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The effect of distributional information on feature learning

Joseph L. Austerweil (Joseph.Austerweil@gmail.com)
Thomas L. Griffiths (Tom _Griffiths@berkeley.edu)
Department of Psychology, University of California, Bdese Berkeley, CA 94720-1650 USA

Abstract over objects and demonstrate in a behavioral experiment tha
eople infer features according to distributional cueswas o
A fundamental problem solved by the human mind is the for- bpeop 9

mation of basic units to represent observed objects that support model predicts. .
future decisions. We present an ideal observer model that in- A large body of previous research has demonstrated the
fers features to represent the raw sensory data of a given set of powerful effect of statistical cues on human learning (Baif

objects. Based on our rational analysis of feature representa- . . .
tion, we predict that the distribution of the parts that compose ASlin, & Newport, 1996; Aslin, Saffran, & Newport, 1998).

objects should affect the features people use to infer objects. Artificial language research has shown that human language

We confirm this prediction in a behavioral experiment, sug- |earning faculties use the pattern of statistics of speeichip
gesting that distributional information is one of the factors that

determines how people identify the features of objects. tives to segment a co_ntinuous speech stream into words (Saf-
Keywords: representational change, features, rational analy- fran et al., 1996; A_‘S“n et E_il" 1998). We complement these
sis, Bayesian modeling results by performing a rational analysis of feature regmes
tation inference and demonstrating that people use $tafist
Introduction cues to infer feature representations for novel objects.

Our model is a nonparametric Bayesian model that allows
for an unbounded amount of features to be expressed in the
observed data. The model creates features to reproduce the
objects it observes, but is penalized for each feature i pro
duces. Thus, the model can infer the number of features nec-
essary to represent the objects it observes. To the best of ou
127 and 100 and 100: or 150 and 117. knowledge, itis the only model of feature inference '_[r_lade_iaf

: the number of features from raw sensory data. Additionélly,
Wertheimer (1938, p. 71) has been shown to use distributional and categorizatios cue

A fundamental problem faced by any learner is the for-as people do (Austerweil & Griffiths, 2009).
mation of the basic units that represent observed stimdli an  This model makes a prediction based on how distributional
support generalizations from a set of primitives. Wertheim information should affect the features people infer, whigh
(1938) describes a visual form of the problem: how does th&ow test in a behavioral experiment. If the parts that com-
perceptual system form larger representations of obsetved Prise objects vary independently over objects, then an ob-
jects from the information given by Varying primiti\/e urfits server should infer the parts as features. On the other hand,
Although the investigation of Gestalt principles has ledito if the parts that compose objects covary over objects, an ob-
fruitful body of research, there currently does not existra f ~ server should infer the objects themselves as features.
mal computational account of why people form representa- The plan of the paper is as follows. In the first section we
tions for novel objects. In this paper, we present a formadiscuss previous empirical and computational work on human
model of how feature representations should be inferrad fro feature inference. Next, we present our ideal observer mode
a set of observed objects and demonstrate that people use std its predictions based on distributional cues. Third, we
tistical cues to infer the same features to represent ndxel o demonstrate people use the distributional cue as our model
jects that our ideal observer model would infer. predicts in a behavioral experiment. Finally, we discugs th

There are many factors that influence the features peopléplications of our work for the nature of human concepts
infer to represent objects, like the changes of concaviigsof and future directions for research.
contour (Hoffman & Richards, 1985), the usefulness for ex- .
plaining categorization of objects (Schyns & Murphy, 1994; Inferring features
Pevtzow & Goldstone, 1994), background knowledge of thePerceptual and conceptual cognitive psychologists hage be
function of objects (Lin & Murphy, 1997), and prior knowl- investigating the features people use to represent thedworl
edge of what types of features have been useful in the pasind both have been interested in how the features are created
(e.g., Gestalt principles, Palmer, 1977). However, wefeill and change, for reviews of results from both fields see Gold-
cus on one particular factor: the distribution of featuresro stone (2003) and Schyns, Goldstone, and Thibaut (1998). To
objects. Intuitively, a feature representation is usdfishow-  distinguish between the parts that exist in the objects hed t
ing an unknown object has a feature gives you information ageatures people use to represent observed objects, weseill u
to which object it is. We propose an ideal observer model ofpart” or “primitive” to refer to the aspect of the object and
feature inference that is sensitive to the distribution aftp  “feature” to refer to the representation of that object.

