
UCLA
UCLA Electronic Theses and Dissertations

Title
Understanding the Role of Optimization Algorithms in Learning Over-parameterized Models

Permalink
https://escholarship.org/uc/item/9fs4r6kz

Author
Zou, Difan

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9fs4r6kz
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Understanding the Role of Optimization Algorithms in

Learning Over-parameterized Models

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Difan Zou

2022

© Copyright by

Difan Zou

2022

ABSTRACT OF THE DISSERTATION

Understanding the Role of Optimization Algorithms in

Learning Over-parameterized Models

by

Difan Zou

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2022

Professor Quanquan Gu, Chair

Deep learning has witnessed fast growth and wide application in recent years. One of

the essential properties of the modern deep learning model is that it is sufficiently over-

parameterized, i.e., it has much more learnable parameters than the number of training

examples. The over-parameterization, on one hand, is the core of the superior approxima-

tion/representation ability of the neural network function, while, on the other hand, could

lead to severe over-fitting issues, according to the conventional wisdom in learning theory.

However, this is not consistent with the empirical success in deep learning, where the neu-

ral network model, trained by standard optimization algorithms (e.g., stochastic gradient

descent, Adam, etc.), can not only perfectly fit the training data (i.e., finding the global

solution of the training objective), but also generalizes well on the test data. This disserta-

tion seeks to understand and explain this phenomenon by carefully characterizing the role

of optimization algorithms in learning over-parameterized models.

We begin the dissertation by studying arguably the simplest model: over-parameterized

linear regression problems. In particular, we consider a class of SGD algorithms and prove

ii

problem-dependent generalization error bounds accordingly. Based on the established gener-

alization guarantees, we will further characterize the sufficient conditions on the least square

problem itself (e.g., conditions on data distribution and ground-truth model parameters)

such that the SGD algorithm can generalize. Moreover, motivated by the recent work on

the implicit regularization of SGD, we also provide a complete comparison between the SGD

solution and the solution of regularized least square (i.e., ridge regression). We demonstrate

the benefit of SGD compared to ridge regression for a large class of the least square problems

classes, which partially explains the implicit regularization effect of SGD.

In the second part, we study the effect of optimization algorithms for learning over-

parameterized neural network models. Different from linear models that their optimization

guarantees can be easily established, studying the optimization in training deep neural net-

works is challenging since the training objective is nonconvex or even nonsmooth. Therefore,

we first study the optimization in training over-parameterized neural network models and

establish global convergence guarantees for both GD and SGD under mild conditions on the

data distribution. Based on the optimization analysis, we further establish an algorithm-

dependent generalization analysis for SGD/GD. We show that if the data distribution admits

certain good separation properties, a deep ReLU network with polylogarithmic width can

be successfully trained with a global convergence guarantee and good generalization ability.

Finally, we compare the generalization ability of two different optimization algorithms in

learning over-parameterized neural networks: GD and Adam, and show that Adam and GD

exhibit different algorithmic biases, which consequently leads to different solutions that have

different generalization performances.

The works covered in this dissertation form exploration in understanding the role of opti-

mization algorithms in learning over-parameterized models, which is an incomplete collection

of the recent advances in deep learning theory but shed light on a broader class of future

directions in deep learning research.

iii

The dissertation of Difan Zou is approved.

Sham Kakade

Stefano Soatto

Stanley Osher

Yizhou Sun

Quanquan Gu, Committee Chair

University of California, Los Angeles

2022

iv

To my family

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Organization of the paper . 4

1.2 Notations . 6

I Learning Over-parameterized Linear Models 7

2 Generalization of SGD for Linear Regression 8

2.1 Introduction . 8

2.2 Main Results . 10

2.2.1 Benign Overfitting of SGD . 10

2.2.2 The Effect of Tail-Averaging . 16

2.3 Further Related Work . 17

2.4 Proof Outline . 19

2.4.1 Preliminaries . 19

2.4.2 The Bias-Variance Decomposition . 20

2.4.3 Bounding the Variance Error . 21

2.4.4 Bounding the Bias Error . 23

2.5 Examples of Assumption 2.2.2 . 24

2.6 Proofs of the Upper Bounds . 26

2.6.1 Technical Lemma . 26

2.6.2 Bias-Variance Decomposition . 28

2.6.3 Bounding the Variance Error . 30

vi

2.6.4 Bounding the Bias Error . 36

2.6.5 Proof of Theorem 2.2.4 . 43

2.6.6 Proof of Corollary 2.2.8 . 43

2.6.7 Proof of Corollary 2.2.9 . 45

2.7 Proofs of the Lower Bounds . 46

2.7.1 Lower Bound for Bias-Variance Decomposition 46

2.7.2 Lower Bounding the Variance Error 48

2.7.3 Lower Bounding the Bias Error . 51

2.7.4 Proof of Theorem 2.2.6 . 55

2.8 Proofs for Tail-Averaging . 55

2.8.1 Upper Bounds for Tail-Averaging . 55

2.8.2 Lower Bounds for Tail-Averaging . 63

2.9 Conclusions . 69

3 Implicit Regularization of SGD for Linear Regression 71

3.1 Introduction . 71

3.2 Preliminaries . 74

3.3 Warm-Up: One-Hot Least Squares Problems 75

3.4 Gaussian Least Squares Problems . 77

3.5 An Overview of the Proof . 81

3.6 Proof of One-hot Least Squares . 87

3.6.1 Excess risk bound of SGD . 87

3.6.2 Excess risk bound of ridge regression 92

3.6.3 Proof of Theorem 3.3.1 . 96

vii

3.6.4 Proof of Theorem 3.3.2 . 99

3.7 Proof of Gaussian Least Squares . 101

3.7.1 Excess risk bounds of SGD and ridge regression 101

3.7.2 Proof of Theorem 3.4.2 . 103

3.7.3 Proof of Corollary 3.4.3 . 105

3.7.4 Proof of Corollary 3.4.4 . 106

3.7.5 Proof of Theorem 3.4.5 . 107

3.7.6 Proof of Theorem 3.4.6 . 109

3.8 Proof of Theorem 3.7.2 . 111

3.9 Conclusions . 119

II Learning Over-parameterized Neural Network Models 120

4 Optimization of Over-parameterized Deep ReLU Networks 121

4.1 Introduction . 121

4.2 Additional Related Work . 122

4.3 Preliminaries . 123

4.3.1 Problem Setup . 123

4.3.2 Optimization Algorithms . 124

4.3.3 Calculations for Neural Network Functions 125

4.4 Main Theory . 126

4.5 Proof of the Main Theory . 128

4.6 Experiments . 133

4.7 Proof of Lemmas in Section 4.5 . 135

viii

4.7.1 Proof of Lemma 4.5.1 . 136

4.7.2 Proof of Lemma 4.5.2 . 136

4.7.3 Proof of Lemma 4.5.3 . 140

4.8 Proof of Lemmas in Section 4.7 . 143

4.8.1 Proof of Lemma 4.7.1 . 143

4.8.2 Proof of Lemma 4.7.2 . 145

4.9 Proof of Lemmas in Section . 146

4.9.1 Proof of Lemma 4.8.1 . 146

4.9.2 Proof of Lemma 4.8.2 . 149

4.10 Conclusions . 151

5 Generalization of Deep ReLU Networks in the NTK Regime 153

5.1 Introduction . 153

5.2 Preliminaries on learning neural networks . 155

5.3 Main theory . 157

5.3.1 Gradient descent . 157

5.3.2 Stochastic gradient descent . 160

5.4 Discussion on the NTRF Class . 160

5.4.1 Data Separability by Neural Tangent Random Feature 161

5.4.2 Data Separability by Shallow Neural Tangent Model 162

5.4.3 Class-dependent Data Nondegeneration 163

5.5 Experiments . 164

5.6 Proof sketch of the main theory . 165

5.6.1 A key technical lemma . 165

ix

5.6.2 Proof sketch of Theorem 5.3.3 . 167

5.7 Proof of Main Theorems . 168

5.7.1 Proof of Theorem 5.3.3 . 168

5.7.2 Proof of Theorem 5.3.4 . 170

5.7.3 Proof of Theorem 5.3.5 . 171

5.8 Proof of Results in Section 5.4 . 173

5.8.1 Proof of Proposition 5.4.2 . 173

5.8.2 Proof of Proposition 5.4.4 . 175

5.8.3 Proof of Proposition 5.4.6 . 176

5.9 Proof of Technical Lemmas . 179

5.9.1 Proof of Lemma 5.6.1 . 179

5.9.2 Proof of Lemma 5.7.3 . 181

5.9.3 Proof of Lemma 5.7.4 . 184

5.10 Conclusions . 185

6 Generalization of Adam and SGD in Learning Neural Networks with Reg-

ularization . 186

6.1 Introduction . 186

6.2 Problem Setup and Preliminaries . 188

6.3 Main Results . 193

6.4 Proof Outline of the Main Results . 195

6.4.1 Proof sketch for Adam . 196

6.4.2 Proof sketch for gradient descent . 200

6.5 Experiments . 201

x

6.6 Extensions to Mini-batch Stochastic Gradients 202

6.7 Proof of Theorem 6.3.1: Nonconvex Case . 206

6.7.1 Preliminaries . 206

6.7.2 Proof for Adam . 208

6.7.3 Proof for Gradient Descent . 230

6.8 Proof of Theorem 6.3.2: Convex Case . 241

6.9 Conclusions . 241

7 Conclusions . 243

xi

LIST OF FIGURES

3.1 Sample size comparison between SGD and ridge regression, where the stepsize γ

and regularization parameter λ are fine-tuned to achieve the best performance.

The problem dimension is d = 200 and the variance of model noise is σ2 = 1. We

consider 6 combinations of 2 different covariance matrices and 3 different ground

truth model vectors. The plots are averaged over 20 independent runs. 82

4.1 The convergence of GD for training deep ReLU network with different network

widths. (a) MNIST dataset. (b) CIFAR10 dataset. 134

4.2 Distance between the iterates of GD and the initialization. (a) MNIST dataset.

(b) CIFAR10 dataset. 134

4.3 Activation pattern difference ratio between iterates of GD and the initialization.

(a) MNIST dataset. (b) CIFAR10 dataset. 135

5.1 Minimum network width that is required to achieve zero training error with re-

spect to the training sample size (blue solid line). The hidden constants in all

O(·) notations are adjusted to ensure their plots (dashed lines) start from the

same point. 165

6.1 Visualization of the first layer of AlexNet trained by Adam and SGD on the

CIFAR-10 dataset. Both algorithms are run for 100 epochs with weight decay

regularization and standard data augmentations, but without batch normaliza-

tion. Clearly, the model learned by Adam is more “noisy” than that learned by

SGD, implying that Adam is more likely to overfit the noise in the training data. 188

6.2 Visualization of the feature learning (maxr⟨w1,r,v⟩) and noise memorization

(minimaxr⟨w1,r, ξi⟩) in the training process. 203

xii

LIST OF TABLES

5.1 Comparison of neural network learning results in terms of over-parameterization

condition and sample complexity. Here ϵ is the target error rate, n is the sample

size, L is the network depth. 155

6.1 Test accuracy (%) comparison between Adam and SGD on the CIFAR-10 dataset. 186

6.2 Training and test errors achieved by GD and Adam. 202

xiii

ACKNOWLEDGMENTS

First of all, I would like to give great thanks to my PhD advisor, Prof. Quanquan Gu, who

gave me such an opportunity to join his fantastic research group. When I first joined his

group, I nearly have no background knowledge and experience in machine learning research.

He has provided enormous help and extensive constructive advice during my early years in

my PhD study, without which I can never be able to become a mature Ph.D. student and

machine learning researcher. I also want to express my gratitude to Prof. Gu for helping me

collaborate with other amazing researchers, which greatly broadens my research focus and

benefits my future career development.

I want to thank my doctoral committee members, Prof. Sham Kakade, Prof. Stefano

Soatto, Prof. Stanley Osher, and Prof. Yizhou Sun, who have not only provided valuable

feedbacks on my dissertation work, but also given innovative ideas and constructive sugges-

tions throughout our collaborations in many research projects. I also want to thank Prof.

Yuanzhi Li for his insightful advice in our collaborations. Besides, I am greatly thankful to

Bloomberg for awarding me the fellowship during two years of my Ph.D. study. I also want

to extend my gratitude to Ni Ma and Saher Esmeir for their guidance, who were my mentors

during my internship in Bloomberg.

I am extremely fortunate to work with so many amazing people in Statistical Machine

Learning Lab: Yuan Cao, Jinghui Chen, Pan Xu, Lingxiao Wang, Lu Tian, Spencer Frei,

Zixiang Chen, Jiafan He, Yue Wu, Weitong Zhang, and Dongruo Zhou, Yihe Deng, and

Xuheng Li. Particular thanks to Jinghui, Pan, Lu, and Lingxiao for helping me get adapt

to work in the lab during early years of my Ph.D. study. Also thank Pan, Jinghui, Lingxiao,

Yuan, Dongruo, Zixiang, Weitong, and Dongruo for their help and efforts in many of our

collaborated projects. Besides, I would like to express my special gratitude to Jingfeng Wu,

who is an extremely fantastic and responsible collaborator. Two of my dissertation chapters

are based on our collaborated projects.

xiv

Lastly, I want to express tremendous thanks to my parents. Your encouragement and

love are the biggest support for me to pursue this wonderful journey. Also thank to Xiaona

and lovely “Benben” Shuming for filling my life with love and happiness.

xv

VITA

2010-2014 B.S. (Applied Physics), School of Gifted Young, University of Science and

Technology of China

2014-2017 M.S. (Information and Communication Engineering), Department of Elec-

trical Engineering and Information Science, University of Science and Tech-

nology of China

2017-2018 Teaching Assistant, Department of System and Information Engineering,

University of Virginia

2018-2022 Research Assistant, Computer Science Department, University of Califor-

nia, Los Angeles

2019-2020 Teaching Assistant, Computer Science Department, University of Califor-

nia, Los Angeles

PUBLICATIONS

We select publications that are the most relevant to the topic of this dissertation. * indicates

equal contribution.

Difan Zou and Quanquan Gu. An Improved Analysis of Training Over-parameterized

Deep Neural Networks. NeurIPS, 2019.

xvi

Difan Zou∗, Yuan Cao∗, Dongruo Zhou, and Quanquan Gu. Gradient Descent Optimizes

Over-parameterized Deep ReLU Networks. MLJ, 2019.

Difan Zou, Philip M. Long, and Quanquan Gu, On the Global Convergence of Training

Deep Linear ResNets. ICLR, 2020.

Jingfeng Wu, Difan Zou, Vladimir Braverman, and Quanquan Gu, Direction Matters: On

the Implicit Regularization Effect of Stochastic Gradient Descent with Moderate Learning

Rate. ICLR, 2021.

Zixiang Chen∗, Yuan Cao∗, Difan Zou∗, and Quanquan Gu, HowMuch Over-parameterization

Is Sufficient to Learn Deep ReLU Networks? ICLR, 2021.

Difan Zou∗, Jingfeng Wu∗, Vladimir Braverman, Quanquan Gu, and Sham M. Kakade,

Benign Overfitting of Constant-Stepsize SGD for Linear Regression. COLT, 2021.

Difan Zou∗, Jingfeng Wu∗, Vladimir Braverman, Quanquan Gu, Dean P. Foster, and

Sham M. Kakade, The Benefits of Implicit Regularization from SGD in Least Squares Prob-

lems. NeurIPS, 2021.

Difan Zou, Yuan Cao, Yuanzhi Li and Quanquan Gu, Understanding the Generalization

of Adam in Learning Neural Networks with Proper Regularization. NeurIPS 2021, OPT

Workshop.

xvii

CHAPTER 1

Introduction

Deep neural networks have achieved great success in many applications like image processing

[KSH12], speech recognition [HDY12] and Go games [SHM16]. However, the success of deep

learning has not been well-explained in theory. It remains mysterious why the neural network

models can be effectively learned by standard optimization algorithms, such as gradient

descent (GD) and stochastic gradient descent (SGD), despite the extremely large amount of

learnable parameters (i.e., the model is over-parameterized) and highly non-convex landscape

of the training loss function. In particular, over-parameterization implies that the training

loss function may have multiple or even infinite global minima, while only a large portion

of them may generalize poorly on the test data [ZBH16; LPA20]. Nonconvexity will bring

huge difficulties in finding the global solutions to the training loss function since there may

exist many spurious local minima or saddle points. It is conjectured that the optimization

algorithms have some “magic power” to implicitly regularizes the over-parameterized models

[NTS14; ZBH16; KMN16] and find certain good solutions from the numerous candidate

solutions, including spurious local minima, saddle points, and the global minima that over-

fit the training data. This is typically referred to as implicit regularization [NTS14]. However,

there still lacks a rigorous theoretical justification of this conjecture, i.e., it remains unclear

why and how such implicit regularization can benefit the generalization. Motivated by this,

the primary goal of this dissertation is to develop a sharp theoretical understanding of the

role of optimization algorithms in learning over-parameterized models.

As the first step to understanding the behavior of optimization algorithms in learning

1

over-parameterized models, there is reason to believe that characterizing these effects even

in conceptually simpler (e.g. linear model) settings will also help our understanding of

more complex settings, because many high dimensional effects are also observed even in

simple linear models. Recently, there is a growing body of work studying the generalization

for certain statistical estimators such as ordinary least square (OLS) or ridge regression

estimators [NKB21; BLL20; BHX20; HMR22; TB20; MNS21; CL21; NVK20]. In contrast,

the algorithmic aspects of generalization are far less well understood, where we lack a sharp

characterization of the generalization error achieved by optimization algorithms, such as

SGD. With regards to SGD, existing works on its generalization analysis mainly lies in

the classical under-parameterized regime [DB15a; BM13; DFB17; JNK17; JKK18a] (few

exceptions [DB15b; BBG20] are discussed in Section 2.3), where the dimension is less than

the number of training examples. To this end, our first work (see Chapter 2) aims to

provide a sharp generalization error bound showing how (unregularized) SGD can generalize

in the over-parameterized, or even infinite-dimensional setting.

Additionally, the implicit regularization of SGD/GD has also been extensively studied

for linear models. For example, (multi-pass) SGD for linear regression converges to the

minimum-norm interpolator, which corresponds to the limit of the ridge solution with a

vanishing penalty [ZBH16; GLS18a]. Tangential evidence for this also comes from exam-

ining gradient descent, where a continuous time (gradient flow) analysis shows how the

optimization path of gradient descent is (pointwise) closely connected to an explicit, ℓ2-

regularization [SPR18; AKT19]. Similar results [ADT20] have been further extended to

SGD, where an (early-stopped) continuous-time SGD is demonstrated to perform similarly

to ridge regression with certain regularization parameters. However, as of yet, a precise com-

parison between the implicit regularization afforded by SGD and the explicit regularization

of ridge regression (in terms of the generalization performance) is still lacking, especially

when the hyperparameters (e.g., stepsize for SGD and regularization parameter for ridge

regression) are allowed to be tuned. Motivated by this, our second work (see Chapter 3)

2

aims to deliver an instance-based risk comparison between SGD and ridge regression, based

on the sharp generalization bounds established in our first work.

Provided with the understanding gained for linear models, the next step is to consider

more complicated and practical models: deep neural network (DNN) models. Unlike the

linear setting where the training loss function is convex so that the optimization is never

an issue, both the optimization and generalization are challenging topics in learning DNN

models since the training objective is highly nonconvex or even nonsmooth (if using ReLU

activation functions). It is well known that without any additional assumption, even training

a shallow neural network is an NP-hard problem [BR89]. Establishing better convergence

guarantees typically requires certain assumptions on the data distribution [BGM18; DLT18;

ZSD17] and network structures [CHM15; Kaw16]. More recently, a series of works [ALS19b;

DZP18; LL18] have observed that the key to the convergence of GD/SGD lies in two aspects:

over-parameterization and random weight initialization. [DZP18; LL18] showed that for a

one-hidden-layer network with ReLU activation function using over- parameterization and

random initialization, if the training data are non-degenerate, GD and SGD can find the

near global-optimal solutions in polynomial time with respect to the accuracy parameter

and training sample size. Based on these prior findings, the aim of our third & work (see

Chapters 4) is to advance this line of research by establishing a sharp convergence guarantee

of gradient based methods for deep ReLU networks.

Moreover, it has been further demonstrated that with the standard random initialization,

the training of over-parameterized deep neural networks can be characterized by a kernel

function called neural tangent kernel (NTK) [JGH18; ADH19b]. In the neural tangent kernel

regime (or lazy training regime [CB18]), the neural network function behaves similarly to

its first-order Taylor expansion at initialization [JGH18; LXS19; ADH19b; CG19], which

enables feasible optimization and, more importantly, generalization analysis. Accordingly,

[ALL19; ADH19a; CG19] established generalization bounds of neural networks trained with

(stochastic) gradient descent, and showed that the neural networks can learn target functions

3

in certain reproducing kernel Hilbert space (RKHS) or the corresponding random feature

function class. However, their theoretical analysis requires the neural network function to

be extremely close to the corresponding NTK function, which consequently leads to a nearly

unrealistic requirement on the neural network width (i.e., a high degree polynomial of the

training sample size and the inverse target error). To address this problem and attempt

to fill the gap between practice and theory, we (see Chapter 5) develop a new theoretical

analysis that only requires a constant approximation error to the NTK function and proves

sharper learning guarantees for deep ReLU networks trained by GD/SGD. Consequently,

we show that if the data can be well separated in the RHKS, a deep ReLU network with

polylogarithmic width can be successfully trained by GD and SGD with a global convergence

guarantee and good generalization ability.

Finally, we explore the limitation of NTK based analysis in learning over-parameterized

neural networks. In particular, our last work (see Chapter 6) is motivated by a practical

observation that different optimization algorithms (e.g., Adam, SGD) perform differently in

many deep learning applications such as image classification, even with a fine-tuned regu-

larization. This cannot be well explained by linear models or neural networks trained in

the “almost convex” NTK regime, since they suggest that SGD and Adam will achieve sim-

ilar generalization performance, in the presence of weight decay regularization. We focus

on this particular problem and provide a new theoretical explanation for this phenomenon

by explicitly showing that in the nonconvex setting of learning overparameterized two-layer

CNNs, SGD and Adam will converge to different global solutions with provably different

generalization errors.

1.1 Organization of the paper

In the first part of this dissertation, we study the (over-parameterized) linear regression

problem and develop a novel theoretical analysis for sharply characterizing the generaliza-

4

tion error or excess risk achieved by stochastic gradient descent. In particular, Chapter

2 provides an instance-dependent excess risk bounds for SGD, which is stated as a func-

tion with respect to the full eigenspectrum of the data covariance, sample size, and ground

truth model parameters. We also provide a matching lower bound (up to constant factors)

to justify the tightness of the developed theoretical characterizations. Moreover, in order

to understand the implicit regularization of SGD, Chapter 3 compares the generalization

ability of SGD to that of the solution found by adding explicit regularization, i.e., ridge

regression in an instance-wise manner. We show that for a large class of statistically inter-

esting problems, SGD can provably generalize no worse than ridge regression with optimally

tuned parameters, when provided with logarithmically more samples. Conversely, for some

problem instances, optimally tuned ridge regression may require quadratically more samples

than SGD to achieve the same generalization performance.

In the second part of this dissertation, we study the optimization and generalization of

over-parameterized neural network models. In particular, Chapter 4, as one of the first

works, proved the global convergence of gradient descent for training over-parameterized

neural networks. Compared to the concurrent works [ALS19a; DLL19], we proved a faster

convergence rate with milder assumptions on the neural network width and data distribu-

tion. Moreover, in Chapter 5, we conduct the generalization analysis of training over-

parameterized deep ReLU networks in the NTK regime, and established the state-of-the-art

optimization and generalization guarantees under certain data separation conditions. Lastly,

in Chapter 6, we explore the theoretical analysis beyond the NTK regime by studying the

generalization gap between GD and Adam in learning over-parameterized CNN models for

image classification tasks. We show that GD and Adam exhibit different algorithmic bi-

ases, which will consequently converge to different solutions (with different generalization

performances), for a class of image-like data distribution.

We summarize this dissertation in Chapter 7.

5

1.2 Notations

We use lower case, lower case bold face, and upper case bold face letters to denote scalars,

vectors and matrices respectively. For a positive integer n, we denote [n] = {1, . . . , n}. For

a vector x = (x1, . . . , xd)
⊤, we denote by ∥x∥p =

(∑d
i=1 |xi|p

)1/p
the ℓp norm of x, ∥x∥∞ =

maxi=1,...,d |xi| the ℓ∞ norm of x, and ∥x∥0 = |{xi : xi ̸= 0, i = 1, . . . , d}| Cthe number of

non-zero entries of x. We use Diag(x) to denote a square diagonal matrix with the elements

of vector x on the main diagonal. For a matrix A = (Aij) ∈ Rm×n, we use ∥A∥F to denote

the Frobenius norm of A, ∥A∥2 to denote the spectral norm (maximum singular value), and

∥A∥0 to denote the number of nonzero entries. We denote by Sd−1 = {x ∈ Rd : ∥x∥2 = 1} the

unit sphere in Rd. For a positive semi-definite (PSD) matrix A and a vector v of appropriate

dimension, we write ∥v∥2A := v⊤Av. For two matrices, we use ⟨A,B⟩ =
∑

AijBij to denote

the inner product between two matrices and use A ⊗ B to denote their Kronecker/tensor

product.

For two sequences {an} and {bn}, we use an = O(bn) to denote that an ≤ C1bn for some

absolute constant C1 > 0, and use an = Ω(bn) to denote that an ≥ C2bn for some absolute

constant C2 > 0. We use an = Θ(bn) if an = Ω(bn) and an = O(bn). In addition, we also use

Õ(·), Ω̃(·), Θ̃(·) to hide logarithmic terms in Big-O, Big-Omega, and Big-Theta notations.

We also use the following matrix product notation. For indices l1, l2 and a collection of

matrices {Ar}r∈Z+ , we denote

l2∏
r=l1

Ar :=

 Al2Al2−1 · · ·Al1 if l1 ≤ l2

I otherwise.
(1.2.1)

6

Part I

Learning Over-parameterized Linear

Models

7

CHAPTER 2

Generalization of SGD for Linear Regression

2.1 Introduction

In this work, we study the standard classical linear regression problem:

min
w

L(w), where L(w) =
1

2
E(x,y)∼D

[
(y − ⟨w,x⟩)2

]
, (2.1.1)

where x ∈ H, is the feature vector, where, H is some (finite d-dimensional or countably

infinite dimensional) Hilbert space; y ∈ R is the response; D is an unknown distribution over

x and y; and w ∈ H is the weight vector to be optimized. We consider the stochastic ap-

proximation approach using constant stepsize SGD, with iterate averaging: at each iteration

t, an i.i.d. example (xt, yt) ∼ D is observed, and the weight is updated according to SGD as

follows:

wt = wt−1 + γ (yt − ⟨wt−1,xt⟩)xt, t = 1, . . . , N, (2.1.2)

where γ > 0 is a constant stepsize, N is the number of samples observed, and the weights

are initialized at w0 ∈ H. The final output will be the average of the iterates:

wN :=
1

N

N−1∑
t=0

wt.

In the underparameterized setting with finite dimension d (d ≪ N), a rich body of work

has established that wN enjoys the optimal risk (up to constant factors) of O (dσ2/N), for

sufficiently large N . The focus of this work is on the over-parameterized regime, where

d ≫ N (or possibly countably infinite).

8

Contributions. Our main result can be viewed as a counterpart to the classical analysis

of iterate averaged SGD to the overparameterized regime for linear regression: we provide

a sharp excess risk bound showing how (unregularized) SGD can generalize even in the

infinite-dimensional setting. Our bound is stated in a general manner, in terms of the full

eigenspectrum of the data covariance matrix along with a functional dependency on the

initial iterate; our lower bound shows our characterization is tight. As a corollary, we see

how the benign-overfitting phenomenon can be observed for SGD, provided certain spectrum

decay conditions on the data covariance are met. We also extend our results to SGD with

tail-averaging [JKK18a; JNK17], where we run SGD for s iterations and then take average

over the subsequent N iterates as the output. (see Section 2.2.2 for more details.)

Some additional notable contributions are:

• The sharpness of our bounds permits us to make comparisons to OLS (the minimum-

norm interpolator) and ridge regression. Notably, in a contrast to the variance of

OLS [BLL20], the variance contribution to SGD is well behaved under substantially

weaker assumptions on the spectrum of the data covariance. This shows how inductive

bias of SGD, in comparison to the minimum-norm interpolator, can lead to better

generalization with no regularization. We also constrast our results to ridge regression

based on the recent work by [TB20].

• One notable aspect of our work is a sharp characterization of a “bias process” in SGD.

In particular, consider the special case where y = w⋆ · x (with probability one), for

some w⋆. Here, SGD still differs from gradient descent on L(w). Our characterization

gives a novel characterization of how the variance in this process contributes to the

final excess risk bound.

• From a technical standpoint, our work develops new proof techniques for iterate aver-

aged SGD. Our analysis tools are based on the operator view of averaged SGD [DB15b;

JNK17; JKK18a]. A core idea in the proof is in connecting the finite sample (infinite

9

dimensional) covariance matrices of the variance and bias stochastic processes to those

of their corresponding (asymptotic) stationary covariance matrices — an idea that was

introduced in [JKK18a] for the finite dimensional, variance analysis.

2.2 Main Results

We now provide matching (upto absolute constants) upper and lower excess risk bounds for

iterate averaged SGD. We then compare these rates to those of OLS and ridge regression,

where we see striking similarities and notable differences.

2.2.1 Benign Overfitting of SGD

We first introduce relevant notation and our assumptions. Our first assumption is mild

regularity conditions on the moments of the data distribution.

Assumption 2.2.1 (Regularity conditions). Assume E[xx⊤], E[x ⊗ x ⊗ x ⊗ x], and E[y2]

exist and are all finite. Furthermore, denote the second moment of x by

H := Ex∼D[xx
⊤],

and suppose that tr(H) is finite. For convenience, we assume that H is strictly posi-

tive definite and that L(w) admits a unique global optimum, which we denote by w∗ :=

argminw L(w). 1

Our second assumption is on the behavior of the fourth moment, when viewed as a linear

operator on PSD matrices:

Assumption 2.2.2 (Fourth moment condition). Assume there exists a positive constant

1This is not necessary. In the case where H has eigenvalues which are 0, we could instead choose w∗ to
be the minimum norm vector in the set argminw L(w), and our results would hold for this choice of w⋆. For
example, see [SSB02] for a rigorous treatment of working in a reproducing kernel Hilbert space.

10

α > 0, such that for any PSD matrix A2, it holds that

Ex∼D[xx
⊤Axx⊤] ⪯ α tr(HA)H.

For Gaussian distributions, it suffices to take α = 3. Furthermore, it is worth noting that this

assumption is implied if the distribution over H− 1
2x has sub-Gaussian tails (see Lemma 2.5.1

for a precise claim). Also, it is not difficult to verify that α ≥ 1.3

Assuming sub-Gaussian tails over H− 1
2x is standard assumption in regression analysis

(e.g. [HKZ14; BLL20; TB20]), and, as mentioned above, this assumption is substantially

weaker. The assumption is somewhat stronger than what is often assumed for iterate av-

eraged SGD in the underparameterized regime (e.g., [BM13; JNK17]) (see Section 2.3 for

further discussion). Additionally, we also remark that Assumption 2.2.2 can be further re-

laxed to that we only require A is PSD and commutable with H, rather than all PSD matrix

A (see Section 2.9 for more details).

Our next assumption is a noise condition, where it is helpful to interpret y−⟨w∗,x⟩ as the

additive noise. Observe that the first order optimality conditions on w∗ imply E(x,y)∼D[(y−

⟨w∗,x⟩)x] = ∇L(w∗) = 0.

Assumption 2.2.3 (Noise condition). Suppose that:

Σ := E
[
(y − ⟨w∗,x⟩)2xx⊤] , σ2 := ||H− 1

2ΣH− 1
2 ||2

exist and are finite. Note that Σ is the covariance matrix of the gradient noise at w⋆.

This assumption places a rather weak requirement on the additive noise (due to that

it permits model mis-specification) and is often made in the average SGD literature (e.g.,

2This assumption can be relaxed into: for any PSD matrix A that commutes with H, it holds that
Ex∼D[xx

⊤Axx⊤] ⪯ α tr(HA)H. The presented analyzing technique is ready to be modified to cooperate
with the relaxed assumption with the observation that the fourth moment operator is linear and self-adjoint.
Similar relaxation applies to Assumption 2.2.5 as well.

3This is due to that the square of the second moment is less than the fourth moment.

11

[BM13; DFB17]). Observe that for well-specified models, where

y = ⟨w⋆,x⟩+ ϵ, ϵ ∼ N (0, σ2
noise), (2.2.1)

we have that Σ = σ2
noiseH and so σ2 = σ2

noise.

Before we present our main theorem, a few further definitions are in order: denote the

eigendecomposition of the Hessian as H =
∑

i λiviv
⊤
i , where {λi}∞i=1 are the eigenvalues

of H sorted in non-increasing order and vi’s are the corresponding eigenvectors. We then

denote:

H0:k :=
∑k

i=1λiviv
⊤
i , and Hk:∞ :=

∑
i>kλiviv

⊤
i .

Similarly we denote I0:k :=
∑k

i=1 viv
⊤
i and Ik:∞ :=

∑
i>k viv

⊤
i . By the above definitions, we

know

∥w∥2
H−1

0:k
=
∑
i≤k

(v⊤
i w)2

λi
, ∥w∥2Hk:∞

=
∑
i>k

λi(v
⊤
i w)2,

where we have slightly abused notation in that H−1
0:k denotes a pseudo-inverse.

We now present our main theorem:

Theorem 2.2.4 (Benign overfitting of SGD). Suppose Assumptions 2.2.1-2.2.3 hold and

that the stepsize is set so that γ < 1/(α tr(H)). Then the excess risk can be upper bounded

as follows,

E[L(wN)]− L(w∗) ≤ 2 · EffectiveBias + 2 · EffectiveVar,

where

EffectiveBias =
1

γ2N2
· ||w0 −w∗||2

H−1
0:k∗

+ ||w0 −w∗||2Hk∗:∞
,

EffectiveVar =
2α
(
∥w0 −w∗∥2I0:k∗ +Nγ∥w0 −w∗∥2Hk∗:∞

)
Nγ(1− γα tr(H))

·
(
k∗

N
+Nγ2

∑
i>k∗

λ2
i

)

+
σ2

1− γα tr(H)
·

(
k∗

N
+Nγ2

∑
i>k∗

λ2
i

)
with k∗ = max{k : λk ≥ 1

γN
}.

12

The interpretation is as follows: the “effective bias” precisely corresponds to the rate

of convergence had we run gradient descent directly on L(w) (i.e., where the latter has no

variance due to sampling). The “effective variance” error stems from both the additive noise

y−⟨w∗,x⟩, i.e., the second term of the EffectiveVariance error, along with that even if there

was no additive noise (i.e. y − ⟨w∗,x⟩ = 0 with probability one), i.e., the first term of the

EffectiveVariance error, then SGD would still not be equivalent to GD. The cut-off index k∗,

which we refer to as the “effective dimension”, plays a pivotal role in the excess risk bound,

which separates the entire space into a k∗-dimensional “head” subspace where the bias error

decays more quickly than that of the bias error in the complement “tail” subspace. To

obtain a vanishing bound, the effective dimension k∗ must be o (N) and the tail summation∑
i>k∗ λ

2
i must be o (1/N).

In terms of constant factors, the above bound can be improved by a factor of 2 in the

effective bias-variance decomposition (see (2.4.6)). We now turn to lower bounds.

A lower bound. We first introduce the following assumption that states a lower bound

on the fourth moment.

Assumption 2.2.5 (Fourth moment condition, lower bound). Assume there exists a con-

stant β ≥ 0, such that for any PSD matrix A, it holds that

Ex∼D[xx
⊤Axx⊤]−HAH ⪰ β tr(HA)H.

For Gaussian distributions, it suffices to take β = 1.

The following lower bound shows that when the noise is well-specified our upper bound

is not improvable except for absolute constants.

Theorem 2.2.6 (Excess risk lower bound). Suppose N ≥ 500. For any well-specified data

distribution D (see (2.2.1)) that also satisfies Assumptions 2.2.1 and 2.2.5, for any stepsize

13

such that γ < 1/λ1, we have that:

E[L(wN)]− L(w∗) ≥ 1

100γ2N2
· ∥w0 −w∗∥2

H−1
0:k∗

+
1

100
· ∥w0 −w∗∥2Hk∗:∞

+
β
(
∥w0 −w∗∥2I0:k∗ +Nγ∥w0 −w∗∥2Hk∗:∞

)
16000Nγ

·

(
k∗

N
+Nγ2

∑
i>k∗

λ2
i

)

+
σ2
noise

50
·

(
k∗

N
+Nγ2

∑
i>k∗

λ2
i

)

with k∗ = max{k : λk ≥ 1
Nγ

}.

