
UC Irvine
UC Irvine Previously Published Works

Title
Online Tensor Methods for Learning Latent Variable Models

Permalink
https://escholarship.org/uc/item/9fs4c9xx

Authors
Huang, Furong
Niranjan, UN
Hakeem, Mohammad Umar
et al.

Publication Date
2015

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9fs4c9xx
https://escholarship.org/uc/item/9fs4c9xx#author
https://escholarship.org
http://www.cdlib.org/

ar
X

iv
:1

30
9.

07
87

v5
 [

cs
.L

G
]

 3
 O

ct
 2

01
5

Journal of Machine Learning Research (2014) Submitted ; Published

Online Tensor Methods for Learning Latent Variable Models

Furong Huang furongh@uci.edu

Electrical Engineering and Computer Science Dept.
University of California, Irvine
Irvine, USA 92697, USA

U. N. Niranjan un.niranjan@uci.edu

Electrical Engineering and Computer Science Dept.
University of California, Irvine
Irvine, USA 92697, USA

Mohammad Umar Hakeem mhakeem@uci.edu

Electrical Engineering and Computer Science Dept.
University of California, Irvine
Irvine, USA 92697, USA

Animashree Anandkumar a.anandkumar@uci.edu

Electrical Engineering and Computer Science Dept.

University of California, Irvine

Irvine, USA 92697, USA

Editor: Charles Sutton

Abstract

We introduce an online tensor decomposition based approach for two latent variable mod-
eling problems namely, (1) community detection, in which we learn the latent communities
that the social actors in social networks belong to, and (2) topic modeling, in which we
infer hidden topics of text articles. We consider decomposition of moment tensors using
stochastic gradient descent. We conduct optimization of multilinear operations in SGD and
avoid directly forming the tensors, to save computational and storage costs. We present
optimized algorithm in two platforms. Our GPU-based implementation exploits the par-
allelism of SIMD architectures to allow for maximum speed-up by a careful optimization
of storage and data transfer, whereas our CPU-based implementation uses efficient sparse
matrix computations and is suitable for large sparse datasets. For the community detec-
tion problem, we demonstrate accuracy and computational efficiency on Facebook, Yelp
and DBLP datasets, and for the topic modeling problem, we also demonstrate good per-
formance on the New York Times dataset. We compare our results to the state-of-the-art
algorithms such as the variational method, and report a gain of accuracy and a gain of
several orders of magnitude in the execution time.

Keywords: Mixed Membership Stochastic Blockmodel, topic modeling, tensor method,
stochastic gradient descent, parallel implementation, large datasets.

1. Introduction

The spectral or moment-based approach involves decomposition of certain empirical mo-
ment tensors, estimated from observed data to obtain the parameters of the proposed prob-

c©2014 Huang et al..

http://arxiv.org/abs/1309.0787v5

Huang et al.

abilistic model. Unsupervised learning for a wide range of latent variable models can be
carried out efficiently via tensor-based techniques with low sample and computational com-
plexities (Anandkumar et al., 2012). In contrast, usual methods employed in practice such
as expectation maximization (EM) and variational Bayes do not have such consistency
guarantees. While the previous works (Anandkumar et al., 2013b) focused on theoretical
guarantees, in this paper, we focus on the implementation of the tensor methods, study its
performance on several datasets.

1.1 Summary of Contributions

We consider two problems: (1) community detection (wherein we compute the decompo-
sition of a tensor which relates to the count of 3-stars in a graph) and (2) topic modeling
(wherein we consider the tensor related to co-occurrence of triplets of words in documents);
decomposition of the these tensors allows us to learn the hidden communities and topics
from observed data.

Community detection: We recover hidden communities in several real datasets with
high accuracy. When ground-truth communities are available, we propose a new error
score based on the hypothesis testing methodology involving p-values and false discovery
rates (Strimmer, 2008) to validate our results. The use of p-values eliminates the need to
carefully tune the number of communities output by our algorithm, and hence, we obtain
a flexible trade-off between the fraction of communities recovered and their estimation
accuracy. We find that our method has very good accuracy on a range of network datasets:
Facebook, Yelp and DBLP. We summarize the datasets used in this paper in Table 6. To
get an idea of our running times, let us consider the larger DBLP collaborative dataset for a
moment. It consists of 16 million edges, one million nodes and 250 communities. We obtain
an error of 10% and the method runs in about two minutes, excluding the 80 minutes taken
to read the edge data from files stored on the hard disk and converting it to sparse matrix
format.

Compared to the state-of-the-art method for learning MMSB models using the stochas-
tic variational inference algorithm of (Gopalan et al., 2012), we obtain several orders of
magnitude speed-up in the running time on multiple real datasets. This is because our
method consists of efficient matrix operations which are embarrassingly parallel. Matrix op-
erations are carried out in the sparse format which is efficient especially for social network
settings involving large sparse graphs. Moreover, our code is flexible to run on a range of
graphs such as directed, undirected and bipartite graphs, while the code of (Gopalan et al.,
2012) is designed for homophilic networks, and cannot handle bipartite graphs in its present
format. Note that bipartite networks occur in the recommendation setting such as the Yelp
dataset. Additionally, the variational implementation in (Gopalan et al., 2012) assumes a
homogeneous connectivity model, where any pair of communities connect with the same
probability and the probability of intra-community connectivity is also fixed. Our frame-
work does not suffer from this restriction. We also provide arguments to show that the
Normalized Mutual Information (NMI) and other scores, previously used for evaluating the
recovery of overlapping community, can underestimate the errors.

2

Online Tensor Methods for Learning Latent Variable Models

Topic modeling: We also employ the tensor method for topic-modeling, and there are
many similarities between the topic and community settings. For instance, each document
has multiple topics, while in the network setting, each node has membership in multiple
communities. The words in a document are generated based on the latent topics in the
document, and similarly, edges are generated based on the community memberships of the
node pairs. The tensor method is even faster for topic modeling, since the word vocabulary
size is typically much smaller than the size of real-world networks. We learn interesting
hidden topics in New York Times corpus from UCI bag-of-words dataset1 with around
100, 000 words and 300, 000 documents in about two minutes. We present the important
words for recovered topics, as well as interpret “bridging” words, which occur in many
topics.

Implementations: We present two implementations, viz., a GPU-based implementation
which exploits the parallelism of SIMD architectures and a CPU-based implementation
for larger datasets, where the GPU memory does not suffice. We discuss various aspects
involved such as implicit manipulation of tensors since explicitly forming tensors would
be unwieldy for large networks, optimizing for communication bottlenecks in a parallel
deployment, the need for sparse matrix and vector operations since real world networks
tend to be sparse, and a careful statistical approach to validating the results, when ground
truth is available.

1.2 Related work

This paper builds on the recent works of Anandkumar et al (Anandkumar et al., 2012,
2013b) which establishes the correctness of tensor-based approaches for learning MMSB (Airoldi et al.,
2008) models and other latent variable models. While, the earlier works provided a theo-
retical analysis of the method, the current paper considers a careful implementation of the
method. Moreover, there are a number of algorithmic improvements in this paper. For in-
stance, while (Anandkumar et al., 2012, 2013b) consider tensor power iterations, based on
batch data and deflations performed serially, here, we adopt a stochastic gradient descent
approach for tensor decomposition, which provides the flexibility to trade-off sub-sampling
with accuracy. Moreover, we use randomized methods for dimensionality reduction in the
preprocessing stage of our method which enables us to scale our method to graphs with
millions of nodes.

There are other known methods for learning the stochastic block model based on tech-
niques such as spectral clustering (McSherry, 2001) and convex optimization (Chen et al.,
2012). However, these methods are not applicable for learning overlapping communities.
We note that learning the mixed membership model can be reduced to a matrix factor-
ization problem (Zhang and Yeung, 2012). While collaborative filtering techniques such
as (Mnih and Salakhutdinov, 2007; Salakhutdinov and Mnih, 2008) focus on matrix factor-
ization and the prediction accuracy of recommendations on an unseen test set, we recover
the underlying latent communities, which helps with the interpretability and the statistical
model can be employed for other tasks.

Although there have been other fast implementations for community detection be-
fore (Soman and Narang, 2011; Lancichinetti and Fortunato, 2009), these methods are not

1. https://archive.ics.uci.edu/ml/datasets/Bag+of+Words

3

https://archive.ics.uci.edu/ml/datasets/Bag+of+Words

Huang et al.

statistical and do not yield descriptive statistics such as bridging nodes (Nepusz et al.,
2008), and cannot perform predictive tasks such as link classification which are the main
strengths of the MMSB model. With the implementation of our tensor-based approach, we
record huge speed-ups compared to existing approaches for learning the MMSB model.

To the best of our knowledge, while stochastic methods for matrix decomposition have
been considered earlier (Oja and Karhunen, 1985; Arora et al., 2012), this is the first work
incorporating stochastic optimization for tensor decomposition, and paves the way for fur-
ther investigation on many theoretical and practical issues. We also note that we never
explicitly form or store the subgraph count tensor, of size O(n3) where n is the number of
nodes, in our implementation, but directly manipulate the neighborhood vectors to obtain
tensor decompositions through stochastic updates. This is a crucial departure from other
works on tensor decompositions on GPUs (Ballard et al., 2011; Schatz et al., 2013), where
the tensor needs to be stored and manipulated directly.

2. Tensor Forms for Topic and Community Models

In this section, we briefly recap the topic and community models, as well as the tensor forms
for their exact moments, derived in (Anandkumar et al., 2012, 2013b).

2.1 Topic Modeling

In topic modeling, a document is viewed as a bag of words. Each document has a latent set
of topics, and h = (h1, h2, . . . , hk) represents the proportions of k topics in a given document.
Given the topics h, the words are independently drawn and are exchangeable, and hence,
the term “bag of words” model. We represent the words in the document by d-dimensional
random vectors x1, x2, . . . xl ∈ R

d, where xi are coordinate basis vectors in R
d and d is the

size of the word vocabulary. Conditioned on h, the words in a document satisfy E[xi|h] =
µh, where µ := [µ1, . . . , µk] is the topic-word matrix. And thus µj is the topic vector
satisfying µj = Pr (xi|hj), ∀j ∈ [k]. Under the Latent Dirichlet Allocation (LDA) topic
model (Blei, 2012), h is drawn from a Dirichlet distribution with concentration parameter

vector α = [α1, . . . , αk]. In other words, for each document u, hu
iid∼ Dir(α), ∀u ∈ [n] with

parameter vector α ∈ R
k
+. We define the Dirichlet concentration (mixing) parameter

α0 :=
∑

i∈[k]

αi.

The Dirichlet distribution allows us to specify the extent of overlap among the topics by
controlling for sparsity in topic density function. A larger α0 results in more overlapped
(mixed) topics. A special case of α0 = 0 is the single topic model.

Due to exchangeability, the order of the words does not matter, and it suffices to consider
the frequency vector for each document, which counts the number of occurrences of each
word in a document. Let ct := (c1,t, c2,t, . . . , cd,t) ∈ R

d denote the frequency vector for tth

document, and let n be the number of documents.

4

Online Tensor Methods for Learning Latent Variable Models

We consider the first three order empirical moments, given by

MTop
1 :=

1

n

n∑

t=1

ct (1)

MTop
2 :=

α0 + 1

n

n∑

t=1

(ct ⊗ ct − diag (ct))− α0M
Top
1 ⊗MTop

1 (2)

MTop
3 :=

(α0 + 1)(α0 + 2)

2n

n∑

t=1

ct ⊗ ct ⊗ ct −

d∑

i=1

d∑

j=1

ci,tcj,t(ei ⊗ ei ⊗ ej)−
d∑

i=1

d∑

j=1

ci,tcj,t(ei ⊗ ej ⊗ ei)

−
d∑

i=1

d∑

j=1

ci,tcj,t(ei ⊗ ej ⊗ ej) + 2

d∑

i=1

ci,t(ei ⊗ ei ⊗ ei)

− α0(α0 + 1)

2n

n∑

t=1

(
d∑

i=1

ci,t(ei ⊗ ei ⊗MTop
1) +

d∑

i=1

ci,t(ei ⊗MTop
1 ⊗ ei) +

d∑

i=1

ci,t(M
Top
1 ⊗ ei ⊗ ei)

)

+ α2
0M

Top
1 ⊗MTop

1 ⊗MTop
1 . (3)

We recall Theorem 3.5 of (Anandkumar et al., 2012):

Lemma 1 The exact moments can be factorized as

E[MTop
1] =

k∑

i=1

αi

α0
µi (4)

E[MTop
2] =

k∑

i=1

αi

α0
µi ⊗ µi (5)

E[MTop
3] =

k∑

i=1

αi

α0
µi ⊗ µi ⊗ µi. (6)

where µ = [µ1, . . . , µk] and µi = Pr (xt|h = i), ∀t ∈ [l]. In other words, µ is the topic-
word matrix.

