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An Anelastic Allspeed Projection Method for
Gravitationally Stratified Flows

Caroline Gatti-Bono and Phillip Colella

Lawrence Berkeley National Laboratory, Berkeley, CA

Abstract

This paper looks at gravitationally-stratified atmospheric flows at low Mach and
Froude numbers and proposes a new algorithm to solve the compressible Euler equa-
tions, in which the asymptotic limits are recovered numerically and the boundary
conditions for block-structured local refinement methods are well-posed.

The model is non-hydrostatic and the numerical algorithm uses a splitting to sep-
arate the fast acoustic dynamics from the slower anelastic dynamics. The acoustic
waves are treated implicitly while the anelastic dynamics is treated semi-implicitly
and an embedded-boundary method is used to represent mountain ranges. We
present an example that verifies our asymptotic analysis and a set of results that
compares very well with the classical gravity wave results presented by Durran.

Key words:
Non-hydrostatic atmospheric model, embedded-boundary method, projection
method, gravity waves

Introduction

Gravitationally stratified flows in a compressible medium at low Mach and
Froude numbers arise in atmospheric fluid dynamics or in the modeling of
stars. Traditionally, such flows have been simulated either by solving the fully
compressible equations or by the use of hydrostatic or anelastic models. Each
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of these formulations is desirable for particular properties in various asymp-
totic limits. Our goal is to obtain these various limits numerically from a
discretization of the full compressible equations, depending on the scales be-
ing resolved. In addition, we seek a formulation for which the acoustic dy-
namics, the dynamics due to stiff gravity waves, and the advective dynamics,
can be separated out and each treated with a suitable explicit or implicit
method. Finally, we are looking for a formulation that admits well-posed gen-
eral boundary-value problems. The latter property is essential for the devel-
opment of block-structured local refinement methods, but, for example, does
not hold for hydrostatic models [25].

In this paper, we describe a new algorithm for the compressible flow equations
in a thin, gravitationally stratified layer that takes us part of the way in
meeting these goals. It is based on an an extension of the allspeed projection
algorithm developed by Colella and Pao [9] to the case of an anelastic Hodge
decomposition of the velocity field into solenoidal and potential components,
along with a corresponding splitting of the pressure field. We further modify
this splitting to correctly represent the dynamics of gravity waves for thin
layers. This allows us to use an implicit method for treating the acoustic
modes, combined with a semi-implicit method for the anelastic dynamics. We
combine this method with appropriate spatial discretizations, including an
embedded boundary treatment of orography. The resulting method has as a
time step limitation the CFL condition for the fast gravity waves. Since the
compressible flow equations have a well-posed boundary-value formulation, the
overall method is well-posed. In addition, the individual PDEs that are solved
in the various substeps have well-posed boundary-value formulations, thus
making it a suitable starting point for an extension to locally refined meshes.
Furthermore, since the splitting is of the full equations, there is a natural
embedding of the thin-layer asymptotics into a more complete fundamental
system of equations in multiscale calculations, in which the resolved horizontal
scales become locally comparable to the vertical scales.

We test the method on two problems. The first comes from using the thin-layer
asymptotics to derive linear gravity waves. We use the fully compressible algo-
rithm described above to compute the propagation of these waves, and obtain
results compatible with the asymptotic analysis. We also use the method to
compute the test problems of Durran [10] for lee waves over a mountain, and
obtain good agreement with the results in the literature. In the conclusions,
we discuss possible approaches to eliminating the constraint on the time step
due to the fast gravity waves.



1 Anelastic All-Speed Formulation

1.1  FEquations

We consider a compressible inviscid fluid, described by the Euler equations

op . -

E + dZ'U(pLI) =0 (1)
0 1

a—ltl +u-grad(u) + ;grad(p) +gk=0 (2)
Op 2 7. _

5 T grad(p) + pc“div(u) =0 (3)

or, in perturbational form,

a—i + div(pu) + div(p,u) = 0 (4)
Ju 1 P

e +u-grad(u) + ;grad(p) + ;gk =0 (5)
% +u - grad(p) + pc*div(u) — wp,g = 0 (6)

Here, p,(z) is the hydrostatic density, p = p— p, is the perturbational density,
Do(2) is the hydrostatic pressure defined as

dpo
= —p, 7
dz Pol ()

and p = p — p, is the perturbational pressure.

Equations (4)—-(6) support acoustic waves and an explicit numerical discretiza-
tion of these will require a time step dictated by the acoustic dynamics. How-
ever, since the acoustic waves have a negligible effect in atmospheric dynamics,
using a small time step dictated by the vertical propagating acoustic waves,
about 10 times smaller than the one dictated by the horizontally propagating
gravity waves, is a huge performance loss. Therefore, we split the dynamics,
separating the acoustic waves from the slower anelastic dynamics.

u=ug+u,+u (8)
div(noug) = 0 (9)
div () = 0 (10)
u, = grad(y) (11)



u, = grad(v) (12)

where u is the total velocity, ug is the anelastic velocity, u, is the curl-free
velocity and uy, is the harmonic velocity, and 7, = 1,(z) is a function to be
determined later. The velocities must also satisfy the following relationships
on Neumann boundaries

u;-n=0 (13)
u, - n=0 (14)
u,-n=un (15)

The anelastic and curl-free velocities can also be obtained from the total ve-
locity

uy=P,(u—uy) (16)
u,=Q,(u—uy) (17)

by using projection operators defined as follows

Q,(w) = grad (}L%> i (g, w) (18)
P,(w)=(1-Q,) (W) (19)

where ]L%go = div (fgrady). The boundary conditions will be discussed later.