| stand at the window and see a house, trees, sky. The-
oretically | might say there were 327 brightnesses and
nuances of colour... And yet even though such droll cal-
culation were possible and implied, say, for the house
120, the trees 90, the sky 117 — | should at least have
this arrangement and division of the total, and not, say,
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ically motivated. Two factors that are important for any psy
\l chologically plausible model of feature learning are (& th
number of features should not be specifigutiori and (b) the
features should be inferred from raw sensory data. Previous
work by Ghahramani (1995) and Goldstone (2003) described
X4 models that infer feature representations from raw pixgél va
ues; however, both models require the number of features to
] be specified ahead of time. This is a serious issue because
0
1
0
1

L~
~

X1 X2

finding the appropriate number of features to use is a difficul

S (| 3_5.\ /l

x 111 0 part of the problem of inferring features. For example, it is
x2 0 1 0 0 clear what the best feature representations are of sizes fou
x3 0 0 1 1 and six for the objects in Shiffrin and Lightfoot (1997), but
x4 1 0 0 1 which of these two representations is more appropriate? Peo

ple are not given this information and thus a model of feature
inference should not receive it either.

More recently, Orban, Fiser, Aslin, and Lengyel (2008) de-
fined a Bayesian learning model of visual chunks that can
be interpreted as a model of feature representation inferen
.. ) By training participants on scenes where novel objectsroccu
Empirical Studies in groups, they showed people infer representations thmt ca
Previous research has demonstrated two major influences iire correlations between the groups as their model psedict
human perceptual feature learning: categorization and disAlthough their model does infer the dimensionality of itpre
tributional information. In general, people infer featmt®  resentations, it is given each scene pre-processed asrg bina
represent objects that are useful for categorizing ftime-  string of whether or not objects occur. It does not infer its
tionality principleof Schyns & Murphy, 1994). For example, features from raw sensory input.

Pevtzow and Goldstone (1994) demonstrated that partitspan ) ] )
inferred the diagnostic features useful to categorize ebeh A Rational Analysis of Feature Representation
ject into its appropriate category. They trained two groupsWe will outline, following Austerweil and Griffiths (20093

of participants to repeatedly categorize the same fourctdbje rational analysis of inferring features from raw sensortada
into different category schemes (objects A and B in one catewithout pre-specifying a specific number of features. First
gory vs. A and C in one category). Participants who learnedve formalize the problem as finding the best feature repre-
to categorize A and B together inferred the shared part of AsentationZ for a set of observed objeck. We defineZ to

and B as a feature and those who learned to categorize A ar a feature ownership matrix, whezg = 1 indicates that

C together inferred the shared part of A and C as a feature. objecti possesses featukgas in the matrix in the bottom of

In addition to categorization cues, Shiffrin and Lightfoot Figure 1. The problem of inferring from X can be solved by
(1997) showed that the distribution of parts over objects ca applying Bayes’ rule, with the posterior probabil®(Z|X)
affect the feature representation participants infer. hieirt  being given by
visual search experiment, participants searched for otteeof =

\ : i : 5 X|2)P(2)
objects shown in the top of Figure 1in a scene where the other ~ Z = argmaxP(Z|X) = argmax ; 7
three objects were distractors. The objects were designed s ‘ 2 3z P(X|Z))P(Z')
that each object shares one line segment with every other oliwhereP(Z) is the prior probability of the feature matrix, and
ject (and thus, two line segments must be known to discrimiP(X|z), the likelihood, indicates the probability of the ob-
nate between objects). At first, participants do not expege served data given these features. This splits the problam in
“popout,” meaning that response time in a visual search iswo subproblems: finding a representation that conforms to
nearly independent of the number of distractors. Popout typour prior assumptions?(Z), and finding one that can repro-
ically only occurs when the target and distractor differ in aduce the observed objects with high probabilRgX|Z).
single feature. Thus, the objects must differ by more than As a prior on feature ownership matrices, we chose a non-
one feature in the participants’ representations (moslylik parametric Bayesian prior, the Indian Buffet Process (IBP)
a conjunction of line segments). However, after about 2QGriffiths & Ghahramani, 2006). The IBP can be interpreted
days of training, participants in the experiment expermenc to be a probability distribution over feature ownership miaat
popout. Therefore their feature representation of theatbje ces with varying numbers of features. The probability of a

Figure 1: The four objects used in Shiffrin and Lightfoot
(1997) and their feature ownership matrix.

