denotes where growth is completely shut off in our modeling, whereas
the white regions show places where gas-assisted growth will not operate, but the core
can still grow by other means (e.g. gravitational focusing).
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2.6 Exploration of Parameter Space

In this section we give an overview of the effects of varying a few of the most

important parameters in our model. In the first three sections we discuss varying pa-

rameters related to the disk in which growth is occurring. We begin by discussing the

combined effects of varying the semi-major axis, a, and the core mass, M , both of which

determine the importance of interactions between the small body and the gas relative

to gravitational effects between the small body, growing core, and central star. We then

investigate the effects of varying T0, prefactor which sets the temperature profile, Σg,

the local gas surface density, and M∗, the mass of the central star.

2.6.1 Effects of Variation of Orbital Separation and Core Mass

In Section 2.5.3, we identified the minimal timescale tHill that pebble accretion

can operate on. We also emphasized, however, that pebble accretion can operate on

timescales that are substantially slower – in many cases these timescales can exceed the

lifetime of the disk, τdisk ∼ 2.5 Myr, which implies that pebble accretion essentially won’t

occur. In this section we highlight how at low core masses at wide orbital separations

only a small range of particle sizes, if any, accrete on timescales comparable to tHill.

To illustrate how core mass and orbital separation effect the growth timescale,

we plot tgrow as a function of both rs and M for a core at a = 5 AU in Figure 2.11, and

for a core at a = 50 AU in Figure 2.12. To begin, we note that growth is generally slower

at wide orbital separation, since the dynamical time tdyn ∼ Ω−1 is larger and the solid

surface density is smaller. For low core mass there is also a gap in the particle sizes that
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can be accreted. For low turbulence this gap is small, but as α increases, the width of

this gap increases as well. This effect is enhanced at wide orbital separation, where the

gap extends to higher core masses and is overall wider. Thus, low mass cores can often

only accrete small pebble radii. These small particles are accreted on slow timescales

which are & τdisk, as small pebbles can only be captured at low impact parameters,

and have low densities since they can be easily lofted by turbulence. Thus we see that

growth is much slower at low core mass and wide orbital separation, particularly as the

strength of turbulence is increased. If there exists of population of & 10 m “boulders,”

then we see from the figure that there exists a narrow range of these larger particle sizes

for which accretion can proceed on rapid timescales, even if accretion of pebble sized

particles is slow.

Once the core exceeds a certain critical mass, the gap disappears and accretion

proceeds much more rapidly, allowing pebbles to accrete on timescales comparable to

tHill. To emphasize this effect in Figure 2.13 we plot the range of particle sizes that

can accrete on timescales within a factor of two of tHill. Each panel depicts a different

core mass, while different hatching patterns depict different levels of turbulence. As

expected from the above discussion, for low core mass only close in cores with low levels

of nebular turbulence can accrete particles on timescales comparable to tHill. As core

mass increases however, particles farther out in the disk can be accreted with growth

timescales ∼ tHill, even when turbulence is strong.

We now discuss more quantitatively what sets the range of particle sizes that

can be accreted, and how that range is affected by changing the core mass and orbital
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separation. For low mass cores accreting small particles, we expect RWS to set the

impact parameter. Because the particles are so small, and therefore well coupled to the

gas, we will have vpk ≈ vgas, and vpg � vkick. Thus, in this regime we expect v∞ ≈ vgas

(since shear is negligible for low mass cores), and venc = vkick (since vgas < vorbit in this

regime). Plugging these values into our expressions for KE and W we can show that

having KE < W requires

St < 12
v3
H

v3
gas

, (2.76)

which was given previously in Equation (2.71). This is one facet that makes accretion

less efficient for low mass cores, high turbulence, and wide orbital separation – since

vH/vgas ∝ M1/3a−4/7 in the laminar regime (i.e. approximating vgas ≈ ηvk) and ∝

M1/3a−2/7α−1/2 in the turbulent regime (vgas ≈
√
αcs), decreasing core mass, increasing

α or increasing orbital distance will all make the limit on St more stringent.

As small body radius increases, vkick decreases due to the increasing size of

the core’s WISH radius, while vpg rises as particles decouple from the gas. Eventually

we reach the point that vpg > vkick, meaning that now venc = vpg. In this regime the

dependence of the energy on small body radius becomes more complex: throughout a

large amount of parameter space KE/W increases with particle size, which encapsulates

the fact that it is more difficult for heavier particles to dissipate their kinetic energy.

If venc = vpg however, the work done during the encounter increases strongly with

small body radius, which actually make it easier for large particles to be accreted.

Furthermore, if v∞ = vpk then the incoming KE of particles can also decrease with
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small body radius, making it even easier for heavier particles to be accreted.

This effect is illustrated in Figure 2.14, which plots the ratio KE/W as a

function of rs for different core masses. The two different panels show cores at different

orbital separations. For the low mass cores in the righthand panel, we see that once

rs increases past a certain value the qualitative behavior of KE/W changes – instead

of monotonically increasing, the slope flattens out or even decreases. However, for the

very low mass cores this behavior is inconsequential, since particles are ruled out from

accreting before we reach a large enough particle size that venc = vpg and this more

complex behavior starts. For larger core masses however this is no longer the case, and

the range of particle sizes that can be accreted is greatly extended. This what causes

the gap seen in the range of accreted particle sizes to disappear – once particles with

venc = vpg become available accretion generally continues until the limit St = 4
√

3

discussed in Equation (2.61) is reached. From comparison of the two panels we also see

that this effect is much more prominent at wide orbital separations – at 1 AU none of

the cores exhibit the change in slope seen at 50 AU.

Thus, we see that growth changes qualitatively once particles with vpg > vkick

can be accreted. The critical value of mass where this occurs can be approximated by

calculating the mass at which vpg > vkick is reached before the critical Stokes number

given in Equation (2.76) is reached. If we keep the approximations that led to Equation

(2.76) but take vpg ≈ 2vgasSt in the laminar regime and vpg ≈ vgas

√
St in the turbulent

regime, we can solve for the Stokes number past which vpg > vkick. Doing so, and setting

the resulting Stokes number equal to (2.76) yields a mass limit, which, in both regimes,
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may be approximated by

vH
vgas

≈ 48−1/3 (2.77)

This inefficiency of pebble accretion at lower core masses is also identified

by Visser & Ormel (2016), who calculate the growth timescale of planetesimals by

numerically integrating the pebble equation of motion in the presence of two different

laminar gas flow patterns. Visser & Ormel find that pebble accretion is only faster

than gravitational focusing (which they refer to as the “Safronov regime”) once the

growing planetesimal exceeds a certain radius, RPA. They also find that this critical

radius increases further out in the disk, which is again consistent with our results. It

can be seen from our analytic expressions however, that while these effects are present

in our model even in the laminar case, they are strongly amplified by the presence of

turbulence.

2.6.2 Effects of Varying T0

In this section we consider the effects of varying the prefactor to the temper-

ature profile, T0. While changing the disk temperature will affect the properties of the

small bodies, such as number density and composition, by changing what volatile species

are present in solids at a given location, we neglect such effects in what follows. The

consequences of changing the temperature profile are complex and depend on the local

disk parameters as well as the core mass and strength of turbulence. Nevertheless, in

general increasing the temperature is detrimental to the accretion rate when gas domi-
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nated processes set the scales relevant to growth. For growth at tHill, however, none of

the scales depend on temperature, so the most rapid growth timescales are unaffected

by increasing the disk temperature.

The primary effect of varying T0 on growth timescales is due to the dependence

of cs on T : cs ∝ T 1/2. Since HKH ∝ c2
s, and Ht ∝ cs, increasing T0 will increase Hp.

Similarly, vpk,` ∝ c2
s and vpk,t ∝ cs, so increasing T0 will also increase v∞ in the drift

dominated regime. Finally, from inspection of Equation (2.40), we see that T0 affects

RWS by changing ρg (∝ c−1
s ), vth, and vgas. By inspecting the scaling of RWS one can

show that RWS is a decreasing function of T0.

While some the above effects increase tgrow, while other decrease it, the general

effect of increasing T0 is to slow down growth. To see this, we can make the same

approximations described in Equations (2.64) - (2.66). As in Section 2.5.3 we consider

in the 2D and 3D regimes separately.

In the 2D regime whereHp < Racc, Hacc = Racc, so we have tgrow ∝ (Raccv∞)−1.

Having Racc > Hp implies that vshear = RaccΩ > vpk, which in turn implies that

Rshear < RWS . Thus we expect that tgrow is independent of T0 in this regime.

For 3D accretion, we have Hp > Racc, which implies that v∞ = vpk. There-

fore we have tgrow ∝ (R2
WSΩ)−1, which is an increasing function of T0. We therefore

expect that (approximately) higher T0 should lead to slower growth. An example of the

difference caused by increasing T0 is shown in Figure 2.15.

A secondary effect of increasing T0 is that ts and St, which depend on ρg,

vth, and λ, are also affected. However, inspection of Equation (2.13) shows that in the
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Epstein regime the effects of T0 on ts cancel out. Therefore T0 only affects St in the

fluid regime. This substantially diminishes the importance of this dependence, since for

a large amount of parameter space the small body sizes which grow the most efficiently

are in the Epstein regime. For particles that are in the fluid regime, higher values of T0

will shift values of St to lower values of rs.

Because of the approximate cancellation between v∞ and Hp in the 3D regime,

in general the maximal increase in timescale that can be provided by increasing T0 is of

order thot/tcold ∼ R2
acc,cold/R

2
acc,hot, where hot and cold denote the higher and lower val-

ues of T0 respectively. Since RH generally represents an upper limit on Racc (ignoring ac-

cretion in the Racc = Rb regime), the maximal increase is of order (RWS,cold/RWS,hot)
2,

which in the laminar Stokes and Ram regimes can be of order
(
cs,hot

cs,cold

)3
=
(
T0,hot

T0,cold

)3/2
.

In practice, this maximal value is rarely reached, since it requires simultaneously sat-

isfying r > 9λ/4 to be in the fluid regime, while also having St < v3
gas/(3v

3
H) in order

to have RWS < Rshear. In practice therefore, the increases increase growth timescale

generally goes as T0,hot/T0,cold. Because accretion timescales at tHill are not depen-

dent on temperature, increasing T0 does not affect the rapid growth rates supplied by

gas-assisted growth.

Changing T0 will also have an effect on the range of particle sizes that the

growing core is able to accrete. For small particle sizes, the accretion cut off is de-

termined by the point where Rb = RWS . Since Rb ∝ c−2
s , which is stronger than the

dependence of RWS on cs regardless of drag regime, increasing T0 will decreases the size

of the Bondi radius relative to the WISH radius. This in turn will allow the core to
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accrete smaller sized bodies. For larger particle sizes, the effect of increasing T0 is not

as clear cut. For particles accreting at tHill, the only effect of increasing T0 is to increase

the drag force on accreting small bodies, which allow the core to accrete larger sizes.

In other regimes however, increasing T0 can also increase the approach velocity of small

bodies. In these cases the increase in kinetic energy of accreting particles outweighs the

larger amount of work done, and the maximal size of small bodies accreted is reduced.

2.6.3 Growth in a Gas Depleted Disk

In this section, we explore growth in a disk where the gas density has been

reduced by a factor of 100, but the solid surface density is unchanged; i.e we have Σ =

Σg,0(a/AU)−1, where Σg,0 = Σ0/100, and Σ0 = 500 g cm−2 is the prefactor employed

elsewhere in this paper for the gas surface density. However we keep Σp,0 = 5 g cm−2.

We note that this may affect some of the expressions used in this work, which implicitly

assume ρg � ρp, where ρp is the volumetric mass density of the small bodies. We

neglect in any such effects in what follows. These choices for gas and solid densities are

made to emulate the conditions in the disk when the gas component of the disk is in

the process of photoevaporating, which is an important stage in some theories of planet

formation (e.g. Lee & Chiang 2016, Frelikh & Murray-Clay 2017). As we shall show

below, the predominant effect of reducing the gas surface density is to shift the range

of small body sizes where accretion occurs to lower values.

An example of growth in a depleted disk is shown in Figure 2.16. As can be

seen in the figure, the predominant effect of changing Σ is to shift growth down to

lower values of rs. This is due to the fact that the quantities that go into calculating
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tgrow, even the energy criteria, are functions of rs through their dependence on St

alone. Since in the Epstein regime ts ∝ rs/ρg and in the Stokes regime ts ∝ r2
s/ρg, the

radius corresponding to a given Stokes number decreases when the surface density, and

correspondingly the volumetric density, are decreased. This is what causes the shift to

lower radii seen in Figure 2.16. Other than this shift however, there is essentially no

change in the growth timescale. Said another way, when the timescale is viewed as a

function of Stokes number, i.e. if we consider tgrow(St) as opposed to tgrow(rs), then

this function is independent of Σ.

The sole caveat is that for particles not in a linear drag regime, the Stokes

number of a particle is now dependent on the particle’s velocity, which means that the

Stokes numbers used for calculating different quantities might not be the same. For

example we can express the WISH radius as RWS =
√
GMSt/(vgasΩ), but the St value

in that expression is defined with respect to vrel = vgas, meaning it will not be the same

as the Stokes number for e.g, vpk, which assumes of course that vrel = vpk. In this case

the simple argument that all quantities are solely dependent on St breaks down. In

practice if we use e.g. the Stokes number defined with respect to laminar drift velocities

for comparison purposes, the discrepancy between the two surface densities is minor.

Furthermore, if we write the critical radius dividing the fluid and diffuse drag regimes,

rs = 9λ/4, in terms of Stokes number, it is straightforward to show the particle is in

the fluid regime for

110



Stcrit > 7.4× 10−2
( a

AU

)23/7
(

Σg,0

500 g cm−2

)−2

. (2.78)

Because of the strong scaling of Stcrit with a, for a & 5 AU the differences between the

two surface densities disappear entirely.

Thus, in general the range of small body sizes where accretion is effective will

shift to lower values as the gaseous component of the disk dissipates. The subsequent

effects of such a shift are quite sensitive to the underlying size distribution of the small

bodies. A particularly salient issue here is whether radius or Stokes number controls the

processes that produce the size distribution, as could be the case if e.g fragmentation

near St ∼ 0.1 generates an upper cutoff to growth (Blum & Wurm 2008). If the

Stokes number is what matters, then the effects of dissipating the surface density would

be rather minimal, provided the surface density of the disk evolves faster than the disk

dissipation timescale. If the size distribution is determined by radius however, and there

exists a small range of sizes where most of the mass of the disk is located, then the shift

in effective accretion range could have substantial effects, either positive or negative, on

the accretion rate of small bodies. In the outer disk, for example, the combination of

growth and radial drift may set an important particle scale (e.g. Birnstiel et al. 2012,

Powell et al. 2017). The combination of these effects merits further investigation. See

Lambrechts & Johansen (2014) for an example of pebble accretion in the presence of

particle sizes determined by the interplay of growth and drift (note these authors use a

full gas disk, not one depleted in gas surface density).
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2.6.4 Effects of Varying Stellar Mass

In this section we discuss the dynamical effect of varying M∗. Clearly, higher

mass stars will have a higher overall temperature, should on average have higher surface

densities as well. Since we have discussed those effects in previous sections, in this

section we consider only the effect of varying M∗, leaving the other properties of the

disk unchanged.

Changing M∗ has an effect on the growth process solely though its effect on

the local Keplerian orbital frequency Ω and the size of the Hill radius RH . Higher mass

stars have lower dynamical times, which tends to speed up growth. On the other hand,

in the presence of more massive stars the Hill radius of a growing planet will shrink as it

becomes more difficult to hold on to accreting material, which clearly inhibits growth.

The interplay between these two factors will determine the net effect of varying the

stellar mass – which effect dominates, and therefore whether changing stellar mass is

beneficial or detrimental to growth, depends on the other input parameters.

An example is shown in Figure 2.17. The Figure shows a plot of tgrow vs. rs

for five different stellar masses; the panels shows the growth timescale for two different

levels of turbulence. Many of the main features of varying M∗ are visible in the figure.

For the α = 0 case, small particles (rs . 0.1 mm) are accreted much more rapidly by

the more massive stars. In this regime particles have Racc = RWS and accrete in 3D,

with scale height Hp = HKH .. Thus the primary effect here of varying stellar mass is to

change ηvk and ρg along with Ω. In the Epstein regime however, these effects on both

RWS and St cancel out, and because HKH ∼ 2ηvk/Ω, the increase in growth rate in
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this regime scales roughly as Ω ∝ M
1/2
∗ . Eventually, the particle size increases to the

point that Rshear < RWS , which also implies that particles are now shear dominated.

Because, in the laminar regime, this change roughly corresponds to where we shift from

3D to 2D accretion, the effect of increasing stellar mass in this regime is actually to

increase the growth timescale – tgrow ∝ (R2
shearΩ)−1 ∝ St−2/3R−2

H Ω−1 ∝M1/6
∗ , since St

is independent of M∗ in the Epstein regime. This is what causes the overlap in tgrow

curves as rs increases. Due to the fact that changing M∗ can switch the regime that

determines one of our growth parameters (e.g. shear vs. dispersion dominated) the

maximal change in growth rate for two stellar masses M∗,1 and M∗,2 in this regime can

be complicated. In general, however, the change is of order Ω1/Ω2 = (M∗,1/M∗,2)1/2, as

can be seen in Figure 2.17.

As we increase in particle size, the cores reach the point where they can accrete

particles at Racc = RH . As can be seen in Figure 2.17, the value of rs where this

transition occurs is a decreasing function of M∗ due to the decreased size of the Hill

radius at higher stellar mass. Figure 2.17 also shows that increasing stellar mass initially

decreases the growth timescale, but for higher M∗ further increasing the mass of the

star actually increases the growth timescale. This is due to the fact that decreasing M∗

increases HKH , affecting whether the largest size particles are accreting in the 2D or 3D

regime. Low mass stars will accrete in 3D, in which case increasing M∗ will decrease the

growth timescale by bringing the particle density down and the rate of shear up. Once

the stellar mass becomes sufficiently large however, we will have RH > HKH , and the

core will accrete in 2D. In this case increasing M∗ will slow down growth by decreasing
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the size of the Hill radius.

As turbulence increases, the difference between the various stellar masses for

small particle size disappears. This effect occurs due to a balance between the decreased

growth rate from decreasing encounter rate and an increased growth rate due to an

increased particle density, since we generally accrete in 3D in this regime. If particles

are drift-dispersion dominated, then v∞ = vpk ≈ vgas and Racc = RWS . When α 6= 0,

RWS is no longer independent of M∗. If α > η, then vgas is approximately constant with

respect to varying Ω, meaning that the quantity in the denominator of tgrow – R2
WSvpk ∝

M
−1/2
∗ . Furthermore, if vshear > vpk, then Racc = Rshear, and the denominator of tgrow

is ∝ R3
shearΩ ∝ M

−1/2
∗ . For sufficiently strong turbulence that Hturb > HKH , we have

Hp ∝ Ω−1 ∝M−1/2
∗ . Thus for 3D accretion in the strong turbulence regime these effects

approximately cancel out, causing the growth curves to merge.

For high core masses, the transition on the right side of the graphs where

tgrow increases as a function of rs occurs at essentially the same value of small body

radius, independent of M∗. As noted in Equation (2.61), the energy criteria KE < W

can be rewritten as St < 4
√

3 for particles in this growth regime. For particles in the

Epstein regime the Stokes number is independent of M∗, causing the cutoff radius to be

approximately the same for all stellar masses. The timescale in this regime is weakly

dependent on Mstar – these large particles accrete at tHill, with an increase in growth

timescale ∝ St, which again is essentially independent of M∗. Thus the growth timescale

goes as tgrow ∝ (RHvH)−1 ∝M1/6
∗ .

In the laminar regime the cutoff at small radii is also independent of rs. This
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cutoff occurs when RWS < Rb, and since, as previously noted, RWS is independent

of M∗ in the laminar regime, this cutoff is independent of M∗ as well. As turbulence

increases RWS becomes a decreasing function of M∗, causing the cutoff in growth to

shift to higher values of rs.

For low core masses, the low end cutoff still has the same dependence on M∗.

However, growth will now cut off at the limit given by Equation (2.76), which is an

increasing function of M∗ in both the laminar and turbulent regimes.
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Figure 2.13: The range of small body radii which can accrete within a factor of two of
tHill for a given semi-major axis and core mass. As indicated in the legend, different
hatching styles indicate different levels of turbulence. If a given region is accessible for
different levels of turbulence the various hatching styles are overlaid.
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Figure 2.14: The ratio of kinetic energy relative to the core to work done by the gas
on an incoming particle assuming α = 0, plotted as a function of small body radius
rs. Curves are shown for a range of core masses. The left panel shows the situation at
a = 1 AU, while the right panel is for a = 50 AU.
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Figure 2.15: The growth timescale as a function of semi-major axis for two different
values of the prefactor of the temperature profile, T0. Both panels use the values rs =
0.25 cm, M = 10−1M⊕. The panel on the top is for α = 0, while the panel on the
bottom is for α = 10−2. The effect of increasing T0 is more substantial in the laminar
case, since Hp and vpk both scale as c2

s in this regime, as opposed to cs in the turbulent
case.
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Figure 2.16: The gas-assisted growth timescale for a disk with its gas surface density
depleted by a factor of 100. The values shown are for a = 30 AU, andM = 1.5×10−2M⊕.
Both a laminar (α = 0) and a strongly turbulent (α = 10−2) case are shown. The solid
lines shown the values for the surface density used in the paper, while the dashed lines
depict the effect of changing the surface density.
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Figure 2.17: The effect of varying the mass of the central star. The values shown here
are at a distance of a = 70 AU, and M = 0.5M⊕. The panels show the grow timescale
as a function of small body size for a laminar (α = 0) and strongly turbulent (α = 10−2)
disk. Each panel shows the timescale for five different stellar masses. Top Panel : In the
laminar case the small particles which accrete at Racc = RWS are accreted more rapidly
around higher mass stars, as more massive stars have higher rates of shear and reduced
small body scale height. As particle size increases the particles will begin accreting at
Racc = RH – the effect of stellar mass in this regime depends on the size of HKH relative
to RH (see text). Bottom Panel : The inclusion of turbulence allows the scale height of
smaller particles to be set by turbulent diffusion instead of the Kelvin-Helmholtz shear
instability, making the scale height independent of M∗ in this regime. In this case the
increase in shear rate is balanced by the decrease in RWS , causing the growth curves to
merge for low values of rs. For higher values of rs where Racc = RH the situation is the
same as in the top panel.
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2.7 Flow Isolation Mass

In this section we discuss accretion in the regime Rb > RH . In general, the

core’s atmosphere extends up to a scale Ratm = min(Rb, RH), as once Rb > RH Ratm is

limited by gravitational effects from the central star, as opposed to the core’s ability to

bind nebular gas. Thus for core masses large enough that Rb > RH the energy criteria

discussed in Section 2.2.1 are the same with Rb → RH .

Figure 2.11 shows the emergence of a feature for high core masses where only

larger sizes of particles can accrete. This occurs when the core reaches a mass Mflow

such that Rb = RH . As discussed in Section 2.2.1, in the regime RH > Rb, small bodies

with Rstab < Rb will not be able to accrete if they dissipate their kinetic energy during

their interaction with the core – since the gas will flow around the core’s approximately

incompressible static atmosphere, particles that couple to the gas flow near the core

will be pulled around without accreting. For lower mass cores, only particles that are

small enough that RWS < Rb are restricted from accreting in this manner, i.e. this

consideration dictates the lower limit on the particle size that can be accreted. Once

the core’s mass is large enough that Rb > RH however, we now have Ratm = RH ,

and therefore Rstab . Ratm for all particle sizes. Thus, any particles that dissipate

their kinetic energy relative to the core will be pulled around by the gas flow without

accreting. Because Ratm = RH , we expect the gas flow to be around RH , instead of Rb

as it was in the lower mass case. See Figure 4.3 for an illustration.

We note that the gas will be accelerated by the core’s gravity as it passes

through Rb; interior to Rb the local orbital velocity exceeds the sound speed, which
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means the flow can accelerate to supersonic velocities. In this case, it is less clear that

the core’s atmosphere will act as an incompressible obstacle. However, there still should

exist a scale r past which the flow can no longer penetrate the core’s atmosphere. To

see this, we can compare the incoming kinetic energy of the flow to the binding energy

of the core’s atmosphere. In a time ∆t the mass of gas entering into the length scale r

is of order ρnebvapp∆tr2, where ρneb is the volumetric mass density of the nebular gas

and vapp is the velocity of the incoming gas relative to the core. Since Rb & RH implies

that vH & cs > vgas we have vapp . vH . The timescale for gas to enter r is ∆t ∼ r/vapp.

The binding energy of the atmosphere at scale r is ∼ GM2/r ∼ ρatmv
2
escr

3. Thus, the

ratio of the incoming kinetic energy to the binding energy is

ρnebv
2
appr

3

ρatmv2
escr

3
≤ ρnebr

3ρatmRH
, (2.79)

where we’ve used the fact that vapp ≤ vH and that v2
H/v

2
esc = r/(3RH). The quantity

above is clearly � 1 for r . RH , particularly since close to the planet we expect

ρatm � ρneb. Thus there exists a scale r . RH where the incoming kinetic energy of

the gas is much less than the binding energy of the core’s atmosphere.

The core reaching Mflow signals a rapid cutoff in the accretion of pebbles:

for masses just below Mflow there will always exist a wide range of particle sizes that

dissipate their kinetic energy during the interaction with the core. Once M > Mflow

accretion of these particle sizes, which generally represent the most rapid accretion rates,

suddenly shuts off. We can demonstrate analytically that a broad range of particle sizes

satisfying KE < W will be present for M = Mflow. To begin, we first show that at this
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Figure 2.18: A schematic illustration of the trajectories of particles with KE < W for
M > Mflow. The particle (blue circle), comes in from the left. Since the particle is
able to dissipate its kinetic energy relative the core, it begins to follow the local gas
flow. The core’s atmosphere extends up to RH , and the nebular gas flows around this
obstacle. The particle is pulled along with the gas, causing it to flow around the core
without being accreted.

mass scale, we never have Rstab = RWS . Firstly, Rb = RH implies that vH = cs/
√

3.

The analytic criterion for the relative sizes of Rb, RWS , and Rshear for Rb = RH can

therefore be summarized as:

Rshear < RWS : St >
√

3

(
vgas

cs

)3

RWS > Rb : St >
1√
3

(
vgas

cs

)
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Since vgas/cs � 1, the above implies that Rstab = Rshear occurs prior to accretion

commencing for RWS > Rb. Thus, accretion commences for Rshear > Rb, which occurs

at a Stokes number of

St > 9

(
vH
cs

)6

=
1

3
. (2.80)

On the other hand, accretion will cease when KE > W . Since these particles are clearly

shear dominated, we will simply have our criterion given in Equation (2.61) for particles

which shear into RH

St < 4
√

3 . (2.81)

Thus, any particle in the range 1/3 < St < 4
√

3 will be accreted for masses just below

Mflow, but for M > Mflow all particles in this range will no longer be accreted, i.e.

M > Mflow represents a general point throughout parameter space where accretion of

small bodies through pebble accretion cuts off.

Solving Rb = RH for M gives Mflow as

Mflow =
1√
3

c3
s

GΩ
. (2.82)
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Plugging in fiducial values of our parameters gives

Mflow = 4.4

(
T0

200 K

)3/2 ( a

AU

)6/7
(
M∗
M�

)−1/2

M⊕ . (2.83)

For the temperature profile used in this work, the value of flow isolation mass

is markedly similar to the distribution of solar system cores. Figure 2.19 shows the

flow isolation mass scaled down by a factor of 4 as a function of semi-major axis. This

corresponds to a cutoff in accretion for Rb = 4−2/3RH ≈ 0.4RH , as opposed to Rb = RH .

For the terrestrial planets we have plotted the total mass of the planet. For the gas

giants the bars indicate the range of possible masses, since these values are not as well

constrained. For the gas giants the mass of the cores, as opposed to the total mass

in solids, are shown, as once runaway gas accretion begins the amount of solids in the

planet will not be set by the flow isolation mass. The values plotted are taken from

Figures 7 and 8 of Guillot (2005), with the maximal range of core masses shown. For

the ice giants we use the total mass in solids, since the flow isolation mass will more

directly influence this number if runaway gas accretion does not occur. Again, these

values are taken from Guillot (2005) (Section 3.4). The correspondence between the

flow isolation mass and the masses of the solar system cores may indicate that the flow

isolation mass played a role in influencing the final masses of the solar system planets.

We stress that this figure should not be over interpreted, as there a variety

of factors that complicate the formation of the solar system planets. In particular,

meteoritic dating (e.g. Yin et al. 2002, Kleine et al. 2009) and dating of the Moon-

forming impact (e.g. Bottke et al. 2015) provide strong evidence that the final assembly
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of the terrestrial planets occurred on timescales & 10 Myr and that a period of “giant

impacts” was important for setting the final masses of these planets. Because proto-

planetary disks do not last longer than 10 Myr, nebular gas would not be present and

gas-assisted growth would not occur during this phase. It is possible that the flow isola-

tion mass played a role in setting in the initial embryo masses that underwent this phase

of giant impacts. Any such scenario however, would have to explain the low masses of

Mercury, Mars, and the inferred mass of the Moon-forming impactor (Canup 2012). It is

conceivable that some cores reached flow isolation, while others stalled at low core mass

due to the inefficiency of growth at low core masses described in Section 2.6.1. If all

cores reached flow isolation, giant impacts could in principle remove mass from some, as

has been proposed to explain the anomalously high density of Mercury (e.g. Benz et al.

1988). Modeling by Leinhardt & Stewart (2012) demonstrates that, for collision events

typical of the final stages of terrestrial planet formation, the outcomes span the range

from perfect accretion to erosion of the more massive target. Note that any scenario

invoking flow isolation in the inner solar solar system is contrary to standard models

of terrestrial planet formation, which rely on the giant impacts phase to increase the

masses of the terrestrial planets above their isolation mass (e.g. Agnor et al. 1999).

The flow isolation mass may be most relevant in the context of the ice giant

planets, which were previously thought to form by growing to their local isolation mass,

though note that the ice giants are thought to have migrated substantially from the

location of their initial formation (reviewed e.g. in Morbidelli et al. 2008). In the context

of pebble accretion however, planets are not limited by locally available material due
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to radial drift of solids. The flow isolation mass could provide a plausible mechanism

that sets the mass of these planets in the context of pebble accretion (see Frelikh &

Murray-Clay 2017 for a more in depth discussion).

We note here that a similar mass is identified by Lambrechts & Johansen

(2014), who refer to it as the “Pebble Isolation Mass.” We strongly emphasize, however,

that the existence of the pebble isolation mass is based on different physics than our flow

isolation mass: the pebble isolation mass is based on the gravity of the planet opening

a gap in the pebble disk, as opposed to the planet altering the local flow of nebular

gas. Lambrechts & Johansen (2014) calculate the pebble isolation mass by identifying

the point where gravitational perturbations from the growing core’s gravity render the

gas velocity immediately outside of the planet’s orbit “super-Keplerian,” which tends

to push pebbles outwards rather than bring them in. Lambrechts & Johansen perform

numerical simulations at 5 AU in order to determine the pebble isolation mass at this

orbital separation. They then calculate the dependence of Mflow on the disk aspect

ratio, H/a, analytically, and determine that Mflow ∝ (H/a)3. Combining these results,

Lambrechts & Johansen give the pebble isolation mass as

Mflow ≈ 20
( a

5 AU

)3/4
M⊕ . (2.84)

Despite the different physics used to calculate these mass scales, the flow isolation mass

and the pebble isolation mass occur at roughly the same value – to see this, we first note

that since H/a ∝ cs/(Ωa), we have (H/a)3 ∝ T 3/2a3/2. Thus our scaling agrees with
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the Lambrechts & Johansen result. Furthermore, if we use a temperature in agreement

with these authors’ choice, T ≈ 270 K (a/AU)−1/2, then our criterion for pebble isolation

mass, i.e. that Rb = RH , gives

Mflow = 23.2
( a

5 AU

)3/4
M⊕ , (2.85)

in rough agreement with the Lambrechts & Johansen result. Finally, we note that the

flow isolation mass is similar in scale to the “Thermal mass” discussed in Section 2.5.6,

past which the core’s Hill radius exceeds the disk scale height (Lin & Papaloizou 1993).
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Figure 2.19: The value of the flow isolation mass (solid line), as well as the flow isolation
mass scaled down by a factor of four (dashed line), both plotted as a function of semi-
major axis. Also shown are the masses of the cores of the solar system planets. Values
for the four giant planets are taken from Guillot (2005). For the terrestrial planets the
total mass is shown. For the gas giant the mass of the core is used, whereas for the ice
giants the total mass in solids is plotted.
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2.8 Summary and Conclusions

In this paper we have presented an order of magnitude model of pebble accre-

tion, which accounts for the effects of turbulence on a variety of the timescale parame-

ters. We calculate the growth timescale for a planet as

tgrow =
MHp

2fsΣv∞RaccHacc
. (2.86)

We calculate v∞, Racc, Hacc, and Hp separately, allowing a number of different physical

processes to set each of these velocity and length scales. Our model uses the wind-

shearing radius of Perets & Murray-Clay (2011) to take into account the effects of gas

drag on the stability of small bodies during the accretion process, which can set Racc

instead of RH or Rb. We also use the approximate formulae presented by Ormel &

Cuzzi (2007) for the RMS turbulent velocity of small bodies in a turbulent medium to

incorporate the effects of turbulence into v∞. An incoming small body has its incoming

kinetic energy compared to the work done by gas drag during the encounter, which

determines the range of small body sizes that the core can accrete. The resulting

model gives the growth timescale as well as a variety of other important parameters

(vpk, Hp, FD, . . .). Due to its relative simplicity, our model can be applied over a large

range of parameter space, and can be coupled with other physical processes, such as

planetary migration.

Studying the output of our model reveals many important of aspects of proto-

planetary growth via pebble accretion in the presence of turbulence. Once protoplanets
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reach a large enough size (ranging from 10−4 − 10−1M⊕, depending on the strength of

turbulence, as well as the location in the disk and the sizes of pebbles available), growth

timescales become far shorter than the lifetime of the gaseous protoplanetary disk. This

results remains true even for extremely strong (α & 10−2) turbulence. These enhanced

growth rates are more than substantial enough to allow the formation of gas giants at

wide orbital separations, where planetesimal accretion is inefficient, provided the cores

can first reach this high mass.

Of equal importance however, are the regions where pebble accretion is not as

efficient. We find that turbulence can substantially lower the growth rate at low core

masses. For lower core masses and stronger turbulence, a smaller range of particle sizes

are able to accrete at tHill, and it becomes easier for turbulence to cut off gas-assisted

growth for more massive particles entirely. These effects are exacerbated at wide orbital

separations, where the detrimental effects of the gas on the accretion process are more

substantial. Thus when studying the growth in pebble accretion it is important to

consider not just the maximal accretion efficiency where the core accretes over its Hill

radius, but to consider what sizes of small bodies are available and how these small

bodies are affected by their interactions with the gas. These effects can have considerable

ramifications for the predictions of any theory of planet formation by pebble accretion.

While we have used fiducial values of disk parameter in order to provide con-

crete numeric results in this paper, our model is quite flexible with regards to the disk

parameters used. We briefly discussed the effects of modifying a few of these parame-

ters, namely the temperature and surface density profiles and the stellar mass. While
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these effects are complicated, we can briefly summarize them as follows:

• For higher temperatures, accretion generally slows down. The timescale for the

most rapid accretion, where particles accrete over the entirety of the core’s Hill

sphere, is unaffected by disk temperature, though the range of particle sizes that

can accrete at this rate may shrink in hotter disks.

• Depleting the gas surface density shifts the correspondence between Stokes number

and small body radius, essentially shifting the curve of tgrow(rs) to smaller values

of particle size. The scale of tgrow is unchanged.

• In a laminar disk, increasing stellar mass makes accretion of smaller particle radii,

which accrete at Racc = RWS , more efficient due to the increased gas density

and shear rate. In a turbulence disk the growth rate for small particle radii is

insensitive to stellar mass. For larger particle sizes where Racc = RH the effect

of increasing stellar mass is not as clear cut, but the overall effect is much less

significant than in the small radius case.

Finally, we identified a natural upper limit to core mass in the context of

pebble accretion, the “Flow Isolation Mass.” Past this mass the Bondi radius of the

core will exceed its Hill radius, in which case the region where the core’s gravity alters

the gas flow exceeds the radius for stable orbits about the core, regardless of the small

body size being accreted. In this regime the normal mechanism for pebble accretion

will not be able to operate, since particles that dissipate their kinetic energy relative

to the core will follow the flow of gas and be pulled around the core without accreting.
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This upper limit may set the critical mass that triggers run away gas accretion, since

once cores reach this limit their accretion luminosity will drop, allowing them to accrete

substantially more gas from the surrounding nebula. We note that the value of the flow

isolation mass as a function of semi-major axis is quite similar to the distribution of the

cores of the solar system planets. While this is an intriguing possibility, further study

is needed to determine the importance of this mass scale.

An interesting and important extension to our model would be to consider

lower mass cores, for which the effects of gas are more pronounced. This would require

modeling not just the effects of the RMS random velocity of the small bodies, but also

the particle-particle relative velocity between the small body and the core. Expressions

for the turbulence induced relative velocity are given in e.g. OC07, but these formulae

are much more complex than Equation (2.22). Another effect that may be more im-

portant for lower masses is consideration of the full probability density function of the

particle-particle relative velocity. In this work we have used only the RMS value for

velocity, but considering particles in the low and high velocity tails of the distribution

can have important effects, as has been noted for early stages of growth (Windmark

et al. 2012). Our preliminary investigations of gas-assisted growth at planetesimal sizes

show that many novel features appear in this regime that are not present in the higher

mass case – for example the range of particle sizes that planetesimals can accrete effi-

ciently can be much narrower than the range for protoplanets. This effect could lead to

stratification in the composition of planetesimals, which could be observed in our solar

system. Furthermore, for low masses the actual collision velocity between the core and
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small body can be smaller than their initial relative velocity, due to the inspiral of the

particle, which can have important ramifications for whether a given collision results in

growth, bouncing, or fragmentation.

There are a large number of applications for our model to address issues in

planet formation. In Chapter 3 we present one such application: we apply our theory to

the question of formation of gas giants at wide orbital separation. We are particularly

interested in how the strength of turbulence can help place restrictions on when gas

giant formation is possible, which may help us understand why wide orbital separation

gas giants are so uncommon even though pebble accretion timescales are so rapid.

134



Chapter 3

Restrictions on the Growth of

Gas Giant Cores via Pebble

Accretion

3.1 Introduction

In the traditional “core accretion” model of planet formation, growth of plan-

ets proceeds in a bottom-up manner. Planets begin their growth as rocky cores, or

protoplanets. If these protoplanets reach sufficient size within the lifetime of the gas

disk, they will be able to trigger runaway gas accretion, resulting in a gas giant (Pollack

et al. 1996). This runaway occurs when Matm ∼ Mcore, where Matm is the mass of the

planet’s atmosphere and Mcore is the mass of the planet in solids. The critical core mass,

Mcrit, where this occurs is usually quoted as Mcrit ∼ 10M⊕, though the actual mass
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depends on the disk parameters, especially the opacity and the core’s accretion rate

(see, e.g. Rafikov 2006, Piso et al. 2015). A gas giant will not form if the planet cannot

reach Mcrit within the lifetime of the gas disk, τdisk, which is ∼ 2.5 Myr for G stars

(Mamajek 2009, Ribas et al. 2014). Traditional models rely on gravitational focusing

to increase the effective radius for collisions. These models, which we will refer to as

“canonical core accretion” or “planetesimal accretion” models, give growth timescales

that are generally fast enough to reach critical core mass for a . 10 AU, but become

longer than the disk dispersal timescale past this distance. (See Goldreich et al. 2004,

hereafter GLS, for a review of gas-free regimes.)

Observations of exoplanetary systems have challenged this canonical core ac-

cretion model in a number of ways. Here we focus on the existence of systems that

feature gas giants at wide orbital separations (see, e.g. Bowler 2016 for a review). Of

particular note is the planetary system surrounding the star HR 8799, which exhibits

a nonhierarchical, multiplanet structure: HR 8799 consists of four gas giant planets

(M ∼ 10MJ) at extremely wide projected separations: 14, 24, 38, and 68 AU (Marois

et al. 2008, Marois et al. 2010). HR 8799 poses a serious challenge to canonical core

accretion models because the last doubling timescale for growth at these distances is

far too long for a core to reach the critical mass necessary to trigger runaway growth

within τdisk. Additional effects, such as gas drag from the planet’s atmosphere (Inaba

& Ikoma 2003) or damping of the planetesimals’ random motions by the nebular gas

(Rafikov 2004), can increase the cross section for collisions further. Neither of these

effects, however, are sufficient to allow the in situ formation of gas giants at 70 AU.

136



A number of alternative formation scenarios have been proposed to explain the

formation of HR 8799. One commonly suggested explanation is that HR 8799 is evidence

of an alternative formation scenario known as “gravitational instability,” wherein the

gaseous component of the protoplanetary disk becomes unstable to gravitational collapse

and subsequently fragments into the observed gas giant planets (Boss 1997; see also

Kratter & Lodato 2016 for a more recent review). However, Kratter et al. (2010) pointed

out that it is difficult to form fragments of the sizes seen in HR 8799 without having

these “planets” grow to brown dwarf or even M-star masses. The lack of observed brown

dwarfs at wide orbital separations provides some evidence against this hypothesis, but

additional statistical work is needed (Bowler 2016). Outward scattering after formation

at smaller orbital separations is another possibility, but N -body simulations by Dodson-

Robinson et al. (2009) find that scattering is unlikely to produce systems with the

multiplanet architecture of HR 8799.

In recent years, a third possibility has emerged: a modification to the theory

of core accretion commonly referred to as “pebble accretion,” which we will also refer to

as “gas-assisted growth” (Ormel & Klahr 2010, Perets & Murray-Clay 2011, Ormel &

Kobayashi 2012, Lambrechts & Johansen 2012, Lambrechts & Johansen 2014, Levison

et al. 2015a, Morbidelli et al. 2015, Visser & Ormel 2016, Ida et al. 2016, Xu et al. 2017,

Rosenthal et al. 2018). In pebble accretion, the interaction between solid bodies and

the gas disk is considered in detail when determining the growth rates of planets. In

particular, gas drag can enhance growth rates by removing energy from small bodies.

Particles that deplete their kinetic energy within the gravitational sphere of influence
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of a larger body can become bound to this parent body, which will eventually lead to

accretion of the particle by the growing protoplanet. This process can occur at larger

impact parameters than are required for the particle to collide with the core, which in

turn increases the accretion cross section. This interaction often affects mm-cm-sized

bodies the most strongly. Note, however, that for low-density, “fluffy” aggregates, the

radius of bodies most substantially affected by gas drag can be substantially larger.

For gas-assisted growth to operate, a reservoir of pebble-sized objects must

exist in the protoplanetary disk. Because the sizes of these pebbles are comparable

to the ∼ mm wavelengths used to measure dust surface densities in the outer regions

of protoplanetary disks, observations can directly probe the surface densities in the

small solids that fuel gas-assisted growth. These observations find large reservoirs of

small, pebble-sized solids (Andrews et al. 2009, Andrews 2015). An example is shown

in Figure 3.1, which presents disk surface densities measured by Andrews et al. (2009).

The figure shows the surface density in particles of radius 0.1 mm − 1 mm, which is

inferred by integrating the size distribution used in the paper (dN/drs ∝ r−3.5
s ) from

0.1 to 1 mm. Performing the integration gives the fraction of the measured solid surface

density contained in this size range (∼ 70%).

Given this observed reservoir of small solids, pebble accretion dramatically in-

creases the expected growth rate of large cores. Under fiducial conditions, the timescale

for a core’s last doubling to canonical values of Mcrit is below the disk lifetime, even

at many tens of AU separations. Though fast accretion of solids deposits enough en-

ergy to delay the onset of runaway accretion of a gas envelope, once a core has reached
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Figure 3.1: Colored lines show the dust surface density in 0.1 mm−1 mm sized particles
taken from 870 µm continuum emission observations of protoplanetary disks done by
Andrews et al. (2009). See text for details. Also shown for reference is the value of the
solid surface density in the minimum-mass solar nebula (MMSN), appropriate for the
outer disk, 30 (a/AU)−3/2 g cm−2 (Weidenschilling 1977b, Hayashi 1981), as well as the
fiducial surface density used in this work to match the observations. In the gray shaded
region the values of the curves are extrapolations to scales smaller than the observations
can resolve.

several Earth masses, finely tuned disk conditions are required to slow atmospheric

growth enough to prevent runaway from ultimately occurring. Thus, growth via pebble

accretion seems to predict that wide orbital separation gas giants should be common.