Similar to the upper bound stated in Theorem 2.2.4, the first two terms represent the

EffectiveBias and the last two terms represent the EffectiveVariance, in which the third

and last terms are contributed by the model noise and variance in SGD. Our upper bound

matches our lower bound up to absolute constants, which indicates the obtained rates are

tight, at least for Gaussian data distribution with well-specified noise.

Special cases. It is instructive to consider a few special cases of Theorem 2.2.4. We first

show the result for SGD with large stepsizes.

Corollary 2.2.7 (Benign overfitting with large stepsizes). Suppose Assumptions 2.2.1-2.2.3

hold and that the stepsize is set to γ = 1/(2α
∑

i λi). Then

EffectiveBias =
4α2(

∑
i λi)

2

N2
· ||w0 −w∗||2

H−1
0:k∗

+ ||w0 −w∗||2Hk∗:∞

EffectiveVar =
(
2σ2 + 4α2∥w0 −w∗∥2H

)
·
(
k∗

N
+

N
∑

i>k∗ λ
2
i

4α2(
∑

i λi)
2

)
,

where k∗ = max{k : λk ≥ 2α
∑

i λi
N

}.

Note that the bias error decays at different rates in different subspaces. Crudely, in the

“head” eigenspace (spanned by the eigenvectors corresponding to large eigenvalues) the bias

error decays in a faster O (1/N2) rate (though there is weighting of λi in the head), while

in the remaining “tail” eigenspace, the bias error decays at a slower O (1/N) rate (due to

14

that all the eigenvalues in the tail are less than O (1/N)). The following corollary provides

a crude bias bound, showing that bias never decays more slowly than O (1/N).

Corollary 2.2.8 (Crude bias-bound). Suppose Assumptions 2.2.1-2.2.3 hold and that the

stepsize is set to γ = 1/(2α
∑

i λi). Then

E[L(wN)]− L(w∗) ≤ 8α∥w0 −w∗∥22 ·
∑

i λi
N

+ 4σ2 ·
(
k∗

N
+

N
∑

i>k∗ λ
2
i

4α2(
∑

i λi)
2

)
,

where k∗ = max{k : λk ≥ 2α
∑

i λi
N

}.

Theorems 2.2.4 and 2.2.6 suggests that the excess risk achieved by SGD depends on the

spectrum of the covariance matrix. The following corollary gives examples of data spectrum

such that the excess risk is diminishing.

Corollary 2.2.9 (Example data distributions). Under the same conditions as Theorem 2.2.4,

suppose ||w0 −w∗||2 is bounded.

1. For H ∈ Rd×d, let s = N r and d = N q for some positive constants 0 < r ≤ 1 and

q ≥ 1. If the spectrum of H satisfies

λk =

1/s, k ≤ s,

1/(d− s), s+ 1 ≤ k ≤ d,

then E[L(wN)]− L(w∗) = O (N r−1 +N1−q).

2. If the spectrum of H satisfies λk = k−(1+r) for some r > 0, then E[L(wN)]− L(w∗) =

O
(
N−r/(1+r)).

3. If the spectrum of H satisfies λk = k−1 log−β(k + 1) for some β > 1, then E[L(wN)]−

L(w∗) = O
(
log−β(N)

)
.

4. If the spectrum of H satisfies λk = e−k, then E[L(wN)]− L(w∗) = O (log(N)/N).

15

2.2.2 The Effect of Tail-Averaging

We further consider benign overfitting of SGD when tail-averaging [JNK17] is applied, i.e.,

ws:s+N =
1

N

s+N−1∑
t=s

wt.

We present the following theorem as a counterpart of Theorem 2.2.4. The proof is deferred

to Section 2.8.

Theorem 2.2.10 (Benign overfitting of SGD with tail-averaging). Consider SGD with tail-

averaging. Suppose Assumptions 2.2.1-2.2.3 hold and that the stepsize is set so that γ <

1/(α tr(H)). Then the excess risk can be upper bounded as follows,

E[L(ws:s+N)]− L(w∗) ≤ 2 · EffectiveBias + 2 · EffectiveVar,

where

EffectiveBias =
1

γ2N2
·
∥∥(I− γH)s(w0 −w∗)

∥∥2
H−1

0:k∗
+
∥∥(I− γH)s(w0 −w∗)

∥∥2
Hk∗:∞

EffectiveVar =
4α
(
∥w0 −w∗∥2I

0:k†
+ (s+N)γ∥w0 −w∗∥2H

k†:∞

)
Nγ(1− γα tr(H))

·
(
k∗

N
+Nγ2

∑
i>k∗

λ2
i

)
+

σ2

1− γα tr(H)
·
(
k∗

N
+ γ ·

∑
k∗<i≤k†

λi + (s+N)γ2 ·
∑
i>k†

λ2
i

)
,

where k∗ = max{k : λk ≥ 1
γN

} and k† = max{k : λk ≥ 1
γ(s+N)

}.

Theorem 2.2.10 shows that tail-averaging has improvements over iterate-averaging. This

agrees with the results shown in [JNK17]: in the underparameterized regime (N ≫ d) and

for the strongly convex case (λd > 0), one can obtain substantially improved convergence

rates on the bias term.

We also provide a lower bound on the excess risk for SGD with tail-averaging as a

counterpart of Theorem 2.2.6, which shows that our upper bound is nearly tight. The proof

is again deferred to Section 2.8.

16

Theorem 2.2.11 (Excess risk lower bound, tail-averaging). Consider SGD with tail-averaging.

Suppose N ≥ 500. For any well-specified data distribution D (see (2.2.1)) that also satisfies

Assumptions 2.2.1, 2.2.2 and 2.2.5, for any stepsize such that γ < 1/λ1, we have that:

E[L(ws:s+N)]− L(w∗) ≥ 1

100γ2N2
· ∥(I− γH)s(w0 −w∗)∥2

H−1
0:k∗

+
∥(I− γH)s(w0 −w∗)∥2Hk∗:∞

100

+
β∥w0 −w∗∥2H

k†:∞

104

(
k∗

N
+Nγ2

∑
i>k∗

λ2
i

)

+
σ2
noise

600

k∗

N
+ γ

∑
k∗<i≤k†

λi + (s+N)γ2
∑
i>k†

λ2
i

 ,

where k∗ = max{k : λk ≥ 1
Nγ

} and k† = max{k : λk ≥ 1
(s+N)γ

}.

Comparing our upper and lower bounds, they are matching (upto absolute constants)

for most of the terms, except for the first effective variance term, where a ||w0 −w∗||2I
0:k†

is

lost (suppose that s = Θ(N)). Our conjecture is that the upper bound is improvable in this

regard. Obtaining matching upper and lower bounds for SGD with tail-averaging is left as

a direction for future work.

2.3 Further Related Work

We first discuss the work on iterate averaging in the finite dimensional case before turning

to the over-parameterized regime. In the underparameterized regime, where d is assumed to

be finite, the behavior of constant stepsize SGD with iterate average or tail average has been

well investigated from the perspective of the bias-variance decomposition [DB15a; DFB17;

LS18; JKK18a; JNK17]. For iterate averaging from the beginning, [DB15a; DFB17] show a

O(1/N2) convergence rate for the bias error and a O(d/N) convergence rate for the variance

error, where N is the number of observed samples and d is the number of parameters.

The bias error rate can be further improved by considering averaging only the tail iterates

[JKK18a; JNK17; JKK18b], provided that the minimal eigenvalue of H is bounded away

17

from 0. We note that the work in [JKK18a; JNK17; JKK18b] also give the optimal rates

with model misspecification. These results all have dimension factors d and do not apply to

the over-parameterized regime, though our results recover the finite dimensional case (and

the results for delayed tail averaging from [JKK18a; JNK17] can be applied here for the bias

term). We further develop on the proof techniques in [JKK18a], where we use properties of

asymptotic stationary distributions for the purposes of finite sample size analysis.

Another notable difference in our work is that Assumption 2.2.2 (which is implied by sub-

Gaussianity, see Lemma 2.5.1) is somewhat stronger than what is often assumed for iterate

average SGD analysis, where E[xx⊤xx⊤] ⪯ R2H, as adopted in [BM13; DB15a; DFB17;

JKK18a; JNK17]. Our assumption implies an R2 bound with R2 = α tr(H). In terms of

analysis, we note that our variance analysis only relies on an R2 condition, while our bias

analysis relies on our stronger sub-Gaussianity-like assumption.

We now discuss related works in the over-parameterized regime [DB15b; BBG20]. Com-

pared with [DB15b], our bounds apply to least square instances with any data covaraince

spectrum (under Assumption 2.2.2), while [DB15b] only covered least square instances that

have specific data covaraince spectrum (see A3 in [DB15b]). In comparison with [BBG20],

their bounds rely on a weaker fourth moment assumption, but rely on a stronger true param-

eter assumption in that ||H−αw∗||2 must be finite, where α > 0 is a constant (see Theorem

1 condition (a) in [BBG20]).

Our fourth moment assumption (Assumption 2.2.2) is a natural starting point for ana-

lyzing the over-parameterized regime because it also allows for direct comparisons to OLS

and ridge regression, as discussed above.

Concurrent to this work, [CLT20] provide dimension independent bounds for averaged

SGD; their excess risk bounds for linear regression are not as sharp as those provided here.

18

2.4 Proof Outline

We now provide the high level ideas in the proof. A key idea is relating the finite sample (in-

finite dimensional) covariance matrices of the variance and bias stochastic processes to those

of their corresponding (asymptotic) stationary covariance matrices — an idea developed

in [JKK18a] for the finite dimensional, variance analysis.

This section is organized as follows: Section 2.4.1 introduces additional notation and

relevant linear operators; Section 2.4.2 presents a refined bound on a now standard bias-

variance decomposition; Section 2.4.3 outlines the variance error analysis, followed by Section

2.4.4 outlining the bias error analysis. Complete proofs of the upper and lower bounds are

provided in the Section 2.6 and Section 2.7, respectively.

2.4.1 Preliminaries

For two matrices A and B, their inner product is defined as ⟨A,B⟩ := tr
(
A⊤B

)
. The

following properties will be used frequently: ifA is PSD, andB ⪰ B′, then ⟨A,B⟩ ≥ ⟨A,B′⟩.

We use ⊗ to denote the kronecker/tensor product. We define the following linear operators:

I = I⊗ I, M = E[x⊗ x⊗ x⊗ x], M̃ = H⊗H,

T = H⊗ I+ I⊗H− γM, T̃ = H⊗ I+ I⊗H− γH⊗H.

We use the notation O ◦A to denotes the operator O acting on a symmetric matrix A. For

example, with these definitions, we have that for a symmetric matrix A,

I ◦A = A, M◦A = E[(x⊤Ax)xx⊤], M̃ ◦A = HAH,

(I − γT) ◦A = E[(I− γxx⊤)A(I− γxx⊤)], (I − γT̃) ◦A = (I− γH)A(I− γH).

(2.4.1)

We conclude by summarizing a few technical properties of these operators (see Lemma 2.6.1).

Lemma 2.4.1. An operator O defined on symmetric matrices is called PSD mapping, if

A ⪰ 0 implies O ◦A ⪰ 0. Then we have

19

1. M and M̃ are both PSD mappings.

2. I − γT and I − γT̃ are both PSD mappings.

3. M−M̃ and T̃ − T are both PSD mappings.

4. If 0 < γ ≤ 1/λ1, then T̃ −1 exists, and is a PSD mapping.

5. If 0 < γ ≤ 1/(α tr(H)), then T −1 ◦ A exists for PSD matrix A, and T −1 is a PSD

mapping.

2.4.2 The Bias-Variance Decomposition

It is helpful to consider the bias-variance decomposition for averaged SGD, which has been

extensively studied before in the underparameterized regime (N ≫ d) [DB15b; JNK17;

JKK18a]. For convenience, we define the centered SGD iterate as βt := wt −w∗. Similarly

we define β̄N := 1
N

∑N−1
t=0 βt.

(1) If the sampled data contains no label noise, i.e., yt = ⟨w∗,xt⟩, then the obtained SGD

iterates {βbias
t } reveal the bias error,

βbias
t =

(
I− γxtx

⊤
t

)
βbias
t−1 , βbias

0 = β0. (2.4.2)

(2) If the iterates are initialized from the optimal w∗, i.e., w0 = w∗, then the obtained SGD

iterates {βvariance
t } reveal the variance error,

βvariance
t =

(
I− γxtx

⊤
t

)
βvariance
t−1 + γξtxt, βvariance

0 = 0, (2.4.3)

where ξt := yt − ⟨w∗,xt⟩ is the inherent noise. Note the “bias iterates” can be viewed as

a stochastic process of SGD on a consistent linear system; similarly, the “variance iterates”

should be treated as a stochastic process of SGD initialized from the optimum.

Using the defined operators, the update rule of the iterates (2.4.2) imply the following

recursive form of Bt := E[βbias
t ⊗ βbias

t]:

Bt = (I − γT) ◦Bt−1 and B0 = β0 ⊗ β0, (2.4.4)

20

and the update rule (2.4.3) imply the following recursive form of Ct := E[βvariance
t ⊗βvariance

t]:

Ct = (I − γT) ◦Ct−1 + γ2Σ, C0 = 0. (2.4.5)

We define the averaged version of βbias
t and βvariance

t in the same way as wN , i.e., β̄
bias
N :=

1
N

∑N−1
t=0 βbias

t and β̄variance
N := 1

N

∑N−1
t=0 βvariance

t . With a little abuse of probability space,

from (2.1.2), (2.4.2) and (2.4.3) we have that

βt = βbias
t + βvariance

t ,

then an application of Cauchy–Schwarz inequality leads to the following bias-variance de-

composition on the excess risk (see [JNK17], also Lemma 2.6.2):

E[L(wN)]− L(w∗) =
1

2
⟨H,E[β̄N ⊗ β̄N]⟩ ≤

(√
bias +

√
variance

)2
, (2.4.6)

where bias :=
1

2
⟨H,E[β̄bias

N ⊗ β̄bias
N]⟩, variance :=

1

2
⟨H,E[β̄variance

N ⊗ β̄variance
N]⟩.

In the above bound, the two terms are usually referred to as the bias error and the variance

error respectively. Furthermore, expanding the kronecker product between the two averaged

iterates, and doubling the squared terms, we have the following upper bounds on the bias

error and the variance error (see Lemma 2.6.3 for the proof):

bias :=
1

2
⟨H,E[β̄bias

N ⊗ β̄bias
N]⟩ ≤ 1

N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Bt

〉
, (2.4.7)

variance :=
1

2
⟨H,E[β̄variance

N ⊗ β̄variance
N] ≤ 1

N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Ct

〉
. (2.4.8)

Note that in the above bounds, we keep both summations in finite steps, and this makes

our analysis sharp as N ≪ d. In comparison, [JKK18a; JNK17] take the inner summation

to infinity, which yields looser upper bounds for further analysis in the over-parameterized

setting. Next we bound the two error terms (2.4.7) and (2.4.8) separately.

2.4.3 Bounding the Variance Error

We would like to point out that in the analysis of the variance error (2.4.8), Assumption

2.2.2 can be replaced by a weaker assumption: E[xx⊤xx⊤] ⪯ R2H, where R is a positive

21

constant [JNK17; JKK18a; DFB17]. A proof under the weaker assumption can be found in

Section 2.6.3. Here, for consistency, we sketch the proof under Assumption 2.2.2.

To upper bound (2.4.8), noticing that (I − γH)k−tH is PSD, it suffices to upper bound

Ct in PSD sense. In particular, by Lemma 5 in [JKK18a] (restated in Lemma 2.6.5), the

sequence {Ct}t=0,... has the following property,

0 = C0 ⪯ C1 ⪯ · · · ⪯ C∞ ⪯ γσ2

1− γα tr(H)
I. (2.4.9)

This gives a uniform but crude upper bound onCt for all t ≥ 0. However, a direct application

of this crude bound to (2.4.8) cannot give a sharp rate in the over-parameterized setting.

Instead, we seek to refine the bound of Ct based on its update rule in (2.4.5) (see the proof

of Lemma 2.6.6 for details):

Ct = (I − γT) ◦Ct−1 + γ2Σ

= (I − γT̃) ◦Ct−1 + γ2(M−M̃) ◦Ct−1 + γ2Σ

⪯ (I − γT̃) ◦Ct−1 + γ2M◦Ct−1 + γ2Σ (since M̃ is a PSD mapping)

⪯ (I − γT̃) ◦Ct−1 +
γ3σ2

1− γα tr(H)
M◦ I+ γ2Σ, (by (2.4.9) and M is a PSD mapping)

⪯ (I − γT̃) ◦Ct−1 +
γ3σ2α tr(H)

1− γα tr(H)
H+ γ2σ2H, (by Assumptions 2.2.2 and 2.2.3)

= (I − γT̃) ◦Ct−1 +
γ2σ2

1− γα tr(H)
H.

Solving the above recursion, we obtain the following refined upper bound for Ct:

Ct ⪯
γ2σ2

1− γα tr(H)

t−1∑
k=0

(I − γT̃)k ◦H

=
γ2σ2

1− γα tr(H)

t−1∑
k=0

(I− γH)kH(I− γH)k (by the property of I − γT̃ in (2.4.1))

⪯ γ2σ2

1− γα tr(H)

t−1∑
k=0

(I− γH)kH =
γσ2

1− γα tr(H)
·
(
I− (I− γH)t

)
. (2.4.10)

22

Now we can plug the above refined upper bound (2.4.10) into (2.4.8), and obtain

variance ≤ σ2

N2(1− γα tr(H))

N−1∑
t=0

〈
I− (I− γH)N−t, I− (I− γH)t

〉
=

σ2

N2(1− γα tr(H))

N−1∑
t=0

∑
i

(
1− (1− γλi)

N−t) (1− (1− γλi)
t
)

≤ σ2

N2(1− γα tr(H))
·N ·

∑
i

(
1− (1− γλi)

N
)2

. (2.4.11)

The remaining effort is to precisely control the summations in (2.4.11) according to the

scale of the eigenvalues: for large eigenvalues λi ≥ 1
Nγ

, which appear at most k∗ times,

we use 1 − (1 − γλi)
N ≤ 1; and for the remaining small eigenvalues λi < 1

Nγ
, we use

1 − (1 − γλi)
N ≤ O (Nγλi). Plugging these into (2.4.11) gives us the final full spectrum

upper bound on the variance error (see the proof of Lemma 2.6.7 for more details). This

bound contributes to part of EffectiveVar in Theorem 2.2.4.

2.4.4 Bounding the Bias Error

Next we discuss how to bound the bias error (2.4.7). A natural idea is to follow the same

way in analyzing the variance error, and derive a similar bound on Bt. Yet a fundamental

difference between the variance sequence (2.4.5) and the bias sequence (2.4.4) is that: Ct

is increasing, while Bt is “contracting”, hence applying the same procedure in the variance

error analysis cannot lead to a tight bound on Bt. Instead, observing that St :=
∑t−1

k=0Bk,

the summation of a contracting sequence, is increasing in the PSD sense. Particularly, we

can rewrite St in the following recursive form

St = (I − γT) ◦ St−1 +B0, (2.4.12)

which resembles that of Ct in (2.4.5). This motivates us to: (i) express the obtained bias

error bound (2.4.7) by St, and (ii) derive a tight upper bound on St using similar analysis

for the variance error.

23

For (i), by some linear algebra manipulation (see the derivation of (2.6.13)), we can

bound (2.4.7) as follows:

bias ≤ 1

γN2

〈
I− (I− γH)N ,

N−1∑
t=0

Bt

〉
=

1

γN2

〈
I− (I− γH)N ,SN

〉
. (2.4.13)

For (ii), we first show that {St}t=1,...,N is increasing and has a crude upper bound (see

Lemmas 2.6.8 and 2.6.10):

B0 = S1 ⪯ S2 ⪯ · · · ⪯ SN , and M◦ SN ⪯
α · tr

((
I− (I− γH)2N

)
B0

)
γ(1− γα tr(H))

·H. (2.4.14)

Then similar to our previous procedure in bounding Ct, we can tighten the upper bound on

St by its recursive form (2.4.12) and the crude bound (M ◦ SN−1 in (2.4.14)), and obtain

the following refined bound (see Lemma 2.6.11) for SN :

SN ⪯
N−1∑
k=0

(I− γH)kB0(I− γH)k +
γα · tr

((
I− (I− γH)2N

)
B0

)
1− γα tr(H)

N−1∑
k=0

(I− γH)2kH.

(2.4.15)

The remaining proof will be similar to what we have done for the variance error bound:

substituting (2.4.15) into (2.4.13) gives an upper bound on the bias error with respect to

the summations over functions of eigenvalues. Then by carefully controlling each summation

according to the scale of the corresponding eigenvalues, we will obtain a tight full spectrum

upper bound on the bias error (see the proof of Lemma 2.6.12 for more details).

As a final remark, noticing that different from the upper bound of Ct in (2.4.10), the

upper bound for St in (2.4.15) consists of two terms. The first term will contribute to the

EffectiveBias term in Theorem 2.2.4, while the second term will be merged to the bound of

the variance error and contribute to the EffectiveVar term in Theorem 2.2.4.

2.5 Examples of Assumption 2.2.2

[HKZ14; BLL20; TB20] assume that z := H− 1
2x is sub-Gaussian. The following lemma

shows that our Assumption 2.2.2 is implied by assuming sub-Gaussianity.

24

Lemma 2.5.1. Suppose E[xx⊤] = H, and z := H− 1
2x is σ2

z -sub-Gaussian random vector,

then for any PSD matrix A, we have

E[(x⊤Ax)xx⊤] ⪯ 16σ4
z tr(AH)H.

Proof. Note that z is a σ2
z -sub-Gaussian random vector with identity covariance matrix,

implying that for any fixed unit vector u that u⊤z is a σ2
z -sub-Gaussian random variable.

Then we have the following inequality for any unit vectors u and v

E[(u⊤z)2(v⊤z)2] ≤
√
E[(u⊤z)4] ·

√
E[(v⊤z)4] ≤ max

{
E[(u⊤z)4],E[(v⊤z)4]

}
≤ 16 · σ4

z ,

where the first inequality follows from the Cauchy–Schwarz inequality; and the last inequality

uses the fact that u⊤z is σ2
z sub-Gaussian. Here, the factor 16 is due to the sub-Gaussian

property (Proposition 2.5.2, [Ver18]). Next, for any PSD matrix A, suppose its eigenvalue

decomposition is A =
∑

i µiuiu
⊤
i , where µi ≥ 0 is the eigenvalue and ui is the corresponding

eigenvector, we have

E[(z⊤Az)zz⊤] =
∑
i

µiE[(u⊤
i z)

2zz⊤]. (2.5.1)

For any unit vector v, we have:

v⊤E[(z⊤Az)zz⊤]v =
∑
i

µiE[(u⊤
i z)

2(v⊤z)2] ≤ 16 · σ4
z ·
∑
i

µi = 16 · σ4
z tr(A).

This implies that for any PSD matrix A we have

E[(z⊤Az)zz⊤] ≤ 16 · σ4
z tr(A)I. (2.5.2)

Finally considering x = H
1
2z, we have for any PSD matrix A:

E[(x⊤Ax)xx⊤] = E[(z⊤H
1
2AH

1
2z)H

1
2zz⊤H

1
2]

= H
1
2E[(z⊤H

1
2AH

1
2z)zz⊤]H

1
2

⪯ H
1
2 · 16σ4

z tr(H
1
2AH

1
2) · I ·H

1
2

= 16σ4
z tr(AH)H,

where the second line holds since z⊤H
1
2AH

1
2z is a scalar and the third line of the above

equation is due to (2.5.2). This concludes the proof.

25

2.6 Proofs of the Upper Bounds

2.6.1 Technical Lemma

Lemma 2.6.1 (Restatement of Lemma 2.4.1). An operatorO defined on symmetric matrices

is called PSD mapping, if A ⪰ 0 implies O ◦A ⪰ 0. Then we have

1. M and M̃ are both PSD mappings.

2. I − γT and I − γT̃ are both PSD mappings.

3. M−M̃ and T̃ − T are both PSD mappings.

4. If 0 < γ < 1/λ1, then T̃ −1 exists, and is a PSD mapping.

5. If 0 < γ < 1/(α tr(H)), then T −1 ◦ A exists for PSD matrix A, and T −1 is a PSD

mapping.

Proof. The following proofs are summarized from [JKK18a; JNK17], and we include them

here for completeness.

1. For any PSD matrix A ⪰ 0, by definition, we have

M◦A = E[xx⊤Axx⊤] ⪰ 0,

M̃ ◦A = HAH ⪰ 0.

Therefore, both M and M̃ are PSD mappings.

2. For any PSD matrix A ⪰ 0, we have

(I − γT) ◦A = E[(I− γxx⊤)A(I− γxx⊤)] ⪰ 0,

(I − γT̃) ◦A = (I− γH)A(I− γH) ⪰ 0.

Hence, I − γT and I − γT̃ are both PSD mapping.

26

3. For any PSD matrix A ⪰ 0,

(M−M̃) ◦A = E[xx⊤Axx⊤]−HAH = E[(xx⊤ −H)A(xx⊤ −H)] ⪰ 0.

Thus, T̃ − T = M−M̃ is PSD.

4. According to (2.4.1), if 0 < γ < 1/λ1, I − γH is a contraction map, thus for any

symmetric matrix A, the following exists:
∞∑
t=0

(I − γT̃)t ◦A =
∞∑
t=0

(I− γH)tA(I− γH)t.

Therefore,
∑∞

t=0(I − γT̃)t exists and T̃ −1 = γ
∑∞

t=0(I − γT̃)t exists. Furthermore, for

any PSD matrix A ⪰ 0, we have

T̃ −1 ◦A = γ
∞∑
t=0

(I − γT̃)t ◦A = γ
∞∑
t=0

(I− γH)tA(I− γH)t ⪰ 0,

which implies T̃ −1 is a PSD mapping.

5. For any finite PSD matrix A, consider the following identity

T −1 ◦A = γ
∞∑
t=0

(I − γT)t ◦A.

Clearly, if the right hand side exists, it must be PSD since I − γT is a PSD mapping.

It remains to show that
∑∞

t=0(I − γT)t ◦A is finite, and it suffices to show that

tr

(
∞∑
t=0

(I − γT)t ◦A

)
=

∞∑
t=0

tr
(
(I − γT)t ◦A

)
< ∞.

Based on the definition of T , let At = (I − γT)t ◦A, we have

tr(At) = tr(At−1)− γ tr(HAt−1)− γ tr(At−1H) + γ2 tr
(
E[xx⊤Axx⊤]

)
= tr(At−1)− 2γ tr(HAt−1) + γ2 tr

(
At−1E[xx⊤xx⊤]

)
. (2.6.1)

By Assumption 2.2.2, we have E[xx⊤xx⊤] ⪯ α tr(H)H. Therefore, it follows that

tr(At) ≤ tr(At−1)− (2γ − γ2α tr(H)) tr(HAt−1)

≤ tr
(
(I− γH)At−1

)
≤ (1− γλd) tr(At−1), (2.6.2)

27

where we use the assumption γ < 1/(α tr(H)) in the first inequality. This further

implies that

∞∑
t=0

tr
(
(I − γT)t ◦A

)
=

∞∑
t=0

tr(At) ≤
tr(A)

γλd
< ∞.

Therefore, T −1 ◦A exists, and is PSD. So T −1 is a PSD mapping.

2.6.2 Bias-Variance Decomposition

Lemma 2.6.2 (Bias-variance decomposition).

E[L(wN)]− L(w∗) =
1

2
⟨H,E[β̄N ⊗ β̄N]⟩ ≤

(√
bias +

√
variance

)2
,

where

bias :=
1

2
⟨H,E[β̄bias

N ⊗ β̄bias
N]⟩, variance :=

1

2
⟨H,E[β̄variance

N ⊗ β̄variance
N]⟩.

Proof. This proof comes from [JKK18a]. For completeness we included it here.

With a slight abuse of notations (or probability spaces), we have βt = βbias
t + βvariance

t ,

where the randomness of βbias
t and βvariance

t is understood as coming from the same probability

space as βt. This implies β̄t = β̄bias
t + β̄variance

t . Then we have

E[L(wN)]− L(w∗)

=
1

2
⟨H,E[β̄N ⊗ β̄N]⟩

= E
[

1√
2
β̄⊤
N ·H · 1√

2
β̄N

]

≤

√E
[(

1√
2
β̄bias
N

)⊤

·H · 1√
2
β̄bias
N

]
+

√
E
[(

1√
2
β̄variance
N

)⊤

·H · 1√
2
β̄variance
N

]2

=

(√
1

2
⟨H,E[β̄bias

N ⊗ β̄bias
N]⟩+

√
1

2
⟨H,E[β̄variance

N ⊗ β̄variance
N]⟩

)2

,

28

where we use Cauchy–Schwarz inequality in the inequality such that for any vector u and v,

E||u+ v||2H ≤
(√

E||u||2H +
√

E||v||2H
)2
.

Lemma 2.6.3. Recall iterates (2.4.4) and (2.4.5). If the stepsize satisfies γ ≤ 1/λ1, the bias

error and variance error are upper bounded respectively as follows:

bias :=
1

2
⟨H,E[β̄bias

N ⊗ β̄bias
N]⟩ ≤ 1

N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Bt

〉
,

variance :=
1

2
⟨H,E[β̄variance

N ⊗ β̄variance
N] ≤ 1

N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Ct

〉
.

Proof. The proof will largely rely on the calculation in [JNK17]. Firstly, based on the

definitions of βbias
t and βbias

t provided in (2.4.2) and (2.4.3), we have

E[βbias
t |βbias

t−1] = E[Ptβ
bias
t−1 |βbias

t−1] = (I− γH)βbias
t−1 . (2.6.3)

E[βvariance
t |βvariance

t−1] = E[Ptβ
variance
t−1 + γξtxt|βvariance

t−1] = (I− γH)βvariance
t−1 . (2.6.4)

Then regarding the quantity E[β̄bias
N ⊗ β̄bias

N], we have

E[β̄bias
N ⊗ β̄bias

N]

=
1

N2
·
(∑

0≤k≤t≤N−1

E[βbias
t ⊗ βbias

k] +
∑

0≤t<k≤N−1

E[βbias
t ⊗ βbias

k]

)
⪯ 1

N2
·
(∑

0≤k≤t≤N−1

E[βbias
t ⊗ βbias

k] +
∑

0≤t≤k≤N−1

E[βbias
t ⊗ βbias

k]

)
=

1

N2
·
(∑

0≤k≤t≤N−1

(I− γH)t−kE[βbias
k ⊗ βbias

k] +
∑

0≤t≤k≤N−1

E[βbias
t ⊗ βbias

t](I− γH)k−t
)

=
1

N2
·
N−1∑
t=0

N−1∑
k=t

(
(I− γH)k−tE[βbias

t ⊗ βbias
t] + E[βbias

t ⊗ βbias
t](I− γH)k−t

)
, (2.6.5)

where we use (2.6.3) for k − t (or t − k) times in the second equality. Therefore, plugging

29

(2.6.5) into the inner product ⟨H,E[β̄bias
N ⊗ β̄bias

N]⟩ and noticing H is PSD, we have

1

2
⟨H,E[β̄bias

N ⊗ β̄bias
N]⟩

≤ 1

2N2
·
N−1∑
t=0

N−1∑
k=t

〈
H, (I− γH)k−tE[βbias

t ⊗ βbias
t] + E[βbias

t ⊗ βbias
t](I− γH)k−t

〉
=

1

N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,E[βbias

t ⊗ βbias
t]
〉

where the last equality holds since H and (I− γH)k−t commute.

By (2.6.4), we can similarly obtain the following for E[β̄variance
N ⊗ β̄variance

N],

E[β̄variance
N ⊗ β̄variance

N]

⪯ 1

N2
·
N−1∑
t=0

N−1∑
k=t

(
(I− γH)k−tE[βvariance

t ⊗ βvariance
t] + E[βvariance

t ⊗ βvariance
t](I− γH)k−t

)
,

which further leads to

1

2
⟨H,E[β̄variance

N ⊗ β̄variance
N]⟩ ≤ 1

N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,E[βvariance

t ⊗ βvariance
t]

〉
.

This completes the proof.

2.6.3 Bounding the Variance Error

We first introduce a weaker assumption (compared with Assumption 2.2.2) on the data

distribution, which is sufficient to get our desired results on the variance error.

Assumption 2.6.4. There exists a constant R > 0 such that E[xx⊤xx⊤] ⪯ R2H.

We make this assumption to emphasize that our variance analysis does not rely on

stronger assumptions than those in a number of prior works for iterate averaged SGD

[BM13; JNK17; BBG20]. Moreover, note that this assumption is implied by Assumption

2.2.2 by setting A = I, which gives R2 = α tr(H).

30

Recall the variance error upper bound in Lemma 2.6.3:

variance ≤ 1

N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Ct

〉
.

We first have the following crude bound on Ct.

Lemma 2.6.5. ([JKK18a] Lemma 5) Under Assumptions 2.2.1, 2.2.3 and 2.6.4, if the step-

size satisfies γ < 1/R2, it holds that

0 = C0 ⪯ C1 ⪯ · · · ⪯ C∞ ⪯ γσ2

1− γR2
I.

Proof. This lemma directly comes from Lemmas 3 and 5 in [JKK18a]. For completeness, a

proof is included as follows.

We first show that Ct is increasing:

Ct = (I − γT) ◦Ct−1 + γ2Σ

= γ2

t−1∑
k=0

(I − γT)k ◦Σ (solving the recursion)

= Ct−1 + γ2(I − γT)t−1 ◦Σ

⪰ Ct−1. (since I − γT is a PSD mapping by Lemma 2.4.1)

Next we show that C∞ exists. Since Ct is PSD and increasing, it suffices to show that tr(Ct)

can be bounded uniformly. For any t ≥ 1, we have

Ct = γ2

t−1∑
k=0

(I − γT)k ◦Σ ⪯ γ2

∞∑
t=0

(I − γT)t ◦Σ. (2.6.6)

Let At := (I − γT)t ◦ Σ, then At = (I − γT) ◦ At−1. By Assumption 2.6.4 we have

E[xx⊤xx⊤] ⪯ R2H. Then, by (2.6.1), we can get

tr(At) = tr(At−1)− 2γ tr(HAt−1) + γ2 tr
(
At−1E[xx⊤xx⊤]

)
≤ tr(At−1)− (2γ − γ2R2) tr(HAt−1)

≤ tr
(
(I− γH)At−1

)
≤ (1− γλd) tr(At−1), (2.6.7)

31

where we use the assumption γ ≤ 1/R2 in the second inequality. Combining (2.6.6) and

(2.6.7), we have for any t ≥ 1 that

tr(Ct) ≤ γ2

∞∑
t=0

tr
(
(I − γT)t ◦Σ

)
= γ2

∞∑
t=0

tr(At) ≤
γ tr(Σ)

λd
< ∞.

Therefore, tr(Ct) is uniformly upper bounded, hence C∞ exists.

Finally we upper bound C∞. Taking limits in (2.4.4), we have

C∞ = (I − γT) ◦C∞ + γ2Σ,

which immediately implies

C∞ = γT −1 ◦Σ.

Recalling T̃ = T + γM− γM̃ and the definitions and properties of the operators, we have

T̃ ◦C∞ = T ◦C∞ + γM◦C∞ − γM̃ ◦C∞

= γΣ+ γM◦C∞ − γM̃ ◦C∞ (since C∞ = γT −1 ◦Σ)

⪯ γΣ+ γM◦C∞ (since M̃ is a PSD mapping by Lemma 2.4.1)

⪯ γσ2H+ γM◦C∞. (since Σ ⪯ σ2H by Assumption 2.2.3)

Recall that T̃ −1 exists and is a PSD mapping by Lemma 2.4.1, we then have

C∞ ⪯ γσ2 · T̃ −1 ◦H+ γT̃ −1 ◦M ◦C∞

⪯ γσ2 ·
∞∑
t=0

(γT̃ −1 ◦M)t ◦ T̃ −1 ◦H. (solving the recursion) (2.6.8)

In addition, we have

T̃ −1 ◦H = γ

∞∑
t=0

(I − γT̃)t ◦H

= γ
∞∑
t=0

(I− γH)tH(I− γH)t (by the property of I − T̃ in (2.4.1))

⪯ γ
∞∑
t=0

(I− γH)tH

= I. (2.6.9)

32

Substituting (2.6.9) into (2.6.8), we obtain

C∞ ⪯ γσ2 ·
∞∑
t=0

(γT̃ −1 ◦M)t ◦ I

= γσ2 ·
∞∑
t=0

(γT̃ −1 ◦M)t−1 ◦ γT̃ −1 ◦M ◦ I

⪯ γσ2 ·
∞∑
t=0

(γT̃ −1 ◦M)t−1 ◦ γR2I

⪯ γσ2 ·
∞∑
t=0

(γR2)tI

=
γσ2

1− γR2
I,

where the second inequality is due to M◦ I ⪯ R2H by Assumption 2.6.4 and T̃ −1 ◦H ⪯ I

in (2.6.9), and the third inequality is by recursion. This completes the proof.