Using the splitting, equations (4)—(6) can be rewritten

ap 1 dp, 1 dn, s Po ..
oo |- ] i) + Lodio(g) =0 (20)
ouy 1 10ny.
Yd A Zorad ~YTH
5 +Aqu+ pgra (7mr) + o i
1 1 lu, + uy|?
+-—grad(¢) + P, |-gradd + grad———| =0
p p
(21)
0 1 2
o +Q, [—gradé + gradM] =0 (22)
ot p
1504) aﬂ'H 87r1 81&
— t — + — 4+ — - grad )
5 T o T T TUoera (mr+ 7 +9+79)
2 2
pc? . pc dno
+ - div(nou,) —w [ —p + pog] =0
(23)



where the following quantities have been introduced

- Ag4u is the advective term defined as

2
Agqu = (u-grad)u— grad <w> (24)

- mg and 7 are defined as

T~ g (25)

%(gradm) =—-Q, (Aqu) (26)
with

Q,w = %grad (Ln%)_l divn,w (27)

- 1 is defined as

1 . 1 aﬂ'H
;grad(w) =-0Q, (;6—xl> (28)

- ¢ is the “acoustic pressure”
§=p—po(z) —m—1 (29)

We choose 7, to cancel the buoyancy term p,gw in the pressure equation.

1 dn, Pod 1 dp,

R = — = 770 O = pO O 30

Mo dz Yo  YPo dz ©) ©) (30)
It is to be noted that 7, comes out to be the isentropic density corresponding
to the pressure distribution p,. With this value of 7,, equations (20)—(23)
become

Op  poN? o
a_f _r - div(p) + %div(noup) =0 (31)
0 1 1 1
al;d + Agu+ pgrad(m) + _887;{1 + grad(@/))

] 2

+P, [—gradé + gradﬂl =0 (32)
p
2

du, —1—(@0[ grad5+grad7| p—;uh‘ ] =0 (33)
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2
pe div(nouy) + (77 + 7y + 0 + w)png =0 (34)

Mo Do

_|_

where N is the Brunt-Vaisala frequency defined by
N?  1dn, 1dp,

g  Medr p,dz

1.2 Asymptotic Analysis

We use asymptotics to analyze the extent to which we have decoupled buoy-
ancy effects from compressive motions. We use tools similar to Klein’s [18] but
our ultimate goal is different since we want to organize the full equations in a
way that reflects the asymptotics and not to use the asymptotic equations as
part of our numerical scheme for specific limits.

We start by linearizing equations (31)—(34) around the state p = 0 and
(u,w) =0

op N? p

B p s Paivt,) =0 )

aud 1 aﬂ'H _

R R lig”ad(ﬂ ) )

ou, 1

= +Q, l;gradcﬂ =0 (38)
2

9 + Omn + o 4 Pob div(n,u,) =0 (39)

ot ot ot Mo

If U is the horizontal velocity scale, ¢ is the average speed of sound, A is
the speed of a typical gravity wave, [, is the vertical length scale, L is the
horizontal length scale, N is the average Brunt-Viisild and g is the gravity
constant, we can introduce the following dimensionless variables

T
LT 4
p=t (40)
Ly
b A1
o=t a
z
s= 2 42
=7 (42)
A=\/eLg=¢eLN (43)
- A
t=—1 44
: (44)



= % (45)
N (46)
A Uq
_ 47
Y= (47)
A Wq
_ 48
T (48)
o Up
_ 49
Up Up ( )
Wy, = Wp (50)
”p
U
- 1
Fr A (51)
U
- 2
- (52)

where M is the Mach number, ¢ is the aspect ratio and Fr is the Froude
number. Our choice of time scale reflects the fact that the fast gravity waves
are of interest in this study.

For mesoscale atmospheric flows, we have the following relationships between
the different parameters defined above

ekl (53)
M~ Fr<l (54)
Wd = €Ud (55)

Using equation (11), we obtain

U,
W, = 2

(56)

These parameters are used to estimate the magnitude of the different contribu-
tions to the pressure 7y, ¢ and § (7; depends quadratically on u and is there-
fore negligible in the present analysis). Using equations (36), (37) and (38)
along with the definitions of 7wy and , multiplying by 71, and applying the
divergence operator, we obtain

pAU, [ 0O 8up n 10 8wp
L2 \ozx \'"” of 20z \'" of
M, 00 Mo 00
( <p08x> 202 <p082>> 0 (57)




o (0 . 5y (i, 1 O
. <ﬂ> — — AU, N*ib + pAU, L2 < Tty | — 70 wp) (58)

9z \ ot W\ 08 2 02
pAUy (0 [ . Oug a9 (. Owg
L2 (a:z- (”“E)ﬂa (77 &5))
1 (7,0 o O

iz (Z 57 Z_ajﬁ*e?az (Za@) ’ 9
T T
2o \p,0r) 220z \p,02) 10 \p, 03
Uit = Ugiia + Uy, (61)

This gives us the following estimates of the magnitude for the velocities and
the various pressure terms.

