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Skills and Knowledge for Data-
Intensive Environmental Research

STEPHANIE E. HAMPTON, MATTHEW B. JONES, LEAH A. WASSER, MARK P. SCHILDHAUER, SARAH R. SUPP, 
JULIEN BRUN, REBECCA R. HERNANDEZ, CARL BOETTIGER, SCOTT L. COLLINS, LOUIS J. GROSS,  
DENNY S. FERNÁNDEZ, AMBER BUDDEN, ETHAN P. WHITE, TRACY K. TEAL, STEPHANIE G. LABOU, AND  
JULIANN E. AUKEMA

The scale and magnitude of complex and pressing environmental issues lend urgency to the need for integrative and reproducible analysis and 
synthesis, facilitated by data-intensive research approaches. However, the recent pace of technological change has been such that appropriate 
skills to accomplish data-intensive research are lacking among environmental scientists, who more than ever need greater access to training and 
mentorship in computational skills. Here, we provide a roadmap for raising data competencies of current and next-generation environmental 
researchers by describing the concepts and skills needed for effectively engaging with the heterogeneous, distributed, and rapidly growing volumes 
of available data. We articulate five key skills: (1) data management and processing, (2) analysis, (3) software skills for science, (4) visualization, 
and (5) communication methods for collaboration and dissemination. We provide an overview of the current suite of training initiatives 
available to environmental scientists and models for closing the skill-transfer gap.

Keywords: ecology, informatics, data management, workforce development, computing

The practice of environmental science has changed   
 dramatically over the past two decades as computational 

power, publicly available software, and Internet connectiv-
ity have continued to grow rapidly. At the same time, the 
volume and variety of data available for analyses continue 
to increase at a meteoric pace (Porter et al. 2009) because of 
the increased availability of data from long-term ecological 
research, environmental sensors, remote-sensing platforms, 
and genome sequencing, along with improved data-transfer 
capacity. The environmental research community is there-
fore faced with the exciting prospect of pursuing multidisci-
plinary scientific research at unprecedented resolution across 
multiple scales, making possible the synthetic research that 
can address pressing environmental problems (Green et al. 
2005, Carpenter et  al. 2009, Rüegg et  al. 2014, Peters and 
Okin 2016). These exciting technological advances, how-
ever, have challenged the research community’s capacity to 
rapidly learn and implement the concepts, techniques, and 
tools necessary to fully take advantage of this new era of big 
data and, more generally, data-intensive research (box 1). 
As a consequence, there is an urgent need to reevaluate how 
our training system can better prepare current and future 
generations of environmental researchers to thrive in this 
rapidly evolving digital landscape (Green et  al. 2005, Hey 
et al. 2009, NERC 2010, 2012). Deep knowledge of ecological 

theory, ecosystem dynamics, and natural history prepares 
environmental researchers to ask the right questions within 
this data-rich landscape, minimizing the chances that spuri-
ous correlations will lead science down blind alleys, as it 
might for specialists trained primarily in computing and 
statistics. By proactively addressing the training challenge 
at a time when the field of data science is still young, envi-
ronmental scientists will not only guide the environmental 
research questions but also guide the field toward a culture 
that is collaborative and inclusive.

Although the need for data skills is reflected across 
many if not all disciplines and sectors, the demand for 
training in the environmental workforce is particularly 
time sensitive given new flows of data from the National 
Ecological Observatory Network (NEON) in the United 
States, the Terrestrial Ecosystem Research Network (TERN) 
in Australia, and other large government investments in 
long-term research and observatories worldwide (Hampton 
et al. 2013). Environmental researchers must be prepared to 
use these data to address pressing environmental challenges. 
Furthermore, by developing training that can accommo-
date the exceptionally heterogeneous data that characterize 
environmental research (Jones et al. 2006)—from genes and 
“critter cam” videos to airborne and satellite sensors—train-
ing approaches will be readily adaptable to other fields.
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One symptom of the current curriculum’s shortcomings is 
the recent emergence of a variety of extramural options for 
acquiring critical technological skills, including resources 
such as Software Carpentry, Data Carpentry, and other 
informatics and computational training workshops hosted 
at NEON, at environmental synthesis centers worldwide, or 
at meetings of professional societies such as the Ecological 
Society of America. Numerous self-guided online tutorials 
are also available, although such resources may vary widely 
in quality or are not tightly linked with topical environ-
mental science domains. As these extramural opportunities 
proliferate, there is a paucity of systematic training within 
university programs to equip students with the computa-
tional skills they need to conduct data-intensive research. 
Lack of university-level training may reflect the sense 
among many environmental-science faculty that they them-
selves are not proficient in data management and the latest 
computational tools for data-intensive research (Strasser 
and Hampton 2012). In addition, environmental-science 
faculty may have difficulty redirecting students to high-
quality instructional resources within universities, because 
mathematics, statistics, and computer-science departments 
are primarily focused on educating future practitioners in 
their respective fields. Therefore, within university courses 
and curricula, both faculty and students miss the oppor-
tunity to experience the pedagogical benefits of learning 
relevant technology concepts and skills while encountering 
the realistic data and analytical challenges associated with 
a particular domain science. It is possible that the pace of 
technological development will continue to demand that 
workshops and other resources thrive outside of university 
curricula, given the comparative flexibility of such activities 
to adapt materials rapidly and remain on the leading edge 

as it advances. Moreover, these workshops offer vital oppor-
tunities for technological advancement by a wide range of 
researchers working both inside and outside of academia.