The following lemma refines the bound on Ct by its update rule and its crude bound

shown in previous lemma.

Lemma 2.6.6. Under Assumptions 2.2.1, 2.2.3 and 2.6.4, if the stepsize satisfies γ < 1/R2,

it holds that

Ct ⪯
γσ2

1− γR2
·
(
I− (I− γH)t

)
.

Proof. By (2.4.5) and the definitions of T and T̃ , we have

Ct = (I − γT) ◦Ct−1 + γ2Σ

= (I − γT̃) ◦Ct−1 + γ2(M−M̃) ◦Ct−1 + γ2Σ

⪯ (I − γT̃) ◦Ct−1 + γ2M◦Ct−1 + γ2Σ, (2.6.10)

where the last inequality is due to the fact that M̃ is a PSD mapping. Then by Lemma

2.6.5, we have for all t ≥ 0,

M◦Ct ⪯ M◦C∞ ⪯ M◦ γσ2

1− γR2
I =

γσ2

1− γR2
· E[∥x∥22 xx

⊤] ⪯ γR2σ2

1− γR2
·H. (2.6.11)

33

Substituting (2.6.11) and Σ ⪯
∥∥H−1/2ΣH−1/2

∥∥
2
·H into (2.6.10), we obtain

Ct ⪯ (I − γT̃) ◦Ct−1 + γ2 · γR2σ2

1− γR2
·H+ γ2 · ∥H−1/2ΣH−1/2∥2 ·H

= (I − γT̃) ◦Ct−1 + γ2 · γR2σ2

1− γR2
·H+ γ2σ2 ·H

= (I − γT̃) ◦Ct−1 +
γ2σ2

1− γR2
·H

⪯ γ2σ2

1− γR2
·
t−1∑
k=0

(I − γT̃)k ◦H. (solving the recursion)

=
γ2σ2

1− γR2
·
t−1∑
k=0

(I− γH)kH(I− γH)k (by the property of I − γT̃ in (2.4.1))

⪯ γ2σ2

1− γR2
·
t−1∑
k=0

(I− γH)kH

=
γσ2

1− γR2
·
(
I− (I− γH)t

)
,

where in the last inequality we use γ ≤ 1/R2 ≤ 1/ tr(H) ≤ 1/λ1. This completes the

proof.

We are ready to provide the variance error upper bound.

Lemma 2.6.7. Under Assumptions 2.2.1, 2.2.3 and 2.6.4, if the stepsize satisfies γ < 1/R2,

then it holds that

variance ≤ σ2

1− γR2

(
k∗

N
+ γ2N ·

∑
i>k∗

λ2
i

)
,

where k∗ = max{k : λk ≥ 1
Nγ

}.

34

Proof. By Lemma 2.6.2, we can bound the variance error as follows

variance ≤ 1

N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Ct

〉
=

1

γN2

N−1∑
t=0

〈
I− (I− γH)N−t,Ct

〉
≤ σ2

N2(1− γR2)

N−1∑
t=0

〈
I− (I− γH)N−t,

(
I− (I− γH)t

) 〉
=

σ2

N2(1− γR2)

∑
i

N−1∑
t=0

(
1− (1− γλi)

N−t) (1− (1− γλi)
t
)

≤ σ2

N2(1− γR2)

∑
i

N−1∑
t=0

(
1− (1− γλi)

N
) (

1− (1− γλi)
N
)

=
σ2

N(1− γR2)

(
1− (1− γλi)

N
)2

,

where the second inequality is due to Lemma 2.6.6, {λi}i≥1 are the eigenvalues of H and are

sorted in decreasing order. Since γ ≤ 1/λ1, we have for all i ≥ 1 that

1− (1− γλi)
N ≤ min

{
1, γNλi

}
. (2.6.12)

Set k∗ = max{k : λk ≥ 1
γN

}, then

variance ≤ σ2

N(1− γR2)

∑
i

min
{
1, γ2N2λ2

i

}
≤ σ2

N(1− γR2)

(
k∗ +N2γ2 ·

∑
i>k∗

λ2
i

)

=
σ2

1− γR2

(
k∗

N
+ γ2N ·

∑
i>k∗

λ2
i

)
.

35

2.6.4 Bounding the Bias Error

In this part we will focus on bounding the bias error. Recall the bias error bound in

Lemma 2.6.3:

bias ≤ 1

N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Bt

〉
=

1

γN2

N−1∑
t=0

〈
I− (I− γH)N−t,Bt

〉
≤ 1

γN2

〈
I− (I− γH)N ,

N−1∑
t=0

Bt

〉
. (2.6.13)

Let Sn =
∑n−1

t=0 Bt, then we only need to bound SN .

Lemma 2.6.8. Let St =
∑t−1

k=0 Bk, if γ < 1/(α tr(A)), we have

St = (I − γT) ◦ St−1 +B0.

Moreover, it holds that

B0 = S0 ⪯ S1 ⪯ · · · ⪯ S∞.

Proof. By (2.4.4), we have

Bt = (I − γT) ◦Bt−1 = (I − γT)t ◦B0, (2.6.14)

where we used recursion. Then we have

St =
t−1∑
k=0

(I − γT)k ◦B0 = (I − γT) ◦
(t−1∑

k=0

(I − γT)k ◦B0

)
+B0 = (I − γT) ◦ St−1 +B0.

Moreover, since Bt is PSD for all t ≥ 0, it is clear that St = St−1 +Bt ⪰ St−1. Besides, by

Lemma 2.4.1, we know that

S∞ :=
∞∑
k=0

(I − γT)t ◦B0 = γ−1T −1 ◦B0

36

exists. Thus it can be readily shown that

B0 = S1 ⪯ · · · ⪯ St ⪯ St+1 ⪯ · · · ⪯ S∞,

which completes the proof.

Lemma 2.6.9. Under Assumptions 2.2.2, for any symmetric matrix A, if γ < 1/(α tr(H)),

it holds that

M◦ T −1 ◦A ⪯ α tr(A)

1− γα tr(H)
·H.

Proof. We first tackle T −1 ◦ A. In particular, by Lemma 2.4.1 we have the operator T −1

exists and thus T −1 ◦A also exists, which can be obtained by solving for the PSD matrix

D satisfying the following equation,

T ◦D = A.

Using the definition of T̃ , we have:

T̃ ◦D = γM◦D+A− γHDH, (2.6.15)

where M◦D = E[xx⊤Dxx⊤]. Further by Lemma 2.4.1 we know that T̃ −1 and M are both

PSD mapping. This implies that for any PSD matrices U and U′ satisfying 0 ⪯ U ⪯ U′, it

holds that

0 ⪯ M◦U ⪯ M◦U′, 0 ⪯ T̃ −1 ◦U ⪯ T̃ −1 ◦U′.

Combining the above two results we also have

0 ⪯ M◦ T̃ −1 ◦U ⪯ M◦ T̃ −1 ◦U′. (2.6.16)

Therefore, applying the operator T −1 to both sides of (2.6.15) yields

D = γT̃ −1 ◦M ◦D+ T̃ −1 ◦A− γT̃ −1 ◦ (HDH)

⪯ γT̃ −1 ◦M ◦D+ T̃ −1 ◦A. (2.6.17)

37

Then we can apply the operatorM to both sides of (2.6.17), by the monotonicity property

in (2.6.16), we have

M◦D ⪯ γM◦ T̃ −1 ◦M ◦D+M◦ T̃ −1 ◦A

⪯
∞∑
t=0

(γM◦ T̃ −1)t ◦ (M◦ T̃ −1 ◦A). (2.6.18)

By Assumption 2.2.2 we have

M◦ T̃ −1 ◦A ⪯ α tr(HT̃ −1 ◦A)H. (2.6.19)

Additionally, based on the definition of T̃ , we have

T̃ −1 ◦A = γ
∞∑
t=0

(I − γT̃)t ◦A = γ
∞∑
t=0

(I− γH)tA(I− γH)t.

Therefore, it follows that

tr(HT̃ −1 ◦A) = γ tr

(∞∑
t=0

H(I− γH)tA(I− γH)t
)

= γ tr

(∞∑
t=0

H(I− γH)2tA

)
= tr

(
H(2H− γH2)−1A

)
≤ tr(A), (2.6.20)

where the last inequality is because we have γ ≤ 1/λ1 and thus H(2H − γH2)−1 ⪯ I.

Substituting (2.6.20) into (2.6.19) yields

M◦ T̃ −1 ◦A ⪯ α tr(A)H.

Note that we have T̃ −1H ⪯ I and M ◦ I ⪯ α tr(H)H, plugging the above inequality into

(2.6.18) gives

M◦ T −1 ◦A = M◦D ⪯ α tr(A)
∞∑
t=0

(γα tr(H))tH ⪯ α tr(A)

1− γα tr(H)
·H.

This completes the proof.

38

Lemma 2.6.10. Under Assumptions 2.2.1, and 2.2.2, if the stepsize satisfies γ < 1/(α tr(H)),

then

M◦ St ⪯
α · tr

([
I − (I − γT̃)t

]
◦B0

)
γ(1− γα tr(H))

·H.

Proof. Note that St takes the following form

St :=
t−1∑
k=0

(I − γT)k ◦B0 = γ−1T −1 ◦
[
I − (I − γT)t

]
B0.

Note that by Lemma 2.4.1, we have I−γT̃ ≤ I−γT so that I− (I−γT)t ⪯ I− (I−γT̃)t.

Therefore, further note that T −1 is a PSD mapping, we have the following bound on St,

St ⪯ γ−1T −1 ◦
[
I − (I − γT̃)t

]
◦B0.

Then note that [I − (I − γT̃)t
]
◦B0 is a PSD matrix, applying Lemma 2.6.9, we get

M◦ St ⪯ γ−1M◦ T −1 ◦
[
I − (I − γT̃)t

]
◦B0 ⪯

α · tr
([
I − (I − γT̃)t

]
◦B0

)
γ(1− γα tr(H))

·H.

This completes the proof.

The following lemma shows that using this crude bound on M◦ St we are able to get a

tighter upper bound on St.

Lemma 2.6.11. Under Assumptions 2.2.1 and 2.2.2, let Ba,b = Ba − (I − γH)b−aBa(I −

γH)b−a, if the stepsize satisfies γ < 1/(α tr(H)), then for any t ≤ N , it holds that

St ⪯
t−1∑
k=0

(I− γH)k
(

γα tr(B0,N)

1− γα tr(H)
·H+B0

)
(I− γH)k.

Proof. Recall the recursive form of St given in Lemma 2.6.8, we have

St = (I − γT) ◦ St−1 +B0.

39

Note that this is similar to the recursive form of Ct provided in (2.4.5) but replacing γ2Σ

with B0. Then we can use the similar proof of Lemma 2.6.6 to get the upper bound of St.

In particular, note that we will run SGD with N steps, then SN can be used as a uniform

upper bound on S1, . . . ,SN , we can upper bound St by

St ⪯ (I − γT̃) ◦ St−1 + γ2M◦ SN +B0

⪯ (I − γT̃) ◦ St−1 +
γα · tr

([
I − (I − γT̃)N

]
◦B0

)
1− γα tr(H)

·H+B0

=
t−1∑
k=0

(I − γT̃)k ◦

(
γα · tr

([
I − (I − γT̃)N

]
◦B0

)
1− γα tr(H)

·H+B0

)

=
t−1∑
k=0

(I− γH)k
(
γα tr

(
B0 − (I− γH)NB0(I− γH)N

)
1− γα tr(H)

·H+B0

)
(I− γH)k.

where we use Lemma 2.6.10 in the second inequality, the first equality is by recursion, and

the last equality is by the definition of T̃ .

We now put these lemmas together and provide our upper bound on the bias error:

Lemma 2.6.12. Under Assumptions 2.2.1 and 2.2.2, if the stepsize satisfies γ < 1/(α tr(H)),

it holds that

bias ≤ 1

γ2N2
· ∥w0 −w∗∥2

H−1
0:k∗

+ ∥w0 −w∗∥2Hk∗:∞

+
2α
(
∥w0 −w∗∥2I0:k∗ +Nγ∥w0 −w∗∥2Hk∗:∞

)
1− γα tr(H)

·
(
k∗

N
+Nγ2

∑
i>k∗

λ2
i

)
,

where k∗ = max{k : λk ≥ γ−1/N}.

Proof. We can plug the upper bound of St derived in Lemma 2.6.11 into (2.6.13) and get

bias ≤ 1

γN2

N−1∑
k=0

〈
I− (I− γH)N , (I− γH)k

(
γα tr(B0,N)

1− γα tr(H)
·H+B0

)
(I− γH)k

〉

=
1

γN2

N−1∑
k=0

〈
(I− γH)2k − (I− γH)N+2k,

γα tr(B0,N)

1− γα tr(H)
·H+B0

〉
.

40

Note that

(I− γH)2k − (I− γH)N+2k = (I− γH)k
(
(I− γH)k − (I− γH)N+k

)
⪯ (I− γH)k − (I− γH)N+k.

We obtain

bias ≤ 1

γN2

N−1∑
k=0

〈
(I− γH)k − (I− γH)N+k,

γα tr(B0,N)

1− γα tr(H)
·H+B0

〉
,

Therefore, it suffices to upper bound the following two terms:

I1 =
α tr(B0,N)

N2(1− γα tr(H))

N−1∑
k=0

〈
(I− γH)k − (I− γH)N+k,H

〉
I2 =

1

γN2

N−1∑
k=0

〈
(I− γH)k − (I− γH)N+k,B0

〉
.

Regarding I1, since H and I− γH can be diagonalized simultaneously, we have

I1 =
α tr(B0,N)

N2(1− γα tr(H))

N−1∑
k=0

∑
i

[
(1− γλi)

k − (1− γλi)
N+k

]
λi

=
α tr(B0,N)

γN2(1− γα tr(H))

∑
i

[
1− (1− γλi)

N
]2

≤ α tr(B0,N)

γN2(1− γα tr(H))

∑
i

min
{
1, γ2N2λ2

i

}
≤ α tr(B0,N)

γ(1− γα tr(H))
·
(

k∗

N2
+ γ2

∑
i>k∗

λ2
i

)
, (2.6.21)

where k∗ is the index of the smallest eigenvalue of H satisfying λk∗ ≥ γ−1/N . Moreover,

recall that B̃ = B0 − (I− γH)NB0(I− γH)N
)
and B0 = (w0 −w∗)⊗ (w0 −w∗), we have

tr(B0,N) = tr
(
B0 − (I− γH)NB0(I− γH)N

))
=
∑
i

(
1− (1− γλi)

2N) ·
(
⟨w0 −w∗,vi⟩

)2
.

Note that

(
1− (1− γλi)

2N) ≤ min{2, 2Nγλi},

41

thus it follows that,

tr(B0,N) ≤ 2
∑
i

min{1, Nγλi}
(
⟨w0 −w∗,vi⟩

)2 ≤ 2
(
∥w0 −w∗∥2I0:k∗ +Nγ∥w0 −w∗∥2Hk∗:∞

)
.

(2.6.22)

where k∗ = max{k : λk ≥ 1
Nγ

}. Then plug this bound into (2.6.21), we have

I1 ≤
2α
(
∥w0 −w∗∥2I0:k∗ +Nγ∥w0 −w∗∥2Hk∗:∞

)
Nγ(1− γα tr(H))

·
(
k∗

N
+Nγ2

∑
i>k∗

λ2
i

)
, (2.6.23)

In the sequel we will upper bound I2. Let H = VΛV⊤ be the orthogonal decomposition

of H, where V = (v1,v2, . . .) and Λ is a diagonal matrix with diagonal entries λ1, λ2,

Then we have

I2 =
1

γN2

N−1∑
k=0

〈
(I− γΛ)k − (I− γΛ)N+k,V⊤B0V

〉
.

Note that (I− γΛ)k − (I− γΛ)N+k is a diagonal matrix, thus the above inner product only

operates on the diagonal entries of V⊤B0V. Note that B0 = β0β
⊤
0 , it can be shown that

the diagonal entries of V⊤B0V are ω2
1, ω

2
2, . . . , where ωi = v⊤

i β0 = v⊤
i (w0 −w∗).

I2 =
1

γN2

N−1∑
k=0

〈
(I− γH)k − (I− γH)N+k,B0

〉
=

1

γN2

N−1∑
k=0

∑
i

[
(1− γλi)

k − (1− γλi)
N+k

]
ω2
i

=
1

γ2N2

∑
i

ω2
i

λi

[
1− (1− γλi)

N
]2

≤ 1

γ2N2

∑
i

ω2
i

λi
min

{
1, γ2N2λ2

i

}
≤ 1

γ2N2
·
∑
i≤k∗

ω2
i

λi
+
∑
i>k∗

λiω
2
i

=
1

γ2N2
· ∥w0 −w∗∥2

H−1
0:k∗

+ ∥w0 −w∗∥2Hk∗:∞
,

where the first inequality is by (2.6.12) and k∗ = max{k : λk ≥ γ−1/N}. Combining the

upper bounds on I1 and I2 directly completes the proof.

42

2.6.5 Proof of Theorem 2.2.4

Proof. By Lemma 2.6.2, it suffices to substitute into the upper bounds on the bias and

variance errors. In particular, by Young’s inequality we have

E[L(wN)]− L(w∗) ≤
(√

bias +
√
variance

)2
≤ 2 · bias + 2 · variance.

Then we can directly substitute the bounds of variance and bias we proved in Lemmas 2.6.7

and 2.6.12. In particular, by Assumptions 2.2.2 we can directly get R2 = α tr(H). Therefore,

it holds that

E[L(wN)]− L(w∗)

≤ 2

[
α∥w0 −w∗∥22

γ(1− γα tr(H))
·
(

k∗

N2
+ γ2

∑
i>k∗

λ2
i

)
+

1

γ2N2
· ∥w0 −w∗∥2

H−1
0:k∗

+ ∥w0 −w∗∥2Hk∗:∞

+
σ2
z

1− γα tr(H)

(
k∗

N
+ γ2N ·

∑
i>k∗

λ2
i

)]
= 2 · EffectiveBias + 2 · EffectiveVar,

where

EffectiveBias =
1

γ2N2
· ∥w0 −w∗∥2

H−1
0:k∗

+ ∥w0 −w∗∥2Hk∗:∞

EffectiveVar =

(
σ2
z

1− γα tr(H)
+

α∥w0 −w∗∥22
Nγ(1− γα tr(H))

)(
k∗

N
+ γ2N ·

∑
i>k∗

λ2
i

)
.

2.6.6 Proof of Corollary 2.2.8

Proof. We will show that the corollary can be directly implied by Theorem 2.2.4. In terms

of the effective bias term, it is clear that

EffectiveBias ≤ 1

γ2N2
· ∥w0 −w∗∥2

H−1
0:k∗

+ ∥w0 −w∗∥2Hk∗:∞

=
1

γ2N2
· λ−1

k∗

∑
i≤k∗

(
v⊤
i w0 − v⊤

i w
∗)2 + λk∗+1

∑
i>k∗

(
v⊤
i w0 − v⊤

i w
∗)2.

43

where vi is the eigenvector of H corresponding to the eigenvalue λi. Based on our definition

of k∗, we have λ−1
k∗ ≤ Nγ and λk∗+1 ≤ 1/(Nγ). Therefore, it follows that

EffectiveBias ≤ 1

γN
·
∑
i

(
v⊤
i w0 − v⊤

i w
∗)2 = ∥w0 −w∗∥22

γN
. (2.6.24)

Then regarding the effective variance, given the choice of stepsize that γ = 1/(2α tr(H)), we

have

EffectiveVar ≤ 2

(
σ2 +

α∥w0 −w∗∥22
Nγ

)(
k∗

N
+ γ2N ·

∑
i>k∗

λ2
i

)

= 2σ2 ·

(
k∗

N
+ γ2N ·

∑
i>k∗

λ2
i

)
+

2α∥w0 −w∗∥22
γN

·

(
k∗

N
+ γ2N ·

∑
i>k∗

λ2
i

)
.

Based on the definition of k∗, we have λi ≤ 1/(Nγ) for i > k∗, thus

γ2N
∑
i>k∗

λ2
i ≤ γ

∑
i>k∗

λi.

Besides, we also have k∗/N ≤ γ
∑k∗

i=1 λi. Therefore, we have

EffectiveVar ≤ 2σ2 ·

(
k∗

N
+ γ2N ·

∑
i>k∗

λ2
i

)
+

2γα∥w0 −w∗∥22
γN

·
∑
i

λi.

According to our choice of stepsize that γ = 1/(2α tr(H)), we can get

2γα∥w0 −w∗∥22
γN

·
∑
i

λi =
∥w0 −w∗∥22

γN
.

This further implies that

EffectiveVar ≤ 2σ2 ·

(
k∗

N
+ γ2N ·

∑
i>k∗

λ2
i

)
+

∥w0 −w∗∥22
γN

. (2.6.25)

Combining (2.6.24) and (2.6.25), we have

E[L(wN)]− L(w∗) ≤ 2 · EffectiveBias + 2 · EffectiveVar

≤ 4∥w0 −w∗∥22
γN

+ 4σ2 ·

(
k∗

N
+ γ2N ·

∑
i>k∗

λ2
i

)
.

Further using the assumption that γ = 1/(2α tr(H)) completes the proof.

44

2.6.7 Proof of Corollary 2.2.9

Proof. For the bias error term, recall the definition of k∗, we have

EffectiveBias ≤ O
(

1

N2
· ||w0 −w∗||2

H−1
0:k∗

+ ||w0 −w∗||2Hk∗:∞

)
≤ O

(
1

N2
· 1

λk∗
· ||w0 −w∗||22 + λk∗ · ||w0 −w∗||22

)
≤ O

(
1

N

)
.

For the variance error term, it can be verified that all these examples satisfies
∑

i λi < ∞,

thus we have

EffectiveVar = O

(
k∗

N
+N

∑
i>k∗

λ2
i

)
.

1. By the definition of k∗ we have k∗ = s = N r, therefore

EffectiveVar = O
(
N−1 ·N r +N ·N−q) = O

(
N r−1 +N1−q) .

2. By the definition of k∗ we have k∗ = Θ
(
N1/(1+r)

)
, therefore

EffectiveVar = O
(
N−1 ·N1/(1+r) +N ·

(
N1/(1+r)

)−1−2r
)
= O

(
N−r/(1+r)) .

3. By the definition of k∗ it can be shown that k∗ = Ω
(
N/ logβ(N)

)
since otherwise

λk∗+1 = ω

(
logβ(N)

N
· 1[

log(N)− β log(log(N))
]β) = ω(1/N),

which contradicts to the fact that λk∗+1 = O (1/N). Besides, we have

∑
i≥k∗

λ2
i = O

(∫ ∞

k∗

1

x2 log2β(x+ 1)
dx

)
.

Then note that

1

x2 log2β(x+ 1)
≤ log2β(x+ 1) + 2βx log2β−1(x)/(x+ 1)

x2 log4β(x)
.

45

This implies that∫ ∞

k∗

1

x2 log2β(x)
dx ≤

∫ ∞

k∗

log2β(x+ 1) + 2βx log2β−1(x)/(x+ 1)

x2 log4β(x)
dx

=
1

k∗ log2β(k∗ + 1)

= O
(
N−1 log−β(k∗)

)
,

where the last equality is due to the fact that 1/(k∗ logβ(k∗ + 1)) = Θ(1/N). As a

result, we can get

EffectiveVar = O

(
k∗ ·N−1 +N

∑
i≥k∗

λ2
i

)
= O

(
log−β(k∗)

)
= O

(
log−β(N)

)
,

where the second equality is due to the fact that k ∗ /N = O
(
log−β(k∗)

)
and the last

equality is due to k∗ = Ω
(
N/ logβ(N)

)
.

4. By definition of k∗ we have k∗ = Θ(logN), therefore

EffectiveVar = O
(
N−1 · logN +N · e−2 logN

)
= O

(
N−1 logN

)
.

Summing up the bias error and variance error concludes the proof.

2.7 Proofs of the Lower Bounds

2.7.1 Lower Bound for Bias-Variance Decomposition

We first introduce the following lemma to lower bound the excess risk when the noise is

well-specified as in (2.2.1).

Lemma 2.7.1. Suppose the model noise ξt is well-specified, i.e., ξt and xt are independent

and E[ξt] = 0. Then

E[L(wN)− L(w∗)] ≥ 1

2N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Bt

〉
+

1

2N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Ct

〉
.

46

Proof. Let Pt = I− γxtx
⊤
t , then the definitions of βbias

t in (2.4.3) and βvariance
t (2.4.2) imply

βbias
t =

t∏
k=1

Pkβ0, βvariance
t = γ

t∑
i=1

t∏
j=i+1

ξiPjxi.

Note that in the well specified case, the noise ξt := yt − ⟨w∗,xt⟩ is independent of the data

xt, and is of zero mean, hence

E[βbias
t ⊗ βvariance

t] = γE
[t∏
k=1

Pkβ0 ⊗
t∑
i=1

t∏
j=i+1

ξiPjxi

]

= γ

t∑
i=1

E
[t∏
k=1

Pkβ0 ⊗
t∏

j=i+1

Pjxi
]
· E[ξi] = 0.

This implies that

E[β̄t ⊗ β̄t] = E[β̄bias
t ⊗ β̄bias

t] + E[β̄variance
t ⊗ β̄variance

t],

and furthermore,

E[L(wN)− L(w∗)] =
1

2
⟨H,E[β̄t ⊗ β̄t]⟩

=
1

2
⟨H,E[β̄bias

t ⊗ β̄bias
t]⟩+ 1

2
⟨H,E[β̄variance

t ⊗ β̄variance
t]⟩. (2.7.1)

Next, we lower bound each term on the R.H.S. of (2.7.1) separately. By (2.6.5), we have

E[β̄bias
N ⊗ β̄bias

N] =
1

N2
·
(∑

0≤k<t≤N−1

E[βbias
t ⊗ βbias

k] +
∑

0≤t≤k≤N−1

E[βbias
t ⊗ βbias

k]

)
.

Additionally, by (2.6.3) we can get〈
H,

∑
0≤k<t≤N−1

E[βbias
t ⊗ βbias

k]

〉
=

〈
H,

N−1∑
k=0

N−1∑
t=k+1

(I− γH)t−kE[βbias
k ⊗ βbias

k]

〉

=
N−1∑
k=0

N−1∑
t=k+1

〈
(I− γH)t−kH,E[βbias

k ⊗ βbias
k]
〉
≥ 0,

where the inequality is due to the fact that (I− γH)t−kH and E[βbias
k ⊗βbias

k] are both PSD.

47

Therefore, it follows that

bias :=
1

2
⟨H,E[β̄bias

N ⊗ β̄bias
N]⟩

≥ 1

2N2
·
〈
H,

∑
0≤t≤k≤N−1

E[βbias
t ⊗ βbias

k]

〉

=
1

2N2
·
N−1∑
t=0

N−1∑
k=t

〈
H,E[βbias

t ⊗ βbias
t] · (I− γH)k−t

〉
=

1

2N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,E[βbias

t ⊗ βbias
t]
〉
, (2.7.2)

where the last equality holds since H and (I−γH)k−t commute. Repeating the computation

for the variance terms, we can similarly obtain

variance :=
1

2
⟨H,E[β̄variance

N ⊗ β̄variance
N]⟩

≥ 1

2N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,E[βvariance

t ⊗ βvariance
t]

〉
. (2.7.3)

Plugging (2.7.2) and (2.7.3) into (2.7.1) gives

E[L(wN)− L(w∗)] =
1

2
⟨H,E[β̄t ⊗ β̄t]⟩ = bias + variance

≥ 1

2N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,E[βbias

t ⊗ βbias
t]
〉

+
1

2N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,E[βvariance

t ⊗ βvariance
t]

〉
.

2.7.2 Lower Bounding the Variance Error

Lemma 2.7.2. Suppose Assumptions 2.2.1 hold. Suppose the noise is well-specified as in

(2.2.1). If the stepsize satisfies γ < 1/λ1, it holds that

Ct ⪰
γσ2

noise

2

(
I− (I− γH)2t

)
.

48

Proof. Recall that M−M̃ is a PSD mapping by Lemma 2.4.1 and Ct−1 is PSD, then from

(2.4.5) we have

Ct = (I − γT) ◦Ct−1 + γ2Σ

= (I − γT̃) ◦Ct−1 + (M−M̃) ◦Ct−1 + γ2Σ

⪰ (I − γT̃) ◦Ct−1 + γ2σ2
noiseH (since in the well-specified case Σ = σ2

noiseH)

⪰ γ2σ2
noise ·

t−1∑
k=0

(I − γT̃)k ◦H (solving the recursion)

= γ2σ2
noise ·

t−1∑
k=0

(I− γH)kH(I− γH)k (by the property of I − γT̃ in (2.4.1))

= γ2σ2
noise ·

(
I− (I− γH)2t

)
·
(
2γI− γ2H

)−1

⪰ γσ2
noise

2
·
(
I− (I− γH)2t

)
,

where in the last inequality we use 2γI− γ2H ⪯ 2γI. This completes the proof.

Lemma 2.7.3. Suppose Assumptions 2.2.1 hold. Suppose the noise is well-specified as in

(2.2.1) and N ≥ 500. Denote

variance =
1

2N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Ct

〉
.

If the stepsize satisfies γ < 1/λ1, then

variance ≥ σ2
noise

50

(
k∗

N
+Nγ2 ·

∑
i>k∗

λ2
i

)
,

where k∗ = max{k : λk ≥ 1
Nγ

}.

49

Proof. We can lower bound the variance error as follows

variance =
1

2N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Ct

〉
=

1

2γN2

N−1∑
t=0

〈
I− (I− γH)N−t,Ct

〉
≥ σ2

noise

4N2

N−1∑
t=0

〈
I− (I− γH)N−t, I− (I− γH)2t

〉
(use Lemma 2.7.2)

=
σ2
noise

4N2

∑
i

N−1∑
t=0

(
1− (1− γλi)

N−t) (1− (1− γλi)
2t
)

≥ σ2
noise

4N2

∑
i

N−1∑
t=0

(
1− (1− γλi)

N−t−1
) (

1− (1− γλi)
t
)
,

where {λi}i≥1 are the eigenvalues of H and are sorted in decreasing order. Define

f(x) :=
N−1∑
t=0

(
1− (1− x)N−t−1

) (
1− (1− x)t

)
, 0 < x < 1,

then

variance ≥ σ2
noise

4N2

∑
i≥1

f(γλi).

Clearly f(x) is increasing for 0 < x < 1. Moreover:

f(x) =
N−1∑
t=0

(
1− (1− x)N−1−t − (1− x)t + (1− x)N−1

)
= N − 2

1− (1− x)N

x
+N(1− x)N−1.

Next we lower bound f(x) within the range 1
N

< x < 1 and 0 < x < 1
N
, respectively.

First consider 1
N

≤ x < 1. Notice that f(x) is increasing and
(
1− 1

N

)N ≥
(
1− 1

500

)500
>

1.1/3 if N ≥ 500, thus for 1
N

≤ x < 1, we have

f(x) ≥ N − 2N + 3N · (1− 1/N)N ≥ 0.1N.

On the other hand, note that we have the fourth-order derivative of f(x) is positive when

x ∈ (0, 1/N), thus for 0 ≤ x ≤ 1/N , we can perform third-order Taylor expansion on f(x)

50

at x = 0, which gives

f(x) ≥ N(N − 1)(N − 2)x2

6
− N(N − 1)(N − 2)(N − 3)x3

12

≥ N(N − 1)(N − 2)x2

12
(since x ≤ 1/N)

≥ 2N3x2

25
. (since N ≥ 500)

In sum,

f(x) ≥

N
10
, 1

N
≤ x < 1,

2N3

25
x2, 0 < x < 1

N
.

Set k∗ = max{k : λk ≥ 1
Nγ

}, then

variance ≥ σ2
noise

4N2

∑
i

f(γλi)

≥ σ2
noise

4N2

(
Nk∗

10
+

2N3

25
γ2 ·

∑
i>k∗

λ2
i

)

≥ σ2
noise

50

(
k∗

N
+Nγ2 ·

∑
i>k∗

λ2
i

)
.

This completes the proof.

2.7.3 Lower Bounding the Bias Error

Recall that we have the following lower bound on the bias error

bias ≥ 1

2N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Bt

〉
,

from which we notice that

bias ≥ 1

2N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Bt

〉
=

1

2γN2

N−1∑
t=0

〈
I− (I− γH)N−t,Bt

〉
≥ 1

2γN2

N/2∑
t=0

〈
I− (I− γH)N−t,Bt

〉
≥ 1

2γN2

〈
I− (I− γH)N/2,

N/2∑
t=0

Bt

〉
. (2.7.4)

51

Let Sn :=
∑n−1

t=0 Bt. Then the reminding challenge is to lower bound SN/2+1 =
∑N/2

t=0 Bt.

Similarly to the idea of proving the upper bound, we first establish a crude lower bound on

Sn then improve it to a fine lower bound.

Lemma 2.7.4. Suppose Assumptions 2.2.1 and 2.2.5 hold. If the stepsize satisfies γ < 1/λ1,

then for any n ≥ 2, it holds that

Sn ⪰ β

4
tr
((
I− (I− γH)n/2

)
B0

)
·
(
I− (I− γH)n/2

)
+

n−1∑
t=0

(I− γH)t ·B0 · (I− γH)t.

Proof. We first build a crude bound for Sn. Recall that T̃ −T is a PSD mapping by Lemma

2.4.1, then

Sn =
n−1∑
t=0

Bt =
n−1∑
t=0

(I − γT)t ◦B0 ⪰
n−1∑
t=0

(I − γT̃)t ◦B0 =
n−1∑
t=0

(I− γH)t ·B0 · (I− γH)t.

Now we apply Assumption 2.2.5 with the above crude bound to obtain that

(M−M̃) ◦ Sn ⪰ β tr (HSn)H

⪰ β tr

(
n−1∑
t=0

(I− γH)2tH ·B0

)
H

⪰ β tr

(
n−1∑
t=0

(I− 2γH)tH ·B0

)
H

=
β

2γ
tr ((I− (I− 2γH)n)B0)H

⪰ β

2γ
tr ((I− (I− γH)n)B0)H.

Next we use the above inequality to build a fine lower bound for Sn:

Sn = (I − γT) ◦ Sn−1 +B0 = (I − γT̃) ◦ Sn−1 + γ2(M−M̃) ◦ Sn−1 +B0

⪰ (I − γT̃) ◦ Sn−1 +
βγ

2
tr
((
I− (I− γH)n−1

)
B0

)
H+B0.

52

Solving the recursion we obtain

Sn ⪰
n−1∑
t=0

(I − γT̃)t ◦
{
βγ

2
tr
((
I− (I− γH)n−1−t)B0

)
H+B0

}

=
βγ

2

n−1∑
t=0

tr
((
I− (I− γH)n−1−t)B0

)
· (I− γH)2tH

+
n−1∑
t=0

(I− γH)t ·B0 · (I− γH)t.

For the first term, noticing the following:

n−1∑
t=0

tr
((
I− (I− γH)n−1−t)B0

)
· (I− γH)2tH

⪰
n−1∑
t=0

tr
((
I− (I− γH)n−1−t)B0

)
· (I− 2γH)tH

⪰
n/2−1∑
t=0

tr
((
I− (I− γH)n−1−t)B0

)
· (I− 2γH)tH

⪰ tr
((
I− (I− γH)n/2

)
B0

)
·
n/2−1∑
t=0

(I− 2γH)tH

=
1

2γ
tr
((
I− (I− γH)n/2

)
B0

)
·
(
I− (I− 2γH)n/2

)
⪰ 1

2γ
tr
((
I− (I− γH)n/2

)
B0

)
·
(
I− (I− γH)n/2

)
,

inserting which back to the lower bound for Sn, we complete the proof.