U, =0 (*Uy) (62)
U;=0(U) (63)
=0 (pAU) (64)
5, =0 (*pAU) (65)
From this it follows that (39) reduces to
1 aﬂ'H 1 . 2 U
ZTH L g — il
oo ot + o iv(nou,) = O <5 L> (66)
) e U
Each term in the left-hand side is individually O (f)
We note now that the velocities satisfy the following relationships
ug=0(U) (67)
u=0 (£°0) (68)
wq =0 (eU) (69)
w,=0 (eU) (70)

Therefore, wy and w, are of comparable magnitude and w, must be included
in the equations to account for the complete vertical dynamics. In the pseudo-
incompressible approximation [11], the divergence-free constraint is applied to
the total velocity



div(n,u) =0 (71)

which is equivalent to discarding the potential velocity u,, which leads to
advective dynamics different from the present approach.

Also, we recover the classical assumption

W =¢eU (72)
1.e. that the horizontal and vertical advective time scales are comparable.

Equation (66) is used to derive a system of hyperbolic equations (as shown in
the Appendix)

aﬂ'H 8ud

— - 7 — 2
L, 5 Toa, O(e%) (73)
Ouyg 1 Ory 9
ot +,OOW_O(8 ) (74)
where
0l mng (10 1 Mo
S L}OW <g oz " C%)] i (75)

The operator £, can be rewritten in the form

L:= 0z lpoN2 <gaz + cﬁ)] + PoC2 == [82%92 +X] (76)

o / 9
(= e exp (/ gdz> (78)
2

"o g [ 9
= 1
X il [(7 )N202 1] exp (O/ 2 dz) (79)

o o

When y is negative, the operator is positive definite and equations (73)—(74)
describe the motion of an infinite collection of horizontally propagating gravity



waves, one for each eigenmode of the second-order self-adjoint operator L,.
When Yy is positive, the first few eigenvalues can become negative, as shown in
Figure 1, and this is a direct consequence of including the potential dynamics
into the asymptotic analysis. We observe that this has a stabilizing effect as
the modes with negative eigenvalues do not support gravity waves.
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Fig. 1. “Speed” of gravity waves for the quarter-wavelength stable and unstable
cases shown in the results section.

The asymptotic analysis is similar to the normal mode analysis presented by
Baer and Tribbia [3], Tribbia [31], Temperton and Williamson ([30] and [32]),
but we use the full compressible PDEs instead of the discretized version of
the hydrostatic equations. The eigenvalues A\* are real and the (normalized)
eigenvectors r* form an orthonormal basis in L?. The speeds of the gravity
waves are then given by

oL
== (80)

and are shown on Figure 2 for an example presented in the results section.
This figure shows that the gravity waves for only a few modes travel faster
than a typical fluid velocity for large-scale motions of 20m/s (marked in a
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solid line on the graph). If these modes were isolated and treated implicitly,
then we could use a CFL condition based only on the speed of the fluid, which
could lead to a considerable gain in computational efficiency.
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Fig. 2. Speed of gravity waves for the perturbational gravity-wave test problem of
section 4.

2 Time Discretization

In this section, we will introduce the quantities that are solved for and we will
present only the time discretization that is used to advance the solution. We
made the choice to dissociate time and spatial discretizations for clarity pur-
poses. The time discretization of the equations (31)—(34) gives the blueprint of
the numerical algorithm that should not be overshadowed by the technicalities
of spatial discretizations and centerings, which can be found in the subsequent
section 3.
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2.1 Variables and Time Discretization

Time is discretized using At. The variables that we solve for are the total
velocity u = (u, w), the anelastic velocity ug = (ug, wy), the curl-free velocity
u, = (up,w,), the total pressure p, the acoustic pressure J, the auxiliary
pressures v, Ty and 7y, the density p, and the perturbational density p.

2.2 Time Discretization of Equations (31)-(34)

The system (31)—(34) is discretized in time using a combination of explicit or
implicit schemes. First, a few quantities are partially advanced, considering
only the advective dynamics, so that the auxiliary pressure 7; can be advanced
to half time step in order to compute the acoustic pressure. Then, the curl-
free velocity is advanced and the quantities that were partially or temporarily
advanced are corrected.

e First, the anelastic velocity is partially advanced in time using only the
advection terms in equation (32)

W)= u — At((Adu)H%) (81)

e Then, we use equation (31) to temporarily advance the density variables p
and p

1
op\""2
="+ Al <a_§> (82)
P ="+ p, (83)
! pn-l—l + pn
p +2 = ? (84)

e Equation (25) is used to temporarily advance 7y

L
T — /ﬁnJrlgdé (WH(L) — 0) (85)
1
e Using equation (26), we solve for W?Jr?
1 nid 1
rgrad(mF) = -Q 1 (Aaw2) (6)
pn+§ p 2
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e Using equation (28), we solve for ¢"*!

n+1
ntly _ . no Omy .
}LP:T (") = —div <,0”+1 B 1) (87)

e Combining equations (33) and (34), we implicitly advance the acoustic pres-
sure

Ho"t=|1- A2l | | st

Mo ,"12
No
=" — At [w {dw(noug) — Atdivn,grad <%> }
1 n2 d o
+uts . (grad (6" + 7" + ")) — w2 l—p c_a + pog] ]
N, dz
il 1
— (7?1 24ttt 2 g @Z)”) (88)
where
1 ntx

w2 = wd+2 +w, +wy (89)

e Then, we advance the curl-free velocity using equation (33)

n 2
= — ALQ, (mm(@) + <pin(grad5”+l)>> (90)

The perturbational density is advanced using equation (31)

~Nn ~n p0N2 n l po . n . ~ n l
Gl = AtTw Y2 = Atdiv (noug ) — Atdiv(pu)"t2

Mo
(91)
e 1y is updated
L
Tl = /ﬁnJrlgdé (WH(L) — 0) (92)
e 1) is updated
n+1
n+ly _ . Mo Oy .
L[,Z_f (Y") = —div <p”+1 B 1) (93)