Technical proficiency is necessary but not sufficient for 
modern scientific data management, processing, and syn-
thesis challenges. Synthesis of heterogeneous environmental 
data usually requires collaboration skills as well as the ability 
to build on previous work (e.g., reuse of code). It is unrea-
sonable to expect that every researcher can become an expert 
in domain science, statistics, informatics, data management, 
and software engineering, but researchers should at least be 
familiar with these concepts to foster effective collaborations. 
Collaboration between multiple researchers with diverse and 
complementary expertise is essential throughout all aspects 
of a project to define and integrate relevant concepts, data, 
models, and tools (Cheruvelil et  al. 2014). Accordingly, 
collaborative data-intensive research should benefit greatly 
from community convergence on data structures, protocols 
for information exchange, and efficient reuse of code.

Community convergence on a common set of best-
of-class software tools has become more apparent in 
recent years and may signal community maturation that 
facilitates more coordinated approaches to training in 
data-intensive research skills. For example, projects have 
grown out of the open-source software community using 
tools developed in R and Python. These free, open-source, 
cross-platform programming languages have decades of 
use and community building, and allow scaling up from 
desktop computers to powerful processing systems, such 
as HPC (high-performance computing) and cloud com-
puting. When supported by the powerful and expanding 
information exchange standards set by the World Wide 
Web Consortium (W3C), these interoperable technologies 

Box 1. The current state of environmental sciences education in American universities.

The widespread lack of capacity among researchers in environmental biology for doing data-intensive science is a fundamental impedi-
ment to harnessing the potential power of big data and associated new technologies. The need for better preparation in these skills is 
increasingly acknowledged across diverse publications and forums (e.g., Jones et al. 2006, NERC 2010, 2012, Manyika et al. 2011, Joppa 
et al. 2013, Laney et al. 2015, Smith D 2015, Teal et al. 2015, Mokany et al. 2016, Peters and Okin 2016). A recent survey of graduate 
students in environmental sciences (Hernandez et al. 2012) is eye opening: Over 80% of students had received no formal training in 
computing or informatics at even the most basic level, and 74% stated that they had no skills in any programming language. Although 
72% of the students said they understood the term metadata, about half had not created metadata for their dissertation data and had 
no plans to do so. Approximately one-third of the surveyed students were planning to use sensors in their research, which will lead 
them at least incidentally into learning some of these topics at some level, although likely not employing best practices. Why are these 
skills still so rare when the need for them is now widely recognized? Strasser and Hampton (2012) reported that when ecology instruc-
tors are asked why they do not train students in such foundational skills, they indicate the following eight obstacles: (1) limited time, 
(2) the topics were not appropriate at their course’s level, (3) the topics were or should be covered in a lab section, (4) students in the 
course did not have the necessary quantitative or statistical skills to cover the topics, (5) lack of funding or resources, (6) the course 
was too large to cover these topics well, (7) the instructor was not knowledgeable in these topics, and (8) the topics were or should be 
covered in other courses. Essentially, we are attempting to fit more material into already-full courses and curricula, which are taught 
by people who do not feel prepared to address topics relevant to big data and data-intensive research. Clearly, the current situation is 
not satisfactory, but there is reason for optimism. Three decades ago, ecologists were ill prepared to use statistics in their research, and 
now statistics preparation is considered vital in ecology. It would be extremely difficult to publish a manuscript in ecology without any 
statistical testing. A similar revolution in computational proficiency must occur in order for environmental scientists to fully arrive in 
a digital age that requires data-intensive synthesis (Green et al. 2005).
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afford opportunities for creating data, models, codes, 
and workflows that can be broadly shared, reviewed, 
and extended, resulting in transparent and reproducible 
synthesis (Hollister and Walker 2007, Rüegg et  al. 2014, 
Hampton et al. 2015).

This article represents the consensus perspective of a 
group of environmental scientists, informatics experts, 
and computational scientists who have been building and 
delivering training that covers the concepts and skills envi-
ronmental scientists need to stay on the leading edge (some 
examples are in table 1). The main challenge we address is 
how to significantly raise the data-science competencies 
of current and next-generation environmental research-
ers—that is, the concepts and skills needed to effectively 
engage the heterogeneous, distributed, and rapidly grow-
ing volumes of data available for addressing critical envi-
ronmental questions. Here, we outline the skillset required 
by environmental scientists and many other scientific 
fields to succeed in the kind of data-intensive scientific col-
laboration that is increasingly valued. We also suggest the 
forms that such training could take now and in the future.

Key skills for the data-intensive environmental 
scientist
It is unrealistic for most individual researchers to mas-
ter every aspect of data-intensive environmental research. 
Rather, we can identify the foundational knowledge and 
skills that are a gateway for researchers to engage in data sci-
ence to the degree that best suits them. We emphasize that 
data-intensive environmental research is most likely to reach 
its full potential through collaboration among variously 
talented researchers and technologists. We distinguish five 
broad classes of skills (table 2): (1) data management and 
processing, (2) analysis, (3) software skills for science, (4) 
visualization, and (5) communication methods for collabo-
ration and dissemination. The novice need not master all 
at once; in our experience, even basic familiarity with these 
skills and concepts has a positive impact on both research 
and collaboration capabilities.