From the Lemma 1, we observe that the first three moments of a LDA topic model have a
simple form involving the topic-word matrix µ and Dirichlet parameters αi. In (Anandkumar et al.,
2012), it is shown that these parameters can be recovered under a weak non-degeneracy as-
sumption. We will employ tensor decomposition techniques to learn the parameters.

2.2 Mixed Membership Model

In the mixed membership stochastic block model (MMSB), introduced by (Airoldi et al.,
2008), the edges in a social network are related to the hidden communities of the nodes. A
batch tensor decomposition technique for learning MMSB was derived in (Anandkumar et al.,
2013b).

Let n denote the number of nodes, k the number of communities and G ∈ R
n×n the

adjacency matrix of the graph. Each node i ∈ [n] has an associated community membership

5

Huang et al.

vector πi ∈ R
k, which is a latent variable, and the vectors are contained in a simplex, i.e.,

∑

i∈[k]

πu(i) = 1, ∀u ∈ [n]

where the notation [n] denotes the set {1, . . . , n}. Membership vectors are sampled from

the Dirichlet distribution πu
iid∼ Dir(α), ∀u ∈ [n] with parameter vector α ∈ R

k
+ where α0 :=∑

i∈[k] αi. As in the topic modeling setting, the Dirichlet distribution allows us to specify
the extent of overlap among the communities by controlling for sparsity in community
membership vectors. A larger α0 results in more overlapped (mixed) memberships. A
special case of α0 = 0 is the stochastic block model (Anandkumar et al., 2013b).

The community connectivity matrix is denoted by P ∈ [0, 1]k×k where P (a, b) measures
the connectivity between communities a and b, ∀a, b ∈ [k]. We model the adjacency matrix
entries as either of the two settings given below:

Bernoulli model: This models a network with unweighted edges. It is used for Facebook
and DBLP datasets in Section 6 in our experiments.

Gij
iid∼ Ber(π⊤

i Pπj), ∀i, j ∈ [n].

Poisson model (Karrer and Newman, 2011): This models a network with weighted
edges. It is used for the Yelp dataset in Section 6 to incorporate the review ratings.

Gij
iid∼ Poi(π⊤

i Pπj), ∀i, j ∈ [n].

The tensor decomposition approach involves up to third order moments, computed from
the observed network. In order to compute the moments, we partition the nodes randomly
into sets X,A,B,C. Let FA := Π⊤

AP
⊤, FB := Π⊤

BP
⊤, FC := Π⊤

CP
⊤ (where P is the

community connectivity matrix and Π is the membership matrix) and α̂ :=
(
α1

α0
, . . . , αk

α0

)

denote the normalized Dirichlet concentration parameter. We define pairs over Y1 and Y2

as Pairs(Y1, Y2) := G⊤
X,Y1
⊗G⊤

X,Y2
. Define the following matrices

ZB := Pairs (A,C) (Pairs (B,C))† , (7)

ZC := Pairs (A,B) (Pairs (C,B))† . (8)

We consider the first three empirical moments, given by

M1
Com :=

1

nX

∑

x∈X

G⊤
x,A (9)

M2
Com :=

α0 + 1

nX

∑

x∈X

ZCG
⊤
x,CGx,BZ

⊤
B − α0

(
M1

ComM1
Com⊤

)
(10)

M3
Com :=

(α0 + 1)(α0 + 2)

2nX

∑

x∈X

[
G⊤

x,A ⊗ ZBG
⊤
x,B ⊗ ZCG

⊤
x,C

]
+ α2

0M1
Com ⊗M1

Com ⊗M1
Com

− α0(α0 + 1)

2nX

∑

x∈X

[
G⊤

x,A ⊗ ZBG
⊤
x,B ⊗M1

Com +G⊤
x,A ⊗M1

Com ⊗ ZCG
⊤
x,C +M1

Com ⊗ ZBG
⊤
x,B ⊗ ZCG

⊤
x,C

(11)

6

Online Tensor Methods for Learning Latent Variable Models

We now recap Proposition 2.2 of (Anandkumar et al., 2013a) which provides the form
of these moments under expectation.

Lemma 2 The exact moments can be factorized as

E[M1
Com|ΠA,ΠB ,ΠC] :=

∑

i∈[k]

α̂i(FA)i (12)

E[M2
Com|ΠA,ΠB ,ΠC] :=

∑

i∈[k]

α̂i(FA)i ⊗ (FA)i (13)

E[M3
Com|ΠA,ΠB ,ΠC] :=

∑

i∈[k]

α̂i(FA)i ⊗ (FA)i ⊗ (FA)i (14)

where ⊗ denotes the Kronecker product and (FA)i corresponds to the ith column of FA.

We observe that the moment forms above for the MMSB model have a similar form as
the moments of the topic model in the previous section. Thus, we can employ a unified
framework for both topic and community modeling involving decomposition of the third
order moment tensors MTop

3 and MCom
3 . Second order moments MTop

2 and MCom
2 are used

for preprocessing of the data (i.e., whitening, which is introduced in detail in Section 3.1).
For the sake of the simplicity of the notation, in the rest of the paper, we will use M2 to
denote empirical second order moments for both MTop

2 in topic modeling setting, and MCom
2

in the mixed membership model setting. Similarly, we will use M3 to denote empirical third
order moments for both MTop

3 and MCom
3 .

3. Learning using Third Order Moment

Our learning algorithm uses up to the third-order moment to estimate the topic word
matrix µ or the community membership matrix Π. First, we obtain co-occurrence of triplet
words or subgraph counts (implicitly). Then, we perform preprocessing using second order
moment M2. Then we perform tensor decomposition efficiently using stochastic gradient
descent (Kushner and Yin, 2003) on M3. We note that, in our implementation of the
algorithm on the Graphics Processing Unit (GPU), linear algebraic operations are extremely
fast. We also implement our algorithm on the CPU for large datasets which exceed the
memory capacity of GPU and use sparse matrix operations which results in large gains in
terms of both the memory and the running time requirements. The overall approach is
summarized in Algorithm 1.

3.1 Dimensionality Reduction and Whitening

Whitening step utilizes linear algebraic manipulations to make the tensor symmetric and
orthogonal (in expectation). Moreover, it leads to dimensionality reduction since it (im-
plicitly) reduces tensor M3 of size O(n3) to a tensor of size k3, where k is the number of
communities. Typically we have k ≪ n. The whitening step also converts the tensor M3 to
a symmetric orthogonal tensor. The whitening matrix W ∈ R

nA×k satisfies W⊤M2W = I.
The idea is that if the bilinear projection of the second order moment onto W results in
the identity matrix, then a trilinear projection of the third order moment onto W would

7

Huang et al.

Algorithm 1 Overall approach for learning latent variable models via a moment-based
approach.

Input: Observed data: social network graph or document samples.
Output: Learned latent variable model and infer hidden attributes.
1: Estimate the third order moments tensor M3 (implicitly). The tensor is not formed

explicitly as we break down the tensor operations into vector and matrix operations.
2: Whiten the data, via SVD of M2, to reduce dimensionality via symmetrization and

orthogonalization. The third order moments M3 are whitened as T .
3: Use stochastic gradient descent to estimate spectrum of whitened (implicit) tensor T .
4: Apply post-processing to obtain the topic-word matrix or the community memberships.

5: If ground truth is known, validate the results using various evaluation measures.

result in an orthogonal tensor. We use multilinear operations to get an orthogonal tensor
T := M3(W,W,W).

The whitening matrix W is computed via truncated k−svd of the second order moments.

W = UM2
Σ
−1/2
M2

,

where UM2
and ΣM2

= diag(σM2,1, . . . , σM2,k) are the top k singular vectors and singular
values of M2 respectively. We then perform multilinear transformations on the triplet data
using the whitening matrix. The whitened data is thus

ytA :=
〈
W, ct

〉
,

ytB :=
〈
W, ct

〉
,

ytC :=
〈
W, ct

〉
,

for the topic modeling, where t denotes the index of the documents. Note that ytA, y
t
B and

ytC ∈ R
k. Implicitly, the whitened tensor is T = 1

nX

∑
t∈X

ytA ⊗ ytB ⊗ ytC and is a k × k × k

dimension tensor. Since k ≪ n, the dimensionality reduction is crucial for our speedup.

3.2 Stochastic Tensor Gradient Descent

In (Anandkumar et al., 2013b) and (Anandkumar et al., 2012), the power method with de-
flation is used for tensor decomposition where the eigenvectors are recovered by iterating
over multiple loops in a serial manner. Furthermore, batch data is used in their itera-
tive power method which makes that algorithm slower than its stochastic counterpart. In
addition to implementing a stochastic spectral optimization algorithm, we achieve further
speed-up by efficiently parallelizing the stochastic updates.

Let v = [v1|v2| . . . |vk] be the true eigenvectors. Denote the cardinality of the sample
set as nX, i.e., nX := |X|. Now that we have the whitened tensor, we propose the Stochastic
Tensor Gradient Descent (STGD) algorithm for tensor decomposition. Consider the tensor

8

Online Tensor Methods for Learning Latent Variable Models

T ∈ R
k×k×k using whitened samples, i.e.,

T =
∑

t∈X

T t =
(α0 + 1)(α0 + 2)

2nX

∑

t∈X

ytA ⊗ ytB ⊗ ytC

− α0(α0 + 1)

2nX

∑

t∈X

[
ytA ⊗ ytB ⊗ ȳC + ytA ⊗ ȳB ⊗ ytC + ȳA ⊗ ytB ⊗ ytC

]
+ α2

0ȳA ⊗ ȳB ⊗ ȳC ,

where t ∈ X and denotes the index of the online data and ȳA, ȳB, and ȳC denote the mean
of the whitened data. Our goal is to find a symmetric CP decomposition of the whitened
tensor.

Definition 3 Our optimization problem is given by

arg min
v:‖vi‖2F=1

{∥∥∑

i∈[k]

⊗3vi −
∑

t∈X

T t
∥∥2
F
+ θ‖

∑

i∈[k]

⊗3vi‖2F
}
,

where vi are the unknown components to be estimated, and θ > 0 is some fixed parameter.

In order to encourage orthogonality between eigenvectors, we have the extra term as
θ‖∑i∈[k]⊗3vi‖2F . Since ‖∑t∈X T t‖2F is a constant, the above minimization is the same as

minimizing a loss function L(v) := 1
nX

∑
t L

t(v), where Lt(v) is the loss function evaluated
at node t ∈ X, and is given by

Lt(v) :=
1 + θ

2

∥∥∑

i∈[k]

⊗3vi
∥∥2
F
−
〈∑

i∈[k]

⊗3vi,T t
〉

(15)

The loss function has two terms, viz., the term ‖∑i∈[k]⊗3vi‖2F , which can be interpreted as

the orthogonality cost, which we need to minimize, and the second term 〈∑i∈[k]⊗3vi,T t〉,
which can be viewed as the correlation reward to be maximized. The parameter θ provides
additional flexibility for tuning between the two terms.

Let Φt :=
[
φt
1|φt

2| . . . |φt
k

]
denote the estimation of the eigenvectors using the whitened

data point t, where φt
i ∈ R

k, i ∈ [k]. Taking the derivative of the loss function leads us to
the iterative update equation for the stochastic gradient descent which is

φt+1
i ← φt

i − βt ∂L
t

∂vi

∣∣∣∣
φt
i

, ∀i ∈ [k]

where βt is the learning rate. Computing the derivative of the loss function and substituting
the result leads to the following lemma.