Lemma 2.7.5. Suppose Assumptions 2.2.1 and 2.2.5 hold and N ≥ 2. If the stepsize

satisfies γ < 1/γ1, then

bias ≥ 1

100γ2N2
· ∥w0 −w∗∥2

H−1
0:k∗

+
1

100
· ∥w0 −w∗∥2Hk∗:∞

+
β
(
∥w0 −w∗∥2I0:k∗ + γN∥w0 −w∗∥2Hk∗:∞

)
1000γN2

·

(
k∗ + γ2N2

∑
i>k∗

λ2
i

)
,

where k∗ = max{k : λk ≥ 1
Nγ

}.

53

Proof. According to (2.7.4) and Lemma 2.7.4, we have that

bias ≥ 1

2γN2

〈
I− (I− γH)N/2,SN/2+1

〉
≥ 1

2γN2

〈
I− (I− γH)N/2,SN/2

〉
≥ β

8γN2
tr
((
I− (I− γH)N/4

)
B0

)
·
〈
I− (I− γH)N/2, I− (I− γH)N/4⟩︸ ︷︷ ︸

I1

+
1

2γN2

〈
I− (I− γH)N/2,

N/2−1∑
t=0

(I− γH)t ·B0 · (I− γH)t
〉

︸ ︷︷ ︸
I2

.

The first term is lower bounded by

I1 ≥
β

8γN2
tr
((
I− (I− γH)N/4

)
B0

)
· tr
((

I− (I− γH)N/4
)2)

=
β

8γN2

(∑
i

(
1− (1− γλi)

N/4
)
ω2
i

)
·

(∑
i

(
1− (1− γλi)

N/4
)2)

,

where ωi = v⊤
i (w0 −w∗) for v1, . . . ,vd being the eigenvectors of H; and the second term is

lower bounded by

I2 =
1

2γN2
⟨
N/2−1∑
t=0

(I− γH)2t
(
I− (I− γH)N/2

)
,B0⟩

≥ 1

2γN2
⟨
N/2−1∑
t=0

(I− 2γH)t
(
I− (I− γH)N/2

)
,B0⟩

≥ 1

4γ2N2
⟨
(
I− (I− γH)N/2

)2
H−1,B0⟩

≥ 1

4γ2N2
⟨
(
I− (I− γH)N/4

)2
H−1,B0⟩

=
1

4γ2N2

∑
i

(
1− (1− γλi)

N/4
)2

λ−1
i ω2

i .

To further lower bound the two terms, noticing the following inequality:

1− (1− γλi)
N
4 ≥

1− (1− 1

N
)
N
4 ≥ 1− e−

1
4 ≥ 1

5
, λi ≥ 1

γN
,

N
4
· γλi − N(N−4)

32
· γ2λ2

i ≥ N
5
· γλi, λi <

1
γN

.

54

Plugging this into the bounds for I1 and I2, and setting k∗ := max{k : λk ≥ 1/(γN)}, we

then obtain that

I1 ≥
β

8γN2
·

(
1

5
·
∑
i≤k∗

ω2
i +

γN

5

∑
i>k∗

λiω
2
i

)
·

(
1

25
· k∗ +

γ2N2

25
·
∑
i>k∗

λ2
i

)

=
β

1000γN2
·
(
∥w0 −w∗∥2I0:k∗ + γN ∥w0 −w∗∥2Hk∗:∞

)
·

(
k∗ + γ2N2

∑
i>k∗

λ2
i

)
,

and that

I2 ≥
1

4γ2N2

(
1

25
·
∑
i≤k∗

λ−1
i ω2

i +
γ2N2

25
·
∑
i>k∗

λiω
2
i

)

=
1

100γ2N2

(
∥w0 −w∗∥2H−1

0:k∗
+ γ2N2 ∥w0 −w∗∥2Hk∗:∞

)
.

Summing up the two terms completes the proof.

2.7.4 Proof of Theorem 2.2.6

Proof. Plugging the bounds of the bias error and variance error in Lemmas 2.7.5 and 2.7.3

into Lemma 2.7.1 immediately completes the proof.

2.8 Proofs for Tail-Averaging

In this section, we provide the proofs for SGD with tail-averaging. Recall that in tail-

averaging, we take average from the s-th iterate, i.e., the output of the tail-average SGD

is

ws:s+N =
1

N

s+N−1∑
t=s

wt.

2.8.1 Upper Bounds for Tail-Averaging

The following two lemmas are straightforward extensions of Lemmas 2.6.2 and 2.6.3.

55

Lemma 2.8.1 (Variant of Lemma 2.6.2).

E[L(ws:s+N)]− L(w∗) =
1

2
⟨H,E[β̄s:s+N ⊗ β̄s:s+N]⟩ ≤

(√
bias +

√
variance

)2
,

where

bias :=
1

2
⟨H,E[β̄bias

s:s+N ⊗ β̄bias
s:s+N]⟩, variance :=

1

2
⟨H,E[β̄variance

s:s+N ⊗ β̄variance
s:s+N]⟩.

Lemma 2.8.2 (Variant of Lemma 2.6.3). Recall iterates (2.4.4) and (2.4.5). If the stepsize

satisfies γ < 1/λ1, the bias error and variance error are upper bounded respectively as

follows:

bias :=
1

2
⟨H,E[β̄bias

s:s+N ⊗ β̄bias
s:s+N]⟩ ≤

1

N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Bs+t

〉
,

variance :=
1

2
⟨H,E[β̄variance

s:s+N ⊗ β̄variance
s:s+N] ≤ 1

N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Cs+t

〉
.

Proof. By replacing B0 and C0 by Bs and Cs in the proof of Lemma 2.6.3, and repeating

the remaining arguments, we can easily complete the proof.

2.8.1.1 Bounding the Variance Error

Lemma 2.8.3 (Variant of Lemma 2.6.7). Under Assumptions 2.2.1, 2.2.3 and 2.6.4, if the

stepsize satisfies γ < 1/R2, then it holds that

variance ≤ σ2

1− γR2
·
(
k∗

N
+ γ ·

∑
k∗<i≤k†

λi + γ2(s+N) ·
∑
i>k†

λ2
i

)
,

where k∗ = min{k : λi <
1
γN

} and k† = min{k : λi <
1

γ(s+N)
}.

56

Proof. By Lemma 2.8.2, we can bound the variance error as follows

variance ≤ 1

N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Cs+t

〉
=

1

γN2

N−1∑
t=0

〈
I− (I− γH)N−t,Cs+t

〉
≤ σ2

N2(1− γR2)

N−1∑
t=0

〈
I− (I− γH)N−t,

(
I− (I− γH)s+t

) 〉
=

σ2

N2(1− γR2)

∑
i

N−1∑
t=0

(
1− (1− γλi)

N−t) (1− (1− γλi)
s+t
)

≤ σ2

N2(1− γR2)

∑
i

N−1∑
t=0

(
1− (1− γλi)

N
) (

1− (1− γλi)
s+N
)

=
σ2

N(1− γR2)

∑
i

(
1− (1− γλi)

N
) (

1− (1− γλi)
s+N
)
,

where the second inequality is due to Lemma 2.6.6, {λi}i≥1 are the eigenvalues of H and

are sorted in decreasing order. Now we will move to upper bound the quantity
(
1 − (1 −

γλi)
N
)(
1−(1−γλi)

s+N
)
, which will be separately discussed according to the following three

cases: (1) γλi ≥ 1/N , (2) 1/(s+N) ≤ γλi < 1/N , and (3) γλ < 1/(s+N). In case (1), we

can crudely bound this quantity as follows,(
1− (1− γλi)

N
) (

1− (1− γλi)
s+N
)
≤ 1.

In case (2), we can use (1− γλi)
N ≥ 1− γNλi and get(

1− (1− γλi)
N
) (

1− (1− γλi)
s+N
)
≤ γNλi · 1 = γNλi.

In case (3), we can use (1− γλi)
N ≥ 1− γNλi and (1− γλi)

s+N ≥ 1− γ(s+N)λi, and get(
1− (1− γλi)

N
) (

1− (1− γλi)
s+N
)
≤ γNλi · γ(s+N)λi = γ2N(s+N)λ2

i .

Therefore, set k∗ = min{k : λi <
1
Nγ

} and k† = min{k : λi <
1

(s+N)γ
}, we have

variance ≤ σ2

N(1− γR2)
·
(
k∗ + γN

∑
k∗<i≤k†

λi + γ2N(s+N)
∑
i>k†

λ2
i

)

=
σ2

1− γR2
·
(
k∗

N
+ γ ·

∑
k∗<i≤k†

λi + γ2(s+N) ·
∑
i>k†

λ2
i

)
.

57

This completes the proof.

2.8.1.2 Bounding the Bias Error

Similarly to (2.6.13) and using Lemma 2.8.2, we have the following upper bound for the bias

error:

bias ≤ 1

N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Bs+t

〉
=

1

γN2

N−1∑
t=0

〈
I− (I− γH)N−t,Bs+t

〉
≤ 1

γN2

〈
I− (I− γH)N ,

N−1∑
t=0

Bs+t

〉
. (2.8.1)

Let Ss:s+t =
∑s+t−1

k=s Bk, then we only need to establish an upper bound for Ss:s+N .

Lemma 2.8.4 (Variant of Lemma 2.6.11). Let Ss:s+t =
∑s+t−1

k=s Bk for any t ≥ s and

Ba,b = Ba − (I− γH)b−aBa(I− γH)b−a. Under Assumptions 2.2.1 and 2.2.2, if the stepsize

satisfies γ < 1/
(
α tr(H)

)
, it holds that

Ss:s+N ⪯
N−1∑
k=0

(I− γH)k+sB0(I− γH)k+s +
γα tr(Bs,s+N +B0,s)

1− γα tr(H)

N−1∑
k=0

(I− γH)2kH.

Proof. Based on the definition of Ss:s+t, we have

Ss:s+t =
s+t−1∑
k=s

Bk =
t−1∑
k=0

(I − γT)k ◦Bs = (I − γT) ◦ Ss:s+t−1 +Bs.

Therefore, following the similar proof technique of Lemma 2.6.11, we can get

Ss:s+N ⪯
N−1∑
k=0

(I− γH)kBs(I− γH)k︸ ︷︷ ︸
I1

+
γα tr(Bs,s+N)

1− γα tr(H)

N−1∑
k=0

(I− γH)2kH︸ ︷︷ ︸
I2

. (2.8.2)

58

Now we will upper bound I1, which requires a carefully characterization on Bs. Particularly,

the update form of Bk in (2.4.2) implies

Bk = (I − γT) ◦Bk−1 ⪯ (I − γT̃) ◦Bk−1 + γ2M◦Bk−1.

By Assumption 2.2.2, we have M◦Bk ⪯ α tr(HBk) ·H. Thus,

Bk ⪯ (I − γT̃) ◦Bk−1 + γ2M◦Bk−1

⪯ (I − γT̃) ◦Bk−1 + αγ2 tr(HBk−1) ·H

= (I − γT̃)k ◦B0 + αγ2

k−1∑
t=0

tr(HBt) · (I − γT̃)k−1−t ◦H

⪯ (I − γT̃)k ◦B0 + αγ2

k−1∑
t=0

tr(HBt) ·H (2.8.3)

where in the third inequality we use the fact that I − γT̃ is a PSD mapping and the last

inequality is due to (I − γT̃)k−1−tH = (I − γH)2(k−1−t)H ⪯ H. Next we will upper bound∑k−1
t=0 tr(HBt). Recall the definition of βbias

k and its update rule, we have

E[∥βbias
k ∥22|βbias

k−1]

= E[∥(I− γxkx
⊤
k)β

bias
k−1∥22|βbias

k−1]

= ∥βbias
k−1∥22 − 2γE[⟨xkx⊤

k ,β
bias
k−1 ⊗ βbias

k−1⟩|βbias
k−1] + γ2E[⟨xkx⊤

k xkx
⊤
k ,β

bias
k−1 ⊗ βbias

k−1|βbias
k−1]

= ∥βbias
k−1∥22 − 2γ⟨H,βbias

k−1 ⊗ βbias
k−1⟩+ γ2⟨M ◦ I,βbias

k−1 ⊗ βbias
k−1⟩

≤ ∥βbias
k−1∥22 −

(
2γ − γ2α tr(H)

)
· ⟨H,βbias

k−1 ⊗ βbias
k−1⟩,

where the inequality is due to the fact thatM◦I ⪯ α tr(H)H. Note thatBk = E[βbias
k ⊗βbias

k],

taking total expectation further gives

tr(Bk) ≤ tr(Bk−1)−
(
2γ − γ2α tr(H)

)
· tr(HBk−1),

which implies that

k−1∑
t=0

tr(HBt) ≤
tr(B0)− tr(Bk)

2γ − γ2α tr(H)
. (2.8.4)

59

Substituting (2.8.4) into (2.8.3) gives

Bk ⪯ (I − γT̃)k ◦B0 + αγ2

k−1∑
t=0

tr(HBt) ·H

⪯ (I − γT̃)k ◦B0 +
γα tr(B0 −Bk)

2− γα tr(H)
·H.

Therefore, we further have

I1 ⪯
N−1∑
k=0

(I− γH)k+sB0(I− γH)k+s +
γα tr(B0 −Bs)

2− γα tr(H)

N−1∑
k=0

(I− γH)2kH. (2.8.5)

Further note that Bs = (I − γT)sB0 and T ⪰ T̃ , we have

tr(B0 −Bs) = tr
(
B0 − (I − γT)sB0

)
≤ tr

(
B0 − (I − γT̃)sB0

)
≤ tr

(
B0 − (I− γH)sB0(I− γH)s

)
= tr(B0,s).

Now, we can substitute the above inequality and (2.8.5) into (2.8.2) and obtain the following

upper bound on Ss:s+N ,

Ss:s+N ⪯ I1 + I2 ⪯
N−1∑
k=0

(I− γH)k+sB0(I− γH)k+s +
γα tr(Bs,s+N +B0,s)

1− γα tr(H)

N−1∑
k=0

(I− γH)2kH,

where we use the fact that 0 ≤ 1− γα tr(H) ≤ 2− γα tr(H). This completes the proof.

Lemma 2.8.5 (Variant of Lemma 2.6.12). Under Assumptions 2.2.1 and 2.2.2, if the stepsize

satisfies γ < 1/(α tr(H)), it holds that

bias ≤ 1

γ2N2
·
∥∥(I− γH)s(w0 −w∗)

∥∥2
H−1

0:k∗
+
∥∥(I− γH)s(w0 −w∗)

∥∥2
Hk∗:∞

+
4α
(
∥w0 −w∗∥I0:k∗ + (s+N)γ∥w0 −w∗∥2Hk∗:∞

)
γ(1− γα tr(H))

·
(

k∗

N2
+ γ2

∑
i>k∗

λ2
i

)
,

where k∗ = max{k : λk ≥ 1
γN

}.

60

Proof. Substituting the upper bound of Ss:s+N into (2.8.1), we can get

bias ≤ α tr(Bs,s+N +B0,s)

N2(1− γα tr(H))

N−1∑
k=0

〈
I− (I− γH)N , (I− γH)2kH

〉
︸ ︷︷ ︸

I1

+
1

γN2

N−1∑
k=0

〈
I− (I− γH)N , (I− γH)k+sB0(I− γH)k+s

〉
︸ ︷︷ ︸

I2

. (2.8.6)

By (2.6.21), we can get the following bound on I1,

I1 ≤
α tr(Bs,s+N +B0,s)

γ(1− γα tr(H))
·
(

k∗

N2
+ γ2

∑
i>k∗

λ2
i

)
. (2.8.7)

Then following the same procedure in (2.6.22), we have

tr(Bs,s+N +B0,s) ≤ 2 tr(B0,s+N) ≤ 4
(
∥w0 −w∗∥I0:k∗ + (s+N)γ∥w0 −w∗∥2Hk∗:∞

)
where k∗ = max

{
k : λk ≥ 1

γN

}
(in fact k∗ can be arbitrary choosen). Plugging this into

(2.8.6) gives

I1 ≤
4α
(
∥w0 −w∗∥I0:k∗ + (s+N)γ∥w0 −w∗∥2Hk∗:∞

)
γ(1− γα tr(H))

·
(

k∗

N2
+ γ2

∑
i>k∗

λ2
i

)
.

Additionally, we have the following upper bound on I2,

I2 =
1

γN2

N−1∑
k=0

〈
(I− γH)2(k+s)

(
I− (I− γH)N

)
,B0

〉
≤ 1

γN2

N−1∑
k=0

〈
(I− γH)k+2s − (I− γH)N+k+2s,B0

〉
.

Similar to the proof of Lemma 2.6.12, let v1,v2, . . . be the eigenvectors of H corresponding

61

to its eigenvalues λ1, λ2, . . . and ωi = v⊤
i (I− γH)s(w0 −w∗), we have

I2 ≤
1

γN2

N−1∑
k=0

〈
(I− γH)k − (I− γH)N+k, (I− γH)2sB0

〉
=

1

γN2

N−1∑
k=0

∑
i

[
(1− γλi)

k − (1− γλi)
N+k

]
ω2
i

=
1

γ2N2

∑
i

ω2
i

λi

[
1− (1− γλi)

N
]2

≤ 1

γ2N2

∑
i

ω2
i

λi
·min{1, γ2N2λ2

i }

≤ 1

γ2N2
·
∑
i≤k∗

ω2
i

λi
+
∑
i>k∗

λiω
2
i

=
1

γ2N2
·
∥∥(I− γH)s(w0 −w∗)

∥∥2
H−1

0:k∗
+
∥∥(I− γH)s(w0 −w∗)

∥∥2
Hk∗:∞

, (2.8.8)

where k∗ = max{k : λk ≥ 1
γN

}. Combining (2.8.7) and (2.8.8) immediately completes the

proof.

2.8.1.3 Proof of Theorem 2.2.10

Proof. By Lemma 2.8.2, it suffices to substitute into the upper bounds on the bias and

variance errors. In particular, by Young’s inequality we have

E[L(wN)]− L(w∗) ≤
(√

bias +
√
variance

)2
≤ 2 · bias + 2 · variance.

Then we can directly substitute the bounds of variance and bias we proved in Lemmas 2.8.3

and 2.8.5. In particular, by Assumptions 2.2.2 we can directly get R2 = α tr(H). Therefore,

62

it holds that

E[L(wN)]− L(w∗)

≤ 2

[
1

γ2N2
·
∥∥(I− γH)s(w0 −w∗)

∥∥2
H−1

0:k∗
+
∥∥(I− γH)s(w0 −w∗)

∥∥2
Hk∗:∞

+
2α∥w0 −w∗∥22
γ(1− γα tr(H))

·
(

k∗

N2
+ γ2

∑
i>k∗

λ2
i

)
+

σ2

1− γα tr(H)
·
(
k∗

N
+ γ ·

∑
k∗<i≤k†

λi + γ2(s+N) ·
∑
i>k†

λ2
i

)]
= 2 · EffectiveBias + 2 · EffectiveVar,

where

EffectiveBias =
1

γ2N2
·
∥∥(I− γH)s(w0 −w∗)

∥∥2
H−1

0:k∗
+
∥∥(I− γH)s(w0 −w∗)

∥∥2
Hk∗:∞

EffectiveVar =
σ2

1− γα tr(H)
·
(
k∗

N
+ γ ·

∑
k∗<i≤k†

λi + γ2(s+N) ·
∑
i>k†

λ2
i

)

+
4α
(
∥w0 −w∗∥I0:k∗ + (s+N)γ∥w0 −w∗∥2Hk∗:∞

)
Nγ(1− γα tr(H))

·
(
k∗

N
+ γ2N

∑
i>k∗

λ2
i

)
.

2.8.2 Lower Bounds for Tail-Averaging

In this part we assume the noise is well-specified as in (2.2.1), and consider the SGD with

tail-averaging

ws:s+N =
1

N

s+N∑
t=s

wt.

The following lemma is a variant of Lemma 2.7.1, and lowers bound the excess risk.

Lemma 2.8.6 (Variant of Lemma 2.7.1). Suppose the model noise ξt is well-specified, i.e.,

63

ξt and xt are independent and E[ξt] = 0. Then

E[L(ws:s+N)− L(w∗)] ≥ 1

2N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Bs+t

〉
+

1

2N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Cs+t

〉
.

We then present the lower bound for the variance error.

Lemma 2.8.7 (Variant of Lemma 2.7.3). Suppose Assumptions 2.2.1 hold. Suppose the

noise is well-specified (as in (2.2.1)). Suppose N ≥ 500. Denote

variance =
1

2N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Cs+t

〉
.

If the stepsize satisfies γ < 1/λ1, then

variance ≥ σ2
noise

600

k∗

N
+ γ ·

∑
k∗<i≤k†

λi + (s+N)γ2 ·
∑
i>k†

λ2
i

 ,

where k∗ = max{k : λk ≥ 1
Nγ

} and k† = max{k : λk ≥ 1
(s+N)γ

}.

Proof. We can lower bound the variance error as follows

variance =
1

2N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Cs+t

〉
=

1

2γN2

N−1∑
t=0

〈
I− (I− γH)N−t,Cs+t

〉
≥ σ2

noise

4N2

N−1∑
t=0

〈
I− (I− γH)N−t, I− (I− γH)2(s+t)

〉
(use Lemma 2.7.2)

=
σ2
noise

4N2

∑
i

N−1∑
t=0

(
1− (1− γλi)

N−t) (1− (1− γλi)
2(s+t)

)
≥ σ2

noise

4N2

∑
i

N−1∑
t=0

(
1− (1− γλi)

N−t−1
) (

1− (1− γλi)
s+t
)
,

64

where {λi}i≥1 are the eigenvalues of H and are sorted in decreasing order. Define

f(x) :=
N−1∑
t=0

(
1− (1− x)N−t−1

) (
1− (1− x)s+t

)
, 0 < x < 1,

then

variance ≥ σ2
noise

4N2

∑
i

f(γλi).

We have the following lower bound for f(x).

f(x) =
N−1∑
t=0

(
1− (1− x)N−t−1

) (
1− (1− x)s+t

)
≥

3N
4

−1∑
t=N

4

(
1− (1− x)N−t−1

) (
1− (1− x)s+t

)
≥ N

2

(
1− (1− x)

N
4

)(
1− (1− x)s+

N
4

)
We then bound f(x) by the range of x.

1. For x > 1/N , we have that

f(x) ≥ N

2

(
1− (1− x)

N
4

)(
1− (1− x)

N
4

)
≥ N

2

(
1−

(
1− 1

N

)N
4

)(
1−

(
1− 1

N

)N
4

)

≥ N

2

(
1− 1

e1/4

)(
1− 1

e1/4

)
≥ N

50
.

2. For 1/N > x > 1/(s+N), we have that

f(x) ≥ N

2

(
1− (1− x)

N
4

)(
1− (1− x)

s+N
4

)
≥ N

2

(
1− (1− x)

N
4

)(
1−

(
1− 1

s+N

) s+N
4

)

≥ N

2

(
1−

(
1− N

8
x

))(
1− 1

e1/4

)
≥ N2x

100
.

65

3. For x < 1/(s+N) < 1/N , we have that

f(x) ≥ N

2

(
1− (1− x)

N
4

)(
1− (1− x)s+

N
4

)
≥ N

2

(
1−

(
1− N

8
x

))(
1−

(
1− s+N/4

2
x

))
≥ (s+N)N2

128
x2.

In sum, we have that

f(x) ≥

N
50
, 1

N
≤ x < 1,

N2

100
x, 1

s+N
≤ x < 1

N
,

(s+N)N2

128
x2, 0 < x < 1

s+N
.

Set k∗ = max{k : λk ≥ 1
Nγ

} and k† = max{k : λk ≥ 1
(s+N)γ

}, then

variance ≥ σ2
noise

4N2

∑
i

f(γλi)

≥ σ2
noise

4N2

Nk∗

50
+

N2

100
γ ·

∑
k∗<i≤k†

λi +
(s+N)N2

128
γ2 ·

∑
i>k†

λ2
i

≥ σ2

noise

600

k∗

N
+ γ ·

∑
k∗<i≤k†

λi + (s+N)γ2 ·
∑
i>k†

λ2
i

 .

This completes the proof.

Next we discuss the lower bound for the bias error. Similarly to (2.7.4) and using Lemma

2.8.6, we have that

bias ≥ 1

2N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Bs+t

〉
=

1

2γN2

N−1∑
t=0

〈
I− (I− γH)N−t,Bs+t

〉
≥ 1

2γN2

N/2∑
t=0

〈
I− (I− γH)N−t,Bs+t

〉
≥ 1

2γN2

〈
I− (I− γH)N/2,

N/2∑
t=0

Bs+t

〉
. (2.8.9)

66

Let Ss:s+n :=
∑n−1

t=0 Bs+t =
∑n−1

t=0 (I − γT)t ◦ Bs. We remain to build lower bound for

Ss:s+N/2+1. Comparing the definitions of Ss:s+n with Sn, the only difference is that B0 is

replaced by Bs. Therefore we directly have the following lemma.

Lemma 2.8.8 (Variant of Lemma 2.7.4). Suppose Assumptions 2.2.1 and 2.2.5 hold. If the

stepsize satisfies γ < 1/λ1, then for any n ≥ 2, it holds that

Ss:s+n ⪰ β

4
tr
((
I− (I− γH)n/2

)
Bs

)
·
(
I− (I− γH)n/2

)
+

n−1∑
t=0

(I− γH)t ·Bs · (I− γH)t.

Lemma 2.8.9 (Variant of Lemma 2.7.5). Suppose Assumptions 2.2.1 and 2.2.5 hold and

N ≥ 2. Denote

bias =
1

2N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,Bs+t

〉
,

then if the stepsize satisfies γ < 1/γ1, it holds that

bias ≥ 1

100γ2N2

(
∥(I− γH)s(w0 −w∗)∥2H−1

0:k∗
+ γ2N2 ∥(I− γH)s(w0 −w∗)∥2Hk∗:∞

)
+

β ∥w0 −w∗∥2H
k†:∞

16000N
·

(
k∗ + γ2N2

∑
i>k∗

λ2
i

)
,

where k∗ = max{k : λk ≥ 1
Nγ

} and k† = max{k : λk ≥ 1
(s+N)γ

}.

Proof. According to (2.8.9) and Lemma 2.8.8, we have that

bias ≥ 1

2γN2

〈
I− (I− γH)N/2,Ss:s+N/2+1

〉
≥ 1

2γN2

〈
I− (I− γH)N/2,Ss:s+N/2

〉
≥ β

8γN2
tr
((
I− (I− γH)N/4

)
Bs

)
·
〈
I− (I− γH)N/2, I− (I− γH)N/4⟩︸ ︷︷ ︸

I1

+
1

2γN2

〈
I− (I− γH)N/2,

N/2−1∑
t=0

(I− γH)t ·Bs · (I− γH)t
〉

︸ ︷︷ ︸
I2

.

Also noticing a lower bound for Bs:

Bs = (I − γT)s ◦B0 ≥ (I − γT̃)s ◦B0 = (I− γH)s ·B0 · (I− γH)s.

67

Then the first term is lower bounded by

I1 ≥
β

8γN2
tr
((
I− (I− γH)N/4

)
(I− γH)2sB0

)
· tr
((

I− (I− γH)N/4
)2)

=
β

8γN2

(∑
i

(
1− (1− γλi)

N/4
)
(1− γλi)

2sω2
i

)
·

(∑
i

(
1− (1− γλi)

N/4
)2)

,

where ωi = v⊤
i (w0 −w∗) for v1, . . . ,vd being the eigenvectors of H; and the second term is

lower bounded by

I2 =
1

2γN2
⟨
N/2−1∑
t=0

(I− γH)2t
(
I− (I− γH)N/2

)
,Bs⟩

≥ 1

2γN2
⟨
N/2−1∑
t=0

(I− 2γH)t
(
I− (I− γH)N/2

)
,Bs⟩

≥ 1

4γ2N2
⟨
(
I− (I− γH)N/2

)2
H−1,Bs⟩

≥ 1

4γ2N2
⟨
(
I− (I− γH)N/4

)2
H−1, (I− γH)sB0(I− γH)s⟩

=
1

4γ2N2

∑
i

(
1− (1− γλi)

N/4
)2

λ−1
i ((1− γλi)

sωi)
2 .

To further lower bound the two terms, noticing the following inequalities:

1− (1− γλi)
N
4 ≥

1− (1− 1

N
)
N
4 ≥ 1− e−

1
4 ≥ 1

5
, λi ≥ 1

γN
,

N
4
· γλi − N(N−4)

32
· γ2λ2

i ≥ N
5
· γλi, λi <

1
γN

,

and

(1− γλi)
2s ≥

0, λi ≥ 1

γs
,

(1− 1
s
)2s ≥ 1

16
, λi <

1
γs
.

Plugging these into the bounds for I1 and I2, and setting k∗ := max{k : λk ≥ 1/(γN)} and

k† := max{k : λk ≥ 1/(γ(s+N))}, we then obtain that

I1 ≥
β

8γN2
·

(
γN

80

∑
i>k†

λiω
2
i

)
·

(
1

25
· k∗ +

γ2N2

25
·
∑
i>k∗

λ2
i

)

=
β ∥w0 −w∗∥2H

k†:∞

16000N
·

(
k∗ + γ2N2

∑
i>k∗

λ2
i

)
,

68

and that

I2 ≥
1

4γ2N2

(
1

25
·
∑
i≤k∗

λ−1
i ((1− γλi)

sωi)
2 +

γ2N2

25
·
∑
i>K∗

λi ((1− γλi)
sωi)

2

)

=
1

100γ2N2

(
∥(I− γH)s(w0 −w∗)∥2H−1

0:k∗
+ γ2N2 ∥(I− γH)s(w0 −w∗)∥2Hk∗:∞

)
.

Summing up the two terms completes the proof.

2.8.2.1 Proof of Theorem 2.2.11

Proof. Plugging the bounds of the bias error and variance error in Lemmas 2.8.9 and 2.8.7

into Lemma 2.8.6 immediately completes the proof.

2.9 Conclusions

This work considers the question of how well constant-stepsize SGD (with iterate average or

tail average) generalizes for the linear regression problem in the over-parameterized regime.

Our main result provides a sharp excess risk bound, stated in terms of the full eigenspectrum

of the data covariance matrix. Our results reveal how a benign-overfitting phenomenon can

occur under certain spectrum decay conditions on the data covariance.

There are number of more subtle points worth reflecting on:

Moving beyond the square loss. Focusing on linear regression is a means to understand

phenomena that are exhibited more broadly. One natural next step here would be understand

the analogues of the classical iterate averaging results [PJ92] for locally quadratic models,

where decaying stepsizes are necessary for vanishing risk.

Sharper lower bounds. While our lower bound nearly matches our upper bound up to

constant factors, there is notable gap in that the EffectiveVariance has a dependence on

69

∥w0 − w∗∥22. This term is due to that even if y − w⋆ · x = 0 with probability one (i.e.

the inherent noise is 0), then SGD is still not equivalent to gradient descent; here, it is the

variance in SGD that contributes to this dependence in the EffectiveVariance. Our conjecture

is that our lower bound can be improved to match that of our upper bound.

Relaxing the data distribution assumption. While our data distribution assumption

(Assumption 2.2.2) can be satisfied if the whitened data is sub-Gaussian, it still cannot

cover the simple one-hot case (i.e., x = ei with probability pi, where
∑

i pi = 1). Here, we

conjecture that modifications of our proof can be used to establish the theoretical guaran-

tees of SGD under the following relaxed assumption on the data distribution: assume that

E[xx⊤Axx⊤] ≤ a tr(HA) ·H+ b∥H∥2 ·H1/2AH1/2 for all PSD matrix A and some nonnega-

tive constants a and b, which is weaker than Assumption 2.2.2 in the sense that we can allow

a = 0; this assumption captures the case where x are standard basis vectors, with a = 0 and

b = 1.

70

CHAPTER 3

Implicit Regularization of SGD for Linear Regression

3.1 Introduction

In this chapter, we seek to compare the generalization ability of SGD and ridge algorithms

for least square problems instance-wisely. In particular, we follow the same setting in Chapter

2 and aim to estimate the optimal model parameters w∗ that optimizes the population risk :

L(w∗) = min
w∈H

L(w), where L(w) :=
1

2
E(x,y)∼D

[
(y − ⟨w,x⟩)2

]
. (3.1.1)

Additionally, we introduce the SGD algorithm and ridge regression solution in the following.

Constant-Stepsize SGD with Tail-Averaging. We consider the constant-stepsize SGD

with tail-averaging [BM13; JKK18a; JNK17; ZWB21]: at the t-th iteration, a fresh example

(xt, yt) is sampled independently from the data distribution, and SGD makes the following

update on the current estimator wt−1 ∈ H,

wt = wt−1 + γ ·
(
yt − ⟨wt−1,xt⟩

)
xt, t = 1, 2, . . . , w0 = 0,

where γ > 0 is a constant stepsize. After N iterations (which is also the number of samples

observed), SGD outputs the tail-averaged iterates as the final estimator:

wsgd(N ; γ) :=
2

N

N−1∑
t=N/2

wt.

In the underparameterized setting (d < N), constant-stepsize SGD with tail-averaging is

known for achieving minimax optimal rate for least squares [JKK18a; JNK17]. More recently,

71

[ZWB21] investigate the performance of constant-stepsize SGD with tail-averaging in the

overparameterized regime (d > N), and establish instance-dependent, nearly-optimal excess

risk bounds under mild assumptions on the data distribution. Notably, results from [ZWB21]

cover underparameterized cases (d < N) as well.

Ridge Regression. GivenN i.i.d. samples {(xi, yi)}Ni=1, let us denoteX := [x1, . . . ,xN]
⊤ ∈

RN×d and y := [y1, . . . , yN]
⊤ ∈ Rd. Then ridge regression outputs the following estimator

for the true parameter [Tih63]:

wridge(N ;λ) := arg min
w∈H

∥Xw − y∥22 + λ∥w∥22, (3.1.2)

where λ (which could possibly be negative) is a regularization parameter. We remark that

the ridge regression estimator takes the following two equivalent form:

wridge(N ;λ) = (X⊤X+ λId)
−1X⊤y = X⊤(XX⊤ + λIN)

−1y. (3.1.3)

The first expression is useful in the classical, underparameterized setting (d < N) [HKZ12];

and the second expression is more useful in the overparameterized setting (d > N) where

the empirical covariance X⊤X is usually not invertible [KLS20; TB20]. As a final remark,

when λ = 0, ridge estimator reduces to the ordinary least square estimator (OLS) [FHT01].

Contributions. Due to recent advances on sharp, instance-dependent excess risks bounds

of both (single-pass) SGD and ridge regression for overparameterized least square problems

[TB20; ZWB21], we provide a nearly complete answer to the question:

How does the generalization performance of SGD compare with that of ridge regression in

least square problems?

In this work, we deliver an instance-based risk comparison between SGD and ridge regression

in several interesting settings, including one-hot distributed data and Gaussian data. In

particular, for a broad class of least squares problem instances that are natural in high-

dimensional settings, we show that

72

• For every problem instance and for every ridge parameter, (unregularized) SGD, when

provided with logarithmically more samples than that provided to ridge regularization,

generalizes no worse than the ridge solution, provided SGD uses a tuned constant

stepsize.

• Conversely, there exist instances in our problem class where optimally-tuned ridge

regression requires quadratically more samples than SGD to achieve the same general-

ization performance.

Quite strikingly, the above results show that, up to some logarithmic factors, the gen-

eralization performance of SGD is always no worse than that of ridge regression in a wide

range of overparameterized least square problems, and, in fact, could be much better for

some problem instances. As a special case (for the above two claims), our problem class

includes a setting in which: (i) the signal-to-noise is bounded and (ii) the eigenspectrum

decays at a polynomial rate 1/iα, for 0 ≤ α ≤ 1 (which permits a relatively fast decay).

This one-sided near-domination phenomenon (in these natural overparameterized problem

classes) could further support the preference for the implicit regularization brought by SGD

over explicit ridge regularization.

Several novel technical contributions are made to make the above risk comparisons pos-

sible. For the one-hot data, we derive similar risk upper bound of SGD and risk lower bound

of ridge regression. For the Gaussian data, while a sharp risk bound of SGD is borrowed

from [ZWB21], we prove a sharp lower bound of ridge regression by adapting the proof tech-

niques developed in [TB20; BLL20]. By carefully comparing these upper and lower bound

results (and exhibiting particular instances to show that our sample size inflation bounds

are sharp), we are able to provide nearly complete conditions that characterize when SGD

generalizes better than ridge regression.