Data management and processing. Data management has always 
been a challenge in research, and it continues to grow in 
magnitude and complexity, with the requisite skills a crucial 

Table 1. Examples of existing training resources and events.
Topics

Type Title Organization Data Analysis Software Visualization Collaboration
Target 

Audience License Web site

Lesson Learn X and 
Y minutes, 
where X=json

Adam Bard/
Anna Harren

 Programmers Open  
(CC-BY-SA)

https://leamxinyminutes.com/
docs/json/

Lesson R for 
reproducible 
scientific 
analysis

Software 
Carpentry

  Researchers 
using R

Open  
(CC-BY)

http://swcarpentry.github.io/  
r-novice-gapminder/

Unit NEON Data 
Skills

National 
Ecological 
obsevatory 
Network

     Researchers, 
Students, 
Instructors

Open  
(CC-BY)

http://neondataskills.org

Unit DataONE Data 
Management 
Modules

DataONE    Researchers, 
Instructors, 
Librarians

Open  
(CC0)

https://www.dataone.org/
education-modules

Workshop Data 
Cerpentry 
Workshops

Data 
Carpentry

    Researchers Open  
(CC-BY)

http://www.datacarpentry.org/

Workshop Open Science 
for Synthesis

National 
Center for 
Ecological 
Analysis and 
Synthesis

     Researchers Open  
(CC-BY)

https://www.nceas.ucsb.edu/
OSS

Course Data 
wrangling, 
exploration, 
and analysis 
with R

University 
of British 
Columbia

    Graduate 
students

Open  
(CC-BY-NC)

http://stat545.com/index.html

Course Programing 
for Biologists

Weecology 
Lab

    Under-
graduate 
students

Open  
(CC-BY)

http://www.
programmingforbiologists.org/
programming/

Program Data Science 
Program 
(Coursera)

Johns 
Hopekins  
University

   Researchers, 
Students

Proprietary https://www.coursera.org/
specializations/jhudatascience

Program Berkeley 
Data Science 
Education 
Program

University 
of 
California, 
Berkeley

     Under-
graduate 
students

Open  
(CC-BY-
NC)

http://databears.berkeley.
edu/

https://leamxinyminutes.com/docs/json/
https://leamxinyminutes.com/docs/json/
http://swcarpentry.github.io/r-novice-gapminder/
http://swcarpentry.github.io/r-novice-gapminder/
http://neondataskills.org
https://www.dataone.org/education-modules
https://www.dataone.org/education-modules
http://www.datacarpentry.org/
https://www.nceas.ucsb.edu/OSS
https://www.nceas.ucsb.edu/OSS
http://stat545.com/index.html
http://www.programmingforbiologists.org/programming/
http://www.programmingforbiologists.org/programming/
http://www.programmingforbiologists.org/programming/
https://www.coursera.org/specializations/jhudatascience
https://www.coursera.org/specializations/jhudatascience
http://databears.berkeley.edu/
http://databears.berkeley.edu/
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component of environmental work in the coming decade 
(e.g., NERC 2010, 2012). Many classical ecological studies 
are based on data that were collected and stored in personal 
notebooks. Today, there is an expectation that data will be 
stored digitally, backed up, and available for future analysis 
(Heidorn 2008, Hampton et  al. 2013). A new set of data-
management skills (table 2) is required to ensure that data 
storage and sharing are not prohibitively burdensome to 
investigators and that scientists are prepared to articulate 
and adhere to a well-structured data-management plan from 
beginning to end (e.g., Michener and Jones 2012).

Metadata, or data about the data, provide the descrip-
tions and documentation that enable one to understand the 
content, format, and context of a data set (Michener 2006, 
Michener and Jones 2012). Clear metadata are essential for 
a researcher to understand how a data set was collected and 
processed, by whom, its format and structure, and its asso-
ciated uncertainties (Jones et al. 2006, Edwards et al. 2011, 

White et  al. 2013). At the very least, scientists must learn 
to routinely generate metadata in easily accessed machine-
readable formats. Even better, metadata standards such as 
Ecological Metadata Language (EML; Fegraus et  al. 2005) 
can greatly facilitate data sharing and reuse. Data storage 
formats that tightly package metadata with data are becom-
ing more common (e.g., netCDF and HDF5); however, few 
environmental scientists understand and can work with 
these formats. Furthermore, documentation of the data set 
itself is often not sufficient in cases of large ecological syn-
theses: Process metadata, which documents the alterations 
made to produce a final data set, are needed for research to 
be truly repeatable and reproducible (Ellison 2010).

There is broad variation in the kinds of data that are col-
lected and used in environmental research, such that users 
are challenged not only to understand many data types and 
formats, from text to raster and video (Jones et  al. 2006, 
Michener and Jones 2012), but also to integrate them in 

Table 2. A taxonomy of skills for data-intensive research.