Lemma 4 The stochastic updates for the eigenvectors are given by

φt+1

i ← φt
i −

1 + θ

2
βt

k∑

j=1

[〈
φt
j , φ

t
i

〉2
φt
j

]
+ βt (α0 + 1)(α0 + 2)

2

〈
φt
i, y

t
A

〉 〈
φt
i, y

t
B

〉
ytC + βtα2

0

〈
φt
i, ȳA

〉 〈
φt
i, ȳ

t
B

〉
ȳC

− βtα0(α0 + 1)

2

〈
φt
i, y

t
A

〉 〈
φt
i, y

t
B

〉
ȳC − βtα0(α0 + 1)

2

〈
φt
i, y

t
A

〉 〈
φt
i, ȳB

〉
yC − βtα0(α0 + 1)

2

〈
φt
i, ȳA

〉 〈
φt
i, y

t
B

〉
yC ,

(16)

9

Huang et al.

ytA

ytC

ytB

vti

vti

Figure 1: Schematic representation of the stochastic updates for the spectral estimation.
Note the we never form the tensor explicitly, since the gradient involves vector
products by collapsing two modes, as shown in Equation 16.

In Equation (16), all our tensor operations are in terms of efficient sample vector inner
products, and no tensor is explicitly formed. The multilinear operations are shown in
Figure 1. We choose θ = 1 in our experiments to ensure that there is sufficient penalty for
non-orthogonality, which prevents us from obtaining degenerate solutions.

After learning the decomposition of the third order moment, we perform post-processing
to estimate Π̂.

3.3 Post-processing

Eigenvalues Λ := [λ1, λ2, . . . , λk] are estimated as the norm of the eigenvectors λi = ‖φi‖3.

Lemma 5 After we obtain Λ and Φ, the estimate for the topic-word matrix is given by

µ̂ = W⊤†
Φ,

and in the community setting, the community membership matrix is given by

Π̂Ac = diag(γ)1/3 diag(Λ)−1Φ⊤Ŵ⊤GA,Ac .

where Ac := X ∪ B ∪ C. Similarly, we estimate Π̂A by exchanging the roles of X and A.
Next, we obtain the Dirichlet distribution parameters

α̂i = γ2λ−2
i ,∀i ∈ [k].

where γ2 is chosen such that we have normalization
∑

i∈[k] α̂i :=
∑

i∈[k]
αi

α0
= 1.

Thus, we perform STGD method to estimate the eigenvectors and eigenvalues of the
whitened tensor, and then use these to estimate the topic word matrix µ and community
membership matrix Π̂ by thresholding.

4. Implementation Details

4.1 Symmetrization Step to Compute M2

Note that for the topic model, the second order moment M2 can be computed easily from
the word-frequency vector. On the other hand, for the community setting, computing M2

requires additional linear algebraic operations. It requires computation of matrices ZB

10

Online Tensor Methods for Learning Latent Variable Models

and ZC in equation (7). This requires computation of pseudo-inverses of “Pairs” matrices.
Now, note that pseudo-inverse of (Pairs (B,C)) in Equation (7) can be computed using rank
k-SVD:

k-SVD(Pairs (B,C)) = UB(:, 1 : k)ΣBC(1 : k)VC(:, 1 : k)⊤.

We exploit the low rank property to have efficient running times and storage. We first
implement the k-SVD of Pairs, given by G⊤

X,CGX,B . Then the order in which the matrix
products are carried out plays a significant role in terms of both memory and speed. Note
that ZC involves the multiplication of a sequence of matrices of sizes RnA×nB , RnB×k, Rk×k,
R
k×nC , G⊤

x,CGx,B involves products of sizes RnC×k, Rk×k, Rk×nB , and ZB involving products

of sizes RnA×nC , RnC×k, Rk×k, Rk×nB . While performing these products, we avoid products
of sizes R

O(n)×O(n) and R
O(n)×O(n). This allows us to have efficient storage requirements.

Such manipulations are represented in Figure 2.

=

† ⊤†⊤
|A|

|A|

=

⊤ ⊤ ⊤

=

⊤ ⊤ ⊤

Figure 2: By performing the matrix multiplications in an efficient order (Equation (10)),
we avoid products involving O(n) × O(n) objects. Instead, we use objects of
size O(n) × k which improves the speed, since k ≪ n. Equation (10) is equiv-

alent to M2 =
(
PairsA,B Pairs†C,B

)
PairsC,B

(
Pairs†B,C

)⊤
Pairs⊤A,C −shift, where

the shift = α0

α0+1

(
M1M1

⊤ − diag
(
M1M1

⊤
))
. We do not explicitly calculate the

pseudoinverse but maintain the low rank matrix decomposition form.

We then orthogonalize the third order moments to reduce the dimension of its modes
to k. We perform linear transformations on the data corresponding to the partitions A,

B and C using the whitening matrix. The whitened data is thus ytA :=
〈
W,G⊤

t,A

〉
, ytB :=

〈
W,ZBG

⊤
t,B

〉
, and ytC :=

〈
W,ZCG

⊤
t,C

〉
, where t ∈ X and denotes the index of the online

data. Since k ≪ n, the dimensionality reduction is crucial for our speedup.

11

Huang et al.

4.2 Efficient Randomized SVD Computations

When we consider very large-scale data, the whitening matrix is a bottleneck to handle
when we aim for fast running times. We obtain the low rank approximation of matrices
using random projections. In the CPU implementation, we use tall-thin SVD (on a sparse
matrix) via the Lanczos algorithm after the projection and in the GPU implementation,
we use tall-thin QR. We give the overview of these methods below. Again, we use graph
community membership model without loss of generality.

Randomized low rank approximation: From (Gittens and Mahoney, 2013), for the
k-rank positive semi-definite matrix M2 ∈ R

nA×nA with nA ≫ k, we can perform random
projection to reduce dimensionality. More precisely, if we have a random matrix S ∈ R

nA×k̃

with unit norm (rotation matrix), we project M2 onto this random matrix to get R
n×k̃

tall-thin matrix. Note that we choose k̃ = 2k in our implementation. We will obtain lower
dimension approximation of M2 in R

k̃×k̃. Here we emphasize that S ∈ R
n×k̃ is a random

matrix for dense M2. However for sparse M2, S ∈ {0, 1}n×k̃ is a column selection matrix
with random sign for each entry.

After the projection, one approach we use is SVD on this tall-thin (Rn×k̃) matrix. Define

O := M2S ∈ R
n×k̃ and Ω := S⊤M2S ∈ R

k̃×k̃. A low rank approximation of M2 is given by
OΩ†O⊤ (Gittens and Mahoney, 2013). Recall that the definition of a whitening matrix W
is that W⊤M2W = I. We can obtain the whitening matrix of M2 without directly doing a
SVD on M2 ∈ R

nA×nA .

Tall-thin SVD: This is used in the CPU implementation. The whitening matrix can be
obtained by

W ≈ (O†)⊤(Ω
1
2)⊤. (17)

The pseudo code for computing the whitening matrix W using tall-thin SVD is given in
Algorithm 2. Therefore, we only need to compute SVD of a tall-thin matrix O ∈ R

nA×k̃.

Algorithm 2 Randomized Tall-thin SVD

Input: Second moment matrix M2.
Output: Whitening matrix W .
1: Generate random matrix S ∈ R

n×k̃ if M2 is dense.
2: Generate column selection matrix with random sign S ∈ {0, 1}n×k̃ if M2 is sparse.

3: O = M2S ∈ R
n×k̃

4: [UO, LO, VO] =SVD(O)

5: Ω = S⊤O ∈ R
k̃×k̃

6: [UΩ, LΩ, VΩ] =SVD(Ω)

7: W = UOL
−1
O V ⊤

O VΩL
1
2

ΩU
⊤
Ω

Note that Ω ∈ R
k̃×k̃, its square-root is easy to compute. Similarly, pseudoinverses can also

be obtained without directly doing SVD. For instance, the pseudoinverse of the Pairs (B,C)
matrix is given by

(Pairs (B,C))† = (J†)⊤ΨJ†,

where Ψ = S⊤ (Pairs (B,C))S and J = (Pairs (B,C))S. The pseudo code for computing
pseudoinverses is given in Algorithm 3.

12

Online Tensor Methods for Learning Latent Variable Models

Algorithm 3 Randomized Pseudoinverse

Input: Pairs matrix Pairs (B,C).
Output: Pseudoinverse of the pairs matrix (Pairs (B,C))†.
1: Generate random matrix S ∈ R

n,k if M2 is dense.
2: Generate column selection matrix with random sign S ∈ {0, 1}n×k if M2 is sparse.
3: J = (Pairs (B,C))S
4: Ψ = S⊤J
5: [UJ , LJ , VJ] =SVD(J)
6: (Pairs (B,C))† = UJL

−1
J V ⊤

J ΨVJL
−1
J U⊤

J

The sparse representation of the data allows for scalability on a single machine to
datasets having millions of nodes. Although the GPU has SIMD architecture which makes
parallelization efficient, it lacks advanced libraries with sparse SVD operations and out-
of-GPU-core implementations. We therefore implement the sparse format on CPU for
sparse datasets. We implement our algorithm using random projection for efficient di-
mensionality reduction (Clarkson and Woodruff, 2012) along with the sparse matrix op-
erations available in the Eigen toolkit2, and we use the SVDLIBC (Berry et al., 2002)
library to compute sparse SVD via the Lanczos algorithm. Theoretically, the Lanczos al-
gorithm (Golub and Van Loan, 2013) on a n× n matrix takes around (2d+ 8)n flops for a
single step where d is the average number of non-zero entries per row.

Tall-thin QR: This is used in the GPU implementation due to the lack of library to
do sparse tall-thin SVD. The difference is that we instead implement a tall-thin QR on O,
therefore the whitening matrix is obtained as

W ≈ Q(R†)⊤(Ω
1
2)⊤.

The main bottleneck for our GPU implementation is device storage, since GPU memory
is highly limited and not expandable. Random projections help in reducing the dimensional-
ity from O(n×n) to O(n×k) and hence, this fits the data in the GPU memory better. Con-
sequently, after the whitening step, we project the data into k-dimensional space. Therefore,
the STGD step is dependent only on k, and hence can be fit in the GPU memory. So, the
main bottleneck is computation of large SVDs. In order to support larger datasets such as
the DBLP dataset which exceed the GPU memory capacity, we extend our implementation
with out-of-GPU-core matrix operations and the Nystrom method (Gittens and Mahoney,
2013) for the whitening matrix computation and the pseudoinverse computation in the
pre-processing module.

4.3 Stochastic updates

STGD can potentially be the most computationally intensive task if carried out naively
since the storage and manipulation of a O(n3)-sized tensor makes the method not scalable.
However we overcome this problem since we never form the tensor explicitly; instead, we
collapse the tensor modes implicitly as shown in Figure 1. We gain large speed up by
optimizing the implementation of STGD.To implement the tensor operations efficiently we

2. http://eigen.tuxfamily.org/index.php?title=Main_Page

13

http://eigen.tuxfamily.org/index.php?title=Main_Page

Huang et al.

vti

ytA,y
t
B ,y

t
C

CPU

GPU

Standard Interface

vti

ytA,y
t
B ,y

t
C

CPU

GPU

Device Interface

vti

Figure 3: Data transfers in the standard and device interfaces of the GPU implementation.

convert them into matrix and vector operations so that they are implemented using BLAS
routines. We obtain whitened vectors yA, yB and yC and manipulate these vectors efficiently
to obtain tensor eigenvector updates using the gradient scaled by a suitable learning rate.

Efficient STGD via stacked vector operations: We convert the BLAS II into BLAS
III operations by stacking the vectors to form matrices, leading to more efficient operations.
Although the updating equation for the stochastic gradient update is presented serially in
Equation (16), we can update the k eigenvectors simultaneously in parallel. The basic idea
is to stack the k eigenvectors φi ∈ R

k into a matrix Φ, then using the internal parallelism
designed for BLAS III operations.

Overall, the STGD step involves 1+k+ i(2+3k) BLAS II over Rk vectors, 7N BLAS III
over R

k×k matrices and 2 QR operations over R
k×k matrices, where i denotes the number

of iterations. We provide a count of BLAS operations for various steps in Table 1.

Module BLAS I BLAS II BLAS III SVD QR

Pre 0 8 19 3 0
STGD 0 Nk 7N 0 2
Post 0 0 7 0 0

Table 1: Linear algebraic operation counts: N denotes the number of iterations for STGD
and k, the number of communities.