73

3.2 Preliminaries

We use x ∈ H to denote a feature vector in a (separable) Hilbert space H. We use d to

refer to the dimensionality of H, where d = ∞ if H is infinite-dimensional. We use y ∈ R to

denote a response that is generated by

y = ⟨x,w∗⟩+ ξ,

where w∗ ∈ H is an unknown true model parameter and ξ ∈ R is the model noise. The

following regularity assumption is made throughout the paper.

Assumption 3.2.1 (Well-specified noise). The second moment of x, denoted by H :=

E[xx⊤], is strictly positive definite and has finite trace. The noise ξ is independent of x and

satisfies

E[ξ] = 0, and E[ξ2] = σ2.

The least squares problem is to estimate the true parameter w∗. Assumption 3.2.1

implies that w∗ is the unique solution that minimizes the population risk L(w). Moreover

we have that L(w∗) = σ2. For an estimation w found by some algorithm, e.g., SGD or ridge

regression, its performance is measured by the excess risk, L(w)− L(w∗).

Generalizable Regime. In this chapter we will make instance-based risk comparisons

between SGD and ridge regression. To make the comparison meaningful, we focus on regime

where SGD and ridge regression are “generalizable”, i.e, the SGD and the ridge regression

estimators, with the optimally-tuned hypeparameters, can achieve excess risk that is smaller

than the optimal population risk, i.e., σ2. The formal mathematical definition is as follows.

Definition 3.2.2 (Generalizability). Consider an algorithm Alg and a least squares problem

instance P. Let Alg(n,θ) be the output of the algorithm when provided with n i.i.d. samples

from the problem instance P, and a set of hyperparameters θ (that could be a function on n).

74

Then we say that the algorithm Alg with sample size n and hyperparameters configuration

θ is generalizable on problem instance P, if

EAlg,P[L
(
Alg(n,θ)

)
]− L(w∗) ≤ σ2,

where the expectation is over the randomness of Alg and data drawn from the problem

instance P.

Clearly, the generalizable regime is defined by conditions on both the sample size, hy-

perparameter configuration, the problem instance, and the algorithm. For example, in the

d-dimensional setting with ∥w∗∥2 = O(1), the ordinary least squares (OLS) solution (ridge

regression with λ = 0), i.e., wridge(N ; 0) has O(dσ2/N) excess risk, then we can say that the

ridge regression with regularization parameter λ = 0 and sample size N = ω(d) is in the

generalizable regime on all problem instances in d-dimension with ∥w∗∥2 = O(1).

Sample Inflation vs. Risk Inflation Comparisons. This work characterizes the sample

inflation of SGD, i.e., bounding the required sample size of SGD to achieve an instance-

based comparable excess risk as ridge regression (which is essentially the notion of Bahadur

statistical efficiency [Bah67; Bah71]). Another natural comparison would be examining the

risk inflation of SGD, examining the instance-based increase in risk for any fixed sample

size. Our preference for the former is due to the relative instability of the risk with respect

to the sample size (in some cases, given a slightly different sample size, the risk could rapidly

change.).

3.3 Warm-Up: One-Hot Least Squares Problems

Let us begin with a simpler data distribution, the one-hot data distribution. (inspired by

settings where the input distribution is sparse). In detail, assume each input vector x is

sampled from the set of natural basis {e1, e2, . . . , ed} according to the data distribution

75

given by P{x = ei} = λi, where 0 < λi ≤ 1 and
∑

i λi = 1. The class of one-hot least square

instances is completely characterized by the following problem set:

{
(w∗;λ1, · · · , λd) : w∗ ∈ H,

∑
iλi = 1, 1 ≥ λ1 ≥ λ2 ≥ · · · > 0

}
.

Clearly the population data covariance matrix is H = diag(λ1, . . . , λd). The next two theo-

rems give an instance-based sample inflation comparisons for this problem class.

Theorem 3.3.1 (Instance-wise comparison, one-hot data). Let wsgd(N ; γ) and wridge(N ;λ)

be the solutions found by SGD and ridge regression when using N training examples. Then

for any one-hot least square problem instance such that the ridge regression solution is

generalizable and any λ, there exists a choice of stepsize γ∗ for SGD such that

L
[
wsgd(Nsgd; γ

∗)
]
− L(w∗) ≲ L

[
wridge(Nridge;λ)

]
− L(w∗) < σ2,

provided the sample size of SGD satisfies

Nsgd ≥ Nridge.

Theorem 3.3.1 suggests that for every one-hot problem instance, when provided with the

same or more number of samples, the SGD solution with a properly tuned stepsize generalizes

at most constant times worse than the optimally tuned ridge regression solution. In other

words, with the same number of samples, SGD is always competitive with ridge regression.

Theorem 3.3.2 (Best-case comparison, one-hot data). There exists an one-hot least square

problem instance satisfying ∥w∗∥2H = σ2, and a SGD solution with constant stepsize and

sample size Nsgd, such that for any ridge regression solution with sample size

Nridge ≤
N2

sgd

log2(Nsgd)
,

it holds that,

L
[
wridge(Nridge;λ)

]
− L(w∗) ≳ L

[
wsgd(Nsgd; γ

∗)
]
− L(w∗).

76

Theorem 3.3.2 shows that for some one-hot least square instance, ridge regression, even

with the optimally-tuned regularization, needs at least (nearly) quadratically more samples

than that provided to SGD, in order to compete with the optimally-tuned SGD. In other

words, ridge regression could be much worse than SGD for one-hot least squares problems.

Remark 3.3.3. The above two results together indicate a superior performance of the im-

plicit regularization of SGD in comparison with the explicit regularization of ridge regression,

for one-hot least squares problems. This is not the only case that SGD is always no worse

than ridge estimator. In fact, we will next turn to compare SGD with ridge regression for

the class of Gaussian least square instances, where both SGD and ridge regression exhibit

richer behaviors but SGD still exhibits superiority over the ridge estimator.

3.4 Gaussian Least Squares Problems

In this section, we consider least squares problems with a Gaussian data distribution. In

particular, assume the population distribution of the input vector x is Gaussian1, i.e., x ∼

N (0,H). We further make the following regularity assumption for simplicity:

Assumption 3.4.1. H is strictly positive definite and has a finite trace.

Gaussian least squares problems are completely characterized by the following problem

set
{
(w∗;H) : w∗ ∈ H

}
.

The next theorem give an instance-based sample inflation comparison between SGD and

ridge regression for Gaussian least squares instances.

Theorem 3.4.2 (Instance-wise comparison, Gaussian data). Letwsgd(N ; γ) andwridge(N ;λ)

be the solutions found by SGD and ridge regression respectively. Then under Assumption

1We restrict ourselves to the Gaussian distribution for simplicity. Our results hold under more general
assumptions, e.g., H−1/2x has sub-Gaussian tail and independent components [BLL20] and is symmetrically
distributed.

77

3.4.1, for any Gaussian least square problem instance such that the ridge regression solution

is generalizable and any λ, there exists a choice of stepsize γ∗ for SGD such that

L
[
wsgd(Nsgd; γ

∗)
]
− L(w∗) ≲ L

[
wridge(Nridge;λ)

]
− L(w∗),

provided the sample size of SGD satisfies

Nsgd ≥ (1 +R2) · κ(Nridge) · log(a) ·Nridge,

where

κ(n) =
tr(H)

nλmin{n,d}
, R2 =

∥w∗∥2H
σ2

, a = κ(Nridge)R
√
N.

Note that the result in Theorem 3.4.2 holds for arbitrary λ. Then this theorem provides

a sufficient condition for SGD such that it provably performs no worse than optimal ridge

regression solution (i.e., ridge regression with optimal λ). Besides, we would also like to

point out that the SGD stepsize γ∗ in Theorem 3.4.2 is only a function of the regularization

parameter λ and tr(H), which can be easily estimated from training dataset without knowing

the exact formula of H.

Different from the one-hot case, here the required sample size for SGD depends on two

important quantities: R2 and κ(Nridge). In particular, R2 = ∥w∗∥2H/σ2 can be understood

as the signal-to-noise ratio. The quantity κ(Nridge) characterizes the flatness of the eigen-

spectrum of H in the top Nridge-dimensional subspace, which clearly satisfies κ(Nridge) ≥ 1.

Let us further explain why we have the dependencies on R2 and κ(Nridge) in the condition

of the sample inflation for SGD.

A large R2 emphasizes the problem hardness is more from the numerical optimization

instead of from the statistic learning. In particular, let us consider a special case where

σ = 0 and R2 = ∞, i.e., there is no noise in the least square problem, and thus solving it

is purely a numerical optimization issue. In this case, ridge regression with λ = 0 achieves

zero population risk so long as the observed data can span the whole parameter space,

but constant stepsize SGD in general suffers a non-zero risk in finite steps, thus cannot be

78

competitive with the risk of ridge regression, which is as predicted by Theorem 3.4.2. From

a learning perspective, a constant or even small R2 is more interesting.

To explain why the dependency on κ(Nridge) is unavoidable, we can consider a 2-d di-

mensional example where

H =

1 0

0 1
Nridge·κ(Nridge)

 , w∗ =

 0

Nridge · κ(Nridge)

 .

It is commonly known that for this problem, ridge regression with λ = 0 can achieve

O(σ2/Nridge) excess risk bound [FHT01]. However, this problem is rather difficult for SGD

since it is hard to learn the second coordinate of w∗ using gradient information (the gradient

in the second coordinate is quite small). In fact, in order to accurately learn w∗[2], SGD

requires at least Ω(1/λ2) = Ω
(
Nridgeκ(Nridge)

)
iterations/samples, which is consistent with

our theory.

Then from Theorem 3.4.2 it can be observed that when the signal-to-noise ratio is nearly

a constant, i.e., R2 = Θ(1), and the eigenspectrum of H does not decay too fast so that

κ(Nridge) ≤ polylog(Nridge), SGD provably generalizes no worse than ridge regression, pro-

vided with logarithmically more samples than that provided to ridge regression. More specif-

ically, the following corollary gives a family of problem instances that are in this regime.

Corollary 3.4.3. Under the same conditions as Theorem 3.4.2, let Nridge be the sample size

of ridge regression. Consider the problem instance that satisfies R2 = Θ(1), d = O(Nridge),

and λi = 1/iα for some α ≤ 1, then SGD, with a tuned stepsize γ∗, provably generalizes no

worse than any ridge regression solution in the generalizable regime if

Nsgd ≥ log2(Nridge) ·Nridge.

We would like to further point out that the comparison made in Corollary 3.4.3 concerns

the worst-case result regarding w∗ (from the perspective of SGD), while SGD could perform

much better ifw∗ has a nice structure. For example, considering the same setting in Corollary

79

3.4.3 but assuming that the ground truth w∗ is drawn from a prior distribution that is

rotation invariant, SGD can be no worse than ridge regression provided the same or larger

sample size. We formally state this result in the following corollary.

Corollary 3.4.4. Under the same conditions as Corollary 3.4.3, let Nridge be the sample size

of ridge regression. Consider the problem instance with random and rotation invariant w∗,

then SGD with a tuned stepsize γ∗ provably generalizes no worse than any ridge regression

solution in the generalizable regime if

Nsgd ≥ Nridge.

The next theorem shows that, in fact, for some instances, SGD could perform much

better than ridge regression, as for the one-hot least square problems.

Theorem 3.4.5 (Best-case comparison, Gaussian data). There exists a Gaussian least

square problem instance satisfying R2 = 1 and κ(Nsgd) = Θ(1), and an SGD solution with a

constant stepsize and sample size Nsgd, such that for any ridge regression solution (i.e., any

λ) with sample size

Nridge ≤
N2

sgd

log2(Nsgd)
,

it holds that,

L
[
wridge(Nridge;λ)

]
− L(w∗) ≳ L

[
wsgd(Nsgd; γ

∗)
]
− L(w∗).

Besides the instance-wise comparison, it is also interesting to see under what condition

SGD can provably outperform ridge regression, i.e., achieving comparable or smaller excess

risk using the same number of samples. The following theorem shows that this occurs when

the signal-to-noise ratio R2 is a constant and there is only a small fraction of w∗ living in

the tail eigenspace of H.

80

Theorem 3.4.6 (SGD outperforms ridge regression, Gaussian data). Let Nridge be sample

size of ridge regression and k∗ = min
{
k : λk ≤ tr(H)

Nridge log(Nridge)

}
, then if R2 = Θ(1), and

Nridge∑
i=k∗+1

λi(w
∗[i])2 ≲

k∗∥w∗∥2H
Nridge

,

for any ridge regression solution that is generalizable and any λ, there exists a choice of

stepsize γ∗ for SGD such that

L
[
wsgd(Nsgd; γ

∗)
]
− L(w∗) ≲ L

[
wridge(Nridge;λ)

]
− L(w∗)

provided the sample size of SGD satisfies

Nsgd ≥ Nridge.

Experiments. We perform experiments on Gaussian least square problem. We consider 6

problem instances, which are the combinations of 2 different covariance matrices H: λi = i−1

and λi = i−2; and 3 different true model parameter vectors w∗: w∗[i] = 1, w∗[i] = i−1, and

w∗[i] = i−10. Figure 3.1 compares the required sample sizes of ridge regression and SGD that

lead to the same population risk on these 6 problem instances, where the hyperparameters

(i.e., γ and λ) are fine-tuned to achieve the best performance. We have two key observations:

(1) in terms of the worst problem instance for SGD (i.e., w∗[i] = 1), its sample size is only

worse than ridge regression up to nearly constant factors (the curve is nearly linear); and (2)

SGD can significantly outperform ridge regression when the true modelw∗ mainly lives in the

head eigenspace of H (i.e., w∗[i] = i−10). The empirical observations are pretty consistent

with our theoretical findings and again demonstrate the benefit of the implicit regularization

of SGD.

3.5 An Overview of the Proof

In this section, we will sketch the proof of main Theorems for Gaussian least squares prob-

lems. Recall that we aim to show that provided certain number of training samples, SGD

81

0 500 1000 1500 2000
Nsgd

0

1000

2000

3000

4000

5000

6000
N

rid
ge

w * [i] = 1
w * [i] = i 1

w * [i] = i 10

(a) λi = i−1

0 500 1000 1500 2000
Nsgd

0

1000

2000

3000

4000

5000

6000

N
rid

ge

w * [i] = 1
w * [i] = i 1

w * [i] = i 10

(b) λi = i−2

Figure 3.1: Sample size comparison between SGD and ridge regression, where the stepsize γ

and regularization parameter λ are fine-tuned to achieve the best performance. The problem

dimension is d = 200 and the variance of model noise is σ2 = 1. We consider 6 combinations

of 2 different covariance matrices and 3 different ground truth model vectors. The plots are

averaged over 20 independent runs.

is guaranteed to generalize better than ridge regression. Therefore, we will compare the risk

upper bound of SGD [ZWB21] with the risk lower bound of ridge regression [TB20]2. In

particular, we first provide the following informal lemma summarizing the aforementioned

risk bounds of SGD and ridge regression.

Lemma 3.5.1 (Risk bounds of SGD and ridge regression, informal). Suppose Assumptions

3.2.1 and 3.4.1 hold and γ ≤ 1/ tr(H), then SGD has the following risk upper bound for

2The lower bound of ridge regression in our paper is a tighter variant of the lower bound in [TB20] since
we consider Gaussian case and focus on the expected excess risk. [TB20] studied the sub-Gaussian case and
established a high-probability risk bound.

82

arbitrary k1, k2 ∈ [d],

SGDRisk ≲
1

γ2N2
sgd

·
∥∥ exp(−NsgdγH)w∗∥∥2

H−1
0:k1

+ ∥w∗∥∥2
Hk1:∞︸ ︷︷ ︸

SGDBiasBound

+ (1 +R2)σ2 ·
(

k2
Nsgd

+Nsgdγ
2
∑
i>k2

λ2
i

)
︸ ︷︷ ︸

SGDVarianceBound

. (3.5.1)

Additionally, ridge regression has the following risk lower bound for a constant λ̃, depending

on λ, Nridge, and H, and k∗ = min{k : Nridgeλk ≲ λ̃}

RidgeRisk ≳

(
λ̃

Nridge

)2

∥w∗∥2H−1
0:k∗

+ ∥w∗∥2Hk∗:∞︸ ︷︷ ︸
RidgeBiasBound

+σ2 ·

(
k∗

Nridge

+
Nridge

λ̃2

∑
i>k∗

λ2
i

)
︸ ︷︷ ︸

RidgeVarianceBound

. (3.5.2)

We first highlight some useful observations in Lemma 3.5.1.

1. SGD has a condition on the stepsize: γ ≤ 1/ tr(H), while ridge regression has no

condition on the regularization parameter λ.

2. Both the upper bound of SGD and the lower bound of ridge regression can be decom-

posed into two parts corresponding to the head and tail eigenspaces ofH. Furthermore,

for the upper bound of SGD, the decomposition is arbitrary (k1 and k2 are arbitrary),

while for the lower bound of ridge estimator, the decomposition is fixed (i.e., k∗ is

fixed).

3. Regarding the SGDBiasBound and SGDVarianceBound, performing the transforma-

tion N → αN and γ → α−1γ will decrease SGDVarianceBound by a factor of α while

the SGDBiasBound remains unchanged.

Based on the above useful observations, we can now interpret the proof sketch for Theorems

3.4.2, 3.4.5, and 3.4.6. We will first give the sketch for Theorem 3.4.6 and then prove Theorem

3.4.5 for the ease of presentation. We would like to emphasize that the calculation in the

83

proof sketch may not be the sharpest since they are presented for the ease of exposition. A

preciser and sharper calculation can be found in Appendix.

Proof Sketch of Theorem 3.4.2. In order to perform instance-wise comparison, we

need to take care of all possible w∗ ∈ H. Therefore, by Observation 2, we can simply pick

k1 = k2 = k∗ in the upper bound (3.5.1). Then it is clear that if setting γ = λ̃−1 and

Nsgd = Nridge, we have

SGDBiasBound ≤ RidgeBiasBound

SGDVarianceBound = (1 +R2) · RidgeVarianceBound.

Then by Observation 3, enlarging Nsgd by (1 +R2) times suffices to guarantee

SGDBiasBound + SGDVarianceBound ≤ RidgeBiasBound + RidgeVarianceBound.

On the other hand, according to Observation 1, there is an upper bound on the feasible

stepsize of SGD: γ ≤ 1/ tr(H). Therefore, the above claim only holds when λ̃ ≥ tr(H).

When λ̃ ≤ tr(H), the stepsize λ̃−1 is no longer feasible and instead, we will use the largest

possible stepsize: γ = 1/ tr(H). Besides, note that we assume ridge regression solution is in

the generalizable regime, then it holds that k∗ ≤ Nridge since otherwise we have

RidgeRisk ≳ RidgeVarianceBound ≥ σ2.

Then again we set k1 = k2 = k∗ in SGDBiasBound and SGDVarianceBound. Applying the

choice of stepsize γ = 1/ tr(H) and sample size

Nsgd =
log(R2Nridge)

γλk∗
≤ Nridge · κ(Nridge) · log(R2Nridge),

we get

SGDBiasBound ≤ (1−Nsgdγλk∗)
Nsgd

γ2N2
sgdλ

2
k∗

· ∥w∗∥2H0:k∗
+ ∥w∗∥2Hk∗:∞

≤ σ2

Nridge

+ ∥w∗∥2Hk∗:∞

≤ RidgeBiasBound + RidgeVarianceBound. (3.5.3)

84

Moreover, we can also get the following bound on SGDVarianceBound,

SGDVarianceBound ≤ (1 +R2)σ2 ·
(

k∗

Nridge

+
log(R2Nridge)

λk∗ tr(H)

∑
i>k∗

λ2
i

)
≤ (1 +R2) log(R2Nridge) · RidgeVarianceBound,

where in the second inequality we use the fact that

Nridge

λ̃2
≥ 1

λk∗λ̃
≥ 1

λk∗ tr(H)
.

Therefore by Observation 3 again we can enlargeNsgd properly to ensure that SGDVarianceBound

remains unchanged and SGDVarianceBound ≤ RidgeVarianceBound. Then combining this

and (3.5.3) we can get

SGDBiasBound + SGDVarianceBound ≤ 2 · RidgeBiasBound + 2 · RidgeVarianceBound,

which completes the proof.

Proof Sketch of Theorem 3.4.6. Now we will investigate in which regime SGD will

generalizes no worse than ridge regression when provided with same training sample size.

For simplicity in the proof we assume R2 = 1. First note that we only need to deal with the

case where λ̃ ≤ tr(H) by the proof sketch of Theorem 3.4.2.

Unlike the instance-wise comparison that consider all possible w∗ ∈ H, in this lemma

we only consider the set of w∗ that SGD performs well. Specifically, as we have shown

in the proof of Theorem 3.4.2, in the worst-case comparison (in terms of w∗), we require

SGD to be able to learn the first k∗ (where k∗ ≤ Nridge) coordinates of w∗ in order to be

competitive with ridge regression, while SGD with sample size Nsgd can only be guaranteed

to learn the first k∗
sgd coordinates of w∗, where k∗

sgd = min{k : Nridgeλk ≤ tr(H)}. Therefore,

in the instance-wise comparison we need to enlarge Nsgd to Nridge ·κ(Nridge) to guarantee the

learning of the top k∗ coordinates of w∗.

However, this is not required for some good w∗’s that have small components in the

k∗
sgd-k

∗ coordinates. In particular, as assumed in the theorem, we have
∑Nridge

i=k̂+1
λi(w

∗[i])2 ≤

85

k̂∥w∗∥2H/Nridge, where k̂ := min{k : λkNsgd ≤ tr(H) · log(Nsgd)} satisfies k̂ ≤ k∗
sgd ≤ k∗. Then

let k1 = k̂ in SGDBiasBound, we have

SGDBiasBound =
1

γ2N2
ridge

·
∥∥ exp(−NridgeγH)w∗∥∥2

H−1

0:k̂

+ ∥w∗∥∥2
H

k̂:∞

≤ (1−Nridgeγλk̂)
Nridge · ∥w∗∥2H0:k∗

+ ∥w∗∥2H
k̂:∞

(i)

≤ R2σ2(k̂ + 1)

Nridge

+ ∥w∗∥2Hk∗:∞

≤ 2 · RidgeVarBound + RidgeBiasBound.

where (i) is due to the condition that
∑Nridge

i=k̂+1
λi(w

∗[i])2 ≤ k̂∥w∗∥2H/Nridge. Moreover, it is

easy to see that given Nsgd = Nridge and γ = 1/ tr(H) ≤ 1/λ̃, we have SGDVarianceBound ≤

2 · RidgeVarianceBound. As a consequence we can get

SGDBiasBound + SGDVarianceBound ≤ 3 · RidgeBiasBound + 3 · RidgeVarianceBound.

Proof Sketch of Theorem 3.4.5. We will consider the best w∗ for SGD, which only has

nonzero entry in the first coordinate. For example, consider a true model parameter vector

with w∗[1] = 1 and w∗[i] = 0 for i ≥ 2 and a problem instance whose spectrum of H has a

flat tail with
∑

i≥Nridge
λ2
i = Θ(1) and

∑
i≥2 λ

2
i = Θ(1). Then according to Lemma 3.5.1, we

can set the stepsize as γ = Θ(log(Nsgd)/Nsgd) and get

SGDRisk ≲ SGDBiasBound + SGDVarianceBound

= O

(
1

Nsgd

+
log2(Nsgd)

Nsgd

)
= O

(
log2(Nsgd)

Nsgd

)
.

For ridge regression, according to Lemma 3.5.1 we have

RidgeRisk ≳ RidgeBiasBound + RidgeVarianceBound

= Ω

(
λ̃2

N2
ridge

+
Nridge

λ̃2

)
since

∑
i≥k∗

λ2
i = Θ(1)

= Ω

(
1

N
1/2
ridge

)
. by the fact that a+ b ≥

√
ab

86

Therefore, it is evident that ridge regression is guaranteed to be worse than SGD if Nridge ≤

N2
sgd/ log

2(Nsgd). This completes the proof.

3.6 Proof of One-hot Least Squares

3.6.1 Excess risk bound of SGD

In this part we will mainly follow the proof technique in [ZWB21] that is developed to

sharply characterize the excess risk bound for SGD (with tail-averaging) when the data

distribution has a nice finite fourth-moment bound. However, such condition does not hold

for the one-hot case so that their results cannot be directly applied here.

Before presenting the detailed proofs, we first introduce some notations and definitions

that will be repeatedly used in the subsequent analysis. Let H = E[xx⊤] be the covariance of

data distribution. It is easy to verify that H is a diagonal matrix with eigenvalues λ1, . . . , λd.

Let wt be the t-th iterate of the SGD, we define βt := wt−w∗ as the centered SGD iterate.

Then we define βbias
t and βvariance

t as the bias error and variance error respectively, which are

described by the following update rule:

βbias
t =

(
I− γxtx

⊤
t

)
βbias
t−1 , βbias

0 = β0,

βvariance
t =

(
I− γxtx

⊤
t

)
βbias
t−1 + γξtxt, βvariance

0 = 0. (3.6.1)

Accordingly, we can further define the bias covariance Bt and variance covariance Ct as

follows

Bt = E[βbias
t ⊗ βbias

t], Ct = E[βvariance
t ⊗ βvariance

t].

Regarding these two covariance matrices, the following lemma mathematically characterizes

the upper bounds of the diagonal entries of Bt and Ct.

Lemma 3.6.1. Under Assumptions 3.2.1, let B̄t = diag(Bt) and C̄t = diag(Ct), then if the

87

stepsize satisfies γ ≤ 1, we have

B̄t ⪯ (I− γH)B̄t−1, C̄t ⪯ (I− γH)C̄t−1 + γ2σ2H.

Proof. According to (3.6.1), we have

Bt = E[βbias
t ⊗ βbias

t] = E
[
(I− γxtx

⊤
t)β

bias
t−1 ⊗ (I− γxtx

⊤
t)β

bias
t−1

]
= Bt−1 − γHBt−1 − γBt−1H+ γ2E[xtx⊤

t Bt−1xtx
⊤
t]. (3.6.2)

Note that xt = ei with probability λi, then we have

E[xtx⊤
t Bt−1xtx

⊤
t] =

∑
i

λi · eie⊤i Bt−1eie
⊤
i

=
∑
i

λi · e⊤i Bt−1ei · eie⊤i

= B̄t−1H.

Plugging the above equation into (3.6.2) gives

Bt = Bt−1 − γHBt−1 − γBt−1H+ γ2B̄t−1H.

Then if only look at the diagonal entries of both sides, we have

B̄t = B̄t−1 − 2γHB̄t−1 + γ2HB̄t−1 ⪯ (I− γH)B̄t−1,

where in the first equation we use the fact that diag(HB) = diag(BH) = HB̄ and the

inequality follows from the fact that both B̄t and H are diagonal and γ ≤ 1.

Similarly, regarding Ct the following holds according to (3.6.1),

Ct = E
[
(I− γxtx

⊤
t)β

variance
t−1 ⊗ (I− γxtx

⊤
t)β

variance
t−1

]
+ γ2E[ξ2t xtx⊤

t],

where we use the fact that E[ξt|xt] = 0. Similar to deriving the bound for B̄t, we have

diag
(
E
[
(I− γxtx

⊤
t)β

variance
t ⊗ (I− γxtx

⊤
t)β

variance
t

])
⪯ (I− γH)C̄t−1.

88

Besides, under Assumption 3.2.1 we also have E[ξ2t xtx⊤
t] = σ2H, which is a diagonal matrix.

Based on these two results, we can get the following upper bound for C̄t,

C̄t = diag
(
E
[
(I− γxtx

⊤
t)β

variance
t−1 ⊗ (I− γxtx

⊤
t)β

variance
t−1

]
+ γ2E[ξ2t xtx⊤

t]
)

⪯ (I− γH)C̄t−1 + γ2σ2H.

This completes the proof.

Lemma 3.6.2 (Lemmas D.1 & D.2 in [ZWB21]). Let w̄N :2N be the output of tail-averaged

SGD, then if the stepsize satisfied γ ≤ 1/λ1, it holds that

E[L(w̄N :2N)]− L(w∗) ≲ SGDBias + SGDVariance,

where

SGDBias ≤ 1

N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,BN+t

〉
SGDVariance ≤ 1

N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH,CN+t

〉
Lemma 3.6.3. Under Assumptions 3.2.1, if the stepsize satisfies γ ≤ 1 and set w0 = 0,

then

E[L(w̄N :2N)]− L(w∗) ≤ 2 · bias + 2 · variance,

where

bias ≲
1

N2γ2
·
∥∥(I− γH)N/2w∗∥∥

H−1
0:k1

+
∥∥(I− γH)N/2w∗∥∥2

Hk1:∞

variance ≲ σ2 ·
(
k2
N

+Nγ2
∑
i>k2

λ2
i

)
for arbitrary k1, k2 ∈ [d].

Proof. The first conclusion of this theorem can be directly proved via Young’s inequality.

89

Note that H is a diagonal matrix, and thus (I− γH)k−t is also a diagonal matrix for all

k and t. Therefore, by Lemma 3.6.2, it is clear that in order to calculate the upper bound

of the bias and variance error, it suffices to consider the diagonal entries of BN+t and CN+t,

denoted by B̄N+t and C̄N+t (which are obtained by setting all non-diagonal entries of BN+t

and CN+t as zero). Then by Young’s inequality, Lemma 3.6.2 implies that

bias ≤ 1

N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH, B̄N+t

〉
variance ≤ 1

N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH)k−tH, C̄N+t

〉
. (3.6.3)

Now we are ready to precisely calculate the above two bounds. In particular, by Lemma

3.6.1 we have

B̄t ⪯ (I− γH)B̄t−1 ⪯ (I− γH)tB0, (3.6.4)

C̄t ⪯ (I− γH)C̄t−1 ⪯
t−1∑
s=0

σ2γ2(I− γH)sH = σ2γ
(
I− (I− γH)t

)
, (3.6.5)

where in the second inequality we use the fact that C0 = βvariance
t ⊗ βvariance

t = 0. Then

plugging (3.6.4) into (3.6.3) gives

bias ≤ 1

N2

N−1∑
t=0

N−1∑
k=t

⟨(I− γH)k−tH, (I− γH)N+tB0⟩

=
1

N2

〈N−1−t∑
k=0

(I− γH)kH,
N−1∑
t=0

(I− γH)N+tB0

〉

≤ 1

N2

〈N−1∑
k=0

(I− γH)kH,
N−1∑
t=0

(I− γH)N+tB0

〉
=

1

N2γ2

〈
I− (I− γH)N ,H−1(I− γH)N

(
I− (I− γH)N

)
B0

〉
=

1

N2γ2

〈
(I− γH)N

[
I− (I− γH)N

]2
H−1,B0

〉
(3.6.6)

Note that (1− x)N ≥ min{0, 1−Nx} for all x ∈ [0, 1]. Then for all i we have[
1− (1− γλi)

N]2λ−1 ≤ min

{
1

λi
, N2γ2λi

}

90

where we use the fact that γ ≤ 1 ≤ 1/λi for all i. This further implies that

[
I− (I− γH)N

]2
H−1 ⪯ H−1

0:k +N2γ2Hk:∞

for all k ∈ [d]. Plugging the above results into (3.6.6) leads to

bias ≤ 1

N2γ2
·
〈
H−1

0:k, (I− γH)NB0

〉
+
〈
Hk:∞, (I− γH)NB0

〉
(3.6.7)

for all k ∈ [d]. Further note that B0 = (w0−w∗)⊗ (w0−w∗) = w∗⊗w∗ as we pick w0 = 0.

Thus (3.6.7) implies that

bias ≤ 1

N2γ2
·
∥∥(I− γH)N/2w∗∥∥

H−1
0:k

+
∥∥(I− γH)N/2w∗∥∥2

Hk:∞
.

Then we will deal with the variance error. Plugging (3.6.5) into (3.6.3) gives

variance ≤ σ2γ

N2

N−1∑
t=0

N−1∑
k=t

⟨(I− γH)k−tH, I− (I− γH)N+t⟩

≤ σ2γ

N2

N−1∑
t=0

〈N−1∑
k=0

(I− γH)kH, I− (I− γH)N+t

〉

=
σ2

N2

N−1∑
t=0

〈
I− (I− γH)N , I− (I− γH)N+t

〉
≤ σ2

N

〈
I− (I− γH)2N , I− (I− γH)2N

〉
.

We then use the inequality (1− x)N ≥ min{0, 1− xN} again and thus the above inequality

further leads to

variance ≤ σ2

N
·
∑
i

min{1, 4N2γ2λ2
i }

≤ 4σ2

N
·
(
k +N2γ2

∑
i>k

λ2
i

)
for any k ∈ [d].

91

3.6.2 Excess risk bound of ridge regression

Lemma 3.6.4. Let X ∈ RN×d be the training data matrix and wridge(N ;λ) be the solution

of ridge regression with parameter λ and sample size N , then for any λ > 0

E[L(wridge(N ;λ))]− L(w∗) = bias + variance,

where

bias = λ2 · E
[
w∗⊤(X⊤X+ λI)−1H(X⊤X+ λI)−1w∗]

variance = σ2 · E
[
tr
(
(X⊤X+ λI)−1X⊤X(X⊤X+ λI)−1H

)]
,

where the expectations are taken over the randomness of the training data matrix X.

Proof. Recall that the solution of ridge regression takes form

wridge(N ;λ) = (X⊤X+ λI)−1X⊤y,

where X is the data matrix and y is the response vector. Then according to the definition

of the loss function L(w), we have

E[L(wridge(N ;λ))] = E
[(
y − ⟨wridge(N ;λ),x⟩

)2]
= E

[(
⟨w∗,x⟩ − ⟨wridge(N ;λ),x⟩

)2]
+ E

[(
y − ⟨w∗,x⟩

)2]
+ 2E

[(
⟨w∗,x⟩ − ⟨wridge(N ;λ),x⟩

)
·
(
y − ⟨w∗,x⟩

)]
= E[∥wridge(N ;λ)−w∗∥2H] + L(w∗),

where the last equation is by Assumption 3.2.1. Then regarding E[∥wridge(N ;λ) − w∗∥2H],

let ξ = y −Xw∗ be the model noise vector, we have

E[∥wridge(N ;λ)−w∗∥2H] = E
[∥∥(X⊤X+ λI)−1X⊤y −w∗∥∥2

H

]
= E

[∥∥(X⊤X+ λI)−1X⊤(Xw∗ + ξ)−w∗∥∥2
H

]
= E

[∥∥(X⊤X+ λI)−1X⊤Xw∗ −w∗∥∥2
H

]︸ ︷︷ ︸
bias

+E
[∥∥(X⊤X+ λI)−1X⊤ξ

∥∥2
H

]︸ ︷︷ ︸
variance

.

92

where in the last inequality we again apply Assumption 3.2.1 that E[ξ|X] = 0. More

specifically, the bias error can be reformulated as

bias = E
[∥∥((X⊤X+ λI)−1X⊤X− I

)
w∗∥∥2

H

]
= λ2E

[∥∥(X⊤X+ λI)−1w
∥∥2
H

]
= λ2E

[
w∗⊤(X⊤X+ λI)−1H(X⊤X+ λI)−1w∗].

In terms of the variance error, note that by Assumption 3.2.1 we have E[ξξ⊤|X] = σ2I, then

variance = E
[∥∥(X⊤X+ λI)−1X⊤ϵ

∥∥2
H

]
= E

[
tr
(
(X⊤X+ λI)−1X⊤ξξ⊤X(X⊤X+ λI)−1H

)]
= σ2 · E

[
tr
(
(X⊤X+ λI)−1X⊤X(X⊤X+ λI)−1H

)]
.

Lemma 3.6.5. The solution of ridge regression with sample size N and regularization pa-

rameter λ satisfies

E[L(wridge(N ;λ))]− L(w∗) = RidgeBias + RidgeVariance,

where

RidgeBias ≳ max

{∑
i

(1− λi)
N · λiw∗[i]2,

k∗∑
i=1

λ2λiw
∗[i]2

(Nλi + λ)2
+
∑
i>k∗

λiw
∗[i]2

}

RidgeVariance ≳ σ2 ·

(
k∗∑
i=1

Nλ2
i

(Nλi + λ)2
+
∑
i>k∗

Nλ2
i

(1 + λ)2

)
,

where k∗ = min{k : Nλk ≤ 1}.

Proof. In the one-hot case, it is easy to verify that X⊤X =
∑n

i=1 xix
⊤
i is a diagonal matrix.

Let µ1, µ2, . . . , µd be the eigenvalues of X
⊤X corresponding to the eigenvectors e1, e2, . . . , ed

respectively. Then by Lemma 3.6.4, we have the following results for the bias and variance

93

errors of ridge regression.