However, direct imaging surveys show that planets & 2 − 5MJ are rare at distances

> 30 AU (Brandt et al. 2014, Chauvin et al. 2015, Bowler 2016, Galicher et al. 2016).

One possibility for solving this problem is the presence of turbulence in the
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nebular gas. In this work, by “turbulence,” we generally mean any anomalous root mean

square (RMS) velocity of the nebular gas that is not due to the laminar velocity that

arises from radial pressure support in the disk. The main effect of turbulence on pebble

accretion is to increase the velocity dispersion of the pebbles due to their coupling with

the gas; it is only in Section 3.5 that we connect our parameterization of the turbulent

RMS velocity to the transport of angular momentum in the disk. Turbulence can both

increase the kinetic energy of an incoming particle and decrease the core’s gravitational

sphere of influence. Turbulence also drives particles vertically, reducing the overall

densities of small bodies and slowing accretion. Turbulence is usually only included

in models of protoplanetary growth by pebble accretion by increasing the particle scale

height and hence reducing the mass density of solids. Some models of the early stages of

planetesimal growth discuss the effects of turbulence (e.g. Guillot et al. 2014, Homann

et al. 2016), but these models are concerned with accretion at cross sections comparable

to the core’s geometric cross section; i.e. they neglect the effects of the core’s gravity.

In this paper, we use an order-of-magnitude model of pebble accretion (Rosen-

thal et al. 2018, hereafter R18) to propose a criterion for the formation of gas giants via

gas-assisted growth. In particular, R18 investigated how turbulence affects the growth

of gas giant cores as a function of core mass. High-mass cores (& 10−2 − 10−1M⊕)

can grow on timescales less than the lifetime of the gas disk, even in strong turbulence.

However, for lower-mass cores and stronger turbulence, the range of pebble sizes avail-

able for growth is restricted. In this case, the pebble sizes for which growth is most

efficient often cannot be accreted, and growth can “stall” at low core masses.
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In effect, a core must first achieve a minimum mass before it can quickly grow

to Mcrit via gas-assisted growth. In this paper, for our fiducial calculation, we assume

that growth to this minimum mass happens by canonical core accretion, which allows us

to place semi-major axis limits on where gas giant growth is possible. We also calculate

values for the core mass needed at a given semi-major axis for pebble accretion to be

rapid, which apply regardless of how the early stages of growth proceed. The assumption

that low-mass growth is fueled by planetesimal accretion requires that, in addition to the

reservoir of small pebbles, a substantial population of larger planetesimals has formed.

We discuss the ramifications of varying the mass in planetesimals in Section 3.4.2. Close

to the central star, planetesimal accretion can dominate the early growth of planets,

with pebble accretion setting the growth timescale for high-mass cores. Far from the

central star, however, planetesimal accretion is less efficient, limiting its ability to grow

cores to high enough masses that pebble accretion kicks in. Thus, turbulence can set

the maximum distance at which gas giant formation is possible via pebble accretion.

We find that for quiescent disks, gas giants can form far out in the disk (a . 70 AU),

but for stronger turbulence, this maximum distance is smaller (e.g. a . 40 AU for

α & 10−2). Furthermore, while disks with weaker turbulence can have gas giants at

wider orbital separation, the weaker viscosities in these disks mean that the masses of

the gas giants formed are likely lower (. 2MJ), which would preclude them from being

detected by the current generation of direct-imaging surveys. Therefore, there may exist

a population of wide orbital separation gas giants that have yet to be found due to their

low luminosities.

141



In Section 4.2, we review our model, which is discussed in detail in R18. In

Section 3.3, we discuss how gas-assisted growth operates at wide orbital separation,

contrasting the rapid growth at high core mass with the slower growth for low-mass

cores. In Section 3.4, we explore how turbulence can place limits on the semi-major

axes where gas giants can form. In Section 3.5, we investigate the implications for the

final masses of gas giants if turbulence plays a role in gap opening in addition to early

core growth. Finally, in Section 3.6, we summarize our results and give our conclusions.

3.2 Model Overview

In this section, we will give a brief summary of the ideas behind pebble accre-

tion and how they are implemented in our model. We will focus on pebble accretion

at the mass scales relevant to limiting gas giant growth – i.e. masses in the range

10−4M⊕ .M . 10−2M⊕ (see Figure 3.6). A more general and in-depth discussion can

be found in Chapter 2, and in R18.

3.2.1 Basic Pebble Accretion Processes

In this section, we discuss the basic parameters that go into calculating the

growth timescale and contrast gas-assisted growth with growth via planetesimal accre-

tion.

The setup for our model consists of a large body, or protoplanetary “core,”

growing by accreting a population of small bodies. Our calculation is performed for a

given size of small body, expressed either in terms of the small body’s mass, m, or its
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radius rs. Note that, practically speaking, the important parameter for our calculation

is the particle’s Stokes number, St (see Section 3.2.3). We can convert from Stokes

number to radius or mass by assuming a density for the small bodies. In what follows,

we will assume a density of ρs = 2 g cm−3, which is appropriate for rocky or icy bodies.

We note, however, that lower density, fluffy aggregates will have higher radii at a given

Stokes number.

In general, the growth timescale for the large body of mass M is given by

tgrow =

(
1

M

dM

dt

)−1

, (3.1)

while the growth rate, dM/dt can be expressed as

dM

dt
= m(nσaccv∞) = m

(
fsΣ

2Hpm

)
(2Racc)(2Hacc)v∞ . (3.2)

Here n is the volumetric number density of small bodies, σacc is the accretion cross

section, and v∞ is the velocity at which small bodies approach the large body. In the

second equality, we have set n = fsΣ/(2Hpm), where Hp is the scale height of the small

bodies, Σ is the surface density of the gas, and fs ≡ Σp/Σ is the solid-to-gas mass ratio

in the disk. We have also decomposed σacc into the product of length scales parallel and

perpendicular to the disk plane, 2Racc and 2Hacc, respectively. Combining these two

expressions gives
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tgrow =
MHp

2fsΣv∞RaccHacc
. (3.3)

Thus, once Hp, v∞, Racc, and Hacc are determined, tgrow can be calculated.

For growth that proceeds by accretion of massive planetesimals, the effects

of gas drag are generally negligible (though see Rafikov 2004 for a discussion of the

effects of gas drag on smaller planetesimals of size . 1 km). In this case, the value of

Racc is determined by the maximum impact parameter at which a small body will be

gravitationally focused into a collision with the core,

Rfocus = R

(
1 +

v2
esc

v2
∞

)1/2

, (3.4)

where R is the physical radius of the core, and vesc =
√

2GM/R is the escape velocity

from the core.

An important parameter for calculating Rfocus is the core’s “Hill radius,” which

is the characteristic radius at which the large body’s gravity strongly influences the

trajectories of the small bodies. For a big body of mass M orbiting a star of mass M∗

at a semi major axis a, the Hill radius, RH is given by (Hill 1878),

RH = a

(
M

3M∗

)1/3

, (3.5)
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which can be obtained by determining the length at which the gravity of the large body

is equal to the tidal gravity from the central star. Particles that pass within distances

∼ RH of the core move on complex trajectories that cannot be expressed as a simple

function of impact parameter (Petit & Henon 1986). Particles that emerge from the

Hill radius without colliding with the large body will generally have their velocities

relative to the core excited up to v∞ ∼ RHΩ ≡ vH in a random direction (GLS), where

Ω =
√
GM∗/a3 is the Keplerian angular frequency and a is the semi-major axis of the

core’s orbit. The quantity vH is known as the “Hill velocity.” If v∞ ∼ vH � vesc, it is

straightforward to show that

Rfocus ∼
√
RRH . (3.6)

Since interactions with the core excite planetesimals to a random velocity v∞ ∼ vH ,

this is the largest capture radius possible for planetesimal accretion without invoking

some damping mechanism to lower the planetesimal velocity below vH . Note, however

that since R� RH , Rfocus < RH .

In gas-assisted growth, on the other hand, the value of Racc can be much larger

than Rfocus. For “pebble-sized” small bodies, the interaction between the small bodies

and the gas is important when calculating the accretion rate. In particular, gas drag

can remove kinetic energy from the small body as it interacts with the growing core.

If the work done by gas drag is sufficiently large, small bodies that otherwise would

have merely been deflected by the core’s gravity can become gravitationally bound to

the core, further reducing their energy and causing them to inspiral and eventually be
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accreted by the core. This can dramatically increase the impact parameters at which

accretion will occur. As discussed by, e.g. R18, in certain regions of parameter space,

the core can accrete over the entirety of its Hill sphere, i.e. accretion proceeds with

Racc = RH � Rfocus.

3.2.2 Pebble Accretion at Different Particle Radii

The Hill radius represents the largest distance at which particles can be cap-

tured. However, not all sizes of particles can be captured at RH . To fully characterize

the scale at which pebbles are captured, we need to introduce two additional radii.

The first radius is the wind shearing (WISH) radius, which is the radius interior

to which the core’s gravity dominates over the differential acceleration between the small

body and the core due to gas drag,

R′WS =

√
G(M +m)

∆aWS
, (3.7)

where ∆aWS is the differential acceleration between the two bodies due to gas drag

(Perets & Murray-Clay 2011). Particles that approach the core at impact parameters

> R′WS will be pulled off the core by gas drag even if they are inside of RH . Thus, the

value of Racc is given by

Racc = min(RH , R
′
WS) . (3.8)

However, the value of R′WS depends on the size of the small body being accreted, unlike
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RH . To see this, we note that if M � m, we can rewrite R′WS as

R′WS ≈
√
GMts
vrel

. (3.9)

Here ts is the stopping time of the small body,

ts ≡
mvrel

FD (m)
, (3.10)

vrel is the relative velocity between the small body and the gas, and FD (m) is the

drag force on the small body (see the Appendix for a discussion of how the correct vrel

for calculating R′WS is determined). The stopping time parameterizes the size of the

particle in terms of its interaction with the gas. Qualitatively, for large core masses

only the stopping time of the smaller body is relevant because the core is essentially

unaffected by gas drag. The largest particles that can deplete their kinetic energy will

have R′WS > RH , and will be able to accrete over the entirety of the core’s Hill sphere,

while smaller particles will have R′WS < RH and will only be accreted at more modest

values of impact parameter. See the right two panels of Figure 2.1.

Pebble accretion will not continue down to arbitrary sizes of small bodies. As

R′WS decreases with decreasing particle size, we will eventually reach the scale of the

core’s atmosphere. Because the atmosphere is essentially static, and the flow velocity is

subsonic, the local gas flow will not be able to penetrate into the core’s atmosphere. Gas

will instead flow around the static atmosphere held by the core. See, e.g. Ormel (2013)

for an example of this behavior in the context of a planet embedded in a protoplanetary
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disk.

We take the scale of the core’s atmosphere to be determined by the Bondi

radius, Rb, which is the scale at which the escape velocity from the core is equal to the

local isothermal sound speed cs =
√
kT/µ, where k is Boltzmann’s constant, T is the

temperature, and µ is the mean molecular weight of the gas molecules. Thus, Rb is

given by

Rb =
GM

c2
s

. (3.11)

Once particles are small enough that R′WS < Rb, they need to penetrate into the core’s

atmosphere to become bound to the core. However, these small particles will couple

strongly to the gas, which will flow around Rb, stopping the particles from accreting.

Thus, we take R′WS = Rb to set the smallest size of particles that can be accreted;

see the left panel of Figure 2.1. We note here that we are neglecting any effects from

potential “recycling” of the core’s atmosphere by the protoplanetary disk, but see, e.g.

Ormel et al. (2015) and Lambrechts & Lega (2017) for discussions of this effect. If

the gas flow is able to penetrate into the core’s atmosphere (e.g. Fung et al. 2015), or

if the core’s atmospheric mass is small due to the high accretion luminosity, the core

may be able to accrete the small particle sizes that we exclude. However, the accretion

timescales for these particles are extremely long (see Section 3.3.1), so even if these

particles can indeed accrete, their inclusion makes a negligible contribution to the total

growth rate.

Cores that have Rb < R will not be able to accrete a substantial amount of
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gas from the nebula, which occurs for planetary masses M < Ma, where

Ma ≡
c3
s

G

(
3

4πGρp

)1/2

(3.12)

≈ 2× 10−4M⊕

( a

30 AU

)−9/14
(

ρp
2 g cm−3

)−1/2

(3.13)

where ρp is the density of the protoplanet (e.g. Rafikov 2006). The lowest core masses

considered in this work are below this threshold. In this case, the considerations dis-

cussed above will still apply with the protoplanet’s radius R in place of its Bondi radius

(i.e. accretion will cease for R′WS < R).

In summary, the largest sizes of particles that can deplete their kinetic energy

can be captured at the core’s Hill radius RH . For smaller sizes of particles, the WISH

radius will eventually become smaller than RH , which limits the impact parameters

where accretion can occur. Finally, the smallest sizes of particles will have R′WS < Rb.

These particles will not be able to penetrate into distances < R′WS , and therefore will

not be able to accrete via pebble accretion.

3.2.3 Summary of Timescale Calculation

In this section, we briefly discuss how tgrow, as well as the parameters necessary

for calculating the growth timescale (Racc, Hacc, Hp, and v∞, see Equation 3.3), are

determined. We also define symbols that will be used in the rest of the paper. For a

summary of how these parameters are calculated, see the Appendix. For a more detailed

discussion of how the calculation is performed, see R18.

Besides the orbital separation, a, the mass of the planet, M , and the stellar
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mass, M∗, the other input parameters needed to calculate the growth timescale are the

radius of the small bodies being accreted, rs, and the strength of the turbulence, which

is parameterized by the Shakura-Sunyaev α parameter (Shakura & Sunyaev 1973).

Using the value of rs, we can calculating the stopping time of the particle, ts,

and the particle’s Stokes number,

St ≡ tsΩ . (3.14)

The Stokes number is a dimensionless measurement of the particle’s size in terms of

how well coupled the particle is to the gas and is the directly relevant parameter for

calculating the effects of gas drag on the particle. We also note that using this form

of the Stokes number for expressions involving turbulence implicitly assumes that the

turnover time of the largest-scale turbulent eddies is equal to the local orbital period.

The value of α parameterizes the strength of the local turbulence in terms of

the turbulent viscosity: νt = αcsHg, where Hg = cs/Ω is the scale height of the gas

disk. In terms of α, the local turbulent gas velocity is given by

vgas,t =
√
αcs . (3.15)

We use α mainly to parameterize the magnitude of the turbulent gas velocity, which is

the quantity that affects the pebble accretion process. It is only in Section 3.5 that we

explicitly use α to parameterize the viscosity. While the α model of accretion disks is

generally invoked to transport angular momentum inward and explain measured accre-
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tion rates in protoplanetary disks (see, e.g. Muzerolle et al. 2005), for our purposes, α is

fundamentally a local parameter and is not necessarily connected with the accretion rate

onto the central star. The most commonly cited mechanism for generating turbulence in

protoplanetary disks is the magnetorotational instability (MRI; for a review, see Balbus

2009). Simulations of MRI under ideal magnetohydrodynamical (MHD) conditions find

effective α values of 10−2− 10−1 (e.g. Hawley et al. 1995), while MHD simulations that

include nonideal MHD effects such as ambipolar diffusion find lower α values, in the

range 10−4 − 10−3 (e.g. Bai & Stone 2011). In these simulations, the RMS turbulent

gas velocity can be approximated to order of magnitude by taking vgas =
√
αcs, as in

Equation (4.37) (e.g. Xu et al. 2017). More recent works argue that magnetically driven

winds can generate observed accretion rates, in which case protoplanetary disks could

be quite inviscid (see, e.g. Bai 2016, Suzuki et al. 2016). Even in this case, however,

pure fluid instabilities, such as convective overstability (see, e.g. Lyra 2014) or the zom-

bie vortex instability (see, e.g. Marcus et al. 2015), spiral density waves raised by giant

planets (see, e.g. Bae et al. 2016), and hydrodynamical turbulence (see, e.g. Flock et al.

2017), can all generate large RMS velocities for which the effective α value in Equation

(4.37) is not equal to the α value characterizing angular momentum transport.

Once a, M , M∗, rs, and α are specified, we can calculate the quantities needed

to determine tgrow. To begin, in order to determine the rate that particles encounter

the core, as well as the kinetic energy of the small body relative to the protoplanet,

we need to calculate the small body’s velocity far from the core. Because we take the

core to move at the local Keplerian velocity, we take v∞ to be set by the larger of the
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particle’s shear velocity, vshear = RaccΩ, and its velocity relative to the local Keplerian

velocity, which is due to the particle’s interaction with both the laminar and turbulent

components of the gas velocity. We use vpk to denote the value of this velocity relative

to the Keplerian orbital velocity. Thus, v∞ is given by

v∞ = max(vpk, vshear) . (3.16)

For every particle size, we calculate both the kinetic energy of the particle

before the encounter,

KE =
1

2
mv2
∞, (3.17)

and the work done by gas drag during the encounter,

W = 2FD(venc)Racc, (3.18)

where venc is the velocity of the small body relative to the gas during its encounter

with the core. For a discussion of how FD and venc are calculated, see the Appendix.

Particles that have KE > W cannot accrete; i.e. we set tgrow = ∞ for such particles,

regardless of the values of the parameters in Equation (3.3). 13 In practice, this sets

the upper limit on the particle sizes that can be accreted via gas-assisted growth.

In addition to determining the work done on the particle during its encounter,

13Particles with Racc = RH and v∞ = vH merely have their growth timescale enhanced by a factor
KE/W for KE > W , see the appendix for more details.
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the impact parameter for accretion Racc is used to determine the width of the accretion

cross section. As stated in Section 3.2.2, Racc is given by

Racc = min(RH , R
′
WS) . (3.19)

For more details on how R′WS is calculated, see the Appendix.

The height of the accretion rectangle Hacc is the minimum of the particle scale

height Hp and the impact parameter for accretion Racc:

Hacc = min(Racc, Hp) , (3.20)

as particles with a vertical extent larger than Racc will not be accreted. The particle

scale height is also needed because it sets the density of the small bodies; it can be set

by the Kelvin-Helmholtz shear instability or by turbulent diffusion,

Hp = max(HKH , Ht)

= max

[
2ηvk

Ω
min

(
1, St−1/2

)
, Hg min

(
1,

√
α

St

)]
, (3.21)

where vk is the local Keplerian orbital velocity, η ≡ c2
s/
(
2v2
k

)
is a measure of the pressure

support in the protoplanetary disk, and ηvk is the velocity of the nebular gas relative

to vk due to radial pressure support (i.e. the non-turbulent velocity of the gas).
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3.2.4 Values of Parameters

For the purposes of reporting numerical values in what follows, we use a fiducial

set of parameters that specify the properties of the protoplanetary disk at a given semi-

major axis. The effect of varying some of the parameters is discussed in R18.

We take the central star to be a solar mass, M∗ = M�. The small bodies and

the core are taken to be spherical, with density ρs = 2 g cm−3. We assume the gas disk

is 70% H2 and 30 % He by mass, leading to a mean molecular weight of µ ≈ 2.35mH ≈

3.93 × 10−24 g, with a neutral collision cross section σ ≈ 10−15 cm2. The temperature

and gas surface density profiles are taken to be power laws in the semi-major axis. For

the temperature profile we take T = T0(a/AU)−3/7 K (Chiang & Goldreich 1997), where

T0 = 200 K, which is appropriate for a disk irradiated by star of luminosity L ∼ 3L�

(e.g. Ida et al. 2016). For the gas surface density we use Σ = 500(a/AU)−1 g cm−2, and

we assume a constant solid-to-gas mass ratio of fs = 1/100. These choices are made to

match solid surface densities found in observations of protoplanetary disks (see Figure

3.1).

3.3 Gas-Assisted Growth Timescales at Wide Orbital Sep-

aration

In this section, we discuss the timescales for growth via pebble accretion at

wide orbital separation (& 10 AU), where canonical core accretion models are slow. We

find that even in the presence of strong (α & 10−2) turbulence, the growth timescales

for high-mass cores are far shorter for pebble accretion than for planetesimal accretion.
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Indeed, the doubling timescale is so fast at these orbital separations that it begs the

question of what inhibits this rapid growth. To investigate this question, we also show

that, unlike for planetesimal accretion, gas-assisted growth is generally slower for low

core masses, particularly when turbulence is strong.

3.3.1 Growth at High Core Mass

In the case of planetesimal accretion, the growth timescale for a core to reach

Mcrit is dominated by the last doubling timescale of the core; i.e. the slowest growth

occurs for the highest core masses. Thus, when considering whether growth of wide

orbital separation gas giants is possible, most authors examine the growth timescales at

large core masses, which limit growth in canonical core accretion.

The modification to the core accretion model presented by gas-assisted growth,

on the other hand, substantially decreases the last doubling time at Mcrit to well below

the disk lifetime, even at wide orbital separations (e.g. Lambrechts & Johansen 2012).

While turbulence can reduce the rapid growth rates provided by pebble accretion, our

modeling reveals that, at high core mass, growth remains efficient even in the presence of

strong turbulence. This agrees with results from MHD simulations by Xu et al. (2017),

who numerically explore the growth rates of high-mass planetary cores in the presence

of MRI turbulence.

An example of our results is shown in Figure 3.2, which shows the growth

timescale for a 5M⊕ planet located at 30 AU. For particle sizes rs & 50 cm, the growth

timescale increases ∝ St, as these particles require many orbital crossings to fully dis-

sipate their kinetic energy (see the appendix and R18). As we decrease the small-body

155



radius, we encounter small-body sizes (1 cm . rs . 50 cm) that are large enough that

wind-shearing and scale height considerations are unimportant, allowing them to accrete

over the entire Hill sphere at a rapid rate that is independent of rs. As we continue to

move to smaller pebble radii, eventually the particle size becomes small enough that the

WISH radius and the particle scale height become important, decreasing the accretion

rate. Finally, we reach the point where R′WS < Rb, which marks the pebble size at which

particles couple so strongly to the gas that they flow around Rb without accreting. This

causes the cutoff in the graph seen on the left. For all values of α shown in Figure 3.2,

there exists a broad range of small-body sizes, rs, for which gas-assisted growth is able

to operate, and the growth timescale of the core is less than the disk lifetime. Though

turbulence erodes accretion of the smallest pebbles that were available in the laminar

case, there still exists a range of particle sizes where rapid growth is possible.

Figure 3.2 shows the emergence of a regime where the core can accrete larger

particles at a minimal timescale that is independent of rs and α. This timescale is

reached for cores accreting in 2D (i.e. Hacc = Hp) over the entirety of their Hill radius.

As discussed in, e.g. R18, the maximal possible approach velocity in the 2D regime

occurs when particles shear into RH , i.e. when v∞ = vH ; larger velocities will excite

pebbles vertically, causing the core to accrete in 3D. Setting Hacc = Hp, Racc = RH and

v∞ = vH in Equation (3.3), we that see this timescale is given by

tHill =
M

2fsΣR2
HΩ

. (3.22)
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Particles cannot fully 
deplete their 

KE through gas drag

Particles become 
small enough that 
gas drag shears 
them off at RH

Large particles accrete at RH

Particles flow 
around the 

core without 
accreting

Figure 3.2: The growth timescale for a protoplanet as a function of the small-body
radius the core is accreting. The timescale is plotted for several values of α, which
measures the strength of turbulence in the disk. The values shown are for a 5M⊕ core
at 30 AU. The lines are cut off for particles that are unable to accrete according to the
energy criteria discussed in Section 3.2.3.

In terms of fiducial parameters, tHill can be expressed as

tHill ≈ 4× 104
( a

30 AU

)1/2
(

M

5M⊕

)1/3

years. (3.23)

This timescale, which we will refer to as the “Hill timescale,” is faster than

gravitational focusing by a factor R2
H/R

2
focus ≈ RH/R. If we approximate the star and

the planet as uniform density spheres and take ρ∗ ∼ ρp, we have RH/R ∼ a/R∗. Thus,
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not only is the enhancement in growth rate substantial, the enhancement of pebble

accretion relative to gravitational focusing is an increasing function of semi-major axis.

The qualitative features of growth discussed above apply over a wide range of

core masses. This can be seen from examination of Figure 3.3, which shows the growth

timescale for protoplanets as a function of both core mass and small-body radius. The

four panels show the growth timescale for four different values of α, while each individual

panel shows the growth rate plotted as a function of both rs and M . As can be seen

in Figure 3.3, growth at “high” core masses
(
& 10−3 − 10−2M⊕

)
proceeds in a similar

manner to what is shown in Figure 3.2: the largest pebbles accrete on the rapid Hill

timescale, independent of the small-body radius rs, while smaller pebbles accrete less

efficiently. Thus, as long as there exists a reservoir of particles that are able to accrete

at tHill, growth at higher core mass proceeds rapidly, even in the presence of strong

turbulence.

However, it is also clear from examination of Figure 3.3 that below some “mini-

mum” mass, growth operates in a qualitatively different manner. We discuss the reasons

for this change, as well as the ramifications for planetary growth, in the next section.

3.3.2 Growth Timescales for Low-Mass Protoplanets

In the last section, we showed that growth at large core masses is quite fast

in gas-assisted growth, even in the presence of strong turbulence. This efficiency brings

another issue, however, as we now need to understand why wide orbital separation gas

giants are not ubiquitous given these rapid growth rates. As we will show below, at

wide orbital separations and low core masses, growth timescales can be substantially
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Figure 3.3: The growth timescale as a function of core mass, for a = 30 AU. The red
hatched region indicates where no accretion is possible. In the white regions particles
can still accrete via other processes, e.g. gravitational focusing.

longer than tHill.

Figure 3.3 illustrates the difference in growth at low core masses. One feature

of particular note in this figure is how the range of particle sizes available for accretion

is restricted both at low core masses (M . 10−3 − 10−2M⊕ in the figure) and as the

strength of turbulence increases. The limited range of sizes where pebble accretion

can operate is often neglected in other works on pebble accretion, e.g. Lambrechts &

Johansen (2012). While some works, such as Ormel & Klahr (2010), discuss an upper

limit on particle size that agrees with our work in the laminar regime, this upper limit
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shrinks rapidly as the strength of turbulence is increased, as can be seen in the figure.

For a more in-depth comparison of these models, see R18.

In all four panels, we see that, for low core masses, it is primarily small particles

with high accretion timescales that are available for growth. It is only when the core

reaches a sufficiently “large” mass 14 that the features discussed in the previous section

emerge and cores are able to rapidly accrete pebbles. Thus, there is in some sense

a “minimum” mass, above which pebble accretion becomes efficient and proceeds on

timescales less than the lifetime of the disk. This trend is more pronounced as the

strength of turbulence is increased, in the sense that the mass required for accretion to

be faster than the disk lifetime increases rapidly as α increases.

We note here that in the “weak” turbulence regime (top panels of Figure 3.3),

there is a feature where the cores can accrete a limited range of sizes (with rs ∼ 1 m) on

short timescales. This is caused by the fact that the heaviest particles can actually have

low kinetic energies relative to the core, since they drift at speeds close to the Keplerian

velocity. This effect is eroded by the presence of turbulence, since it excites the random

velocity of even the largest particles. In what follows, this effect is unimportant, since

our choice of size distribution means that such large particles are not present (see Section

3.3.3), though it is an interesting area for future inquiry.

The difficulty in accreting larger pebbles at low core mass is due to the weaker

gravitational influence of the core. Gravitational perturbations from the core on the

incoming pebbles can greatly increase the drag force on the small body during the

encounter, since they increase the velocity of the particle relative to the local gas flow.

14The mass scale where this change occurs is well approximated by vH/vgas = 48−1/3, see R18.
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The strength of this perturbation increases with increasing core mass. Thus, as core

mass decreases, the work done by gas drag is reduced, limiting the range of small-body

sizes that can be accreted. Furthermore, the size of Racc also decreases with core mass,

which means incoming particles have a smaller distance over which they can dissipate

their kinetic energy relative to the core. Increasing the strength of the turbulence in

the disk amplifies the difficulty in accreting particles, as incoming pebbles now have

substantially higher kinetic energies.

Not only can a smaller range of particles be accreted at low core mass, the

smaller particle sizes that are available for growth have long growth timescales. One

reason for this is that smaller particles can be more easily pulled off the core by gas

drag, meaning that their maximum impact parameter for accretion is Racc = R′WS ,

which can be quite small in comparison to RH . Furthermore, these particles are more

easily excited vertically by the turbulent gas velocity (see Equation 3.21). Thus, smaller

particles have larger scale heights, reducing their number density and further slowing

growth.

Thus, at lower core masses, we expect growth via pebble accretion in high

turbulence to be quite slow, as the only particles that the smaller cores can accrete have

large growth timescales. These timescales can be several orders of magnitude slower

than the growth timescale at Mcrit, meaning that growth at low core masses can often

be the time-limiting step in gas giant formation via gas-assisted growth.
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3.3.3 Size Distribution of Small Bodies

Because the growth timescale is generally much slower for smaller particle sizes

than it is for larger ones, the timescale for growth will also be dependent on the size

distribution of small bodies that are available for accretion. Thus, in order to facilitate

a more quantitative discussion of where growth of gas giants is possible in our model,

we will integrate quantities of interest over an assumed size distribution, a process we

now discuss in more detail.

If the size distribution of small bodies is specified, i.e. if we know dN/drs, we

can integrate the accretion rate of the large body over small body radius and obtain

a total accretion rate. This integrated timescale is sensitive to the actual form of

size distribution employed; thus, while integrating over size distribution can be quite

illustrative, the results are less general.

For our purposes, we employ the power-law distribution from Dohnanyi (1969),

who calculated the steady-state size distribution from a collisional cascade. This gives

a distribution of sizes such that dN/drs ∝ r−3.5
s . For a power-law size distribution

dN/drs ∝ r−q, most of the mass is in the largest particle sizes for q < 4. Thus, our

results are insensitive to the lower cutoff radius but highly dependent on the upper

radius, since for an r−3.5
s power-law, most of the mass is in the larger particles. This is

the most important feature of the size distribution we employ: for any size distribution

with most of the mass in the largest particle radii, the qualitative picture discussed

below is unchanged, though the quantitative results will change by order unity factors.

Unless otherwise stated, we use an upper radius such that the largest Stokes
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number present is Stmax = 10−1, and a lower radius such that the smallest bodies

present correspond to Stmin = 10−4. This constant Stokes number upper limit is most

appropriate for the case when particle growth is limited by collisions, and the relative

velocity is dominated by laminar drift. The value of Stmax = 10−1 comes from Blum &

Wurm (2008), who gave rs = 10 cm as the size past which collisions become destructive

for a particular set of disk parameters. This radius corresponds to St ∼ 10−1 for the

disk they considered. If bodies are held together mainly by chemical forces, then the

relative velocity between particles is the main determinant of the outcome of a collision.

This relative velocity in turn depends on the particle Stokes number and the amplitude

of the gas velocity. Because the laminar drift velocity ηvk is approximately constant

throughout the disk, if laminar drift sets the collision velocity, the particle Stokes number

is the only parameter relevant to determining when collisions become destructive.

This simple description of the size distribution neglects the effects of increased

turbulence, which would increase the particle-particle relative velocities during a col-

lision, in turn lowering the critical Stokes number for destructive collisions. This also

neglects the importance of radial drift in the outer regions of protoplanetary disks,

which can proceed on shorter timescales than particle-particle collisions. In general,

the size distribution of pebbles in disks is more complex than the simple prescription

given here. We use this as our fiducial size distribution in order to reduce the number

of input parameters our results depend on while still describing the general features of

gas-assisted growth.
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3.3.4 Integrated Growth Timescales

In this section, we discuss how integrated growth timescales change as the

core grows. We also discuss how we can analytically calculate the integrated growth

timescale, which is used later on to calculate analytic expressions for both the minimum

mass for pebble accretion to be rapid and the semi-major axes where gas giant growth

can occur.

An example of the results from integrating over small-body size is shown in

Figure 3.4, which plots the integrated growth timescale at a = 20 AU as a function

of core mass for several different levels of turbulence. An estimate for the e-folding

time for the dissipation of the gaseous component of the disk, τdisk ≈ 2.5 Myr, is also

shown. The disk dissipation timescale τdisk represents an approximate cutoff for gas

giant formation; cores that are unable to reach the critical core mass within τdisk will

not be able to trigger runaway accretion before the gas is substantially depleted.

At low core masses, the growth timescale drops quickly as the core mass in-

creases. This is due to the fact that these larger cores can accrete more massive pebbles.

For the lower-mass cores, the largest pebbles that the core can accrete are smaller than

the maximal size of the particles present. Therefore, as the core grows, it can accrete a

larger fraction of the available solids, increasing the growth rate.

If the growth timescale has only a simple power-law dependence on rs for the

whole range of sizes, we can explicitly integrate the growth timescale over size and

calculate an analytic expression for tgrow. This requires that none of the parameters

that go into calculating tgrow change regimes over the range of sizes considered: for
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example, if Racc = RH for the largest sizes present but Racc = R′WS for the smaller

sizes, our integrand is now a piecewise function of rs, and a simple analytic solution

is no longer possible. In practice, if we make the approximation that the regimes that

apply for the maximal particle size present hold throughout the integral, the resultant

errors are generally small.

In what follows, we will be particularly interested in the mass at which the

growth timescale becomes shorter than the lifetime of the gas disk, since subsequent

growth will proceed on even shorter timescales. From Figure 3.4, we can see that, at the

point where tgrow becomes shorter than τdisk, cores are small enough that Racc = R′WS

(i.e. the core’s WISH radius is smaller than its Hill radius for all of the small-body sizes

it accretes)15. We also assume that R′WS is small enough that the core accretes in 3D, i.e.

R′WS < Hp. Additionally, for the small-body radii the core is accreting v∞ = vpk ≈ vgas

(i.e. the small body’s random velocity dominates over shear, and these particles are well

coupled to the gas). Due to the wide orbital separations and small particle sizes we are

interested in, the particles are expected to be in the Epstein drag regime. Using these

values throughout the integration over size allows us to compute tgrow analytically,

and comparison of the resultant analytic expressions with the numerical calculations

presented below shows that these approximations are robust. Finally, when calculating

the work done on the particle, we set venc = vkick = GM/ (Raccv∞) (see the appendix for

more details). It can be shown that particles with the Stokes number given by Equation

(3.24) are in this regime.

15As discussed in the appendix, R′WS is really the smaller of two radii: R′WS = min (RWS , Rshear). In
making our analytic approximations, we assume that the cores we are concerned with are low enough
mass that RWS < Rshear. This assumption can be shown to be generally valid by comparing the analytic
approximations we derive to our numerical results
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Using the considerations above, we can now calculate closed-form expressions

for tgrow. To begin, we determine the largest size of particle these low-mass cores

can accrete. Using Equations (3.10), (3.17), and (3.18) and the values of parameters

discussed in the preceding paragraph, we see that the maximal size of particle the core

can accrete is given by16

St` = 12
v3
H

v3
gas

. (3.24)

Because our size distribution is dominated by the largest particle sizes, we can

use the Stokes number limit from Equation (3.24) to determine the growth rate. If

we neglect the lower bounds on integrations over particle size, it is straightforward to

demonstrate that the growth rate is, to order-of-magnitude, given by the product of

the growth rate for the largest sizes of particles the core can accrete, Ṁ(St`), and the

fraction of the surface density contained in solids up to size St`, f(St`):

Ṁ ∼ Ṁ(St`)f(St`) . (3.25)

Plugging in our assumed values for the parameters into Equation (3.3) for

tgrow, we see that in this regime,

tgrow =
Hp

2ΣpGts
. (3.26)

16We note that this is similar to the barrier between the “Hyperbolic” and “Full Settling” regimes
identified by Ormel & Klahr (2010), except that our value for vgas includes a contribution from the
turbulent gas velocity, which dominates for α > η.
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Thus, there are two possible growth regimes, depending on whether Hp = HKH or

Hp = Ht. For St < 1, we have Ht > HKH (i.e. Hp = Ht) for α > 2ηSt. This limit on

St divides our analytic expressions into two piecewise regimes.

Explicitly performing the integration over size, the growth timescale is given

by

tgrow ≈





9× 107 years

(
M

10−5M⊕

)−2 ( a

30 AU

)5/2
St1/2max

( α

10−3

)7/2
, α > 2ηSt`

3× 107 years

(
M

10−5M⊕

)−3/2 ( a

30 AU

)51/14
St1/2max , α < 2ηSt`

(3.27)

Eventually, the core becomes massive enough that it can accrete all sizes of

particles available, i.e. St` > Stmax. This causes the growth timescale to become

independent of M , since Ṁ ∝ R′2WS ∝M . In this regime, the growth timescale is given

by

tgrow ≈





7× 103 years
( a

30 AU

)11/14
St−3/2

max

( α

10−3

)1/2
, α > 2ηStmax

1× 104 years
( a

30 AU

)15/14
St−1

max, α < 2ηStmax

(3.28)

Thus, the low-mass growth of the core, where the growth timescale decreases

for increasing core mass, is the time-limiting step in gas-assisted growth. As can be

seen in Figure 3.4 and verified by the analytic expressions above, once the core reaches
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a mass such that tgrow < τdisk, all subsequent growth should proceed on timescales that

are faster than the disk lifetime. Therefore, the early stages of core growth, where

gravitational focusing of planetesimals may be faster than gas-assisted growth, will play

a key role in whether a planet can grow to be a gas giant.
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Figure 3.4: Integrated growth timescale for a core at a = 20 AU as a function of core
mass. The growth timescale is integrated over sizes using a Dohnanyi distribution
with a maximum size corresponding to St = 10−1, as discussed in Section 3.3.3. The
approximate e-folding time of the gaseous component of the disk, τdisk, is marked as a
dashed horizontal line. As the core grows, it can accrete a larger fraction of the available
small-body sizes, causing the growth timescale to drop rapidly. Eventually, the core’s
mass becomes large enough that it can accrete all available particle sizes, causing it to
enter into a regime where growth timescale is independent of M . We also note that
once the core becomes massive enough that the growth timescale drops below τdisk,
subsequent growth at higher core masses proceeds on timescales well below the disk
lifetime.
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3.4 Restrictions on the Growth of Gas Giants

The effects of the previous sections imply that to understand under what con-

ditions gas giant formation is possible via pebble accretion, we must examine lower-mass

cores, for which the gas-assisted growth timescale can be quite long. If these cores were

to grow by gas-assisted growth alone, then growth would always stall at sufficiently

small core mass such that turbulence dominates over the core’s gravity. For low core

masses, however, planetesimal accretion can be quite rapid. Therefore, the final fate of

a protoplanet depends on whether canonical core accretion can provide sufficiently rapid

growth at small core masses such that the core can reach a size where pebble accretion

becomes efficient, which will in turn allow the core to grow rapidly to the critical core

mass needed for runaway growth.

3.4.1 Planetesimal Accretion Timescale

In order to calculate the semi-major axis where gas giants form, we consider

early growth by planetesimal accretion and subsequent growth by pebble accretion. This

requires us to calculate the timescale for growth by planetesimal accretion for a given

core mass. In general, the scale height of particles is given by Hp = vz/Ω, where vz is

the vertical component of the small body’s velocity. As stated previously, the fastest

growth possible via planetesimal accretion (without some external damping mechanism)

occurs when the planetesimal velocity dispersion is equal to the Hill velocity. We use

this regime for our fiducial value of the growth timescale via planetesimal accretion. If

we take vz ∼ v∞ = vH , and use Equations (3.2) and (A.42), then the growth rate of the
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core is proportional to

Ṁ ∝ RHRΣplaΩ , (3.29)

where Σpla is the surface density of planetesimals. The prefactor in the above equation is

not well constrained by analytic considerations; in a more detailed treatment, it should

taken from N -body simulations of the interactions between the planetesimals. For our

purposes, we take the prefactor from Johansen & Lambrechts (2017); this gives

Ṁ = 6πRHRΣplaΩ . (3.30)

For our fiducial value of the growth timescale, we set Σpla = Σp, which gives a timescale

of

tpla ≈ 2× 107 years
( a

30 AU

)3/2
(

M

5M⊕

)1/3

. (3.31)

Solving for the mass where tpla = τdisk gives an expression for the maximum mass a

planet can reach via planetesimal accretion,

Mpla = 8× 10−3M⊕

( a

30 AU

)−9/2
(

Σpla,0

5 g cm−2

)3

, (3.32)
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where Σpla,0 is the prefactor of the planetesimal surface density profile, i.e. Σpla =

Σpla,0 (a/AU)−1. Our choice of Σpla = Σp gives reasonable values of the masses planets

can reach within the gas disk lifetime at the semi-major axes of the solar system gas

giants (see Figure 3.6). Some of the effects of varying the surface density of planetesimals

are discussed in Section 3.4.2.

3.4.2 Upper Limits on the Semi-Major axis of Gas Giant Growth

In order to place constraints on the semi-major axis at which gas giant growth

is possible, we begin by determining the minimal mass below which pebble accretion is

too slow to grow a core within τdisk. In order to do this, we make the approximation

that once the core becomes massive enough that tgrow < τdisk, the growth timescale

of the core will remain below τdisk as the core continues to grow to Mcrit. Thus, once

the core becomes massive enough, its subsequent growth time is small compared to the

disk lifetime. As can be seen in Figure 3.4, and from Equations (3.27) and (3.28), this

approximation is quite robust. An exploration of tgrow vs. M over a large amount of

parameter space shows that this is generally true throughout the disk. We note, however,

that if the sizes of the available particles are not set by Stokes number but rather by

absolute particle size, there can exist regions of the disk where this approximation breaks

down, as the particle sizes where growth is efficient are essentially determined by Stokes

number. We consider this possibility in more detail below.

Because the growth timescale is dominated by growth at low core masses, we

can determine an approximate minimum mass for gas giant growth through pebble

accretion by solving for the mass at which tgrow = τdisk. This is the mass below which
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growth will stall, and the core will be unable to grow to Mcrit within τdisk. This idea is

shown graphically in Figure 3.5.

The mass where growth stalls as a function of semi-major axis, calculated

numerically using our full expressions, is shown in Figure 3.6. Again, the effects of

turbulence on growth rate are clearly visible in the figure: in the laminar case, even

extremely wide orbital separation cores can grow faster than τdisk down to a very low

core mass. At high turbulence (α & 10−2), however, the core needs to reach masses

& 10−3M⊕ before pebble accretion becomes fast enough for these cores to reach Mcrit

within the disk lifetime. Also shown in the plot is the maximum mass that a core

can grow to using gravitational focusing of planetesimals. We emphasize here that

the interpretation of this line is the opposite of the gas-assisted growth values; for

gravitational focusing, all values lower than the given mass are approximately obtainable

within the disk lifetime.

We can also obtain an analytic approximation for Mpeb, the mass where the

pebble accretion timescale drops below the disk lifetime. Setting (3.27) equal to τdisk

gives

Mpeb =





6× 10−5M⊕

( a

30 AU

)5/4 ( α

10−3

)7/4
(

τdisk

2.5 Myr

)−1/2

St1/4max, α > 2ηStmax

5.6× 10−5M⊕

( a

30 AU

)17/7
(

τdisk

2.5 Myr

)−2/3

St1/3max, α < 2ηStmax

(3.33)

which demonstrates analytically the strong dependence that the efficiency of pebble

accretion has on both semi-major axis and strength of turbulence.
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Figure 3.5 shows how we can use Figure 3.6 to determine where the interplay

between canonical core accretion and gas-assisted growth will allow a gas giant to grow.

The intersection between the pebble accretion and planetesimal accretion values rep-

resents the approximate semi-major axis upper limit on gas giant growth. For values

higher than this semi-major axis, planetesimal accretion is too slow to bring the core to

the minimum mass needed such that gas-assisted growth can subsequently grow the core

to Mcrit within the disk lifetime. For values smaller than this semi-major axis, however,

planetesimal accretion can grow the core to a sufficiently massive size rapidly enough

that gas-assisted growth can take over. This semi-major axis also represents an upper

limit on where a core can form, as for smaller orbital separations, the growth timescale

decreases (see Equations 3.27 and 3.28). This is not the case if the size distribution is

determined by particle radius instead of Stokes number, as we discuss in Section 3.4.3.