Reducing communication in GPU implementation: In STGD, note that the stor-
age needed for the iterative part does not depend on the number of nodes in the dataset,
rather, it depends on the parameter k, i.e., the number of communities to be estimated,
since whitening performed before STGD leads to dimensionality reduction. This makes it
suitable for storing the required buffers in the GPU memory, and using the CULA device
interface for the BLAS operations. In Figure 3, we illustrate the data transfer involved in

14

Online Tensor Methods for Learning Latent Variable Models

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

Number of communities k

R
u
n
n
in
g
ti
m
e(
se
cs
)

MATLAB Tensor Toolbox
CULA Standard Interface
CULA Device Interface
Eigen Sparse

Figure 4: Comparison of the running time for STGD under different k for 100 iterations.

the GPU standard and device interface codes. While the standard interface involves data
transfer (including whitened neighborhood vectors and the eigenvectors) at each stochastic
iteration between the CPU memory and the GPU memory, the device interface involves
allocating and retaining the eigenvectors at each stochastic iteration which in turn speeds
up the spectral estimation.

We compare the running time of the CULA device code with the MATLAB code (using
the tensor toolbox (Bader et al., 2012)), CULA standard code and Eigen sparse code in
Figure 4. As expected, the GPU implementations of matrix operations are much faster
and scale much better than the CPU implementations. Among the CPU codes, we notice
that sparsity and optimization offered by the Eigen toolkit gives us huge gains. We obtain
orders of magnitude of speed up for the GPU device code as we place the buffers in the
GPU memory and transfer minimal amount of data involving the whitened vectors only
once at the beginning of each iteration. The running time for the CULA standard code is
more than the device code because of the CPU-GPU data transfer overhead. For the same
reason, the sparse CPU implementation, by avoiding the data transfer overhead, performs
better than the GPU standard code for very small number of communities. We note that
there is no performance degradation due to the parallelization of the matrix operations.
After whitening, the STGD requires the most code design and optimization effort, and so
we convert that into BLAS-like routines.

15

Huang et al.

Module Time Space

Pre-processing (Matrix Multiplication) O (max(nsk/c, log s)) O
(
max(s2, sk)

)

Pre-processing (CPU SVD) O
(
max(nsk/c, log s) + max(k2/c, k)

)
O(sk)

Pre-processing (GPU QR) O
(
max(sk2/c, log s) + max(sk2/c, log k)

)
O(sk)

Pre-processing(short-thin SVD) O
(
max(k3/c, log k) + max(k2/c, k)

)
O(k2)

STGD O
(
max(k3/c, log k)

)
O(k2)

Post-processing O (max(nsk/c, log s)) O(nk)

Table 2: The time and space complexity (number of compute cores required) of our algo-
rithm. Note that k ≪ n, s is the average degree of a node (or equivalently, the
average number of non-zeros per row/column in the adjacency sub-matrix); note
that the STGD time is per iteration time. We denote the number of cores as c -
the time-space trade-off depends on this parameter.

4.4 Computational Complexity

We partition the execution of our algorithm into three main modules namely, pre-processing,
STGD and post-processing, whose various matrix operation counts are listed above in Ta-
ble 1.

The theoretical asymptotic complexity of our method is summarized in Table 2 and is
best addressed by considering the parallel model of computation (JáJá, 1992), i.e., wherein a
number of processors or compute cores are operating on the data simultaneously in parallel.
This is justified considering that we implement our method on GPUs and matrix products
are embarrassingly parallel. Note that this is different from serial computational complexity.
We now break down the entries in Table 2. First, we recall a basic lemma regarding the
lower bound on the time complexity for parallel addition along with the required number
of cores to achieve a speed-up.

Lemma 6 (JáJá, 1992) Addition of s numbers in serial takes O(s) time; with Ω(s/ log s)
cores, this can be improved to O(log s) time in the best case.

Essentially, this speed-up is achieved by recursively adding pairs of numbers in parallel.

Lemma 7 (JáJá, 1992) Consider M ∈ R
p×q and N ∈ R

q×r with s non-zeros per row/column.
Naive serial matrix multiplication requires O(psr) time; with Ω(psr/ log s) cores, this can
be improved to O(log s) time in the best case.

Lemma 7 follows by simply parallelizing the sparse inner products and applying Lemma 6
for the addition in the inner products. Note that, this can be generalized to the fact that
given c cores, the multiplication can be performed in O(max(psr/c, log s)) running time.

4.4.1 Pre-processing

Random projection: In preprocessing, given c compute cores, we first do random
projection using matrix multiplication. We multiply an O(n) × O(n) matrix M2 with an
O(n) × O(k) random matrix S. Therefore, this requires O(nsk) serial operations, where

16

Online Tensor Methods for Learning Latent Variable Models

s is the number of non-zero elements per row/column of M2. Using Lemma 7, given c =
nsk
log s cores, we could achieve O(log s) computational complexity. However, the parallel

computational complexity is not further reduced with more than nsk
log s cores.

After the multiplication, we use tall-thin SVD for CPU implementation, and tall-thin
QR for GPU implementation.

Tall-thin SVD: We perform Lanczos SVD on the tall-thin sparse O(n)×O(k) matrix,
which involves a tri-diagonalization followed with the QR on the tri-diagonal matrix. Given
c = nsk

log s cores, the computational complexity of the tri-diagonalization is O(log s). We then

do QR on the tridiagonal matrix which is as cheap as O(k2) serially. Each orthogolization
requires O(k) inner products of constant entry vectors, and there are O(k) such orthogoliza-
tions to be done. Therefore given O(k) cores, the complexity is O(k). More cores does not
help since the degree of parallelism is k.

Tall-thin QR: Alternatively, we perform QR in the GPU implementation which takes
O(sk2). To arrive at the complexity of obtaining Q, we analyze the Gram-Schmidt or-
thonormalization procedure under sparsity and parallelism conditions. Consider a serial
Gram-Schmidt on k columns (which are s-dense) of O(n) × O(k) matrix. For each of the
columns 2 to k, we perform projection on the previously computed components and sub-
tract it. Both inner product and subtraction operations are on the s-dense columns and
there are O(s) operations which are done O(k2) times serially. The last step is the normal-
ization of k s-dense vectors with is an O(sk) operation. This leads to a serial complexity
of O(sk2 + sk) = O(sk2). Using this, we may obtain the parallel complexity in different
regimes of the number of cores as follows.

Parallelism for inner products : For each component i, we need i−1 projections on pre-
vious components which can be parallel. Each projection involves scaling and inner product
operations on a pair of s-dense vectors. Using Lemma 6, projection for component i can
be performed in O(max(skc , log s)) time. O(log s) complexity is obtained using O(sk/ log s)
cores.

Parallelism for subtractions: For each component i, we need i − 1 subtractions on a
s-dense vector after the projection. Serially the subtraction requires O(sk) operations, and
this can be reduced to O(log k) with O(sk/ log k) cores in the best case. The complexity is
O(max(skc , log k)).

Combing the inner products and subtractions, the complexity isO
(
max(skc , log s) + max(skc , log k)

)

for component i. There are k components in total, which can not be parallel. In total, the

complexity for the parallel QR is O
(
max(sk

2

c , log s) + max(sk
2

c , log k)
)
.

Short-thin SVD: SVD of the smaller O(Rk×k) matrix time requires O(k3) computa-
tions in serially. We note that this is the bottleneck for the computational complexity,
but we emphasize that k is sufficiently small in many applications. Furthermore, this k3

complexity can be reduced by using distributed SVD algorithms e.g. (Kannan et al., 2014;
Feldman et al., 2013). An analysis with respect to Lanczos parallel SVD is similar with
the discussion in the Tall-thin SVD paragraph. The complexity is O(max(k3/c, log k) +
max(k2/c, k)). In the best case, the complexity is reduced to O(log k + k).

17

Huang et al.

The serial time complexity of SVD is O(n2k) but with randomized dimensionality re-
duction (Gittens and Mahoney, 2013) and parallelization (Constantine and Gleich, 2011),
this is significantly reduced.

4.4.2 STGD

In STGD, we perform implicit stochastic updates, consisting of a constant number of matrix-
matrix and matrix-vector products, on the set of eigenvectors and whitened samples which
is of size k× k. When c ∈ [1, k3/ log k], we obtain a running time of O(k3/c) for computing
inner products in parallel with c compute cores since each core can perform an inner product
to compute an element in the resulting matrix independent of other cores in linear time.
For c ∈ (k3/ log k,∞], using Lemma 6, we obtain a running time of O(log k). Note that the
STGD time complexity is calculated per iteration.

4.4.3 Post-processing

Finally, post-processing consists of sparse matrix products as well. Similar to pre-processing,
this consists of multiplications involving the sparse matrices. Given s number of non-zeros
per column of an O(n) × O(k) matrix, the effective number of elements reduces to O(sk).
Hence, given c ∈ [1, nks/ log s] cores, we need O(nsk/c) time to perform the inner products
for each entry of the resultant matrix. For c ∈ (nks/ log s,∞], using Lemma 6, we obtain a
running time of O(log s).

Note that nk2 is the complexity of computing the exact SVD and we reduce it to O(k)
when there are sufficient cores available. This is meant for the setting where k is small. This
k3 complexity of SVD on O(k × k) matrix can be reduced to O(k) using distributed SVD
algorithms e.g. (Kannan et al., 2014; Feldman et al., 2013). We note that the variational
inference algorithm complexity, by Gopalan and Blei (Gopalan and Blei, 2013), is O(mk)
for each iteration, where m denotes the number of edges in the graph, and n < m < n2.
In the regime that n ≫ k, our algorithm is more efficient. Moreover, a big difference is in
the scaling with respect to the size of the network and ease of parallelization of our method
compared to variational one.

5. Validation methods

5.1 p-value testing:

We recover the estimated community membership matrix Π̂ ∈ R
k̂×n, where k̂ is the number

of communities specified to our method. Recall that the true community membership matrix
is Π, and we consider datasets where ground truth is available. Let i-th row of Π̂ be denoted
by Π̂i. Our community detection method is unsupervised, which inevitably results in row
permutations between Π and Π̂ and k̂ may not be the same as k. To validate the results, we
need to find a good match between the rows of Π̂ and Π. We use the notion of p-values to
test for statistically significant dependencies among a set of random variables. The p-value
denotes the probability of not rejecting the null hypothesis that the random variables under

18

Online Tensor Methods for Learning Latent Variable Models

Π1

Π2

Π3

Π4

Π̂1

Π̂2

Π̂3

Π̂4

Π̂5

Π̂6

Figure 5: Bipartite graph G{Pval} induced by p-value testing. Edges represent statistically
significant relationships between ground truth and estimated communities.

consideration are independent and we use the Student’s3 t-test statistic (Fadem, 2012) to
compute the p-value. We use multiple hypothesis testing for different pairs of estimated
and ground-truth communities Π̂i,Πj and adjust the p-values to ensure a small enough false
discovery rate (FDR) (Strimmer, 2008).

The test statistic used for the p-value testing of the estimated communities is

Tij :=
ρ
(
Π̂i,Πj

)√
n− 2

√
1− ρ

(
Π̂i,Πj

)2 .

The right p-value is obtained via the probability of obtaining a value (say tij) greater than
the test statistic Tij , and it is defined as

Pval(Πi, Π̂j) := 1− P (tij > Tij) .

Note that Tij has Student’s t-distribution with degree of freedom n − 2 (i.e. Tij ∼ tn−2).
Thus, we obtain the right p-value4.

In this way, we compute the Pval matrix as

Pval(i, j) := Pval

[
Π̂i,Πj

]
,∀i ∈ [k] and j ∈ [k̂].

5.2 Evaluation metrics

Recovery ratio: Validating the results requires a matching of the true membership Π
with estimated membership Π̂. Let Pval(Πi, Π̂j) denote the right p-value under the null

3. Note that Student’s t-test is robust to the presence of unequal variances when the sample sizes of the

two are equal which is true in our setting.

4. The right p-value accounts for the fact that when two communities are anti-correlated they are not

paired up. Hence note that in the special case of block model in which the estimated communities

are just permuted version of the ground truth communities, the pairing results in a perfect matching

accurately.