)

must have changed to be the objects themselves. particular feature ownership matrix under the IBP is:
Computational Models ak K (N—m)!(mg—1)!

p s . P(Z) = ——— exp{—ath} [] (N—my) fmk )
Schyns et al. (1998) identified the need for computational Mhoy Kn! K=l N!
accounts that infer feature representations and are p®g:ho (2)
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whereN is the number of objectdg, is the number of fea- r l Vv
tures with historyh (the history is the column of the feature

interpreted as a binary numbek),is the number of features,

Hn is the N-th harmonic number, andy is the number of

objects that have featuke One sensible prior assumption is \\ \—' J
that we should favor feature representations with a smaller

number of features. By choosingsuch thaty < 1, the IBP

captures this intuition because t(”%) K term decreases when

the number of features of the representatkongrows. Figure 2: The six primitives used to create objects. The, bias
In addition to the prior probability on feature represen-Which was in all objects, is shown in gray for reference, and

tations, we present two probability distributions to use fo the primitives are in black. Any combination of three featur

recreating the observed objeétsgiven a feature ownership forms a connected object when combined with the bias.

matrix Z depending on the representation of the raw pixels. If

the raw pixels are real valued, then a linear-Gaussian model

(Griffiths & Ghahramani, 2006) can be used and if the rawthree levelstest typeindicating whether the test objects were

pixels are binary, then a noisy-OR model (Wood & Griffiths, previouslyseen previouslyunseenor made ofhuffled parts

2006) can be used. Using the noisy-OR model, Austerweil\/I

and Griffiths (2009) demonstrated that the model uses distri ethods

butional and categorization information to infer repréaen Participants A total of 56 undergraduates from the Uni-

tions as people do in both Pevtzow and Goldstone (1994) andersity of California, Berkeley participated in exchange f

Shiffrin and Lightfoot (1997). course credit. There were 28 participants in each ottre
One prediction the model makes is that when the part§€latedandindependenconditions withtraining setandtest

weakly covary over objects (like those in Shiffrin & Light- ©rdercounterbalanced.

foot, 1997), objects should be inferred as features, bunwhestimyli Figure 2 shows the images of the primitives and

the parts occur independently over objects, the parts dit@ul  pias used to create the objects shown to participants. The ob
inferred as features. It has not been shown yet that people Ugacts were created by combining three primitives with thesbi
distributional information as the latter prediction susige  and were binary images. The primitives were designed such
Additionally, the rational analysis predicts people sldaink  that any combination of three with the bias was connected,
fer objects as features even after observing the set of sbjecand so that people would have minimal prior knowledge (e.g.,
only a small number of times. To test the predictions of ourfrom Gestalt principles).
model, Experiment 1 investigates how people infer feature There were twodistribution types correlated where
representations after observing sixteen novel objectsserho primitives covary imperfectly over objects, anmdlependent
parts either weakly covary or are independent. where primitives were combined independently over objects
There were twenty possible objects, corresponding to aH po
Testing the predictions: Martian Inscriptions sible ways of choosing three features from a set of six. The
correlatedsets of objects were created to have the same cor-
The goal of the experiment was to test the prediction of our rarelation over primitives as Shiffrin and Lightfoot (1998ge
tional analysis: when primitives aoerrelatedover observed  Figure 1). Two correlated sets were created using disjoint
objects, people infer the objects as features, and when-primcombinations of primitives, so that different objects aaeel
tives areindependenbver observed objects, people infer the jn each set. Each set consisted of four copies of four objects
primitives as features. To investigate this predictionsWwew  each with its own random added noise. Theependensets
participants a group of objects and look at how willing they consisted of sixteen of the twenty possible objects. Again,
are to call a new object that is a combination of three prim-two independensets were created, with the four objects miss-
itives a member of the previous group. According to ouring from each set corresponding to the four objects containe
model, participants in thendependengroup should gener- jn one of thecorrelatedsets. This method of generating stim-
alize to this new object (as they should infer the primitlyes yli guaranteed that eaatorrelatedset had a corresponding
but participants in theorrelatedgroup should not (as they jndependenset in which each primitive appeared with the
should infer the objects they observe as features and thesgme frequency, allowing us to control for familiarity. Fi-

cannot be combined to form the new object). nally, noise was added to all of the images by flipping each
There were three between-subjects factors each with twpixel in the image with probabilit)gls.
levels:distribution type(correlatedor independent training Each participant was shown a training setefrelatedor