We also note that if a core larger than the pebble accretion mass were present past

this semi-major axis limit (e.g. if it were scattered outward), then the core could grow

sufficiently rapidly to trigger gas giant formation.

Figure 3.7 plots the maximum distance obtained by solving numerically for the

mass at which Mpla = Mpeb using our full expressions. In order to illustrate the effect

of changing the upper limit on the size distribution, two different size distributions are

shown – one in which the maximum Stokes number is Stmax = 0.1, and one in which

Stmax = 1. From the plot, it is clear that as turbulence increases, the semi-major

axis at which gas giant growth is possible drops substantially. Growth is also slightly

more inhibited for the St = 1 distribution; this is due to the fact that cores need to
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reach higher masses in order to accrete St = 1 particles as opposed to St = 0.1 particles.

However, because St = 1 particles accrete more rapidly, this effect is attenuated, causing

the overall dependence on Stmax to be rather weak.

Using Equation (3.33), we can derive analytic approximations to the curve

shown in Figure 3.7. Setting Mpeb = Mpla, we obtain,

aupper ≈





70 AU
( α

10−3

)−7/23
(

Σpla

5 g cm−2

)12/23( τdisk

2.5 Myr

)14/23

St−1/23
max , α > 2ηStmax

60 AU

(
Σpla

5 g cm−2

)42/97( τdisk

2.5 Myr

)154/291

St−14/291
max , α < 2ηStmax

(3.34)

These analytic expressions are overplotted on the numerical results in Figure

3.8. Curves for two different planetesimal surface densities, one where we use our fiducial

value of Σpla = Σp and one where we have reduced the surface density by a factor of 2, are

shown. As expected, our analytic results agree well with the full numerical calculation

in the limits of small and large α. Figure 3.8 also demonstrates that reducing the

planetesimal surface density can have a marked effect on the semi-major axis where gas

giant growth is possible.

The considerations discussed above can provide a plausible mechanism by

which the growth of gas giants is suppressed: higher values of turbulence inhibit core

growth at lower masses and make it so rapid growth via pebble accretion can only pro-

ceed once higher values of mass are reached. Because planetesimal accretion is slow

at these wide orbital separations, cores will stall in their growth at low mass and be

unable to reach the high masses needed for gas giant growth to proceed. In our order-
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of-magnitude model, the actual values quoted are of less import than the scalings and

overall behavior predicted by the model. Thus, while we would not expect the quoted

limit of e.g. a . 30AU for gas giant growth at α ≈ 10−2, to be precise, we would argue

that we should expect the general inhibiting of pebble accretion, and therefore gas giant

growth, for stronger values of turbulence.

3.4.3 Effect of Fixing Upper Particle Radius

Thus far, we have fixed the upper limit of our size distribution in terms of

particle Stokes number. In contrast, disk models that are used to fit to observations of

protoplanetary disks tend to use size distributions with fixed maximum particle radius

instead of Stokes number. Size distributions fixed by particle radius can also emerge

naturally if drift limits particle size as opposed to collisions. For example, Powell et al.

(2017) derived an expression for the gas surface density determined by particle drift,

which can be rewritten as an expression for particle radius (see their Equation 8):

rs =
Σa

tdiskηvkρs
, (3.35)

where tdisk is the age of the disk. If Σg ∝ a−1, then the only semi-major axis dependence

in the above equation comes from ηvk, which has extremely shallow radial dependence

(e.g. ηvk ∝ a1/14 for the temperature profile we employ). Therefore, we also present

results that use a size distribution where the upper size limit is fixed by particle radius.

We follow the disk models of Andrews et al. (2009), who used a Dohnanyi (dN/ds ∝

r−3.5
s ) distribution, with rs,min = 0.005µm and rs,max = 1 mm. This 1 mm maximum
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size is consistent with fitting of disk spectral energy distributions (D’Alessio et al. 2001).

A plot of the numerical solution for the semi-major axes where gas giant growth

is possible for a distribution with fixed size limits is shown in Figure 3.9. The blue region

indicates where growth is possible. As can be seen from the figure, using rs = 1 mm

as an upper size limit throughout the disk has pronounced effects on the semi major

axes available for gas giant growth. For α & 10−4, the region where gas giants can grow

shrinks rapidly, causing a complete cutoff in gas giant growth for α & 10−3. In this

regime, we therefore expect turbulence to completely inhibit gas giant growth, instead

of restricting growth to smaller values of semi-major axis.

Using an upper limit fixed by particle size leads to a lower limit on semi-major

axis in addition to an upper limit. This lower limit stems from the fact that fixing

a maximum particle radius means that even the largest sizes of particles present may

have low Stokes numbers, causing them to be accreted inefficiently or not accreted at

all. This introduces two additional processes that we need to consider when calculating

where gas giants can form, one that gives a fixed semi-major axis limit independent of

α, and another that gives a lower limit on a for a given α.

Firstly, cores accreting the maximum size of particle may not be able to grow

to Mcrit and trigger runaway gas accretion, as the Bondi radius may grow larger than

R′WS for the maximal particle size (and therefore for all smaller values of rs) before

M = Mcrit. This means that all available particle sizes will be in the regime where they

flow around the core’s atmosphere without being accreted (see the left panel of Figure

2.1), which will halt growth via pebble accretion. A core will have R′WS = Rb when it
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reaches a mass of

MR′WS=Rb ≈ 10M⊕

( a

10 AU

)11/7 ( rs
1 mm

)
, (3.36)

where we have assumed the particle is in the Epstein drag regime in converting from ts

to rs. Since the mass where this equality occurs is an increasing function of semi-major

axis, these considerations imply that, close in to the star, the core may not be able to

reach sufficient mass through pebble accretion to trigger runaway gas accretion. Using

Mcrit = 10M⊕ as a conservative upper limit for runaway accretion to occur requires

a & 10 AU before cores can reach Mcrit.

A second complication that can also serve to place a lower limit on semi-major

axis is that, unlike for the fixed Stokes number size distribution, growth timescale can

be a decreasing function of semi-major axis when particle radii are instead fixed. In

particular, the mass-independent growth timescales for accretion of the full range of sizes

given by Equation (3.28) can decrease as we move outwards in the disk. This stems

from the fact that the Stokes number of rs = 1 mm particles will increase further out in

the disk, and particles with higher values of St (for St < 1) are generally accreted more

rapidly. Thus, even if we find an upper limit on semi-major axis in the manner described

above, we also have to check whether the growth timescale again becomes longer than

the disk lifetime closer in to the central star. Because the low-α regime shown in

Figure 3.9 occurs for small values of semi-major axis, where the Stokes number of an

rs = 1 mm particle is quite low (∼ 5×10−4), the α > 2ηStmax regime of Equation (3.28)

applies everywhere when calculating our semi-major axis lower limit. We can therefore
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determine our lower limit on growth analytically by setting this timescale equal to τdisk.

Doing so yields

alow ≈ 58 AU
( α

10−3

)7/10 (rs,max

1 mm

)−21/10
(

τdisk

2.5 Myr

)−7/5

, (3.37)

which is plotted in Figure 3.9 (black dashed line).

These two processes are what yields the lower limit seen in Figure 3.9; regard-

less of the value of α, core growth cannot proceed for a . 10 AU, as the core will be

isolated from accretion of all available pebble sizes before it can trigger runaway gas

accretion. As α increases, the growth timescale for accretion of the full range of particle

sizes may become longer than the disk lifetime close in to the central star, requiring the

core to be at larger values of semi-major axes before gas giant growth is possible.
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Growth possible via
Pebble Accretion

Growth possible via 
Planetesimal Accretion

Growth of gas giant 
cores possible

Growth of gas giant 
cores ruled out

Figure 3.5: Graphical illustration of how gas giant core growth is limited for different
semi major axes. The monotonically increasing line (black) shows the minimum mass
needed for gas-assisted growth to produce a gas giant core; for masses higher than the
plotted mass, the growth timescale for the core is less than the disk lifetime. The mono-
tonically decreasing line (blue) shows the maximum mass it is possible to achieve via
planetesimal accretion. Values lower than the indicated mass can be reached within the
disk lifetime, but for larger masses the disk will dissipate before the mass is reached. The
vertical line denotes the semi-major axis upper limit on where growth of gas giant cores
can occur; interior to this region, planetesimal accretion can build a massive enough
core rapidly enough that pebble accretion becomes efficient and dominates growth at
higher masses. The green shaded region indicates where growth of gas giants is ruled
out, as both planetesimal accretion and pebble accretion are too slow.
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Figure 3.6: Minimum mass for which the growth timescale is shorter than τdisk =
2.5 Myr, shown for various values of α. Masses smaller than the values depicted have
growth timescales larger than τdisk, so if the core can exceed this mass by other means,
it should be able to reach Mcrit, but growth by pebble accretion will be unable to exceed
this mass within τdisk. A mass for growth by planetesimal accretion is also shown, but
this mass has a different interpretation: it is the largest mass a core can grow to via
gravitational focusing within τdisk.
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Figure 3.7: Maximum semi-major axis at which growth to critical core mass is possible
as a function of α. Curves are shown for a Dohnanyi distribution with a maximum-sized
particle corresponding to St = 10−1 (solid line) and St = 1 (dashed line).
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Figure 3.8: A comparison of our analytic expression for the maximal semi-major axis
where gas giant growth is possible (Equation 3.34), with the numerical solution. Results
are presented for two different planetesimal surface densities, Σpla = Σp and Σpla =
Σp/2.
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Figure 3.9: The blue region shows where growth of gas giant cores is possible for a
size distribution with maximal pebble size of rs = 1 mm, plotted as a function of the
strength of turbulence. In contrast to the size distributions which used a fixed Stokes
number as the upper limit, this distribution has a lower limit on where core growth can
occur as well as an upper limit. The lower limit is the maximum of a fixed semi-major
axis limit, and a limit for a given α – an analytic expression for the latter (c.f. Equation
3.37) is also shown (black dashed line).
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3.5 Final Mass of Gas Giants

In this section, we consider the effect of α on the final mass that gas giants can

reach and tie these considerations to our previous discussions on how turbulence affects

the early stages of gas giant growth. Note that in this section, we take the α value to

affect the viscosity of the disk, as opposed to merely using α to parameterize the RMS

gas velocity, as was done in the previous sections.

Once a core begins runaway gas accretion, the accretion rate for nebular gas

is initially extremely rapid (e.g. Pollack et al. 1996). If accretion proceeded unhindered

at this rate, gas giants would easily be able to accrete all of the gas in their local feeding

zones before the gas disk dissipated. However, the observed masses of gas giants are

well below their local gas isolation mass; what, then, stops gas giants from growing?

This is usually explained by appealing to gap opening by the growing planet: as the

planet grows, it will gravitationally torque the local nebular gas, pushing it away. If

gas is torqued away more rapidly than it is transported inward by viscosity, the planet

can clear a gap in the disk, reducing the gas surface density near the growing planet.

This reduction in surface density can starve the planet of material for growth and can

eventually shut off growth entirely. If this process sets the final mass that gas giants

can reach, then, in general, gas giants will be able to reach larger masses in disks that

have higher viscosities. Thus, if we translate our α values into viscosities (as opposed

to just parameterizations of the local turbulent gas velocity), then turbulence can play

a role in both whether a gas giant core can form and in the final mass of the planet.

The physical processes that determine the final mass of gas giants remain an
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open question meriting further inquiry. In order to provide concrete numerical results,

in what follows, we consider two possible criteria from the literature for determining the

mass that gas giants reach, and we discuss the implications for the population of wide

orbital separation gas giants when these criteria are coupled with growth via pebble

accretion. Thus, while the expressions we use may not capture the final masses of gas

giants, the results below will still hold qualitatively as long as disks with higher viscosity

produce higher-mass gas giants.

For our first criterion from the literature, we determine the width of the gap

opened by the planet and shut off accretion when the gap has reached a certain size. The

width of the gap opened can be obtained by equating the rate of angular momentum

transport due to viscosity, Ḣν = 3πΣνa2Ω, with the rate that the planet delivers angular

momentum to the disk (Lin & Papaloizou 1993):

ḢT = fgq
2Σa4Ω2

( a
∆

)3
. (3.38)

Here q ≡M/M∗ is the planet-to-star mass ratio, ∆ is the width of the gap opened, and

fg is an order unity factor. Equating these two expressions gives the gap width in units

of the Hill radius as

∆

RH
=

(
fgq

πα

a2

H2
g

)1/3

(3.39)
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From comparison with the results of numerical simulations of the growth of Jupiter by

Lissauer et al. (2009), Kratter et al. (2010) adopted ∆/RH ∼ 5 as their criterion for

starvation, which we adopt as well. Scaled to fiducial parameters, Kratter et al. gave

the starvation mass as

Mstarve ≈ 8MJ

(
α

4× 10−4

)(
T

40 K

)( a

70AU

)( ∆

5RH

)3

. (3.40)

Using this expression for the starvation mass, we can calculate the final mass

of gas giant planets in our model as a function of the strength of turbulence in the disk.

An example is shown in the upper panel of Figure 3.10.

The gray region shows limits on gas giant mass, which are obtained by using

our values for the Stmax = 0.1 curve in Figure 3.7. For points inside the gray region,

in order to grow a gas giant up to the given mass, the viscosity needs to be so large

that early stages of growth are too slow for a core to reach Mcrit within the lifetime of

the gas disk. Said another way, for semi-major axes and masses inside the gray region,

growth of gas giants is ruled out using the criteria described in Section 3.4.2. Also

plotted in Figure 3.10 are the upper mass limits for several constant α values. When

these curves enter the gray region, growth of gas giants is ruled out in our model. For

low levels of turbulence, growth of gas giants can proceed out to large semi-major axes,

but the final masses of these planets are low. As turbulence increases, opening a gap

in the disk becomes harder, allowing the gas giant planets to reach higher masses, but

the semi-major axes at which growth can occur become more restricted. We stress that
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this is a general feature of gas giant growth via pebble accretion and, in particular, is

independent of the criterion used to determine the final mass of gas giants. Because

viscous torques oppose the torque from the growing planet, the final mass the gas giant

reaches will increase with the viscosity in the disk. Thus, if growth of gas giants proceeds

by pebble accretion, we expect disks with higher viscosities to host more massive gas

giants at smaller orbital separations.

While the torques from the growing planet can increase the width of the gap

as the planet grows, material can still flow through the gap opened by the planet (e.g.

Fung et al. 2014). For example, Morbidelli et al. (2014) showed that meridional cir-

culation can still transport material from the top layer of the disk, which may imply

that consideration of gap opening alone is insufficient to determine the final mass of gas

giants. Thus, we present an alternate criterion for gap opening that takes into account

gas accretion rates taken directly from the 3D hydrodynamical simulations performed

by Lissauer et al. (2009). Lissauer et al. provided numerical results for the upper limit

on the planet’s gas accretion rate as a function of planetary mass for α = 4 × 10−3

and 4 × 10−4. Using these accretion rates, we can determine the mass past which

tgrow = M/Ṁ > τdisk. This scale represents another way of determining the starvation

mass, since planets larger than this value will not grow substantially before the nebular

gas dissipates. In practice, we can use the fitting formula given in Equation (2) of Lis-

sauer et al. (2009) for α = 4× 10−3 to determine this mass numerically as a function of

semi-major axis. For α = 4×10−4 the authors did not provide a closed-form expression;

we instead interpolate between the values plotted in their Figure 2 to obtain Ṁ as a a
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function of M .

The result of this calculation is shown in the lower panel of Figure 3.10. As

can be seen from the figure, this criterion leads to lower starvation masses in comparison

with halting growth at a fixed value of gap width. As in the upper panel, the dashed

sections of the lines indicate where the timescale to form the core exceeds the lifetime

of the gas disk. Unlike the upper panel however, it is not possible to indicate the overall

region where this occurs, as Lissauer et al. (2009) did explicitly calculate Ṁ as a function

of α.

These considerations could provide an explanation for the proposed correla-

tion between stellar mass and gas giant frequency. While the dynamical changes due to

increasing stellar mass have a relatively minor effect on core growth rates (R18), these

higher-mass stars are expected to have substantially higher luminosities with moder-

ately higher amounts of ionizing radiation (e.g., Preibisch & Feigelson 2005, Winston

et al. 2010). Disks with higher ionization fractions should have higher levels of MHD

turbulence (e.g. Armitage 2011), leading to higher effective α values. Thus, from the

above considerations, we should expect that higher-mass stars will yield higher-mass

planets. Furthermore, if disk mass is correlated with stellar mass (Pascucci et al. 2016)

and the final mass of gas giants is set by accretion rate (as opposed to gap width,

where the disk surface density cancels out), then we would expect planets around more

massive stars to accrete at higher rates and therefore reach higher masses before their

growth timescale becomes lower than the disk lifetime. Thus, the gas giant planets

found around more massive stars may represent the high-mass tail of a distribution of
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gas giants formed at large distances via gas-assisted growth, which have their final mass

dictated by gap-opening criteria. If this is the case, then we would expect that there

exists a population of gas giants around these stars as well that are simply lower mass

than can be detected with the current generation of imaging instruments. This is easily

accomplished if these planets are . 2MJ ; see, e.g. Bowler (2016).
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Figure 3.10: “Starvation” mass, past which growth of a gas giant halts, plotted as a
function of semi-major axis. Panel a): In this panel, the mass is obtained by assuming
that growth shuts off when the planet opens up a gap of width ∆ = 5RH (see text for
more details). Inside the gray region, the α value required to prevent gap opening before
the core reaches the given mass is so large that a core will not be able to form within the
lifetime of the gas disk (see Section 3.4.2). The shape of this region is determined using
our upper limits on α taken from the Stmax = 0.1 in Figure 3.7. The labeled curves
show maximum masses for constant values of α. Panel b): Here the starvation mass is
determined numerically using fitting formulae to numerical results for the gas accretion
rate from 3D hydrodynamical simulations by Lissauer et al. (2009). The starvation
mass is determined by solving for the mass at which Mstarve/Ṁ = τdisk. The dashed
lines again indicate the semi-major axes where turbulence prevents a gas giant core from
forming via pebble accretion. 191



3.6 Summary/Conclusions

In this paper, we have used our previously discussed model of gas-assisted

growth in a turbulent disk to study the problem of growth of gas giants at wide orbital

separations. At these large distances, last doubling timescales for growth by planetesi-

mal accretion are far longer than the disk dispersal timescale of the gas, making growth

of gas giants by canonical core accretion extremely difficult.

Gas-assisted growth allows cores to easily complete their last doubling time

to critical core mass, even in strong turbulence. The maximal growth rate provided by

pebble accretion, tHill, is extremely rapid, even in the outer disk. For massive cores.

even strong turbulence does not substantially inhibit growth.

The same is not true for smaller core masses. however. Growth of gas giants

at large distances can easily stall at smaller core masses. By integrating our growth

rates over small-body size we obtained the minimum mass past which pebble accretion

timescales drop below the lifetime of the gas disk, Mpeb. By assuming that the early

stages of growth are set by gravitational focusing of planetesimals, we were able to

translate these minimum masses into limits on the semi-major axes where gas giant

growth is possible. We demonstrated that as the disk becomes more turbulent, the

range of semi-major axes where gas giants can grow is sharply reduced. These effects

may play a large role in the paucity of gas giants at wide orbital separations found

by direct-imaging surveys; if disks are not quiescent enough, then pebble accretion may

simply produce smaller planets that are unable to accrete sufficient mass in small bodies

to go critical. In addition, our mass limits are relevant regardless of how early growth
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proceeds – for example, if a body were scattered from the inner disk and it exceeded

our minimum mass, it could grow to Mcrit and trigger runaway gas accretion. We also

presented approximate analytic expressions for both Mpeb and the upper distance limit

where gas giants can form, aupper.

In addition to the strength of turbulence, we find that the available particle

sizes and abundance of planetesimals are major factors in where gas giants can form.

Gas-assisted growth is sensitive to the Stokes numbers of the pebbles, as opposed to

their absolute size. Thus, if particles of the “correct” range of Stokes numbers are

not available, then gas-assisted growth timescales can be quite slow. Furthermore, if

planetesimals are not abundant enough, then the early stages of growth via planetesimal

accretion can take too long for subsequent growth via pebble accretion to occur on rapid

timescales.

Finally, we examined the role that viscosity plays in determining the final mass

that gas giants reach, in addition to setting where a critical mass core can form. We

find that, regardless of the quantitative metric used to determine the final gas giant

mass, higher-viscosity disks should feature higher-mass gas giants but at smaller orbital

separations. More quantitatively, at the lower α values needed to produce gas giants

out to a & 70 AU, the gas giants formed will be too low-mass to have been observed by

direct-imaging surveys. Thus, there may lurk a population of wide orbital separation

gas giants that the current generation of imaging surveys has yet to detect.

Thus, if growth of gas giants at wide orbital separations proceeds by gas-

assisted growth, and if gap opening sets the final masses of gas giants, we can make
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qualitative predictions about the observed population of gas giant planets. For a given

stellar mass, we would expect that higher-mass gas giants should be observed closer in

to the central star, as the disks with higher levels of turbulence will produce higher-

mass gas giants at smaller orbital separations. We note that this conclusion may be

altered if final planet masses depend on disk surface density, which is not the case for the

gap-opening criterion we use. For different stellar masses, we expect higher-mass stars

to exhibit higher levels of ionizing radiation. Thus, larger stars may have disks with

higher α values and consequently host more massive gas giants. In addition, the larger

disk masses exhibited by more massive stars could push the limits for growth past the

distances given here for our fiducial surface density, allowing planets to form at larger

distances in high-α disks. We suggest that this propensity to produce massive planets in

high-turbulence disks may be the reason that most currently observed directly imaged

gas giants have been found orbiting A stars.
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Chapter 4

How Flow Isolation May Set the

Mass Scale for Super-Earth

Planets

4.1 Introduction

The Kepler mission has provided a wealth of data about the architectures of

close-in planetary systems. Chief among these results is the fact that “Super-Earths,”

planets in the mass range between the Earth and the solar system ice giants, are ex-

tremely common in the innermost 1 au of planetary systems (e.g. Borucki et al. 2010;

Batalha et al. 2013). Kepler data indicates that these planets not only far outnum-

ber gas giants in this inner region of planetary systems—they are also an extremely

common outcome of star formation, appearing around approximately one third of FGK
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stars (Fressin et al. 2013). A key question in theories of planet formation is how these

planets formed, particularly due to the notable absence of any super-Earth planets in

our own solar system.

Overall trends in the Kepler data may contain clues to the mechanisms that

cause systems to preferentially form super-Earths. For example, recent analysis by Weiss

et al. (2018) has shown that not only are super-Earths abundant, but within a given

multi-planet system super-Earths tend to be of similar size. In addition, Wu (2019) has

discussed the existence of a characteristic planetary mass present in the Kepler data,

which scales approximately linearly with the stellar mass M∗.

In this paper, we propose that these observations may be explained by the

combined processes of “pebble accretion”—rapid gas-assisted accretion of small nebular

solids (e.g. Ormel & Klahr 2010; Johansen & Lacerda 2010; Perets & Murray-Clay 2011;

Lambrechts & Johansen 2012; Ormel & Kobayashi 2012; Guillot et al. 2014; Lambrechts

& Johansen 2014; Levison et al. 2015b; Morbidelli et al. 2015; Ida et al. 2016; Visser

& Ormel 2016; Chambers 2016; ?; Xu et al. 2017; Rosenthal et al. 2018; Rosenthal

& Murray-Clay 2018; Bitsch et al. 2019)—and flow isolation (Rosenthal et al. 2018,

hereafter R18), a process by which coupling of these small solids to the gas flow around

a planet cuts off pebble accretion at a characteristic planetary mass. Pebble accretion

requires a sufficiently massive seed to begin operating (Ormel & Klahr 2010, Lambrechts

& Johansen 2012, Rosenthal et al. 2018), but once this seed mass is produced by classic

planet formation processes, pebble accretion proceeds on timescales that are negligible

in comparison to the evolution timescale of the gas disk (e.g. Ormel & Klahr 2010,
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Lambrechts & Johansen 2012, Rosenthal & Murray-Clay 2018), which is ∼Myr (e.g.

Mamajek 2009). This rapid growth would naturally erase initial differences between

planet masses, forcing all planets that enter this stage of accretion to halt their growth

at the characteristic mass scale produced by flow isolation. Furthermore, if this mass

scale is not strongly dependent on semi-major axis, this effect would lead to similarly

sized planets within a given system.

The existence of a characteristic mass scale limiting planet formation is not

surprising. In classical models of planet formation, planetary growth via accretion of

planetesimal sized objects is initially limited by the “isolation mass” – the total mass

in solids located inside a planet’s feeding zone. A planet grows until it has accreted all

locally available material, at which point growth halts and the planet has reached its

isolation mass. An isolation mass based on accretion of local solids was a key part of

early theories of planet formation made to explain our solar system (see e.g. Lissauer

1993, Goldreich et al. 2004 for a review) and numerous works looking at a giant impacts

stage of isolation mass embryos find agreement between the resultant architectures and

the demographics of super-Earth systems (e.g. Schlichting 2014, Dawson et al. 2016,

Ogihara et al. 2018).

However, the importance of an isolation mass based on local solid mass can

be circumvented if pebble accretion operates, allowing planets to grow by accretion of

small, mm-cm sized particles instead of ∼km sized “planetesimals.” Grains of these

sizes drift radially inwards at rates much faster than the lifetime of the gas disk (e.g.

Weidenschilling 1977a), ensuring that there is more mass available for accretion than just
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the local isolation mass. Furthermore, because they are captured on such fast timescales,

accretion of these grains dominates over accretion of locally available planetesimals,

allowing planets to grow far beyond their isolation mass.

However, the rapid timescales predicted by pebble accretion bring in their own

challenge. Pebble accretion timescales become extremely rapid compared to the disk

lifetime as planets reach terrestrial mass scales (e.g., R18). If a limiting mass scale for

pebble accretion is not included, these rapid growth rates imply that the final masses of

planets either stall at sub-Earth masses or run away to form gas giants, with few planets

finishing their growth in the super-Earth sub-Neptune mass range (Lin et al. 2018),

which is clearly in conflict with observations of close-in planetary systems. If pebbles

are present, forming planets in this mass range thus requires some other physical process

to halt growth via pebble accretion before runaway gas accretion can occur.

Thus, both analysis of the observed Kepler planets and theoretical consid-

erations stemming from the efficiency of pebble accretion point to the existence of a

characteristic mass scale that sets the final mass that close-in planets can reach. Sev-

eral recent works (e.g. Bitsch et al. 2015, Izidoro et al. 2019, Lambrechts et al. 2019)

have looked at the architectures of systems where growth is limited by the “pebble iso-

lation mass,” a limiting mass scale for pebble accretion first identified by Lambrechts

et al. (2014), which can limit growth by pebble accretion to super-Earth masses in the

inner disk. In this paper we discuss a different candidate for setting the upper mass

of planets formed through pebble accretion – the “flow isolation mass.” For planets

growing by accreting pebbles, once planets reach a sufficient mass such that the extent
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of their atmosphere overtakes the impact parameter for accretion, pebbles flow around

the atmosphere without being accreted, causing growth to halt. This is in contrast to

the pebble isolation mass, which halts growth by raising a pressure perturbation in the

gas disk, trapping pebbles exterior to the planet’s orbit, as opposed to allowing them

to flow past the planet (see Section 4.3.5 for more discussion of the pebble isolation

mass). Flow isolation naturally stops growth at terrestrial to super-Earth mass scales

for reasonable fiducial disk parameters. We discuss how this mass scale emerges and is

calculated, and compare predictions of the flow isolation mass with the observed popu-

lation of super-Earth planets from Kepler. In Section 4.2 we discuss how flow isolation

operates. In Section 7.4 we present the details of our model, in particular how gas drag

is modeled and how the impact parameter for accretion is calculated. In Section 4.4 we

present scalings and numerical results for the flow isolation mass using our fiducial disk

model. In Section 7.2 we compare expected signatures of the flow isolation mass in the

architectures of planetary system with results from the Kepler data. Finally, in Section

4.6 we summarize our results and conclusions.

4.2 Model Overview

In this section we discuss broadly how pebble accretion timescales vary as a

function of mass, which leads naturally to either sub-Earth or Jupiter mass planets in

the absence of a limiting mass scale. We then introduce the idea of flow isolation and

explain how it modifies the planetary growth processes.

In pebble accretion, a process first reported by Ormel & Klahr (2010), Johansen
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& Lacerda 2010, and Lambrechts & Johansen (2012), protoplanetary cores grow by

accretion of solids that are marginally coupled to the local nebular gas. These solids

are both massive enough that they are not completely coupled to the gas, but not so

massive that they are unaffected by gas drag. When these particles encounter growing

cores, gas drag can have a substantial effect on the outcome of the interaction. In

particular, gas drag can remove the relative kinetic energy between the particle and

the protoplanet, gravitationally binding the particle at impact parameters where the

particle would otherwise have been only deflected by the core’s gravity. This increase

in impact parameter can lead to dramatically faster growth rates in certain parts of

parameter space.

While pebble accretion can operate at extremely fast rates, in general the

timescale for growth by pebble accretion is sensitive to both the mass of the growing

protoplanet and the small body size the core is accreting. An example of the pebble

accretion timescale at r = 0.5 AU, using the model of R18, with the disk parameters

described in Section 4.3.1, is shown in Figure 4.1. The figure shows the growth timescale

as a function of protoplanetary mass Mp and small body radius s. The two panels

illustrate how growth changes in the presence of nebular turbulence, which is given in

terms of the Shakura-Sunyaev α parameter (Shakura & Sunyaev 1973). As can be seen

from Figure 4.1, for large protoplanet masses (Mp & 10−6M⊕ for the α = 6.5 × 10−5

case, and Mp & 10−3M⊕ for α = 1.3 × 10−2) and marginally coupled particle radii (s

∼ 101−103 cm), accretion occurs at an extremely rapid rate. At lower masses, however,

the particle sizes that accrete on these rapid timescales are unavailable for growth,
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meaning the core will grow substantially more slowly.

Figure 4.1: A plot of the growth timescale of a planet at a = 0.5 AU undergoing pebble
accretion as a function of planet mass and small body radius. The disk parameters
used are described in Section 4.3.1. The two panels show the growth timescale for
two different levels of turbulence in the disk. In the lefthand side of both panels, the
red hatched region indicates where growth cannot occur because pebbles flow around
the core (see Section 4.2). The white regions indicate where particles do not dissipate
their kinetic energy relative to the core, and therefore cannot be accreted by pebble
accretion. Pebbles in this region could still be accreted by other processes however (e.g.
gravitational focusing).

Because of the slower growth timescales at low core mass, these growth timescales

appear to lead to binary outcomes in terms of the final planet mass. Either planets be-

come stuck below the masses where planet formation is efficient, or they surpass this

mass and grow on such rapid timescales that they easily reach Mcrit, the critical core

mass needed to trigger runaway gas accretion, if growth is not halted in some manner.

An example of the rapid growth timescales from pebble accretion are shown in Figure

4.2, which plots the mass of a protoplanet as a function of time for three different initial

masses. The core grows both by gravitational focusing of pebbles (i.e. what Ormel

& Klahr 2010 term the “hyperbolic” regime) and by pebble accretion once it becomes
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massive enough, with the pebbles all assumed to have size St = 10−2. Here St is a

dimensionless measure of particle size

St = tsΩ (4.1)

where ts ≡ mvrel/FD is the particle’s stopping time, m . is the particle’s mass, vrel is the

relative velocity between the particle and the gas, FD is the drag force on the particle,

and Ω is the local Keplerian angular frequency.

If the core is able to reach a mass such that St = 10−2 particles can be

captured through pebble accretion processes, growth becomes extremely fast and the

planet reaches masses that are more than sufficient to trigger runaway gas accretion.

If the planet is unable to reach this point, however, planetary growth stalls at low

mass. We note that in the inner regions of planetary systems, once planetesimals with

St � 1 are present (see e.g. Chiang & Youdin 2010 for a review of the “meter-size

barrier”), growth via gravitational focusing even without the assistance by gas may

prevent protoplanets from stalling at masses low enough to avoid pebble accretion (see

e.g. Goldreich et al. 2004).

This discussion, however, neglects the effect of the growing planet’s atmosphere

on accretion. As discussed in R18, as the planet grows it will accrete an atmosphere

from the protoplanetary disk. Interior to the planet’s atmosphere, the gas is static 17,

17Note that recent work by Ormel et al. (2015) and Cimerman et al. (2017) has shown that protoplan-
etary atmospheres may actually interact with the gas disk down to some scale, causing the atmosphere
of planet’s to be “recycled”. In Section 4.3.4 we give an order of magnitude calculate that demon-
strates that the atmospheres of sub-thermal planets undergoing pebble accretion should be able to repel
atmospheric flows at a scale comparable to RB
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Figure 4.2: The mass of a protoplanet undergoing pebble accretion as a function of
time, for three different values of initial mass. All particles are assumed to have Stokes
number of 10−2. The disk parameters used are given in Section 4.3.1. In all cases the
protoplanet’s solid mass runs away to extremely large masses on timescales shorter than
the lifetime of the protoplanetary disk (∼ 3 Myr).
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with a density profile that rises steeply from its nebular value. Because of this, the

planet’s atmosphere will block the flow of nebular gas, causing the gas to flow around

the planet’s atmosphere (e.g. Ormel 2013). Because of this alteration in flow pattern,

particles that couple strongly to the nebular gas may flow around the core’s atmosphere

without being accreted. In order to determine whether particles of a given size will be

diverted by the core’s alteration of the gas flow, there are two criteria that must be

met: 1. the maximum pebble accretion impact parameter for particles of this size must

be smaller than the scale of the core’s alteration of the gas flow, and 2. the time for

the particle to respond to change in gas direction must be shorter than the interaction

timescale between the particle and the core. The scale of the core’s alteration of the

gas flow is given by the core’s Bondi radius, which is roughly the length scale at which

the escape velocity from the planet is equal to the local sound speed cs

RB =
GMp

c2
s

(4.2)

where Mp is the mass of the planet.18 The timescale for the particle to respond to the

gas flow is the particle’s stopping time, ts.

The maximum impact parameter at which pebble accretion could conceivably

operate, Rstab is given by the scale at which gas drag balances the gravitational accel-

18Note that because we are primarily interested in planets with masses less than or equal to the
thermal mass—see Equation (4.44)—we assume for this discussion that the planet’s atmosphere is
limited by the Bondi radius.
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eration of the core19, that is

Rstab =

√
GMpm

FD
. (4.3)

Beyond this radius, even a particle that started gravitationally bound to the core would

not be accreted because it would be stripped off by the gas flow. In evaluating Equation

(4.3), FD should be calculated using the relative velocity between the gas and the core

at the impact parameter Rstab. This relative velocity results from either a combination

of the sub-Keplerian orbital velocity of the gas and turbulent motion, which we refer to

as vgas, or from Keplerian shear.

For particles to be pulled around the core by the gas, the two relevant criteria

are therefore

Rstab < RB (4.4)

ts <
RB

v∞
≡ tcross (4.5)

where v∞ is the velocity of the incoming particle relative to the core. We now show

that the former criterion is sufficient, as the latter is always satisfied for Rstab < RB.

There are two regimes for v∞: either the particle comes in with a velocity relative to

the core, vpc ≤ vgas resulting from drift and turbulent excitation by the gas, or the

Keplerian shear in the disk sets the incoming velocity, in which case v∞ ∼ RBΩ, where

19For sufficiently large St and Mp we instead expect Rstab = RH. Once RH < RB the process of
flow isolation is slightly modified, as the scale of the core’s atmosphere is now RH rather than RB. See
Rosenthal et al. (2018) for a discussion of flow isolation in this regime. The full expression for Rstab is
given in Equation (4.41).
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Ω =
√
GM∗/r3 is the local Keplerian orbital frequency, r is the semi-major axis of the

planet, and M∗ is the mass of the host star. In the latter regime we have

tcross =
RB

ΩRB
= Ω−1 (4.6)

and so ts < tcross is equivalent to taking St ≡ tsΩ < 1, which is the regime we confine

our attention to in the remainder of this work. In the former regime, we have

tcross =
RB

vpc
>
RB

vgas
(4.7)

since the incoming velocity of the particle is at most the gas velocity. Rearranging

Equation (4.3) and using the definition of the stopping time gives

ts =
R2

stabvgas

GMp
=
R2

stab

R2
B

v2
gas

c2
s

RB

vgas
<
RB

vgas
< tcross (4.8)

since Rstab < RB by assumption and vgas < cs since all gas flows are subsonic for

planetary masses less than the thermal mass (see Equations 4.37 and 4.44).

In summary, the only criterion that is necessary to determine whether particles

will be pulled around the core’s atmosphere is

Rstab < RB (pebble accretion cannot operate). (4.9)

In pratice, this process sets the lower limit on particle sizes that can be accreted, as

Rstab decreases with decreasing particle size. This process is illustrated schematically in
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Figure 4.3. We also note here that this cutoff in accretion is distinct from the decrease

in accretion rate that occurs for smaller particle sizes, which has been discussed in other

works on pebble accretion, e.g. Lambrechts & Johansen (2012), Visser & Ormel (2016),

R18, and can been seen in Figure 4.1. As an example, a 10 M⊕ core growing by accreting

pebbles around a solar mass star has a growth timescale of roughly

tgrow ∼ 6500 years
( r

0.5 au

)1/2
(

Σp

5 g cm−2

)−1

St−2/3 (4.10)

where Σp is the local pebble surface density and r is the planet’s semi-major axis (e.g.

Lambrechts & Johansen 2012). This would require the maximal pebble size to be below

St . 10−4 for the growth timescale to exceed 3 Myr. Flow isolation, on the other hand,

cuts off growth for much larger Stokes numbers; for example, in the righthand panel of

Figure 4.1, growth is shut off for all particles with St . 10−1.

Because of the decreasing value of Rstab with decreasing particle radius, this

process effectively sets a lower limit on the particle size that can be captured by pebble

accretion. However, if this lower limit on particle size exceeds the maximal size of

particle present in the disk, then growth of the planet will halt completely. A maximal

pebble size is expected from a number of physical processes, such as a fragmentation

barrier (e.g. Birnstiel et al. 2012), or from radial drift in the outer disk (e.g. Brauer

et al. 2008, Birnstiel et al. 2012). For a given maximum particle size, we then have an

upper limit on the mass a planet can grow to via pebble accretion, which is set by

Rstab(Stmax) < RB (flow isolation mass) . (4.11)
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Figure 4.3: A cartoon illustrating schematically how flow isolation operates. The
planet’s (black dot) atmosphere is shown by the gray shaded region, and extends up
to RB. The gas flows around the atmosphere, as shown by the dashed blue lines. The
larger, green particle, has maximal impact parameter for accretion Rstab > RB, and
thus can be captured at scales of Rstab before encountering the modified gas flow. The
smaller red particle has Rstab < RB, and is diverted by the atmosphere’s modification
to the flow instead of being captured.
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In practice, we may require the impact parameter for accretion to become a factor of

a few smaller than RB before accretion is completely inhibited, i.e. while Equation

(4.11) does give the scaling of the flow isolation mass, there is still some undetermined

coefficient f > 1 on the lefthand side of the equation. This constant depends on the

details of the atmospheric dynamics in the vicinity of the planet, and can be determined

by comparison with numerical simulations. We leave this comparison for future work.

In what follows, we determine the flow isolation by determining the mass such that

fRstab(Stmax) = RB (4.12)

and pick f = 1.75 for presenting our results.

Thus Equation (4.12) defines a “flow isolation mass,” which is a function of

the properties of the protoplanetary disk and the maximum particle size present (which

may itself be a simple function of the disk parameters). The presence of this mass scale

can halt pebble accretion at masses below the critical mass for runaway accretion of a

gas envelope, allowing a super-Earth or terrestrial mass planet to remain.

4.3 Methods

4.3.1 Fiducial Disk Model

To evaluate the flow isolation mass, we use a fiducial protoplanetary disk,

described by the following expressions.

Given the small semi-major axes at which super-Earths are observed, an im-
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portant component of our protoplanetary disk model is viscous heating, which sets the

temperature in the inner regions of protoplanetary disks. The midplane temperature

from viscous heating can be determined by equating the rate of heating from accretion

with radiative cooling from the midplane

GM∗Ṁ

r
=

64π

9

σSBT
4
c r

2

τc
(4.13)

(e.g. Oka et al. 2011, Kratter & Murray-Clay 2011). Here σSB is the Stefan-Boltzmann

constant, τc is the vertical optical depth for thermal radiation escaping from the mid-

plane, and Ṁ is the rate of mass flow through the disk. Setting τc = κΣ/2, where κ is

the Rosseland mean opacity, the midplane temperature is given by

Tc =

[
9

128π

GM∗ṀκΣ

σSBr3

]1/4

(4.14)

If we assume a steady-state accretion disk, the disk surface density, Σ Ṁ , and α can be

related using the equation

Ṁ = 3πΣν = 3πΣαcsH (4.15)

where ν is the local kinematic viscosity. This gives use the freedom to fix two of Ṁ , Σ,

or α; the remaining parameter can be calculated from the other two quantities using

Equation (4.15). It is common to fix Ṁ and α, and derive the surface density from

these two quantities. Doing so, however, leads to extremely large surface densities when

α is decreased. For example, for α = 10−4, and Ṁ = 10−8M� yr−1, the surface density
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at 1 au is Σ ≈ 12000 g cm−2, and the disk is Toomre Q unstable for r & 10AU. Thus,

in this work we choose to fix Σ in addition to Ṁ , meaning that α is no longer constant.

For ease of notation, we now define the quantities

M∗,� ≡
M∗
M�

, L∗,� ≡
L∗
L�

(4.16)

rAU =
r

AU
, Ṁ8 ≡

Ṁ

10−8M�yr−1
Σ3000 =

Σ0

3000 g cm−2

where L∗ is the stellar luminosity, and Σ0 is the surface density at 1 au.

We choose our surface density normalization of Σ0 = 3000 g cm−2 from com-

parison with Powell et al. (2019) who compute disk surface densities through particle

drift rates. From comparison with measured dust surface density profiles as found in

e.g. Andrews et al. (2009), we also choose a power law exponent of γ = 1. Thus, our

fiducial surface density profile is

Σ = 3000 g cm−2 r−1
AU (4.17)

Setting κ = 0.1 cm2 g−1, the fiducial temperature from viscous heating is then

Tvisc = 230 KM
1/4
∗,�Ṁ

1/4
8 Σ

1/4
3000r

−1
AU (4.18)

Farther out in the disk, the disk temperature will be set by passive irradiation from the
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central star. We take our fiducial profile from Ida et al. (2016)

Tirr = 150 KM
−1/7
∗,� L

2/7
∗,�r

−3/7
AU (4.19)

(see Chiang & Goldreich 1997 for more detail).

The temperature as a function of semi-major axis is then T = max(Tvisc, Tirr),

where Tvisc and Tirr are given by Equation (4.18) and (4.19) respectively. The disk

changes from being heated by viscous accretion to passive irradiation at a fiducial semi-

major axis of

rvis−irr = 2.2 AU Ṁ
7/16
8 M

11/16
∗,� Σ

7/16
3000L

−1/2
∗,� (4.20)

In each region, the value of α can be calculated using Equation (4.15)

α =





5.3× 10−4r
1/2
AUṀ

3/4
8 M

1/4
∗,�Σ

−5/4
3000 r < rvis−irr

8.2× 10−4r
−1/14
AU Ṁ8M

9/14
∗,� Σ−1

3000L
−2/7
∗,� r > rvis−irr

(4.21)

We also note that if global disk evolution is governed by magnetic winds, as opposed

to viscous evolution, as discussed by e.g. Bai (2016), then accretion heating would be

reduced in the inner regions of disks. In this case, our model of a viscously heated inner

disk would not be appropriate. Instead, our expressions for a passively irradiated disk

would apply throughout most of the extent of the disk (as opposed to just r > rvis−irr),

with a different regime, where the finite angular size of the star sets the irradiation,

applying for r . 0.2 au. See Wu (2019) for a discussion of this scaling.
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For our fiducial disk we take the star to have solar mass, M∗ = M�, with

luminosity L∗ = 3L�, which corresponds to a solar mass star of age ∼ 1 Myr (Tognelli

et al. 2011). The gas has a mean molecular weight µ = 2.35mH ≈ 3.93 × 10−24g. The

neutral collision cross section in the disk is σ ≈ 10−15 cm2. The pebbles are taken to

have density ρs = 2 g cm−3.