Data management and 
processing

Software skills for 
science

Analysis Visualization Communication for 
collaboration and 
results dissemination

Fundamentals of data 
management

Software development 
practices and engineering 
mindset

Basic statistical inference Visual literacy and 
graphical principles

Reproducible open 
science

Modeling structure and 
organization of data

Version control Exploratory analysis Visualization services and 
libraries

Collaboration workflows 
for groups

Database management 
systems and queries (e.g., 
SQL)

Software testing for 
reliability

Geospatial information 
handling

Visualization tools Collaborative online 
tools

Metadata concepts, 
standards, and authoring

Software workflows Spatial analysis Interactive visualizations Conflict resolution

Data versioning, 
identification, and citation

Scripted programming (e.g., 
R and Python)

Time-series analysis 2D and 3D visualization Establishing 
collaboration policies

Archiving data in 
community repositories

Command-line programming Advanced linear modeling Web visualization tools and 
techniques

Composition of 
collaborative teams

Moving large data Software design for 
reusability

Nonlinear modeling  Interdisciplinary thinking

Data-preservation best 
practices

Algorithm design and 
development

Bayesian techniques  Discussion facilitation

Units and dimensional 
analysis

Data structures and 
algorithms

Uncertainty propagation  Documentation

Data transformation Concepts of cloud 
and high-performance 
computing

Meta-analysis and 
systematic reviews

 Website development

Integrating heterogeneous, 
messy data

Practical cloud computing Scientific workflows  Licensing

Quality assessment Code parallelization Scientific algorithms  Message development 
for diverse audiences

Quantifying data 
uncertainty

Numerical stability Simulation modeling  Social media

Data provenance and 
reproducibility

Algorithms for handling 
large data

Analytical modeling   

Data semantics and 
ontologies

 Machine learning   

Note: Many if not most of these elements apply across multiple categories. This taxonomy was initially created in a workshop involving natural 
and physical scientists, information scientists, and computer scientists (isees.nceas.ucsb.edu), with modest refinements by the authors.
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order to accomplish meaningful synthetic analyses. A large-
scale study may call for the integration of many different 
types of data, creating philosophical, logistical, and analyti-
cal challenges (Jones et al. 2006, Soranno et al. 2015).

Although good data management can facilitate data inte-
gration, for the efficient synthesis of diverse data, scientists 
may need to dig deeper in the toolbox and learn about for-
malized semantics and ontologies. The semantics of a data 
set (e.g., the context and compatibility of similarly labeled 
attributes across studies) necessary for full integration may 
still be missing or incomplete (Madin et  al. 2007). From 
spatially explicit data (e.g., Al-Bakri and Fairbairn 2012) 
to species-level observations (e.g., Kennedy et  al. 2005), 
semantic dissimilarity can hinder integration. For example, 
in a synthesis of stream restoration effectiveness, Barnas and 
Katz (2010) found that minor differences in how stream 
restoration projects were characterized in metadata resulted 
in major qualitative differences in overall evaluation of res-
toration actions’ efficacy. Using formalized ontologies has 
benefited other fields, such as molecular biology and urban 
planning (Bada et al. 2004, Michalowski et al. 2004). Within 
a research domain, an ontology represents knowledge in 
both standardized terminology and by characterizing the 
relationships among domain objects (Madin et  al. 2007). 
Broader use of ontologies in ecology would facilitate synthe-
ses by streamlining and simplifying decisions about whether 
and how diverse data sets are integrated (Madin et al. 2008).

Whether focal data sets are well organized or messy, sci-
entists must have the tools to work with varied data formats 
and types in a reproducible workflow. Informally, research-
ers may describe this stage of data processing as data wran-
gling, the process of manipulating data sets into consistent 
formats appropriate for analysis and synthesis. For example, 
a plant ecologist may want to aggregate and summarize sen-
sor data collected at various temporal frequencies and merge 
these data with point or regional values extracted from raster 
files. Adding observational and experimental data on traits 
such as chemical composition or growth rates would add 
another layer of complexity. Although essential, this process 
is rarely taught in courses or described thoroughly in pub-
lications. Popular scripting languages (e.g., R and Python) 
provide a large set of dedicated tools for researchers to per-
form the necessary data wrangling steps in a transparent and 
reproducible manner.

Analysis
Just as ecological data have become richer, more complex, 
and more challenging to navigate, so, too, have statistical 
methods (Green et  al. 2005). The breadth and complex-
ity of methods now employed in ecological research are 
overwhelming. Rather than attempt to run ever faster in 
the hamster wheel of statistical methods, data-intensive 
training programs should focus on the general skills that 
will best enable researchers to survive and thrive in this 
rapidly changing environment (table 2). Specific statisti-
cal methods frequently are determined by the researcher’s 

field, and a continued emphasis on rigor in these statisti-
cal methods will be synergistic with learning fundamental 
computing skills. Such skills are needed to facilitate not 
only the creation and use of efficient code for diverse 
statistical analyses but also the critical evaluation of 
its implementation, including peer review (Joppa  et  al. 
2013).

Computational building blocks for statistics. First, we recom-
mend a computational approach to statistics training. 
Whereas calculus and a basic statistics course might have 
been sufficient background for classical ecological sta-
tistics, some basic computational training is essential to 
understand today’s algorithms (Wilson 2006). A computa-
tional approach to statistics training offers an opportunity 
to avoid the overload of highly specialized methods con-
tingent on a narrow set of assumptions in favor of a more 
general approach that emphasizes basic concepts such as 
simulation, sampling, visualization, and summary statistics 
(table 2).