set(1 or 2, which represents which of the primitives were independent with the specific set of objects depending on
correlated), andest order(1 or 2, which represents which of which training setcondition they were in. Figure 3 shows
the two random orderings of the test stimuli were shown tathe images in onendependenand onecorrelatedcondition.
participants). There was also one within-subjects facitnr w Participants viewed their training set by exploring thesaits
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(a) % é . it__ < E 3 (a) El 5 % (b) ,d: L 3 % :
®) Elﬂi Figure 4: The three sets of test images. g@@nfor training
A e A set 1 (shown in Figure 3) aruhseerfor training set 2. (b)
E} un_sgen‘or training set 1 (shown in Figur_e_ 3) arsenfor
: _ Do S training set 2. (cyhuffled partdor all conditions.
v RIS N R Procedure Participants were given the sixteen images on
k L/ ' business cards randomly shuffled in front of them appropriat

to their conditions and given the following cover story:
Figure 3: One of theorrelatedand one of thendependent  Recently a Mars rover found a cave with a collection of different
training sets given to the participants. (a) One of the¢®®  images on its walls. A team of scientists believe the images could

relatedtraining sets. (b) One of the twodependentraining  have been left by an alien civilization. The scientists are hoping to
sets. These two sets share four objects. understand the images so they can find out about the civilization.

They were asked to alert the experimenter after “investigat

ing the images” by “laying all the cards out on the table and
printed on cards, as described in more detail below. The sanr@yganizing them in any way you think might help you learn
test set was given to all participants in one of two random orabout the images” and told that “no longer than 5-10 minutes
ders. There were twelve objects in the test set, as shown iis necessary.” After they finished investigating the images
Figure 4. The twelve objects fell into thréest typesfour  they were given the following test instructions:
objects seen by the participant alreagge), four objectsthe it |ooks like there are many more images on the cave wall that the
participant had not seen already that were composed of thever has not yet had a chance to record. If the rover explored the
same primitives nseej, and four objects created by com- gg\é% wall further, which images do you think it would be likely to
bining primitives inconsistent with the statistical infioation
from both training setsshuffled parts As a consequence
of the way the stimuli were constructed, theenandunseen
test objects corresponded to one of the teorelatedsets — In the booklet in front of you are twelve images, each on its own
which objects participants had seen or not was determined bjage. After you are finished rating each image, turn the page to the
thetraining setcondition. This allowed us to control for the Nnextimage. Once you have turned to the next image, please DO
possibility that one set of objects was naturally more appea NOT TURN BACK to any previous images.

ing than the other. Thehuffled partdests were created by 14 minimize memory effects, the images from the training set
first taking the image formed by joining all six parts and seg-ygre not taken away from the participants. Each image was
menting it into six different parts. Thehuffled partsmages  ghqwn on a single page and participants were asked to gener-
used in the tests were four objects formed by a combinationi;e to the test set (“rate from 0-10 how likely you belieke t

of three of the six shuffled parts. This was done so that theq, e is to see this image on another part of the cave wall”).
four shuffled images would have the same gross properties as

the other testimages. Results

Your task is to rate how likely you believe it is that the rover sees
each image as it explores further through the cave.

The stimuli and test sets were carefully constructed to enFigure 5 shows mean responses and model predictions. Par-
sure that: (1) the variance at each pixel was equal for @titra ticipant responses were grouped into the thtest types
ing sets, (2) the features that were used in constructing théseen unseenandshuffled partsand then averaged. Model
correlated set were counterbalanced, and (3) the avenage sipredictions were calculated from the probability of the new
ilarity (in terms of pixel overlap) between any trainingaatd  images given the images from either the independent or cor-
any test set was equal. related conditions, and averaged in the same way. The model
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Human Generalization Likelihood for Test Images pants in thecorrelatedcondition were more likely to gener-