We note that the flow isolation mass is not sensitive to the solid surface density.

For the calculations in this work that do require a surface density be specified (i.e Figures

4.1, 4.2 and 4.4), we used

Σp = 5 g cm−2
( r

AU

)−1
(4.22)

which is taken to match observations of the solid surface density in protoplanetary

disks (Andrews et al. 2009, Andrews 2015). We further note that if this surface density

is converted to a mass flux using the relation Fpeb = 2πrvrΣp (e.g. Lambrechts &

Johansen 2014), where vr ∼ 2ηvkSt is the radial drift velocity of pebbles, then, for the

St = 10−2 particles used in producing Figure 4.2, this corresponds to a pebble mass

flux of roughly 70M⊕Myr−1 in the inner, viscously heated region of the disk.

Finally, we note that we are neglecting Type I migration effects in our dis-

cussion, and instead considering expected planet masses if planets form in-situ at their

observed locations.

We now quantitatively discuss how to calculate the mass scale where flow

isolation occurs. We also discuss the properties of the atmospheres of cores undergoing

pebble accretion.
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4.3.2 Summary of Pebble Accretion Model

In Section 4.3.2 and 4.3.2 we briefly summarize how the maximum impact

parameter for pebble accretion, Rstab is calculated in the model of Rosenthal et al.

(2018); see R18 for more detail.

Stokes number and Gas Drag Regimes

The relevant parameter for measuring particle size in pebble accretion is the

particle’s Stokes number, St. The Stokes number measures particle size in terms of how

well coupled the particle is to the gas, and is given by

St ≡ tsΩ . (4.23)

Here ts is the particle’s stopping time, and Ω is the local Keplerian angular frequency.

Particles with St ∼ 1 are maximally affected by gas drag, while particles with St � 1

are strongly coupled to the gas, and particles with St � 1 are decoupled from the gas

flow. Calculation of the particle radius s for which St ∼ 1 yields radii in the eponymous

“pebble” size range of mm-cm, particularly in the outer disk.

Thus, in order to calculate the particle’s Stokes number we first need to deter-

mine the drag force on the particle. The gas drag force on the pebbles is split into two

regimes – a “diffuse regime,” which applies for s < 9λ/4, and a “fluid regime,” which

holds for s > 9λ/4. Here s is the radius of the pebble, λ = µ/(ρgσ) is the mean free

path of the gas molecules, ρg = H/(2Σ) is the volumetric mass density of the gas, and
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H = cs/Ω is the scale height of the gas disk. The particle is in the fluid regime for

St &





3.4× 10−3r3
AUM

1/8
8 M

−3/8
∗,� Σ

−15/8
3000 r < rvis−irr

2.8× 10−3r
23/7
AU L

2/7
∗,�M

−4/7
∗,� Σ−2

3000 r > rvis−irr

(4.24)

In the diffuse regime, the drag force is given by the Epstein drag law

FD,eps =
4

3
πρgvthvrels

2 , (4.25)

where vth =
√

8/πcs is the average thermal velocity of the gas particles, and vrel is

the relative velocity between the particle and the gas. Assuming spherically symmetric

particles of uniform density ρs, the stopping time of a particle in the Epstein regime is

ts,Eps =
ρs

ρg

s

vth
(4.26)

which is independent of the small body’s velocity.

In the fluid regime, the drag force depends on the Reynolds number of the

particle, Re = 2svrel/ (0.5 vthλ), and can be approximated by

FD =





3πρgvthvrelλs Re < 1, Stokes

0.22πρgv
2
rels

2 Re & 800, Ram

(4.27)

Note that the Stokes regime is a linear drag regime, and the stopping time of a particle
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in the Stokes regime is given by

ts,Stokes =
4

9

ρs

ρg

s2

vthλ
(4.28)

Generally a smoothing function is employed to transition cleanly between the Stokes

and Ram regimes (e.g. Cheng 2009). In order to make the effect of various drag regimes

clear in our results, we instead choose to use a piecewise drag function that transitions

between the Stokes and Ram regimes at the Reynolds number for which the drag forces

are equal. That is, we take the drag force in the fluid regime to be given by

FD =





3π

4
ρgv

2
thλ

2Re Re ≤ 12

0.22
, Stokes

0.22π

16
ρgv

2
thλ

2Re2 Re >
12

0.22
, Ram

(4.29)

This slightly underestimates the drag force on the particle at intermediate Reynolds

numbers, which increases the calculated impact parameter for accretion (see Equation

4.35) and therefore slightly increases the flow isolation mass, as the core must get to

larger masses before the Bondi radius exceeds the impact parameter for accretion.

In the ram regime, the stopping time is dependent on velocity, meaning that,

for a given particle size s, ts must be solved for numerically, using vrel(ts). The relevant

equations for the laminar and turbulent components of the relative velocity between the

particle and the gas respectively are

vpg,` = ηvkSt

√
4 + St2

1 + St2
(4.30)
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(Nakagawa et al. 1986), and

v2
pg,t = v2

gas,t


 St2(1−Re−

1
2

t )

(St+ 1)(St+Re
− 1

2
t )


 (4.31)

(Ormel & Cuzzi 2007). Here η ≡ c2
s/ (2vk) is a measure of pressure support in the

gas disk, vk = rΩ is the local Keplerian orbital velocity, and Ret ≡ αcsH/(vthλ) is the

Reynolds number of the turbulence, given in terms of the Shakura-Sunyaev α parameter,

which we use to parameterize the strength of turbulence in the disk. In terms of α, the

root-mean-square (RMS) turbulent gas velocity is given by

vgas,t =
√
αcs . (4.32)

Finally, the total RMS velocity between the particle and the gas is given by

vpg =
√
v2

pg,` + v2
pg,t . (4.33)

Calculation of Impact Parameter for Pebble Accretion

Flow isolation occurs when the impact parameter for accretion, Rstab, shrinks

below the core’s Bondi radius. In this section, we discuss in detail how Rstab is calcu-

lated.

The scale at which a growing planet’s gravity dominates over the stellar gravity
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is the planet’s Hill radius, which is given by

RH = r

(
Mp

3M∗

)1/3

, (4.34)

and Mp is the mass of the planet (Hill 1878). In the most favorable cases, pebble ac-

cretion allows cores to accrete over the entirety of their Hill radii (e.g. Lambrechts &

Johansen 2012, R18), resulting in extremely rapid growth timescales relative to gravi-

tational focusing of planetesimals.20 However, in order for pebble accretion to operate,

the core’s gravitational force needs to dominate over the force on the particle due to

gas drag, in addition to the stellar tidal gravity (e.g. Perets & Murray-Clay 2011).

Balancing the core’s gravity with the differential acceleration due to gas drag leads to

a scale is known as the wind-shearing (WISH) radius, which is given by

R′WS =

√
G (Mp +m)

∆aWS
≈
√
GMpts
vrel

(4.35)

(Perets & Murray-Clay 2011). Here m is the mass of the small body, ∆aWS is the

relative acceleration between the protoplanet and the small body due to gas drag, and

vrel is the relative velocity between the small body and the nebular gas. In the second

equality we’ve assumed that Mp � m.

In order to calculate R′WS, we need to determine the relevant velocity for

determining the drag force. As the particle approaches the core, the particle will be

20Accretion at RH is faster than gravitationally focusing a population of small bodies with velocity
dispersion vH ≡ RHΩ (which leads to the fastest growth rate in the absence of a mechanism to damp
planetesimal velocities) by a factor of RH/Rp ∼ r/R∗, where Rp is the planet’s radius, r is the semi-
major axis of the planet, and R∗ is the stellar radius.
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slowed relative to the gas flow, increasing the drag force it feels. In the most restrictive

case, the particle will feel the full velocity of the gas relative to the core, which is

assumed to be massive enough that it moves at the local Keplerian orbital velocity.

The local gas velocity is a combination of two factors: motion of the gas relative to the

Keplerian velocity, and shear in the disk.

The motion of the gas relative to the local Keplerian velocity has both a laminar

component and a turbulent component. The laminar component arises from pressure

support in the disk, which causes the gas disk to rotate at a slightly sub-Keplerian

orbital velocity

vgas,lam =
c2

s

2vk
= ηvk (4.36)

As discussed previously, the amount of turbulence in the disk is parameterized by the

Shakura-Sunyaev α parameter (see Equation 4.32). The total RMS velocity of the gas

relative to the local Keplerian velocity is

vgas =
√
η2v2

k + αc2
s (4.37)

(e.g. R18).

The second factor contributing to the relative velocity between the gas and

the local Keplerian velocity is shear in the disk. Because orbital velocity decreases as

we move outwards in the disk, particles separated in the radial direction move relative
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to one another in the azimuthal direction. This shear velocity is of order

vshear = RΩ (4.38)

where R is the separation between the particles.

If we set vrel = max(vgas, vshear), then we have two measures of the impact

parameter for accretion. In the former case, where vrel = vgas, we refer to the impact

parameter as RWS (i.e. unprimed); in the latter case we refer to the impact parameter

as Rshear. For a particle in a linear drag regime, there are simple analytic forms for RWS

and Rshear:

RWS = RH

√
3St

(
vH
vgas

)
(4.39)

Rshear = RH (3St)1/3 (4.40)

For a particle in a nonlinear drag regime, the values of these parameters are calculated

numerically. See R18 for a comparison of this method of modeling of impact parameter

with other works. In general, the impact parameter for accretion is given by

Rstab = min (RWS, Rshear, RH) (4.41)
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4.3.3 Calculation of the Flow Isolation Mass

Analytic Calculation for Linear Drag Regimes

As can be seen from Equations (4.39) and (4.40), the impact parameter for

pebble accretion decreases as small body radius is decreased. Thus, the requirement

that pebble accretion can only operate for fRstab > RB translates into an lower limit

on the small body radius that can captured via pebble accretion. In a linear drag

regime, where a particle’s Stokes number is independent of velocity and depends only

upon particle and disk properties, we can substitute equations (4.39) and (4.40) into

Equation (4.12) and solve for St. Doing so yields

Stmin = max

[
f−2

(
H

r

)−3(vgas

cs

)(
Mp

M∗

)
, f−3

(
H

r

)−6(Mp

M∗

)2
]
. (4.42)

where f is the undetermined coefficient introduced in Equation (4.12). Thus, if particles

only exist up to some maximum size Stmax, then we can translate Equation (5.21) to

an upper limit on planet mass

Mflow

M∗
= min

[
f2 cs

vgas

(
H

r

)3

Stmax, f
3/2

(
H

r

)3√
Stmax

]
(4.43)

We note again that this analytic expression is only valid if the particle is in a linear drag

regime; the general numerical procedure for calculating Mflow is discussed in the next

section. Once the core grows to a mass such that RB > RH, the core’s atmosphere will

begin to be limited by tidal effects. In this regime the extent of the core’s atmosphere,

Ratm will now extend to RH as opposed to RB, and we will have Rstab ≤ Ratm regardless
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of small body size. In this regime, Rosenthal et al. (2018) argue that growth by pebble

accretion is completely halted. Given the order of magnitude nature of this argument,

we again introduce an order unity factor when solving for the mass scale, which should

be calibrated from numerical simulations. Because the physical processes important in

this regime differ from those that dominate at lower masses (for example, the velocity

difference between the planetary atmosphere and the background gas becomes super-

sonic), we use a different order unity constant, f ′, when determining this mass scale.

Solving RB = f ′RH for planet mass gives

Mp,max

M∗
=

(
f ′3

3

)1/2
c3

s

GΩ
=

(
f ′3

3

)1/2

(H/r)3 (4.44)

This is similar in scale to the thermal mass, an often cited scale at which a growing

planet is able to open a gap in the gas disk (Lin & Papaloizou 1993). At the thermal

mass, RH ∼ RB ∼ H, though the exact form of the expression for the thermal mass

depends on which of these two length scales are set equal. For the purposes of this work

we define the thermal mass as the scale at which RB = H, in which case the thermal

mass is given by

Mth = 3

(
H

r

)3

M∗ (4.45)

Note that while we use this definition of thermal mass when expressing our results in

terms of Mp/Mth, this definition of thermal mass makes no difference in the calculated

value of the flow isolation mass, which is more fundamentally given by Equation (4.43).
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A different definition of the thermal mass would simply introduce additional prefactors

into equations such as (5.22).

In terms of the thermal mass, we can write the full expression for the flow

isolation mass as

Mflow

Mth
= min

[
f2 cs

3vgas
Stmax,

f3/2

3

√
Stmax,

(
f ′

3

)3/2
]

(4.46)

To maintain simplicity in presenting our results we set f ′ = f = 1.75 in what follows.

R18 previously used the term “Flow Isolation Mass” to refer to scenario where

RB > RH, indicating that pebbles of all sizes were inhibited from accreting. However,

if pebbles exist up to some maximum size, then growth can halt because pebbles of the

maximal size are inhibited from accreting from the constraint in Equation (5.21). This

limits planetary growth to masses lower than the thermal mass. In this work we expand

the term “Flow Isolation Mass” to include this case as well.

General Numerical Procedure

In this section we sketch the general procedure to calculate Mflow numerically.

If the particle is not in a linear drag regime then St can no longer be defined

without reference to the relative velocity between the particle and gas. In this work, we

define the particle’s Stokes number in a non-linear drag regime with respect to vpg as

defined by Equation (4.33). Thus for a given maximum Stokes number, the algorithm

to calculate Mflow is as follows

1. Use Stmax to calculate vpg, using Equations (4.30)–(4.33).
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2. Use the calculated value of vpg to solve the equation FD = mvpg/ts for particle

size s, using Equation (4.29) to relate FD and s.

3. Solve for the masses such that RB = fR′WS, where R′WS refers to the two solu-

tions to the equation FD = GMp/R
′2
WS (Equation 4.35), when the drag force is

calculated using a) vgas =
√
η2v2

k + αc2
s (Equation 4.37) and b) vshear = R′WSΩ

(Equation 4.38). Note that in the latter case the velocity, and therefore the drag

force, is also function of impact parameter.

4. Finally, the flow isolation mass is the minimum of three mass scales: the two

masses calculated in 3. above, and the mass scale where f ′RH = RB defined in

Equation (4.44).

We remind the reader that we use f ′ = f = 1.75 for presenting our results. Note that

several, if not all, of the solutions described above need to be performed numerically,

particularly if a more complicated drag law is used (e.g. the previously discussed Cheng

2009 smoothed drag law) instead of our simpler, piecewise prescription.

4.3.4 Structure of Planetary Atmospheres

Equation (5.22) is the key result of our paper. In deriving this expression, we

have assumed that the atmosphere of the growing core is able to repel the flow of nebular

gas. In this section, we discuss the atmospheric properties of planets undergoing pebble

accretion, in particular to ensure that the mass of the atmosphere is still substantial

enough to act as an effective obstacle.
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Figure 4.4: The atmospheric mass of a planet accreting at the maximal pebble accre-
tion rate as a function of semi-major axis, using mixing length theory to calculate the
temperature gradient. While the atmospheric mass is slightly reduced from the fully
convective value, the decrease is relatively modest.
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As planets approach the flow isolation mass, pebble accretion rates are gener-

ally extremely rapid (see Figure 4.1). At these masses, a large fraction of the available

pebble sizes will be accreted over the extent of the planet’s Hill radius (e.g. Ormel &

Klahr 2010, Lambrechts & Johansen 2012). This leads to a growth timescale that is

independent of small body radius

tHill =
Mp

2ΣpR2
HΩ
∼ 4× 103 years

( r

AU

)1/2
(
Mp

M⊕

)1/3

. (4.47)

where Σp is the pebble surface density, and we have used our fiducial disk model in the

second expression (see Section 4.3.1). Assuming that all of the energy of the pebbles is

deposited at the surface of the planet, this corresponds to a luminosity of

GMpṀHill

Rp
= ΣpR

2
Hv

2
escΩ (4.48)

≈ 2.7× 1028erg/s

(
Mp

M⊕

)4/3 ( r

AU

)−1/2
(4.49)

where we have again used our fiducial disk parameters, and assumed a density of ρp =

5.5 g/cm3 for the planet. Because of this extremely high accretion luminosity, planets

undergoing pebble accretion will generally transport energy by convection through the

entirety of their atmosphere. However, convection cannot transport an arbitrary amount

of energy; for high enough luminosities convection will become inefficient, limiting the

mass of the planet’s atmosphere.

In order to ensure that the atmospheric masses of planets undergoing pebble

accretion were not too limited by pebble accretion, we numerically calculate steady state
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atmospheric masses following the methods of Rafikov (2006). The nebular parameters

were calculated using the fiducial disk model discussed in Section 4.3.1. We assume a

simple power law opacity, κ = κ0 (T/T0) , where T0 is the temperature of the nebula

at the given semi-major axis and κ0 = 0.1 cm2g−1. The temperature gradient ∇ ≡

d lnT/d lnP was calculated using mixing length theory following Appendix D of Rafikov

(2006).

The results of this calculation are shown in Figure 4.4 for α = 10−2. An

analytic estimate of the mass of a fully convective atmosphere, Matm ≈ 4πρ0R
3
B, where

ρ0 is the nebular density, is also plotted. The solid lines are truncated on the left when

Rp > RB. As can be seen in the figure, the atmospheric masses of these planets are

generally very close to the fully convective value, with efficiency of convection only being

important for the Mp = 10−1M⊕ planet past a ∼ 1 au.

A simple order of magnitude argument shows that the mass of a fully convective

atmosphere is sufficient to repel the flow of nebular gas. Consider a core of mass such

that RB < RH with a fully convective atmosphere of mass Matm ∼ ρnebR
3
B. The gas

moves relative to the core’s atmosphere with a velocity vapp ∼ max(ηvk,ΩRB). In a

time ∆t ∼ RB/vapp the core encounters a mass in gas of Mgas ∼ ρnebR
2
Bvapp∆t, which

therefore has kinetic energy KE ∼ ρnebv
2
appR

3
B. The binding energy of the atmosphere

is of order Ebind ∼ GMpMatm/RB. The ratio of these two quantities is therefore

KE

Ebind
∼

ρnebv
2
appR

3
B

ρnebGMpR2
B

∼
v2

appRB

v2
HRH

(4.50)

If vapp = ΩRB then the quantity on the right is < 1 since RB < RH by assumption.
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Otherwise vapp = ηvk, in which case the quantity on the right is of order c2
s/v

2
k =

(H/r)2 � 1. In both cases the incoming kinetic energy of the gas is much less than the

binding energy of the atmosphere, meaning the nebular gas will not ablate the stationary

atmosphere. In particular, the “recycling” effects identified by e.g. Ormel et al. (2015)

are unlikely to result in an unbound atmosphere during this phase of planetary growth.

We also note that a similar conclusion can be reached by comparing the pres-

sure from the incoming gas, which is of order ρnebv
2
app, to the atmosphere’s hydro-

static pressure, which is of order ρnebc
2
s (neglecting any enhancement to the atmo-

spheric density). The ratio of incoming gas pressure to hydrostatic pressure is therefore

∼ v2
app/c

2
s ∼ v2

appRB/(v
2
HRH), which is the same ratio given in the righthand side of

Equation (4.50). The ratio of pressures is therefore < 1 by the same argument given

above.

4.3.5 Pebble Isolation Mass

In this section we discuss another candidate for limiting the growth of planets

via pebble accretion, the “pebble isolation mass,” first identified by Lambrechts et al.

(2014). Once a planet reaches this mass scale, perturbations from the planet on the

local gas disk raise pressure bumps in the disk that trap pebbles, preventing them from

being accreted by the planet. From the results of their hydrodynamical simulations,

Lambrechts et al. give the pebble isolation mass as

Miso = 20M⊕

(
H/r

0.05

)3

. (4.51)

228



Though it is not noted in Lambrechts & Johansen (2014), this mass scale is similar in

scale to the mass scale where RB = RH; specifically using the mass scale given in Equa-

tion (4.44) without the factor f and using the temperature profile used in Lambrechts

et al. (2014) gives the semi-major axis scaling as in Equation (4.51) with a prefactor of

∼ 23M⊕.

Bitsch et al. (2018) followed up on the work of (Lambrechts et al. 2014) by

exploring the variation of pebble isolation mass with the level of nebular turbulence and

radial pressure gradient, and also accounted for how different pebble sizes are able to

diffuse through the pressure bump raised by the planet. Their results confirm that the

pebble isolation mass is of the scale of the thermal mass, with a variation of a factor

of 2-3 as α is increased, and smaller effect from the radial pressure gradient. They

also found that the mass of the planet must be increased an additional factor to block

smaller particles; while the overall functional form of this increase is complicated, it is

inversely proportional to the particle Stokes number.

Thus, in general the pebble isolation mass is of order the scale where RB = RH.

From our purely analytic arguments, i.e. without the unknown order unity factor f , we

expect the flow isolation mass to be of order this scale or smaller, (e.g. ≈ 30% of this

scale when Stmax = 10−1) which would indicate that Mflow . Mpeb for small values of

Stmax, with Mflow ∼Mpeb within a factor of 2-3 for Stmax ∼ 1. A precise comparison is

complicated by the dependence of the mass scales on the value of f , the value of α, and

to a lesser extent ∂ lnP/∂ ln r. A more difficult to overcome complication stems from

the dependence of Mpeb on the smallest Stokes numbers present: in contrast to the
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flow isolation mass, the pebble isolation mass more readily blocks large particles than

small particles, meaning that the pebble isolation mass increases as the particle size

that is required to be blocked is decreased. Because particles in protoplanetary disks

do not exist at a single size, but instead have a distribution of sizes, in order to halt

growth the planet must block not just the largest particles, but also sufficiently small

particles such that the planet grows on timescales longer than the dissipation timescale

of the protoplanetary disk. One could attempt to estimate this smallest particle size by

assuming a size distribution for the small particles, and then calculating the smallest

particle size below which the growth timescale for the core exceeded the lifetime of the

gas disk. While we initially attempted this approach, we found that in many cases

the calculated mass exceeded the regime where the analytic expressions of Bitsch et al.

(2018) hold. We therefore leave a detailed comparison between these two mass scales

at high Stmax to future work.

4.4 Results

In this section we present values for the limiting mass that a growing planet

can reach via pebble accretion by taking into account the flow isolation mass. We

present results both fixed maximum Stokes number (Section 4.4.1), and for a simple

fragmentation limited model of particle size (Section 4.4.2). In Section 4.4.3 we discuss

how the flow isolation mass scales as a function of stellar mass.
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4.4.1 Limiting Planet Mass for Fixed Stmax

In this section we give limits on planet mass as a function of the maximum

Stokes number present in the disk. Results for the flow isolation mass for fixed Stmax
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Figure 4.5: A plot of the maximal mass a planet accreting pebbles can reach as a
function of semi-major axis, accretion rate, and maximum Stokes number present.

are shown in Figure 4.5.

Several features are apparent in Figure 4.5. Firstly, the liming mass increases

as a function of semi-major axis. However, the dependence is relatively shallow, par-

ticularly in the inner disk, where the mass can become independent of semi-major axis.

In the inner region of the disk viscous heating dominates over irradiation; for planets
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at this mass scale the second of the three analytic expressions given in Equation (5.22)

dominates, i.e., the flow isolation mass is given by

Mflow

Mth
=
f3/2

3

√
Stmax (4.52)

Defining

St1 =
Stmax

10−1
(4.53)

then, scaled to our fiducial disk profile, this mass is given by

Mflow =





6.8M⊕ St
1/2
1 r0

AUM
3/8
8 M

−1/8
∗,� Σ

3/8
3000 r < rvis−irr

3.5M⊕ St
1/2
1 r

6/7
AUM

−5/7
∗,� L

3/7
∗,� r > rvis−irr

(4.54)

i.e. the flow isolation mass is independent of semi-major axis in the inner disk, which is

what causes the flattening of the lines seen in Figure 4.5. We stress that Equation (4.54)

is approximate: it is one of the three possible regimes that can set the flow isolation

mass, as seen in Equation (5.22), which is itself an analytic approximation to the flow

isolation mass in a linear drag regime, as described in Section 6.2.2. Indeed, the scaling

in Equation (4.54) may be complicated by several effects. When the Stokes number is

low and the accretion rate is high (e.g., Figure 4.5 top left, red line), the WISH radius

can set the flow isolation mass rather than the shearing radius. This causes Mflow

to decrease with semi-major axis. Furthermore, close in to the star non-linear drag

effects become important, causing Mflow to deviate from the simple scaling predicted by
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Equation (4.54), as seen in the bottom two panels of Figure 4.5.

Finally, as can be seen in Figure 4.5, increasing the maximum Stokes number

present in the disk increases the maximal mass planets can achieve. This is because

larger particles can be captured at greater impact parameters, requiring the planet to

reach higher masses before RB overtakes Rstab. In the next section, we consider how

this maximal particle size might scale with semi-major axis.

4.4.2 Flow Isolation Mass for Fragmentation-Limited Pebbles

In the previous section we described the limiting planet mass as a function of

Stokes number. There exist however, models for the maximal particle size present in

the disk, which we can employ to remove the dependence on Stmax. In particular, in the

inner regions of protoplanetary disks it is thought that fragmentation between particles

limits the sizes that small bodies can reach, due to high collision velocities and frequent

collisions. In this section we use a relatively simple model in which collision velocities

above a threshold velocity ufrag result in fragmentation (e.g. Birnstiel et al. 2009).

This would be expected if the binding energy of the particle scales as the particle’s

mass, which is an acceptable approximation for small solids held together by chemical

bonds. Lab experiments suggest that ufrag in the range 1-10 m/s may apply, though the

(unknown) material properties of the colliding pebbles affect this number significantly

(Stewart & Leinhardt 2009; Blum & Wurm 2008).

If turbulent motions dominate the relative velocity between particles, then the
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Figure 4.6: A plot of the maximal Stokes number pebbles can reach as a function of
semi-major axis and particle fragmentation velocity. The maximal particle size at a
given semi-major axis is given by Equation (4.59).
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relative velocity between two particles of with Stokes number St is of order

vcoll = vgas,t

√
St (4.55)

assuming the particles have stopping times such that tη < ts < tL, where tη and tL are

the turnover times of the smallest and largest scale eddies respectively (Ormel & Cuzzi

2007). This leads to a maximum Stokes number of

Stmax =
u2

frag

αc2
s

(4.56)

Birnstiel et al. (2009). In what follows, we also consider collisions stemming from the

laminar gas velocity. For particles with St < 1, the particle’s laminar velocity relative

to Keplerian is well approximated by v` = 2ηvkSt, leading to a relative velocity of

vrel,` = 2ηvk (St1 − St2) ∼ ηvkSt1 (4.57)

where St1 and St2 are the Stokes numbers of the larger and smaller particles, respec-

tively. This leads to a maximum Stokes number of roughly

Stmax =
ufrag

ηvk
. (4.58)

Combining Equations (4.56) and (4.58) gives

Stmax = min

(
u2

frag

αc2
s

,
ufrag

ηvk

)
(4.59)
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The maximum Stokes number for fragmentation velocities of ufrag = 1 m/s and 10 m/s

are shown in Figure 4.6.

In Figure 4.7 we plot the value of the flow isolation mass for fragmentation

velocities of ufrag = 1 m/s and 10 m/s. For a fragmentation velocity of ufrag = 1 m/s

(upper panel), only the colder disks, i.e. those with lower Ṁ , are able to produce

super-Earth masses. For ufrag = 10 m/s (lower panel), however, the mass scale is much

less sensitive to the temperature. This is because there are two competing effects that

tend to cancel one another out as the temperature is increased: higher temperatures

increase the thermal mass, increasing the flow isolation mass as well. However, higher

temperatures lead to larger collision velocities between particles, which decreases the

maximum Stokes number and correspondingly lowers the flow isolation mass.

We comment that a given protoplanetary disk likely evolves at different accre-

tion rates during its lifetime. This implies that the final mass a planet reaches depends

on when the initial protoplanet forms, as was also identified by Bitsch et al. (2019).

We emphasize that because both pebble accretion timescales for growing cores

and collisional growth/destruction destruction timescales for source pebbles are very

fast, particularly in the inner disk, planets are likely able to reach the maximum flow

isolation masses shown in Figure 4.7.

4.4.3 Variation with Stellar Mass

In Equation (4.54), we gave the scaling of the flow isolation mass with fiducial

disk parameters. However, two of these quantities, M8 and Σ3000 likely scale with stellar

mass. A number of observational works point to Ṁ scaling with M2
∗ (e.g. Natta et al.
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2006, Alcalá et al. 2014), and recent work points to a linear or steeper than linear

scaling of disk mass with stellar mass (Andrews et al. 2013, Pascucci et al. 2016). If we

neglect variation in the outer disk radius, then this implies that the surface density also

scales linearly with stellar mass. Inserting these scalings into the inner, viscously heated

regime of Equation (4.54) (and assuming that our fiducial value of Σ0 = 3000 g cm−2

applies for M∗,� = 1) gives

Mflow = 6.8M⊕ St
1/2
1 M1

∗,� (4.60)

i.e. the flow isolation mass scales approximately linearly with the host star mass.

4.5 Comparison to Observations of Close in Planets

In this section we compare predictions made if planet mass is limited by the

flow isolation mass to trends identified in the population of close in planets. We point

out that these trends are readily explained if planet mass is limited by flow isolation. For

a discussion of super-Earth observations in the context of pebble isolation, see Bitsch

et al. (2019).

4.5.1 Weiss et al. (2018) and Millholland et al. (2017)

Weiss et al. (2018) investigated the characteristics of the multi-planet systems

found in the Kepler sample. These authors found a correlation between the sizes of

planets within a given multi-planet system, i.e. planets in the same system are likely

to be similar in size. Millholland et al. (2017) further showed through analysis of the
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Kepler planets that also have masses measured through transit timing variations that

this similarity applies to mass as well as radius. Note however, that some authors have

attributed this effect to detection bias (Zhu 2019).

Similarity between sizes of planets emerges naturally if planet mass is limited

by flow isolation. Looking at Equation (4.54), we see that in the inner regions of

protoplanetary disks the flow isolation mass is roughly independent of semi-major axis,

which stems from viscous heating dominating the temperature structure in this region.

Thus, if flow isolation limits planetary growth, super-Earths in the same system would

be similar in mass. Excluding atmospheric loss effects, they would also be similar in

size.

4.5.2 Wu (2019)

Using updated radius values for planets found from the Kepler mission in

concert with Gaia DR2 stellar radii, Wu (2019) explored the effects of photoevaporation

in sculpting the observed super-Earth population. Wu found that this population could

be explained as stemming from a single characteristic mass scale, of roughly Mp ∼ 8M⊕.

Furthermore, Wu demonstrated that this mass scale varies with stellar mass and radius

with a power law indicies in the range

Mp = 8M⊕M
0.95−1.4
∗ r0−0.5

AU (4.61)

Note that this mass scale refers to the bare core mass of these planets; planets that do

not undergo photoevaporation will accrete some amount of nebular gas, changing their
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observed radius (and, to a lesser extent, mass).

Comparison between Equations (4.60) and (4.61) shows that the scaling of this

characteristic mass scale is exactly what we would expect if pebble accretion fuels the

growth of these planets, only to be shut off by flow isolation. We note that Wu (2019)

argues the characteristic mass scale identified in that work could be the thermal mass,

whereas we have argued that this mass scale could be the flow isolation mass, which is

generally less than or equal to the thermal mass. This difference stems from how the

temperature profile in the inner regions of the protoplanetary disk and the scaling of

various disk parameters with stellar mass are modeled.

4.5.3 Zhu & Wu (2018) & Bryan et al. (2019)

Using previously published planetary systems, Zhu & Wu (2018) calculated

the correlation between systems with “cold” Jupiters and inner super-Earths. They

found that 90% of systems that host an outer cold Jupiter contain inner super-Earths.

Bryan et al. (2019) further investigated the occurrence rate of such outer gas giant

companions in systems that contain super-Earths by taking radial velocity data on

systems containing super-Earths and looking for trends in the radial velocity signals.

They found an occurrence rate of 39% ± 7% for planets 0.5-20 Mjup at 1-20 au, and

also demonstrated that systems that host super-Earths are more likely to contain an

outer gas giant planet.

This effect would follow naturally for systems of super-Earths where the mass

of the planets is limited by flow isolation. In such systems, solid surface densities and

pebble sizes were clearly conducive to formation of planets via pebble accretion in the
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inner disk. At larger semi-major axes, the disk temperature is set by passive irradiation

instead of viscous heating, indicating a weaker scaling of temperature with semi-major

axis. This weaker scaling leads to larger values of thermal mass in the outer disk, and

correspondingly larger flow isolation masses. Thus, in the outer regions of these disks

the flow isolation mass can reach values large enough to trigger runaway gas accretion,

allowing gas giants to form at larger semi-major axes (c.f. Figures 4.5 and 4.7, upward

trends at righthand sides of plots). Therefore, in systems which produced inner super-

Earths via flow isolation, we would expect outer gas giants to be more likely, in line

with the results of Zhu & Wu (2018) and Bryan et al. (2019). We note that at very

large semi-major axes, drift limits the sizes of available pebbles (e.g., Powell et al. 2019),

meaning that the trend toward larger flow isolation masses will likely reverse at large

separations. We also point out that this correlation between inner super-Earth and

outer gas giants is not unique to the flow isolation mass, but is a natural prediction of

theories where a limiting mass scale increases in the outer disk, as is true for the pebble

isolation mass, e.g. Brügger et al. (2018), Bitsch et al. (2019), or the local isolation

mass used in classic models of the solar system (e.g. Lissauer 1993).

4.6 Summary and Conclusions

We discussed how pebble accretion timescales vary as a function of core mass,

and pointed out that at super-Earth masses growth timescales for pebble accretion are

extremely rapid for a large range of pebble sizes. These rapid growth rates make it

difficult to form super-Earths via pebble accretion unless something halts growth once
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planets reach this mass scale.

We further demonstrated that modification of the gas flow pattern by the

planet’s atmosphere limits accretion of the smallest pebble sizes. The Stokes number

of the smallest pebble size a planet can accrete can be determined by finding the size

for which the maximal impact parameter for accretion, Rstab, is equal to the scale of

the core’s atmosphere, RB. If the solids present in the protoplanetary disk are limited

to sizes smaller than a maximum size, then this process naturally predicts that growth

of planet will cease once the minimum-sized particles a planet can accrete is larger

than the maximal size present in the disk. For a reasonable fiducial disk profile and

particle sizes, we showed that the resulting mass scale where growth ceases is around

super-Earth masses.

Furthermore, we showed that several trends present in the demographics of the

super-Earth population follow naturally if the masses of these planets are limited by

flow isolation: super-Earths in the same system would be correlated in mass and radius,

as reported by Weiss et al. (2018), due to the shallow scaling of the flow isolation mass

with semi-major axis in the inner disk. We would also expect a characteristic mass

scale, i.e. the flow isolation mass, to be present in the super-Earth population, and

to scale approximately linearly with stellar mass and weakly with semi-major axis, as

reported by Wu (2019). Finally, we would expect systems that have inner super-Earths

to be more likely to host an outer gas giant, as the the flow isolation mass is larger at

these larger orbital separations, a trend which was detected by Zhu & Wu (2018) and

Bryan et al. (2019).
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While the trends in the super-Earth population seem consistent with being

limited to the local flow isolation mass, there remain other regimes where the importance

of the flow isolation mass could be tested, particularly in contrast with the pebble

isolation mass. One such regime would be planet formation in the outer regions of

protoplanetary disks – in these regions maximal Stokes numbers are likely set by drift

(e.g. Birnstiel et al. 2012), which leads to maximal Stokes number of St ∼ 10−1− 10−2.

On the other hand, the thermal mass is quite large in the outer disk, as the aspect ratio

of the disk generally increases as a function of semi-major axis. Thus, in this region we

would expect the predictions of flow isolation and pebble isolation to be quite different,

with flow isolation predicting substantially lower planetary masses.
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Chapter 5

Ending Pebble Accretion Though

Flow and Pebble Isolation

5.1 Introduction

The final masses of planets produced by pebble accretion are not determined

by pebble accretion growth rates alone. Once a planetary core is massive enough that

pebble accretion sets in, it generally grows on timescales much shorter than the lifetime

of the gas disk (Ormel & Klahr 2010, Lambrechts & Johansen 2012, Rosenthal et al.

2018). On its own, this would seem to predict that planets either stall at low mass

before they undergo pebble accretion, or grow to such large masses that they trigger

runaway gas accretion (Pollack et al. 1996) and become gas giants (e.g., Lin et al.

2018). However, several authors have investigated the possibility of a limiting mass scale

for pebble accretion, where the growth process qualitatively changes, and accretion of
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pebbles halts.

Lambrechts et al. (2014) proposed the idea of a “pebble isolation mass,” re-

sulting from the planet’s perturbation of the local gas pressure gradient. These authors

argue that once the planet has reached sufficient mass, it excites the gas to super-

Keplerian velocities exterior to its orbit, which blocks the inward radial drift of pebbles

and ends pebble accretion. Bitsch et al. (2018) followed up on this work, both by using

hydrodynamical simulations to study how the mass needed to excite super-Keplerian

velocities changed as a function of disk parameters, and also by studying how the pebble

isolation mass changes as a function of particle size. Bitsch et al. find that increasing

levels of turbulence not only make it more difficult for the planet to raise a pressure

perturbation, but can also allow smaller particles to drift through the pressure bump

while still blocking larger particles from accreting.

Rosenthal et al. (2018) argued that pebbles below a certain size would not be

captured through pebble accretion because they are too strongly coupled to the gas,

and thus flow with the gas around the planetary atmosphere. This argument implies

that planetary growth by pebble accretion should halt if this “minimum” pebble size

for accretion is larger than the maximal particle size available, a process Rosenthal

& Murray-Clay (2019) dubbed “flow isolation.” In contrast to pebble isolation, flow

isolation blocks particles in a “bottom-up” manner – the smallest particle sizes are the

first to be cut off, with the largest particles only being blocked when the planet achieves

“large enough” masses.

Both the pebble isolation mass and the flow isolation mass are independent of
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solid surface density, instead depending only on local disk parameters and particle size.

Both scales are primarily dependent on temperature, and scale roughly as the thermal

mass, i.e. Miso ∼ h3M∗, where h is the disk aspect ratio and M∗ is the mass of the

central star. The pebble isolation mass is generally within factors of 2-3 of the thermal

mass, while the flow isolation is comparable to the thermal mass or lower.

In this letter, we discuss the interplay between these two mass scales. In

particular, we first show that the top-down blocking of particles seen in pebble isolation

means that the actual final mass the planet reaches can be larger than the mass at

which the gas velocity in the perturbed becomes super-Keplerian. In contrast, for flow

isolation we demonstrate that because particles are blocked in a bottom-up manner,

only the largest particle sizes need to be considered. Finally, we show that if these two

processes operate simultaneously, then the final planet mass from pebble accretion is

well approximated by taking the minimum of the flow isolation mass and the pebble

isolation mass calculated in the absence of diffusion.

5.2 Disk Model

In this section we briefly discuss the disk model used to generate our numerical

results. Our disk is broken into two regions, depending on whether the temperature is set

by viscous heating or by passive irradiation. We choose our disk parameters such that α

and Ṁ = 3πΣν are radially constant, where Σ is the gas surface density, ν = αH2Ω is the

kinematic viscosity (Shakura & Sunyaev 1973), H is the local gas scale height and Ω is

local Keplerian angular frequency. We do not prescribe the value of Ṁ directly. Instead
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we choose a fixed surface density profile for the viscously-heated inner region of the

disk. This profile is scaled such that the surface density at 1 au is Σ0,visc = 2000 g cm−2.

The resulting disk has the feature that increasing α increases both Ṁ and temperature,

which we feel provides useful intuition. In particular, models that fix Ṁ and α have

the slightly counter-intuitive feature that increasing α decreases T , which we wished to

avoid. In the viscously heated inner region of the disk, balancing accretion heating with

radiative cooling gives (e.g. Oka et al. 2011, Kratter & Murray-Clay 2011)

Tc =

[
9

128π

GM∗ṀκΣ

σSBr3

]1/4

(5.1)

Here r is the semi-major axis, M∗ is the mass of the central star, σSB is the Stefan-

Boltzmann constant, and κ is the Rosseland mean opacity. Eliminating Ṁ in favor of

Σ and ν, setting κ = 0.1 g−1cm2, and choosing a radial dependence such that Ṁ is

constant with r gives

Tvisc = 220 K
( r

au

)−9/10
(
M∗
M�

)1/6 ( α

10−3

)1/3
(

Σ0,visc

2000 g cm−2

)2/3

(5.2)

At larger orbital separations, the disk temperature is set by passive irradiation. We

take our fiducial profile from Ida et al. (2016) (see Chiang & Goldreich 1997 for details)

Tirr = 205 K
( r

au

)−3/7
(
M∗
M�

)−1/7( L∗
3L�

)2/7

(5.3)

where L∗ is the luminosity of the central star. We set M∗ = M� in what follows, and

set L∗ = 3L�, which is appropriate for a solar mass star of age ∼ 1 Myr (Tognelli et al.
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2011).

The temperature at a given semi-major axis is T = max(Tvisc, Tirr). The disk

switches from being dominated by viscous heating to passive irradiation at a semi-major

axis of

rvis−irr = 1.16 au

(
M∗
M�

)65/99( L∗
3L�

)−20/33 ( α

10−3

)70/99
(5.4)

In the viscously heated region, the surface density is given by

Σvisc = 2000 g cm−2
( r

au

)−3/5
(5.5)

where the Σvisc ∝ r−3/5 dependence derives from requiring α and Ṁ to be radially

constant. In the passively irradiated region, requiring that Ṁ be radially constant for

constant α implies that Σirr ∝ r−15/14. Enforcing continuity in Σ at rvis−irr gives

Σirr = 2150 g cm−2
( r

au

)−15/14
(
M∗
M�

)13/42 ( α

10−3

)1/3
(
L∗

3L�

)−2/7

(5.6)

The overall surface density is given by Σ = min(Σvisc,Σirr), which is equivalent to

choosing the surface density corresponding to the dominant heating mechanism. The

available pebble surface density is fixed at

Σp = 5 g cm−2
( r

au

)−1
(5.7)

which is chosen to be consistent with measurements in the outer disk of the surface
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density in solids of size 0.1-1 mm, taken from sub-mm observations of protoplanetary

disks (Andrews et al. 2009, Andrews 2015).

For the purposes of calculating growth timescales, we assume that the solid

surface density at a given semi-major axis is distributed over particle size s such that

dN

ds
∝ s−3.5 (5.8)

where N is the number of particles as a function of size at a given semi-major axis. We

assume smallest particles have Stokes number St = 10−6. Because this size distribution

has most of the mass in the largest particle sizes the smallest particle size is relatively

unimportant. The largest particle size is varied in this work (see below).

While the global disk accretion rate is not strictly needed for our calculations,

we note that our choices above imply

Ṁ = 1.2× 10−8M� yr−1
( α

10−3

)4/3
(
M∗
M�

)−1/3( Σ0,visc

2000 g cm−2

)1

(5.9)
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Figure 5.1: The particle size dependence of pebble and flow isolation differs. Pebble
isolation (left) cuts off accretion of large particles more easily; in the presence of a
distribution of particle sizes, small particles can contribute substantially to growth even
when the largest particles have been cut off. In contrast, flow isolation (right) blocks
small particles first, halting growth once the largest particles are blocked. The range
of particle sizes that can be accreted for each mechanism (top, green region), and the
resulting growth timescales (bottom, solid black lines) are shown for a core located at
r = 0.278 au. The disk has α = 10−3, and the maximum particle size at the planet’s
semi-major axis is Stmax = 10−1 (dashdot blue line). In the upper panels, the particle
sizes that can accrete are bounded by Stpeb (left) and Stflow (right) (solid black lines).