We finish advancing the divergence-free velocity

13



n+1 * 1 nt3 1 n+1 1 aﬂ-;?rl i
Ug ' = =Ug — At pTL—Jr%(gradﬂ-I ) + anrl (grad¢ ) + F O

1 n + 2
+P° (— (gradé"H) + grad <M> ) )
P 2

(94)

2.3 Boundary conditions

2.3.1 Inflow

At an inflow boundary, the velocity field in an inviscid model must satisfy

u-n=u, (95)

Because the splitting satisfies equations (13)—(15), we have

u;-n=0 (96)

u, n=0 (97)

u,-n=u, (98)
The density is held constant at inflow

p="Po (99)

p=0 (100)

where p, is the hydrostatic density distribution.

Now, we look at the more complicated boundary conditions for the projec-
tion and Helmholtz operators of equations (86)—(90). At the boundary, equa-
tion (86) becomes

1 1

n+5 n+5

1 On; 2 1 1 Ony 2
T nQ o [Aquttz 4 — T (101)

n+g on p"+§ n+g ox

p p

By definition of the splitting, the anelastic component must be parallel to the
boundary near the boundary, as seen in equations (13)—(15), and we obtain

14



1
n+§

1 1 0
n-P 5 |Aquttr+ —H g (102)
nty n+= Ox
P p 2
and therefore
1 1
n+5 n+5
1 On, 2 1 1 Omy 2
ST [Agutte T (103)
pn+§ on pn+§ Ox

Similarly, after taking the dot product of equation (90) with the normal and
using condition (97), we obtain

n- <grad (M) + (p%(gradé"“))) =0 (104)

and the outflow boundary condition for the Helmholtz equation (88) becomes

1 95+t e
1o5mt grad<M> ‘n (105)
P On 2

2.3.2  QOutflow

On the outflow boundary, the pressure is imposed

P="Po (106)

where p, is the hydrostatic pressure, and this implies

§=0 (107)
mr=0 (108)

3 Spatial Discretization

3.1 Discretizing Equations (31)-(34) on a Regular Grid

An anisotropic rectangular grid with spacing Az and Az is applied to the
computational domain as shown in Figure 4(a). We seek the solution to the

15



system of equations (31)—(34) either at cell centers (i, j) or at cells faces (i +
5,j)or (i,j+3), wherei = 1... N with N the number of cells in the horizontal
direction and j = 1... M with M the number of cells in the vertical direction.
Table 1 gives the spatial and time centering of the main variables.

Cell-centered | Face-centered | " = nAt | "2 = (n+ 1) At

(u,w) |V Vv

(ua, wa) | v v

(ug, wq) v v
(up, wp) Vv Vv

(un, wp) Vv N/A N/A
p vi v

g Vv Vv

m Vv Vv
T Vi Vv

T v v

p v v

p Vv Vv

Table 1

Spatial and time centering of main variables

In this section, to simplify the exposition, we only look at the discretization
of the different operators on regular cells, that is cells that are not cut. The
discretization on cut cells will be presented in 3.2.

3.1.1 Gradient, Diwergence, Laplacian and Projections

Gradient, divergence and Laplacian operators are used throughout the equa-
tions. We use different types of spatial discretizations for computing the gra-
dient and the divergence operators depending on where the initial variables
are centered and how the result must be centered.

Gradient G

The gradient operator G takes variables at cell centers and returns the gradient
at cell faces.

(ch) _ Pirli — Pij (109)

z,it+3] Az
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On boundaries where we have a Dirichlet boundary condition ¢ = b, we do a
linear interpolation to get

biv1j — Pij
G =9 T3l T 110
( (p)x,iJr%j Al’ ( )

When the tangential gradient needs to be computed, we use

1
(69).,=3((09).sy * 0

’ 2
#(Ge). 1+ (69). ) )

1
2

On the boundary, we extrapolate the tangential gradients to second order as
shown on Figure 5.

Cell-centered Gradient G,

The cell-centered operator G, takes variables at cell centers and returns the
gradient at cell centers.

G, = A°G (112)

where AvF'~¢ represents the following arithmetic average

(Gp), 1. +(Gy), 1.
(A0 (Gy)) = AL T2 (113)

z,ij 2

Face-Centered to Cell-Centered Gradient Gp_¢

The gradient Gp_. takes variables at cell faces and returns the gradient at
cell centers.
~ Pirds T Py

(GF—>CS0)I7U = T2 (114)

Divergence D

The divergence D takes a vector variable w = (u,v) at cell faces and returns
the divergence at cell centers.

Dw.. — Uiply — Uil n
Wij = Az Az

Yij+3 = Vij—3

Y2 (115)
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Cell-Centered Divergence D,

The cell-centered divergence takes a vector variable at cell centers and returns
the gradient at cell centers.