Scripting for efficient, reproducible, and transparent analysis.  
Second, scientists who execute their analyses in a scripting 
language have a tremendous advantage in synthetic integra-
tive work, enjoying greater flexibility and efficiency, and 
with the important benefit of creating transparency and 
reproducibility for collaborators and colleagues (White et al. 
2013). Compared with spreadsheet tools that allow users 
to mix the data processing with the data set itself, scripting 
approaches help to clearly separate data processing from 
the data, paving the way toward capturing the scientific 
workflow for a specific analysis. Increasing transparency and 
direct reproducibility, by sharing scripted analyses, is crucial 
as data-intensive analyses become more complex and varied 
(Ellison 2010). Providing well-documented code and data 
to accompany manuscripts helps reviewers and readers to 
understand both familiar and unfamiliar analyses (Wilson 
et  al. 2014). Although the code itself can assist transpar-
ency, skills in the appropriate documentation of codes are 
perhaps just as important for reuse and reproducibility. The 
novice will make great strides by becoming comfortable 
with fundamental computational approaches to statistics, in 
a scripted environment. And as analyses become more chal-
lenging, scientists are sometimes faced with the surprising 
idea that they are not just doing analysis but also actually 
developing software.

Software skills for science
Any scientist who writes data-processing and -analysis 
code is functionally a software developer, but few have been 
trained in best practices of software development (Wilson 
et al. 2014). Researchers in the vanguard of data science have 
suggested that scientists adopt software-development best 
practices: version control, literate programming documenta-
tion, unit testing, continuous integration, software develop-
ment and release patterns, and code peer review (table  2). 
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Although these techniques are valuable, they are likely too 
advanced to serve as a starting point for most domain sci-
entists. We suggest the following starting points for every 
researcher to learn.

Learning a computing language and its “ecosystem.” Like the 
scientific process itself, software stands on the shoulders of 
giants. Learning to discover, assess, and manage dependen-
cies within software is an important part of becoming pro-
ficient in a computing language (Wilson et al. 2014). Scripts 
that reuse existing proven and tested methods are faster to 
write, simpler to understand, and easier to trust than those 
that reinvent the wheel. Learning how to find software that 
already provides the required functionality is often just as 
important as knowing how to write that functionality from 
scratch. However, not all software is created equal, and 
buggy, unstable, or untested dependencies are the Achilles 
heel of many scripts. Telling the good from the bad is a skill 
that scientists need to acquire; Wilson and colleagues (2014) 
have provided more detailed advice on best practices in soft-
ware development.

Code organization. Like most aspects of research, good soft-
ware practice requires good organization. Following existing 
practices and recommendations for a software language or 
field will help an individual researcher and others who read 
the code to find the correct lines and scripts for a particular 
result. Good organization goes beyond files to how code 
itself is written. A fundamental concept of clean, well-
organized code is the don’t repeat yourself  (DRY) principle 
(Wilson et  al. 2014). Although heavy use of copy–paste is 
a common strategy, researchers should learn to identify 
and reorganize common tasks or subroutines into separate 
scripts or functions. Like any other writing, good code 
requires frequent revision and rewriting, which saves time 
and reduces errors.

Data visualization
Historically, scientific data visualizations have been static, 
two dimensional, and created as a scientific “end product,” 
often designed for publication. However, as data streams 
continue to evolve and expand and as analyses that inte-
grate these data become more complex, it is crucial for 
data visualization to be included throughout the scientific 
workflow (Fox and Hendler 2011), tightly connected to the 
original and derived data to support current results and 
reproducibility, and effective as a communication tool that 
disseminates developing research to the scientific and other 
communities.

Integrating data visualization throughout the scientific work-
flow. Visualization products created early in the data-
exploration and -analysis stages are tools to understand 
trends and relationships that inform analysis methods, 
constraints, and interpretations (Kelling et  al. 2009). 
Furthermore, in an era of high-frequency streaming data, 

static two-dimensional output can quickly become out-
dated. It is increasingly important that visualizations 
maintain a close connection to the original data (Fox and 
Hendler 2011) to support dynamic outputs that can adapt 
to methodological and data updates and to maintain repro-
ducibility by connecting the community more directly to 
the original data.

Interactive visualization as a compelling communication tool.  
Interactive visualization can allow researchers to more read-
ily explore data with each other and also foster dialog with 
stakeholders. A recent explosion of application program 
interface access to powerful, interactive data-intensive visu-
alization (e.g., plot.ly and Shiny) and mapping (e.g., leaflet 
and mapbox) tools accessed through widely used program-
ming environments (e.g., R and Python) empowers environ-
mental scientists to place analysis results in the hands of a 
broader audience (Zastrow 2015).

Despite advances in visualization tools and approaches, 
harnessing the full value of these resources requires pro-
ficiency in scripting and knowledge of an ever-expanding 
array of tools. It also requires an understanding of graphic 
or cartographic principles that support readability (Brewer 
1996, Tufte 2001, Brewer and Buttenfield 2007). These are 
skills that not all scientists can be expected to have. As for 
all the skills discussed here, scientists who lack specific skills 
would benefit from collaboration with relevant experts.

Communication for collaboration and dissemination 
of results
Communication is the cornerstone both for collaborative 
team science that produces high-impact scientific products 
and for effective dissemination that ensures these products 
are useful for society. Collaboration is now the norm for 
successful scientific endeavors (Wuchty et  al. 2007), par-
ticularly for data-intensive environmental research, which 
implicitly requires a broader suite of cross-disciplinary 
data, skills, and knowledge. Successful science communi-
cators integrate technologies that augment but still cannot 
replace good people skills, the soft skills of interacting 
productively with other human beings in a professional 
endeavor.