19

Huang et al.

hypothesis that Πi and Π̂j are statistically independent. We use the p-value test to find

out pairs Πi, Π̂j which pass a specified p-value threshold, and we denote such pairs using a
bipartite graph G{Pval}. Thus, G{Pval} is defined as

G{Pval} :=
({

V
(1)
{Pval}

, V
(2)
{Pval}

}
, E{Pval}

)
,

where the nodes in the two node sets are

V
(1)
{Pval}

= {Π1, . . . ,Πk} ,

V
(2)
{Pval}

=
{
Π̂1, . . . , Π̂k̂

}

and the edges of G{Pval} satisfy

(i, j) ∈ E{Pval} s.t. Pval

[
Π̂i,Πj

]
≤ 0.01.

A simple example is shown in Figure 5, in which Π2 has statistically significant depen-
dence with Π̂1, i.e., the probability of not rejecting the null hypothesis is small (recall that
null hypothesis is that they are independent). If no estimated membership vector has a
significant overlap with Π3, then Π3 is not recovered. There can also be multiple pairings
such as for Π1 and {Π̂2, Π̂3, Π̂6}. The p-value test between Π1 and {Π̂2, Π̂3, Π̂6} indicates
that probability of not rejecting the null hypothesis is small, i.e., they are independent. We
use 0.01 as the threshold. The same holds for Π2 and {Π̂1} and for Π4 and {Π̂4, Π̂5}. There
can be a perfect one to one matching like for Π2 and Π̂1 as well as a multiple matching such
as for Π1 and {Π̂2, Π̂3, Π̂6}. Or another multiple matching such as for {Π1,Π2} and Π̂3.

Let Degreei denote the degree of ground truth community i ∈ [k] in G{Pval}, we define
the recovery ratio as follows.

Definition 8 The recovery ratio is defined as

R :=
1

k

∑

i

I {Degreei > 0} , i ∈ [k]

where I(x) is the indicator function whose value equals one if x is true.

The perfect case is that all the memberships have at least one significant overlapping esti-
mated membership, giving a recovery ratio of 100%.

Error function: For performance analysis of our learning algorithm, we use an error
function given as follows:

Definition 9 The average error function is defined as

E :=
1

k

∑

(i,j)∈E{P
val

}

1

n

∑

x∈|X|

∣∣∣∣ Π̂i(x)−Πj(x)

∣∣∣∣

 ,

where E{Pval} denotes the set of edges based on thresholding of the p-values.

20

Online Tensor Methods for Learning Latent Variable Models

Hardware / software Version

CPU Dual 8-core Xeon @ 2.0GHz
Memory 64GB DDR3
GPU Nvidia Quadro K5000
CUDA Cores 1536
Global memory 4GB GDDR5
CentOS Release 6.4 (Final)
GCC 4.4.7
CUDA Release 5.0
CULA-Dense R16a

Table 3: System specifications.

The error function incorporates two aspects, namely the l1 norm error between each
estimated community and the corresponding paired ground truth community, and the error
induced by false pairings between the estimated and ground-truth communities through
p-value testing. For the former l1 norm error, we normalize with n which is reasonable
and results in the range of the error in [0, 1]. For the latter, we define the average error
function as the summation of all paired memberships errors divided by the true number of
communities k. In this way we penalize falsely discovered pairings by summing them up.
Our error function can be greater than 1 if there are too many falsely discovered pairings
through p-value testing (which can be as large as k × k̂).

Bridgeness: Bridgeness in overlapping communities is an interesting measure to evalu-
ate. A bridge is defined as a vertex that crosses structural holes between discrete groups of
people and bridgeness analyzes the extent to which a given vertex is shared among different
communities (Nepusz et al., 2008). Formally, the bridgeness of a vertex i is defined as

bi := 1−

√√√√√ k̂

k̂ − 1

k̂∑

j=1

(
Π̂i(j)−

1

k̂

)2

. (18)

Note that centrality measures should be used in conjunction with bridge score to distinguish
outliers from genuine bridge nodes (Nepusz et al., 2008). The degree-corrected bridgeness
is used to evaluate our results and is defined as

Bi := Dibi, (19)

where Di is degree of node i.

6. Experimental Results

The specifications of the machine on which we run our code are given in Table 3.

Results on Synthetic Datasets: We perform experiments for both the stochastic block
model (α0 = 0) and the mixed membership model. For the mixed membership model, we
set the concentration parameter α0 = 1. We note that the error is around 8% − 14% and
the running times are under a minute, when n ≤ 10000 and n≫ k5.

5. The code is available at https://github.com/FurongHuang/Fast-Detection-of-Overlapping-Communities-via-Online-Tensor-

21

https://github.com/FurongHuang/Fast-Detection-of-Overlapping-Communities-via-Online-Tensor-Methods

Huang et al.

We observe that more samples result in a more accurate recovery of memberships
which matches intuition and theory. Overall, our learning algorithm performs better in the
stochastic block model case than in the mixed membership model case although we note
that the accuracy is quite high for practical purposes. Theoretically, this is expected since
smaller concentration parameter α0 is easier for our algorithm to learn (Anandkumar et al.,
2013b). Also, our algorithm is scalable to an order of magnitude more in n as illustrated
by experiments on real-world large-scale datasets.

Note that we threshold the estimated memberships to clean the results. There is a
tradeoff between match ratio and average error via different thresholds. In synthetic exper-
iments, the tradeoff is not evident since a perfect matching is always present. However, we
need to carefully handle this in experiments involving real data.

Results on Topic Modeling: We perform experiments for the bag of words dataset (Bache and Lichman,
2013) for The New York Times. We set the concentration parameter to be α0 = 1 and ob-
serve top recovered words in numerous topics. The results are in Table 4. Many of the
results are expected. For example, the top words in topic # 11 are all related to some bad
personality.

We also present the words with most spread membership, i.e., words that belong to
many topics as in Table 5. As expected, we see minutes, consumer, human, member and so
on. These words can appear in a lot of topics, and we expect them to connect topics.

Results on Real-world Graph Datasets: We describe the results on real datasets
summarized in Table 6 in detail below. The simulations are summarized in Table 7.

The results are presented in Table 7. We note that our method, in both dense and sparse
implementations, performs very well compared to the state-of-the-art variational method.
For the Yelp dataset, we have a bipartite graph where the business nodes are on one side
and user nodes on the other and use the review stars as the edge weights. In this bipartite
setting, the variational code provided by Gopalan et al (Gopalan et al., 2012) does not work
on since it is not applicable to non-homophilic models. Our approach does not have this
restriction. Note that we use our dense implementation on the GPU to run experiments
with large number of communities k as the device implementation is much faster in terms
of running time of the STGD step.On the other hand, the sparse implementation on CPU is
fast and memory efficient in the case of sparse graphs with a small number of communities
while the dense implementation on GPU is faster for denser graphs such as Facebook. Note
that data reading time for DBLP is around 4700 seconds, which is not negligible as compared
to other datasets (usually within a few seconds). Effectively, our algorithm, excluding the
file I/O time, executes within two minutes for k = 10 and within ten minutes for k = 100.

Interpretation on Yelp Dataset: The ground truth on business attributes such as
location and type of business are available (but not provided to our algorithm) and we
provide the distribution in Figure 6 on the left side. There is also a natural trade-off
between recovery ratio and average error or between attempting to recover all the business
communities and the accuracy of recovery. We can either recover top significant communities
with high accuracy or recover more with lower accuracy. We demonstrate the trade-off in
Figure 6 on the right side.

We select the top ten categories recovered with the lowest error and report the business
with highest weights in Π̂. Among the matched communities, we find the business with

22

Online Tensor Methods for Learning Latent Variable Models

Topic # Top Words

1 prompting complicated eviscerated predetermined lap
renegotiating loose entity legalese justice

2 hamstrung airbrushed quasi outsold fargo
ennobled tantalize irrelevance noncontroversial untalented

3 scariest pest knowingly causing flub
mesmerize dawned millennium ecological ecologist

4 reelection quixotic arthroscopic versatility commanded
hyperextended anus precipitating underhand knee

5 believe signing ballcarrier parallel anomalies
munching prorated unsettle linebacking bonus

6 gainfully settles narrator considerable articles
narrative rosier deviating protagonist deductible

7 faithful betcha corrupted inept retrench
martialed winston dowdy islamic corrupting

8 capable misdeed dashboard navigation opportunistically
aerodynamic airbag system braking mph

9 apostles oracles believer deliberately loafer
gospel apt mobbed manipulate dialogue

10 physique jumping visualizing hedgehog zeitgeist
belonged loo mauling postproduction plunk

11 smirky silly bad natured frat
thoughtful freaked moron obtuse stink

12 offsetting preparing acknowledgment agree misstating
litigator prevented revoked preseason entomology

13 undertaken wilsonian idealism brethren writeoff
multipolar hegemonist multilateral enlargement mutating

14 athletically fictitious myer majorleaguebaseball familiarizing
resurrect slug backslide superseding artistically

15 dialog files diabolical lion town
password list swiss coldblooded outgained

16 recessed phased butyl lowlight balmy
redlining prescription marched mischaracterization tertiary

17 sponsor televise sponsorship festival sullied
ratification insinuating warhead staged reconstruct

18 trespasses buckle divestment schoolchild refuel
ineffectiveness coexisted repentance divvying overexposed

Table 4: Top recovered topic groups from the New York Times dataset along with the words
present in them.

Keywords

minutes, consumer, human, member, friend, program, board, cell, insurance, shot

Table 5: The top ten words which occur in multiple contexts in the New York Times dataset.

23

Huang et al.

Statistics Facebook Yelp DBLP sub DBLP

|E| 766,800 672,515 5,066,510 16,221,000
|V | 18,163 10,010+28,588 116,317 1,054,066
GD 0.004649 0.000903 0.000749 0.000029
k 360 159 250 6,003
AB 0.5379 0.4281 0.3779 0.2066
ADCB 47.01 30.75 48.41 6.36

Table 6: Summary of real datasets used in our paper: |V | is the number of nodes in the

graph, |E| is the number of edges, GD is the graph density given by 2|E|
|V |(|V |−1) ,

k is the number of communities, AB is the average bridgeness and ADCB is the
average degree-corrected bridgeness(explained in Section 5).

Data Method k̂ Thre E R(%) Time(s)

Ten(sparse) 10 0.10 0.063 13 35
Ten(sparse) 100 0.08 0.024 62 309
Ten(sparse) 100 0.05 0.118 95 309
Ten(dense) 100 0.100 0.012 39 190
Ten(dense) 100 0.070 0.019 100 190

FB Variational 100 – 0.070 100 10, 795
Ten(dense) 500 0.020 0.014 71 468
Ten(dense) 500 0.015 0.018 100 468
Variational 500 – 0.031 100 86, 808
Ten(sparse) 10 0.10 0.271 43 10
Ten(sparse) 100 0.08 0.046 86 287
Ten(dense) 100 0.100 0.023 43 1, 127

YP Ten(dense) 100 0.090 0.061 80 1, 127
Ten(dense) 500 0.020 0.064 72 1, 706
Ten(dense) 500 0.015 0.336 100 1, 706
Ten(dense) 100 0.15 0.072 36 7, 664
Ten(dense) 100 0.09 0.260 80 7, 664
Variational 100 – 7.453 99 69, 156

DB sub Ten(dense) 500 0.10 0.010 19 10, 157
Ten(dense) 500 0.04 0.139 89 10, 157
Variational 500 – 16.38 99 558, 723
Ten(sparse) 10 0.30 0.103 73 4716

DB Ten(sparse) 100 0.08 0.003 57 5407
Ten(sparse) 100 0.05 0.105 95 5407

Table 7: Yelp, Facebook and DBLP main quantitative evaluation of the tensor method ver-
sus the variational method: k̂ is the community number specified to our algorithm,
Thre is the threshold for picking significant estimated membership entries. Refer
to Table 6 for statistics of the datasets.

the highest membership weight (Table 9). We can see that most of the “top” recovered
businesses are rated high. Many of the categories in the top ten list are restaurants as they
have a large number of reviewers. Our method can recover restaurant category with high
accuracy, and the specific restaurant in the category is a popular result (with high number
of stars). Also, our method can also recover many of the categories with low review counts
accurately like hobby shops, yoga, churches, galleries and religious organizations which are

24

Online Tensor Methods for Learning Latent Variable Models

Business RC Categories

Four Peaks Brewing Co 735 Restaurants, Bars, American (New), Nightlife, Food, Pubs, Tempe
Pizzeria Bianco 803 Restaurants, Pizza,Phoenix
FEZ 652 Restaurants, Bars, American (New), Nightlife, Mediterranean, Lounges

Phoenix
Matt’s Big Breakfast 689 Restaurants, Phoenix, Breakfast& Brunch
Cornish Pasty Company 580 Restaurants, Bars, Nightlife, Pubs, Tempe
Postino Arcadia 575 Restaurants, Italian, Wine Bars, Bars, Nightlife, Phoenix
Cibo 594 Restaurants, Italian, Pizza, Sandwiches, Phoenix
Phoenix Airport 862 Hotels & Travel, Phoenix
Gallo Blanco Cafe 549 Restaurants, Mexican, Phoenix
The Parlor 489 Restaurants, Italian, Pizza, Phoenix

Table 8: Top 10 bridging businesses in Yelp and categories they belong to. “RC” denotes
review counts for that particular business.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Business Category ID

#
b
u
s
in

e
s
s

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Recovery Ratio

A
v
e
r
a
g
e
E
r
r
o
r

Figure 6: Distribution of business categories (left) and result tradeoff between recovery ratio
and error for yelp (right).

the “niche” categories with a dedicated set of reviewers, who mostly do not review other
categories.