D, = DAvC=F (116)
where Av®—" represents the following arithmetic average
C—F U+ Uiy
(Av u)H%j = (117)

Operator L,

The operator L, is given by

1
=D

.G (118)

p

Projections

The discretized projections are given by:

1
Q,=-GLZ'Dn, (119)
p Mo
P,=1-Q, (120)
o 1 -1
Qp: ;GOL%DOTIO (121)
Po=1-Q (122)

To compute Q, (w), for example, we introduce w = D (n,w), and solve for ¢

LY o=w (123)

Mo

where LI = Dn,G is a Poisson operator with homogeneous boundary con-

Mo
ditions and DT/ is the divergence D where the boundary conditions are

assumed to be homogeneous on Neumann boundaries. Then, we find Q, (w)
by

1
Q,w = ;G(p (124)

18



3.1.2  Advective Terms in the Anelastic Equations (31) and(32)

The operators presented above will now be used to compute the two advective
terms in equations (31) and (32). Aqu can be written in following form

Aqu=div(u®uy) + div(u; ® (u, +uy))
—u, - div(u) — (u, +uyp) - div(ug) (125)

All derivatives are made exclusively of divergence operators and need to be
evaluated at half time steps. To retain the conservation of mass property, we
choose the divergence D for discretizing these two terms and, therefore, we
need to get uy, u and p at face centers and at half time step.

Godunov Advection Procedure

In the Godunov advection procedure, we obtain the values at face centers and
half time step by first extrapolating separately from the centers of the two
adjacent cells using a Taylor series expansion

1 5\" 5\"
nt5 ~n Al‘s ap At ap
2 =+ 9 |\ 91 120
sz,i,s ng 9 (3% ) y + 2 ot ij ( )
1 " !
nt+3g n AZL‘S aUd At aUd
Waij+,s = Ud,ij 2 (c%s)ij " 2.\ 0t ), e

where the notation is illustrated in Figure 3.

n+1/2

ij,+,1
+1/2 ® Xn+1/2
ijv_vo |j +,0

n LN
by
n+1/2
ij,—1

Fig. 3. Notation.

By replacing the time derivatives using either equation (31) or (32)

19



<ij K 8> :pU + - 5 min { <1 F Al_suz‘j> ) 1}(Am5p)zj

At At . At .
g AL 5~ s (Do) = 5 (D (o)),
AtN2pOij
— 2 Pow, n 128
R (125)

n+i n 1 . At n At
(ud,ij?i,s) =Ugq ;5 + 2 min { (1 + Uijg» 1}(Al“sud>ij - mwm [udl} i

—7 (udﬂ-j)% (GFﬂcupm)zs,Z‘j o 2p7"by < or ) B B 2pn ( ox )
2 1) v 1]

A n 2 n
_iw< Q@@+Q<Bg2ﬂv> (129)
2 ok 2 oy

A . .
where s # s and wj; is given by

wy; = (wg,z'j + (AUFHC(’UJ;)%]‘) (130)

and the slopes are computed

e in the normal direction using

n Uip 1y — Uiy “n Piv1j — Pi1j
(Amu)z‘j = % ; (Azp)z‘j = % (131)

e in the tangential direction using

[U]Z = U — U ; [ﬁ]w = pij — Py ifwi; >0 (132)
[ui; = uffy —uy s [Pl = Pija — pryifwi; <0 (133)

Then, the solution is upwinded to get the final value of the variables on face
edges

n+ n+— d
2 edge
uderO,pUJro if ul+1j>0
2
nJr% ~n+% "JF_ "JF_ edge
w3 P 1= Uyl _ if w <0
dyityj " itgi d O ' Ditt—0 i+33
1, "3 nty (s s o edge
<ud 2]+0+ dZ+1j—0 ’ pl]+0+pl+1]—0 if ul'Jr%j_O
(134)

Because the new anelastic velocity does not satisfy equation (9), we introduce

20



a potential ¢ that verifies

1
Lip=D (nouZJrQ) (135)
Mo
n+l
and we correct u, 2
n—l—% n—l—%

The total velocity at face centers at half time steps is computed using

1 nt x
utr = w4y 2 4l (137)

where the transverse components of u, and u, are computed by averaging
the normal components in the same manner as the transverse gradient G is
computed.

Computing Agu and div(pu)

Now, we have all the terms that are needed to compute the advective terms

din(uly ® = [D (7++3u3)] (139
ij
Al = Db ou)| [0 e (g o))
(] ij
—UZ,Z% (Du"*%)ij = (uy +w),, (DuT%)ij (139)

3.2 Discretization of the Operators on Cut Cells

An embedded boundary (EB) formulation is used to model the orography,
i.e the mountain ranges. The mountain cuts cells as shown on Figure 4 and
some faces are cut while some others are completely covered. The fact that
some faces are not full faces has consequences on how we evaluate the oper-
ators presented in 3.1 and this section presents what is done differently on
the embedded boundary. This approach follows Johansen and Colella [16] for
elliptic problems. For hyperbolic problems, similar ideas have been used for
incompressible Euler equations [2].

Gradient G
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(b)

@)

Fig. 4. Schematics of the embedded boundary with cut cells.

The gradient in the normal direction is unchanged. However, for the tangential
gradient, we need the value of the normal gradient on four faces, some of
which might not be available on irregular cells. The missing gradients are,
then, extrapolated to second order as shown in Figure 5 and formula (111)
remains unchanged.

Cell-Centered Gradient G,

In the average procedure, we need quantities at faces and, on some of the
irregular cells, these quantities might not be available as a face might be
covered. When one quantity is missing, we extrapolate to second order from the
non-covered faces in the normal direction and then proceed to the arithmetic
averaging as in (113).

Divergence D

When we had only regular cells, D ensured that we had a conservative dis-
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Boundary

Third order extrapolation

Fig. 5. Tangential gradient.

cretization of the divergence operator. However, if we used equation (115)
when the cell is not regular, we would lose the conservative property.