Communication tools. A growing suite of tools facilitates 
dynamic collaboration across geographic and disciplinary 
boundaries. Version control tools such as Git and the user-
friendly GitHub interface support cross-team development 
of processing algorithms, documentation, and code that 
integrates and synthesizes heterogeneous data, in addition 
to issue assignment and tracking. Collaborative writing tools 
such as Google Docs and Mozilla Etherpad support remote 
meeting participation and community-developed documen-
tation of methods, protocols, and scientific workflows. Data 
repositories relevant to environmental sciences are on the 
rise, supporting data sharing, discovery, and documentation 
(Michener and Jones 2012). Furthermore, a diversity of new 
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platforms is emerging to integrate the tools for collabora-
tion and data sharing, such as the Open Science Framework 
(osf.  io) and Jupyter/iPython Notebooks (jupyter.org). Of 
course, these tools do not create a vibrant exchange of ideas 
by themselves; they only make it easier for researchers to 
communicate with each other and a broader audience, and 
this skill set is not one that can be as easily coded.

Communication skills. Effective communication (table 2) both 
within a collaborative team and to the broader scientific 
and nonscientific community is a critical skill in science. 
In both cases, researchers who are effective communicators 
learn to invest time and energy in understanding their audi-
ence—whether it is a research team or a policy-setting orga-
nization—and honing their skills to engage in a meaningful, 
respectful and productive dialogue (Baron 2010, Pace et al. 
2010, Cheruvelil et al. 2014).

Early in a collaboration, scientists from different disci-
plines often spend substantial effort in assuring that they 
are using a common language in their work, defining terms 
in the same way, and working toward the same objective 
(Eigenbrode et  al. 2007, Hackett et  al. 2008). Even with 
initial hurdles cleared, successful teams must continue to 
expend considerable energy communicating with each other 
clearly to ensure that individual as well as collective expec-
tations for research productivity are met and that sources 
of conflict are addressed (Cheruvelil et  al. 2014). High-
performing teams excel in communication, achieve results 
beyond what any could have realized alone, and thus richly 
return on the investment they make upfront on human 
interactions (Smith and Imbrie 2007).

Many scientists assume that communication skills are 
innate; in our experience, they are like any other skill in that 
some people are more predisposed than others, but most if 
not all researchers can improve their communication skills. 
Some useful exercises are those based on the “message box” 
in Baron (2010) and development of collaboration policies 
in Cheruvelil and colleagues (2014).

Changes in mindset
As the research and training landscapes change, the need 
for new skills will be accompanied by a need for changes 
in mindset to make data-intensive training effective. These 
changes in mindset must occur among administrators, 
instructors, and individual learners who together shape the 
capabilities of the workforce in environmental science.

Administrators and faculty in higher education will need 
to recognize that data-intensive research skills are core 
skills that need to be widely introduced into departmen-
tal courses and curricula. Both faculty and students need 
these changes. Funding organizations with finite resources 
and large commitments to environmental sensor networks 
(e.g., in the form of national observatories and satellite-
based sensors) expect a return on these investments, which 
requires researchers to acquire the capacity to use these data 
effectively. Furthermore, students with data skills clearly are 

more marketable across sectors, a trend that is expected to 
grow (NERC 2010, 2012, Manyika et al. 2011, Smith 2015). 
To better prepare the next-generation of scientists for mod-
ern data-intensive research, skills should be taught both as 
stand-alone courses and incorporated as integral learning 
objectives of existing science courses. Incorporating data-
intensive skills into university programs will raise the base-
line for data literacy (box 2).

Bringing data into the classroom requires recognition 
of ongoing changes in data availability and variety, as 
well as the speed with which data are now generated, and 
how these shifts affect approaches to data management, 
integration, and analysis. In introducing students to data-
intensive research in undergraduate ecology, Langen and 
colleagues (2014) additionally found that students had 
very diverse perceptions about whether public data were 
more or less “authoritative” than those they generated 
themselves and whether these activities were really “doing 
science.” Given that addressing environmental questions 
at appropriately broad scales will likely require the use 
of large-scale public data (e.g., NASA, EPA, and NEON), 
Langen and colleagues’ (2014) findings suggest a need to 
address students’ (and instructors’) questions about how 
data-intensive research fits into the scientific endeavor 
overall.

Changing learning objectives for data-intensive train-
ing will require educators to restructure existing courses 
and develop new teaching materials, but collaborating in 
course design and sharing materials can ease the burden on 
individual instructors. A variety of initiatives provide freely 
available data sets to be slotted into existing courses for 
specific learning objectives (e.g., the Portal Project Teaching 
Database, Ernest et al. 2015; NEON Teaching Data Subsets, 
https://dx.doi.org/10.6084/m9.figshare.2009586.v9). It is also 
becoming more common for instructors to openly share 
their full course materials. Community sharing of course 
materials allows educators to teach “field-tested” courses 
broadly, discuss best practices, share experiences and per-
spectives, and, ultimately, to improve and refine training 
to be higher quality and more effective (Teal et  al. 2015). 
Software Carpentry and Data Carpentry have been leading 
examples of collaborative course development for the work-
shop model (Teal et al. 2015), but other models exist, rang-
ing from single units (www.dataone.org/education-modules) 
and lesson sets (http://neondataskills.org/tutorial-series) to 
full-semester courses (www.programmingforbiologists.org). 
Unfortunately, the growth of learning management systems 
at many institutions has acted to limit the transferability of 
course materials, because access is typically limited to mem-
bers of the institution.