The top bridging nodes recovered by our method for the Yelp dataset are given in
the Table 8. The bridging nodes have multiple attributes typically, the type of business
and its location. In addition, the categories may also be hierarchical: within restaurants,
different cuisines such as Italian, American or Pizza are recovered by our method. Moreover,
restaurants which also function as bars or lounges are also recovered as top bridging nodes in
our method. Thus, our method can recover multiple attributes for the businesses efficiently.

Among all 11537 businesses, there are 89.39% of them are still open. We only select
those businesses which are still open. There are 285 categories in total. After we remove
all the categories having no more than 20 businesses within it, there are 134 categories that
remain. We generate community membership matrix for business categories Πc ∈ R

kc×n

where kc := 134 is the number of remaining categories and n := 10141 is the number of
business remaining after removing all the negligible categories. All the businesses collected
in the Yelp data are in AZ except 3 of them (one is in CA, one in CO and the other in

25

Huang et al.

Category Business Star(B) Star(C) RC(B) RC(C)
Latin American Salvadoreno 4.0 3.94 36 93.8
Gluten Free P.F. Chang’s 3.5 3.72 55 50.6
Hobby Shops Make Meaning 4.5 4.13 14 7.6
Mass Media KJZZ 91.5FM 4.0 3.63 13 5.6
Yoga Sutra Midtown 4.5 4.55 31 12.6
Churches St Andrew Church 4.5 4.52 3 4.2
Art Galleries Sette Lisa 4.5 4.48 4 6.6
Libraries Cholla Branch 4.0 4.00 5 11.2
Religious St Andrew Church 4.5 4.40 3 4.2
Wickenburg Taste of Caribbean 4.0 3.66 60 6.7

Table 9: Most accurately recovered categories and businesses with highest membership
weights for the Yelp dataset. “Star(B)” denotes the review stars that the business
receive and “Star(C)”, the average review stars that businesses in that category
receive. “RC(B)” denotes the review counts for that business and “RC(C)” , the
average review counts in that category.

SC). We remove the three businesses outside AZ. We notice that most of the businesses are
spread out in 25 cities. Community membership matrix for location is defined as Π ∈ R

kl×n

where kl := 25 is the number cities and n := 10010 is number of businesses. Distribution
of locations are in Table 11. The stars a business receives can vary from 1 (the lowest) to
5 (the highest). The higher the score is, the more satisfied the customers are. The average
star score is 3.6745. The distribution is given in Table 10. There are also review counts
for each business which are the number of reviews that business receives from all the users.
The minimum review counts is 3 and the maximum is 862. The mean of review counts is
20.1929. The preprocessing helps us to pick out top communities.

There are 5 attributes associated with all the 11537 businesses, which are “open”, “Cat-
egories”, “Location”, “Review Counts” and “Stars”. We model ground truth communities
as a combination of “Categories” and “Location”. We select business categories with more
than 20 members and remove all businesses which are closed. 10010 businesses are re-
mained. Only 28588 users are involved in reviews towards the 10010 businesses. There
are 3 attributes associated with all the 28588 users, which are “Female”, “Male”, “Review
Counts” and “Stars”. Although we do not directly know the gender information from the
dataset, a name-gender guesser6 is used to estimate gender information using names.

We provide some sample visualization results in Figure 7 for both the ground truth and
the estimates from our algorithm. We sub-sample the users and businesses, group the users
into male and female categories, and consider nail salon and tire businesses. Analysis of
ground truth reveals that nail salon and tire businesses are very discriminative of the user
genders, and thus we employ them for visualization. We note that both the nail salon and
tire businesses are categorized with high accuracy, while users are categorized with poorer
accuracy.

Our algorithm can also recover the attributes of users. However, the ground truth
available about users is far more limited than businesses, and we only have information on
gender, average review counts and average stars (we infer the gender of the users through
their names). Our algorithm can recover all these attributes. We observe that gender

6. https://github.com/amacinho/Name-Gender-Guesser by Amac Herdagdelen.

26

https://github.com/amacinho/Name-Gender-Guesser

Online Tensor Methods for Learning Latent Variable Models

Star Score Num of businesses Percentage

1.0 108 0.94%
1.5 170 1.47%
2.0 403 3.49%
2.5 1011 8, 76%
3.0 1511 13.10%
3.5 2639 22.87%
4.0 2674 23.18%
4.5 1748 15.15%
5.0 1273 11.03%

Table 10: Table for distribution of business star scores.

City State Num of business

Anthem AZ 34
Apache Junction AZ 46
Avondale AZ 129
Buckeye AZ 31
Casa Grande AZ 48
Cave Creek AZ 65
Chandler AZ 865
El Mirage AZ 11
Fountain Hills AZ 49
Gilbert AZ 439
Glendale AZ 611
Goodyear AZ 126
Laveen AZ 22
Maricopa AZ 31
Mesa AZ 898
Paradise Valley AZ 57
Peoria AZ 267
Phoenix AZ 4155
Queen Creek AZ 78
Scottsdale AZ 2026
Sun City AZ 37
Surprise AZ 161
Tempe AZ 1153
Tolleson AZ 22
Wickenburg AZ 28

Table 11: Distribution of business locations. Only top cities with more than 10 businesses
are presented.

27

Huang et al.

Tires

MaleFemale

Nail Salon Tires

MaleFemale

Nail Salon

Figure 7: Ground truth (left) vs estimated business and user categories (right). The error
in the estimated graph due to misclassification is shown by the mixed colours.

is the hardest to recover while review counts is the easiest. We see that the other user
attributes recovered by our algorithm correspond to valuable user information such as their
interests, location, age, lifestyle, etc. This is useful, for instance, for businesses studying
the characteristics of their users, for delivering better personalized advertisements for users,
and so on.

Facebook Dataset: A snapshot of the Facebook network of UNC (Traud et al., 2010) is
provided with user attributes. The ground truth communities are based on user attributes
given in the dataset which are not exposed to the algorithm. There are 360 top communities
with sufficient (at least 20) users. Our algorithm can recover these attributes with high
accuracy; see main paper for our method’s results compared with variational inference
result (Gopalan et al., 2012).

We also obtain results for a range of values of α0 (Figure 8). We observe that the recovery
ratio improves with larger α0 since a larger α0 can recover overlapping communities more
efficiently while the error score remains relatively the same.

For the Facebook dataset, the top ten communities recovered with lowest error consist
of certain high schools, second majors and dorms/houses. We observe that high school
attributes are easiest to recover and second major and dorm/house are reasonably easy
to recover by looking at the friendship relations in Facebook. This is reasonable: college
students from the same high school have a high probability of being friends; so do colleges
students from the same dorm.

DBLP Dataset: The DBLP data contains bibliographic records7 with various publica-
tion venues, such as journals and conferences, which we model as communities. We then
consider authors who have published at least one paper in a community (publication venue)
as a member of it. Co-authorship is thus modeled as link in the graph in which authors are

7. http://dblp.uni-trier.de/xml/Dblp.xml

28

http://dblp.uni-trier.de/xml/Dblp.xml

Online Tensor Methods for Learning Latent Variable Models

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1
R

ec
ov

er
y

ra
tio

Threshold

α0:0.1
α0:0.5
α0:0.9

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

Threshold

E
rr
o
r

α0:0.1
α0:0.5
α0:0.9

Figure 8: Performance analysis of Facebook dataset under different settings of the concen-
tration parameter (α0) for k̂ = 100.

represented as nodes. In this framework, we could recover the top authors in communities
and bridging authors.

7. Conclusion

In this paper, we presented a fast and unified moment-based framework for learning over-
lapping communities as well as topics in a corpus. There are several key insights involved.
Firstly, our approach follows from a systematic and guaranteed learning procedure in con-
trast to several heuristic approaches which may not have strong statistical recovery guaran-
tees. Secondly, though using a moment-based formulation may seem computationally expen-
sive at first sight, implementing implicit “tensor” operations leads to significant speed-ups
of the algorithm. Thirdly, employing randomized methods for spectral methods is promising
in the computational domain, since the running time can then be significantly reduced.

This paper paves the way for several interesting directions for further research. While our
current deployment incorporates community detection in a single graph, extensions to multi-
graphs and hypergraphs are possible in principle. A careful and efficient implementation
for such settings will be useful in a number of applications. It is natural to extend the
deployment to even larger datasets by having cloud-based systems. The issue of efficient
partitioning of data and reducing communication between the machines becomes significant
there. Combining our approach with other simple community detection approaches to gain
even more speedups can be explored.

Acknowledgement

The first author is supported by NSF BIGDATA IIS-1251267, the second author is supported
in part by UCI graduate fellowship and NSF Award CCF-1219234, and the last author is
supported in part by Microsoft Faculty Fellowship, NSF Career award CCF-1254106, NSF
Award CCF-1219234, and ARO YIP Award W911NF-13-1-0084. The authors acknowledge

29

Huang et al.

insightful discussions with Prem Gopalan, David Mimno, David Blei, Qirong Ho, Eric Xing,
Carter Butts, Blake Foster, Rui Wang, Sridhar Mahadevan, and the CULA team. Special
thanks to Prem Gopalan and David Mimno for providing the variational code and answer-
ing all our questions. The authors also thank Daniel Hsu and Sham Kakade for initial
discussions regarding the implementation of the tensor method. We also thank Dan Melzer
for helping us with the system-related issues.

References

Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing. Mixed member-
ship stochastic blockmodels. Journal of Machine Learning Research, 9:1981–2014, June
2008.

A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decompositions
for latent variable models, 2012.

A. Anandkumar, R. Ge, D. Hsu, and S. M. Kakade. A Tensor Spectral Approach to Learning
Mixed Membership Community Models. ArXiv 1302.2684, Feb. 2013a.

A. Anandkumar, R. Ge, D. Hsu, and S. M. Kakade. A Tensor Spectral Approach to
Learning Mixed Membership Community Models. In Conference on Learning Theory
(COLT), June 2013b.

Raman Arora, Andrew Cotter, Karen Livescu, and Nathan Srebro. Stochastic optimization
for pca and pls. In Communication, Control, and Computing (Allerton), 2012 50th An-
nual Allerton Conference on, pages 861–868, 2012. doi: 10.1109/Allerton.2012.6483308.

K. Bache and M. Lichman. UCI machine learning repository, 2013. URL
http://archive.ics.uci.edu/ml.

Brett W. Bader, Tamara G. Kolda, et al. Matlab tensor toolbox version 2.5. Available
online, January 2012. URL http://www.sandia.gov/~tgkolda/TensorToolbox/.

Grey Ballard, Tamara Kolda, and Todd Plantenga. Efficiently computing tensor eigenvalues
on a gpu. In Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW),
2011 IEEE International Symposium on, pages 1340–1348. IEEE, 2011.

Arindam Banerjee and John Langford. An objective evaluation criterion for clustering. In
Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 515–520. ACM, 2004.

Michael Berry, Theresa Do, Gavin O’Brien, Vijay Krishna, and Sowmini Varadhan. Svdlibc
version 1.4. Available online, 2002. URL http://tedlab.mit.edu/~dr/SVDLIBC/.

David M Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012.

Yudong Chen, Sujay Sanghavi, and Huan Xu. Clustering sparse graphs. arXiv preprint
arXiv:1210.3335, 2012.