To find the expression of the conservative divergence on cut cells, we average
over the volume of the cell and then use Stokes’ theorem to transform a volume
integral into a surface integral so that we recover a flux balance

1
V-F(u)zV/V-FdV (140)
\%
1
~— ¢ F-ndS 141
~§Fn (141)
S
R L e T T e o T R R
Nliij Az Az
+aP pEP| (142)

where the superscript © represents quantities taken at the centroid of the faces,
which may be different from the center of the face, and the superscript ©%

represents the quantities at the embedded boundary. a1 is the area fraction
2

of the face (7 + % j), defined as the ratio of the actual face area over the
face area of the regular mesh spacing in this direction, and x;; is the volume
fraction defined as the ratio of the volume of the cell over the volume of a
regular rectangular cell. FH— 1 . is the flux on face (i + 1) and is illustrated on

2J
Figure 4(b).

Equation (142) gives an easy expression to compute the divergence of a flux
on a cut-cell. Note that when the cell is regular, 7.e. « = 1, Kk = 1 and
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aPB = 0, we recover the classical expression for the divergence of a vector.

This expression is however not sufficient as the volume fraction x has the
potential of becoming arbitrarily small, posing major accuracy and stability
problems. When using the divergence operator to solve a Poisson’s equation
for example, multiplying both sides of the equation by x removes the potential
singularity. This approach is not possible for an explicit method.

Redistribution

When computing the advective terms in a complex PDE, we eliminate the x
in the denominator of (142) by using a mixed update of the form

V- -Fu)=xV? -F(u)+ (1 - x)VY? . F(u) (143)

where V¢ - F is the conservative divergence as expressed in Equation (142)
and VN . F is the non-conservative divergence that has the same expression
as the divergence on regular rectangular cells, where the data is taken at face
centers and extrapolated to covered faces if needed. This update (143) is not
conservative, so we compute the mass dM that was added by using the non-
conservative update

M=k |V -F(u) -V’ F(u)| (144)
= k(1 — k) [V F(u) - V< F(u)] (145)

and redistribute it to adjacent cells to ensure overall conservation of mass ([4],
(6], [27]).

The complications arising from the presence of cut-cells are widely compen-
sated by the advantages of having an underlying rectangular grid on the com-
putational domain: the grid generation is stable and well-understood, and the
coupling to structured AMR is straightforward.

Extrapolating to Covered Faces

To compute the non-conservative divergence in equation (143) that takes data
on face centers, we need values on covered faces if there are any covered faces
in the cut-cell. These values are extrapolated from adjacent faces and cells
as pictured on Figure 6. For example, to extrapolate the quantity W on the
covered face shown on Figure 6, we compute

”+% * n 1 At n n
(W;_%J)A =Wi,;+ 5 (_3 - Euiﬂ,j) (AaW)is
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_ n
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where W satisfies an equation of the form

ow
T +u.grad(W) + R(z,2,t) =0

The final density on the covered face is taken to be:

+ 1\ E 1\ *
n+3 n+3 n+3
1=35,] =2 ) A 1=35]

2

2Azwi*1j+1

(146)

) ) 1}(AIW)?71,J'+1

[W]Z,i—lj—H
(147)
(148)
(149)

where n, and n, are the components of the normal in the horizontal and

vertical direction.

Fig. 6. Schematics of the extrapolation scheme to a covered face.

4 Results

4.1 Perturbational Gravity-Wave Test Problem

In the asymptotic analysis of section 1, we showed that we could extract a
finite collection of discrete traveling gravity waves from the fully compressible
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equations in the limit of low Mach and Froude numbers and small aspect ratio.
The details of the derivation can be found in the Appendix.

We set up this example to verify the asymptotics results numerically, using
the full compressible equations. The problem is initialized to be a traveling
wave in the fastest mode and, following the asymptotic analysis, we expect to
see the wave propagate and stay in the fastest mode.

4.1.1  Initialization

The pressure my and the solenoidal velocity are initialized as
tq(x, z,t = 0)=G(x)r°(z) (150)
mu(z,2,t =0)=c"Ug(x, 2,t = 0) (151)

or identically for the pressure 7y

g (z, 2, t = 0) = poc’uq(x, z,t = 0) (152)

where 7° is the eigenvector associated with the fastest mode and ¢° is the
speed of the fastest wave. G(z) is a Gaussian function

G(z) = —— e:vp(—w> (153)

2mo 202

The remainder of the initialization must be done carefully to avoid artificially
sending energy in modes that are not the fastest mode. First, the vertical com-
ponent of the solenoidal velocity is initialized using the anelastic constraint (9)

1 z 02
wy(x,z,t =0)=— /no <C— - 1) %dz (154)
0

When computing the discrete integral, particular care needs to be taken to
ensure that the discrete uy satisfies the condition

Dnoug =0 (155)

The potential velocity is then initialized using equation (66). We use the fact
that u, is a gradient
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u, = grady (156)

and this yields

7o a77-H
o poC2 Ot

Liyp= (157)

The time derivative of the pressure 7y is found by using the relationship
derived in Appendix

L0 Dig
Xt St =0 (158)

since all the quantities are taken along the first eigenmode. ¢ then verifies

02
Lo c°° Ouy

_ ¢ Oua 159
o " 2 Oz (159)

The rest of the quantities are initialized according to their definitions.
4.1.2  Results

In this example, we use different domain sizes and different grid refinements
to verify the asymptotics, as shown in Table 2

€ = 0.05/e = 0.025|e = 0.0125|¢ = 0.00625

Domain length (km)|| 256 512 1024 2048

Domain height (km)|| 12.8 12.8 12.8 12.8

Table 2
Different cases used for the asymptotic analysis.