The mass at which the gas is excited to super-Keplerian velocities is M †peb,iso (vertical
gray dashed line), and is calculated using the formula of Bitsch et al. (2018). The
planet’s final mass, Mpeb, determined by the point at which tgrow = tdisk = 3 Myr
(dashed red line), is indicated by the dashed black vertical line. For flow isolation, the
planet’s final mass is well approximated as the mass at which particles of size Stmax are
blocked. For pebble isolation this is not the case, and calculation of the core’s integrated
growth timescale is required to determine the planet’s final mass.
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5.3 Pebble Isolation Mass

The concept of the “Pebble isolation mass” was first introduced in Lambrechts

et al. (2014). In this work, the authors investigate how the planet alters the local

pressure gradient through 3D hydrodynamical simulations. In the absence of planets,

protoplanetary disks orbit at a rate slightly slower than the local Keplerian velocity, vk,

vorb = (1− η)vk (5.10)

where η is given by

η = −1

2
h2∂ lnP

∂ ln r
(5.11)

(e.g. Weidenschilling 1977a). Here h ≡ H/r is the disk aspect ratio, and P is the local

pressure. This sub-Keplerian rotation causes pebble sized particles to drift radially at

a velocity

vr ≈ −2ηvkSt (5.12)

(e.g. Nakagawa et al. 1986). Above, St ≡ tsΩ is particle’s Stokes number, ts is the par-

ticle’s characteristic gas drag timescale, and Ω is the local Keplerian orbital frequency.

Equation (5.12) applies for St . 1. We restrict our attention to St ≤ 1 for the remainder

of this work.

For usual protoplanetary disk conditions ∂ lnP/∂ ln r is negative, leading to
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a sub-Keplerian orbital velocity. However, planets can gravitationally excite local gas,

changing the local pressure profile and in some cases exciting local material to super-

Keplerian velocities. Lambrechts et al. (2014) argue that when a planet reaches sufficient

mass, pebble drift velocities should reverse direction, trapping particles and halting

growth of planets through pebble accretion. Lambrechts et al. performed hydrody-

namical simulations to determine the mass threshold above which gas is excited to

super-Keplerian velocities. They found that this occurred for planetary masses larger

than

Mpeb,simp ≈ 20M⊕

(
h

0.05

)3

(5.13)

which they termed the “pebble isolation mass.”

Following up on the work of Lambrechts et al. (2014), Bitsch et al. (2018)

performed additional hydrodynamic simulations to determine how the pebble isolation

mass changed as a function of disk properties. Specifically, Bitsch et al. (2018) varied

both the disk viscosity and pressure gradient, and then determined the mass above

which super-Keplerian velocities were excited. They find that the pebble isolation mass

is well described by the formula

M †peb,iso = 25fM⊕ (5.14)

f =

(
h

0.05

)3
[

0.34

(
log10 α

−3

)−4

+ 0.66

](
1−

∂ lnP
∂ ln r + 2.5

6

)

As discussed previously, M †peb is mostly dependent on h3, with the additional terms
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varying the mass by factors of 2-3.

However, this mass scale only tells us where the planet raises a large enough

pressure perturbation to accelerate neighboring gas to super-Keplerian velocities. Be-

cause of turbulent diffusion, particles may still be able to diffuse through the pressure

bump. Smaller particles will be more well-coupled to the gas, which makes it easier for

them to diffuse through the pressure bump. Thus, the mass needed to block particles

of a given size increases as particle size decreases. Bitsch et al. (2018) add a additional

term to the pebble isolation mass to account for this effect. The full pebble isolation

mass is then given by

Mpeb,iso = M †peb,iso +
Πcrit

λ
M⊕ (5.15)

where

Πcrit =
α

2St
(5.16)

λ =
0.00476

f
(5.17)

We can invert this expression to determine the smallest particle blocked by a core of

mass Mp

Stpeb =
( α

2λ

)(Mp −M †peb,iso

M⊕

)−1

(5.18)

This expression is plotted for a core at 1 au in the upper left panel of Figure 5.1. The
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shaded region indicates the range of particle sizes that the core can accrete at a given

mass.

In general, pebbles are not expected to exist up to arbitrary sizes in proto-

planetary disks. Processes such as drift of large solids, or fragmentation of particles are

expected to inhibit growth past a certain limiting size (e.g. Birnstiel et al. 2012). If

particles exist up to a maximum size Stmax in the disk, Equation (5.18) implies that

planetary growth will be unaffected unless Stpeb ≤ Stmax.

As a core grows, Stpeb will decrease. Once Stpeb ≤ Stmax, the planet is able

to block progressively smaller solids from being captured as it grows. This slows the

planet’s growth for two reasons: first, smaller particles lead to core growth on longer

timescales (e.g. Lambrechts & Johansen 2012, Rosenthal et al. 2018). Second, these

higher mass particles generally represent a large fraction of the total local solid mass.

The size distribution of dust particles in protoplanetary disks is a complex topic, as

all particle sizes interact via the processes of growth, drift, and fragmentation (see e.g.

Birnstiel et al. 2010). However, in the inner regions of protoplanetary disks, where par-

ticle sizes are limited by fragmentation, it is generally expected that the size distribution

will be “top-heavy,” in the sense that most of the mass will be contained in the largest

particle sizes (e.g. Birnstiel et al. 2011). If the size distribution is instead “bottom-

heavy,” i.e. if most of the mass in the smallest size particles, the growth timescale will

increase more slowly with increasing planet mass.

Thus, as the planet grows past Mpeb,iso(Stmax) its growth timescale will in-

crease due to a variety of effects. Eventually, the planet’s growth will slow to such a
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degree that the gaseous component of the protoplanetary disk will dissipate before the

planet can further increase its mass. We can therefore estimate the final mass of the

planet by determining the mass at which the growth timescale of the planet is equal to

the lifetime of the gas disk, that is

tgrow(Stpeb,Mpeb) = tdisk (5.19)

Note that we have written the growth timescale as a function of both the largest particle

size the core can accrete (Stpeb), and the core’s mass, since the growth timescale for

pebble accretion is sensitive to both of these quantities. The growth timescale of the core

(at a fixed distance from the star) is determined by integrating the planet’s accretion

rate over particle size

Ṁp =

speb∫

smin

σ(s)
Av∞
2Hp

d ln s (5.20)

where σ is the surface density of particles per logarithmic size bin, A is the accretion

cross section for pebbles, v∞ is the relative velocity between the pebbles and the growing

core, and Hp is the pebble scale height. Here speb is the particle size corresponding to

a particle with Stokes number Stpeb. In general, A, v∞, and Hp are functions of Mp

and s, as well as the disk parameters. The planet’s growth timescale is then calculated

as tgrow = Mp/Ṁp.

By specifying a model for the particle’s growth timescale, i.e. a model for A,

v∞, and Hp, as well as σ(s), we can find Mpeb by simultaneously solving Equations
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(5.18) and (5.19). Even if a simple model for pebble accretion is used (e.g. forcing the

core to grow in only a single pebble accretion “regime”), these equations do not have

an analytic solution and must be solved numerically. In the bottom left panel of Figure

5.1 we show an example of the growth timescale of the core as the function of mass

including the effects of pebble isolation. As discussed in Section 5.2, σ is calculated by

assuming a Dohnyani distribution of particle sizes, dN/ds ∝ s−3.5 (Dohnanyi 1969). We

assume that the maximum size of particles at the planet’s location in the protoplanetary

disk have Stmax = 10−1. We use the pebble accretion model of Rosenthal et al. (2018)

to determine A, v∞, and Hp.

Note that while the core excites the gas to super-Keplerian velocities atM †peb,iso ≈

4.1M⊕, growth does not halt until the planet is approximately a factor of 2 larger,

Mpeb ≈ 8.1M⊕. Note that we refer to this mass scale, where the growth timescale ex-

ceeds the lifetime of the disk, as Mpeb. We also stress that Mpeb is larger than Mpeb,iso,

the mass necessary to block particles of size Stmax = 10−1. Thus, accounting for the

growth rate of the planet via particles that drift through the pressure bump increases

the pebble isolation mass substantially.

In Figure 5.2 we calculate Mpeb over a grid of values in r, α, and Stmax,

and compare with both M †peb,iso (Equation 5.14) and Mpeb,iso (Equation 5.15). The

difference between these mass scales increases at larger α and at smaller semi-major

axis. Larger values of α increase the particle sizes that can drift through the pressure

bump for a given planet mass, meaning that the planet has to reach larger masses to

cut off growth. Growth rates via pebble accretion are also faster in the inner regions of
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Figure 5.2: Comparison between the analytic expressions of Bitsch et al. (2018) for the

pebble isolation mass (M †peb,iso and Mpeb,iso) and numerically calculated final masses
(Mpeb) determined by solving for the mass such that tgrow = tdisk = 3 Myr. Each panel
displays these masses as a function of semi-major axis for a distinct value of the α
parameter. Blue, orange, and green refer to Stmax = 10−2, 10−1, and 100 respectively.
The solid gray line shows the value of M †peb,iso (Equation 5.14), i.e. the mass needed
to excite the gas to super-Keplerian velocities, the dashdot lines show the value of
Mpeb,iso(Stmax) (Equation 5.15), i.e. the mass necessary to block particles of size Stmax,
and the symbols show the value of Mpeb(Stmax) for a pebble size distribution given by
Equation (5.8).

the disk, allowing the planet to reach larger masses before growth is halted. We note

that smaller particle sizes also increase the contrast between M †peb,iso (solid gray line)

and Mpeb (symbols), due to the fact that the planet must reach larger masses before it

can block these particles. The lines for Stmax = 10−2 are truncated for large values of

r because the growth timescale at M †peb,iso exceeds tdisk, i.e. tgrow > tdisk before pebble

isolation restricts any particle size.

For Stmax = 10−2, using Mpeb,iso (dot-dashed lines) in place of M †peb,iso miti-

gates a good deal of the discrepancy between our numerically calculated Mpeb and the

analytic expressions, particularly in the outer disk. This is not surprising, as at these

orbital separations the planet’s growth timescale is comparable to tdisk even before peb-

ble isolation blocks any particles. In the inner disk, these two mass scales are different
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by factors ∼ 2. For the other values of Stmax, M †peb,iso is not substantially different from

Mpeb,iso.

Thus, we have shown that if growth is limited by pebble isolation, it is im-

portant to consider the diffusion of pebbles through the pressure bump before we can

determine the planet’s final mass. This stems from the fact that small particles will

still diffuse through the bump even though larger particles are blocked. In the next

section we consider halting growth through a different process, flow isolation, where the

smallest particles are the easiest to block.

5.4 Flow Isolation Mass

The flow isolation mass was first proposed as mass scale at which pebble ac-

cretion should stop by Rosenthal et al. (2018). Rosenthal & Murray-Clay (2019) then

followed up on this work, focusing on the limiting mass scale as function of Stmax, the

largest local particle size.

The idea behind the flow isolation mass is that particles below a certain mini-

mum size should not be able to accrete, as they are too strongly coupled to the nebular

gas. Rosenthal & Murray-Clay (2019) argue that the nebular gas will flow around the

core on scales comparable to ∼ Ratm, the size of the core’s atmosphere. Because of this

modification to the gas flow, particles that are well coupled to the gas on this scale and

encounter the atmosphere before becoming gravitationally bound to the core will be

pulled around the growing planet without accreting. Equivalently, “pebbles” (particles

of size St ≤ 1) whose impact parameter for pebble accretion, Racc, is less than the scale
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of the core’s atmosphere, Ratm, will not accrete. Solving the equation Racc = Ratm for

St gives the minimum particle size, Stflow, that a core can accrete. Using the model of

Rosenthal & Murray-Clay (2019) to solve for Stflow gives

Stflow = max

[
f−2

(
H

r

)−3(vgas

cs

)(
Mp

M∗

)
, f−3

(
H

r

)−6(Mp

M∗

)2
]

(5.21)

where vgas is the local gas velocity relative to Keplerian, cs is the local isothermal sound

speed, and f is an order unity factor discussed in Rosenthal & Murray-Clay (2019). We

take f = 1.75 in what follows. In both regimes, we see that Stflow increases with planet

mass, meaning that particles are blocked in a “bottom-up” manner, as opposed to the

top-down manner in which particles are blocked by pebble isolation. An example of the

range of sizes a core can block by flow isolation grows is shown in the upper righthand

panel of Figure 5.1.

If particles exist only up to some maximum size Stmax, then, assuming the

particle size distribution is top-heavy, once Stflow approaches this maximum size growth

will rapidly slow. Rosenthal & Murray-Clay (2019) asserted that final planet mass could

be determined by calculating the mass such that Stflow = Stmax. While a more rigorous

criteria would be to calculate the mass such that the growth timescale of the planet

exceeds the disk lifetime, for a top-heavy size distribution requiring Stflow = Stmax is

a very good approximation. This is verified in the two righthand panels of Figure 5.1.

Rosenthal & Murray-Clay (2019) refer to the mass scale where particles of size Stmax

are blocked as the “flow isolation mass.” We can get an analytic approximation for the

flow isolation mass by inverting (5.21). Doing so, and accounting for the case in which
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Figure 5.3: The value of the flow isolation mass (dashed lines, Equation 5.22 with
f = 1.75) as a function of semi-major axis, level of turbulence, and maximum particle
size. Colors refer to the same values of Stmax as in Figure 5.2. The final planet masses
from pebble isolation alone (see Figure 5.2) are shown for reference.

particles accrete at the planet’s Hill radius gives

Mflow

Mth
= min

[
f2 cs

3vgas
Stmax,

f3/2

3

√
Stmax,

(
f ′

3

)3/2
]

(5.22)

where Mth ≡ 3h3M∗ is the thermal mass and f ′ = 1.75 is an additional order unity factor

(see Rosenthal & Murray-Clay 2019 for details). Our previous claim that Mflow . Mth

can be seen from inspection of Equation (5.22). The value of the flow isolation mass

for our grid of r, α, and Stmax is shown in Figure 5.3. We note that because our order

unity coefficient f appears to reasonably large powers in Equation (5.22) (as discussed

in Rosenthal & Murray-Clay 2019, the second regime with Mflow ∝ f3/2 is the most

relevant for growth of super-Earths), the choice of f can change the value of Mflow by

factors of a few. The numerically calculated values of Mpeb are shown for reference.
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Figure 5.4: Halting planetary growth by a combination of pebble and flow isolation.
Repeated style choices are the same as in Figure 5.1. The core is located at r =
0.278 au, and the disk has α = 10−3, again as in Figure 5.1. Upper Panel : The range of
particle sizes available for accretion as a function of planet mass. The hatched regions
correspond to flow isolation (negatively sloped hatching) and pebble isolation (positively
sloped hatching). The two patterns are overlayed when flow and pebble isolation act
simultaneously. Lower Panel: Growth timescale of a core for the range of particle
sizes depicted in the upper panel. Two different maximum particle sizes are considered:
Stmax = 10−2 (upper solid line and dotted magenta line) and Stmax = 10−1 (lower solid
line and dashdot blue line). For Stmax = 10−2, flow isolation blocks all available particle
sizes before pebble isolation kicks in, causing growth to rapidly slow as Stflow → 10−2,
i.e. as the planet approaches the mass necessary to block particles of size St = 10−2. The
planet’s final mass is extremely well approximated by Equation (5.22), i.e. the situation
is essentially the same as if flow isolation acted alone. For Stmax = 10−1, pebble isolation
begins blocking particles of size Stmax before flow isolation can. Because the allowed
range of particle sizes is also being blocked from the bottom by flow isolation, growth
rapidly slows once this occurs, with the planet ending its growth very close to M †peb,iso.
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Figure 5.5: Final planet masses when pebble and flow isolation act in tandem, de-
termined by numerically calculating the mass for which tgrow = tdisk = 3 Myr. Blue,
orange, and green refer to Stmax = 10−2, 10−1, and 100 respectively. The solid gray line
shows the value of M †peb,iso (Equation 5.14), i.e. the mass needed to excite the gas to
super-Keplerian velocities, the dashed lines show the value of Mflow(Stmax) (Equation
5.22 with f = 1.75), and the symbols show the value of Mfinal(Stmax), the numerically
calculated final planet mass when pebble and flow isolation both operate, for a pebble
size distribution given by Equation (5.8).

5.5 Halting growth by flow and pebble isolation

In this section we consider the planet’s final mass, Mfinal, if pebble accretion is

halted by a combination of flow and pebble isolation. There are two cases to consider.

If Mflow < M †peb,iso, then all available particle sizes are cut off before pebble isolation

kicks in. This case is essentially the same as just flow isolation acting alone, and

Mfinal ≈ Mflow. This case is illustrated Figure 5.4, for Stmax = 10−2 (dotted magenta

lines). On the other hand, if M †peb,iso > Mflow, then pebble isolation will begin limiting

the upper end of particle sizes while flow isolation limits accretion from the bottom.

In this case, once Mp > M †peb,iso, the upper end of the size distribution, containing the

majority of the total pebble mass, as well as the most rapidly accreted particles, will

be cut off. Because flow isolation is simultaneously limiting the lower end of the size
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distribution, the planet’s growth will slow much more rapidly than in case where pebble

isolation acts alone, generally resulting in a final mass that is close to M †peb,iso. An

example of this process is again shown in Figure 5.4, for Stmax = 10−1 (dashdot blue

line).

Thus, for planets undergoing pebble and flow isolation, the planet’s final mass

is well approximated by

Mfinal ≈ min
(
M †peb,iso,Mflow

)
(5.23)

This approximation would break down if M †peb,iso � Mflow, in which case large par-

ticles would be inhibited from accreting by pebble isolation before flow isolation had

a substantial effect. However, as previously noted, the flow isolation mass cannot at-

tain values much larger than the thermal mass, and the pebble isolation mass is within

factors of 2-3 of the thermal mass as well. Thus, there does not exist a regime where

Mpeb,iso �Mflow, and Equation (5.23) should hold throughout parameter space.

In Figure 5.5 we plot the final planet mass for planets undergoing simultaneous

pebble and flow isolation over our grid in r, α, and Stmax. As can be seen in the figure,

our numerically calculated results strongly validate our analytic approximation given in

Equation (5.23). Note that this statement only applies generally when flow and pebble

isolation work in tandem.

We could in principle improve on Equation (5.23) by using Mpeb,iso(Stmax), as

given by Equation (5.15), as opposed to M †peb,iso. From inspection of Figure 5.2 however,

we see that the difference between M †peb,iso and Mpeb,iso is most pronounced for high α
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and low Stmax, which is precisely where Mflow is small, and therefore tends to set the

planet’s final mass. Thus, use of M †peb,iso in Equation (5.23) as opposed to Mpeb,iso, is

still quite accurate, while also being a good deal simpler.

5.6 Summary and Conclusions

In this work, we contrasted the final masses of close-in, rocky planets undergo-

ing pebble and flow isolation. For pebble isolation, we demonstrated that for a top-heavy

pebble size distribution, the top-down manner in which the pressure bump blocks par-

ticles implies that the mass scale at which a growing core excites a super-Keplerian gas

velocity can be a poor approximation for the planet’s final mass. The difference between

the mass scale authors generally refer to as the “pebble isolation mass,” i.e. Equation

(5.14), and the planet’s actual final mass is particularly pronounced for α & 10−3 and

r . 1 au. Unfortunately calculation of Mfinal in this regime does not admit a simple

analytic solution, and thus must be done numerically when pebble isolation acts alone.

We also comment that one needs to calculate whether a core undergoing pebble isolation

is required to block a larger mass in pebbles than the core’s own mass. Because pebble

isolation requires sequestering blocked pebbles in a pressure bump raised by the planet,

this is likely an unstable situation.

In contrast, for flow isolation particles are blocked in a bottom-up manner.

In this regime, we demonstrated that the planet’s final mass is well approximated by

determining the mass such that Stflow = Stmax, which is typically refered to as the “flow

isolation mass.” Finally, we showed that if flow and pebble isolation operate in tandem,
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then we now have a simple analytic approximation for the planet’s final mass, namely

Mfinal ≈ min
(
M †peb,iso,Mflow

)
.

We have restricted our attention in this work to a simple power law size distri-

bution for pebbles such that dN/ds ∝ s−3.5. While the detailed effect of changing the

size distribution is complex, is not difficult to get a qualitative understanding of such a

change. Modifying the size distribution to be more “bottom-heavy,” so that more of the

mass is in the smaller size particles, would increase the importance of the growth effects

discussed in Section 5.3. That is, the difference between Mfinal and M †peb,iso would be en-

hanced, as the effect of blocking the largest size particles on the core’s growth timescale

would be reduced. Conversely, a more top-heavy size distribution would lead to these

growth effects having less importance, as the effect of blocking the largest particle sizes

would be enhanced.

While in this work we have simply taken maximum particle sizes to be fixed, in

reality there is interplay between the maximum particle size and the disk conditions. In

particular, for the inner regions of disks, where particle sizes are likely set by fragmenta-

tion, hotter disks likely lead to smaller particle sizes due to increased collision velocities.

In this case, the predictions between pebble isolation and flow isolation would be quite

different – pebble isolation would lead to hot disks hosting much more massive planets,

as higher temperatures both increase the thermal mass and decrease the particle size.

Flow isolation, however, would lead to planets being more uniform in mass across differ-

ent temperatures, as hotter disks increase the flow isolation mass, but smaller particles

decrease it. This would also be expected if these two processes were working tandem.
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A detailed analysis of these trends merits future work.

We further comment that flow and pebble isolation mass scales are also close

to commonly quoted critical core masses for runaway gas accretion, particularly for low

opacities (see e.g, Lee et al. 2014). Formation of systems of super-Earths via pebble

accretion requires that any limiting mass scale for pebble accretion be lower than this

critical core mass, otherwise pebble accretion will lead to gas giants instead of super-

Earths. While a full discussion of this effect is beyond the scope of this work, we do

comment that this interplay between the flow/pebble isolation mass and the critical core

mass is likely an “all or nothing effect,” in the following sense: in the viscously heated

inner regions of disks the flow and pebble isolation masses vary weakly with semi-major

axis (e.g. for T ∝ r−1, (H/r) is independent of r), resulting in some systems forming

multiple super-Earths (for Miso < Mcrit), while others form multiple Jupiters (for Miso >

Mcrit). The latter configuration is likely unstable, causing dynamical upheaval and

leading to some of the gas giants being ejected or scattered into the central star. This

scenario of planet-planet scattering amongst multiple Jupiters has been shown to be

consistent with the observed eccentricity distribution of extrasolar gas giants (Frelikh

et al. 2019, Anderson et al. 2020). Furthermore, initial studies show that this scenario

can reproduce the observed ratio of super-Earth to gas giant systems for Mcrit ≈ 8.5M⊕

(Anderson et al., in prep). The simple arguments made here should be tested in the

future by more sophisticated models that include e.g. time dependent evolution of the

small body surface density and size distribution.

266



Chapter 6

How Consumption and Repulsion

Set Planetary Gap Depths and

the Final Masses of Gas Giants

6.1 Introduction

Annular gaps in protoplanetary discs are often attributed to embedded planets.

The interpretation stems from the theory of satellite-disc interactions that successfully

predicted the existence of shepherd moons in planetary rings (e.g., Goldreich & Tremaine

1982). Satellites in rings, and by analogy planets in discs, repel material away from their

orbits as the waves they excite at Lindblad resonances dissipate and impart angular

momentum to the ambient medium (see also Goodman & Rafikov 2001; Ginzburg &

Sari 2018). The repulsive, gap-forming planetary Lindblad torque competes against the
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disc’s viscous torque which diffuses material back into the gap.

Most studies of protoplanetary disc gaps concentrate exclusively on the Lind-

blad and viscous torques (e.g., Fung et al. 2014; Kanagawa et al. 2015; Zhang et al.

2018) and neglect how gaps can also deepen because embedded planets consume local

disc gas. Exceptions include, e.g., Zhu et al. (2011), Dürmann & Kley (2015, 2017),

and Muley et al. (2019), whose numerical simulations of planet-disc interactions allow

for both planetary accretion and planetary torques. Our aim here is to give an ele-

mentary and analytic accounting of both effects: to understand, for planets on fixed

circular orbits, how Lindblad repulsion and planetary consumption combine to set gap

depths. This is a two-way feedback problem—planetary accretion affects the gas density

inside the gap, but the density inside the gap determines the rate of planetary accretion

(Ginzburg & Chiang 2019a, 2019b). Accordingly we will calculate how gas giants grow

in tandem with their deepening gaps. Much of our analytic framework is the same

as that of Tanigawa & Tanaka (2016) and Tanaka et al. (2020), who used it to study

nascent planets in viscous discs; we will explore both viscous and inviscid discs.

The problem of planetary accretion within disc gaps is also a global one insofar

as a planet can accrete gas that is brought to it from afar, from regions outside the gap.

Thus we will stage our calculations within circumstellar discs that transport mass across

decades in radius. This opens up another form of feedback: in feeding the planet, the

disc can have its entire surface density profile changed (e.g., Lubow & D’Angelo 2006;

Zhu et al. 2011; Owen 2016).

Our work is organized as follows. In section 6.2 we describe how Lindblad
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repulsion and planetary accretion of disc gas (“consumption”) work together to deter-

mine gap depths and surface density profiles of viscous circumstellar accretion discs.

Our largely analytic considerations are supplemented with simple numerical experi-

ments modeling planet-disc interactions and disc evolution in 1D (orbital radius). In

section 6.2 we fix, for simplicity, the planet mass; in section 6.3, we allow the planet

mass to grow freely and solve the full two-way feedback problem. In section 6.4, mo-

tivated by recent theoretical and observational developments, we consider discs that

transport their mass not by viscous diffusion but rather by angular momentum losses

from magnetized winds. For such inviscid, wind-driven discs, accretion is not diffusive

but purely advective, and embedded planets carve out especially deep gaps in the ab-

sence of viscous backflow. We summarize and discuss the implications of our findings

on gas giant masses and disc structure, including the structure of transitional discs, in

section 6.5.

A simplified study such as ours will not capture important (and sometimes

poorly understood) effects, among them planetary migration (e.g., Kley & Nelson 2012;

Duffell et al. 2014; Dürmann & Kley 2015, 2017; Fung & Chiang 2017; Kanagawa et al.

2018; McNally et al. 2020), eccentricity evolution (both of the planet and the disc; e.g.,

Papaloizou et al. 2001; Goldreich & Sari 2003; Kley & Dirksen 2006; Duffell & Chiang

2015; Muley et al. 2019), and the 3D dynamics of circumplanetary discs (e.g., Fung

et al. 2019). Our goal is not so much to be realistic but to acquire some intuition about

the interplay of Lindblad repulsion and planetary accretion, and to provide a baseline

understanding that can guide the development and interpretation of more sophisticated
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models. Where possible, we place our results in context with state-of-the-art numerical

experiments in the literature (see in particular section 6.5).

6.2 Viscous discs: Surface Density Profiles at Fixed Planet

Mass

We study how the surface densities of viscous accretion discs are shaped by

repulsive planetary Lindblad torques in addition to planetary accretion of disc gas (“con-

sumption”). Section 6.2.1 contains analytic considerations which are tested numerically

in section 6.2.2. In these sections, while we allow the disc surface density to deplete by

consumption, we do not simultaneously allow the planet’s mass to increase. This fixing

of the planet’s mass is done for simplicity, to see how the planet affects the disc but

not vice versa. In section 6.3, we free up the planet’s mass and allow two-way feedback

between planet and disc.

6.2.1 Order-of-magnitude scalings

Consider an accreting planet embedded in a viscous disc. From Figure 6.1 we

identify three disc surface densities: Σp at the orbital radius of the planet (r = rp), Σ+

exterior to the planet, and Σ− interior to the planet. The planet depresses the local

surface density because it is both consuming disc gas and repelling disc gas away by

Lindblad torques. Our goal is to estimate the depth of the planet’s gap in relation to

the inner and outer discs: Σp/Σ− and Σp/Σ+. We assume a steady state where the

disc has viscously relaxed: given a viscosity ν, the system age t is at least as long as the
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diffusion time r2/ν across the disc. In addition, t is at most the planet growth timescale

Mp/Ṁp, so that we may consider the planet mass fixed at any given moment.

Mass flows steadily inward at rate Ṁ+ from the outer disc. Part of this flow

is accreted by the planet at rate Ṁp, with the rest feeding the inner disc which accretes

onto the star at rate Ṁ−. Dropping numerical pre-factors (these will be restored in later

sections), we have

Ṁ+ = Ṁ− + Ṁp

Σ+ν ∼ Σ−ν + Ṁp

∼ Σ−ν +AΣp . (6.1)

There are a number of assumptions embedded in these order-of-magnitude statements.

For Ṁ+ and Ṁ− we have substituted standard steady-state expressions for a disc of

shear viscosity ν (e.g., Frank et al. 2002), valid asymptotically at locations far from any

mass sink (|r − rp| & rp). At the same time, the locations we are considering in the

outer and inner discs are not so far from the planet that we need to account for spatial

variations in ν, which may change by order-unity factors over length scale r.

For the planet’s accretion rate, we have assumed in (6.1) that it scales linearly

with the local surface density Σp with proportionality constant A:

Ṁp = AΣp . (6.2)

This assumption is satisfied, e.g., by a planet accreting at the Bondi rate (e.g., Frank
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et al. 2002):

Ṁp,Bondi ∼ ρpcsR
2
B

∼ Σp

H
cs

(
GMp

c2
s

)2

(6.3)

where ρp is the disc midplane mass density near the planet, cs is the disc sound speed,

RB = GMp/c
2
s is the Bondi radius, H = cs/Ω is the disc scale height, Ω is the orbital

angular frequency, and G is the gravitational constant. Then

ABondi ∼
m2

h4
Ωr2 (6.4)

where m ≡ Mp/M? is the planet-to-star mass ratio, and h ≡ H/r is the disc aspect

ratio. Ginzburg & Chiang (2019a, their section 1.1) discusses how Bondi accretion may

be valid for “sub-thermal” planets whose masses are less than

Mthermal ∼ h3M? (6.5)

the mass for which the Bondi radius RB, the Hill radius RH ∼ m1/3r, and the disc

scale height H are all equal. A sub-thermal planet has RB < RH < H—its gravi-

tational sphere of influence has radius RB, set by gravity and thermal pressure—and

should accrete at the Bondi rate, isotropically from the all-surrounding disc (Ginzburg

& Chiang 2019a; see also fig. 1 of Tanigawa & Tanaka 2016 for evidence supporting

the Bondi m2 scaling, taken from the 3D simulations of D’Angelo et al. 2003). For a
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super-thermal planet having M > Mthermal, the hierarchy of length scales reverses so

that RB > RH > H—the planet’s sphere of influence, now set by gravitational tides

at radius RH, “pops out” of the disc—and arguably the planet accretes in a more 2D

fashion, presenting a cross-section of order RHH to disc gas that shears by at a velocity

ΩRH. The corresponding “Hill rate” for consumption is then

Ṁp,Hill ∼ ρp ×RHH × ΩRH ∼ ΣpR
2
HΩ (6.6)

whence

AHill ∼ m2/3Ωr2 . (6.7)

A Hill-based scaling for consumption is commonly used in 2D disc-planet hydrodynam-

ical simulations (e.g., Zhu et al. 2011; Dürmann & Kley 2015, 2017; Muley et al. 2019).

We have assumed in writing the above that the planet masses are large enough for

accretion to be hydrodynamically-limited as opposed to cooling-limited (Ginzburg &

Chiang 2019a, cf. their fig. 1).

In this paper we will calculate the growth of planets from sub-thermal to super-

thermal masses, so will have occasion to use both ABondi and AHill. We recognize that

the 2D picture motivating our Hill scaling may not be correct; in 3D, meridional flows

from gap walls can feed the planet along its poles (Szulágyi et al. 2014; Morbidelli et al.

2014; Fung & Chiang 2016). Relatedly, the disc density scales with height z above

the midplane as exp[−z2/(2H2)] (for an isothermal atmosphere), which implies that a

considerable fraction of the disc mass resides between |z| = H and 2H; accordingly, the
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planet does not pop out of the disc until it is strongly super-thermal, i.e., until m is a

large multiple of h3 (cf. equation 6.5). An isotropic version of super-thermal accretion

controlled by the Hill sphere gives Ṁp,Hill,iso ∼ ρp×R2
H×ΩRH or AHill,iso ∼ mΩr2/h. Yet

another prescription for accretion is given by Tanigawa & Watanabe (2002): ATW ∼

m4/3Ωr2/h2, an empirical relation based on their 2D numerical simulations (see also

Tanigawa & Tanaka 2016). To the extent that these alternative scalings increase with

m more steeply than our nominal AHill ∝ m2/3, whatever final super-thermal planet

masses we derive should be lower limits (see sections 6.2.2 and 6.5).

Momentum conservation provides another relation between the surface densi-

ties. It is easiest to write down downstream of the planet in the accretion flow (in the

inner disc), as the flow of momentum upstream (in the outer disc) is complicated by

the mass sink presented by the planet. In the inner disc there are no sinks of mass or

momentum, only a steady transmission of mass inward and angular momentum out-

ward (assuming, as we do throughout this paper, a non-migrating planet; see section

6.5 for pointers to the migrating case). The rate at which angular momentum is carried

viscously outward by the inner disc equals the viscous transport rate local to the planet,

plus the repulsive Lindblad torque exerted by the planet on the disc:21

Σ−νΩr2 ∼ ΣpνΩr2 +BΣpΩr2 (6.8)

with

B ∼ m2

h3
Ωr2 (6.9)

21The planet excites waves in the inner disc which carry negative angular momentum inward. This
is equivalent to transmitting positive angular momentum outward.
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Figure 6.1: Sketch of the disc surface density and accretion flow in the vicinity of a
planet. The planet is located at orbital radius rp, inside a gap having surface density
Σp. At r > rp, the disc surface density is Σ+ and mass accretes inward at rate Ṁ+.
Downstream of the planet, at r < rp, the corresponding surface density and accretion
rate are Σ− and Ṁ−, respectively. The difference Ṁ+ − Ṁ− is the accretion rate onto
the planet Ṁp.
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given by the standard Goldreich & Tremaine (1980) linear Lindblad torque, integrating

the effects of all Lindblad resonances up to the torque cutoff. A similar statement to

(6.8), dropping the viscous term local to the planet, was made by Fung et al. (2014).

Given B, (6.8) can be solved for the gap contrast with the inner disc:

Σp

Σ−
∼ 1

1 +B/ν
(6.10)

(see also Duffell & MacFadyen 2013; Kanagawa et al. 2015; Ginzburg & Sari 2018).

Combining mass conservation (6.1) with momentum conservation (6.8) yields the gap

contrast with the outer disc:

Σp

Σ+
∼ 1

1 + (A+B)/ν
. (6.11)

An equivalent equation is derived by Tanigawa & Tanaka (2016, their appendix B)

and Tanaka et al. (2020, their equation 26). Equations (6.10) and (6.11) inform us

that planetary consumption (A 6= 0) leads to asymmetric gap contrasts: a deeper gap

relative to the outer disc than to the inner disc. The outer gap contrast is the more

important insofar as the outer disc controls surface densities everywhere downstream; in

other words, Σ+ is the independent variable while Σp and Σ− are dependent variables.

Equation (6.11) states that, given Σ+, the effects of accretion (A) and repulsion (B) in

setting the gap depth Σp are additive (not multiplicative). If A > B, then consumption

dominates.
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For A = ABondi and B given by (6.9),

ABondi/B ∼ 1/h > 1 (6.12)

and consumption dominates repulsion in setting the gap depth, independent of planet

mass in the sub-thermal regime. On the other hand, for A = AHill,

AHill/B ∼ m−4/3h3 (6.13)

which says that for super-thermal planets that are massive enough, repulsion dominates

consumption (AHill/B < 1).

We may also solve for the relative accretion rates:

Ṁp

Ṁ+

∼ AΣp

Σ+ν
∼ A/ν

1 + (A+B)/ν
(6.14)

Ṁ−

Ṁ+

∼ Σ−
Σ+
∼ 1 +B/ν

1 + (A+B)/ν
. (6.15)

A couple example limiting cases of (6.14) and (6.15) are as follows. If we take A/B =

ABondi/B ∼ 1/h > 1 and further assume that B/ν > 1 so that the inner gap contrast is

significant (equation 6.10), we find

Ṁp

Ṁ+

∼ 1−B/ABondi ∼ 1− h (6.16)

Ṁ−

Ṁ+

∼ B/ABondi ∼ h (6.17)
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which says that the planet consumes nearly all of the mass supplied to it by the outer

disc, leaving behind a fraction h to feed the inner disc. If instead we take A/B = AHill/B

and further assume B > AHill > ν (repulsion-limited and deep gap), then

Ṁp

Ṁ+

∼ AHill/B ∼ m−4/3h3 < 1 (6.18)

Ṁ−

Ṁ+

∼ 1−AHill/B ∼ 1−m−4/3h3 (6.19)

and the planet diverts only a small fraction, AHill/B, of the disc accretion flow onto

itself.

The order-of-magnitude considerations presented here are firmed up in subse-

quent sections, including in Appendix B.1, where we derive in greater analytic detail

the surface density profile and mass accretion rates, drawing from Lubow & D’Angelo

(2006).

6.2.2 Numerical simulations

Procedure

We solve numerically for the 1D evolution of a viscously shearing disc (e.g.,

Frank et al. 2002) with a planetary mass sink. The governing equation for the surface

density Σ(r, t) in cylindrical radius r and time t reads

∂Σ

∂t
=

3

r

∂

∂r

[
r1/2 ∂

∂r

(
r1/2νΣ

)]
− Ṁp(t)

2πr
δ(r − rp) (6.20)
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where δ is the Dirac delta function and rp is the radial position of the planet (held

fixed). For the viscosity ν we employ the Shakura & Sunyaev (1973) α-prescription:

ν = αc2
s/Ω = αh2Ωr2 (6.21)

where Ω is the Keplerian orbital frequency around a 1M� star, cs =
√
kBT/m, the

disc temperature is T = 200 K(r/au)−1/2, kB is Boltzmann’s constant, m = 2mH is the

mean molecular mass, mH is the mass of the hydrogen atom, and

h ≡ H/r = cs/(Ωr) ' 0.054
( r

10 au

)1/4
. (6.22)

We fix α = 10−3 for the results in this section. Given these inputs, ν = ν(r) ∝ r1.

Apart from the mass sink, equation (6.20), which combines the 1D mass and

momentum equations, is identical to the diffusion equation governing an isolated viscous

disc as derived by Lynden-Bell & Pringle (1974). What is missing is an explicit account-

ing for the repulsive Lindblad torque exerted by the planet. Many studies include the

planetary torque by introducing, into the momentum equation, a term for the torque

per unit radius that scales as sgn(x)/x4, where x ≡ r − rp (e.g., Lin & Papaloizou

1986; Lubow & D’Angelo 2006). Compared against 2D hydrodynamical simulations,

this 1/x4 prescription has been shown in 1D studies to reproduce the azimuthally av-

eraged surface density profiles of repulsive gaps near their peripheries (at x & 4H) but

not near gap centers (at x . 4H; Fung et al. 2014, their section 4.3). In particular the

1D torque density prescription, which assumes angular momentum is deposited locally
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and neglects wave propagation, fails to recover the flat bottoms of gaps and the surface

densities there (cf. Ginzburg & Sari 2018 who use the Goodman & Rafikov 2001 wave

steepening theory to lift these assumptions). This shortcoming of the 1/x4 prescrip-

tion means that it cannot be used to compute the planetary accretion rate Ṁp, which

depends on knowing the gas density in the planet’s immediate vicinity.

What we do instead to include the repulsive Lindblad torque when calculating

planetary accretion is as follows. Within the radial grid cell at r = rp of width ∆rp, the

surface density is reduced after every timestep ∆t according to

Σ(rp, t+ ∆t) = Σ(rp, t)−
Ṁp(t)∆t

2πrp∆rp
(simulation) (6.23)

where the label “simulation” reminds us that this equation applies to the numerical

simulation only and should not be used outside of that context. It is in evaluating Ṁp

that we include, in a “sub-grid” manner, the repulsive Lindblad gap:

Ṁp(t) = A× Σ(rp, t)

1 +B/ν
(simulation). (6.24)

What equation (6.24) says is that the disc surface density the planet actually “sees”

when consuming local gas is lower than the numerically computed “grid-level” surface

density Σ(rp, t)—lower by the Lindblad reduction factor 1/(1+B/ν) (equation 6.10). In

other words, repulsion is encoded/enforced at a sub-grid level. We stress that equation

(6.24) is used only in our numerical simulation to capture repulsion and should not be

used outside of it; contrast (6.24) with, e.g., (6.14), and note that Σ(rp, t) is notation
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specific to the simulation and should not be confused with Σp, the actual surface density

at the planet’s position.

Our numerical procedure captures the gap depth but not the gap width, as the

sub-grid modification is restricted (for simplicity) to the grid cell containing the planet.

We consider this crude scheme acceptable insofar as we are more interested in the gross

magnitudes for Σp/Σ+ and Σp/Σ− and less interested in the precise surface density

gradients. An untested assumption underlying our numerical procedure—and in our

steady-state analytics—is that material flows radially through the gap at whatever ve-

locity ur is needed to maintain continuity, i.e., to enforce Ṁ− = Ṁ+−Ṁp = −2πΣprpur

(where ur < 0 for accretion toward the star). We cannot test this assumption as we do

not resolve the flow dynamics inside the gap. We will call out this assumption in the

results to follow (sections 6.3.1 and 6.4.4). Also, as a reminder, we note that while the

surface density changes as a result of consumption, in this subsection we fix Mp, i.e.,

we do not update Mp using Ṁp (this assumption is relaxed in section 6.3).

In evaluating the consumption and repulsion coefficients A and B, we make

choices similar to those in our earlier order-of-magnitude analysis (section 6.2.1), except

that now we include numerical pre-factors for greater precision:

ABondi = 0.5 Ωr2m
2

h4
for sub-thermal m ≤ 3h3 (6.25)

AHill = 2.2 Ωr2m2/3 for super-thermal m > 3h3 (6.26)

B = 0.04 Ωr2m
2

h3
(6.27)

where all quantities are evaluated at rp. The pre-factor of 0.5 in equation (6.25) is
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calibrated using 3D simulation results for Ṁp from D’Angelo et al. (2003; these are re-

printed in fig. 1 of Tanigawa & Tanaka 2016). The coefficient of 2.2 in equation (6.26)

follows from requiring that (6.25) match (6.26) at the thermal mass

Mthermal ≡ 3h3M? ' 0.5

(
h

0.054

)3

MJ (6.28)

defined by equating H with RH = (m/3)1/3r, with MJ the mass of Jupiter. Equation

(6.27) is taken from the numerical 2D simulations of Kanagawa et al. (2015, see also

Duffell & MacFadyen 2013 and Duffell 2015 who report similar results).

Note further that the expressions we used in section 6.2.1 for the steady disc

accretion rates Ṁ+ and Ṁ− should be amended with the numerical pre-factor 3π, i.e.,

Ṁ+ = 3πΣ+ν and similarly for Ṁ− (e.g., Frank et al. 2002). This correction is already

embedded in the diffusion equation (6.20). Including this pre-factor in equation (6.1)

implies that A should be replaced with A/(3π) in equations (6.11)–(6.19). Putting it

all together, we have

ABondi

3πB
' 1.3

h
> 1 (6.29)

implying that consumption always dominates for sub-thermal masses. Furthermore,

AHill

3πB
' 5.5m−4/3h3 ' 1.0

(
m

5× 10−3

)−4/3( h

0.054

)3

(6.30)

implying that repulsion dominates for super-thermal masses exceeding a “repulsion

mass”
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Mrepulsion,visc ' 3.6h9/4M?

' 5.3MJ

(
h

0.054

)9/4

' 5.3MJ

( r

10 au

)9/16

' 1.2h−3/4Mthermal ' 11

(
0.054

h

)3/4

Mthermal . (6.31)

For M < Mrepulsion,visc, consumption dominates and the planet accretes nearly all the

disc gas that tries to diffuse past; for M > Mrepulsion,visc, repulsion dominates and

the planet’s accretion rate falls below the disc accretion rate. The above expression

for Mrepulsion,visc depends on our assumption that planetary accretion follows our Hill

scaling AHill ∝ m2/3 for super-thermal masses. As discussed in section 6.2.1, this as-

sumption might not be correct. If instead of AHill we use ATW = 0.29 Ωr2m4/3/h2 as

found from the 2D numerical simulations of Tanigawa & Watanabe (2002), we would

find ATW/(3πB) ' 4 (Mp/MJ)−2/3(h/0.054), in which case the mass above which repul-

sion dominates would change to Mrepulsion,visc,TW ' 9MJ [r/(10 au)]3/8. This is nearly

twice the value of Mrepulsion,visc given by (6.31), and would imply a more extended

consumption-dominated growth phase. Insofar as our nominal model adopts AHill which

leads to a more limited consumption-dominated growth phase, the planet masses we

compute for our viscous disc model are lower limits.