- 10 B Scon 0 sot alize to theseenimages than those in tiedependenton-
§ 81 Elsjﬁlsgﬁn(;ﬂ set |1 dition (t(54) = 2.97,p < 0.005). Participants in both train-
= 6 S L_J5hultled parts | ing conditions are more likely to generalize to theenim-
:ﬁ 4L ) T . | ages than thehuffled partsmages{(54) = 10.07, p < 0.001
2l ' ! andt(54) = 4.63, p < 0.001 respectively). There was no dif-
ference between participiants in training conditions oa th
0 Factorial Cards Correlated Cards shuffled partsimages {(54) = —0.12,p > 0.05). Finally,
Training Condition participants in both theorrelated and independentondi-
0.8 Model Predictions for Test Images tions are more likely to generalize to theseenimages
2 EE Scen in set than theshuffled partsmages {((54) = 2.89,p < 0.01 and
2 0.61 ggﬁfﬁg&%gﬁg 1 t(54) =5.31,p < 0.001, respectively).
2 0.4; 1 Discussion
- 0.21 |1 The main results of our experiment confirm the predictions
of our model: participants in thendependentondition do
Factorial Images Correlated Images not differentiate between thgeenand unseerimages; how-
Image Set Given to Model ever, participants in theorrelatedcondition do. Addition-

ally, participants in thindependentondition are more likely
Figure 5: Experiment results. The upper panel shows meato generalize to thenseenobjects than those in theorre-
ratings participants for testitems as a function of tragréon-  latedcondition. Since participants in tlwerrelatedcondition
dition. Error bars show one standard error. On bottom, modethould expect fewer objects under the feature representati
predictions for the same test images given images fromreithepredicted by our model (just the four objects they observed)
the independent or correlated conditions. it is sensible that they rate tlseenobjects higher than the-

dependengroup. Finally, both groups rate tishuffled parts

images lower than theeenandunseerimages.
predictions were computed by approximating the full poste- Pparticipants in thendependengroup generalized to then-
rior predictive distribution with the probability of the we  seerpbjects, while those in theorrelatedgroup did not. Nei-
images using the most likely features as determined by ger group generalized to tishuffled partobjects and there
Markov chain Monte Carlo simulation (see Austerweil & js no significant difference between the groups onshef-
Griffiths, 2009 for details). Since there was a large diffe®  fled parts Our results cannot be explained by participants
in the probabilities of different types of testimages, we 8s  in theindependengroup just expecting more variance in test
monotonic but non-linear transformation to produce the val gbjects than those in theorrelatedgroup. First, as noted
ues shown in the plot, raising the probabilities to the powelabove, the variance at each pixel was equal across training
of 0.0005 and renormalizing. Qualitatively, the model andsets_ Second, if participants in thﬂjependengroup S|mp|y
people show the same pattern of responses on all test itemsexpect more variance, this should predict that they would be

A four-way ANOVA revealed a main effect dest type  more willing to generalize to thshuffled partsis well as the
(F(2,52) = 6101, p < 0.001), an interaction betweetest unseerobjects, which was not the case. The pattern of judg-
typeanddistribution type(F (2,52) = 10.57,p < 0.001), and  ments on the different test items made by participants in the
no other significant main effects or two-way interactiorls (a two groups also cannot be explained by a simple categoriza-
F < 1). There was a three-way interactiorte$t typetestor-  tion model with the pixels as features because it would not
der, anddistribution type(F (2,52) = 19.11, p < 0.05). How-  distinguish between the types of test items due to the way the
ever, the effect is irrelevant to the question of whethemp®o training and test sets were constructed: the similarityiel
use distributional information as it is caused by partioisa overlap) was equal between all training and test sets. Thus,
in the firsttest order independentondition rating the seen our results suggest that participants infer features gpro
images higher than those in the secdest ordey indepen-  ate to the distributional cues between parts in the objaets t
dentcondition. Since there were no major effectdraining  observe.
setor test order we collapsed over these conditions in the  One might argue that participants in tberrelatedcondi-
subsequent pre-planned analyses. tion still differentiate between thenseerand shuffled parts
Confirming our hypothesis, participants in fhelependent images and that this in some way invalidates the predictions

condition are more likely to generalize to the unseen im-of the model; however, most of the images in gtauffled
ages than those in tleerrelatedcondition ¢(54) = 3.05, p < parts set are poorly formed according to Gestalt principles
0.005). There was no difference betweenskerandunseen and our model does not take into account these effects. In a
image ratings for the participants in tirelependentondi-  follow-up experiment, we are creating a nshuffled partset
tion (t(54) = 0.27, p > 0.05); however, there was for those in that does not violate our prior notions of what a good object
the correlatedcondition €(54) = 8.74,p < 0.001). Partici- looks like. Additionally, one might argue that these resale
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due to some aspect of the particular primitives we corrdlate Austerweil, J. L., & Griffiths, T. L. (2009). Analyzing