Figures 7(a), (b) and (c) show that we obtain a traveling wave solution for
aspect ratios of 0.025 and under. Figure 8 and 9(a) show that the decay in
the amplitude of the solution and the amount of energy that gets transfered
into the slow modes decrease as the aspect ratio decreases, as this means that
the asymptotic assumptions are better verified. Figure 9(b) shows that the
convergence is first order.

Figure 7(d) shows that we are not quite in the asymptotics regime for e = 0.05.
The traveling wave gets deformed at the beginning of the simulation on the
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left of the propagating front and then this deformed wave propagates. The
decay in amplitude as the wave propagates is much larger than in the cases
where we are in the asymptotic regime, and a much larger part of the motion
gets transferred from the fastest mode to the slow modes.

However, it is to be noted that even when the asymptotic assumptions hold
loosely (as is the case with € = 0.05), the percentage of the solution that gets
transferred into the slow modes is under 4% for 75 and under 6% for u; on a
128 x 64 grid. We also notice that the smaller ¢ is, the closer the propagation
velocity is to ¢® with a very good match for ¢ = 0.0125 as seen on Figure 8.
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Fig. 7. mp history on a 128 x 64 grid for different aspect ratios: (a) ¢ = 0.00625, (b)
e =0.0125, (c) € = 0.025, and (d) € = 0.05.

4.2 Mountain Lee Waves

Our algorithm is now tested on the classical examples of gravity waves found
in Durran ([10] and [12]). In these examples, a uniform wind with a speed of
20m/s passes over a 600 m, as pictured on Figure 10. The mountain has the
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Fig. 8. ug (left) and 7 (right), above for different aspect ratios holding the grid size
fixed at 128 x 64: 0.05 (red), 0.025 (green), 0.0125 (blue), 0.00625 (pink); and below
for different resolutions holding the aspect ratio fixed at 0.0125: 64 x 32 (blue),
128 x 64 (green), 256 x 128 (pink).
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Fig. 9. Percentage of the 7y solution that gets transfered from the fast mode to the
slows modes; (a) for different aspect ratios holding the grid size fixed at 128 x64: 0.05
(red), 0.025 (green), 0.0125 (blue), 0.00625 (pink), (b) for different grid resolutions
holding the aspect ratio fixed at 0.0125: 64 x 32 (blue), 128 x 64 (green), 256 x 128

(pink)
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Fig. 10. Schematic of the parameters.
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Viisald frequency is a constant that takes one of these two values 0.01 57! or

0.02 s~ 1. The

The atmosphere is a two-layered atmosphere and, in each layer, the Brunt-
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where ¢ € {L,U}, z;, =0, zy = H and the constants C; are given by

2/70]‘(\7722
Cp=— 1PN (162)
- (0-D3
N}HY\ /Np\? 1
Cy=C, exp <_ L ) (N_L> — (163)
g U2 1—(y—1)Cprexp (—#)

The initial background pressure is then given by the hydrostatic relation (7).

According to linear theory, there are four possible tuned and detuned cases
that can occur in a two-layered atmosphere, yielding gravity waves in some
cases, depending on the position (top or bottom) of the layer with higher
stability and on the value of the phase shift between the ground and the
interface between the two layers. Table 3 presents a summary of the four
possible cases. In Table 3, Ny is the Brunt-Vaisala frequency of the lower
layer, Ny is the Brunt-Viisala frequency of the upper layer and H is the
height of the interface.

Case | Ny (s71) | Ny (s7%) | H (m) | Amplitude of waves
(a) 0.02 0.01 1571 weak

(b) | 0.02 0.01 3142 | strong

(c) 0.01 0.02 3142 strong

Table 3
Position of the interface and wave response for different tuned and detuned cases.

Figure 11 represents cases (a), (b) and (c) shown in Table 3. Here, the grid
spacing is 128 x 64 cells and the time step is At = 15s. The benchmark results
from Durran were run using a small time step of 5s and a large time step
of 10s. Table 4 shows that the time step that we have chosen satisfies the
CFL condition for the fastest gravity wave whose speed is computed using the
analysis shown in Appendix.

N, < Ny Ny < Np,
quarter wavelength | half wavelength | quarter wavelength
Cqw (M/5) 74 80 59
At (s) 19.08 17.62 23.49
Table 4

Speed of fatest gravity wave cg,, and maximum time step for the lee-waves examples

Figure 11 compares qualitatively well with Figure 1 from Durran ([10]). For
case (c), the match is remarkable and the positions of the crest of the waves
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are almost identical. For cases (a) and (b), the match is also very good. The
waves have the same wavelength than the one found in Durran, but their
amplitudes differ slightly. For case (b), we also recover the main features of
the isentropes: the amplitudes of the gravity waves increase with height while
in the lower layer and decrease with height while in the upper layer, the sag
starts at the crest of the mountain and ends near the foot of the mountain
before the gravity waves start to form, and the sag is replaced by a big jump
in the upper layer.

Case (b) is also run on a 256 x 128 grid with a time step of At = 7.5s as
shown in Figure 12. The wavelengths and the nominal position of the isen-
tropes are identical for the finer and coarser resolution. However, for the finer
resolution, the amplitudes of the gravity waves do not decay as fast away from
the mountain as they do in Figure 11(b).