The training landscape for data-intensive research 
skills
Currently, the resources for training in data-intensive 
research skills are both broad and scattered (table 1), com-
plicating navigation for novices and experts alike. On the 
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bright side, as “big data” and “data science” become house-
hold terms, these diverse resources are rapidly accumulat-
ing, presenting a tremendous opportunity for advancing 
widespread training. A variety of resources and events sup-
port self-paced and facilitated learning, ranging in format 
from single stand-alone lessons to domain-themed degree 
programs in data science. The delivery format for instruc-
tional resources includes blog posts, websites, videos, text 
documents, documented code, and training events (box 3).

Improving training approaches: The ideal  
and the practical
Ideally, the skills for data-intensive science will be incor-
porated into existing curricula at university or preceding 
levels. The need to integrate the skills for data-intensive 
research into higher education has been highlighted repeat-
edly. For example, the National Science Foundation’s Vision 
and Change in Undergraduate Biology stated, “students 
should be competent in communication and collaboration, 

as well as have a certain level of quantitative competency 
and a basic ability to understand and interpret data. 
Furthermore, to be current in biology, students should have 
experience with modeling, simulation, and computational 
and systems-level approaches to biological discovery and 
analysis, and should be familiar with using large databases” 
(Smith 2015).

Data across the curriculum. The potential for data literacy to 
transform approaches across disciplines and sectors argues 
strongly for an initiative similar to that of writing across the 
curriculum in the 1970s, which persists in various forms 
throughout higher education (McLeod 1989). In that case, 
the recommendation has been for writing to be integrated 
into many required university courses so that students use 
writing as a tool to understand disciplinary material and 
also understand good writing to be fundamental to profes-
sional success, no matter what career trajectory one takes. 
This approach has many benefits. Students will acquire skills 

Box 2. Building the next-generation workforce.

Several opportunities are presented by integrating data science into university curriculum. First, the skills for data-intensive research 
are largely high-demand, transferable skills that will benefit students across sectors and disciplines (Manyika et al. 2011). The mar-
ketability of these skills therefore argues for their early introduction in university curricula. Second, data-science initiatives can be 
positioned to foster diversity in high-demand research areas. Berman and Bourne (2015) made a powerful argument that data sci-
ence should build gender balance into its foundations, and we suggest here that data-intensive environmental research has a special 
opportunity in this regard. The life sciences typically are gender balanced from undergraduate through postdoctoral stages, whereas 
women represent only 23% of engineering and 25% of computer-sciences graduate students (www.nsf.gov/statistics/seind14/index.cfm/
chapter-2). As these fields meet at the intersection of data-intensive environmental research and education, women from biological 
sciences may find employment in data science such that the field can become both more gender balanced and representative of society 
at large in terms of ethnicity and other demographics.

Figure 1. A Software Carpentry Boot Camp for Women at Lawrence Berkeley 
National Lab. Photo credit: The Regents of the University of California, through 
the Lawrence Berkeley National Laboratory.
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that can be applied broadly and reinforced through applica-
tion throughout their academic programs. Furthermore, 
it allows equal access to these skills rather than creating 
the “haves” and “have nots” of students with this critical 
skill set. A drawback, of course, is the difficulty of ask-
ing instructors to add material to existing courses, with 
their potentially limited expertise (Strasser and Hampton 
2012), but this transition can be aided by access to appro-
priate short courses and online resources, including data-
discovery tools, example data sets, code, and instructional 
materials. In a manner similar to the writing centers that 
are in place at many institutions and that reach out to assist 
diverse units to enhance quality writing, quantitative learn-
ing centers that act as outreach centers for the data-science 
skills discussed here may be a highly effective strategy to 
broadly enhance quantitative skills across disciplines. Such 
centers might support learners through both structured and 
ad hoc tutorials tailored to localized curricula and resident 
researchers.

Stand-alone university courses. A useful interim step—until 
such a curriculum-wide approach is adopted—is providing 
specialized courses akin to scientific writing or statistics. 
At the undergraduate level, a course on data skills for envi-
ronmental science early in the curriculum has the advan-
tages of early exposure and common knowledge that helps 
to encourage continued learning through peer networks. 
Drawbacks include the fact that many curricula are already 
quite full and demanding, uncertainty about where such a 
course would fit within the university structure (e.g., biol-
ogy, mathematics, or computer science), and whether such 
an approach might be too generic for specific disciplinary 
needs.

Coordinating workshop resources and events. In the absence 
of full integration within university curricula, there are 
multiple effective mechanisms by which current modes 
of data-intensive training can continue to have positive 
influence. The diversity of training opportunities available 

Box 3. Types of resources and events currently available to support training in data-intensive environmental  
research and the diverse manners by which training can build on modular components.

In table 1, we show illustrative examples of these initiatives, and figure 2 below describes how they can be productively coordinated, 
spanning the following: (a) lesson, an atomic module containing material that covers specific learning outcomes; (b) unit, a group of 
lessons that have been designed to collectively cover a broader data concept or set of concepts and tasks; (c) data, a data set useful for 
one or more particular teaching goals; (d) code, a set of machine-readable instructions that constitute or contribute to a computer pro-
gram; (e) seminar, a single or series of presentations that may be presented in person or online; (f) workshop, a facilitated collection of 
lessons or units that address a specific concept or set of skills, offered across a short duration; (g) course, a facilitated longer collection 
of units, usually part of a university degree program or a course of study that may or may not be recognized for credit toward the grant-
ing of an approved degree; and (h) program, a facilitated degree- or certificate-bearing suite of courses that follow a particular domain.