together (e.g., they form some pre-existing salient opjéat human feature learning as nonparametric Bayesian infer-
since there was no effect ahining set we demonstrate this ~ ence. In D. Koller, Y. Bengio, D. Schuurmans, & L. Bottou
was not the case. Since participants in both ¢berelated (Eds.), Advances in Neural Information Processing Sys-

andindependentonditions observe the parts the same num- tems(Vol. 21). Cambridge, MA: MIT Press.
ber of times throughout the object set, they must be seasitivGhahramani, Z. (1995). Factorial learning and the EM al-
to the covariation of parts in objects and not just the oVveral gorithm. InAdvances in Neural Information Processing

occurrence of the parts themselves. Systemg\ol. 7, p. 617-624). Cambridge, MA: MIT Press.
_ ) _ Goldstone, R. L. (2003). Learning to perceive while pereeiv
General Discussion and Conclusions ing to learn. InPerceptual Organization in Vision: Behav-

We have demonstrated that the statistics of how parts vary ioral and Neural Perspective(p. 233-278). Mahwah, NJ:
over objects affects the features inferred by participants Lawerence Erlbaum Associates. o

Based on our ideal observer model, we predicted participanCHffiths, T. L., & Ghahramani, Z. (2006). Infinite latent fea
should infer the parts of novel objects as features when they {Uré models and the Indian buffet process. In B.&bpf,
occur independently over objects and the objects themselve J- Platt, & T. Hofmann (Eds.jdvances in Neural Informa-
as features when they covary. Participants who observe a setlion Processing Systenggol. 18). Cambridge, MA: MIT

of only 16 objects whose parts covary do not believe an un- Press. _ . _
seen valid combination of parts is a member of the originafioffman, D. D., & Richards, W. A. (1985). Parts in recogni-
set; however, those observe a set of 16 objects whose partstion- Cognition 18, 65-96.

occur independently do believe the same unseen valid contn: E- L., & Murphy, G. L. (1997). Effects of back-
bination of parts is a member of the original set. Thus, peo- 9round knowledge on object categorization and part detec-
ple use statistical cues to infer features that represdattsh tion. Journal of Experimental Psychology: Human Percep-
which influence later decisions about the objects. tion and Performance23(4), 1153-1169.

Is this effect something unique to visual perception, osdoe OrPan. G., Fiser, J., Aslin, R. N., & Lengyel, M. (2008).
it reflect a general cognitive ability to appropriately extr Bayesian learning of visual chunks by human observers.
parts or wholes of objects as features? The previous work Proceedings of the National Academy of Scient6s(7),
demonstrating the importance of statistical cues for firigr 2745-2750. , i i
words and actions suggests it is a general cognitive ng(pacitPaImer, S. E. (1977). Hierarchical structure in perceptual

To test this, we hope to run a follow-up experiment using the '€PresentationCognitive Psychology, 441-474.
same paradigm in a conceptual domain. Pevtzow, R., & Goldstone, R. L. (1994). Categorization and

Our analysis provides a principled computational frame- the {ogrsir;g of Obje;:ti' II?:roce_e_din%s 0 f the g ixteentthAn-
work to investigate this problem, identifies key factorsunfi nual Conference of the Cognitive Science Sodjetyr12-

encing the learning of feature representations, demdastra 722). H|IIsdaIe,.NJ: Lawrence Erlbaum Associates. .
people use these factors in the same way as an ideal observéfa_ﬁran’ J. R Aslin, R. N., & Ngwport, E.' L. (1996). Statis-
and predicted a new empirical result in how people infer fea- tical learning by 8-month old infantsScience274, 1926-
ture representations. In addition to furthering our knalgke 1928. .

of human feature learning, our results are important to ma—SChynS’ P.G., Goldstong, R. .L" & Thibaut, J. (1998)' De-
chine learning because the problem of representing thelworl velqpmept of features in object concepBehavioral and

in a useful way is shared between machine learning and co% Brain Science=21, 1-54.

nitive psychology. Finally, our results are first steps taiga chyns, P. G',’ & !\/Iurphy, G. (1994). The ontogeny of part
a larger goal. We hope to extend our computational model to repres_entanon m_obj_ect concepts. The Psychology of
capture the effects of categorization, causality, refsti@and Learning and Motivatior{vol. 31, p. 305-354). San Diego:

. - Academic Press.
rior knowledge and how people infer features.
P ¢ peop Shiffrin, R. M., & Lightfoot, N. (1997). Perceptual learn-
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