RidgeBias = λ2 · E
[
w∗⊤(X⊤X+ λI)−1H(X⊤X+ λI)−1w∗]

= λ2
∑
i

Eµi
[
λiw

∗[i]2

(µi + λ)2

]
, (3.6.8)

where the expectation in the first equation is taken over the training dataX and in the second

inequality the expectation is equivalently taken over the eigenvalues µ1, . . . , µd. Since xi can

only take on natural basis, the eigenvalue µi can be understood as the number of training

data that equals ei. Note that the probability of sampling ei is λi, then we can get that

µi has a marginal distribution Binom(N, λi), where N is the sample size. Then in terms of

each expectation in (3.6.8), we first have

Eµi
[
λiw

∗[i]2

(µi + λ)2

]
≥ λiw

∗[i]2

(E[µi] + λ)2
=

λiw
∗[i]2

(Nλi + λ)2
,

where the first inequality is by applying Jensen’s inequality to the convex function f(x) =

1/(x+ λ)2. On the other hand, we also have

Eµi
[
λiw

∗[i]2

(µi + λ)2

]
≥ λiw

∗[i]2

λ2
· P(µi = 0) =

λiw
∗[i]2

λ2
· (1− λi)

N .

Therefore, combining the above two lower bounds, we can get the following lower bound on

the bias error by (3.6.8)

RidgeBias = λ2
∑
i

Eµi
[
λiw

∗[i]2

(µi + λ)2

]
≥
∑
i

max

{
λ2λiw

∗[i]2

(Nλi + λ)2
, λiw

∗[i]2 · (1− λi)
N

}
. (3.6.9)

Therefore, a trivial lower bound on the bias error of ridge regression is

RidgeBias ≥
∑
i

(1− λi)
N · λiw∗[i]2.

Additionally, note that (1 − λi)
N ≥ 0.25 if λi ≤ 1/N and N ≥ 2. Then let k∗ = min{k :

Nλk ≤ 1}, (3.6.9) further leads to

RidgeBias ≥
k∗∑
i=1

λ2λiw
∗[i]2

(Nλi + λ)2
+ 0.25 ·

∑
i>k∗

λiw
∗[i]2.

94

This completes the proof of the lower bound of the bias error.

By Lemma 3.6.4, we have

RidgeVariance = σ2 · E
[
tr
(
(X⊤X+ λI)−1X⊤X(X⊤X+ λI)−1H

)]
= σ2 ·

∑
i

Eµi
[

λiµi
(µi + λ)2

]
, (3.6.10)

Regarding the variance error, we cannot use the similar approach since the function g(x) =

x/(x+λ)2 is no longer convex. Instead, we will directly make use of property of the binomial

distribution of µi to prove the desired bound. In particular, note that µi ∼ binom(N, λi),

by Bernstein inequality, we have

P(|µi −Nλi| ≤ t) ≥ 1− 2 exp

(
− t2

2(Nλi + t/3)

)
.

If Nλi ≥ 6, by set t =
√
3Nλi, we have

P
(
µi ∈

[
Nλi −

√
3Nλi, Nλi +

√
3Nλi

])
≥ 1− 2e−1 ≥ 0.2,

which further implies that

P
(
µi ∈

[
0.25Nλi, 2Nλi

])
≥ 0.2,

where we use the fact that
√
3Nλi ≤ 0.75Nλi if Nλi > 6. Therefore, in this case, we can get

Eµi
[

λiµi
(µi + λ)2

]
≥ 0.2min

{
0.25Nλ2

i

(0.25Nλi + λ)2
,

2Nλ2
i

(2Nλi + λ)2

}
≥ 0.05Nλ2

i

(Nλi + λ)2
. (3.6.11)

Then we consider the case that Nλi < 6. In particular, we have

Eµi
[

λiµi
(µi + λ)2

]
≥ λi

(1 + λ)2
· P(µi = 1). (3.6.12)

Note that µi follows Binom(N, λi) distribution, which implies that

P(µi = 1) = Nλi(1− λi)
N−1 ≥ Nλi

(
1− 6

N

)N−1 ≥ e−6Nλi.

Plugging this into (3.6.12) gives

Eµi
[

λiµi
(µi + λ)2

]
≥ e−6Nλ2

i

(1 + λ)2
. (3.6.13)

95

Therefore, let k∗ = min{k : Nλk ≤ 1}, then for all i ≤ k∗, combining (3.6.11) and (3.6.13)

gives

Eµi
[

λiµi
(µi + λ)2

]
≥ e−6Nλ2

i

(Nλi + λ)2
.

For all i > k∗, we can directly apply (3.6.13) to get the lower bound. Therefore, according

to (3.6.10), the variance error can be lower bounded as follows,

RidgeVariance = σ2 ·
∑
i

Eµi
[

λiµi
(µi + λ)2

]

≥ e−6σ2 ·
(k∗∑

i=1

Nλ2
i

(Nλi + λ)2
+
∑
i>k∗

Nλ2
i

(1 + λ)2

)
.

This completes the proof of the lower bound of the variance error.

3.6.3 Proof of Theorem 3.3.1

Proof. In the beginning, we first recall the excess risk upper bound of SGD (see Lemma

3.6.3) and excess risk lower bound of ridge (see Lemma 3.6.3) as follows,

E[L(wsgd(Nsgd; γ))]− L(w∗) ≤ 2 · SGDBias + 2 · SGDVariance,

where

SGDBias ≲
1

N2γ2
·
∥∥(I− γH)N/2w∗∥∥

H−1
0:k1

+
∥∥(I− γH)N/2w∗∥∥2

Hk1:∞

SGDVariance ≲ σ2 ·
(
k2
N

+Nγ2
∑
i>k2

λ2
i

)
(3.6.14)

for arbitrary k1, k2 ∈ [d].

E[L(wridge(N ;λ))]− L(w∗) = RidgeBias + RidgeVariance,

96

where

RidgeBias ≳ max

{∑
i

(1− λi)
N · λiw∗[i]2,

k∗∑
i=1

λ2λiw
∗[i]2

(Nλi + λ)2
+
∑
i>k∗

λiw
∗[i]2

}

RidgeVariance ≳ σ2 ·

(
k∗∑
i=1

Nλ2
i

(Nλi + λ)2
+
∑
i>k∗

Nλ2
i

(1 + λ)2

)
, (3.6.15)

where k∗ = min{k : Nλk ≤ 1}.

Next, we will show that the excess risk of SGD can be provably upper bounded (up to

constant factors) by the excess risk of ridge regression respectively, given the sample size

of ridge regression Nridge (which we will use N in the remaining proof for simplicity). In

particular, we consider two cases regarding different λ: Case I λ < 1 and Case II λ ≥ 1.

For Case I, (3.6.15) gives the following bias lower bound for ridge regression,

RidgeBias ≳
∑
i

(1− λi)
N · λiw∗[i]2

≳
∑
i>k∗

λiw
∗[i]2

RidgeVariance ≳ σ2 ·

(
k∗∑
i=1

Nλ2
i

(Nλi + λ)2
+
∑
i>k∗

Nλ2
i

(1 + λ)2

)
(i)
≂ σ2 ·

(
k∗

N
+N

∑
i>k∗

λ2
i

)
,

where in (i) we use the fact that Nλi + λ ≂ Nλi for all i ≤ k∗.

Then let R2 = ∥w∗∥22/σ2 denotes the signal-to-noise ratio, let’s consider the following

configuration for SGD:

Nsgd = N, γ = 1.

97

Then by (3.6.14) and setting k1 = 0 and k2 = k∗, we get

SGDBias ≲
∑
i

(1− λi)
N · λiw∗[i]2

SGDVariance ≲ σ2 ·
(

k∗

Nsgd

+Nsgdγ
2
∑
i>k∗

λ2
i

)
(i)

≲ σ2 ·
(
k∗

N
+N

∑
i>k∗

λ2
i

)
.

Therefore, given such choice of Nsgd and γ, we have

E[L(wsgd(Nsgd; γ))]− L(w∗) ≲ SGDBias + SGDVariance

≲
∑
i

(1− λi)
N · λiw∗[i]2 + σ2 ·

(
k∗

N
+N

∑
i>k∗

λ2
i

)
≲ RidgeBias + RidgeVariance

= E[L(wridge(N ;λ))]− L(w∗).

For Case II, we can define k̃∗ = min{k : Nλk ≤ λ}, then (3.6.15) implies

RidgeBias ≳
k∗∑
i=1

λ2λiw
∗[i]2

(Nλi + λ)2
+
∑
i>k∗

λiw
∗[i]2

(i)
≂

k̃∗∑
i=1

λ2w∗[i]2

N2λi
+
∑
i>k̃∗

λiw
∗[i]2

RidgeVariance ≳ σ2 ·

(
k∗∑
i=1

Nλ2
i

(Nλi + λ)2
+
∑
i>k∗

Nλ2
i

(1 + λ)2

)
(ii)
≂ σ2 ·

(
k̃∗

N
+

N

λ2

∑
i>k̃∗

λ2
i

)
,

where (i) and (ii) are due to the fact that for every i ≤ k∗, we have

1

(Nλi + λ)2
≂

 1
N2λi

i ≤ k̃∗

1
λ2

k̃∗ < i ≤ k∗.

Therefore, we can apply the following configuration for SGD:

Nsgd = N, γ = 1/λ.

98

Then by (3.6.14) and set k1 = k2 = k̃∗, we have

E[L(wsgd(Nsgd; γ))]− L(w∗)

≲ SGDBias + SGDVariance

≲
k̃∗∑
i=1

(1− γλi)
Nsgdw∗[i]2

λiN2
sgdγ

2
+
∑
i>k̃∗

λiw
∗[i]2 + σ2 ·

(
k̃∗

Nsgd

+Nsgdγ
2
∑
i>k̃∗

λ2
i

)

≂
k̃∗∑
i=1

λ2w∗[i]2

λiN2
+
∑
i>k̃∗

λiw
∗[i]2 + σ2 ·

(
k̃∗

N
+

N

λ2

∑
i>k̃∗

λ2
i

)
≲ RidgeBias + RidgeVariance

= E[L(wridge(N ;λ))]− L(w∗).

Combining the results for these two cases completes the proof.

3.6.4 Proof of Theorem 3.3.2

Proof. For simplicity we define N := Nsgd in the proof.

• The data covariance matrix H has the following spectrum

λi =

log(N)

N1/2 i = 1,

1−log(N)/N1/2

N
1 < i ≤ N,

0 N < i ≤ d

• The true parameter w∗ is given by

w∗[i] =

σ ·
√

N1/2

log(N)
i = 1,

0 1 < i ≤ d.

Then it is easy to verify that tr(H) = 1. For SGD, we consider setting the stepsize as

γ∗ = N−1/2. Then by Lemma 3.6.3 and choosing k1 = 1, we have the following on the bias

99

error of SGD,

SGDBias ≲
k∗∑
i=1

(1− γλi)
Nsgdw∗[i]2

λiN2
sgdγ

2
+
∑
i>k∗

λiw
∗[i]2 ≲

(1− log(N)/N)Nσ2

log2(N)
≲

σ2

N
.

For variance error, we can pick k2 = 1 and get

SGDVariance ≲ σ2 ·
(

1

N
+Nγ2

∑
i>1

λ2
i

)
≲ σ2

(
1

N
+
∑
i>1

λ2
i

)
≂

σ2

N
.

Now let us characterize the excess risk of ridge regression. In terms of the bias error, by

Lemma 3.6.5 we have

RidgeBias ≳
k∗∑
i=1

λ2λiw
∗[i]2

(Nridgeλi + λ)2
+
∑
i>k∗

λiw
∗[i]2 ≂

λ2σ2

(Nridge log(N)/N1/2 + λ)2
, (3.6.16)

where k∗ = min{k : Nridgeλk ≤ 1}. Then it is clear for ridge regression we must have

λ ≲ Nridge log(N)/N1/2 since otherwise RidgeBias ≳ σ2 ≳ SGDRisk. Regarding the variance,

we have

RidgeVariance ≳ σ2 ·

(
k∗∑
i=1

Nridgeλ
2
i

(Nridgeλi + λ)2
+
∑
i>k∗

Nridgeλ
2
i

(1 + λ)2

)
.

Then we will consider two cases: (1) Nridge ≲ N and (2) Nridge ≳ N . In the first case we can

get k∗ = 1 and then

RidgeVariance ≳ σ2 ·

(
Nridge log

2(N)/N2

(Nridge log(N)/N + λ)2
+

Nridge

N2(1 + λ)2

)
≥ Nridgeσ

2

N2(1 + λ2)
.

In this case, we can get k∗ = 1 and thus

RidgeVariance ≳ σ2 · Nridge log
2(N)/N2

(Nridge log(N)/N + λ)2
(i)
≂

σ2

Nridge

(ii)

≳
σ2

N
,

where (i) is due to we require λ ≲ Nridge log(N)/N1/2 to guarantee vanishing bias error and

(ii) is due to in this case we have Nridge ≲ N . As a result, ridge regression cannot achieve

smaller excess risk than SGD in this case.

In the second case we can get k∗ = N and then

RidgeVariance ≳ σ2 ·
(

Nridge log
2(N)/N2

(Nridge log(N)/N + λ)2
+

(k∗ − 1) ·Nridge/N
2

(Nridge/N + λ2)

)
≳ σ2 · NNridge

N2
ridge +N2λ2

, (3.6.17)

100

where the second inequality is due to k∗ = N . We will again consider two cases: (a)

Nridge ≳ Nλ and (b) Nridge ≲ Nλ. Regarding Case (a) we have

RidgeVariance ≥ Nσ2

Nridge

,

and it is clear that for all Nridge ≲ N2 we have RidgeVariance ≳ σ2/N ≳ SGDRisk. Re-

garding Case (b), combining the lower bounds of bias (3.6.16) and variance (3.6.17) of ridge

regression, we get

RidgeRisk ≳ σ2 ·
(

λ2N

N2
ridge log

2(N)
+

Nridge

Nλ2

)
≳

σ2

N
1/2
ridge log(N)

,

where the first inequality follows from the fact that λ ≲ Nridge log(N)/N1/2 and Nridge ≲ Nλ,

and the second inequality is by Cauchy-Schwartz inequality. This further suggests that

RidgeRisk ≲ σ2/N ≲ SGDRisk if Nridge ≤ N2/ log2(N), which completes the proof.

3.7 Proof of Gaussian Least Squares

3.7.1 Excess risk bounds of SGD and ridge regression

We first recall the excess risk bounds for SGD (with tail averaging) and ridge regression as

follows.

SGD with tail averaging

Theorem 3.7.1 (Extension of Theorem 5.1 in [ZWB21]). Consider SGD with tail-averaging

with initialization w0 = 0. Suppose Assumption 3.4.1 holds and the stepsize satisfies γ ≲

1/ tr(H). Then the excess risk can be upper bounded as follows,

E[L(wsgd(N ; γ))]− L(w∗) ≤ SGDBias + SGDVariance,

101

where

SGDBias ≲
1

γ2N2
·
∥∥(I− γH)Nw∗∥∥2

H−1
0:k1

+
∥∥(I− γH)Nw∗∥∥2

Hk1:∞

SGDVariance ≲
σ2 + ∥w∗∥2H

N
·
(
k2 +N2γ2

∑
i>k2

λ2
i

)
.

where k1, k2 ∈ [d] are arbitrary.

This theorem is a simple extension of Theorem 5.1 in [ZWB21]. In particular, we observe

that though the original theorem is stated for some particular k∗ and k†, based on the proof,

their results hold for arbitrary k1 and k2, as stated in Theorem 3.7.1.

Ridge regression. See Appendix 3.8 for a proof of the following theorem.

Theorem 3.7.2 (Extension of Lemmas 2 & 3 in [TB20]). Suppose Assumption 3.4.1 holds.

Let λ ≥ 0 be the regularization parameter, n be the training sample size and ŵridge(N ;λ)

be the output of ridge regression. Then

E
[
L(wridge(N ;λ))

]
− L(w∗) = RidgeBias + RidgeVariance,

and there is some absolute constant b > 1, such that for

k∗
ridge := min

{
k : bλk+1 ≤

λ+
∑

i>k λi

n

}
,

the following holds:

RidgeBias ≳

(λ+
∑

i>k∗ridge
λi

N

)2

· ∥w∗∥2
H−1

0:k∗
ridge

+ ∥w∗∥2Hk∗
ridge

:∞
,

RidgeVariance ≳ σ2 ·
{
k∗
ridge

N
+

N
∑

i>k∗ridge
λ2
i(

λ+
∑

i>k∗ridge
λi
)2
}
.

102

3.7.2 Proof of Theorem 3.4.2

Proof. For simplicity, let us fix N := Nridge and k := kridge, we will next locate γ such that

the risk of SGD competes with that of Ridge. Denote λ̃ := λ+
∑

i>k λi. Then

RidgeRisk = RidgeBias + RidgeVariance

≳

(
λ̃

N

)2

∥w∗∥2H−1
0:k

+ ∥w∗∥2Hk:∞
+

σ2

N

(
k +

(
N

λ̃

)2∑
i>k

λ2
i

)
.

Then for SGD we can set

Nsgd = (1 +R2) ·N · (1 ∨ κ log a),

where

κ :=
tr(H)

NλN
, a =

tr(H)

λ+
∑

i>N λi
∧ (κR

√
N) =

tr(H)

λ+
∑

i>N λi
∧ tr(H)R√

NλN
.

Next we discuss two cases:

Case I, λ̃ · (1 ∨ κ log a) ≥ tr(H). For SGD, let us set ksgd = k and that

γ =
1

(1 +R2) · λ̃ · (1 ∨ κ log a)
≤ 1

tr(H)
,

then

Nsgd · γ =
N

λ̃
.

Thus we obtain that

SGDRisk ≲
(1− γλk)

2Nsgd

(γNsgd)
2 ∥w∗∥2H−1

0:k
+ ∥w∗∥2Hk:∞

+
(1 +R2)σ2

Nsgd

(
k + (γNsgd)

2
∑
i>k

λ2
i

)

=
(1− γλk)

2Nsgd(
N/λ̃

)2 ∥w∗∥2H−1
0:k

+ ∥w∗∥2Hk:∞
+

σ2

N(1 ∨ κ log a)

(
k +

(
N/λ̃

)2∑
i>k

λ2
i

)

≤

(
λ̃

N

)2

∥w∗∥2H−1
0:k

+ ∥w∗∥2Hk:∞
+

σ2

N

(
k +

(
N

λ̃

)2∑
i>k

λ2
i

)

≲ RidgeRisk.

103

Case II, λ̃ · (1 ∨ κ log a) < tr(H). For SGD, let us set ksgd = k and that

γ =
1

(1 +R2) · tr(H)
≤ 1

tr(H)
,

then

Nsgd · γ =
N · (1 ∨ κ log a)

tr(H)
≤ N

λ̃
.

We obtain that

SGDRisk ≤ SGDBias + SGDVariance

≲
(1− γλk)

2Nsgd

(γNsgd)
2 ∥w∗∥2H−1

0:k
+ ∥w∗∥2Hk:∞

+
(1 +R2)σ2

Nsgd

(
k + (γNsgd)

2
∑
i>k

λ2
i

)

≤ (1− γλk)
2Nsgd

(γNsgd)
2 ∥w∗∥2H−1

0:k
+ ∥w∗∥2Hk:∞

+
σ2

N(1 ∨ κ log a)

(
k +

(
N/λ̃

)2∑
i>k

λ2
i

)

≤ (1− γλk)
2Nsgd

(γNsgd)
2 ∥w∗∥2H−1

0:k
+ ∥w∗∥2Hk:∞

+
σ2

N

(
k +

(
N

λ̃

)2∑
i>k

λ2
i

)
.

The second and the third terms match those of ridge error. As for the first term, notice that

by the choice of γ and that λk ≥ λN , we have that

(1− γλk)
Nsgd

γNsgd

≤
(
1− λN

(1 +R2) · tr(H)

)Nsgd

· 1

γNsgd

=

(
1− 1

(1 +R2) ·N · κ

)(1+R2)·N ·(1∨κ log a)

· tr(H)

N · (1 ∨ κ log a)

≤
(
1− 1

(1 +R2) ·N · κ

)(1+R2)·N ·κ log a

· tr(H)

N

≤ 1

a
· tr(H)

N
=

(λ+
∑

i>N λi) ∨ (
√
NλN/R)

tr(H)
· tr(H)

N

≤
λ+

∑
i>k λi

N
∨ λk

R ·
√
N

=
λ̃

N
∨ λk

R ·
√
N
.

104

If (1−γλk)
Nsgd

γNsgd
≤ λ̃

N
, then

SGDRisk ≲
(1− γλk)

2Nsgd

(γNsgd)
2 ∥w∗∥2H−1

0:k
+ ∥w∗∥2Hk:∞

+
σ2

N

(
k +

(
N

λ̃

)2∑
i>k

λ2
i

)

≤

(
λ̃

N

)2

∥w∗∥2H−1
0:k

+ ∥w∗∥2Hk:∞
+

σ2

N

(
k +

(
N

λ̃

)2∑
i>k

λ2
i

)

≲ RidgeRisk.

If (1−γλk)
Nsgd

γNsgd
≤ λk

R·
√
N
, then

(1− γλk)
2Nsgd

(γNsgd)
2 ∥w∗∥2H−1

0:k
≤ λ2

k

R2 ·N
∥w∗∥2H−1

0:k
≤ ∥w∗∥2H

R2 ·N
≤ σ2

N
,

and

SGDRisk ≲
(1− γλk)

2Nsgd

(γNsgd)
2 ∥w∗∥2H−1

0:k
+ ∥w∗∥2Hk:∞

+
σ2

N

(
k +

(
N

λ̃

)2∑
i>k

λ2
i

)

≤ σ2

N
+ ∥w∗∥2Hk:∞

+
σ2

N

(
k +

(
N

λ̃

)2∑
i>k

λ2
i

)

≲ 2 · RidgeRisk.

These complete the proof.

3.7.3 Proof of Corollary 3.4.3

Proof. By Theorem 3.4.2, we only need to verify that κ(Nridge) ≲ log(Nridge). Recall that

λi = 1/iα for 0 < α ≤ 1, and d ≲ Nridge. For α = 1, then

tr(H) =
d∑
i=1

i−α ≲ log d ≲ log(Nridge),

thus

κ(Nridge) =
tr(H)

Nridgeλmin{d,Nridge}
≲

log(Nridge)

Nridge ·N−1
ridge

= log(Nridge).

For α < 1, then

tr(H) =
d∑
i=1

i−α ≲ d1−α ≲ N1−α
ridge,

105

thus

κ(Nridge) =
tr(H)

Nridgeλ{Nridge,d}
≲

N1−α
ridge

Nridge ·N−α
ridge

= 1.

3.7.4 Proof of Corollary 3.4.4

Proof. Note that given random w∗, the expected risk considered in our paper will be in-

cluding the expectation over both random data x and random ground-truth w∗. Since the

distribution of w∗ is rotation invariant, the expectation of w∗[i] will be the same for all

i ∈ [d]. Therefore, let B = E[(w∗[i])2], the following holds according to (3.5.2)

RidgeRisk ≳

(
λ̃

Nridge

)2

· E
[
∥w∗∥2

H−1
0:k∗

]
+ E

[
∥w∗∥2Hk∗:∞

]
+ σ2 ·

(
k∗

Nridge

+
Nridge

λ̃2

∑
i>k∗

λ2
i

)

= B

(
λ̃

Nridge

)2

·
k∗∑
i=1

iα +B ·
∑

i=k∗+1

i−α + σ2 ·
(

k∗

Nridge

+
Nridge

λ̃2

∑
i>k∗

λ2
i

)
where k∗ = min{k : Nridgeλk ≤ λ̃}. Then note that λi = i−α, we have k∗ = (Nridge/λ̃)

1/α,

which implies that

RidgeRisk ≳ B

(
λ̃

Nridge

)2

· (k∗)1+α +B ·
[
d1−α − (k∗)1−α

]
+ σ2 ·

(
k∗

Nridge

+
Nridge

λ̃2

∑
i>k∗

λ2
i

)
≳ N1−α

ridge ·B

where we use the fact that d = Θ(N). Note that constant SNR R = Θ(1) implies that

σ2 ≂ B

d∑
i=1

λi ≂ N1−α
ridgeB.

Then by (3.5.1) and set Nsgd = Nridge = N and k1 = k2 = Nridge, we have

SGDRisk ≲
1

γ2N2
sgd

· E
[∥∥ exp(−NsgdγH)w∗∥∥2

H−1
0:k1

]
+ E

[
∥w∗∥∥2

Hk1:∞

]
+ (1 +R2)σ2 ·

(
k2
Nsgd

+Nsgdγ
2
∑
i>k2

λ2
i

)
=

1

γ2N2
· E
[∥∥w∗∥∥2

H−1
0:N

]
+ E

[
∥w∗∥∥2

HN :d

]
+BN1−α ·

(
1 +Nγ2

∑
i>N

λ2
i

)
.

106

Note that we have

E
[∥∥w∗∥∥2

H−1
0:N

]
= BN1+α, E

[
∥w∗∥∥2

HN :d

]
= BN1−α.

Then we can set γ ≂ 1/ tr(H) ≂ Nα−1 and get

SGDRisk ≲
B

N2α
·N1+α +BN1−α +BN1−α ·

(
1 +Nγ2

∑
i>N

λ2
i

)
≲ BN1−α

≲ RidgeRisk.

This implies that SGD can be no worse than ridge regression as long as provided same or

larger sample size, which completes the proof.

3.7.5 Proof of Theorem 3.4.5

Proof. For simplicity we fix N := Nsgd. Let us consider the following problem instance:

• The data covariance matrix H has the following spectrum

λi =

1 i = 1,

1
N logN

1 < i ≤ N2,

0 N2 < i ≤ d

where we require the dimension d ≥ N2. We note that tr(H) = 1 + N/ logN ≂

N/ logN .

• The true parameter w∗ is given by

w∗[i] =

σ i = 1,

0 1 < i ≤ d.

107

Then for SGD, we choose stepsize as γ = log(N)/(2N) ≤ 1/ tr(H). By Lemma 3.7.1, we

have the following excess risk bound for wsgd(N ; γ∗),

L
[
wsgd(N ; γ)

]
− L(w∗) ≤ SGDBias + SGDVariance,

where

SGDBias ≲ σ2 · (1− γ)N

(γN)2
≲ σ2 · log2N ·

(
1− logN

2N

)N
≲

σ2 log2N

N2
≲

σ2

N
,

SGDVariance ≲
σ2

N
·
(
1 + (Nγ)2

∑
i>1

λ2
i

)
≂

σ2

N
,

where we use the fact that
∑

i>1 λ
2
i = 1

log2N
. This implies that SGD with sample size N

achieves at most O(σ2/N) excess risk on this example.

Then we calculate the excess risk lower bound of ridge regression. By Lemma 3.7.2 and

let λ̃ = λ+
∑

i>k∗ridge
λi, we have

L
[
wridge(N ;λ)

]
− L(w∗) = RidgeBias + RidgeVariance

≳ σ2 ·

(
λ̃2

N2
ridge

+
k∗
ridge

Nridge

+
Nridge

∑
i>k∗ridge

λ2
i

λ̃2

)
.

If k∗
ridge > N , then

L
[
wridge(N ;λ)

]
− L(w∗) ≳

σ2k∗
ridge

Nridge

≥ σ2N

Nridge

≥ σ2

N
, for Nridge <

N2

log2N
.

If k∗
ridge ≤ N , then

∑
i>k∗ridge

λ2
i ≥

∑
N<i≤N2

1
N2 log2N

≂ 1
log2N

, which implies that

L
[
wridge(N ;λ)

]
− L(w∗) ≳ σ2 ·

(
λ̃2

N2
ridge

+
Nridge

λ̃2
· 1

log2N

)

≥ σ2

N
1/2
ridge logN

≥ σ2

N
, for Nridge <

N2

log2N
.

To sum up, we have show that

L
[
wridge(Nridge;λ)

]
− L(w∗) ≳

σ2

N
≳ L

[
wsgd(N ;λ)

]
− L(w∗), for Nridge <

N2

log2N
.

This completes the proof.

108

3.7.6 Proof of Theorem 3.4.6

Proof. The proof of Theorem 3.4.6 is similar to that of Theorem 3.4.2. In particular, we

still consider two cases: (1) λ ≳ tr(H) and (2) λ ≲ tr(H). For the first case, we can use the

identical proof in Theorem 3.4.2 and get that SGD with sample size Nsgd ≂ (1 +R2) ·Nridge

to achieve better excess risk than ridge regression. Note that we have assumed R2 = Θ(1),

therefore, we can claim that SGD outperforms ridge regression, as long as the sample size is

at least in the same order of Nridge.

For the second case that λ ≲ tr(H), for simplicity we denote N := Nridge and we can

directly set γ = 1/ tr(H) and Nsgd = N . Let k∗ = min
{
k : λk ≤ tr(H) log(N)

N

}
, then by

the definition of k∗
ridge in Lemma 3.7.2 and the assumption that ridge regression is in the

generalizable regime, we have k∗ ≤ k∗
ridge ≤ Nridge. Therefore, applying Lemma 3.7.1 with

k1 = k∗, we have the following bound on the effective bias of SGD,

SGDBias ≲
k∗∑
i=1

(1− γλi)
N(w∗[i])2

λiγ2N2
+
∑
i>k∗

λi(w[i])2

≲
k∗∑
i=1

(
1− log(N)

N

)N
(w∗[i])2

λiN2
+
∑
i>k∗

λi(w[i])2

≲
∥w∗∥2H

N
+
∑
i>k∗

λi(w[i])2.

Then by our assumption that

Nridge∑
i=k∗

λi
(
w[i]

)2
≲

k∗∥w∗∥2H
N

,

we further have

SGDBias ≲
∥w∗∥2H

N
+
∑
i>k∗

λi(w[i])2

≲
∑

i>k∗ridge

λi(w[i])2 +
(k∗

ridge + 1)∥w∗∥2H
N

,

109

where in the second inequality we use the fact that k∗ ≤ k∗
ridge ≤ Nridge. Regarding the

variance of SGD, applying Lemma 3.7.1 with k2 = k∗
ridge gives

SGDVariance ≲ (σ2 + ∥w∗∥2H) ·
(
k∗
ridge

N
+

N

(tr(H)2)
·
∑

i≥k∗ridge

λ2
i

)

≲ (σ2 + ∥w∗∥2H) ·
(
k∗
ridge

N
+

N

(λ+
∑

i>k∗ridge
λi)2

·
∑

i≥k∗ridge

λ2
i

)
,

where the last inequality is due to the fact that λ ≲ tr(H). Combining the above upper

bounds for the bias and variance of SGD, we have that the output of SGD, with sample size

Nsgd = N and learning rate γ = 1/ tr(H), satisfies

SGDRisk ≲ SGDBias + SGDVariance

≲
∑

i>k∗ridge

λi(w[i])2 +
(k∗

ridge + 1)∥w∗∥2H
N

+ (σ2 + ∥w∗∥2H) ·
(
k∗
ridge

Nridge

+
Nridgeγ

2

(λ+
∑

i>Nridge
λi)2

·
∑

i≥k∗ridge

λ2
i

)

≂
∑

i>k∗ridge

λi(w[i])2 +
(k∗

ridge + 1)∥w∗∥2H
N

+ σ2 ·
(
k∗
ridge

Nridge

+
Nridgeγ

2

(λ+
∑

i>Nridge
λi)2

·
∑

i≥k∗ridge

λ2
i

)
≲ RidgeBias + RidgeVariance, (3.7.1)

where the last equality holds since we assume that ∥w∥2H/σ2 = Θ(1). Note that the R.H.S.

of (3.7.1) is exactly the lower bound of the excess risk of ridge regression. Therefore, we can

conclude that as long as Nsgd = N , SGD with a tuned stepsize γ will be no worse than ridge

regression for all λ (up to constant factors). This completes the proof.

110

3.8 Proof of Theorem 3.7.2

In this section we always make Assumption 3.4.1. The results and techniques are either

explicitly or implicitly presented in [BLL20; TB20]. For self-completeness, we provide a

formal proof here.

Notation. Following [TB20] and [BLL20], we define the following notations:

• v := H− 1
2x ∈ Rd, then v is sub-Gaussian and has independent components.

• Let X := (x1, . . . ,xn)
⊤ ∈ Rn×d. Let X = (X0:k Xk:∞)

• Let X =
(√

λ1z1, . . . ,
√
λdzd

)
∈ Rn×d, then by Assumption 3.4.1, zj is 1-sub-Gaussian

and has independent components.

• Let Ã := XX⊤ =
∑d

i=1 λiziz
⊤
i ∈ Rn×n. Let A := Ã+ λnIn = XX⊤ + λIn.

• Let Ãk := Xk:∞X⊤
k:∞ =

∑
i≤k λiziz

⊤
i ∈ Rn×n. Let Ak := Ãk + λIn = Xk:∞X⊤

k:∞ + λIn.

• Let Ã−j :=
∑

i ̸=j λiziz
⊤
i ∈ Rn×n. Let A−j := Ã−j + λIn.

• Let ρk :=
λ+

∑
i>k λi

λk+1
.

• Let C := A−1XHX⊤A−1.

• Let B :=
(
Id −X⊤A−1X

)
H
(
Id −X⊤A−1X

)
.

• We use EX[·] and Eϵ[·] to denote the expectation with respect to the randomness of

drawing X and the randomness of noise, respectively.

Under the above notations and from [BLL20; TB20], we have

EX,ϵ[ridge error] = EX[RidgeBias] + EX,ϵ[RidgeVariance],

111

where

RidgeBias := (w∗)⊤Bw∗, RidgeVariance := ϵ⊤Cϵ.

We next provide lower bounds for each terms respectively.

Lemma 3.8.1 (Variant of Lemma 10 in [BLL20]). There are constants b, c ≥ 1 such that

for every k ≥ 0, with probability at least 0.1,

1. for all i ≥ 1,

µk+1(A−i) ≤ µk+1(A) ≤ µ1(Ak) ≤ c

(
λ+

∑
j>k

λj + λk+1n

)
,

2. for all 1 ≤ i ≤ k,

1

c

(
λ+

∑
j>k

λj

)
− cλk+1n ≤ µn(Ak) ≤ µn(A−i) ≤ µn(A),

3. if ρk ≥ bn, then
1

c
λk+1ρk ≤ µn(Ak) ≤ µ1(Ak) ≤ cλk+1ρk.

4. if ρk ≥ bn, then for all i > k,

µn(A−i) ≥
1

c
λk+1ρk

Proof. The first two claims are proved by noticing that A = λI + Ã, Ak = λI + Ãk,

A−i = λI+ Ã−i, and applying Lemma 10 in [BLL20] to Ã, Ãk, Ã−j.

The third claim is proved by using the first two claims and that ρk ≥ bn to obtain that

µ1(Ak) ≤ c

(
λ+

∑
i>k

λi + λk+1n

)
≤
(
c+

c

b

)
·

(
λ+

∑
i>k

λi

)
,

µn(Ak) ≥
1

c

(
λ+

∑
i>k

λi

)
− cλk+1n ≥

(
1

c
− c

b

)
·

(
λ+

∑
i>k

λi

)
,

and by re-scaling the constants.

112

The fourth claim is used in Lemma 3 in [TB20], which can be proved under Assumption

3.4.1 as follows. Let i > k and Ãk,−i =
∑

j>k,j ̸=i λjzjz
⊤
j . Then by Lemma 10 in [BLL20]

there is an absolute constant c ≥ 1 such that

µn(Ã−i) ≥ µn(Ãk,−i) ≥
1

c

∑
j>k,j ̸=i

λj − cλk+1n

holds with probability at least 1− 2e−n/c, which yields

µn(A−i) ≥ λ+
1

c

∑
j>k,j ̸=i

λi − cλk+1n ≥ λ+
1

2c

∑
j>k

λj −
(
c+

1

c

)
λk+1n,

where the last inequality is because: (1)
∑

j>k,j ̸=i λj ≥ 1
2

∑
j>k λj if i > k + 1, and (2)∑

j>k,j ̸=i λj =
∑

j>k λj − λk+1 if i = k + 1. Finally, using the condition that ρk ≥ bn we

obtain that for i > k,

µn(A−i) ≥ λ+
1

2c

∑
j>k

λj − (c+
1

c
)λk+1n ≥

(
1

2c
− c

b
− 1

cb

)
·

(
λ+

∑
j>k

λj

)
,

which completes the proof by letting b > 4c2 and c ≥ 1

Variance Lower Bounds. According to Lemma 7 in [BLL20], and note that ϵ is inde-

pendent of X, has zero mean, and is σ-sub-Gaussian, we have that

Eϵ[RidgeVariance] = Eϵ[ϵ
⊤Cϵ] = tr

(
C · E[ϵϵ⊤]

)
≥ 1

c
σ2 tr(C) (3.8.1)

for some constant c > 1. In the following we lower bound tr(C).