5 Conclusion

We developped a non-hydrostatic model that uses an embedded boundary
method to represent mountain ranges. The numerical algorithm uses a splitting
to separate the fast acoustic dynamics from the slower anelastic dynamics. In
the limit of small Mach number and small aspect ratio, we recover the anelastic
approximation, but we do not use the asymptotics in our formulation. The
acoustic waves are treated implicitely while the advection is treated explicitely.
Special attention is given to the spatial and time discretization, as well as the
centering of the variables. Finally, we present a set of results that compares
very well with the classical gravity waves results presented in Durran. We were
able to obtain accurate results with a unique time step that is much larger
than the one used in previous studies.
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(@) (b)

Fig. 11. Isentropes for a two-layered atmosphere flowing over a 600 m high mountain
at t = 10000s. (a) Interface at 1571 m, one-quarter wavelength, (b) interface at
3141 m, one-half wavelength and (c) interface at 3141 m, one-quarter wavelength.
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Fig. 12. Case (b) solved on a 256 x 128 grid
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Appendix: Determination of the Time Step and of the Fastest Grav-
ity Wave Speed

The splitting allows to isolate and treat implicitly acoustic waves. Therefore,
the speed of the fastest gravity wave cg, is now setting a constraint on the
time step

A< B2 (164)
Couw

Gravity waves are horizontal traveling waves whose dynamics is mainly de-
scribed by the solenoidal part of the flow, that is equations (20) and (21) that
can be rewritten

dp Ldp, 1dn, . Po ;.

Py pw | =L - — Tt — g — P giv(n, 165
at + p w [pO dZ no dz Z'U(pu) no ZU(W up) ( )
dug  10my 10m; 1 [y + |
R | 29T (Aga), — - |p, (Zgrads gt T Unl
BT + P (Aqu), e l <pgra + gra 5 )

(166)

We want the right-hand sides of equations (165) and (166) to be small so that
we can recover the classical system of equations for traveling waves. Analyzing
the orders of magnitude of the different terms shows that &div(ngup) is the

dominant term in equation (165) and that, from equation (23), &div(noup) +

o

10 10
— T i small, Therefore, we subtract =~ ZEH 44 both sides of equation (165)
2 Ot 2 ot
dp 1 0my 1 dp, 1 dp, L Po .. 1 Ory
s ZA o | — — = —d — | B div(n, —_f
ot ¢ ot [pg dz  ~yp, dz w(pu) Mo w(ouy) + 2 ot
(167)
oug 10rmy 10m; 1 |u, + up|?
—+-———=—(A — ——— — |P, | —gradd d——F—F—
T + o (Agqu), P pgra + gra 5 )
(168)

Using equations (25) and (33) along with the definition of the Brunt Vaiiséla

1 dp, 1 dp,
frequency N = J —g [— P p

Po dz  Yp, dz

] , we obtain
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,OONQd ( ) poN2 < Odw(ﬁoup)"‘ (2) at>
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ou 1 Org
o oo
]_87'['[ 1 1 aﬂ'H
- (Aju) — - (22 )YH
(Aa), p Ox (p po> Ox
(105, 0 (It
pOx  Ox 2
(170)

Formal linear analysis shows that the two right hand-side terms R} and R,
are either quadratic in the perturbations or small because either the Mach
number or the Froude number is small.

The idea is now to obtain a wave equation with variables x and t while av-
eraging continously the vertical variable z. First, differentiate equation (169)
with respect to z

a77-H anoud o
Egr tor M
0 [ noy . 1 Omy g
=5 {poN2 [d (pu) + 2 ot ] + mdw(noul,)
No O 0Ny,
— 171
+div(n,u,) + PRENT o (171)
8ud 1 aﬂ'H
4, H_ R
ot p, Ox
1 8#1 1 1 aﬂ'H ou
=—|((Au)y+———+|-—— | —+ 2
<( a) p Ox * (p po> ox ot
195 0 [|u,+ul?
— = | —— 172
* [,0 Ox * ox ( 2 (172)
Mo 871-H . .
where we have added ———= to both sides of equation (171) and used
pOCo
onow O .
o + 5 = div(n,uy) (173)
and where
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e [ )| e elram ] o

E=exp (—/%dz) (175)
(= pn]iﬂ exp (/ %dz) (176)

2 z
o g g
= —1 —1 = 1
Y v [(7 )N202 ] exp (O/ Czdz) (177)

o o

Introduce the following change of variables

= T 178
" pof (178)
dg= Loy, (179)
3
A Po PoS
L= 2. 180
UBS Mo (180)
A pO
RWH: ERWH (181)
R,= /" ‘27" R, (182)

ﬁzag—tH - % =R,
[ 2 oo + 5250 Lt |
L [div(noup) + g - agﬂ (183)
e {5 ()



2
_f_l@ + g <|up+uh‘ ) . aup} (184)

pOx  Ox 2 ot

Let \* and r* k = 1...N, be the eigenvalues and eigenvectors of the dis-
cretized operator £.. 7y and @ can be decomposed on the orthonormal basis

formed by the eigenvectors r*
N
(2, 0) = 3 #y (e, Ot (2) (185)
k=1
N
i, 1) = 3 e, Or (2) (156)
k=1
with
Ltop
ih(z,t) = / Tz, 2, )k (2)dz (187)
0
Ltop
ik(z, t) = / da(z, 2, )k (2)d> (188)

0

System (183)—(184) can then be rewritten after projection on the eigenvector

YI'H “%d _ pk
B o RWH (189)
ZTH 1
ot ox R, (190)

The system of equations (189) and (190) is hyperbolic with wave speed cl;w =
koo : th

T The wave speed cg,, is the speed of the gravity waves on the £™ mode

and the fastest gravity wave with speed ¢, is constraining the time step.
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