30

http://archive.ics.uci.edu/ml
http://www.sandia.gov/~tgkolda/TensorToolbox/
http://tedlab.mit.edu/~dr/SVDLIBC/

Online Tensor Methods for Learning Latent Variable Models

Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in
input sparsity time. CoRR, abs/1207.6365, 2012.

Paul G Constantine and David F Gleich. Tall and skinny qr factorizations in mapreduce
architectures. In Proceedings of the Second International Workshop on MapReduce and
its Applications, pages 43–50. ACM, 2011.

Barbara Fadem. High-yield behavioral science. LWW, 2012.

Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, pca and projective clustering. In Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1434–
1453. SIAM, 2013.

Alex Gittens and Michael W Mahoney. Revisiting the nystrom method for improved large-
scale machine learning. arXiv preprint arXiv:1303.1849, 2013.

Gene H. Golub and Charles F. Van Loan. Matrix computations. 4th ed. Baltimore, MD:
The Johns Hopkins University Press, 4th ed. edition, 2013. ISBN 978-1-4214-0794-4/hbk;
978-1-4214-0859-0/ebook.

P. Gopalan, D. Mimno, S. Gerrish, M. Freedman, and D. Blei. Scalable inference of over-
lapping communities. In Advances in Neural Information Processing Systems 25, pages
2258–2266, 2012.

Prem K Gopalan and David M Blei. Efficient discovery of overlapping communities in
massive networks. Proceedings of the National Academy of Sciences, 110(36):14534–14539,
2013.

Joseph JáJá. An introduction to parallel algorithms. Addison Wesley Longman Publishing
Co., Inc., 1992.

Ravindran Kannan, Santosh S Vempala, and David P Woodruff. Principal component anal-
ysis and higher correlations for distributed data. In Proceedings of The 27th Conference
on Learning Theory, pages 1040–1057, 2014.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in
networks. Physical Review E, 83(1):016107, 2011.

H.J. Kushner and G. Yin. Stochastic Approximation and Recursive Algorithms and Appli-
cations. Applications of Mathematics Series. Springer, 2003. ISBN 9780387008943. URL
http://books.google.com/books?id=_0bIieuUJGkC.

Andrea Lancichinetti and Santo Fortunato. Community detection algorithms: a compara-
tive analysis. Physical review E, 80(5):056117, 2009.

Andrea Lancichinetti, Santo Fortunato, and János Kertész. Detecting the overlapping and
hierarchical community structure in complex networks. New Journal of Physics, 11(3):
033015, 2009.

31

http://books.google.com/books?id=_0bIieuUJGkC

Huang et al.

M. McPherson, L. Smith-Lovin, and J.M. Cook. Birds of a feather: Homophily in social
networks. Annual Review of Sociology, pages 415–444, 2001.

F. McSherry. Spectral partitioning of random graphs. In FOCS, 2001.

Andriy Mnih and Ruslan Salakhutdinov. Probabilistic matrix factorization. In Advances
in Neural Information Processing Systems, pages 1257–1264, 2007.

Tamás Nepusz, Andrea Petróczi, László Négyessy, and Fülöp Bazsó. Fuzzy communities
and the concept of bridgeness in complex networks. Physical Review E, 77(1):016107,
2008.

Erkki Oja and Juha Karhunen. On stochastic approximation of the eigenvectors and eigen-
values of the expectation of a random matrix. Journal of Mathematical Analysis and
Applications, 106(1):69–84, 1985.

Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization us-
ing markov chain monte carlo. In Proceedings of the 25th International Conference on
Machine learning, pages 880–887. ACM, 2008.

Martin D Schatz, Tze Meng Low, Robert A van de Geijn, and Tamara G Kolda. Exploiting
symmetry in tensors for high performance. arXiv preprint arXiv:1301.7744, 2013.

Robert R Sokal and F James Rohlf. The comparison of dendrograms by objective methods.
Taxon, 11(2):33–40, 1962.

Jyothish Soman and Ankur Narang. Fast community detection algorithm with gpus and
multicore architectures. In Parallel & Distributed Processing Symposium (IPDPS), 2011
IEEE International, pages 568–579. IEEE, 2011.

Korbinian Strimmer. fdrtool: a versatile r package for estimating local and tail area-based
false discovery rates. Bioinformatics, 24(12):1461–1462, 2008.

Amanda L. Traud, Eric D. Kelsic, Peter J. Mucha, and Mason A. Porter. Comparing
community structure to characteristics in online collegiate social networks. SIAM Review,
in press (arXiv:0809.0960), 2010.

Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on
ground-truth. In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics,
page 3. ACM, 2012.

Yu Zhang and Dit-Yan Yeung. Overlapping community detection via bounded nonnegative
matrix tri-factorization. In Proceedings of the 18th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’12, pages 606–614, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1462-6. doi: 10.1145/2339530.2339629. URL
http://doi.acm.org/10.1145/2339530.2339629.

32

http://doi.acm.org/10.1145/2339530.2339629

Online Tensor Methods for Learning Latent Variable Models

8. Appendix

Appendix A. Stochastic Updates

After obtaining the whitening matrix, we whiten the data G⊤
x,A, G

⊤
x,B and G⊤

x,C by linear

operations to get ytA, y
t
B and ytC ∈ R

k:

ytA :=
〈
G⊤

x,A,W
〉
, ytB :=

〈
ZBG

⊤
x,B ,W

〉
, ytC :=

〈
ZCG

⊤
x,C ,W

〉
.

where x ∈ X and t denotes the index of the online data.
The stochastic gradient descent algorithm is obtained by taking the derivative of the

loss function ∂Lt(v)
∂vi

:

∂Lt(v)

∂vi
=θ

k∑

j=1

〈vj , vi〉2 vj −
(α0 + 1)(α0 + 2)

2

〈
vi, y

t
A

〉 〈
vi, y

t
B

〉
ytC − α2

0

〈
φt
i, ȳA

〉 〈
φt
i, ȳ

t
B

〉
ȳC

+
α0(α0 + 1)

2

〈
φt
i, y

t
A

〉 〈
φt
i, y

t
B

〉
ȳC +

α0(α0 + 1)

2

〈
φt
i, y

t
A

〉 〈
φt
i, ȳB

〉
yC +

α0(α0 + 1)

2

〈
φt
i, ȳA

〉 〈
φt
i, y

t
B

〉
yC

for i ∈ [k], where ytA, y
t
B and ytC are the online whitened data points as discussed in the

whitening step and θ is a constant factor that we can set.
The iterative updating equation for the stochastic gradient update is given by

φt+1
i ← φt

i − βt ∂L
t

∂vi

∣∣∣∣
φt
i

(20)

for i ∈ [k], where βt is the learning rate, φt
i is the last iteration eigenvector and φt

i is the
updated eigenvector. We update eigenvectors through

φt+1
i ← φt

i − θβt
k∑

j=1

[〈
φt
j , φ

t
i

〉2
φt
j

]
+ shift[βt

〈
φt
i, y

t
A

〉 〈
φt
i, y

t
B

〉
ytC] (21)

Now we shift the updating steps so that they correspond to the centered Dirichlet
moment forms, i.e.,

shift[βt
〈
φt
i, y

t
A

〉 〈
φt
i, y

t
B

〉
ytC] := βt (α0 + 1)(α0 + 2)

2

〈
φt
i, y

t
A

〉 〈
φt
i, y

t
B

〉
ytC + βtα2

0

〈
φt
i, ȳA

〉 〈
φt
i, ȳB

〉
ȳC

− βtα0(α0 + 1)

2

〈
φt
i, y

t
A

〉 〈
φt
i, y

t
B

〉
ȳC − βtα0(α0 + 1)

2

〈
φt
i, y

t
A

〉 〈
φt
i, ȳB

〉
yC − βtα0(α0 + 1)

2

〈
φt
i, ȳA

〉 〈
φt
i, y

t
B

〉
yC ,

(22)

where ȳA := Et[y
t
A] and similarly for ȳB and ȳC .

Appendix B. Proof of correctness of our algorithm:

We now prove the correctness of our algorithm.
First, we compute M2 as just

Ex

[
G̃⊤

x,C ⊗ G̃⊤
x,B|ΠA,ΠB ,ΠC

]

33

Huang et al.

where we define

G̃⊤
x,B := Ex

[
G⊤

x,A ⊗G⊤
x,C

∣∣∣∣ ΠA,ΠC

](
Ex

[
G⊤

x,B ⊗G⊤
x,C

∣∣∣∣ ΠB ,ΠC

])†

G⊤
x,B

G̃⊤
x,C := Ex

[
G⊤

x,A ⊗G⊤
x,B

∣∣∣∣ ΠA,ΠB

](
Ex

[
G⊤

x,C ⊗G⊤
x,B

∣∣∣∣ ΠB ,ΠC

])†

G⊤
x,C .

Define FA is defined as FA := Π⊤
AP

⊤, we obtainM2 = E

[
G⊤

x,A ⊗G⊤
x,A

]
= Π⊤

AP
⊤
(
Ex[πxπ

⊤
x]
)
PΠA =

FA

(
Ex[πxπ

⊤
x]
)
F⊤
A . Note that P is the community connectivity matrix defined as P ∈

[0, 1]k×k. Now that we know M2, E
[
π2
i

]
= αi(αi+1)

α0(α0+1) , and E [πiπj] =
αiαj

α0(α0+1)∀i 6= j, we can

get the centered second order moments PairsCom as

PairsCom := FA diag

([
α1α1 + 1

α0(α0 + 1)
, . . . ,

αkαk + 1

α0(α0 + 1)

])
F⊤
A (23)

= M2 −
α0

α0 + 1
FA

(
α̂α̂⊤ − diag

(
α̂α̂⊤

))
F⊤
A (24)

=
1

nX

∑

x∈X

ZCG
⊤
x,CGx,BZ

⊤
B −

α0

α0 + 1

(
µAµ

⊤
A − diag

(
µAµ

⊤
X→A

))
(25)

Thus, our whitening matrix is computed. Now, our whitened tensor is T is given by

T = T Com(W,W,W) =
1

nX

∑

x

[
(W⊤FAπ

α0
x)⊗ (W⊤FAπ

α0
x)⊗ (W⊤FAπ

α0
x)
]
,

where πα0
x is the centered vector so that E[πα0

x ⊗ πα0
x ⊗ πα0

x] is diagonal. We then apply the
stochastic gradient descent technique to decompose the third order moment.

Appendix C. GPU Architecture

The algorithm we propose is very amenable to parallelization and is scalable which makes it
suitable to implement on processors with multiple cores in it. Our method consists of simple
linear algebraic operations, thus enabling us to utilize Basic Linear Algebra Subprograms
(BLAS) routines such as BLAS I (vector operations), BLAS II (matrix-vector operations),
BLAS III (matrix-matrix operations), Singular Value Decomposition (SVD), and iterative
operations such as stochastic gradient descent for tensor decomposition that can easily
take advantage of Single Instruction Multiple Data (SIMD) hardware units present in the
GPUs. As such, our method is amenable to parallelization and is ideal for GPU-based
implementation.

Overview of code design: From a higher level point of view, a typical GPU based
computation is a three step process involving data transfer from CPU memory to GPU
global memory, operations on the data now present in GPU memory and finally, the result
transfer from the GPU memory back to the CPU memory. We use the CULA library for
implementing the linear algebraic operations.

34

Online Tensor Methods for Learning Latent Variable Models

GPU compute architecture: The GPUs achieve massive parallelism by having hun-
dreds of homogeneous processing cores integrated on-chip. Massive replication of these cores
provides the parallelism needed by the applications that run on the GPUs. These cores, for
the Nvidia GPUs, are known as CUDA cores, where each core has fully pipelined floating-
point and integer arithmetic logic units. In Nvidia’s Kepler architecture based GPUs, these
CUDA cores are bunched together to form a Streaming Multiprocessor (SMX). These SMX
units act as the basic building block for Nvidia Kepler GPUs. Each GPU contains multiple
SMX units where each SMX unit has 192 single-precision CUDA cores, 64 double-precision
units, 32 special function units, and 32 load/store units for data movement between cores
and memory.