So far we have described how we compute the mass sink term, which includes

the sub-grid Lindblad torque, in equation (6.20). The remaining diffusive term is solved

in a standard way. We first change variables to z ≡ r1/2νΣ and y ≡ 2r1/2 so that the
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diffusive portion of equation (6.20) reads

∂z

∂t
=

12ν

y2

∂2z

∂y2
(6.32)

with non-constant diffusion coefficient 12ν/y2. We solve equation (6.32) as an initial

value problem using an implicit scheme (e.g., Press et al. 2007). Our computation grid

extends from an inner boundary of rin = 0.01 au to an outer boundary of rout = 500 au,

and is divided into 300 cells that are uniform in ∆y. We fix the timestep ∆t = 10−4tν,p,

where tν,p ≡ r2
p/ν(rp) ' 1.7 Myr is the viscous diffusion timescale at the planet’s orbital

radius of rp = 10 au (where h ' 0.054). Recognizing that our transformed variable z is

proportional to the viscous torque 2πνΣr3dΩ/dr ∝ r1/2νΣ, we use a torque-free inner

boundary condition, z(rin) = 0, as would be the case if the disc were truncated by a

co-rotating stellar magnetosphere (shearless boundary layer). At the outer boundary

we assume the torque gradient ∂z/∂r (rout) = 0. Neither boundary condition is critical

as we are interested in the flow near the planet, away from either boundary.

The surface density of the disc is initialized with the similarity solution for

an isolated viscous accretion disc with ν ∝ r1 (Lynden-Bell & Pringle 1974; Hartmann

et al. 1998):

Σ(r, 0) =
Mdisc

2πr2
1

r1

r
e−r/r1 (simulation) (6.33)

where Mdisc = 15.5MJ ' 0.015M� is the initial mass of the disc and r1 = 30 au is

a characteristic disc radius (where the diffusion time is r2
1/ν ' 5 Myr). We consider
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two fixed planet masses, Mp = 0.3MJ < Mthermal and Mp = 10MJ > Mthermal. Planet

masses that freely grow are modeled in section 6.3.

At every timestep, we first advance Σ(r, t) → Σ(r, t + ∆t) for all r according

to (6.32) using the implicit solver, and then we advance Σ(rp, t)→ Σ(rp, t+ ∆t) using

(6.23) and (6.24). This procedure is repeated until the disc is evolved for several tν,p,

long enough for the disc near the planet to achieve a quasi-steady state.

Results

Figure 6.2 shows, for Mp = {0.3, 10}MJ, the numerically computed surface

density profiles Σ(r) at t = 3tν,p ' 5 Myr. Overlaid for comparison is our numerical

solution without a planet, which we have verified matches the analytic time-dependent

similarity solution of Lynden-Bell & Pringle (1974). For the case with a planet, rather

than plot at face value the numerically computed (grid-level) Σ(rp, t), we plot that value

multiplied by the sub-grid reduction factor 1/(1 +B/ν)—this is the “true” value for Σp

that incorporates the repulsive Lindblad torque. Since this sub-grid correction factor is

applied to only a single grid point, we cannot resolve gap widths; our focus instead is

on the gross gap contrasts Σp/Σ+ and Σp/Σ−.

The surface density profiles shown in Figure 6.2 conform to the analytic con-

siderations of section 6.2.1. For Mp = 0.3MJ (top panel), conditions are consumption-

limited: Σ+/Σp ∼ ABondi/(3πν) (equation 6.11 in the limit ABondi/(3π) > B > ν)

and the surface density of the entire interior disc is depressed relative to the same disc

without a planet by a factor of Σ+/Σ− ∼ Ṁ+/Ṁ− ' ABondi/(3πB) (equations 6.15

and 6.17). By comparison, for Mp = 10MJ (bottom panel), the gap is more nearly
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Figure 6.2: How the surface density profile of a viscous disc responds to a planet that
both consumes disc gas, and repels gas away by Lindblad torques. Surface densities
are calculated from our 1D numerical simulation of a planet of fixed mass, either Mp =
0.3MJ (top panel) or Mp = 10MJ (bottom panel), at t = 3tν,p when the disc near the
planet at rp = 10 au has viscously relaxed. When computing the planetary accretion
rate Ṁp, the gap is modeled as a single cell whose “true” surface density equals the
grid-level Σ lowered by a factor of (1 +B/ν) ' B/ν; plotted here are the true sub-grid
values Σp. Accordingly, the planet’s gap is not spatially resolved and its width should
not be taken literally from this figure. Red double-tipped arrows have lengths equal to
their associated variables in dex, and demonstrate good agreement between numerics
and analytics. The planet of mass Mp = 0.3MJ, accreting at the Bondi rate, creates
an asymmetric gap, with the inner disc surface density Σ− lower than the outer Σ+ by
ABondi/(3πB) > 1; conditions are always consumption-dominated for Bondi accretion
and B as given by (6.27). The planet of mass Mp = 10MJ, accreting at the Hill rate,
creates a symmetric gap where Σ−/Σ+ ∼ 1; conditions here are repulsion-dominated as
Mp > Mrepulsion,visc (equation 6.31).
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symmetric, Σ+/Σ− ∼ 1 (equations 6.15 and 6.19), and deep and repulsion-dominated,

Σ+/Σp ∼ B/ν (equation 6.11 in the limit B > AHill/(3π) > ν).

So long as consumption is stronger than repulsion in the sense that A/(3π) >

B—a condition that we have shown always obtains for sub-thermal masses accreting

at the Bondi rate, and for sufficiently low-mass super-thermal masses accreting at the

Hill rate (M < Mrepulsion,visc)—repulsion does not much affect the gap surface density

Σp. Figure 6.3 demonstrates that different choices for the repulsion coefficient B =

{10−2, 10−3, 10−4} × ABondi all yield practically the same Σp (when corrected to the

true sub-grid value) relative to Σ+. What repulsion, in combination with consumption,

affects instead is how much gas leaks past the planet into the inner disc: the three

different values for B in Figure 6.3 yield three inner disc surface densities that, from

equation (6.15), scale as Σ−/Σ+ ' (1 + B/ν)/[1 + ABondi/(3πν)]. This factor scales

as 3πB/ABondi when ABondi/(3π) > B > ν (dot-dashed and dotted lines), and as

1/[1 +ABondi/(3πν)] when B < ν (solid line; in this limit repulsion has no effect).
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Figure 6.3: Same as Figure 6.2 for the case Mp = 0.3MJ, but for different choices of
B scaled to ABondi. As long as ABondi/(3π) > B, the planet’s gap is consumption-
dominated and its surface density Σp is independent of the repulsion coefficient B. The
depression of the inner disc relative to the outer disc is, however, sensitive to B for
B > ν; Σ−/Σ+ ' (1 +B/ν)/[ABondi/(3πν)].
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6.3 Viscous discs: Gas Giant Growth

6.3.1 Numerical calculation at rp = 10 au

We now relax the assumption that the planet mass remains fixed, and at every

timestep update Mp according to Ṁp computed using equation (6.24). Our numerical

procedure is unchanged from section 6.2.2 except that we initialize the planet mass at

Mp(0) = 0.1MJ and allow it to grow. For our nominal disc parameters (α = 10−3,

h = 0.054 at rp = 10 au), a starting planet mass of 0.1MJ (m ' 0.95 × 10−4) implies

that, initially, A = ABondi, ABondi/(3πB) ' 1.3/h ' 24 (a consumption-dominated

gap), ABondi/(3πν) ' 19 (a strong outer gap contrast), and B/ν ' 0.79 (a weak inner

gap contrast).

Figure 6.4 shows two snapshots in time of Σ(r) and the disc mass flow rate

Ṁdisc(r) = −2πΣrur, where

ur = − 3

Σr1/2

∂

∂r

(
νΣr1/2

)
(6.34)

is the gas radial velocity (e.g., Frank et al. 2002) evaluated numerically from our solution

for Σ (omitting the single-point discontinuity at r = rp). Note that Ṁdisc > 0 indicates

inward mass transport, toward the star. The planet accretes predominantly from the

outer disc, notwithstanding a small contribution from the inner disc before the disc

has viscously relaxed; this early-time contribution can be seen at t = 0.3 tν,p when

Ṁdisc < 0 from r ∼ 3 au to the planet’s orbit. The behaviour of Ṁdisc at r ∼ 100 au

is characteristic of a viscous disc near its turn-around “transition radius” (Lynden-Bell
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& Pringle 1974; Hartmann et al. 1998), outside of which the disc has not yet viscously

relaxed; this outermost disc behaviour is not caused by the planet.

Embedded in Figure 6.4 is our assumption, first mentioned in section 6.2.2,

that the disc flow inside the gap maintains continuity. At t = 3tν,p, Ṁdisc(r > rp) is,

to within a factor of 2, the same as Ṁdisc(r < rp). Because the gap surface density

Σp at this time is about 4 orders of magnitude smaller than the surface densities Σ+

and Σ− outside the gap, the radial velocity |ur| within the gap must be 4 orders of

magnitude larger than the radial velocities outside, to maintain the near-constancy of

Ṁdisc across rp. Since the radial accretion velocities away from the gap are of order

r/tν ∼ ν/r ∼ αhcs ∼ 2 cm/s, we must have |ur| ∼ 0.2 km/s within the gap. How such

a radial velocity is achieved is not specified by our model, which does not resolve the

gap spatially.

Figure 6.5 displays the planet’s mass as a function of time. We identify a

consumption-dominated phase during which the planet grows from 0.1 to 5MJ (M <

Mrepulsion,visc; equation 6.31) and a slower repulsion-dominated phase between 5 and

8MJ (M > Mrepulsion,visc). During the first phase, accretion starts at the Bondi rate and

switches to the Hill rate once Mp > Mthermal ' 0.5MJ (equations 6.28 and 6.25–6.26). A

consumption-dominated (A/(3π) > B) and deep (A/(3π) > ν) gap implies from (6.14)

that Ṁp ' Ṁ+, i.e., the planet’s accretion rate is about as large as it can be. During

the final repulsion-limited phase, when Mp > 5MJ and AHill/(3π) > B, consumption

slows and the planet undergoes a last near-doubling in mass as the remainder of the

disc diffuses away, onto the star.
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6.3.2 Analytic estimates of the final planet mass

We can compare our numerical result for the final mass at rp = 10 au to the

following analytic estimates, derived by neglecting the initial short-lived Bondi accretion

phase and assuming that at all times the planet accretes at the Hill rate (A = AHill)

and has a large inner gap contrast (B > ν):

ṁ =
AHillΣp

M?

=
AHill

M?

Σ+ν

AHill/(3π) +B
(6.35)

where we have used (6.11). At small orbital distances, final planet masses exceed

Mrepulsion,visc and so their final growth phase is repulsion-limited:

ṁ =
AHill

B

Σ+ν

M?

= 55αh5m−4/3
Σ+r

2
p

M?
Ω . (6.36)

We approximate Σ+ using the similarity solution for an isolated viscous disc with no

planet and ν ∝ r1:

Σ+ ∼
Mdisc

2πr2
1

(
r1

rp

)
T−3/2e−(rp/r1)/T (6.37)
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where T ≡ 1 + t/t1, t1 ≡ r2
1/[3ν(r1)], and Mdisc is the initial disc mass (Lynden-Bell &

Pringle 1974; Hartmann et al. 1998). Integrating equation (6.36) from t = 0 to t gives

m(t) ∼
(

385

18
√
π

Mdisc

M?

h5

h2
1

r1

rp

)3/7

×
[

Erf

(√
rp

r1

)
− Erf

(√
rpt1

r1(t+ t1)

)]3/7

(repulsion-limited) (6.38)

where h1 is the disc aspect ratio at r1. As t→∞, equation (6.38) simplifies to

mfinal,visc ∼
[

385

18
√
π

Mdisc

M?

h5

h2
1

r1

rp
Erf

(√
rp

r1

)]3/7

(repulsion-limited) (6.39)

which further simplifies in the limit rp � r1 (away from the initial disc outer edge) to

Mfinal,visc ∼ 10MJ

(
Mdisc

15.5MJ

)3/7 ( rp

10 au

)9/28
(repulsion-limited) (6.40)

for our fiducial parameters. Note that Mfinal,visc in these limits is independent of α

and r1. Equation (6.40) may be reproduced to order-of-magnitude by multiplying ṁ

(evaluated at t = t1) by t1. In Figure 6.5 we plot equation (6.39) as the uppermost

horizontal dashed line, labeled Mfinal,visc.

At the largest orbital distances, conditions tend to remain consumption-limited

as Mp stays below Mrepulsion,visc. Then the planet accretes nearly all of the disc gas that

tries to diffuse past the planet—and diffusion can be in the outward direction (Ṁdisc < 0)

if the planet is located near or beyond the disc’s turn-around radius. Accordingly we
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estimate the planet mass as

Mp(t) ∼
∫ t

0
|Ṁdisc|dt (consumption-limited) (6.41)

where Ṁdisc is approximated by the no-planet similarity solution (equation 35 of Hart-

mann et al. 1998). For rp ≤ r1/2,

Mp(t) ∼Mdisc

(
e−rp/r1 − e−(rp/r1)/T

√
T

)
(consumption-limited) (6.42)

and for rp > r1/2,

Mp(t) ∼Mdisc

(√
2r1

rp
e−1/2 − e−rp/r1 − e−(rp/r1)/T

√
T

)

(consumption-limited). (6.43)

We will make use of equations (6.38), (6.42), and (6.43) in section 6.5 when we discuss,

in the context of observations, how the final planet mass depends on disc mass and

orbital distance.
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Figure 6.4: Snapshots of the surface density profile Σ(r) and disc accretion rate
Ṁdisc(r) = −2πΣurr (> 0 for accretion toward the star) for a planet embedded at
rp = 10 au in a viscous α = 10−3 disc. The planet mass is allowed to freely grow
starting from Mp(0) = 0.1MJ. At t = 0.3tν,p, the planet resides in a consumption-
dominated, asymmetric gap (top panel, dashed curve) and accretes from regions both
exterior and interior to its orbit which have not yet viscously relaxed (bottom panel,
dashed curve). At the later time t = 3tν,p, the planet has grown sufficiently (see also
Figure 6.5) that its gap is now repulsion-dominated and more symmetric (top panel,
solid curve); the planet now accretes only from the outer disc, reducing the flow of mass
into the inner disc by less than a factor of 2 (bottom panel, solid curve. At this time
we have multiplied Ṁdisc by a factor of 5 for easier viewing).
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Figure 6.5: Accretion history of a planet of initial mass Mp(0) = 0.1MJ embedded at
rp = 10 au (where h = 0.054) in a viscous disc of initial mass Mdisc = 15.5MJ. Tran-
sitions from Bondi accretion to Hill accretion (Mthermal, equations 6.25–6.26 and 6.28),
and from consumption to repulsion-dominated gaps (Mrepulsion,visc, equation 6.31), are
indicated. An analytic estimate of the final planet mass is plotted as Mfinal,visc (equa-
tion 6.39), computed assuming repulsion-dominated conditions (at rp = 10 au for this
disc mass, conditions are actually intermediate between the repulsion and consumption
limits, and so plotting equation 6.42 which assumes consumption-dominated conditions
would give a similar result as equation 6.39; see also Figure 6.9).
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6.4 Planets in Inviscid Wind-Driven Discs

Motivated by recent ALMA observations that point to little or no turbulence

in protoplanetary discs (e.g., Pinte et al. 2016; Flaherty et al. 2017), and by theoretical

work arguing that discs are, for the most part, laminar because they are too cold and

dusty to support magnetorotational turbulence (e.g., Gammie 1996; Perez-Becker &

Chiang 2011; Bai 2011), we here turn away from the α-based picture of turbulent and

diffusive discs, and consider instead inviscid (zero viscosity) discs that accrete by virtue

of magnetized winds (e.g., Bai et al. 2016; Bai 2016). We review how wind-driven discs

work in section 6.4.1 and how planets open repulsive gaps in inviscid discs in section

6.4.2. We then study how repulsion combines with consumption to set gap depths and

planetary accretion rates, analytically in section 6.4.3 and numerically in section 6.4.4.

6.4.1 Wind-driven accretion discs

Inviscid, wind-driven accretion discs do not behave diffusively. Instead they are

governed by simple advection: at every radius r, material moves inward with a vertically-

averaged radial speed ur because it has lost angular momentum to a magnetized wind.

The mass carried away by the wind itself is small compared to the mass advected inward

through the disc (see Appendix B.2, in particular the discussion below equation B.16).

Then from continuity, including our planetary mass sink,

∂Σ

∂t
=

1

r

∂

∂r
(Σrur)−

Ṁp(t)

2πr
δ(r − rp) . (6.44)
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In Appendix B.2 we show how a wind-driven disc inspired by Bai et al. (2016) and Bai

(2016) can have ur approximately constant (< 0 for accretion). We utilize here, for

simplicity, a constant ur ≡ c < 0 model:

∂Σ

∂t
=
c

r

∂

∂r
(Σr)− Ṁp(t)

2πr
δ(r − rp) . (6.45)

It is instructive to examine the solution to (6.45) when Ṁp = 0. The no-planet

solution is separable:

Σ(r, t) = f(r)g(t) =
Mdisc

2π(ctadv)2

|c|tadv

r
e−r/(|c|tadv)e−t/tadv (6.46)

for constants Mdisc (the initial disc mass) and tadv, which we interpret as a disc radial

advection time or drain-out time. For c = −4 cm/s (a value we relate to magnetic

field parameters in Appendix B.2) and tadv = 3 Myr, the characteristic disc size is

|c|tadv ' 25 AU, which seems reasonable. Equation (6.46) resembles the Lynden-Bell

& Pringle (1974) solution for a viscous disc which gives, for ν ∝ r1, a surface density

profile that scales as r−1 exp(−r/r1) at fixed t (equation 6.37). This spatial resemblance

is not surprising, as our viscous disc happens also to have an accretion velocity that is

constant with radius: |ur| ∼ r/tν ∼ ν/r = constant. However, the solutions differ in

their time behaviours; at fixed r, the wind-driven surface density decays exponentially

as exp(−t/tadv), whereas our viscous disc decays as a power law t−3/2 (within viscously

relaxed regions at small radii; Lynden-Bell & Pringle 1974; Hartmann et al. 1998).

Viscous discs evolve more slowly because they conserve their total angular momentum;
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they can only drain away on the inside by redistributing their angular momentum to

the outside in a kind of zero-sum game. Wind-driven discs are not so constrained; they

lose their angular momentum wholesale to a wind, and so can dissipate more quickly.

We emphasize that ur = c is a vertically averaged, mass weighted, radial

accretion velocity. In simulations by Bai & Stone (2013) of discs whose magneto-thermal

winds are anchored at their electrically conductive surfaces, accretion actually occurs

in a vertically thin, rarefied layer several scale heights above the midplane. The radial

accretion velocity in this high-altitude layer is fast, on the order of the sound speed cs.

The bulk of the mass of the disc, below this layer, is inert (see fig. 10 of Bai & Stone

2013). It is with this static and inviscid gas, extending from the midplane to a couple

scale heights above and below, that the planet interacts, as we now describe.

6.4.2 Repulsion in inviscid discs

Without viscosity, disc gas in the vicinity of the planet depletes indefinitely,

as it is repelled by the planetary Lindblad torque but cannot diffuse back. Under these

conditions, Ginzburg & Chiang (2019a) derived how the gas density at the center of the

planet’s gap scales with elapsed time t, for a given planet-to-star mass ratio m = Mp/M?

and disc aspect ratio h = H/r (see the inviscid branch of their equation 17, and also

their appendix):

Σp

Σ−
∼ h549/49m−4(Ωt)−39/49 ≡ B̃−1

inv (6.47)
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where Ω is the orbital frequency of the planet, Σp is the surface density within the gap,

and Σ− is the surface density downstream of the planet in the accretion flow (see Figure

6.1). By construction, t is the time over which the planet’s mass is close to its given

value m (say within a factor of 2). In practice, for inviscid discs where gaps deepen

dramatically with increasing planet mass, the mass doubling time of a planet lengthens

with each doubling, so t is of order the system age.

Equation (6.47) does not apply when B̃inv < 1, i.e., when a repulsive gap has

not yet been opened because not enough time has elapsed for a given planet mass. To

account for this possibility, we generalize (6.47) using

Σp

Σ−
∼ 1

1 + B̃inv

(6.48)

by analogy with equation (6.10) for the viscous case. Note that B̃inv is dimensionless

while its viscous counterpart B has dimensions of viscosity.

6.4.3 Consumption and repulsion combined

We now assemble the physical ingredients laid out in sections 6.4.1 and 6.4.2

into a sketch of how consumption and repulsion combine in an inviscid, wind-driven

disc. Following by analogy our analysis in section 6.2.1 for a viscous disc, we first write
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down mass conservation (see equation 6.1 and Figure 6.1):

Ṁ+ = Ṁ− + Ṁp

2πΣ+r|c| = 2πΣ−r|c|+ Ṁp

= 2πΣ−r|c|+AΣp (6.49)

where in lieu of the viscosity we now have r|c|. After replacing Σ− in (6.49) using our

momentum relation (6.48), we have

Σ+ ∼ (1 + B̃inv)Σp +
A

2πr|c|Σp (6.50)

which implies the outer gap contrast

Σp

Σ+
∼ 1

1 +A/(2πr|c|) + B̃inv

. (6.51)

As in the viscous case (equation 6.11), we see here that consumption (A/(2πr|c|)) and

repulsion (B̃inv) add. Taking A to be the Bondi value (equation 6.25) gives the ratio

ABondi/(2πr|c|)
B̃inv

∼ 0.5

2π

h353/49

m2(Ωt)39/49

Ωrp

|c|

∼ 0.04

(
Mp

0.1MJ

)−2( t

3 Myr

)−39/49

×
( |c|

4 cm/s

)−1 ( rp

10 au

)489/196
(6.52)
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which informs us that repulsion dominates consumption (B̃inv > ABondi/(2πr|c|)) when

Mp > Mrepulsion,inv ∼ 0.02MJ

(
t

3 Myr

)−39/98

×
( |c|

4 cm/s

)−1/2 ( rp

10 au

)489/392
. (6.53)

That repulsion dominates consumption even for small masses is in contrast to the viscous

case (see equation 6.31 for Mrepulsion,visc). Repulsion-dominated gaps are symmetric

between the inner and outer discs (equations 6.48 and 6.51):

Σp/Σ− ∼ Σp/Σ+ ∼ 1/(1 + B̃inv)

∼ 2× 10−3

(
h

0.054

)549/49(10−4

m

)4(
3 Myr

t

)39/49

(6.54)

where for the last equality we have assumed that the gaps are deep (B̃inv > 1). Under

these conditions, we may estimate a final accreted planet mass by time-integrating

Ṁp = ABondiΣp

∼ ABondi
Σ+

B̃inv

∼ ABondi

B̃inv

Mdisc

2π(ctadv)2

|c|tadv

rp
e−rp/(|c|tadv)e−t/tadv (6.55)

from t = 0 to∞, where for Σ+ we have employed the no-planet solution (6.46). This last

approximation is analogous to the one we made in (6.37) for a viscous disc. Equation
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(6.55) integrates to yield

Mfinal,inv ∼
[

1.5

2π
Γ

(
10

49

)(
Mdisc

M?

)(
rp

|c|tadv

)

× h353/49(Ωtadv)10/49e−rp/(|c|tadv)
]1/3

M?

∼ 0.3MJ

(
Mdisc

15.5MJ

)1/3 ( rp

10 au

)163/196
e−rp/(3|c|tadv)

(repulsion-limited) (6.56)

where Γ is the gamma function, and the numerical evaluation uses our fiducial parame-

ters including |c| = 4 cm/s, tadv = 3 Myr, and M? = 1M�. Our estimated final mass of

0.3MJ at rp = 10 au remains smaller than Mthermal ' 0.5MJ and so our use of ABondi

is self-consistent.

Our expression (6.56) for Mfinal,inv resembles equation (19) of Ginzburg &

Chiang (2019a); ours is an improvement as we have accounted explicitly for the transport

properties of the disc through the radial velocity c (see the discussion of transport-

limited accretion in their section 4.1).

6.4.4 Numerical simulations

We test the ideas in section 6.4.3 by numerically solving the continuity equation

(6.45) and the momentum equation (6.48). To model the planetary mass sink in equation

(6.45), we utilize the same sub-grid procedure of section 6.2.2, replacing equation (6.24)
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with

Ṁp(t) = A× Σ(rp, t)

1 + B̃inv

(simulation) (6.57)

where Σ(rp, t) is the grid-level surface density in the bin containing the planet, and A

and B̃inv are given by equations (6.25)–(6.26) and (6.47), respectively. The initial mass

of the planet is set to Mp(0) = 0.1MJ (we will see that using smaller initial masses

hardly changes the outcome). We solve the advective portion of equation (6.45) with a

first-order upwind scheme (e.g., Press et al. 2007) applied to a grid that extends from

rin = 0.01 au to rout = 500 au across 300 cells uniformly spaced in log r. We fix c = −4

cm/s and initialize the grid using (6.46), with tadv = 3 Myr and Mdisc = 15.5MJ =

0.015M�, the same value chosen for our viscous disc calculations. Our timestep is set

to ∆t = 0.2∆rmin/|c|, where ∆rmin = 3 × 10−3 au is our smallest bin width. Other

disc properties such as h(r) and Ω(r) are the same as before. For the outer boundary

condition we impose a ghost cell just outside rout where the surface density is fixed at

0.

Figure 6.6 (the inviscid counterpart to Figure 6.2) shows Σ(r) at t = tadv when

Mp has grown to 0.3MJ, illustrating many of the features anticipated from our analytic

treatment. Without a planet, the surface density profile follows r−1 exp[−r/(|c|tadv)] as

expected from equation (6.46). With a planet, a gap is created that is nearly symmetric

between the inner and outer discs, and whose depth is dominated by Lindblad repulsion

(enforced by our sub-grid scheme), not consumption (equation 6.54). The inviscid gap is

deep (scaling as m−4; Ginzburg & Sari 2018; Ginzburg & Chiang 2019a; see also Duffell
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2020). Figure 6.7 (analogous to Figure 6.4) provides snapshots of Σ(r) and Ṁdisc(r)

taken at different times, and Figure 6.8 (analogous to Figure 6.5) plots Mp(t). Unlike in

a viscous disc, our example planet in an inviscid disc does not consume most of the disc

mass exterior to its orbit; the disc accretion rate profile Ṁdisc(r) is not much affected

by the planet except during an initial transient phase at t < tadv. We see a need for

a high radial accretion velocity |ur| within the gap (see also section 6.3.1): to ensure

that Ṁdisc grades smoothly across the gap as shown in Figure 6.7, |ur| must increase in

proportion to the gap contrast Σ/Σp. Inviscid gap contrasts are on the order of 105, and

so |ur| ∼ 105|c| ∼ 4 km/s, comparable to the orbital velocity. Note that simulations of

planets in inviscid discs have not reproduced the deep gaps expected from our analytics,

finding gap contrasts only up to a factor of ∼10 (e.g., Fung & Chiang 2017; McNally

et al. 2019, 2020). On the one hand the simulations are of limited duration and so

their gaps may not have fully developed; on the other hand, the simulations allow for

orbital migration and hydrodynamical instabilities, effects which may prevent gaps from

becoming too deep in reality.

That the disc accretion flow proceeds largely unimpeded from outside to inside

the planet’s orbit is a consequence of the gap being repulsion-dominated (equation 6.15,

with ν replaced by r|c|). The planet diverts such a small fraction of the disc flow that

it grows from 0.1MJ to only 0.3MJ; most of the original 15.5MJ contained in the

disc drains onto the star. Figure 6.8 also shows that reducing the initial seed mass to

Mp(0) = 0.01MJ hardly affect the final mass.
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Figure 6.6: How the surface density profile of an inviscid disc responds to a planet that
consumes disc gas and repels gas away by Lindblad torques. The planet, located at
rp = 10 au, freely accretes starting from a seed mass of 0.1MJ; the Σ profile shown
here is taken at a time t = tadv = 3 Myr, when the planet has grown to ∼0.3MJ

(see also Figure 6.8). As is the case throughout this paper, the planet’s gap is not
spatially resolved, but is modeled as a single cell. The “true” surface density inside
this cell equals the grid-level Σ lowered by a factor of B̃inv, whose magnitude is given
by the red double-tipped arrow. The gap is repulsion and not consumption dominated
(B̃inv > A/(2πr|c|), equation 6.52); as such, the gap is symmetric in the sense that the
surface density contrast with the outer disc is practically the same as with the inner
disc. This figure is the inviscid counterpart to Figure 6.2 which was made for a viscous
disc.
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Ṁdisc (t = 0.1 tadv)
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Figure 6.7: Snapshots of the surface density profile Σ(r) and disc accretion rate
Ṁdisc(r) = −2πΣurr (> 0 for accretion toward the star) for a planet embedded in
an inviscid, wind-driven disc. The planet mass is allowed to freely grow starting
from Mp(0) = 0.1MJ; the masses corresponding to the plotted times are 0.27MJ

(t = 0.1 tadv = 0.3 Myr) and 0.34MJ (t = 3 tadv = 9 Myr; see also Figure 6.8). At
t = 3 tadv, the disc has relaxed into a quasi-steady state in the presence of the planetary
mass sink, and Ṁdisc(r) looks essentially the same as it would without the planet; the
accretion rate onto the planet is negligible compared to the disc accretion rate—the gap
is repulsion-dominated—and so the disc is not materially affected. Even at t = 0.1 tadv,
the interior surface density Σ− and Ṁdisc depress by only ∼15% because of consumption.
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Figure 6.8: Mass evolution of a planet embedded at rp = 10 au in an inviscid but still
accreting disc of initial mass Mdisc = 15.5MJ. Within ∼1 disc advection time tadv, the
planet, whose gap is repulsion-dominated (B̃inv > ABondi/(2πrp|c|)), grows to a mass of
∼0.35MJ. The final planet mass varies by only ∼10% when the initial seed mass Mp(0)
varies by a factor of 10. This figure is the inviscid counterpart to Figure 6.5 which was
made for a viscous disc.
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6.5 Summary and Discussion

Planets open gaps in circumstellar discs in two ways: by repelling material

away via Lindblad torques, and by consuming local disc gas. Measured relative to

the disc outside the planet’s orbit, the two effects are additive: both repulsion and

consumption add to deepen the planet’s gap relative to the outer disc (see equation

6.11 or 6.51). Relative to the inner disc, downstream of the mass sink presented by the

planet, the gap surface density contrast is set by repulsion only (see equation 6.10 or

6.48).

Many planet formation studies (e.g., Tanigawa & Tanaka 2016; Lee 2019) take

the planet’s hydrodynamically-limited accretion rate Ṁp = min(Ṁhydro, Ṁdisc), where

Ṁhydro is the planetary accretion rate computed according to the hydrodynamics of

flows in the immediate vicinity of the planet, and Ṁdisc is the local disc accretion

rate (the mass crossing the planet’s orbital radius, per time). Prescribing the planet’s

accretion rate in this way is equivalent to comparing consumption, as measured by the

“consumption coefficient” A ≡ Ṁp/Σp, where Σp is the surface density inside the gap,

and repulsion, as measured by the “repulsion coefficient” B ≡ T/(ΣpΩr2), where T is

the repulsive planetary torque and Ωr2 is the angular momentum per unit mass (see also

Tanigawa & Tanaka 2016 and Tanaka et al. 2020 who use the same framework). Under

consumption-limited conditions (A/(3π) > B), the planet’s accretion rate saturates to

nearly the disc’s accretion rate: Ṁp = min(Ṁhydro, Ṁdisc) = Ṁdisc. Otherwise, under

repulsion-limited conditions (A/(3π) < B), Ṁp = min(Ṁhydro, Ṁdisc) = Ṁhydro.
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6.5.1 Final planet masses

In conventional viscous discs with large enough α-diffusivities22 and our as-

sumed parameters, planets begin their growth under consumption-dominated conditions

and possibly continue their growth under repulsion-dominated conditions, arriving at

final masses well in excess of a Jupiter. We show in Figure 6.9 the final mass of a planet

embedded in an α = 10−3 disc, as a function of the planet’s orbital distance rp, computed

using our numerical code of sections 6.2–6.3. Final planet masses increase gradually from

4MJ at 1 au, to 8MJ at 30 au, in a disc of initial mass Mdisc = 15.5MJ = 0.015M�.

In a disc 5× more massive, the corresponding range of planet masses is 9–20MJ. The

final masses are not sensitive to α insofar as α controls only the timescale over which

the disc evolves (modulo disc dispersal by some other means, e.g., photoevaporation;

see Tanaka et al. 2020). Final masses do depend on the initial mass of the disc, scal-

ing as M
3/7
disc under repulsion-dominated conditions (equation 6.39) and M1

disc under

consumption-dominated conditions (equation 6.42 or 6.43). The trend of final planet

mass with distance shown in Figure 6.9 follows, for the most part, the trend predicted

for repulsion-limited conditions, except at large rp where consumption dominates. The

final mass profiles in Figure 6.9 recall those of the super-Jupiters in the HR 8799 system;

the four planets, located between 15 and 70 AU of their host star, have practically the

same mass, about 6–7 MJ (Wang et al. 2018).

Initially and everywhere in a viscous disc, a planet, despite opening a gap,

consumes practically all of the disc gas that tries to diffuse past its orbit (equation

22If the Shakura-Sunyaev α . 10−4, discs respond to planetary torques as if they were inviscid
(Ginzburg & Chiang 2019a, their fig. 1).
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Figure 6.9: Final planet masses grown from viscous discs having α = 10−3 and varying
total mass (top vs. bottom panels). Planet masses are initialized at 0.1MJ and grown
using the 1D numerical code of section 6.3, which utilizes the repulsive gap contrast
of Kanagawa et al. (2015; see also Duffell & MacFadyen 2013 and Fung et al. 2014)
and gas accretion that switches from Bondi to Hill at the thermal mass. Points are
plotted at t = 50 t1 = 85 Myr, where t1 = r2

1/[3ν(r1)] is the viscous diffusion time
at r1 = 30 au. Analytic curves are given by equation (6.38) for the repulsion limit
(dashed blue), and equations (6.42)–(6.43) for the consumption limit (dotted orange),
also evaluated at t = 50t1. At most orbital distances, planet mass growth is limited by
repulsion-dominated gaps; only at the largest distances, where the disc aspect ratio is
large, are gaps relatively harder to open and conditions remain consumption-limited.
The analytics, which are derived assuming the planet mass is small compared to the
disc mass, are a better guide for the more massive disc in the bottom panel.
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6.14 with A/(3π) > B > ν, where ν is the disc viscosity). This consumption-limited

behaviour persists up to a repulsion mass Mrepulsion,visc ' 5MJ [rp/(10 au)]9/16 (equation

6.31), above which repulsion dominates. The repulsion mass is not the thermal mass

Mthermal (equation 6.28), but exceeds it by a factor of ∼h−3/4, where h is the disc

aspect ratio. Growth continues more slowly at Mp > Mrepulsion,visc, with the planet

mass increasing beyond Mrepulsion,visc by up to a factor of ∼4 for our parameter choices.

Equation (6.38) gives an approximate analytic expression for the planet mass

vs. time during this final repulsion-limited stage. It predicts that planet masses are of

order 10MJ by the time the disc dissipates. This result is derived by assuming the planet

accretes at a rate that scales as AHill = 2.2 Ωr2m2/3, where m is the planet-to-star mass

ratio; this prescription is commonly adopted by hydrodynamical simulations of planet-

disc interactions, and might be appropriate for super-thermal masses. If instead of

AHill we use the empirical formula ATW = 0.29 Ωr2m4/3/h2 drawn from 2D numerical

simulations by Tanigawa & Watanabe (2002), then the mass above which repulsion

dominates changes to Mrepulsion,visc,TW ' 9MJ [r/(10 au)]3/8, nearly twice the value

of Mrepulsion,visc derived using the Hill scaling. Using ATW leads to a more extended

consumption-dominated growth phase, and final planet masses larger by order-unity

factors compared to those of the solid curves in Figure 6.9. Overall, it appears that

in viscous discs, planets accrete a not-small fraction of the disc mass, which can be

many tens of Jupiter masses (Tripathi et al. 2017, their fig. 10; see also Powell et al.

2019). This is in agreement with Tanaka et al. (2020), who limit giant planet growth

by incorporating photoevaporative mass loss from the disc.
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In inviscid discs, conditions tend to be repulsion-dominated even at low planet

masses. Without viscosity or turbulent transport to compete against, planetary Lind-

blad torques carve deep gaps that are repulsion-dominated even for sub-thermal planets

accreting at the Bondi rate (equation 6.52). Repulsion-dominated gaps are symmetric

in the sense that gap contrasts between the outer and inner discs are the same; accord-

ingly, disc accretion rates are nearly continuous across the gap (e.g., Figure 6.7), which

means that most of the disc mass is not diverted onto the planet (in the language of

Tanigawa & Tanaka 2016, Ṁp = min(Ṁhydro, Ṁdisc) = Ṁhydro). Maintaining the disc

accretion rate across a gap demands that the radial accretion velocity within the gap be

as large as the gap is deep. Whether such fast inflows are possible, and whether inviscid

gaps can be as deep as expected from our analytics (cf. numerical simulations that find

only shallow gaps; Fung & Chiang 2017; McNally et al. 2019, 2020), are unresolved

issues.

Figure 6.10, analogous to Figure 6.9, shows that final planet masses in our

model inviscid discs range between ∼0.05 and 1MJ, more than an order-of-magnitude

smaller than their viscous disc counterparts. For the most part, the masses computed

for inviscid discs using our numerical 1D code are well reproduced by equation (6.56),

derived in the repulsion limit. This formula, which predicts that final planet masses

scale as M
1/3
disc and r

163/196
p ' r0.83

p , is similar to that derived by Ginzburg & Chiang

(2019a, their equation 19),23 and improves upon it by accounting for the structure

and transport properties of the parent disc—specifically how the disc may accrete by

23Our final planet masses are a factor of ∼3 lower than theirs, a consequence largely of their choice
for h which is 50% larger.
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shedding angular momentum through a magnetized surface wind (e.g., Bai 2016).

Orbital migration in viscous discs has been shown in numerical simulations to

enhance Ṁp relative to the migration-free case (e.g., Dürmann & Kley 2017). Including

migration would only amplify our finding that final planet masses in viscous discs are

large, approaching if not well within the regime of brown dwarfs. Accretion rates should

also increase for planets migrating in inviscid, wind-driven discs;in 3D, strongly sub-

thermal planets have been shown to migrate inward (McNally et al. 2020). We may

need such enhancements in Ṁp to explain, within an inviscid scenario, giant planets like

our own Jupiter, i.e., to bring planet masses up to 1MJ at distances of 1–10 au (Figure

6.10). On the other hand, sub-Jupiter masses, down to ∼0.1 MJ in many cases, are

inferred from ALMA observations of disc gaps (Zhang et al. 2018), and suggest that

planets there are strongly repelling inviscid gas.

The asymmetric gap we computed for the viscous disc model in Figure 6.2 sug-

gests a strong, mostly one-sided migration torque forcing the planet inward. However,

this is misleading because our numerical procedure does not spatially resolve the gap,

whose true radial width lies between H (the pressure scale height) and rp (Ginzburg

& Sari 2018). Most of the migration torque is exerted by disc gas on the bottoms of

gaps, displaced radially from the planet by ∼±H, and here the actual surface density

gradients, and of course the surface density itself, are small (see also Kanagawa et al.

2018).
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Figure 6.10: Final planet masses in an inviscid, wind-driven disc of varying mass (top
vs. bottom panels). Planet masses are initialized at 0.01MJ and grown using the 1D
numerical code of section 6.4.4, which uses the time-dependent gap contrast of Ginzburg
& Chiang (2019a) to model repulsion, in a purely advective disc whose height-averaged
radial accretion velocity is c = −4 cm/s and exponential drain-out time is tadv = 3 Myr.
Points are plotted after 5tadv = 15 Myr. They mostly respect equation (6.56), which
gives final planet masses grown in repulsion-limited and deep (B̃inv > 1) gaps (dashed
curve not including the drop-off at the largest distances). At rp ∼ 100 au, the disc
has such low density that the planet’s initial growth timescale Mp/Ṁp is comparable to
tadv; here there are not many doublings before the disc drains away. In this regime the
planet does not open a substantial gap (B̃inv < 1) and its final mass can be estimated
analytically by integrating Ṁp = ABondiΣ with Σ given by the no-planet solution (6.46);
the dashed curve is the minimum of the resulting expression (not shown) and (6.56).
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6.5.2 Transitional discs

We have shown how a planet accreting from its parent disc can change the

disc’s entire complexion. This make-over is most evident for a planet that siphons away

most of the disc’s accretion flow—as it can in a viscously diffusing disc—carving out

a consumption-limited gap that divides a gas-rich outer disc with surface density Σ+

from a gas-poor inner one with surface density Σ−. Transitional discs have just such

an outer/inner structure (e.g., Espaillat et al. 2014; Dong et al. 2017), suggesting that

they represent viscous discs whose inner regions are cleared by accreting planets (with

dust filtration at the outer gap edge, and grain growth in the inner disc, enhancing the

surface density contrast in dust over gas; Dong et al. 2012; Zhu et al. 2012).

In a viscous disc, a single accreting planet suffices to deplete the entire disc

interior to its orbit. The 2D single-planet simulations of Zhu et al. (2011) bear this out;

they find an outer vs. inner disc contrast of Σ+/Σ− ∼ 10 for a 1MJ planet that accretes

at the Hill rate from a disc of h ' 0.05 (their fig. 1, model P1A1). This numerical result

agrees with our analytic theory, which predicts according to equations (6.15) and (6.30)

that

Σ+

Σ−
' AHill

3πB
' 7

(
Mp

MJ

)−4/3( h

0.05

)3

(6.58)

for a consumption-dominated and deep gap with AHill/(3π) > B > ν, where ν is the disc

viscosity. In steady state, Σ+/Σ− = Ṁ+/Ṁ−, the ratio of outer-to-inner disc accretion

rates. A value of Ṁ+/Ṁ− ∼ 10, as we have found for the above parameters, accords

with the observation that the median accretion rate for stars hosting transitional discs
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is lower than that of stars hosting non-transitional discs by a factor of ∼10 (Najita

et al. 2007; Kim et al. 2013). However, the corresponding factor-of-10 reduction in Σ

seems too small to match observed gas depletions in transitional disc cavities. In the

disc studied in CO by Dong et al. (2017), the gas surface density declines by ∼103 from

r = 70 au to 15 au. As recognized by Zhu et al. (2011; see also Owen 2016), it is a

challenge to simultaneously explain how disc inner cavities can be strongly depleted in

density while their central stars continue to accrete at near-normal rates.

This challenge seems more easily met in the repulsion limit, where deep gaps

are carved by planets which alter the disc accretion flow only modestly—assuming radial

accretion velocities within the gap are large enough to maintain mass transport rates

across it.

The repulsion limit is attained in viscous discs by planets havingM > Mrep,visc '

5.3MJ

(
r

10 au

) 9
16 , or in inviscid discs by planets havingM > Mrep,inv ' 0.02MJ

(
r

10 au

) 489
392 .

In both cases, multiple planets with adjoining gaps would be required to evacuate tran-

sition disc cavities spanning decades in radius—more planets in a viscous scenario where

each gap has a radial width closer to H, and fewer in an inviscid scenario where each gap

is of order rp > H wide (Ginzburg & Sari 2018; note that widths are not captured by

our single-grid-point treatment of gaps). The inviscid picture requires only super-Earth

masses and appeals more, insofar as observations seem to have already ruled out tran-

sitional discs containing families of super-Jupiters as required in the viscous scenario.

Inviscid discs can still accrete, either by virtue of magnetized winds (Bai 2016; Wang

& Goodman 2017), or by the repulsive torques of their embedded planets (Goodman &
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Rafikov 2001; Sari & Goldreich 2004; Fung & Chiang 2017).
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Chapter 7

Measuring the Orbital

Parameters of Radial Velocity

Systems in Mean Motion

Resonance—a Case Study of HD

200964

7.1 Introduction

A p:q mean-motion resonance (MMR) occurs when the ratio of the periods

of two interacting planets is close to p/q. This commensurability allows planetary

conjunctions to occur at consistent locations in the planets’ orbits, leading to periodic
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transfers of energy and angular momentum between the two bodies. Many examples of

bodies in mean motion resonance are known in the solar system (for a review, see e.g.

Peale 1986) and in exoplanetary systems (e.g. Lissauer et al. 2011, Izidoro et al. 2017).