Lemma 3.8.2 (Variant of Lemma 8 in [BLL20]).

tr(C) =
∑
i

λ2
i z

⊤
i A

−2zi =
∑
i

λ2
i z

⊤
i A

−2
−i zi(

1 + λiz⊤i A
−1
−i zi

)2 .
Proof. This is from the proof of Lemma 14 in [TB20], and can be proved in the same way

as Lemma 8 in [BLL20].

113

Lemma 3.8.3 (Variant of Lemma 14 in [BLL20]). There is a constant c such that for any

i ≥ 1 with λi > 0, and any 0 ≤ k ≤ n/c, with probability at least 0.1,

λ2
i z

⊤
i A

−2
−i zi(

1 + λiz⊤i A
−1
−i zi

)2 ≥ 1

cn
·
(
1 +

λk+1

λi
·
(
1 +

ρk
n

))−2

Proof. Let Li be a random subspace if Rn of codimension k, then

z⊤i A
−1
−i zi ≥

1

c1
·

∥ΠLi
zi∥22

λ+
∑

j>k λj + λk+1n
(by Lemma 3.8.1)

≥ 1

c2
· n

λ+
∑

j>k λj + λk+1n
(by Corollary 13 in [BLL20])

=
1

c2
· n

λk+1(ρk + n)
,

where c1, c2 > 1 are constants. The above implies that

λ2
i z

⊤
i A

−2
−i zi(

1 + λiz⊤i A
−1
−i zi

)2 =
(
1 +

(
λiz

⊤
i A

−1
−i zi

)−1
)−2

·
∥∥z⊤i A−1

−i
∥∥2
2(

z⊤i A
−1
−i zi

)2
≥
(
1 +

(
λiz

⊤
i A

−1
−i zi

)−1
)−2

· 1

∥zi∥22
(by Cauchy-Schwarz’s inequality)

≥
(
1 + c2 ·

λk+1(ρk + n)

nλi

)−2

· 1

∥zi∥22
. (by the lower bound for z⊤i A

−1
−i zi)

According to Corollary 13 in [BLL20], there is constant c3 > 1 such that ∥zi∥22 ≤ 1
c3
n

holds with constant probability, inserting which into the above inequality and rescaling the

constants complete the proof.

Lemma 3.8.4 (Variant of Lemma 16 in [BLL20]). There is constant c such that for any

0 ≤ k ≤ n/c and any b > 1 with probability at least 0.1,

• if ρk < bn, then tr(C) ≥ k+1
cb2n

;

• if ρk ≥ bn, then tr(C) ≥ 1
cb2

minℓ≤k

{
ℓ
n
+

b2n
∑

i>ℓ λ
2
i

(λk+1ρk)2

}
.

Proof. This is proved by repeating the proof of Lemma 16 in [BLL20], where we replace

Lemmas 8 and 14 in [BLL20] with our Lemmas 3.8.2 and 3.8.3 respectively.

114

Theorem 3.8.5 (Restatement of Theorem 3.7.2, variance part). There exist absolute con-

stants b, c, c1 > 1 for the following to hold: let

k∗ := min{k : λ+
∑
i>k

λi ≥ bnλk+1},

then with probability at least 0.1:

• if k∗ ≥ n/c1 then

Eϵ[RidgeVariance] ≥
σ2

c
;

• if k∗ < n/c1 then

Eϵ[RidgeVariance] ≥
σ2

c

(
k∗

n
+

n

λ+
∑

i>k∗ λi
·
∑
i>k∗

λ2
i

)
.

As a direct consequence, the expected ridge variance is lower bounded by

EX,ϵ[RidgeVariance] ≥

σ2

10c
, k∗ ≥ n/c1

σ2

10c

(
k∗

n
+ n

λ+
∑

i>k∗ λi
·
∑

i>k∗ λ
2
i

)
, k∗ < n/c1.

Proof. The high probability lower bound is proved by (3.8.1), our Lemma 3.8.4, and Lemma

17 in [BLL20]. The expectation lower bound follows immediately from the high probability

lower bound by noticing the ridge variance error is non-negative.

Bias Lower Bound. Recall the ridge bias error is [TB20]

RidgeBias = (w∗)⊤Bw∗ =
∑
i

(B)ii (w
∗
i)

2 + 2
∑
i>j

(B)ij w
∗
iw

∗
j . (3.8.2)

The following lemma shows the crossing terms are zero in expectation.

Lemma 3.8.6. For i ̸= j,

EX[(B)ij] = 0.

115

Proof. Recall that

B :=
(
Id −X⊤A−1X

)
H
(
Id −X⊤A−1X

)
.

Recall that X =
(√

λ1z1, . . .
√
λdzd

)
, thus the i-th column of

(
Id −X⊤A−1X

)
is

(
Id −X⊤A−1X

)
i
= ei −

√
λiX

⊤A−1zi.

Moreover recall H = diag(λ1, . . . , λd), therefore

(B)ij = e⊤i Bej =
(
ei −

√
λiX

⊤A−1zi

)⊤
H
(
ej −

√
λjX

⊤A−1zj

)
= e⊤i Hej −

√
λie

⊤
j HX⊤A−1zi −

√
λje

⊤
i HX⊤A−1zj +

√
λiλjz

⊤
i A

−1XHX⊤A−1zj

= e⊤i Hej −
(√

λiλjλj +
√

λiλjλi

)
z⊤i A

−1zj +
√
λiλjz

⊤
i A

−1XHX⊤A−1zj.

The first term is zero since H is diagonal and i ̸= j. We next show the second term is zero

in expectation. Indeed, let

F (zi) := z⊤i A
−1zj = z⊤i

(
A−i + λiziz

⊤
i

)−1
zj,

where A−i is independent of zi, then F (zi) = −F (−zi). Also note that zi follows a standard

Gaussian which is symmetric, therefore EziF (zi) = 0. In a similar manner, the third term

is also zero in expectation. The proof is then completed.

Lemma 3.8.7 (Part of the proof of Lemma 15 in [TB20]). There exists absolute constant

c > 1, such that with probability at least 0.1,

(B)ii ≥
1

c
· λi(

1 + λi
λk+1

· n
ρk

)2 .
As a direct consequence,

EX[(B)ii] ≥
1

10c
· λi(

1 + λi
λk+1

· n
ρk

)2 .

116

Proof. This lemma summarizes part of the proof of Lemma 15 in [TB20]. Recall that H is

diagonal and B :=
(
Id −X⊤A−1X

)
H
(
Id −X⊤A−1X

)
, thus

(B)ii = λi
∥∥(Id −X⊤A−1X

)
i

∥∥2
2

(since H is diagonal)

= λi

∥∥∥e⊤i −
√
λiz

⊤
i A

−1X
∥∥∥2
2

(X =
(√

λ1z1, . . . ,
√
λjzj, . . .

√
λdzd

)
)

= λi

∥∥∥e⊤i −
(√

λiλ1z
⊤
i A

−1z1, . . . ,
√
λiλjz

⊤
i A

−1zj, . . .
√
λiλdz

⊤
i A

−1zd

)∥∥∥2
2

≥ λi
(
1− λiz

⊤
i A

−1zi
)2

(use Pythagorean theorem)

=
λi(

1 + λiz⊤i A
−1
−i zi

)2 ,
where in the last step we use A = A−i + λiziz

⊤
i and that

1− λiz
⊤
i A

−1zi = 1− λiz
⊤
i

(
A−i + λiziz

⊤
i

)−1
zi

= 1− λiz
⊤
i

(
A−1

−i − λiA
−1
−i zi(1 + z⊤i A

−1
−i zi)

−1z⊤i A
−1
−i
)
zi

=
1

1 + λiz⊤i A
−1
−i zi

.

Now according to Corollary 13 in [BLL20], there exists constant c1 > 1 such that

∥zi∥22 ≤ c1n

holds with constant probability; and according to Lemma 3.8.1, there exists constant c2 > 1

such that for any i ≥ 1,

µn(A−i) ≥
1

c2
λk+1ρk

holds with constant probability. These two facts imply that

z⊤i A
−1
−i zi ≤ µn(A−i)

−1 ∥zi∥22 ≤ c1c2
n

λk+1ρk
,

inserting which into the bound of (B)ii, we conclude that with constant probability,

(B)ii ≥
λi(

1 + λiz⊤i A
−1
−i zi

)2 ≥ λi(
1 + c1c2 · λi

λk+1
· n
ρk

)2 .
Finally a rescaling of the constants completes the proof.

117

Theorem 3.8.8 (Restatement of Theorem 3.7.2, bias part). There exist absolute constants

b, c > 1 for the following to hold: let

k∗ := min{k : λ+
∑
i>k

λi ≥ bnλk+1},

then

EX[RidgeBias] ≥
1

c

(
λ+

∑
i>k∗ λi

n2
· ∥w∗∥2H−1

0:k∗
+ ∥w∗∥2Hk∗:∞

)
.

Proof. By (3.8.2), Lemmas 3.8.6 and 3.8.7, we have that,

EX[RidgeBias] =
∑
i

(B)ii (w
∗
i)

2

≥ 1

c1

∑
i

1(
1 + λi

λk∗+1
· n
ρk∗

)2 · λi(w∗
i)

2 (choose k = k∗)

≥ 1

c1b2

∑
i

1(
1
b
+ λi

λk∗+1
· n
ρk∗

)2 · λi(w∗
i)

2,

where c1, b > 1 are all absolute constants. Note that for all i ≤ k∗, we must have λ +∑
j>i−1 λj < bnλi,

λi
λk∗+1

· n

ρk∗
=

λin

λ+
∑

j>k∗ λj
≥ λin

λ+
∑

j>i−1 λj
≥ 1

b
,

and for all i ≥ k∗ + 1, we have

λi
λk∗+1

· n

ρk∗
≤ n

ρk∗
≤ 1

b
,

then

EX[RidgeBias] ≥
1

c1b2

∑
i

1(
1
b
+ λi

λk∗+1
· n
ρk∗

)2 · λi(w∗
i)

2

≥ 1

2c1b2
·

∑
i≤k∗

1(
λi
λk+1

· n
ρk

)2 · λi(w∗
i)

2 +
∑
i>k∗

1

(1/b)2
· λi(w∗

i)
2

≥ 1

c

(∑
i≤k∗

(λk+1ρk)
2

n2
· λ−1

i (w∗
i)

2 +
∑
i>k∗

λi(w
∗
i)

2

)

=
1

c

(
λ+

∑
i>k∗ λi

n2
· ∥w∗∥2H−1

0:k∗
+ ∥w∗∥2Hk∗:∞

)
,

118

where c > 1 is an absolute constant.

3.9 Conclusions

We conduct an instance-based risk comparison between SGD and ridge regression for a

broad class of least square problems. We show that SGD is always no worse than ridge

regression provided logarithmically more samples. On the other hand, there exist some

instances where even optimally-tuned ridge regression needs quadratically more samples to

compete with SGD. This separation in terms of sample inflation between SGD and ridge

regression suggests a provable benefit of implicit regularization over explicit regularization

for least squares problems. In the future, we will explore the benefits of implicit regularization

for learning other linear models and potentially nonlinear models.

119

Part II

Learning Over-parameterized Neural

Network Models

120

CHAPTER 4

Optimization of Over-parameterized Deep ReLU

Networks

4.1 Introduction

In this chapter, we study the optimization properties of gradient-based methods for training

deep ReLU neural networks, with more realistic assumption on the training data, milder

over-parameterization condition and faster convergence rate, compared to existing works

[LL18; ALS19a]. In specific, we consider an L-hidden-layer fully-connected neural network

with ReLU activation function. We show that GD can achieve the global minima of the

training loss for any L ≥ 1, with the aid of over-parameterization and random initialization.

The high-level idea of our proof technique is to show that Gaussian random initialization

followed by gradient descent generates a sequence of iterates within a small perturbation

region centering around the initial weights. In addition, we will show that the empirical

loss function of deep ReLU networks has very good local curvature properties inside the

perturbation region, which guarantees the global convergence of gradient descent. Compared

with the proof technique in [ALS19a], we provide a sharper analysis on the GD algorithm

and prove that GD can be guaranteed to have sufficient descent in a larger perturbation

region with a larger step size. This leads to a faster convergence rate and a milder condition

on the over-paramterization. More specifically, our main contributions are summarized as

follows:

• We establish the global convergence guarantee for training deep ReLU networks in

121

terms of classification problems. Compared with [LL18; ALS19a] our assumption on

training data is more reasonable and is often satisfied by real training data. Specifically,

we only require that any two data points from different classes are separated by some

constant, while [LL18] assumes that the data from different classes are sampled from

small balls separated by a constant margin, and [ALS19a] requires that any two data

points are well separated, even though they belong to the same class.

• We show that with Gaussian random initialization on each layer, when the number

of hidden nodes per layer is at least Ω̃
(
n14L16/ϕ4

)
, GD can achieve zero training

error within Õ
(
n5L3/ϕ

)
iterations, where ϕ is the data separation distance1, n is the

number of training examples, and L is the number of hidden layers. This significantly

improves the state-of-the-art results by [ALS19a], where the authors proved that GD

can converge within Õ
(
n6L2/ϕ2

)
iterations if the number of hidden nodes per layer

is at least Ω̃(n24L12/ϕ8). Compared with [DLL19], our result only has a polynomial

dependency on the number of hidden layers, which is much better than their result that

has an exponential dependency on the depth for fully connected deep neural networks.

4.2 Additional Related Work

Due to the huge amount of literature on deep learning theory, we are not able to include all

papers in this big vein here. Instead, we review the following two additional lines of research,

which are also related to our work.

One-hidden-layer neural networks with ground truth parameters Recently a series

of work [Tia17; BG17; LY17; DLT18; ZYW19] studied a specific class of shallow two-layer

(one-hidden-layer) neural networks, whose training data are generated by a ground truth

network called “teacher network”. This series of work aim to provide recovery guarantee

1We will define the data separation distance, training sample size n and number of hidden layers L
formally in Sections 4.3 and 4.4.

122

for gradient-based methods to learn the teacher networks based on either the population or

empirical loss functions. More specifically, [Tia17] proved that for two-layer ReLU networks

with only one hidden neuron, GD with arbitrary initialization on the population loss is able

to recover the hidden teacher network. [BG17] proved that GD can learn the true parame-

ters of a two-layer network with a convolution filter. [LY17] proved that SGD can recover

the underlying parameters of a two-layer residual network in polynomial time. Moreover,

[DLT18] proved that both GD and SGD can recover the teacher network of a two-layer CNN

with ReLU activation function. [ZYW19] showed that GD on the empirical loss function can

recover the ground truth parameters of one-hidden-layer ReLU networks at a linear rate.

Deep linear networks Beyond shallow one-hidden-layer neural networks, a series of recent

work [HM16; Kaw16; BHL18; GLS18b; AGC19; ACH18] focused on the optimization land-

scape of deep linear networks. More specifically, [HM16] showed that deep linear residual

networks have no spurious local minima. [Kaw16] proved that all local minima are global

minima in deep linear networks. [ACH18] showed that depth can accelerate the optimiza-

tion of deep linear networks. [BHL18] proved that with identity initialization and proper

regularizer, GD can converge to the least square solution on a residual linear network with

quadratic loss function, while [AGC19] proved the same properties for general deep linear

networks.

4.3 Preliminaries

4.3.1 Problem Setup

Let {(x1, y1), . . . , (xn, yn)} ∈ (Rd × {−1, 1})n be a set of n training examples. Let m0 = d.

We consider L-hidden-layer neural networks as follows:

fW(x) = v⊤σ(W⊤
Lσ(W

⊤
L−1 · · · σ(W⊤

1 x) · · ·)),

123

where σ(x) = max{0, x} is the entry-wise ReLU activation function,Wl = (wl,1, . . . ,wl,ml
) ∈

Rml−1×ml , l = 1, . . . , L are the weight matrices, and v ∈ {−1,+1}mL is the fixed output layer

weight vector with half 1 and half −1 entries. Let W = {Wl}l=1,...,L be the collection of ma-

trices W1, . . . ,WL, we consider solving the following empirical risk minimization problem:

LS(W) =
1

n

n∑
i=1

ℓ(yiŷi) =
1

n

n∑
i=1

ℓ
(
yiv

⊤σ(W⊤
Lσ(W

⊤
L−1 · · ·σ(W⊤

1 xi) · · ·))
)

(4.3.1)

where ŷi = fW(xi) denotes the output of neural network and ℓ(x) = log(1+ exp(−x)) is the

cross-entropy loss for binary classification.

4.3.2 Optimization Algorithms

In this chapter, we consider training a deep neural network with Gaussian initialization

followed by gradient descent.

Gaussian initialization. We say that the weight matrices W1, . . . ,WL are generated from

Gaussian initialization if each column of Wl is generated independently from the Gaussian

distribution N(0, 2/mlI) for all l = 1, . . . , L. This initialization mechanism is called He-

initialization, which was proposed in [HZR15].

Gradient descent. We consider solving the empirical risk minimization problem (4.3.1)

with gradient descent with Gaussian initialization: let W
(0)
1 , . . . ,W

(0)
L be weight matrices

generated from Gaussian initialization, we consider the following gradient descent update

rule:

W
(k)
l = W

(k−1)
l − η∇Wl

LS(W
(k−1)), l = 1, . . . , L,

where ∇Wl
LS(·) is the partial gradient of LS(·) with respect to the l-th layer parameters

Wl, and η > 0 is the step size (a.k.a., learning rate).

124

4.3.3 Calculations for Neural Network Functions

Here we briefly introduce some useful notations and provide some basic calculations regarding

the neural network in our setting.

• Output after the l-th layer: Given an input xi, the output of the neural network

after the l-th layer is

xl,i = σ(W⊤
l σ(W

⊤
l−1 · · ·σ(W⊤

1 xi) · · ·))

=

(l∏
r=1

Σr,iW
⊤
r

)
xi,

where Σ1,i = Diag
(
1{W⊤

1 xi > 0}
)
2, and Σl,i = Diag[1{W⊤

l (
∏l−1

r=1Σr,iW
⊤
r)xi > 0}]

for l = 2, . . . , L.

• Output of the neural network: The output of the neural network with input xi

is as follows:

fW(xi) = v⊤σ(W⊤
Lσ(W

⊤
L−1 · · ·σ(W⊤

1 xi) · · ·))

= v⊤

(
L∏
r=l

Σr,iW
⊤
r

)
xl−1,i,

where we define x0,i = xi and the last equality holds for any l ≥ 1.

• Gradient of the neural network: The partial gradient of the training loss LS(W)

with respect to Wl is as follows:

∇Wl
LS(W) =

1

n

n∑
i=1

ℓ′(yiŷi) · yi · ∇Wl
[fW(xi)],

where the gradient of the neural network function is defined as

∇Wl
[fW(xi)] = xl−1,iv

⊤
(L∏
r=l+1

Σr,iW
⊤
r

)
Σl,i.

2Here we slightly abuse the notation and denote 1{a > 0} = (1{a1 > 0}, . . . ,1{am > 0})⊤ for a vector
a ∈ Rm.

125

In the remaining of this paper, we define the gradient ∇LS(W) as the collection of

partial gradients with respect to all Wl’s, i.e.,

∇LS(W) = {∇W1LS(W),∇W2LS(W), . . . ,∇WL
LS(W)}.

We also define the Frobenius norm of ∇LS(W) as

∥∇Wl
LS(W)∥F =

[
L∑
l=1

∥∇Wl
LS(W)∥2F

]1/2
.

4.4 Main Theory

In this section, we show that with random Gaussian initialization, over-parameterization

helps gradient descent converge to the global minimum, i.e., find a point in the parameter

space with arbitrary small training loss. We start with assumptions on the training data,

Assumption 4.4.1. ∥xi∥2 = 1 and (xi)d = µ for all i ∈ {1, . . . , n}, where µ ∈ (0, 1) is a

constant.

As is shown in the assumption above, the last entry of input x is considered to be a

constant µ. This assumption is natural because it can be seen as adding a bias term in the

input layer, and learning both weight vector and bias is equivalent to adding an additional

dummy variable ((xi)d = µ) to all input vectors and learning the weight vector only. The

same assumption has been made in [ALS19a]. In addition, we emphasize that Assumption

4.4.1 is made in order to simplify the proof. Actually, rather than restricting the norm of

all training examples to be 1, this assumption can be relaxed to be that ∥xi∥2 is lower and

upper bounded by some constants.

Assumption 4.4.2. For all i, i′ ∈ {1, . . . , n}, if yi ̸= yi′ , then ∥xi − xi′∥2 ≥ ϕ for some

ϕ > 0.

Assumption 4.4.2 basically requires that inputs with different labels in the training data

are separated from each other by at least a constant. This assumption is often satisfied in

126

practice. In contrast, [ALS19a] assumes that every two different data points in the training

data are separated by a constant, which is much stronger and cannot be satisfied since in

classification it is allowed that the data with the same label can be arbitrarily close.

Furthermore, Assumption 4.4.2 can be easily verified based on the training data. As

a comparison, the assumption made in [DLL19] assumes that certain deep compositional

Gram matrix defined on the training data is strictly positive definite, which is not easy to

verify, since the definition of their special Gram matrix is based on integration.

Then we have the following assumption on the structure of neural network.

Assumption 4.4.3. Define M = max{m1, . . . ,mL}, m = min{m1, . . . ,mL}. We assume

that M ≤ 2m.

Assumption 4.4.3 states that the number of nodes at all layers are of the same order.

The constant 2 is not essential and can be replaced with an arbitrary constant greater than

or equal to 1.

Under Assumptions 4.4.1-4.4.3, we are able to establish the global convergence of gradi-

ent descent for training deep ReLU networks. Specifically, we provide the following theorem

which characterizes the required numbers of hidden nodes and iterations such that the gra-

dient descent can attain the global minimum of the training loss function.

Theorem 4.4.4. Suppose W
(0)
1 , . . . ,W

(0)
L are generated by Gaussian initialization. Then

under Assumptions 4.4.1-4.4.3, if the step size η = O(M−1L−3), the number of hidden nodes

per layer satisfies

m = Ω̃
(
n14L16ϕ−4 + n12L16ϕ−4ϵ−1

)
and the maximum number of iteration satisfies

K = Õ
(
n5L3/ϕ+ n3L3ϵ−1/ϕ

)
,

then with high probability, the last iterate of gradient descent W(K) satisfies LS(W
(K)) ≤ ϵ.

127

Remark 4.4.5. Note that our bound on the required number of hidden nodes per layer,

i.e., m, depends on the target accuracy ϵ. However, in practical classification tasks, we are

more interested in finding some points with zero training error. In specific, the cross-entropy

loss ℓ(x) = log(1 + exp(−x)) is strictly decreasing in x, thus ℓ(yiŷi) ≤ ℓ(0) = log(2) implies

yiŷi ≥ 0. If we set LS(W) ≤ ℓ(0)/n = log(2)/n, it holds that ℓ(yiŷi) ≤ nLS(W) ≤ ℓ(0)

for all i ∈ [n], which further implies that yiŷi ≥ 0 for all i ∈ [n], i.e., all training data are

correctly classified. Therefore, Theorem 4.4.4 implies that gradient descent can find a point

with zero training error if the number of hidden nodes per layer is at leastm = Ω̃(n14L16ϕ−4).

Remark 4.4.6. Here we compare our theoretical results with those in [ALS19a] and [DLL19].

Specifically, [ALS19a] proves that gradient descent can achieve zero training error within

O(n6L2/ϕ2) iterations under the condition that the neural network width is at least m =

Ω̃(n24L12/ϕ8). As a clear comparison, our result on m is significantly better by a factor of

Ω̃(n10L−4/ϕ4), and our convergence rate is faster by a factor of O(nL−1)3. On the other

hand, [DLL19] proved similar global convergence result when the neural network width is at

least Ω̃
(
2O(L) · n4/λ4

0

)
, where λ0 is the smallest eigenvalue of the deep compositional Gram

matrix defined in their paper. Compared with their result, our condition on m has signifi-

cantly better dependency in L. In addition, for real training data, λ0 can have high degree

dependency on the reciprocal of the sample size n, which makes the dependency of their

result on n much worse.

4.5 Proof of the Main Theory

In this section, we provide the proof of the main theory. In specific, we decompose the proof

into three steps:

Step 1: We characterize a perturbation region at the initialization, and prove that the

3It is worth noting that in practice we usually have n ≫ L, thus our improvements in terms of the
over-parameterization condition and convergence rate are indeed significant.

128

neural network attains good properties within such region.

Step 2: Based on the assumption that all iterates are staying inside the region B(W(0), τ),

we establish the convergence results of gradient descent.

Step 3: We verify that with our choice of m, until convergence all iterates of gradient

descent would not escape from the perturbation region B(W(0), τ), which justifies the derived

convergence guarantee.

Now we characterize the perturbation as follows. Given the initialization generated by

Gaussian distribution W(0) := {W(0)
l }l=1,...,L, we define by B(W(0), τ) = {W : ∥Wl −

W
(0)
l ∥2 ≤ τ for all l ∈ [L]} the perturbation region centered at W(0). Then we provide the

following Lemmas that provides key results which are essential to establish the convergence

guarantees for (stochastic) gradient descent.

Lemma 4.5.1 (Bounded initial training loss). Under Assumptions 4.4.1 and 4.4.3, with

probability at least 1 − δ, at the initialization the training loss satisfies LS(W
(0)) ≤

C
√

log(n/δ).

Next we are going to state the following key lemmas that characterizes some essential

properties of the neural network when its weight parameters satisfies W ∈ B(W(0), τ).

Firstly, the following lemma that provides the lower and upper bounds of the Frobenious

norm of the partial gradient ∇Wl
[LS(W)].

Lemma 4.5.2 (Gradient lower and upper bound). Under Assumptions 4.4.1, 4.4.2, and

4.4.3, if τ = O
(
ϕ3/2n−3L−2

)
and m = Ω̃(n2ϕ−1), then for all W̃ ∈ B(W(0), τ), with proba-

bility at least 1− exp
(
−O(mϕ/n)

)
, there exist positive constants C and C ′ such that

∥∇WL
[LS(W̃)]∥2F ≥ C

mϕ

n5

(n∑
i=1

ℓ′(yiỹi)

)2

,

∥∇Wl
[LS(W̃)]∥F ≤ −C ′LM1/2

n

n∑
i=1

ℓ′(yiỹi),

for all l ∈ [L], where ỹi = fW̃(xi).

129

Then we provide the following lemma that characterizes the training loss decreasing after

one-step gradient descent.

Lemma 4.5.3 (Sufficient Descent). Let W
(0)
1 , . . . ,W

(0)
L be generated via Gaussian random

initialization. Let W(k) = {W(k)
l }l=1,...,L be the k-th iterate in the gradient descent and

τ = O(L−11 log−3/2(M)). If W(k),W(k+1) ∈ B(W(0), τ), then there exist constants C ′ and

C ′′ such that with probability at least 1− exp
(
−O(mϕ/n)

)
the following holds,

LS(W
(k+1))− LS(W

(k)) ≤ −
(
η − C ′ML3η2

)
∥∇LS(W

(k))∥2F

−
C ′′L8/3τ 1/3

√
M log(M) · η∥∇LS(W

(k))∥F
n

n∑
i=1

ℓ′(yiŷ
(k)
i)

The second term on the R.H.S. of the result in Lemma 4.5.3 is due to the non-smoothness

of ReLU activation, which can be characterized by counting how many nodes would change

their activation patterns during the training process. Clearly, in order to guarantee that

the gradient descent can bring sufficient descent in each step, we require the radius τ to be

sufficiently small. In the following, we are going to complete the proof of Theorem 4.4.4

based on Lemmas 4.5.1-4.5.3 .

Proof of Theorem 4.4.4. We first prove that GD is able to achieve ϵ training loss under the

condition that all iterates are staying inside the perturbation region B(W(0), τ). Note that

by Lemma 4.5.2, we know that there exists a constant c0 such that

∥∇LS(W
(k))∥2F ≥ ∥∇WL

[LS(W
(k))]∥2F ≥ c0mϕ

n5

(n∑
i=1

ℓ′(yiŷ
(k)
i)

)2

.

We set the radius τ and the step size η as follows,

τ=

(
c
1/2
0 m1/2ϕ1/2

4C ′′L8/3n3/2
√

M log(M)

)3

= Õ(n−9/2L−8ϕ3/2),

η=
1

4C ′ML3
= O(M−1L−3).

130

Then we have

LS(W
(k+1))− LS(W

(k))

≤ −3η

4
∥∇LS(W

(k))∥2F − c0ηm
1/2ϕ1/2

4n5/2
∥∇LS(W

(k))∥F ·
n∑
i=1

ℓ′(yiŷ
(k)
i)

≤ −η

2
∥∇LS(W

(k))∥2F

≤ −η
c0mϕ

2n5

(n∑
i=1

ℓ′(yiŷ
(k)
i)

)2

, (4.5.1)

where the first inequality is by Lemma 4.5.3 and the choices of η and τ , the second inequality

follows from Lemma 4.5.2, and the last inequality is due to the gradient lower bound we

derived above. Note that ℓ(x) = log(1+exp(−x)), which satisfies −ℓ′(x) = 1/(1+exp(x)) ≥

min
{
α0, α1ℓ(x)

}
where α0 = 1/2 and α1 = 1/(2 log(2)). This implies that

−
n∑
i=1

ℓ′(yiŷ
(k)
i) ≥ min

{
α0,

n∑
i=1

α1ℓ(yiŷ
(k)
i)

}
≥ min

{
α0, nα1LS(W

(k))
}
.

Note that min{a, b} ≥ 1/(1/a+1/b), we have the following by plugging the above inequality

into (4.5.1)

LS(W
(k+1))− LS(W

(k)) ≤ −ηmin

{
c0mϕα2

0

2n5
,
c0mϕα2

1

2n3
L2
S(W

(k))

}
≤ −η

(
2n5

c0mϕα2
0

+
2n3

c0mϕα2
1L

2
S(W

(k))

)−1

.

Rearranging terms gives

2n5

c0mϕα2
0

(
LS(W

(k+1))− LS(W
(k))
)
+

2n3
(
LS(W

(k+1))− LS(W
(k))
)

c0mϕα2
1L

2
S(W

(k))
≤ −η. (4.5.2)

Applying the inequality (x− y)/y2 ≥ y−1 − x−1 and taking telescope sum over k give

kη ≤ 2n5

c0mϕα2
0

(
LS(W

(0))− LS(W
(k))
)
+

2n3
(
L−1
S (W(k))− L−1

S (W(0))
)

c0mϕα2
1

≤ 2n5

c0mϕα2
0

LS(W
(0)) +

2n3
(
L−1
S (W(k))− L−1

S (W(0))
)

c0mϕα2
1

. (4.5.3)

Now we need to guarantee that after K gradient descent steps the loss function LS(W
(K))

is smaller than the target accuracy ϵ. By Lemma 4.5.1, we know that the training loss

131

LS(W
(0)) = Õ(1). Therefore, by (4.5.3) and our choice of η, the maximum iteration number

K satisfies

K = Õ
(
n5L3/ϕ+ n3L3ϵ−1/ϕ

)
. (4.5.4)

Then we are going to verify the condition that all iterates stay inside the perturbation region

B(W(0), τ). We prove this by induction. Clearly, W(0) ∈ B(W(0), τ). Then we are going to

prove W(k+1) ∈ B(W(0), τ) under the induction hypothesis that W(t) ∈ B(W(0), τ) holds for

all t ≤ k. According to (4.5.1), we have

LS(W
(t+1))− LS(W

(t)) ≤ −η

2
∥∇LS(W

(t))∥2F , (4.5.5)

for any t < k. Therefore, by triangle inequality, we have

∥W(k)
l −W

(0)
l ∥2 ≤ η

k−1∑
t=0

∥∥∇Wl
[LS(W

(t))]
∥∥
2

≤ η

√√√√k
k−1∑
t=0

∥∥∇LS(W(t))
∥∥2
F

≤

√√√√2kη
k−1∑
t=0

[
LS(W(t))− LS(W(t+1))

]
≤
√
2kηLS(W(0)).

By Lemma 4.5.1, we know that LS(W
(0)) = Õ(1). Then applying our choices of η and K,

we have

∥W(k)
l −W

(0)
l ∥2 ≤

√
2KηLS(W(0)) = Õ

(
n5/2ϕ−1/2m−1/2 + n3/2ϵ−1/2ϕ−1/2m−1/2

)
.

In addition, by Lemma 4.5.2 and our choice of η, we have

η∥∇Wl
[LS(W

(k))]∥2 ≤ −ηC ′LM1/2

n

n∑
i=1

ℓ′
(
yi · fW(k)(xi)

)
≤ Õ(L−2M−1/2),

132

where the second inequality follows from the choice of η and the fact that −1 ≤ ℓ′(·) ≤ 0.

Then by triangle inequality, we have

∥W(k+1)
l −W

(0)
l ∥2 ≤ η∥∇Wl

[LS(W
(k))]∥2 + ∥W(k)

l −W
(0)
l ∥2

= Õ(n−9/2L−8ϕ3/2),

which is exactly in the same order of τ , where the last equality follows from the over-

parameterization assumptionm = Ω̃
(
n14L16ϕ−4+n12L16ϕ−4ϵ−1

)
. This verifies thatW(k+1) ∈

B(W(0), τ) and completes the induction for k. Thus we can complete the proof.

4.6 Experiments

In this section we carry out experiments on two real datasets (MNIST [LBB98] and CIFAR10

[Kri09]) to support our theory. Since we mainly focus on binary classification, we extract a

subset with digits 3 and 8 from the original MNIST dataset, which consists of 9, 943 training

examples. In addition, we also extract two classes of images (”cat” and ”ship”) from the

original CIFAR10 dataset, which consists of 7, 931 training examples. Regarding the neural

network architecture, we use a fully-connected deep ReLU network with L = 15 hidden

layers, each layer has width m. The network architecture is consistent with the setting of

our theory.

We first demonstrate that over-parameterization indeed helps optimization. We run GD

for training deep ReLU networks with different network widths and plot the training loss

in Figure 4.1, where we apply cross-entropy loss on both MNIST and CIFAR10 datasets.

In addition, the step sizes are set to be small enough and fixed for ReLU networks with

different width. It can be observed that over-parameterization indeed speeds up the conver-

gence of gradient descent, which is consistent with Lemmas 4.5.2 and 4.5.3, since the square

of gradient norm scales with m, which further implies that wider network leads to larger

133

0 500 1000 1500 2000 2500
epoch

10 3

10 2

10 1

100

Tr
ai

ni
ng

 lo
ss

m = 50
m = 200
m = 500
m = 1000
m = 2000

(a) MNIST

0 1000 2000 3000 4000 5000
epoch

10 1

100

Tr
ai

ni
ng

 lo
ss

m = 50
m = 200
m = 500
m = 1000
m = 2000

(b) CIFAR10

Figure 4.1: The convergence of GD for training deep ReLU network with different network

widths. (a) MNIST dataset. (b) CIFAR10 dataset.

0 500 1000 1500 2000 2500
epoch

0.0

0.5

1.0

1.5

2.0

Di
st

an
ce

 to
 th

e
in

iti
al

iza
tio

n m = 50
m = 200
m = 500
m = 1000
m = 2000

(a) MNIST

0 1000 2000 3000 4000 5000
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Di
st

an
ce

 to
 th

e
in

iti
al

iza
tio

n m = 50
m = 200
m = 500
m = 1000
m = 2000

(b) CIFAR10

Figure 4.2: Distance between the iterates of GD and the initialization. (a) MNIST dataset.

(b) CIFAR10 dataset.

function decrease if the step size is fixed. We also display the distance between the iterates

of GD and the initialization in Figure 4.2. It shows that when the network becomes wider,

GD is more likely to converge to a point closer to the initialization. This suggests that the

iterates of GD for training an over-parameterized deep ReLU network are harder to exceed

the required perturbation region, thus can be guaranteed to converge to a global minimum.

134

This corroborates our theory.

Finally, we monitor the activation pattern changes of all hidden neurons during the

training process, and show the results in Figure 4.3, where we use cross-entropy loss on both

MNIST and CIFAR10 datasets. Specifically, in each iteration, we compare the activation

status of all hidden nodes regarding all inputs with that at the initialization, and compute

the number of nodes whose activation status differs from that at the initialization. From

Figure 4.3 it is clear that the activation pattern difference ratio dramatically decreases as

the neural network becomes wider, which brings less non-smoothness during the training

process. This implies that wider ReLU network can better guarantee sufficient function

decrease after one-step gradient descent, which is consistent with our theory.