Figure 2. Resources that promote data-intensive research skills, emerging from 
open education initiatives, can be incorporated into traditional education 
programs and coordinated either inside or outside of academia to form the 
basis of a data-intensive curriculum.
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outside of universities (e.g., table 1) can help to build skills 
for individuals that seek them out, train more trainers, 
produce educational materials used by others, and build a 
like-minded community that is independent of institutional 
affiliation. Such programs have many benefits, includ-
ing raising awareness of data-intensive skills among more 
established researchers, for whom stand-alone university 
courses are unlikely. Once a basic understanding of cod-
ing has been achieved, students can readily gain additional 
advanced skills. Many online programs are user paced, 
such that knowledge can advance rapidly. However, these 
programs also have drawbacks. There are initial barriers 
to entry; for example, people with minimal introduction to 
data-intensive research may not be aware of these opportu-
nities or motivated to enroll. We suggest that the benefits of 
data-intensive training will be realized more rapidly through 
sustained coordination that enables discovery of training 
opportunities and the sharing of materials, lessons learned, 
and convergence on standards such as training-effectiveness 
assessment instruments.

Assessment and evaluation. Just as training in the use of data-
intensive skills for science has not yet matured, neither has 
the development of best practices in its implementation. 
A great need for assessment and evaluation of training 
approaches exists for data-intensive research skills in sci-
ence. However, this endeavor will build on a solid founda-
tion of existing knowledge and instruments from related 
disciplines.

There are well-developed tools available to assist in 
assessing skill development in certain areas that relate to 
data science, examples being instruments such as con-
cept inventories including those in statistics (Allen 2006) 
and computer science (Taylor et  al. 2014). These tools 
have been instrumental in fostering an appreciation for 
the benefits of active learning methods (Epstein 2013). 
The development of such instruments in interdisciplin-
ary areas of quantitative science has not yet occurred, 
although there are instruments to assess comprehension 
of the nature of science. The variety of topics, concepts, 
and skills in the burgeoning area of data-intensive science 
has not yet fostered the development of an inventory-type 
assessment tool. Such a tool could motivate the diverse 
stakeholders in data-intensive science education to priori-
tize effort across the range of potential topics. Differences 
in such prioritization are to be expected, and we propose 
that the challenges of data-intensive science in environ-
mental fields, due to the heterogeneity of data types and 
analysis methods, make this a particularly appropriate 
area for development of such an assessment tool. If avail-
able, it could serve as a model for assessments in other 
areas of data-intensive research. A useful aspect of such 
an assessment is that once evaluated in a few settings, it 
could more readily meet Institutional Review Board (IRB) 
approval in other settings and enhance the capacity for the 
community of data-oriented science educators to compare 

and contrast the benefits of the variety of instruction 
methods.

Conclusions
The availability of information about the environment is 
unprecedented and growing at an overwhelming rate as 
automated sensors, satellite products, and large-scale envi-
ronmental observatories come online (Jones et  al. 2006, 
Hampton et  al. 2015, Peters and Okin 2016). In addition, 
many more funding organizations are requiring that grant 
recipients make their independent data sets well docu-
mented and publicly available, such that a large pool of het-
erogeneous environmental data is rapidly becoming easily 
accessible. It is exciting to contemplate the advances that will 
be enabled by syntheses of the rich data resources now at 
hand and how these prospects will steadily grow in the near 
future. Conducting robust, synthetic analyses of environ-
mental issues in today’s rapidly changing world—and indeed 
performing environmental synthesis in general—requires a 
broad set of skills and concepts in data integration, analysis, 
and fundamental computing that currently are not accessible 
to most researchers, regardless of career stage. And the pace 
of change in quantitative methods and technology makes it 
extremely difficult for environmental scientists to stay on 
the leading edge as society and science move deeper into the 
information age. Surveys indicate that the scale of the prob-
lem is massive and not yet addressed by existing education, 
training, and mentorship (box 1).

Ideally, universities ultimately will integrate data-intensive 
skills training into their curricula in a widespread manner 
that emulates the writing-across-the-curriculum movement 
that began in the 1970s; however, few institutions have 
moved in this direction (but see UC Berkeley; http://data-
bears.berkeley.edu). In the meantime, across the sciences, a 
diversity of workshops and online materials have proliferated, 
demonstrated high demand, and will benefit from systemic 
coordination that increases their efficiency and users’ ability 
to navigate them. This stage of development in data-intensive 
research and education provides fertile ground for improv-
ing its trajectory in several dimensions. First, sharing and 
coordinating resources and events across environmental sci-
ences will lower barriers for those seeking training and for 
instructors seeking support for delivering content. Second, 
coordinating the evaluation of training effectiveness will 
improve the future quality of training delivered at various 
scales. Third, understanding that skills for data-intensive sci-
ence are core to being a professional scientist will facilitate 
the integration of training into the university, where exist-
ing resources can provide a foundation on which to build 
activities, courses, and curricula. Finally, targeting training 
opportunities toward women and underrepresented groups 
will motivate the creation of a more diverse workforce at the 
ground floor of this exciting movement (box 2). The rapid 
growth in data availability and technologies creates not only 
unprecedented research potential but also the timely oppor-
tunity for researchers to establish the standards of scientific 
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rigor and inclusive community that will define the field for 
decades.
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