In this paper, we restrict our focus to systems of giant planets in MMR. Mean motion

resonance between Jupiter and Saturn has been suggested as a possible phenomenon

early in the solar system’s history (e.g. Morbidelli et al. 2007, Walsh et al. 2011).

Several sets of giant planets in resonance have been identified directly (e.g., GJ 876, Lee

& Peale 2002; HD 5319, Giguere et al. 2015; HD 33844, Wittenmyer et al. 2016; HD

47366, Marshall et al. 2019; HD 202696, Trifonov et al. 2019; and TOI-216, Kipping et al.

2019) and resonance has been inferred due to stability constraints in the directly imaged

system of giants HR 8799 (e.g., Fabrycky & Murray-Clay 2010; Wang et al. 2018).

Understanding the population of giant planets in MMRs is important for constraining

the typical migration histories of giant planets, as convergent migration of giant planets

in a gas disk is a commonly cited mechanism for formation of gas giants in MMR (e.g.

Lee & Peale 2002).

Resonances often constitute stable regions in otherwise unstable parts of phase

space. Because the interactions between planets in MMR can generate periodic oscilla-

tions of the system’s line of conjunctions, they can protect planets from close encounters.

Thus, MMRs are often invoked to explain observed systems that initially appear to be

unstable.

Unfortunately, the presence of MMRs greatly complicates analysis of RV sys-

tems. Strong planet-planet interactions cause the planets to deviate from pure Keplerian
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motion even on the timescale of typical RV observations. This complicates the usual

RV fitting process, where planets are often allowed to move on unperturbed Keplerian

orbits. Furthermore, the additional frequencies introduced by these dynamical interac-

tions can shift the peaks in a periodogram of the RV signal away from the true orbital

periods of the planets. This difficulty in identifying the periods of the planets in turn

means that, perhaps counterintuitively, the particular resonance that a system is in is

not clear from the outset of fitting. Further exacerbating this issue is the fact that

libration of the MMR’s resonant angle occurs on timescales that are generally longer

than the timescale of the RV observations, meaning that our observations only capture

part of the full libration. This sampling issue, along with error in the observations,

means that the best-fit solutions to RV signals may lie far from solutions that actually

exhibit long term stability.

Thus, fitting RV systems in MMR necessitates different methods than those

traditionally used to fit radial velocity systems. Firstly, theoretical radial velocities

must be generated through full numerical integration of the equations of motion of the

system (e.g., Tan et al. 2013, Wittenmyer et al. 2014, Nelson et al. 2014, Trifonov et al.

2017, Millholland et al. 2018). Furthermore, while initial searches through parameter

space can be performed without incorporating long term stability, the “true” posterior

distribution of the planetary orbital parameters should not include points that are un-

stable on short timescales. In some cases “rejection sampling”, i.e. throwing out all

points that do not exhibit stability, can produce posterior distributions conditioned on

long-term stability. However, as will be seen in this work, it is often the case that the
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fraction of stable points is so small that the posterior produced by rejection sampling

does not adequately represent the underlying probability distribution. Thus, in order to

find long-term stable posterior distributions it is often necessary to incorporate stability

during the search through parameter space, though this is often not explicitly done. In-

corporating long term stability makes exploring the parameter space difficult, as while

regions close to particular MMRs will exhibit long term stability, intermediate regions

will generally have no stable solutions, meaning that each proposed resonance must be

investigated separately.

In this work, we illustrate these difficulties and ways they can be mitigated

through the example of the planetary system orbiting the star HD 200964. HD 200964 is

an intermediate mass subgiant (see Table 7.1 for a summary of the stellar parameters),

which was reported by Johnson et al. (2011a) (hereafter JPH11) to host two massive

(Mp &MJ) giant planets in a tight orbital configuration (Pc:Pb ∼800:600 days). JPH11

gave a best-fit, long term (> 107 years) stable solution that was close to a 4:3 MMR. In

this work, we include additional observations from both the Keck telescope as well as

the Automated Planet Finder (APF), which increase the length of time spanned by the

RV data. In addition, we explicitly require stability in our search over parameter space,

which greatly aids in finding regions of parameter space that both fit the data well

and exhibit long term stability. We find that, in addition to the 4:3 solution identified

by by JPH11, the system can be fit by both a 3:2 MMR and a 7:5 MMR, with the

7:5 providing the best fit to the measured radial velocity. The presence of multiple

plausible MMRs highlights the general difficulty in pinning down MMR in observed
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Table 7.1: Stellar parameters for HD 200964, taken from Brewer et al. (2016)

Parameter Value

Vmag 6.48
Distance [pc] 72.2

Teff 4982
log g 3.22

[M/H] -0.1
logL [L�] 1.13
R∗ [R�] 4.92
M∗ [M�] 1.45
Age [Gyr] 3.3

radial velocity systems. We also note that if the system is truly in a 3:2 MMR, this

would mitigate difficulties in forming the system through convergent migration.

In Section 7.2, we discuss how our observations of HD 200964 were performed.

In Section 7.3, we discuss the results of previous analyses of HD 200964. In Section 7.4

we discuss the various methods we employed to find best-fit, long-term stable solutions

to the observed radial velocity. In Section 7.5 we analyze the MMRs that stabilize the

best-fit solutions we find. In Section 7.6 we perform our methodology on the JPH11

dataset and compare our results with theirs, and in Section 7.7 we discuss the possibility

of a third planet in the system. Finally, in Section 7.8 we summarize our results and

give our conclusions.

7.2 Observations

The radial velocity measurements of HD 200964 used in this analysis come

from three different facilities: the Hamilton spectrometer (Vogt 1987) paired with the

Shane 3 m or the 0.6 m Coude Auxiliary Telescope, the HIRES spectrometer (Vogt

et al. 1994) on Keck I, and the Levy spectrometer on the Automated Planet Finder
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(APF) telescope (Vogt et al. 2014). In all cases, the star’s Doppler shifts were measured

by placing a cell of gaseous iodine in the converging beam of the telescope, imprinting

the stellar spectrum with a dense forest of iodine lines from 5000-6200 Å (Butler et al.

1996). These iodine lines were used to generate a wavelength calibration that reflects any

changes in temperature or pressure that the spectrometer undergoes, and enables the

measurement of each spectrometer’s point spread function. Although each spectrometer

covers a much broader wavelength range, 3400-9000 Å for the Hamilton and 3700-

8000 Å for HIRES and the Levy, only the iodine rich 5000-6200 Å region was used for

determining the observation’s RV shift. For each stellar spectrum, the iodine region was

divided into ∼700 individual 2Å chunks. Each chunk produces an independent measure

of the wavelength, point spread function, and Doppler shift. The final measured velocity

is the weighted mean of the velocities of all the individual chunks. It is important to

note that all RVs reported here have been corrected to the solar system barycenter, but

are not tied to any absolute RV system. As such, they are “relative” velocities, with a

zero point that is usually set simply to the mean of each dataset.

We make use of two previously published RV datasets, denoted here as the

“Lick” and “Keck11” datasets, taken from Johnson et al. (2011b) which originally an-

nounced the detection of these planets in the context of their intermediate-mass subgiant

host star survey (Johnson et al. 2006; Peek et al. 2009; Bowler et al. 2010; Johnson et al.

2010). The Lick data have SNR of ∼120 in the center of the iodine region (λ = 5500Å)

corresponding to an internal uncertainty value of 4-5m s−1, while the Keck11 have SNR

∼180 in the same area which brings the internal uncertainties down to 1.5-2m s−1. For
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additional details on this data, see Johnson et al. (2011b). New to this paper are an

additional 50 velocities taken with Keck HIRES and 36 velocities taken with the APF,

all obtained as part of the long running LCES Doppler survey (Butler et al. 2017) and

denoted as “Keck” and “APF”, respectively. For our HIRES observations the median

SNR in the iodine region is 159, corresponding to an average internal uncertainty of

1.4m s−1. The APF observations have a median SNR of 101 in the iodine region, which

produces an average internal uncertainty of 1.5m s−1. These internal uncertainties re-

flect only one term in the overall RV error budget, and result from a combination of

systematic errors from things like properly characterizing the point spread function,

detector imperfections, optical aberrations, and under sampling the iodine lines, among

others.

The new Keck and APF radial velocities are given in Tables 7.2 and 7.2 re-

spectively. Additionally, all four data sets, along with our maximum likelihood solution

without stability taken into account (see Section 7.4.1), are plotted in Figure 7.1.
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Figure 7.1: The four data sets for the radial velocity of HD 200964, along with the
theoretical radial velocity curve obtained using the parameters given in Table 7.5. The
data sets are: Lick (pink points), Keck11 (green points), Keck (red points), and APF
(blue points). Note that, as discussed in Section 7.4.1, each data set has a constant
offset that we fit separately. Furthermore, the jitter term given in Table 7.5 is added in
quadrature to the quoted error bars to obtain the error bars shown in the figure. The
residuals between the theoretical velocity and the data are shown in the bottom panel.
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Table 7.2: Keck Radial Velocities for HD 200964

Julian Day RV [m s−1] Uncertainty [m s−1]

2454399.75186 23.56 1.54
2454427.75745 19.83 1.13
2454634.07880 0.38 1.57
2454674.91593 -24.76 1.46
2454778.80262 -51.78 1.54
2454807.78906 -59.08 1.62
2454935.13871 -23.75 1.21
2454956.09772 -25.09 1.39
2454964.11957 -16.80 1.39
2454984.06802 -4.39 1.36
2454985.09297 -5.21 1.52
2455014.96811 14.08 1.61
2455015.95302 3.45 1.56
2455075.07263 40.27 1.53
2455076.06215 35.78 1.65
2455077.05115 44.44 1.51
2455082.04172 35.42 1.50
2455083.04807 45.17 1.70
2455084.02263 47.35 1.48
2455084.99943 38.08 1.53
2455106.90692 46.40 1.32
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Table 7.2 (cont’d): Keck Radial Velocities for HD 200964

Julian Day RV [m s−1] Uncertainty [m s−1]

2455135.75335 38.24 1.40
2455187.69803 30.50 1.63
2455188.69157 28.42 1.54
2455290.14918 4.66 1.47
2455313.13833 -8.29 1.12
2455352.08439 -31.80 1.38
2455374.11241 -38.66 1.51
2455395.95755 -45.18 1.38
2455439.01932 -36.70 1.38
2455455.73766 -47.27 1.42
2455521.79477 -34.05 1.39
2455674.14167 -18.79 1.47
2455720.97469 7.14 0.57
2455726.03586 2.36 1.28
2455782.84153 4.52 1.34
2455824.92332 13.68 1.23
2455839.82582 0.00 1.27
2455904.73172 -8.06 1.43
2455931.69116 -15.84 1.41
2456166.74440 -10.20 1.40
2456168.86382 -11.20 1.21
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Table 7.2 (cont’d): Keck Radial Velocities for HD 200964

Julian Day RV [m s−1] Uncertainty [m s−1]

2456433.04139 -6.80 1.14
2456522.09346 -38.29 1.59
2456529.87766 -35.31 1.54
2456551.82347 -49.97 1.18
2456613.77979 -57.29 1.44
2456637.69903 -48.26 1.32
2456878.89942 33.07 1.56
2456911.71152 36.84 1.42
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Table 7.3: APF Radial velocities for HD 200964

Julian Day RV [m s−1] Uncertainty [m s−1]

2456504.82513 0.54 1.26
2456505.93027 2.60 1.29
2456515.85262 8.11 1.20
2456516.89268 -2.40 1.27
2456517.78745 -1.66 1.23
2456518.81965 -1.70 1.25
2456534.80483 4.89 1.21
2456535.80156 0.75 1.28
2456539.79917 5.14 1.36
2456540.82230 -4.63 1.55
2456541.85331 -6.12 1.16
2456542.75722 -1.48 1.02
2456547.79837 -11.14 1.29
2456548.77462 -8.03 1.21
2456562.80405 -3.92 1.05
2456563.71147 -5.93 1.08
2456569.79719 -27.84 4.34
2456570.79627 -5.96 1.55
2456573.72675 -9.89 1.44
2456577.80143 -17.01 1.00
2456581.79176 -6.52 0.78
2456582.73480 -2.58 0.63
2456583.69447 -11.73 1.09
2456588.68050 -12.69 0.57
2456589.77159 -11.57 1.02
2456590.66789 -11.63 1.32
2456591.66285 -9.16 0.74
2456596.59997 -3.76 1.12
2456597.69329 -0.91 0.72
2456606.66048 -1.10 0.84
2456607.69387 -8.66 1.00
2457192.94571 -9.75 1.23
2457225.99709 -21.57 0.80
2457706.65722 43.99 1.23
2458239.99803 28.47 1.08
2458292.79881 17.20 1.81
2458384.63820 18.05 0.93
2458408.59895 8.73 0.79
2458409.59737 1.57 0.78
2458411.59738 9.05 0.90
2458413.59601 8.92 0.76
2458415.59282 9.33 0.80
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7.3 Previous Analysis

The first analysis of the planetary system around HD 200964 was given by

JPH11, using the “Lick” and “Keck11” datasets. These authors first perform a Markov

chain Monte Carlo (MCMC) analysis of the system assuming Keplerian orbits for both of

the planets in the system, i.e. neglecting planet-planet interactions. They use the results

of this Keplerian MCMC to initialize a Differential Evolution Markov Chain Monte Carlo

(DEMCMC) algorithm. The theoretical radial velocity at a given time is calculated

using an N -body integrator, with a constraint that the system must remain stable for

100 years. They then perform rejection sampling on their final posterior, throwing

out points which are not stable for 107 years. Their best-fit, long term stable solution

appears to have an RMS scatter of 28.1 m/s, which would indicate poor agreement

between the model and the data. Furthermore, as also reported by Tadeu dos Santos

et al. (2015), we find that the best fit solution reported by JPH11 does not exhibit

long-term stability, regardless of whether the reported orbital elements are taken to be

astrocentric or Jacobi. However, JPH11 do not appear to specify the epoch at which

the planets have the reported orbital elements. When planet-planet interactions are

included, the orbital elements of the planets change as a function of time. Thus, in

order to fully specify an orbit, the time at which the orbital elements are referenced

must be stated in addition to the elements themselves. For example, for the parameters

given by JPH11, the period of the outer planet ranges from ∼ 772 to 857 days over

the timescale of the radial velocity observations. Given the degree to which the orbital

elements change over the timescale of the observations for the parameters reported by
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JPH11, it is quite possible that the discrepancy we find between their best-fit solution

and the data is because the epoch to which the elements are referenced is not specified.

The reported 4:3 MMR exhibited by the system is interesting, as it is quite

difficult to capture planets of gas giant mass into this resonance through convergent

migration alone, as discussed by Rein et al. (2012). Subsequent works have explored the

stable regions of parameter space for the parameters reported by JPH11, (Wittenmyer

et al. 2012), investigated in more detail the resonant behavior exhibited for the reported

parameters (Mia & Kushvah 2016) and investigated other, more complex scenarios for

the formation of HD 200964 (Emel’yanenko 2012, Tadeu dos Santos et al. 2015)

7.4 Methods

In this work, in addition to analyzing a baseline of data longer than that used

in JPH11, we investigate the underlying posterior by explicitly conditioning our Markov

chain Monte Carlo (MCMC) search on long-term stability. MCMC is a commonly used

method to sample from a probability distribution (see e.g. Sharma 2017 for a review);

in this context it used to sample from the posterior probability distributions for the

orbital parameters of the planetary system (as well as the stellar jitter, see below). In

this section we specify the methods employed to find these stable, best-fit solutions.

We begin by investigating best-fit solutions including planet-planet interactions but

neglecting stability (Section 7.4.1). After constructing the posterior distribution of

orbital parameters without stability, we show that “rejection sampling”, i.e. discarding

solutions that do not exhibit long-term stability, yields few long-term stable solutions
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(Section 7.4.2). Thus, to improve our measurement of the long-term stable posterior

distribution, we explore parameter space using a likelihood function that explicitly takes

stability into account (Section 7.4.3). We find that this method does a much better job

of fitting the posterior distribution, though we find the posterior is multi-modal (Section

7.4.4). Finally, we perform a Monte Carlo search to verify after the fact that we have

identified all relevant stable regions of parameter space (Section 7.4.5).

7.4.1 Fits Incorporating Planet-Planet Interactions

We begin our analysis by searching for fits to the RV data without explicitly

requiring our solutions to be stable. Firstly, we note that inspection of a usual gener-

alized Lomb-Scargle periodogram (GLS, see e.g. Zechmeister & Kürster 2009), leads

inexorably to the conclusion that the two planets in the system are closely packed. A

GLS for the RV data shown in Figure 7.1 is plotted in Figure 7.2. The two largest peaks

(note that we have omitted a peak at ∼1 day which is likely an alias of the sampling

period of the data) of the GLS are near ∼600 and ∼900 days. While the actual periods

of the planets we determine will be affected by planetary eccentricity and dynamical

interaction between the planets, these close peaks nonetheless indicate that the system

likely contains two closely packed planets.

Thus the gravitational interactions between the planets constitute an impor-

tant component to the observed radial velocity of HD 200964, and cannot be neglected.

Often, theoretical radial velocity values are calculated by advancing the planets along

Keplerian orbits, in effect neglecting any perturbations between the planets. For non-

closely packed systems this is generally a fine approximation, as perturbations between
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Figure 7.2: A generalized Lomb-Scargle periodogram for the RV data of HD 200964.
Note the two strong peaks at ∼600 and ∼900 days, demonstrating that the system likely
features two closely-packed planets. The full width at half maximum of each peak is
indicated by the gray rectangle.
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the planets are unimportant over the timescale of the RV observations. As illustrated

in Figure 7.3, however, this is not the case for HD 200964. Figure 7.3 plots the radial

velocity as a function of time determined by both using only Keplerian orbits, as well

as a full N -body integration of the equations of motion. The difference between the two

values is shown in the bottom panel. The orbital parameters used correspond to our

best-fit, long-term stable solution (see Section 7.4.3).
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Figure 7.3: A comparison of the radial velocity determined by numerically integrating
the motions of the planets and by advancing the planets forward on Keplerian orbits.
The orbital parameters used are our best-fit long-term stable solution, as discussed in
Section 7.4.3. The top panel shows the stellar radial velocity determined by the two
methods, while the bottom shows the difference in the two curves. There is substantial
disagreement between the integrated and Keplerian radial velocities due to the strong
planet-planet interactions present.

Clearly, neglecting the planet-planet interactions is a poor approximation; in

what follows all calculation of radial velocity values will be done by numerically inte-

grating the star-planet system forward in time. In order to perform our numeric inte-
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grations, both to calculate the theoretical radial velocity and to determine the lifetime

of our planetary systems (see Sections 7.4.2 and 7.4.3), we use the N -body integration

package REBOUND (Rein & Liu 2012).

For the purpose of computing the theoretical radial velocity for comparison

with the observations, we use the IAS15 integrator (Rein & Spiegel 2015), which is a

15th order integrator with adaptive time stepping. All orbital elements provided in this

paper are quoted relative to the primary star, i.e. they are astrocentric coordinates,

and are given at the epoch of the first data point, i.e. JD 2453213.895. Following

Brewer et al. (2016), we take the central star to have mass M∗ = 1.45M�. We use a

usual radial velocity coordinate system, such that the inclination i represents the angle

between orbital plane and the plane of the sky, which we take to be the reference plane.

The argument of periapse, ω, is the angle between the line of ascending nodes and

the periapse direction. The observer is taken to lie in the −ẑ direction relative to the

reference plane; in keeping with convention velocities in this direction, i.e. towards the

observer, are quoted as positive. For clarity, due to the strong planet-planet interactions

we specify the mean longitudes of the two planets at epoch, λ, as opposed to the planets’

time of periastron passage. In this work we fix i = 90◦, corresponding to edge on orbits,

and fix the longitude of ascending node, Ω = 0. We comment on the degeneracy between

the system’s inclination and the masses of the planets in Section 7.4.4.

Following other works (e.g Johnson et al. 2007, Cumming et al. 2008, JPH11),

we introduce a “stellar jitter” term in our fitting, which is an additional error term

that is added in quadrature to the “known” error, i.e. the error on each measurement
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is taken to be
√
σ2
k + σ2

j , where σk is the given error and σj is the proposed value of

the stellar jitter term. We also note that we are using a single value to characterize

the stellar jitter, meaning that we are neglecting variation in jitter between different

instruments (Balbus 2009). We have checked that the inclusion of multiple jitters has

no qualitative effect on the posterior distribution shown in Figure 7.4. However, fitting

a different jitter for each data set (as is done in e.g. Nelson et al. 2016 or Millholland

et al. 2018) would allow us to characterize the difference in instrumental noise between

the various datasets.

We calculate the likelihood for a given set of orbital parameters by assuming

that the radial velocity measurements are all independent and Gaussian distributed,

with error given by σi =
√
σ2
k + σ2

j , as discussed in the preceding paragraph. In this

case, the log likelihood L is given by

L = −
∑

i

[
(vi −RV (ti)−OD)2

2σ2
i

+ log
(
σi
√

2π
)]

(7.1)

where vi are the measured radial velocities and RV (ti) are the model radial velocities.

Here OD refers to the constant offset to each dataset (see Section 7.2), which must also

be fit, introducing 4 additional parameters into our fitting. Instead of including the 4

offsets as parameters in our MCMC search, the offsets are separately optimized for every

proposed set of orbital parameters. That is, once the model radial velocities are known,

it is straightforward to show that the constant offset to each dataset that maximizes the

likelihood can be obtained by calculating the weighted mean of the difference between
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the model and the data

OD =
1

S

∑

i∈D

vi −RV (ti)

σ2
i

(7.2)

where S ≡∑i 1/σ2
i . This simplifies our fitting algorithm, but does mean that we may

miss degeneracies between the constant offsets and the orbital elements.

For our priors, we assume uniform probability in some specified domain for

each parameter, except for the planetary eccentricities, where the priors are uniform

in log space. For periods of each planet, the priors are uniform between 400 to 1000

days for planet b, and 500 to 1100 days for planet c. The prior on plantary mass is

uniform between 0.1 and 10 MJ for both planets. For the planetary eccentricity, the

prior is uniform in log space between -4.5 and 0. For all the angles, the priors are taken

to be uniform between −720◦ and 720◦. This is done to ensure that the arguments

of pericenter do not diverge to arbitrarily large values when the planet’s eccentricity

is low. In practice the actual values of parameters in our searches are quite far from

the limiting bounds, with the exception of planetary eccentricity and the corresponding

argument of pericenter, where the bounds are important for cases of low eccentricity.

To explore the parameter space, we initially use the scipy minimizer to op-

timize the orbital parameters. We initially fix the orbital periods and masses of the

planets, using the GLS and the amplitude of the RV signal to provide rough estimates

of these parameters, and perform an optimization on the rest of the parameters, start-

ing from random values. We chose five of these optimizations which both had high

likelihood and different final parameters to initialize our MCMCs.
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We used the software emcee (Foreman-Mackey et al. 2013) to perform our

MCMC search. We initialized different MCMC searches from our converged optimiza-

tions. We let these MCMCs run for ∼1000 steps, and look at the regions of high likeli-

hood. We found that all of these searches identify a single region as having the highest

likelihood. We then reinitialized a final search in this region. We ran this MCMC for

an initial burn in period, then discarded these walker positions and ran the MCMC to

convergence. To asses convergence of our MCMC runs, we used the potential scale re-

duction factor (PSRF, Gelman & Rubin 1992). A common method to asses convergence

is to run the MCMC until the PSRF for every parameter has a value < 1.1 (Brooks &

Gelman 1998). However, for our MCMC runs the PSRF for the two eccentricities and

arguments of pericenter often do not fall below 1.1, likely because at low eccentricities

the posterior probability is completely insensitive to these parameters. Thus, in practice

we consider our MCMC converged if the PSRF for all parameters, except for the two

eccentricities and two arguments of pericenter, is below 1.1.

A corner plot showing our best fit posterior distribution for the orbital param-

eters is shown in Appendix C (Figure C.1). The model radial velocity produced from

our best-fit parameters (maximum likelihood) is shown in Figure 7.1, the median values

of our posterior distribution are given in Table 7.4, and the maximum likelhiood orbital

parameters are given in Table 7.5.

The periods of the planets in our posterior distribution are much more con-

strained than the results obtained by JPH11. The median period ratio of the system

has also moved to Pc/Pb ∼ 7/5, whereas JPH11 found values much closer to 4/3. This is
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Table 7.4: Median orbital parameters, no long term stability

Parametera HD 200964 b HD 200964 c

Orbital Period, P [days], 604.69+3.38
−3.10 852.55+9.42

−8.30

Mass, m [MJ ] 1.72+0.05
−0.05 1.20+0.06

−0.06

Mean longitude, λ [deg] 307.40+5.26
−5.06 239.47+6.27

−6.42

Argument of periastron, ω [deg] 294.48+21.08
−22.70 259.32+57.71

−47.07

log10 Eccentricity, e −1.15+0.11
−0.15 −1.49+0.55

−1.81

Stellar Jitter, σj [m/s] 6.05+0.46
−0.39

aValues for orbital elements are in astrocentric coordinates, are referenced
to the epoch of the first data point, JD 2453213.895, and assume an inclination
i = 90◦. The reported values are median values for the posterior distribution,
and the reported error bars are 84% and 16% quantiles.

due to our observations spanning a longer timescale. To illustrate this point, in Figure

7.5 we plot the posterior for our new data along with the N -body integrated posterior

distribution produced by analyzing just the JPH11 data (see Section 7.6). This is con-

sistent with the results of Luhn et al. (2019), who also report the period of planet c to

be around 850 days based on a Keplerian fit to the data.

Interestingly, using N -body integration to determine the theoretical RV values

broadens the posterior distribution of Pb and Pc compared to a purely Keplerian fit

for the full dataset. For comparison with our N -body integrated fits, we repeat our

analysis with the assumption of Keplerian orbits for both planets. The 2D histogram of

a Keplerian fit to the data is plotted in red in Figure 7.4. In particular, it appears that

the dynamical interaction between the planets allows for period ratios close to both 3:2

and 4:3 to fit the data, which are more strongly ruled out in a purely Keplerian fit.

Closer examination of our N -body integrated posterior distribution shows that

many of the points, including our best fit solution, feature extremely close encounters

between the two planets. An example from our best-fit parameters is shown in Figure
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Table 7.5: Maximum likelihood orbital parameters, no long term stability

Parametera HD 200964 b HD 200964 c

Orbital Period, P [days], 607.7 845.3
Mass, m [MJ ] 1.71 1.21

Mean longitude, λ [deg] 312.5 233.7
Argument of periastron, ω [deg] 297.4 270.5

log10 Eccentricity, e -1.13 -0.92
Stellar Jitter, σj [m/s] 5.60

aValues for orbital elements are in astrocentric coordinates, are referenced
to the epoch of the first data point, JD 2453213.895, and assume an inclination
i = 90◦.
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Figure 7.4: 2D histograms of the posterior distributions for the planets’ periods, us-
ing N -body integration to calculate the radial velocity but without long-term stability
(black points, see Section 7.4.1) and advancing the planets on Keplerian orbits (red
points). Lines denoting exact ratios of Pc/Pb are shown for ratios of 3:2 (blue), 7:5
(gray) and 4:3 (orange).
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Figure 7.5: 2D histograms of the posterior distributions for the planets’ periods, using
N -body integration to calculate the radial velocity but without long-term stability. The
black points show the posterior produced by using the full dataset, while the red points
show the posterior obtained by analyzing only the JPH11 data. Lines denoting exact
ratios of Pc/Pb are shown for ratios of 3:2 (blue), 7:5 (gray), 4:3 (orange), and 5:4
(green).
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7.6, which plots the distance between each planet and the central star as a function

of time. While neither of the planets is ejected over this timescale, the two planets,

particularly the outer planet, experience large amplitude fluctuations in distance from

the central star. Thus, it is extremely unlikely, if the system were truly in this orbital

configuration initially, that we would observe it before the configuration changed sub-

stantially. Furthermore, integration over long time scales indicates the outer planet is

scattered out past 100 AU on 105 year timescales.

The majority of the solutions in Figure 7.4 do not exhibit long term stability.

7.4.2 Rejection Sampling

In order to find long term stable solutions, we begin by using “rejection sam-

pling” on the posterior distribution found in Section 7.4.1. Rejection sampling is less

computationally intensive than doing a full search conditioned on stability, and has

been employed in other works to find best fit orbital parameters for planetary systems

which are also stable (e.g. Wang et al. 2018). In rejection sampling, we first construct

a posterior distribution for the planetary system that does not take stability into ac-

count. Some fraction of the points (or, in our case, all of the points) in the posterior are

chosen at random, and are then tested for long-term stability. All of the points in the

posterior that pass the stability criteria then make up the new best-fit posterior which

is conditioned on stability.

The converged posterior distribution shown in Figure 7.4 contains 287,296

points in parameter space. We then tested all of these points for stability for 103 orbital

periods of planet c. We consider systems stable if both planets remained between 150%
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Figure 7.6: Distance between planet b (black line) and planet c (blue line), and the
host star for our best-fit solution without long-term stability (see Section 7.4.1). The
planets experience large, non-periodic fluctuations in distance from the star due to their
strong mutual perturbations. The short timescale of these fluctuations relative to the
age of the host star makes it unlikely, if the proposed best fit solution were correct, that
the system would be observed in the original orbital configuration. Furthermore, these
fluctuations are a strong indication that the system will become unstable on timescales
much less than the age of the system. This is indeed the case—planet c is eventually
scattered to a distance > 100 AU on 105 year timescales.
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of their initial periastron distance and 50% of their apastron distance from the central

star during the course of the integration. We considered distance from the central star,

as opposed to the semi-major axis of the planets, as many of our best fit solutions

feature extremely close encounters between the planets, as discussed above. This can

cause the semi-major axis of planet b to diverge as its velocity is temporarily excited

to above the escape velocity from the system, despite the fact that the system remains

stable after this close encounter. Though it is unlikely a system featuring such a close

encounter will survive on long timescales, we did not want to prematurely discard these

solutions without checking for long term stability. These integrations were again carried

out using the IAS15 integrator.

Of the points in the initial posterior, 2,295, i.e. < 1% of the systems survived

for 103 orbital periods. We then tested these remaining points for longer term stability:

each set of orbital parameters was integrated for 107 orbital periods of planet c. For

these long term stability analyses we use the WHFAST integrator (Rein & Tamayo

2015), an implementation of the sympletic Wisdom-Holman integrator. Unless otherwise

noted, we set the timestep for our integrations with WHFAST to be dt = Pmin/100,

where Pmin is the shortest initial orbital period of the planets in the system. This is

five times shorter than the orbital period recommended by Duncan et al. (1998), who

recommend dt = Pmin/20 for a second order sympletic integrator. Of the points tested,

only 1,111 survive for 107 orbital periods. This is far too few points to construct a

converged posterior for stable, best fit solutions to the data. We would require 1-2

orders of magnitude more points in our original, non-stable posterior, in order to retain
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enough points in the rejection sampling to construct a converged stable posterior, which

would be extremely computationally intensive. Though the posterior obtained through

rejection sampling is clearly not converged, the points do appear to lie in the general

region of parameter space identified in Section 7.4.3. With rejection sampling, we only

identify stable fits near 7:5 period ratio (c.f. Figure 7.8, purple points), while the broader

search described in Section 7.4.3 identifies other possible period ratios.

It is also interesting to note that when this exercise was carried out for fits

on just the Keck and APF datasets (i.e. omitting the Lick and Keck11 datasets), none

of the points in the initial posterior survived for 107 orbital periods. It is only when

we have data spanning a longer timescale that we appear to be able to find any best-

fit solutions that also exhibit stability. We suspect that this effect stems from the

longer time baseline and better coverage of the RV signal that inclusion of the two

later data sets provides. As more data is included the parameters of the planets in

the system become better constrained, and our posterior distribution moves closer to

the “true” parameters of the underlying system, which presumably does exhibit long

term stability. Thus, with more data, we expect a greater likelihood that the posterior

distribution we construct without explicitly including stability will overlap with stable

regions of parameter space.

While rejection sampling is insufficient to construct a converged posterior dis-

tribution, some of these points are useful places to initialize MCMC searches with sta-

bility included, which we discuss in the next section.
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7.4.3 Likelihood Function Conditioned on Stability

As rejection sampling is insufficient to produce a converged posterior distri-

bution, we therefore try a different approach—we modify the likelihood function used

in performing searches of parameter space by setting the likelihood function to be 0 if

the system is not found to be stable for a predetermined period of time. We consider

a planetary system to be stable if the semi-major axes of both planets remain between

50% and 150% of their initial values. This means that any samples in our final posterior

distributions now exhibit long-term stability, but also means that our search has trou-

ble exploring between stable regions of parameter space. If we were merely looking for

maximum likelihood solutions, the stable solutions we found through rejection sampling

would be sufficient for initializing our long-term stable MCMC searches. However, given

the large upwards shift in period ratio that occurs when more data is included in the

fitting when compared to the JPH11 data (see Figure 7.5), we feel it is quite important

to explore other possible modes near the best-fitting solutions, since it is quite possible,

as we discuss below, that additional frequencies introduced by the dynamical interaction

between the planets are obscuring the underlying period ratio. Due to this difficulty,

we use several different methods and initializations for our search, which we discuss in

detail below. We ultimately identify three peaks in our posterior distribution, which are

discussed in Section 7.4.4. We do require multiple different initializations to find these

various modes, which leaves open the question of whether other initialization methods

might find additional modes in the posterior distribution. We return to this question in

Section 7.4.5.
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The simplest method of initialization, as well as the method that overall finds

the best-fitting region of parameter space, is to simply initialize our MCMC near the

best-fit solution found by rejection sampling. This method produces a peak near a 7:5

period commensurability, which is unsurprising given that this is where our non-stable

posterior distribution is located. For another initialization, we use a genetic algorithm

(GA) to explore the parameter space. As we suspect there may be multiple local maxima

of our posterior distribution, a GA may be useful to identify these different maxima and

ultimately identify the global maximum. We use the open-source optimization frame-

work Pyevolve (Perone 2009). Our genetic algorithm calculates likelihood scores using

the same criteria discussed above, i.e. log-likelihood derived from assuming the obser-

vations are Gaussian distributed and independent, conditioned on long-term stability.

The negative of the log-likelhiood is used as the “fitness” for the GA. For our GA runs

we test for stability for 106 periods of planet c’s orbit. We find that allowing the algo-

rithm to evolve until an average fitness score of at least 800 is reached, or until there is

no significant increase in likelihood between sequential generations, is sufficient time for

the algorithm to find useful starting points for the MCMC. We initialize the MCMC in a

small Gaussian ball around the best fit parameters determined by the genetic algorithm,

and allow the MCMC to run to convergence.

The GA strongly favors a region of stability similar to the parameters identified

in Figure C.1, but with the period of the larger planet closer to ∼ 900 days, which places

the system firmly in a 3:2 MMR, as discussed in Section 7.5. This region is extremely

stable, making it easier for the GA to explore. The GA misses the stable region of
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parameter space near Pc/Pb ∼ 7/5 identified by our rejection sampling in Section 7.4.2;

this is likely because the search by the GA is too broad for this application, and the

stable region near 7:5 is much more narrow than the region near 3:2.

We also begin a search starting from the orbital parameters identified by Tadeu

dos Santos et al. (2015), who explored the formation and evolution of HD 200964 using

the data of JPH11, with a higher stellar mass of M∗ = 1.57M�, and gave long-term

stable solutions in the 4:3 MMR. The specific parameters reported in this work do not

match the data well according to our model, likely because of a disagreement between the

coordinate systems used. Thus, beginning with their reported planetary masses (scaled

by a factor Mp/M∗) and eccentricities, we first optimize over angular parameters, before

performing an optimization over all parameters and a subsequent MCMC search. This

search does find stable solutions near a 4:3 period ratio that fit the data well, but the

search also finds a smaller number of solutions near the 7:5. Though the walkers in

our search spend more time near 4:3, solutions near 7:5 clearly have better posterior

probability; it is likely the MCMC has difficulty moving between the two period ratios

due to a dearth of stable solutions at period ratios intermediate between the two regions.

We therefore initialize another MCMC at our best fit solution from the previous run.

This MCMC converges to a region similar to the region identified by starting at the

best-fit obtained through rejection sampling.

Thus, we have identified three peaks in our posterior distribution—one near

a 3:2 period ratio, another near a 4:3 period ratio, and peak containing our best fit

solution near a 7:5 period ratio. In the next section we discuss these peaks in more
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detail.

7.4.4 Final Posterior Distribution

We give median values of the orbital parameters from each mode of the pos-

terior distribution in Table 7.8, and maximum likelihood parameters in Table 7.11.

Since the 4:3 distribution joins on to the 7:5 distribution, we remove all points with

Pc > 7/5Pb before calculating the median or the errors. Theoretical radial velocity

curves for the maximum likelihood parameters are shown in Figure 7.7. The full poste-

rior distributions are plotted in Appendix C. We also stress that it is more meaningful

to talk about overall stable regions of parameter space rather than particular orbital

configurations. Long-term orbital integrations are inherently chaotic, and lifetimes of

a given set of orbital parameters can vary by an order of magnitude depending on the

machine used to carry out the integration.

All of our parameters discussed above are reported for i = 90◦. Though there

are still strong degeneracies between Mp and i in our modeling, we note both the

theoretical RV signal and the long-term stability of the system are directly sensitive

to the planetary mass Mp, as opposed to just Mp sin i, which is the relevant quantity

when planets are allowed to move on purely Keplerian orbits. One extension of our

work would be to directly constrain the masses of the planets by allowing the overall

inclination of the system to vary, while still keeping the planets coplanar. We could

also allow mutual inclinations between the planets, which would necessitate allowing Ω

to vary. This could improve our stability constraints, and allow us to further constrain

Mp. We leave these investigations as avenues for future work.
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Table 7.6: Median orbital parameters, 106Pc stability, 7:5 MMR

Parametera HD 200964 b, 7:5 HD 200964 c, 7:5

Orbital Period, P [days] 603.27+2.33
−2.17 854.46+4.56

−4.39

Mass, m [MJ ] 1.72+0.05
−0.05 1.16+0.05

−0.05

Mean longitude, λ [deg] 307.90+4.32
−4.04 236.76+4.28

−4.50

Argument of periastron, ω [deg] 325.762+13.16
−13.51 252.58+112.94

−103.12

log10 Eccentricity, e −1.21+0.05
−0.05 −3.10+0.90

−0.98

Stellar Jitter, σj [m/s] 6.27+0.42
−0.40

aValues for orbital elements are in astrocentric coordinates, are referenced
to the epoch of the first data point, JD 2453213.895, and assume an inclination
i = 90◦. The reported values are median values for the posterior distribution,
and the reported error bars are 84% and 16% quantiles.

We also note that all three posterior distributions identified, that is, near

period ratios of 3:2, 4:3, and 7:5, feature a long tail in the eccentricity of planet c

consistent with planet c on a circular orbit. We therefore re-run our MCMC, now

setting planet c to be circular, which eliminates two parameters from our fitting. The

resultant searches identify very similar regions of parameter space to the solutions with

eccentricity included, but none of the solutions are truly consistent with planet c being

circular. Instead, planet c’s eccentricity is quickly excited by the companion, and, over

longer timescales, both planets’ eccentricities oscillate, with average values that are both

of order 10−1. We also comment that for two planets to be in MMR, the “test” particle

must have some eccentricity. Thus, in what follows we use our orbital solutions with

eccentricity included.

As previously discussed, all three of these posteriors represent different modes

of the overall posterior distribution of orbital parameters. A 2D histogram of the poste-

rior distribution of Pc vs. Pb is shown in Figure 7.8, overplotted with the non-stable 2D
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Table 7.7: Median orbital parameters, 106Pc stability, 4:3 MMR

Parametera HD 200964 b, 4:3 HD 200964 c, 4:3

Orbital Period, P [days] 605.85+2.53
−2.48 837.51+4.62

−6.12

Mass, m [MJ ] 1.74+0.05
−0.05 1.13+0.05

−0.06

Mean longitude, λ [deg] 311.31+4.49
−4.46 223.98+4.70

−4.91

Argument of periastron, ω [deg] 293.97+14.15
−13.89 273.05+96.72

−118.05

log10 Eccentricity, e −1.16+0.06
−0.05 −2.99+1.02

−1.06

Stellar Jitter, σj [m/s] 6.57+0.47
−0.42

aValues for orbital elements are in astrocentric coordinates, are referenced
to the epoch of the first data point, JD 2453213.895, and assume an inclination
i = 90◦. The reported values are median values for the posterior distribution,
and the reported error bars are 84% and 16% quantiles.

Table 7.8: Median orbital parameters, 106Pc stability, 3:2 MMR

Parametera HD 200964 b, 3:2 HD 200964 c, 3:2

Orbital Period, P [days] 598.70+2.79
−2.77 881.11+7.62

−6.62

Mass, m [MJ ] 1.68+0.06
−0.06 1.26+0.07

−0.07

Mean longitude, λ [deg] 287.17+6.15
−4.57 269.31+5.52

−5.80

Argument of periastron, ω [deg] 317.12+17.78
−19.11 169.28+160.12

−35.34

log10 Eccentricity, e −1.12+0.14
−0.19 −1.47+0.38

−1.91

Stellar Jitter, σj [m/s] 7.47+0.53
−0.49

aValues for orbital elements are in astrocentric coordinates, are referenced
to the epoch of the first data point, JD 2453213.895, and assume an inclination
i = 90◦. The reported values are median values for the posterior distribution,
and the reported error bars are 84% and 16% quantiles.

Table 7.9: Maximum Likelihood orbital parameters, 106Pc stability, 7:5 MMR

Parametera HD 200964 b, 7:5 HD 200964 c, 7:5

Orbital Period, P [days] 601.5 856.8
Mass, m [MJ ] 1.75 1.18

Mean longitude, λ [deg] 304.7 238.5
Argument of periastron, ω [deg] 327.1 246.2

log10 Eccentricity, e -1.18 -2.02
Stellar Jitter, σj [m/s] 6.1

aValues for orbital elements are in astrocentric coordinates, are referenced
to the epoch of the first data point, JD 2453213.895, and assume an inclination
i = 90◦.
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Figure 7.7: Comparison of the theoretical radial velocity curves for our best-fit, long-
term stable solutions with different period ratios. Top Panel : Our overall maximum
likelihood solution, which has Pc/Pb ∼ 7/5. Middle Panel : An example solution which
shows clear libration of the 4:3 resonant angle. Bottom Panel : Our maximum likelihood
solution that also shows libration of the 3:2 resonant angle.
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Figure 7.8: 2D histograms of the posterior distributions for the planets’ periods without
long-term stability (black points, see Section 7.4.1) and the three modes identified for
fits conditioned on stability for 106 Pc (pink, purple, and red points, see Section 7.4.3).
Note that the plotted values refer to the periods at JD 2453213.895. Lines denoting
exact ratios of Pc/Pb are shown for ratios of 3:2 (blue), 7:5 (gray) and 4:3 (orange).
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Table 7.10: Maximum Likelihood orbital parameters, 106Pc stability, 4:3 MMR

Parametera HD 200964 b, 4:3 HD 200964 c, 4:3

Orbital Period, P [days] 605.6 839.3
Mass, m [MJ ] 1.77 1.16

Mean longitude, λ [deg] 308.1 227.6
Argument of periastron, ω [deg] 304.1 293.8

log10 Eccentricity, e -1.3 -3.36
Stellar Jitter, σj [m/s] 6.4

aValues for orbital elements are in astrocentric coordinates, are referenced
to the epoch of the first data point, JD 2453213.895, and assume an inclination
i = 90◦.