Each SMX has L1, shared memory and a read-only data cache that are common to
all the CUDA cores in that SMX unit. Moreover, the programmer can choose between
different configurations of the shared memory and L1 cache. Kepler GPUs also have an L2
cache memory of about 1.5MB that is common to all the on-chip SMXs. Apart from the
above mentioned memories, Kepler based GPU cards come with a large DRAM memory,
also known as the global memory, whose size is usually in gigabytes. This global memory
is also visible to all the cores. The GPU cards usually do not exist as standalone devices.
Rather they are part of a CPU based system, where the CPU and GPU interact with each
other via PCI (or PCI Express) bus.

In order to program these massively parallel GPUs, Nvidia provides a framework known
as CUDA that enables the developers to write programs in languages like C, C++, and
Fortran etc. A CUDA program constitutes of functions called CUDA kernels that execute
across many parallel software threads, where each thread runs on a CUDA core. Thus the
GPU’s performance and scalability is exploited by the simple partitioning of the algorithm
into fixed sized blocks of parallel threads that run on hundreds of CUDA cores. The threads
running on an SMX can synchronize and cooperate with each other via the shared memory
of that SMX unit and can access the Global memory. Note that the CUDA kernels are
launched by the CPU but they get executed on the GPU. Thus compute architecture of the
GPU requires CPU to initiate the CUDA kernels.

CUDA enables the programming of Nvidia GPUs by exposing low level API. Apart
from CUDA framework, Nvidia provides a wide variety of other tools and also supports
third party libraries that can be used to program Nvidia GPUs. Since a major chunk of the
scientific computing algorithms is linear algebra based, it is not surprising that the standard
linear algebraic solver libraries like BLAS and Linear Algebra PACKage (LAPACK) also
have their equivalents for Nvidia GPUs in one form or another. Unlike CUDA APIs, such
libraries expose APIs at a much higher-level and mask the architectural details of the
underlying GPU hardware to some extent thus enabling relatively faster development time.

Considering the tradeoffs between the algorithm’s computational requirements, design
flexibility, execution speed and development time, we choose CULA-Dense as our main im-
plementation library. CULA-Dense provides GPU based implementations of the LAPACK
and BLAS libraries for dense linear algebra and contains routines for systems solvers, sin-
gular value decompositions, and eigen-problems. Along with the rich set of functions that
it offers, CULA provides the flexibility needed by the programmer to rapidly implement the
algorithm while maintaining the performance. It hides most of the GPU architecture depen-

35

Huang et al.

dent programming details thus making it possible for rapid prototyping of GPU intensive
routines.

The data transfers between the CPU memory and the GPU memory are usually explic-
itly initiated by CPU and are carried out via the PCI (or PCI Express) bus interconnecting
the CPU and the GPU. The movement of data buffers between CPU and GPU is the most
taxing in terms of time. The buffer transaction time is shown in the plot in Figure 9.
Newer GPUs, like Kepler based GPUs, also support useful features like GPU-GPU direct
data transfers without CPU intervention. Our system and software specifications are given
in Table 3.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
CPU−GPU buffer round−trip transaction time

log
(

buffer size
8

)

T
im

e
(s
)

Figure 9: Experimentally measured time taken for buffer transfer between the CPU and
the GPU memory in our system.

CULA exposes two important interfaces for GPU programming namely, standard and
device. Using the standard interface, the developer can program without worrying about
the underlying architectural details of the GPU as the standard interface takes care of all
the data movements, memory allocations in the GPU and synchronization issues. This
however comes at a cost. For every standard interface function call the data is moved in
and out of the GPU even if the output result of one operation is directly required by the
subsequent operation. This unnecessary movement of intermediate data can dramatically
impact the performance of the program. In order to avoid this, CULA provides the device
interface. We use the device interface for STGD in which the programmer is responsible
for data buffer allocations in the GPU memory, the required data movements between the
CPU and GPU, and operates only on the data in the GPU. Thus the subroutines of the
program that are iterative in nature are good candidates for device implementation.

Pre-processing and post-processing: The pre-processing involves matrices whose
leading dimension is of the order of number of nodes. These are implemented using the
CULA standard interface BLAS II and BLAS III routines.

Pre-processing requires SVD computations for the Moore-Penrose pseudoinverse calcu-
lations. We use CULA SVD routines since these SVD operations are carried out on matrices
of moderate size. We further replaced the CULA SVD routines with more scalable SVD and
pseudo inverse routines using random projections (Gittens and Mahoney, 2013) to handle
larger datasets such as DBLP dataset in our experiment.

36

Online Tensor Methods for Learning Latent Variable Models

n k α0 Error Time (secs)

1e2 10 0 0.1200 0.5
1e3 10 0 0.1010 1.2
1e4 10 0 0.0841 43.2
1e2 10 1 0.1455 0.5
1e3 10 1 0.1452 1.2
1e4 10 1 0.1259 42.2

Table 12: Synthetic simulation results for different configurations. Running time is the time
taken to run to convergence.

After STGD, the community membership matrix estimates are obtained using BLAS
III routines provided by the CULA standard interface. The matrices are then used for
hypothesis testing to evaluate the algorithm against the ground truth.

Appendix D. Results on Synthetic Datasets

Homophily is an important factor in social interactions (McPherson et al., 2001); the term
homophily refers to the tendency that actors in the same community interact more than
across different communities. Therefore, we assume diagonal dominated community connec-
tivity matrix P with diagonal elements equal to 0.9 and off-diagonal elements equal to 0.1.
Note that P need neither be stochastic nor symmetric. Our algorithm allows for randomly
generated community connectivity matrix P with support [0, 1]. In this way, we look at
general directed social ties among communities.

We perform experiments for both the stochastic block model (α0 = 0) and the mixed
membership model. For the mixed membership model, we set the concentration parameter
α0 = 1. We note that the error is around 8% − 14% and the running times are under a
minute, when n ≤ 10000 and n≫ k.

The results are given in Table 12. We observe that more samples result in a more ac-
curate recovery of memberships which matches intuition and theory. Overall, our learning
algorithm performs better in the stochastic block model case than in the mixed member-
ship model case although we note that the accuracy is quite high for practical purposes.
Theoretically, this is expected since smaller concentration parameter α0 is easier for our
algorithm to learn (Anandkumar et al., 2013b). Also, our algorithm is scalable to an order
of magnitude more in n as illustrated by experiments on real-world large-scale datasets.

Appendix E. Comparison of Error Scores

Normalized Mutual Information (NMI) score (Lancichinetti et al., 2009) is another popular
score which is defined differently for overlapping and non-overlapping community models.
For non-overlapping block model, ground truth membership for node i is a discrete k-
state categorical variable Πblock ∈ [k] and the estimated membership is a discrete k̂-state
categorical variable Π̂block ∈ [k̂]. The empirical distribution of ground truth membership

37

Huang et al.

categorical variable Πblock is easy to obtain. Similarly is the empirical distribution of the
estimated membership categorical variable Π̂block. NMI for block model is defined as

Nblock(Π̂block : Πblock) :=
H(Πblock) +H(Π̂block)−H(Πblock, Π̂block)(

H(Πblock) +H(Π̂block)
)
/2

.

The NMI for overlapping communities is a binary vector instead of a categorical vari-
able (Lancichinetti et al., 2009). The ground truth membership for node i is a binary vector
of length k, Πmix, while the estimated membership for node i is a binary vector of length
k̂, Π̂mix. This notion coincides with one column of our membership matrices Π ∈ R

k×n and

Π̂ ∈ R
k̂×n except that our membership matrices are stochastic. In other words, we consider

all the nonzero entries of Π as 1’s, then each column of our Π is a sample for Πmix. The
m-th entry of this binary vector is the realization of a random variable Πmixm = (Πmix)m,
whose probability distribution is

P (Πmixm = 1) =
nm

n
, P (Πmixm = 0) = 1− nm

n
,

where nm is the number of nodes in community m. The same holds for Π̂mixm . The
normalized conditional entropy between Πmix and Π̂mix is defined as

H(Π̂mix|Πmix)norm :=
1

k

∑

j∈[k]

min
i∈[k̂]

H
(
Π̂mixi |Πmixj

)

H(Πmixj)
(26)

where Πmixj denotes the j
th entry of Πmix and similarly for Π̂mixi . The NMI for overlapping

community is

Nmix(Π̂mix : Πmix) := 1− 1

2

[
H(Πmix|Π̂mix)norm +H(Π̂mix|Πmix)norm

]
.

There are two aspects in evaluating the error. The first aspect is the l1 norm error.

According to Equation (26), the error function used in NMI score is
H
(
Π̂mixi

|Πmixj

)

H(Πmixj
) . NMI

is not suitable for evaluating recovery of different sized communities. In the special case of
a pair of extremely sparse and dense membership vectors, depicted in Figure 10, H(Πmixj)
is the same for both the dense and the sparse vectors since they are flipped versions of
each other (0s flipped to 1s and vice versa). However, the smaller sized community (i.e.
the sparser community vector), shown in red in Figure 10, is significantly more difficult
to recover than the larger sized community shown in blue in Figure 10. Although this
example is an extreme scenario that is not seen in practice, it justifies the drawbacks of the
NMI. Thus, NMI is not suitable for evaluating recovery of different sized communities. In
contrast, our error function employs a normalized l1 norm error which penalizes more for
larger sized communities than smaller ones.

The second aspect is the error induced by false pairings of estimated and ground-truth
communities. NMI score selects only the closest estimated community through normal-
ized conditional entropy minimization and it does not account for statistically significant
dependence between an estimated community and multiple ground truth communities and

38

Online Tensor Methods for Learning Latent Variable Models

dense Π1

sparse Π2

length n membership vector

0

1

large sized community

small sized community

Figure 10: A special case of a pair of extremely dense and sparse communities. Theoret-
ically, the sparse community is more difficult to recover than the dense one.
However, the NMI score penalizes both of them equally. Note that for dense Π1,
P (Πmix1 = 0) = # of 0s in Π1

n which is equal to P (Πmix2 = 1) = # of 1s in Π2

n . Simi-

larly, P (Πmix1 = 1) = # of 1s in Π1

n which is equal to P (Πmix2 = 0) = # of 0s in Π2

n .
Therefore, H(Πmix1) = H(Πmix2).

vice-versa, and therefore it underestimates error. However, our error score does not limit to a
matching between the estimated and ground truth communities: if an estimated community
is found to have statistically significant correlation with multiple ground truth communities
(as evaluated by the p-value), we penalize for the error over all such ground truth commu-
nities. Thus, our error score is a harsher measure of evaluation than NMI. This notion of
“soft-matching” between ground-truth and estimated communities also enables validation
of recovery of a combinatorial union of communities instead of single ones.

A number of other scores such as “separability”, “density”, “cohesiveness” and “clus-
tering coefficient” (Yang and Leskovec, 2012) are non-statistical measures of faithful com-
munity recovery. The scores of (Yang and Leskovec, 2012) intrinsically aim to evaluate the
level of clustering within a community. However our goal is to measure the accuracy of
recovery of the communities and not how well-clustered the communities are.

Banerjee and Langford (Banerjee and Langford, 2004) proposed an objective evaluation
criterion for clustering which use classification performance as the evaluation measure. In
contrast, we look at how well the method performs in recovering the hidden communities,
and we are not evaluating predictive performance. Therefore, this measure is not used in
our evaluation.

Finally, we note that cophenetic correlation is another statistical score used for eval-
uating clustering methods, but note that it is only valid for hierarchical clustering and it
is a measure of how faithfully a dendrogram preserves the pairwise distances between the
original unmodeled data points (Sokal and Rohlf, 1962). Hence, it is not employed in this
paper.

39

	1 Introduction
	1.1 Summary of Contributions
	1.2 Related work

	2 Tensor Forms for Topic and Community Models
	2.1 Topic Modeling
	2.2 Mixed Membership Model

	3 Learning using Third Order Moment
	3.1 Dimensionality Reduction and Whitening
	3.2 Stochastic Tensor Gradient Descent
	3.3 Post-processing

	4 Implementation Details
	4.1 Symmetrization Step to Compute M2
	4.2 Efficient Randomized SVD Computations
	4.3 Stochastic updates
	4.4 Computational Complexity
	4.4.1 Pre-processing
	4.4.2 STGD
	4.4.3 Post-processing

	5 Validation methods
	5.1 p-value testing:
	5.2 Evaluation metrics

	6 Experimental Results
	7 Conclusion
	8 Appendix
	A Stochastic Updates
	B Proof of correctness of our algorithm:
	C GPU Architecture
	D Results on Synthetic Datasets
	E Comparison of Error Scores