Table 7.11: Maximum Likelihood orbital parameters, 106Pc stability, 3:2 MMR

Parametera HD 200964 b, 3:2 HD 200964 c, 3:2

Orbital Period, P [days] 598.8 886.4
Mass, m [MJ ] 1.72 1.33

Mean longitude, λ [deg] 286.4 272.8
Argument of periastron, ω [deg] 304.1 181.1

log10 Eccentricity, e -1.12 -1.08
Stellar Jitter, σj [m/s] 7.2

aValues for orbital elements are in astrocentric coordinates, are referenced
to the epoch of the first data point, JD 2453213.895, and assume an inclination
i = 90◦.

histogram. We use this plot to give an idea of where each modes lies in Pc vs Pb space;

we stress that each mode is pulled from a separate posterior distribution, meaning that

the relative likelihood of the modes is not indicated by the density of points in each 2D

histogram. Given where each mode lies relative to the non-stable histogram however,

it is clear that the mode at period ratios slightly larger than 7:5 will have the overall

highest likelihood. To further emphasize this point, in Figure 7.9 we plot P (D|θ), i.e.

the likelihood, hexagonally binned in Pb vs. Pc space and averaged. Again, we stress

that this is not a proper marginalization over the other parameters in our space; how-

ever, since it can be seen in Appendix C that the posterior distributions for the other

parameters occupy similar regions of parameter space, this plot still gives a rough idea

of the relative probability in each mode without being quantitatively rigorous.
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Figure 7.9 makes it clear that the mode identified near 7:5 is by far the most

likely – it is higher in likelihood than the 4:3 by a factor of ∼ exp(10− 15), and the 3:2

mode by a factor of ∼ exp(20− 25). If we were concerned only with agreement between

the data and our model, this mode would constitute our full posterior distribution.

However, given the large shift in period ratio seen when more data is added to the RV

signal, it is important to identify possible modes near the best-fit solution, as these

modes may prove to be the “true” solution when more data is added.
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Figure 7.9: Posterior probability distributions shown in Figure 7.8, with the points
hexagonally binned and averaged. The points are colored by logP (D|θ). The plotted
values refer to the periods at JD 2453213.895. Note that the probability has not been
properly marginalized over the other parameters, and is only meant to give a rough idea
of the relative probability between the peaks (see text). Lines denoting exact ratios of
Pc/Pb are shown for ratios of 3:2 (blue), 7:5 (gray) and 4:3 (orange).
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Though we have identified three different modes of our posterior distribution

clustered around three different values of the period ratio, all of the periods discussed

thus far refer to the periods of the two planets at epoch; over time, the periods of the

two planets will oscillate due to their mutual perturbations. To get a better sense of

mean values of period ratio for these three modes, and to give a sense of the likelihood

in each mode, we randomly sample 1000 points from each of our posterior distributions.

For each point, we numerically integrate the system for 500Pc, and compute the mean

values of Pb and Pc. These values are plotted in Figure 7.10, along with P (D|θ) for each

point. Integrating out the solutions has little effect on the period ratios for points in

the 4:3 posterior—these points remain at values slightly larger than a 4:3 period ratio.

For the 7:5 posterior however, the average periods all lie much closer to an exact 7:5

ratio, or slightly below, whereas their initial ratios were generally above 7:5. For the 3:2

points the ratios all now lie above 3:2, while their initial period ratios were all below.

After this long term averaging over orbital elements, the period ratio distribu-

tions of our posterior modes lie even more clearly along or near lines of constant period

ratio. This provides further support to the idea that these orbital configurations are

stabilized by mean motion resonance. We explore this idea further in Section 7.5.

7.4.5 Stable Regions of Period-Period Space

To check whether we have identified all of the possible modes, we preform

a simple Monte Carlo simulation to analyze the stable regions near the planetary pa-

rameters we have identified. We initialize 106 planetary systems, randomly drawing

all parameters, except for the planetary periods, from normal distributions centered on
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Figure 7.10: Osculating period values averaged over 500Pc for 1000 draws from the
three modes of the posterior distribution identified by our MCMC search. Each mode
lies close to a different fixed value of Pc/Pb. Colors are the same as those in Figure 7.9.
Lines denoting exact ratios of Pc/Pb are shown for ratios of 3:2 (blue), 7:5 (gray) and
4:3 (orange). See Section 7.4.4 for a discussion.
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the values for the parameters identified from the other modes. We used the follow-

ing parameters for the normal distributions, where µ denotes the mean of the normal

distribution and σ the standard deviation: µmb = 1.7MJ , σmb = 0.1, µmc = 1.2MJ ,

σmc = 0.2, µλb = 300◦, σλb = 20, µλc = 250◦, σλc = 40, µlog eb = −1.1, σlog eb = 0.2,

µlog ec = −1.5, σlog ec = 0.1, µωb = 310◦, σλb = 100, µωc = 200◦, σωc = 100. The

periods of the two planets are drawn from uniform distributions in the range 575 to

635 for planet b, and 790 to 925 days for planet c. Each planetary system is tested

for stability in the manner described above, and the stable systems are recorded. A

2D histogram of the stable solutions in period space, along with the 3 modes and the

non-stable posterior, are shown in Figure 7.11.

Several features are apparent from Figure 7.11. Firstly, stable regions of pa-

rameter space lie along diagonals running from the lower lefthand side to the upper

right, indicating that stable regions of parameter space lie along regions of constant

period ratio. Secondly, there is an extremely stable region of parameter space near the

3:2 MMR, and another stable region at ratios slightly larger than 4:3. Interestingly, the

7:5 mode, which has the overall highest likelihood, lies between these two stable regions.

This is likely because the 7:5 mode is second order, making it weaker than the first order

3:2 and 4:3 resonances it is adjacent to. The lack of stable regions of parameter space

near the 7:5 emphasizes the need to account for stability when considering the posterior

probability distribution of the orbital parameters. From Figure 7.11, it seems that if

we are interested in additional possible stable modes, the only possibilities are the two

regions near 3:2 and 4:3, which is precisely the other locations our search uncovered.
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Since any possible modes cannot lie too far from the non-stable posterior, Figure 7.11

provides further evidence that we have identified all relevant modes of the long-term

stable posterior distribution.
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Figure 7.11: 2D histogram of results from a Monte Carlo simulation of stable planetary
systems. Orbital parameters for the two planets are randomly drawn, and systems that
pass the stability criteria described in the text are recorded. The non-stable posterior
distribution of the planetary periods is shown in red, and the three long-term stable
modes are shown in pink.

7.5 Analysis of Underlying Mean-Motion Resonance

As discussed in the last section, and demonstrated in Figure 7.10, the period

ratios of the points in our posterior distribution lie near lines of constant period ratio,

which supports the idea that these systems are in MMR. In order to investigate whether
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our stable best fit solutions are truly in resonance, we track the evolution of the resonant

angle, φ, over time. A p/q MMR between a massive perturber and a massless test

particle is characterized by libration of the angle

φ = pλouter − qλinner − (p− q)$test (7.3)

(see e.g. Murray & Dermott 1998). For a truly massless test particle, if the semi-major

axis ratio and initial angles are perfectly tuned, φ is constant; for values slightly off

from this region, φ oscillates sinusoidally. In the case of HD 200964, libration of the

resonant angle will be complicated by the large masses of both planets—not only are

both planets of comparable mass, but in addition both planets are relatively massive

compared to the central star. Thus, we do not expect libration of the resonant angle to

be particularly “clean.”

We begin by discussing our solutions near a 3:2 period ratio, as they most

clearly exhibit libration. The resonant angles for the maximum likelihood 3:2 solution

are plotted in Figure 7.12. The two resonant angles, φinner and φouter, obtained by

considering the inner and outer planets to be the test particle in Equation (7.3), are

shown. Both angles show clear libration, albeit with a large amplitude. Thus, it is

straightforward to conclude that our long-term stable solutions near a 3:2 period ratio

are in a 3:2 MMR.

For our 7:5 solutions however, the situation is more complex. The evolution of

the 7:5 resonant angle for our maximum likelihood long term stable solution is shown
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Figure 7.12: Value of the inner and outer 3:2 resonant angles for our best-fit 3:2 solution.
Both angles clearly librate.
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in Figure 7.13. The two resonant angles, φinner and φouter are again shown. As can be

seen in the figure, there does appear to be periodic variation in the value of φ, but it is

complicated by the presence of several other effects, which we enumerate in Figure 7.14

by examining the evolution of φ as both the masses and the mass ratio of the planets

involved in the resonance are increased.
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Figure 7.13: Value of the inner and outer 7:5 resonant angles for our best-fit solution,
which are defined in Equation (7.3). The angles do appear to show libration, but the
large masses of both planets involved in the resonance complicate the libration pattern,
as discussed in the text and demonstrated in Figure 7.14

.

To begin, we plot the value of φinner for two planets with Mc = 10−4MJ , and

Mb = 0. The angles of the planets are initialized such that the system begins perfectly
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in resonance. The planet’s resonance angle is fixed at φ = π over the integration. As we

increase the mass of the outer planet, the center of the resonance shifts off of an exact

7:5 period ratio. This causes the system to be initialized off resonance, causing φ to

librate about π. Increasing the mass further to 0.5MJ adds two new effects—firstly, the

period of the libration of the resonant angle decreases dramatically, which is expected

as the mass of the planets involved in the resonance increases. Secondly, there is now

a much shorter period variation that has been introduced into φ. This variation is

caused by the outer planet perturbing the test particle during their closest approach,

and therefore occurs on the synodic period of the planets. To illustrate this, we have

noted conjunctions between the planets with dashed vertical lines. The strength of these

synodic kicks makes the libration of the resonant angle less clear, though it can still be

discerned by eye in this case.

If we now give both planets comparable mass, as seen in the righthand top

panel, the fact that the “test” particle now has the same mass as the particle we are

considering the “perturber” for calculating φ causes the center of the libration to cir-

culate as well, though the oscillation of φ about this circulating center can be clearly

discerned.

Finally, we increase the mass of both planets to 0.5MJ . In this case, we see a

combination of the two effects that were present previously—φ oscillates about a center

that circulates, while the strong synodic kicks cause large oscillations of φ on a synodic

period.

These effects combine to produce the complicated behavior seen in the libration
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of φinner for our best fit solution—for such high mass planets, the synodic kicks are

extremely strong, and are on top of the rapid circulation of the center of the resonance.

For contrast, in Appendix C.2 we give analogous plots for the 3:2 resonant angle in

Figure C.5. In this case, the strength of the 3:2 resonance causes much less significant

aberration from test particle case, even when both planets are ∼MJ .
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Figure 7.14: Evolution of φinner for the 7:5 MMR as the masses of the planets involved in
the resonance are increased. For low mass planets, libration of φinner is easily discerned
(middle left panel). As the mass of the perturbing planet is increased, kicks on a
synodic timescale distort the libration pattern (bottom left panel; blue dashed lines
denote conjunctions between the planets). If both planets have comparable mass, the
center of the libration begins to circulate on the secular timescale (upper right panel).
Finally, for large, comparably massive planets, both these effects serve to “wash out”
the libration of φinner (lower right panel).

For the 4:3, we can find orbital configurations that show clear libration even

364



for very massive planets. However, the orbital configurations that match the data well

appear to be only marginally in the 4:3 resonance or not at all, since the complicated

effects seen in φ are not due to the massive planets involved in the resonance alone.

To illustrate this, in Appendix C.2, Figure C.6, we plot the evolution of φ in a manner

analogous to the plots made for the 3:2 and 7:5 MMRs.

For the points in our posterior distribution, we only observed behavior similar

to libration for the 4:3 resonance in φouter. An illustration of this is shown in Figure 7.15,

which plots the outer resonant angle for a solution that does appear to show libration,

and for our best-fit solution, which shows circulation. There appears to be a continuous

evolution in behavior as the period of planet c is increased: for lower values of period,

the outer 4:3 resonant angle does appear to librate about φ = π, which is expected for

a 4:3 MMR, though with a complex structure. For the larger period ratio solutions we

find, i.e. those near a period ratio of 7:5, the angle appears to circulate instead.

In summary, the 3:2 solutions we find are the only for which identification of

the MMR through libration of the resonant angle is straightforward. For the 7:5 period

ratio solutions, φ does appear to show periodic behavior which is clearly distinct from

circulation. Interpretation of this behavior is not straightforward, though it does appear

that the behavior of φ for the 7:5 MMR is consistent with libration for two Jupiter mass

planets perturbing one another. For the 4:3 solutions, we see continuous behavior as

the period ratio is increased, ranging from clear libration for period ratios closer to 4:3

to clear circulation for period ratios equal to or larger than 7:5.
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Figure 7.15: Value of the outer 4:3 resonant angle for two orbital configurations drawn
from our posterior distribution. In the upper panel, we plot φouter for a case where the
period ratio of the planets is close to 4:3, and φouter appears to librate. In the lower
panel we plot the 4:3 outer resonant angle for our maximum solution; the angle appears
to circulate in this case.
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7.6 Reanalysis of Early Data

Having now found several viable period ratios for long-term stable fits to the

data, this now raises the question of whether the multiple resonances we have identified

could have been found with just the data published in JPH11. We therefore apply our

methodology to just the Lick and Keck11 datasets, and analyze what aspects of the

results we have presented can be found from those data sets alone.

To begin, we use a methodology similar to that discussed in Section 7.4.3

to find a long term stable posterior distribution of orbital parameters. We perform

initial optimization from several different locations in parameter space, including the

parameters reported by JPH11. We then run an initial N -body MCMC search from

the best-fit obtained through optimization, without stability included, until we have a

converged posterior distribution with ∼ 106 points. At this point we perform a 106 year

rejection sample on our posterior, which leaves us with around 200 points in parameter

space. This rejection sample identifies two clear regions of stability, one near a 4:3 period

ratio and one near a 3:2. We follow up our rejection sampling with MCMC searches

conditioned on stability starting in both of these regions.

The resulting posterior distribution is shown in Figure 7.16, along with the N -

body integrated posterior without stability. As can be seen in the figure, the posterior

distribution near 3:2 is quite similar to the one found for our longer dataset, while the

4:3 distribution is broader and at slightly larger values of Pb. It is notable here that the

stable regions of parameter space are quite distant from the best-fitting region, which

for the early data is at low values of period ratio. This result is in contrast to our
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analysis of the full data set, for which the best-fitting and stable regions lie on top of

one another. This means that stability analysis is even more important when the data

set is not as complete.
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Figure 7.16: 2D histograms of the posterior distributions for our planetary parameters
from analysis of just the datasets used in JPH11. The black points show the distribu-
tion without long-term stability, while the orange and green points show our posterior
conditioned on stability for 106Pc. Lines denoting exact ratios of Pc/Pb are shown for
ratios of 3:2 (blue), 7:5 (gray), 4:3 (orange), and 5:4 (green).

Thus, in addition to the 4:3 solution, we can identify the 3:2 orbital solution

from analysis of the early data alone. However, it is interesting to note that the 7:5

solutions are not identified by this early search; it is only with the inclusion of more

data that the 7:5 is even identified as a solution.
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7.7 Possibility of a Third Planet

Though the two planet configurations we have identified provide plausible long-

term stable fits to the data, it is still possible there are other planets in the system. We

briefly investigate this possibility by adding a third planet to our model and investigate

the resulting change in our maximum likelihood.

We initialize our fitting of third planet by looking at a periodogram of the

residuals of our data. We take the strongest peak identified by the periodogram, which

is is at ∼ 7 days, and use this orbital period as our starting point when adding the

third planet. Given the low period, the residual could be due to a stellar signature. The

rotation period of the star is likely to be too long to be causing this signature: Jofré

et al. (2015) found a v sin i value of 1.88 ± 0.23 km/s. Even at the upper end of the

of the error bar, a simple calculation of rotation period using the value R∗ = 4.92R�

gives Prot = 2πR∗/v sin i ≈ 118 days, which is clearly too long to give the ∼7 day

planetary signal unless the star is rotating very close to pole on. On the other hand,

the S-index values for HD 200964 do show some power at 8 days in the Keck data set,

with a moderate correlation (Pearson correlation coefficient of 0.29), though this signal

is not present in the APF data. Furthermore, there is significant power in both datasets

around 26 days, which could likely be driving the correlation.

Because the GLS favors a lower period for the third planet, it is unlikely

that planet-planet interactions are important for modeling this third body. An initial

optimization over the third planet’s parameters further reinforces this point, as the

optimization favors the third planet having low mass compared to the other two, with

369



Md ∼ 5 × 10−2MJ . To enforce long-term stability in the system, we therefore fix the

orbital parameters of planets b and c, and fit only the parameters of planet d. This

means we will miss any covariances between the parameters of the hypothetical third

planet and the two outer planets, but this method also ensures that the resulting three

planet system exhibits long term stability.

We perform an MCMC search over the third planet’s parameters, starting from

the point identified by our optimization. The underlying parameter space is difficult

to probe, with many of the solutions having log likelhioods that are comparable to

the two-planet case. We do find orbital configurations that improve our log likelihood

substantially enough that they may be significant. For a simple comparison we use a

Bayseian information criterion (BIC) to compare our two models. We note, however,

that the BIC is a surrogate for calculating the evidence, which is the more robust method

(see e.g. Liddle 2007 for a discussion). For a given model, the BIC is calculated via

BIC = k log n− 2 log L̂ (7.4)

where L̂ is the maximum likelhiood, n is the number of observations, and k is the

number of model parameters (i.e. 15 for the 2 planet case and 20 for the 3 planet case).

In order to compare different models we calculate the BIC for each model and select

the model with the lowest BIC.

Our maximum likelihood third planet parameters are similar to those identified

above: the planet is low mass (Md = 4.22×10−2MJ), in a short period (Pd = 7.89 days),

highly eccentric (ed = 0.588) orbit. The ∆BIC for this model versus our two planet
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model is ∆BIC = 4.90. This means that the three planet model is preferred. The radial

velocity signal for the third planet with the signals from planets b and c removed is

plotted in Figure 7.17. Thus, while a three planet model does provide a smaller BIC,

the BIC difference between the two models is not large, indicating that the three planet

model is not strongly preferred over the two planet model.
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Figure 7.17: Radial velocity of the best-fitting third planet as a function of orbital
phase. The radial velocity of planets b and c has been removed.
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7.8 Summary and Conclusions

In this paper we have investigated the mean motion resonance between the two

planets orbiting the star HD 200964. We find that the system is stabilized because it is

in, or near, a mean motion resonance. However, which of three possible resonances the

system is in (3:2, 4:3, or 7:5) remains unclear, as the full libration period of the system’s

resonance angle (∼30 years) is longer than the observational baseline (∼14 years). We

also find indications of a possible “low” mass (Mp ∼ 0.05MJ) third planet to the system

on a short period (∼ 8 day) orbit, though this third planet is not strongly preferred

over our two planet model.

Previous analyses (JPH11) identified the system as being in a 4:3 resonance.

By including stability in our searches we were able to identify additional long-term

stable solutions near a 3:2 MMR, even using the same data analyzed in JPH11, though

4:3 solutions remain better fits to this data set. Furthermore, by using radial velocity

data spanning a longer timescale than previous works, we found that the best fitting

orbital configurations were not in the 3:2 or 4:3 MMR, but instead had period ratios

much closer to 7:5.

The original identification of a 4:3 resonance was puzzling on theoretical grounds,

as convergent migration of gas giants strongly prefers capture into the 3:2 rather than

the 4:3 or 7:5. It is interesting to note that with the inclusion of more data the period

ratio has gone up. We conclude that, this fact, along with the errors underlying the ra-

dial velocity measurements and the long timescale variation provided by libration of the

resonant angle generate sufficient uncertainty in the period ratio that the 3:2 remains a
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plausible solution to the observed signal.

If long period observations are not available, it is of paramount importance

that long-term stability is included in fitting RV systems in MMR. For these shorter

period solutions, the region of parameter space identified by simply finding the best-fit

to the RV data can be a considerable distance from the regions of parameter space

that exhibit long-term stability. Thus, requiring any proposed set of best-fit parameters

to exhibit long-term stability is invaluable in identifying the the “true” values of the

underlying planetary system, which may be obscured by the strong perturbations of the

planets on one another.
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Appendix A

Calculation of Gas-Assisted

Growth Timescale

A.1 Summary of Calculation Algorithm

In this appendix, we summarize the recipe for calculating the growth timescale.

Our model takes in five input parameters: M∗, a,M, rs, and α. Once these

parameters are specified we can calculate the parameters of the protoplanetary disk

at the given orbital separation (see Table 2.2). We then need to calculate the Stokes

number of the small body St ≡ tsΩ. Particles with rs < 9λ/4 (which applies over most

of parameter space) are in the Epstein regime, which allows us to immediately calculate

their stopping time:

ts,Eps =
ρs
ρg

rs
vth

. (A.1)

388



For rs > 9λ/4 the stopping time is calculated numerically. We begin by setting vpg =

vgas ≡
√
αc2

s + η2v2
k. We then calculate the drag force on the particle using

FD =
1

2
CD(Re)πr2

sρgv
2
pg , (A.2)

where

CD(Re) =
24

Re
(1 + 0.27Re)0.43 + 0.47

[
1− exp

(
−0.04Re0.38

)]
, (A.3)

and Re = 4rsvpg/(vthλ). The stopping time is then given by

ts =
mvpg
FD

, (A.4)

where m is the mass of the small body. Using this stopping time we can recalculate vpg.

The relevant equations are

vpg,` = ηvkSt

√
4 + St2

1 + St2
, (A.5)

and

vpg,t =





√
αcs




St′2
(

1−Re−1/2
t

)

(St′ + 1)
(
St′ +Re

−1/2
t

)




1/2

, St′ < 10

√
αcs

√
St′

1 + St′
, St′ ≥ 10

(A.6)
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Here Ret ≡ αcsHg/(vthλ) and St′ ≡ ts/t′eddy, where

t′eddy =
Ω−1

√
1 +

(
vpg,`√
αcs

)2
. (A.7)

The total velocity relative to the gas is

vpg =
√
v2
pg,` + v2

pg,t . (A.8)

Using this new velocity we can recalculate FD and obtain a new value of ts. We then

iterate this process until we obtain the desired accuracy for St.

Once St is known, we calculate the length scales needed to determine the

growth timescale. We first calculate Rstab:

Rstab = min(RWS , Rshear, RH) (A.9)

Here RH is the planet’s Hill radius:

RH = a

(
M

3M∗

)1/3

. (A.10)

RWS is the planet’s WISH radius:

RWS =

√
GMm

FD(vgas)
. (A.11)
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For a particle in a linear drag regime, there is a simple analytic expression for RWS :

RWS = RH

√
3St

(
vH
vgas

)
. (A.12)

Rshear is the shearing radius, which is the solution to the equation

Rshear =

√
GMm

FD(RshearΩ)
. (A.13)

In non-linear drag regimes, we solve this equation numerically. For a particle in a linear

drag regime, the above equation has the analytic solution

Rshear = RH (3St)1/3 . (A.14)

Using RH and the planet’s Bondi radius

Rb =
GM

c2
s

(A.15)

we calculate Ratm:

Ratm = min(Rb, RH) , (A.16)

which in turn tells us the impact parameter for accretion:

Racc = max(Rstab, Ratm) . (A.17)
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The scale height of the small bodies is determined by the Kelvin-Helmholtz

scale height

HKH =
2ηvk

Ω
min(1, St−1/2) , (A.18)

and turbulent scale height

Ht = Hg min

(√
α

St
, 1

)
. (A.19)

We take Hp to be:

Hp = max(Ht, HKH) . (A.20)

Using Racc and Hp we can determine Hacc:

Hacc = min (Racc, Hp) . (A.21)

We now calculate the approach velocity of the small bodies, v∞. The laminar

and turbulent components of the velocity due the particle’s interactions with the gas

are given by

vpk,` = ηvk

√
1 + 4St2

1 + St2
, (A.22)
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and

vpk,t =





√
αcs


1−

St′2
(

1−Re−1/2
t

)

(St′ + 1)
(
St′ +Re

−1/2
t

)




1/2

, St′ < 10

√
αcs

√
1

1 + St′
, St′ ≥ 10

(A.23)

where again St′ ≡ ts/t
′
eddy, with t′eddy given by Equation (A.7). The total velocity is

again given by

vpk =
√
v2
pk,` + v2

pk,t , (A.24)

The value of v∞ is then given by

v∞ = max(vpk, vshear) , (A.25)

where vshear = RaccΩ.

We now have enough information to calculate the growth timescale tgrow:

tgrow =
MHp

2fsΣv∞RaccHacc
. (A.26)

In order to determine whether a particle can accrete, we calculate its incoming kinetic

energy

KE =
1

2
mv2
∞ , (A.27)
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and the work done by gas drag

W = 2FD(venc)Racc . (A.28)

Here venc is the velocity of the particle during its interaction with the core

venc =





max (vorbit, vpg) , v∞ < vorbit

max (vkick, vpg) , v∞ > vorbit

(A.29)

where vorbit =
√
GM/Racc, and vkick = GM/(Raccv∞). Particles can accrete if

1. Rstab > Rb and W > KE

2. Rstab < Rb and W < KE

3. Rstab = RH and v∞ = vH

If the particle does not fall into any of these regimes then we set tgrow = ∞. In case 3

the growth timescale is given by

tgrow =
t′grow

min(1,W/KE)
. (A.30)

where t′grow is given by Equation (A.26).

A.2 Derivation of Velocity Formulae in Different Frames

In this appendix we give detailed derivations of the equations given in Section

2.3.4. In what follows we assume that the turbulence is ergodic, i.e. that time averaging

the system is equivalent to ensemble averaging, and that the turbulence is a stationary
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process.

The methods for calculating turbulent velocity in e.g Voelk et al. (1980) begin

by decomposing the total velocity v into time averaged and fluctuating components, a

technique known as “Reynolds averaging.” (See Cuzzi et al. 1993, Appendix A). That

is, we take v = v̄ + δv, such that 〈δv〉 = 0, where 〈. . .〉 denotes ensemble averaging.

v̄ is associated with the laminar component of velocity while δv is associated with the

turbulent velocity. We can use this same decomposition to determine how to combine

the laminar and turbulent components as well as how to compute the velocity after

changing reference frames.

We first note that decomposing the velocity as above, taking the dot product

of each side of the equation and time averaging gives

〈v · v〉 = v̄2 +
〈
δv2
〉

+ 2 〈v̄ · δv〉 (A.31)

v2 = v̄2 +
〈
δv2
〉
, (A.32)

which is the same as Equation (2.25), and is used to combine the turbulent and laminar

components of the velocity, which are calculated separately.

For the purposes of this problem, we are concerned with velocities relative to

two frames: velocities relative to the total gas velocity are needed for the calculation

of drag forces, while velocities relative to the local Keplerian velocity are needed to

determine the rate that small bodies encounter large ones. If the subscripts p, g, and k

denoted the velocity of the small bodies, the gas, and the Keplerian velocity respectively,

then we may write
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vpk = vpg + vgk . (A.33)

Reynolds averaging (A.33) gives

v̄pk = v̄pg + v̄gk . (A.34)

So the laminar component of the particle’s velocity can be changed from one frame to

another in the usual manner independent of the turbulent velocity, as is done in the

main text (c.f. Equation 2.26).

To compute how the turbulent velocity changes between frames, we require

the equation of motion for the grains. Following Voelk et al. (1980), for a particle in a

linear drag regime (FD ∝ v) we can write

dvpk
dt

= ag −
vpg
ts

, (A.35)

where ag is the acceleration due to forces other than gas drag, such as gravity. Reynolds

averaging and subtracting the result from (A.35) gives

d

dt
(δvpk) = −δvpg

ts
, (A.36)

where we’ve assumed that ag only varies on large spatial scales, so 〈ag〉 = 0. Now
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subtracting equation (A.34) from Equation (A.33) and rearranging slightly gives

δvgk = δvpk − δvpg . (A.37)

Taking the dot product and time averaging gives

〈
δv2
gk

〉
=
〈
δv2
pk

〉
+
〈
δv2
pg

〉
− 2 〈δvpk · δvpg〉 . (A.38)

Plugging in Equation (A.36) into the last term on the righthand side gives

〈
δv2
gk

〉
=
〈
δv2
pk

〉
+
〈
δv2
pg

〉
+ 2ts

〈
δvpk ·

d

dt
(δvpk)

〉
(A.39)

=
〈
δv2
pk

〉
+
〈
δv2
pg

〉
+ ts

d

dt

〈
δv2
pk

〉
. (A.40)

For a stationary process the last term will be zero, so we have

〈
δv2
gk

〉
=
〈
δv2
pk

〉
+
〈
δv2
pg

〉
, (A.41)

which is used in our model to convert the turbulent component of the velocity from the

frame relative to the gas to the frame relative to Keplerian (c.f. Equation 2.27).

A.3 Canonical Core Accretion Timescale

In this appendix we give a short summary of how growth proceeds for cores

accreting particles for which the gas drag force is negligible. See Goldreich et al. (2004)
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for a more in depth review of these processes. Since small bodies in this regime cannot

disspate their kinetic energy through gas drag, in order for the accretion to occur the

impact parameter of the incoming particle must be small enough that it collides with

the core. The maximum impact parameter at which a particle will be gravitationally

focused into a collision with the core is given by

Rfocus = R

(
1 +

v2
esc

v2
∞

)1/2

, (A.42)

where R is the radius of the core, and vesc =
√

2GM/R is the escape velocity from

the core. The scale height of small bodies is given by the vertical component of their

velocity dispersion – Hp ∼ vz/Ω.

While there are a number of gas free growth regimes, and therefore timescales,

we confine our attention to the regime where the velocity of dispersion of the small

bodies is approximately the hill velocity, vH = RHΩ. Here RH is the core’s Hill radius

(see Section 2.4), and Ω is the local Keplerian orbital frequency. This regime gives the

highest possible growth rate without invoking some external mechanism to bring the

velocity dispersion below the Hill velocity, since interactions with the core will drive

bodies up to the Hill velocity. In this regime the core can accrete over the entirety of

Rfocus in the vertical direction, so σ ≈ 4R2
focus. If we set v∞ ≈ vz ≈ vH , and note that

vesc/vH ∼ (RH/R)1/2, then we see that tGF is of order
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tGF,v=vH ∼
M

2fsΣR2
HΩ

(
RH
R

)
, (A.43)

Scaled to our fiducial values (see Section 2.5.1), the timescale is given by

tGF ≈ 7× 105
( a

AU

)3/2
(
M

M⊕

)1/3

years . (A.44)

If there are ∼ km sized objects available, then cores may grow by gravitational

focusing in addition to gas-assisted growth. Furthermore, if for a given set of parameters,

the gravitational focusing timescale is shorter than the gas-assisted growth timescale,

then gravitational focusing will be the dominant mechanism of growth, which can cause

cores to still grow in regimes where gas-assisted growth is slow.

A.4 Details of Turbulent Velocity Calculation

In this appendix we describe some of the more minor details of the calculation

of the velocity of small bodies due to turbulence.

The results of Voelk et al. (1980) and all work derived from these results, in

particular Equation (2.22), rest on the assumption that there is a well-defined stopping

time for the particle, independent of the particle’s velocity. Thus Equation (2.22) may

not hold when the particle enters the Ram pressure gas drag regime. However, Equation

(2.21) holds whenever the particle’s stopping time is large enough that it receives many
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“kicks” from the largest scale eddies before a stopping time has elapsed. In other words,

Equation (2.21) holds when St � 1. Since for Re � 1 the particle will be in the Ram

pressure regime, which is quadratic in velocity, we need only be concerned about the

validity of our approximation if we have Re � 1 before St � 1. Figure A.1 shows a

plot of the Reynolds number of particles as a function of semi-major axis and Stokes

number. We have restricted the figure to show St < 1, since for larger values of St

we expect Equation (2.21) to hold to reasonable accuracy. In the plot we indicate the

region where Re > 25, which we take as the approximate region where accuracy of our

model is in question. The plot is for α = 10−1, which is the most restrictive case; for

lower values of α the region where St < 1 and Re > 25 shrinks.

The laminar velocity effects the turbulent velocity of the particle as well. This

effect can be qualitatively understood by considering the fact that a laminar component

to the particle’s velocity decreases the amount of time that the particle interacts with

a turblent eddy of a given wave number k. The original Voelk et al. (1980) result is

dependent on the value of what they call k∗, which is the divide between eddies which are

large enough that the particle comes into equilibrium with the eddy, and eddies which

either decay or are traversed by the particle before they have a substantial frictional

effect. To order of magnitude, the relative velocity between the particle and the gas

is simply equal to the velocity of the eddy that the particle is marginally coupled to,

i.e. the velocity of the eddy with wavenumber k∗. Since the presence of a laminar

component to the velocity will affect which eddies the small bodies can drift through

over a stopping time, introducing a laminar velocity will change the value of k∗, which in
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Figure A.1: The Reynolds number of a small body as a function of Stokes number and
semi-major axis, for the case α = 10−1 . The region where Re > 25 and the assumptions
made in our model begin to be violated is indicated, as is the region where rs < 9λ/4 and
the particle enters the diffuse regime. For lower values of α the region where Re > 25
shrinks rapidly.
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turn has important effects on the RMS turbulent velocity as a function of particle size.

OC07 therefore refer to the effects of a laminar component of velocity as “eddy-crossing

effects.”

OC07 neglect the effect of a laminar component on the particle velocity, noting

that it is only important in the weakly turbulent regime for small Stokes numbers. As

we are interested here in varying the strength of turbulence and determining its effect

of planetary growth rates, the weakly turbulent regime is of interest to us.

Youdin & Lithwick (2007) note that, in the regime where eddy crossing effects

are non-negligible, we can approximate these effects by using an effective large eddy

turnover time, t′eddy, given by

t′eddy =
tL√

1 + (vpg,`/vt)2
, (A.45)

where vpg,` is the laminar component of the particle’s velocity, measured relative to the

RMS gas velocity.

In conclusion, we calculate the turbulent component of the small body’s veloc-

ity by combining equations (2.21) and (2.22), with the large eddy turnover time teddy

modified by equation (A.45).
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Appendix B

Appendices for Consumption

Calculation

B.1 Analytic Steady-State Solution for Σ and Ṁ For Vis-

cous Disc with Planet

In this appendix we provide an analytic expression for the surface density

profile of a disc with an embedded planet. Our derivation here is more careful than our

order-of-magnitude sketch in section 6.2.1, and similar to that presented in Lubow &

D’Angelo (2006, their section 2.4), with a couple of differences: we reduce the surface

density at the planet’s location by a factor 1 + B/ν to account for repulsive Lindblad

torques (see section 6.2.1), and we express our solution in terms of the surface density

at infinity as opposed to the surface density at the planet’s location.

Using the same notation as in section 6.2.1, and neglecting for the moment
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the Lindblad torque, the equations of mass and angular momentum conservation with

a mass sink at r = rp read

1

r

d (µurr/ν)

dr
= − Ṁp

2πr
δ (r − rp) (B.1)

r2Ωµur
ν

= − d

dr

(
3µΩr2

)
(B.2)

where ur is the radial velocity and µ ≡ Σν. Equation (B.1) indicates that the mass flow

rate Ṁ+ = −2πµ+urr/ν is spatially constant in regions exterior to the planet’s orbit

(the outer disc), and likewise for Ṁ− in regions interior to the planet’s orbit (the inner

disc):

Ṁ− = Ṁ+ −A
µp

νp
(B.3)

where we have used Ṁp = Aµp/νp and νp ≡ ν (rp). Since Ṁ− and Ṁ+ are constants,

equation (B.2) can be solved to yield

3πµ±(r) = Ṁ± +
C±√
r

(B.4)

where C± are integration constants. For the inner disc we use the boundary condition

µ−(r?) = 0, whence

3πµ− (r) = Ṁ−

(
1−

√
r?
r

)
. (B.5)

Following our treatment in the main text, we encode the planetary gap caused by
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Lindblad torques at a sub-grid level, i.e., we force the surface density at the planet’s

location to be depleted relative to the surface density just interior to the planet according

to

µp = µ−(rp) (1 +B/νp)−1 (B.6)

where subscript p denotes the planet’s location. For the outer disc, we fix the surface

density at infinity, µ(∞) = µ∞, so that

Ṁ+ = 3πµ∞ . (B.7)

Then from equations (B.3), (B.5), and (B.6) we have

µp

µ∞
=

1

1

1−
√
r?/rp

+

(
A
3π + B

1−
√
r?/rp

)
/νp

(B.8)

which can be compared to equation (6.11). We may also solve for

Ṁp

Ṁ+

=
A/(3πνp)

1

1−
√
r?/rp

+

(
A
3π + B

1−
√
r?/rp

)
/νp

(B.9)

Ṁ−

Ṁ+

=
1 +B/νp

1 +

[
A
3π

(
1−

√
r?
rp

)
+B

]
/νp

(B.10)

which can be compared to equations (6.14) and (6.15). Finally, stitching the outer disc
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solution to the inner disc solution implies µ+(rp) = µ−(rp) = µp(1 +B/νp) and

3πµ+(r) = 3πµ∞

[
1−

√
rp

r

(
1− µp (1 +B/νp)

µ∞

)]
. (B.11)

The equations above mirror the results in section 6.2.1, with the addition of a factor of

3π (see section 6.2.2) and the factor of 1−
√
r?/rp which accounts for the star’s ability

to divert material from the planet.

In Figure B.1 we plot equations (B.5), (B.6) and (B.11), adopting parameters

as close as possible to those used in the top panel of Figure 6.2 so that we may compare

the numerical result there to the analytic result here (see caption to Figure B.1 for

details).
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Figure B.1: Analytic solution (black solid curve) for the surface density profile of a
viscous disc perturbed by a planet, as given by equations (B.5), (B.6) and (B.11), using
parameters as close as possible to those used in the top panel of Figure 6.2, whose
numerical result is overlaid here for comparison (orange dashed curve). For our analytic
unperturbed “no planet” disc (blue dashed curve) we use a power law of slope -1 and
normalization at 1 au equal to the corresponding “no planet” curve in Figure 6.2. The
A and B coefficients are taken from equations (6.25) and (6.27) for Mp = 0.3MJ. The
differences between the analytic and numeric curves mainly arise from the behaviour
of the outermost disc near the turn-around “transition radius” (Lynden-Bell & Pringle
1974; Hartmann et al. 1998). This transition radius, which varies with time, does not
appear in our steady-state solution.
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B.2 Magnetized winds and disc accretion

We motivate here our simple, constant accretion velocity model for a wind-

driven disc using the numerical simulations of Bai and collaborators. From continuity

(equations 1, 6, and 9 of Bai 2016),

∂Σ

∂t
= +

1

2πr

∂Ṁdisc

∂r
− 1

2πr

∂Ṁwind

∂r

= +
1

2πr

∂

∂r

[
2(λ− 1)r

∂Ṁwind

∂r

]
− 1

2πr

∂Ṁwind

∂r
(B.12)

where

Ṁwind(r) =

∫ r ∂Ṁwind

∂r
dr (B.13)

is the cumulative rate at which mass is carried to infinity by the wind (integrated over

the disc within r). From equation (20) of Bai et al. (2016),

∂Ṁwind

∂r
= 2πrρ0up0 (B.14)

where ρ0 and up0 are the volumetric mass density and poloidal velocity of the wind where

it is launched, near the disc surface. All quantities subscripted with 0 are evaluated at

the wind base (r0, z0).

The disc accretion rate

Ṁdisc ≡ −2πΣrur = 2(λ− 1)r
∂Ṁwind

∂r
(B.15)
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for surface density Σ and radial velocity ur is identical in definition to the variable

Ṁdisc used throughout our paper. Unlike Ṁwind, Ṁdisc is not a cumulative quantity, but

measures the mass crossing a circle of radius r per unit time, and uses a sign convention

such that Ṁdisc > 0 for ur < 0.

Disc accretion by a wind hinges on the “magnetic lever arm”

λ = (rA/r0)2 (B.16)

where rA is the Alfvén radius for the wind streamline running through r0. A lever

arm λ > 1 enables Ṁdisc > 0 by having the wind carry away more specific angular

momentum than the Keplerian disc has at r0. The fiducial wind model of Bai (2016,

their fig. 2) has (λ− 1) ranging from ∼30 at r = 0.3 AU to ∼2 at 30 AU; therefore the

first term in (B.12) dominates the second term by a factor of order 2(λ − 1) ∼ 4–60.

Only the first term is modeled in our paper.

Bai (2016) and the magnetized disc wind literature dating back to Blandford

& Payne (1982) parameterize the wind mass-loss rate in terms of the dimensionless mass

loading parameter

µ =
ωr0

Bp0
× k =

ωr0

Bp0
× 4πρup

Bp
(B.17)

where k is the ratio of poloidal mass flux to poloidal field strength Bp (k is constant

along a magnetic field line), and ω is the angular velocity of a field line, approximately

equal to the Keplerian frequency ΩK at r0. Note that µ (not to be confused with µ in

Appendix B.1) varies with r from field line to field line. Evaluating µ at the wind base,
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we rewrite (B.14) as

∂Ṁwind

∂r
=
µB2

p0

2ω
(B.18)

(Bai et al. 2016, equation 21). Now parameterize Bp0 in terms of the midplane plasma

beta:

β0 =
8π

B2
p0

ΣkBT√
2πmH

(B.19)

where kB is Boltzmann’s constant, T is the disc temperature, H = cs/ΩK is the disc

scale height, cs =
√
kBT/m is the gas sound speed, and m is the mean molecular weight.

Then

∂Ṁwind

∂r
=

√
8πkB

β0m

T

H

µΣ

ω
=

√
8πkB√
mβ0

T 1/2µΣ . (B.20)

Combine (B.20) and (B.15) to find

ur = −
√

8

π

√
kB√
mβ0

T 1/2µ(λ− 1) ∼ −µ(λ− 1)

β0
cs . (B.21)

In the fiducial model of Bai (2016, see their fig. 2), µ increases from ∼0.06 at r = 0.3 AU

to ∼4 at 30 AU, and (λ− 1) decreases from ∼30 to ∼2 over the same range; therefore

the product µ(λ − 1) increases from ∼2 to ∼8, scaling roughly as r0.3. Their model

temperature scales as T ∝ r−1/2; therefore the combination T 1/2µ(λ − 1) is nearly

constant with r. Assuming it to be constant implies from (B.21) that ur is similarly

constant (cf. Kimmig et al. 2020), if β0 is constant:

ur ∼ −4

(
105

β0

)
cm/s . (B.22)
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Taking β0 to be a strict constant corresponds to a model intermediate between the

conserved-flux model of Bai (2016) (dashed line in the right panel of their fig. 5) and

their flux-proportional-to-mass model (solid line). Using their initial fiducial β0 = 105

implies the disc at r = 30 AU drains out in r/|ur| ' 3 Myr.
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Appendix C

Additional Plots for analysis of

the planetary system around HD

200964

C.1 Full Posterior Distributions

In this section we provide the full posterior distributions the solutions discussed

in the text. Our best-fit posterior distribution without stability taken into account is

given in Figure C.1. Our best-fit posterior distribution conditioned on stability for 106Pc

is given in Figure C.2, and our best-fit posteriors near a 3:2 and 4:3 period ratio are

given in Figures C.3 and C.4.
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Figure C.1: A corner plot showing the posterior distribution of the planetary parameters
for the two planets orbiting HD 200964, without long term stability taken into account.
All values for the orbital elements refer to the values at JD 2453213.895. The red lines
indicate the location of the maximum likelihood parameters.
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Figure C.2: Corner plot showing the posterior distribution of parameters obtained by
conditioning the likelihood function on stability for 106Pc. This posterior contains our
best-fit, long-term stable solution. All values for the orbital elements refer to the values
at JD 2453213.895. The red lines indicate the location of the maximum likelihood
parameters.
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Figure C.3: Corner plot showing the posterior distribution of parameters for period
ratios Pc/Pb ∼ 3/2, obtained by conditioning the likelihood function on stability for
106Pc. This posterior was obtained by initializing the search close to the 3:2 MMR. As
can be seen in Figure 7.9, the points in this posterior have an overall lower value of log
likelihood than the posterior distribution shown in Figure C.2.
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Figure C.4: Corner plot showing the posterior distribution of parameters for period
ratios Pc/Pb ∼ 4/3, obtained by conditioning the likelihood function on stability for
106Pc. This posterior was obtained by initializing the search near previously published
orbital solutions. This search identifies two clear modes in Pc vs. Pb. Though the
walkers spend more time at the lower period ratio mode, reinitializing the search at the
higher period mode reveals that these solutions are a better fit to the data. See Section
7.4.3 for more detail.
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C.2 Plots of the evolution of φ for the 3:2 and 4:3 MMR

In this section we make plots for the evolution of the resonant angle for the 3:2

and 4:3 MMR which are analogous to the ones plotted in Figure 7.14. The evolution

of the 3:2 MMR is shown in Figure C.5, and the evolution of the 4:3 MMR is shown in

Figure C.6.
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Figure C.5: Evolution of φinner for the 3:2 MMR as the masses of the planets involved
in the resonance are increased. The panels are analogous to Figure 7.14
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Figure C.6: Evolution of φinner for the 4:3 MMR as the masses of the planets involved
in the resonance are increased. The panels are analogous to Figure 7.14
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