0 500 1000 1500 2000 2500
epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ac
tiv

at
io

n
pa

tte
rn

 d
iff

er
en

ce
 ra

tio

m = 50
m = 200
m = 500
m = 1000
m = 2000

(a) MNIST

0 1000 2000 3000 4000 5000
epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ac
tiv

at
io

n
pa

tte
rn

 d
iff

er
en

ce
 ra

tio

m = 50
m = 200
m = 500
m = 1000
m = 2000

(b) CIFAR10

Figure 4.3: Activation pattern difference ratio between iterates of GD and the initialization.

(a) MNIST dataset. (b) CIFAR10 dataset.

4.7 Proof of Lemmas in Section 4.5

In this section we provide the proof of all lemmas in Section 4.5.

135

4.7.1 Proof of Lemma 4.5.1

We first provide the following lemma that bounds the output of all hidden layer.

Lemma 4.7.1. With Gaussian random initialization, for any δ ∈ (0, 1), ifm ≥ CL2 log(nL/δ)

for some large enough constant C, then with probability at least 1 − δ, the following holds

for all l ∈ [L],

∣∣∥xl,i∥2 − 1
∣∣ ≤ Cl

√
log(nL/δ)

m
,

where m = min{m1, . . . ,mL}, and C is an absolute constant.

Proof of Lemma 4.5.1. Note that half of the entries of v are 1’s and the other half of the

entries are −1’s. Therefore, without loss of generality, here we assume that v1 = · · · =

vmL/2 = 1 and vmL/2+1 = · · · = vmL
= −1. Clearly, we have E(ŷi) = 0. Moreover, plugging

in the value of v gives

ŷi =

mL/2∑
j=1

[σ(w⊤
L,jxL−1,i)− σ(w⊤

L,j+mL/2
xL−1,i)].

Apparently, we have ∥σ(w⊤
L,jxL−1,i) − σ(w⊤

L,j+mL/2
xL−1,i)∥ψ2 ≤ C1m

−1/2
L for some absolute

constant C1. Therefore by Hoeffding’s inequality and Lemma 4.7.1, with probability at least

1− δ, it holds that

|ŷi| ≤ C2

√
log(n/δ)

for all i = 1, . . . , n. Then substituting the above bound into the formula of loss function

ℓ(yiŷi), we are able to complete the proof.

4.7.2 Proof of Lemma 4.5.2

In order to prove Lemma 4.5.2, we require the following lemmas. We first establish the

gradient lower bound at the initialization. Specifically, the following lemma gives a lower

bound of gradient norm with respect to the weight matrix in the last hidden layer.

136

Lemma 4.7.2. There exist absolute constants C,C ′, C ′′, C ′′′ > 0 such that, ifm ≥ Cn2ϕ−1 log(n),

then with probability at least 1 − exp(−C ′mLϕ/n), for any a = (a1, . . . , an)
⊤ ∈ Rn

+, there

exist at least C ′′mLϕ/n nodes in {1, . . . , j, . . . ,mL} that satisfy∥∥∥∥∥ 1n
n∑
i=1

aiyiσ
′(⟨wL,j,xL−1,i⟩)xL−1,i

∥∥∥∥∥
2

≥ C ′′′∥a∥∞/n

The following lemma characterizes the Lipschitz continuity of the gradients when the

neural network parameters are staying inside the required perturbation region, which is

essential to bound the norms of gradients.

Lemma 4.7.3 (Lemmas B.1 and B.2 in [ZCZ18]). Suppose that W1, . . . ,WL are generated

via Gaussian initialization. For τ > 0, let W̃1, . . . ,W̃L with ∥W̃l −Wl∥2 ≤ τ , l = 1, . . . , L

be the perturbed matrices. Let Σ̃l,i, l = 1, . . . , L, i = 1, . . . , n be diagonal matrices satisfying

∥Σ̃l,i − Σl,i∥0 ≤ s and |(Σ̃l,i − Σl,i)jj|, |(Σ̃l,i)jj| ≤ 1 for all l = 1, . . . , L, i = 1, . . . , n and

j = 1, . . . ,ml. If τ,
√

s log(M)/m ≤ κL−3/2 for some small enough absolute constant κ, then∥∥∥∥∥
l2∏
r=l1

Σ̃r,iW̃
⊤
r

∥∥∥∥∥
2

≤ C
√
L,

∥∥∥∥∥v⊤
L∏

r=l1

Σ̃r,iW̃
⊤
r

∥∥∥∥∥
2

≤ C ′
√
M,

∥∥∥∥∥v⊤
L∏

r=l1

Σ̃r,iW̃
⊤
r u

∥∥∥∥∥
2

≤ C ′′
√

s log(M)

for any 1 ≤ l1 < l2 ≤ L and vector u with ∥u∥2 = 1 and ∥u∥0 ≤ s, where C, C ′ and C ′′ are

absolute constants.

We then provide the following lemma which characterizes the difference between activa-

tion patterns and outputs of all hidden layers generated by any two different neural networks.

Lemma 4.7.4 (Lemma B.3 in [ZCZ18]). Suppose thatW1, . . . ,WL are generated via Gaus-

sian initialization. Let W̃ = {W̃1, . . . ,W̃L}, Ŵ = {Ŵ1, . . . ,ŴL} be two collections of

weight matrices satisfying ∥W̃l − Wl∥2, ∥Ŵl − Wl∥2 ≤ τ , l = 1, . . . , L. Let Σl,i, Σ̃l,i, Σ̂l,i

and xl,i, x̃l,i, x̂l,i be the binary matrices and hidden layer outputs at the l-th layer with pa-

rameter matrices W,W̃,Ŵ respectively. If τ ≤ κ′L−11(log(M))−3/2 for some small enough

absolute constant κ′ > 0, then there exits constants C and C ′ such that

∥x̂l,i − x̃l,i∥2 ≤ CL ·
l∑

r=1

∥Ŵr − W̃r∥2, ∥Σ̂l,i − Σ̃l,i∥0 ≤ C ′L4/3τ 2/3ml,

137

for all l = 1, . . . , L and i = 1, . . . , n.

Now we ready to prove Lemma 4.5.2.

Proof of Lemma 4.5.2. We first prove the gradient upper bound. For the training example

(xi, yi), let ỹi = fW̃(xi), the gradient ∇Wl
ℓ(yiỹi) can be written as follows,

∇Wl
ℓ(yiỹi) = ℓ′(yiỹi)yi∇Wl

[fW̃(xi)]

= ℓ′(yiỹi)yix̃l−1,iv
⊤

(
L∏

r=l+1

Σ̃r,iW̃
⊤
l

)
Σ̃l,i.

Note that by Lemma 4.7.3, there exists an absolute constant C0 such that ∥
∏l2

r=l1
Σ̃r,iW̃r∥2 ≤

C0

√
L. Hence, we have the following upper bound on

∥∥∇Wl
ℓ(yiỹi)

∥∥
F
,

∥∥∇Wl
ℓ(yiỹi)

∥∥
F
=
∥∥∇Wl

ℓ(yiỹi)
∥∥
2

≤ −ℓ′(yiỹi)

∥∥∥∥∥
l−1∏
r=1

Σ̃r,iW̃
⊤
r xi

∥∥∥∥∥
2

∥∥∥∥∥
L∏

r=l+1

Σ̃r,iW̃
⊤
l

∥∥∥∥∥
2

∥v∥2

≤ −ℓ′(yiỹi)C
2
0LM

1/2,

where the first equality holds due to the fact that the gradient of Wl: ∇Wl
ℓ(yiỹi) =

ℓ′(yiỹi)yix̃l−1,iv
⊤(∏L

r=l+1 Σ̃r,iW̃
⊤
l

)
Σ̃l,i is a rank-one matrix, and the last inequality follows

from the fact that ∥v∥2 = m
1/2
L ≤ M1/2. Moreover, we have the following for ∇Wl

[LS(W̃)]:

∥∥∇Wl
[LS(W̃)]

∥∥
F
=

∥∥∥∥∥ 1n
n∑
i=1

∇Wl
ℓ(yiỹi)

∥∥∥∥∥
F

≤ 1

n

n∑
i=1

∥∥∇Wl
ℓ(yiỹi)

∥∥
F
≤ −C2

0LM
1/2

n

n∑
i=1

ℓ′(yiỹi),

which completes the proof of gradient upper bound.

Now we are going to prove the gradient lower bound. Given initialization W(0) and any

W̃ ∈ B(W(0), τ), let ỹi = fW̃(xi), we define

gj =
1

n

n∑
i=1

ℓ′(yiỹi)yivjσ
′(⟨w(0)

L,j,xL−1,i⟩)xL−1,i,

138

where xL,i denotes the output of the last hidden layer with input xi at the initialization.

Then since W(0) is generated via Gaussian random initialization, by Lemma 4.7.2, we have

the following holds for at least C2mLϕ/n nodes,

∥gj∥2 ≥ C1max
i

|ℓ′(yiỹi)|/n

where C1, C2 > 0 are positive absolute constants. Moreover, we rewrite the gradient

∇WL,j
LS(W̃) as follows:

∇WL,j
LS(W̃) =

1

n

n∑
i=1

ℓ′(yiỹi)yivjσ
′(⟨w̃L,j, x̃L−1,i⟩)x̃L−1,i,

where x̃l,i denotes the output of the l-th hidden layer with input xi and weight matrices W̃.

Let bi,j = ℓ′(yiỹi)yivj, we have

∥gj∥2 − ∥∇WL,j
LS(W̃)∥2

≤
∥∥∥∥ 1n

n∑
i=1

bi,j
(
σ′(⟨w̃L,j, x̃L−1,i⟩)x̃L−1,i − σ′(⟨w(0)

L,j,xL−1,i⟩)xL−1,i

)∥∥∥∥
2

≤
∥∥∥∥ 1n

n∑
i=1

bi,j

[(
σ′(⟨w̃L,j, x̃L−1,i⟩)− σ′(⟨w(0)

L,j,xL−1,i⟩
)
xL−1,i + σ′(⟨w̃L,j, x̃L−1,i⟩)(x̃L−1,i − xL−1,i)

]∥∥∥∥
2

.

According to Lemma 4.7.4, the number of nodes satisfying σ′(⟨w̃L,j, x̃L−1,i⟩)−σ′(⟨w(0)
L,j,xL−1,i⟩ ≠

0 for at least one i is at most C3nL
4/3τ 2/3mL, where C3 is an absolute constant. For the rest

of the nodes in this layer, we have

∥gj∥2 − ∥∇WL,j
LS(W̃)∥2 ≤

∥∥∥∥ 1n
n∑
i=1

bi,jσ
′(⟨w̃L,j, x̃L−1,i⟩)(x̃L−1,i − xL−1,i)

∥∥∥∥
2

≤ 1

n

n∑
i=1

C4L
2τ |bi,j|

≤ C4L
2τ max

i
|ℓ′(yiỹi)|,

where C4 is an absolute constant, the first inequality holds since these nodes satisfy σ′(⟨w̃L,j, x̃L−1,i⟩)−

σ′(⟨w(0)
L,j,xL−1,i⟩ = 0 for all i, the second inequality follows from Lemma 4.7.4 and triangle

139

inequality. Let

τ ≤
(

C2ϕ

2C3n2L4/3

)3/2

∧ C1

2nL2C4

= O
(
ϕ3/2n−3L−2

)
.

Note that we have at least C2mLϕ/n nodes satisfying ∥gj∥2 ≥ C1maxi |ℓ′(yiỹi)|/n, thus there

are at least C2mLϕ/n− C3nL
4/3τ 2/3mL = C2mLϕ/(2n) nodes satisfying

∥∇WL,j
LS(W̃)∥2 ≥ C1max

i
|ℓ′(yiỹi)|/n− C4L

2τ max
i

|ℓ′(yiỹi)|/n ≥ C1maxi |ℓ′(yiỹi)|
2n

.

Therefore,

∥∇WL
LS(W̃)∥2F =

mL∑
j=1

∥∇WL,j
LS(W̃)∥22

≥ C2ϕmL

2n

(
C1maxi |ℓ′(yiŷ(k)i)yivj|

2n

)2

≥ C2C
2
1ϕmL

8n5

(n∑
i=1

ℓ′(yiŷ
(k)
i)

)2

,

where the last inequality follows from the fact that ℓ′(·) < 0 and |yivj| = 1. Let C = C2C
2
1/8,

we complete the proof.

4.7.3 Proof of Lemma 4.5.3

Proof of Lemma 4.5.3. Note that ℓ(x) is 1/4-smooth, thus the following holds for any ∆ and

x,

ℓ(x+∆) ≤ ℓ(x) + ℓ′(x)∆ +
1

8
∆2.

Then we have the following upper bound on LS(W
(k+1))− LS(W

(k)),

LS(W
(k+1))− LS(W

(k)) =
1

n

n∑
i=1

[
ℓ
(
yiŷ

(k+1)
i

)
− ℓ
(
yiŷ

(k)
i

)]
≤ 1

n

n∑
i=1

[
ℓ′(yiŷ

(k)
i)∆

(k)
i +

1

8
(∆

(k)
i)2

]
, (4.7.1)

where ∆
(k)
i = yi

(
ŷ
(k+1)
i − ŷ

(k)
i

)
. Therefore, our next goal is to bound the quantity ∆

(k)
i .

140

The upper bound of |∆(k)
i | can be derived straightforwardly. By Lemma 4.7.4, we know

that there exists a constant C1 such that

∥x(k+1)
L,i − x

(k)
L,i∥2 ≤ C1L ·

L∑
l=1

∥W(k+1)
l −W

(k)
l ∥2

= C1Lη

L∑
l=1

∥∥∇Wl
[LS(W

(k))]
∥∥
2

≤ C1L
1.5η∥∇LS(W

(k))∥F . (4.7.2)

Therefore, it follows that

|∆(k)
i | = |yiv⊤(x

(k+1)
L,i − x

(k)
L,i)| ≤ ∥v∥2∥x(k+1)

L,i − x
(k)
L,i∥2 ≤ C1L

1.5M1/2∥∇LS(W
(k))∥F ,

where we use the fact that ∥v∥2 ≤ M1/2. In what follows we are going to prove the lower

bound of ∆
(k)
i . Note that ∆

(k)
i = yiv

⊤(x(k+1)
L,i − x

(k)
L,i

)
, thus we mainly focus on bounding the

term x
(k+1)
L,i − x

(k)
L,i. For l = 1, . . . , L, we define the diagonal matrix Σ̃

(k)
l,i as

(
Σ̃

(k)
l,i

)
jj
=
(
Σ

(k+1)
l,i −Σ

(k)
l,i

)
jj
·

w
(k)⊤
l,j x

(k)
l−1,i

w
(k+1)⊤
l,j x

(k+1)
l−1,i −w

(k)⊤
l,j x

(k)
l−1,i

.

Given the above definition of Σ̃
(k)
l,i , we have

x
(k+1)
L,i − x

(k)
L,i

=
(
Σ

(k)
L,i + Σ̃

(k)
L,i

)(
W

(k+1)⊤
L x

(k+1)
L−1,i −W

(k)⊤
L x

(k)
L−1,i

)
=
(
Σ

(k)
L,i + Σ̃

(k)
L,i

)
W

(k+1)⊤
L

(
x
(k+1)
L−1,i − x

(k)
L−1,i

)
+
(
Σ

(k)
L,i + Σ̃

(k)
L,i

)(
W

(k+1)⊤
L −W

(k)⊤
L

)
x
(k)
L−1,i

=
L∑
l=1

(L∏
r=l+1

(
Σ

(k)
r,i + Σ̃

(k)
r,i

)
W(k+1)⊤

r

)(
Σ

(k)
l,i + Σ̃

(k)
l,i

)(
W

(k+1)⊤
l −W

(k)⊤
l

)
x
(k)
l−1,i.

Then we define

D
(k)
l,i =

(L∏
r=l+1

Σ
(k)
r,i W

(k)⊤
r

)
Σ

(k)
l,i , D̃

(k)
l,i =

(L∏
r=l+1

(
Σ

(k)
r,i + Σ̃

(k)
r,i

)
W(k+1)⊤

r

)(
Σ

(k)
l,i + Σ̃

(k)
l,i

)
.

Then by triangle inequality, we have∥∥v⊤(D(k)
l,i − D̃

(k)
l,i

)∥∥
2
≤
∥∥v⊤(D(k)

l,i −D
(0)
l,i

)∥∥
2
+
∥∥v⊤(D(0)

l,i − D̃
(k)
l,i

)∥∥
2
.

141

Note that, it holds that

∥∥v⊤(D(k)
l,i −D

(0)
l,i

)∥∥
2

≤
L∑
r=l

∥∥∥∥v⊤
(L∏
t=r+1

Σ
(k)
t,i W

(k)⊤
t

)(
Σ

(k)
t,i W

(k)⊤
t −Σ

(0)
t,i W

(0)⊤
t

)(L∏
t=l+1

Σ
(0)
t,i W

(0)⊤
t

)∥∥∥∥
2

≤
L∑
r=l

∥∥∥∥v⊤
(L∏
t=r+1

Σ
(k)
t,i W

(k)⊤
t

)(
Σ

(k)
t,i −Σ

(0)
t,i

)∥∥∥∥
2

∥∥∥∥W(0)⊤
t

(L∏
t=l+1

Σ
(0)
t,i W

(0)⊤
t

)∥∥∥∥
2

+
L∑
r=l

∥∥∥∥v⊤
(L∏
t=r+1

Σ
(k)
t,i W

(k)⊤
t

)
Σ

(k)
t,i

∥∥∥∥
2

∥∥∥∥W(k)
t −W

(0)⊤
t

∥∥∥∥
2

∥∥∥∥ L∏
t=l+1

Σ
(0)
t,i W

(0)⊤
t

∥∥∥∥
2

.

Then by Lemma 4.7.3, and use the fact that ∥Σ(k)
t,i −Σ

(0)
t,i ∥0 ≤ O

(
L4/3τ 2/3M

)
, we have

∥∥v⊤(D(k)
l,i −D

(0)
l,i

)∥∥
2
≤ C2L

13/6τ 1/3
√
M log(M) + C3L

3/2
√
Mτ,

where C2 and C3 are absolute constants and we use the fact that ∥v∥2 ≤
√
M . Then note

that τ ≤ 1, the second term on the R.H.S. of the above inequality is dominated by the first

one. Then we have

∥∥v⊤(D(k)
l,i −D

(0)
l,i

)∥∥
2
≤ C5L

13/6τ 1/3
√
M log(M), (4.7.3)

where C5 is an absolute constant. This inequality also holds for
∥∥v⊤(D̃(k)

l,i −D
(0)
l,i

)∥∥
2
. There-

fore, we have

∆
(k)
i = yiv

⊤(x(k+1)
L,i − x

(k)
L,i

)
= yiv

⊤
L∑
l=1

D̃
(k)
l,i

(
W

(k+1)
l −W

(k)
l

)
x
(k)
l−1,i

= −yiv
⊤

L∑
l=1

(
D̃

(k)
l,i −D

(k)
l,i

)(
∇Wl

[LS(W
(k))]

)⊤
x
(k)
l−1,i︸ ︷︷ ︸

I
(k)
1,i

−yiv
⊤

L∑
l=1

D
(k)
l,i

(
∇Wl

[LS(W
(k))]

)⊤
x
(k)
l−1,i︸ ︷︷ ︸

I
(k)
2,i

.

142

By (4.7.3), we know that

|I(k)1,i | ≤ 2C5L
13/6τ 1/3

√
M log(M)η ·

L∑
l=1

∥∥∇Wl
[LS(W

(k))]
∥∥
2

≤ 2C5L
8/3τ 1/3

√
M log(M)η ·

∥∥∇LS(W
(k))
∥∥
F
.

Moreover, we have

1

n

n∑
i=1

ℓ′(yiŷ
(k)
i)I

(k)
2,i = −η

n

n∑
i=1

ℓ′(yiŷ
(k)
i)yiv

⊤
(L∏
r=l+1

Σ
(k)
r,i W

(k)⊤
r

)
Σ

(k)
l,i

(
∇Wl

[LS(W
(k))]

)⊤
x
(k)
l−1,i

= − η

n2

∥∥∥∥ n∑
i=1

ℓ′(yiŷ
(k)
i)yix

(k)
l−1,iv

⊤
(L∏
r=l+1

Σ
(k)
r,i W

(k)⊤
r

)
Σ

(k)
l,i

∥∥∥∥2
F

= −η∥∇Wl
[LS(W

(k))]∥2F .

Therefore, putting everything together, we have

LS(W
(k+1))− LS(W

(k))

≤ 1

n

n∑
i=1

[
ℓ′(yiŷ

(k)
i)∆

(k)
i +

1

8
(∆

(k)
i)2

]
≤ 1

n

n∑
i=1

ℓ′(yiŷ
(k)
i)
(
I
(k)
1,i + I

(k)
2,i

)
+ C3ML3η2∥∇LS(W

(k))∥2F

≤ −
(
η − C6ML3η2

)
∥∇LS(W

(k))∥2F −
C7L

8/3τ 1/3
√
M log(M) · ∥∇LS(W

(k))∥F
n

n∑
i=1

ℓ′(yiŷ
(k)
i),

where C6 and C7 are absolute constants. Thus we complete the proof.

4.8 Proof of Lemmas in Section 4.7

4.8.1 Proof of Lemma 4.7.1

Proof of Lemma 4.7.1. In order to prove the desired results, it suffices to prove the inequality

∣∣∥xl,i∥22 − ∥xl−1,i∥22
∣∣ ≤ C∥xl−1,i∥22 ·

√
log(nL/δ)

ml

143

for all i = 1, . . . , n and l = 1, . . . , L , since this inequality implies that

∥xl,i∥2 ≤

[
1 + C ′

√
log(nL/δ)

m

]1/2
∥xl−1,i∥2 ≤ · · · ≤

[
1 + C ′

√
log(nL/δ)

m

]l/2
∥xi∥2

≤ 1 + C ′l

√
log(nL/δ)

m
,

where C ′ is an absolute constant, and the last inequality follows by the fact that (1 +

x)l/2 ≤ 1 + lx for x ∈ (0, 1/(2L)), which is applicable here because of the assumption

m ≥ CL2 log(nL/δ) for some large enough constant C. Similarly, we can also proved that

∥xl,i∥2 ≥ 1− C ′′l

√
log(nL/δ)

m

for some absolute constant C ′′. Combining the upper and lower bounds of ∥xl,i∥2 derived

above gives the result of Lemma 4.7.1.

For any fixed i ∈ {1, . . . , n}, l ∈ {1, . . . , L} and j ∈ {1, . . . ,ml}, condition on xl−1,i we

have w⊤
l,jxl−1,i ∼ N(0, 2∥xl−1,i∥22/ml). Therefore,

E[σ2(w⊤
l,jxl−1,i)|xl−1,i] =

1

2
E[(w⊤

l,jxl−1,i)
2|xl−1,i] =

1

ml

∥xl−1,i∥22.

Since ∥xl,i∥22 =
∑ml

j=1 σ
2(w⊤

l,jxl−1,i) and condition on xl−1, ∥σ2(w⊤
l,jxl−1,i)∥ψ1 ≤ C1∥xl−1,i∥22/ml

for some absolute constant C1, by Bernstein inequality (See Proposition 5.16 in [Ver10]), for

any ξ ≥ 0 we have

P
(∣∣∥Σl,iW

⊤
l xl−1,i∥22 − ∥xl−1,i∥22

∣∣ ≥ ∥xl−1,i∥22ξ
∣∣∣xl−1,i

)
≤ 2 exp(−C2mlmin{ξ2, ξ}).

Taking union bound over l and i gives

P
(∣∣∥xl,i∥22 − ∥xl−1,i∥22

∣∣ ≤ ∥xl−1,i∥22ξ, i = 1, . . . , n, l = 1, . . . , L
)
≥ 1− 2nL exp(−C2mlmin{ξ2, ξ}).

The inequality above further implies that if ml ≥ C2
3 log(nL/δ), then with probability at

least 1− δ, we have

∣∣∥xl,i∥22 − ∥xl−1,i∥22
∣∣ ≤ C3∥xl−1,i∥22 ·

√
log(nL/δ)

ml

for any i = 1, . . . , n and l = 1, . . . , L, where C3 is an absolute constant. This completes the

proof.

144

4.8.2 Proof of Lemma 4.7.2

In order to prove the gradient bounds, one key aspect is that the separation property for

training data can be well preserved after passing through layers. The following lemma shows

that the separation distance can be well preserved for all intermediate layers.

Lemma 4.8.1. Under the same conditions in Lemma 4.7.2, with probability at least 1− δ,

∥xl,i − xl,i′∥2 ≥ ϕ/2

for all i, i′ = 1, . . . , n with yi ̸= yi′ , l = 1, . . . , L.

Lemma 4.8.2. Let z1, . . . , zn ∈ Sd−1 be n unit vectors and y1, . . . , yn ∈ {−1, 1} be the

corresponding labels. Assume that for any i ̸= j such that yi ̸= yj, ∥zi−zj∥2 ≥ ϕ̃ and z⊤i zj ≥

µ̃2 for some ϕ̃, µ̃ > 0. For any a = (a1, . . . , an)
⊤ ∈ Rn

+, let h(w) =
∑n

i=1 aiyiσ
′(⟨w, zi⟩)zi

where w ∼ N(0, I) is a Gaussian random vector. If ϕ̃ ≤ µ̃/2, then there exist absolute

constants C,C ′ > 0 such that

P
[
∥h(w)∥2 ≥ C∥a∥∞

]
≥ C ′ϕ̃/n.

The following lemma is essential to show that deep ReLU network can provide signifi-

cantly large gradient at the initialization.

Proof of Lemma 4.7.2. For any given j ∈ {1, . . . ,mL} and â with ∥â∥∞ = 1. By Lemma

4.8.1, we know that for any i ̸= j and yi ̸= yj, ∥x̄L−1,i − x̄L−1,j∥2 ≥ ϕ̃, where x̄L−1,i =

xL−1,i/∥xL−1,i∥2 and x̄L−1,j = xL−1,j/∥xL−1,i∥2. Then by Lemma 4.8.2, we have

P

[∥∥∥∥∥ 1n
n∑
i=1

âiyiσ
′(⟨wL,j,xL−1,i⟩)xL−1,i

∥∥∥∥∥
2

≥ C1

n

]
≥ C2ϕ

n
,

where C1, C2 > 0 are absolute constants. Let Sn−1
∞,+ = {a ∈ Rn

+ : ∥a∥∞ = 1}, and N =

N [Sn−1
∞,+, C1/(4n)] be a C1/(4n)-net covering Sn−1

∞,+ in ℓ∞ norm. Then we have

|N | ≤ (4n/C1)
n.

145

For j = 1, . . . ,mL, define

Zj = 1

[∥∥∥∥∥ 1n
n∑
i=1

âiyiσ
′(⟨wL,j,xL−1,i⟩)xL−1,i

∥∥∥∥∥
2

≥ C1

n

]
.

Let pϕ = C2ϕ/n. Then by Bernstein inequality and union bound, with probability at least

1− exp[−C3mLpϕ + n log(4n/C1)] ≥ 1− exp(C4mLϕ/n), we have

1

mL

mL∑
j=1

Zj ≥ pϕ/2, (4.8.1)

where C3, C4 are absolute constants. For any a ∈ Sn−1
∞,+, there exists â ∈ N such that

∥a− â∥∞ ≤ C1/(4n).

Therefore, we have∣∣∣∣∣
∥∥∥∥∥ 1n

n∑
i=1

aiyiσ
′(⟨wL,j,xL−1,i⟩)xL−1,i

∥∥∥∥∥
2

−

∥∥∥∥∥ 1n
n∑
i=1

âiyiσ
′(⟨wL,j,xL−1,i⟩)xL−1,i

∥∥∥∥∥
2

∣∣∣∣∣
≤

∥∥∥∥∥ 1n
n∑
i=1

aiyiσ
′(⟨wL,j,xL−1,i⟩)xL−1,i −

1

n

n∑
i=1

âiyiσ
′(⟨wL,j,xL−1,i⟩)xL−1,i

∥∥∥∥∥
2

≤ 2

n

n∑
i=1

|ai − âi| ≤
C1

2n
. (4.8.2)

By (4.8.1) and (4.8.2), it is clear that with probability at least 1 − exp(C4mLϕ/n), for any

a ∈ Sn−1
∞,+, there exist at least mLpϕ/2 nodes on layer L that satisfy∥∥∥∥∥ 1n

n∑
i=1

aiyiσ
′(⟨wL,j,xL−1,i⟩)xL−1,i

∥∥∥∥∥
2

≥ C1

2n
.

This completes the proof.

4.9 Proof of Lemmas in Section

4.9.1 Proof of Lemma 4.8.1

The following lemma is necessary for proving Lemma 4.8.1.

146

Lemma 4.9.1 (Lemma A.3 in [ZCZ18]). For θ > 0, let Z1, Z2 be two jointly Gaussian

random variables with E(Z1) = E(Z2) = 0, E(Z2
1) = E(Z2

2) = 1 and E(Z1Z2) ≤ 1− θ2/2. If

θ ≤ κ for some small enough absolute constant κ, then

E[σ(Z1)σ(Z2)] ≤
1

2
− 1

4
θ2 + Cθ3,

where C is an absolute constant.

Proof of Lemma 4.8.1. We first consider any fixed l ≥ 1. Suppose that ∥xl−1,i − xl−1,i′∥2 ≥

[1− (2L)−1 log(2)]l−1ϕ. If we can show that under this condition, with high probability

∥xl,i − xl,i′∥2 ≥ [1− (2L)−1 log(2)]lϕ,

then the result of the lemma follows by union bound and induction. Denote

ϕl−1 = [1− (2L)−1 log(2)]l−1ϕ.

Then by assumption we have ∥xl−1,i − xl−1,i′∥22 ≥ ϕ2
l−1. Therefore x⊤

l−1,ixl−1,i′ ≤ 1− ϕ2
l−1/2.

It follows by direct calculation that

E
(
∥xl,i − xl,i′∥22

∣∣xl−1,i,xl−1,i′
)
= E

(
∥xl,i∥22 + ∥xl,i′∥22

∣∣xl−1,i,xl−1,i′
)
− 2E

(
x⊤
l,ixl,i′

∣∣xl−1,i,xl−1,i′
)

= (∥xl−1,i∥22 + ∥xl−1,i′∥22)− 2E
(
x⊤
l,ixl,i′

∣∣xl−1,i,xl−1,i′
)
.

By Lemma 4.9.1 and the assumption that ϕl−1 ≤ ϕ ≤ κ, we have

E
(
x⊤
l,ixl,i′

∣∣xl−1,i,xl−1,i′
)

= E

[
ml∑
j=1

σ(w⊤
l,jxl−1,i)σ(w

⊤
l,jxl−1,i′)

∣∣∣∣∣xl−1,i,xl−1,i′

]

= ∥xl−1,i∥2∥xl−1,i′∥2 · E

[
ml∑
j=1

σ(w⊤
l,jxl−1,i)σ(w

⊤
l,jxl−1,i′)

∣∣∣∣∣xl−1,i,xl−1,i′

]

≤ 2

m
∥xl−1,i∥2∥xl−1,i′∥2 ·m ·

(
1

2
− 1

4
ϕ2
l−1 + Cϕ3

l−1

)
= ∥xl−1,i∥2∥xl−1,i′∥2 ·

(
1− 1

2
ϕ2
l−1 + 2Cϕ3

l−1

)
.

147

Therefore,

E
(
∥xl,i − xl,i′∥22

∣∣xl−1,i,xl−1,i′
)
≥ (∥xl−1,i∥2 − ∥xl−1,i′∥2)2 + ∥xl−1,i∥2∥xl−1,i′∥2(ϕ2

l−1 − 4Cϕ3
l−1).

(4.9.1)

Condition on xl−1,i and xl−1,i′ , by Lemma 5.14 in [Ver10] we have∥∥[σ(w⊤
l,jxl−1,i)− σ(w⊤

l,jxl−1,i′)]
2
∥∥
ψ1

≤ 2
[∥∥[σ(w⊤

l,jxl−1,i)
∥∥
ψ2

+
∥∥σ(w⊤

l,jxl−1,i′)
∥∥
ψ2

]2
≤ C1(∥xl−1,i∥2 + ∥xl−1,i′∥2)2/ml,

where C1 is an absolute constant. Therefore if ml ≥ C2
2 log(4n

2L/δ), by Bernstein inequality

and union bound, with probability at least 1− δ/(4n2L) we have

∣∣∥xl,i − xl,i′∥22 − E
(
∥xl,i − xl,i′∥22

∣∣xl−1,i,xl−1,i′
)∣∣ ≤ C2(∥xl−1,i∥2 + ∥xl−1,i′∥2)2 ·

√
log(8n2L/δ)

ml

,

where C2 is an absolute constant. Therefore with probability at least 1− δ/(4n2L) we have

∥xl,i − xl,i′∥22 ≥ (∥xl−1,i∥2 − ∥xl−1,i′∥2)2 + ∥xl−1,i∥2∥xl−1,i′∥2(ϕ2
l−1 − 4Cϕ3

l−1)

− C2(∥xl−1,i∥2 + ∥xl−1,i′∥2)2 ·

√
log(8n2L/δ)

ml

.

By union bound and Lemma 4.7.1, if mr ≥ C3L
4ϕ−4

l log(4n2L/δ), r = 1, . . . , l for some large

enough absolute constant C3 and ϕ ≤ κL−1 for some small enough absolute constant κ, then

with probability at least 1− δ/(2n2L) we have

∥xl,i − xl,i′∥22 ≥ [1− (4L)−1 log(2)]ϕ2
l−1 ≥ [1− (4L)−1 log(2)]2ϕ2

l−1.

Moreover, by Lemma 4.7.1, with probability at least 1− δ/(2n2L) we have∣∣∥xl,i − xl,i′∥2 − ∥xl,i − xl,i′∥2
∣∣ ≤ ∥xl,i − xl,i∥2 + ∥xl,i′ − xl,i′∥2

=
∣∣1− ∥xl,i∥2

∣∣+ ∣∣1− ∥xl,i′∥2
∣∣

≤ (4L)−1 log(2) · ϕ2
l−1,

and therefore with probability at least 1− δ/(n2L), we have

∥xl,i − xl,i′∥2 ≥ [1− (2L)−1 log(2)]ϕl−1 = [1− (2L)−1 log(2)]lϕ.

Applying union bound and induction over l = 1, . . . , L completes the proof.

148

4.9.2 Proof of Lemma 4.8.2

Proof of Lemma 4.8.2. Without loss of generality, assume that a1 = ∥a∥∞. Since ∥z1∥2 = 1,

we can construct an orthonormal matrix Q = [z1,Q
′] ∈ Rd×d. Let u = Q⊤w ∼ N(0, I) be a

standard Gaussian random vector. Then we have

w = Qu = u1z1 +Q′u′,

where u′ := (u2, . . . , ud)
⊤ is independent of u1. We define the following two events based on

a parameter γ ∈ (0, 1]:

E1(γ) =
{
|u1| ≤ γ

}
, E2(γ) =

{
|⟨Q′u′, zi⟩| ≥ γ for all zi such that ∥zi − z1∥2 ≥ ϕ̃

}
.

Let E(γ) = E1(γ) ∩ E2(γ). We first give lower bound for P(E) = P(E1)P(E2). Since u1 is a

standard Gaussian random variable, we have

P(E1) =
1√
2π

∫ γ

−γ
exp

(
− 1

2
x2

)
dx ≥

√
2

πe
γ.

Moreover, by definition, for any i = 1, . . . , n we have

⟨Q′u′, zi⟩ ∼ N
[
0, 1− (z⊤1 zi)

2
]
.

Let I = {i : ∥zi − z1∥2 ≥ ϕ̃}. By the assumption that ϕ̃ ≤ µ̃/2, for any i ∈ I, we have

−1 + ϕ̃2/2 ≤ −(1− µ̃2) + µ̃2 ≤ ⟨zi, z1⟩ ≤ 1− ϕ̃2/2,

and if ϕ̃2 ≤ 2, then

1− (z⊤1 zi)
2 ≥ ϕ̃2 − ϕ̃4/4 ≥ ϕ̃2/2.

Therefore for any i ∈ I,

P[|⟨Q′u′, zi⟩| < γ] =
1√
2π

∫ [1−(z⊤1 zi)
2]−1/2γ

−[1−(z⊤1 zi)2]−1/2γ

exp

(
− 1

2
x2

)
dx ≤

√
2

π

γ

[1− (z⊤1 zi)
2]1/2

≤ 2√
π
γϕ̃−1.

149

By union bound over I, we have

P(E2) = P[|⟨Q′u′, zi⟩| ≥ γ, i ∈ I] ≥ 1− 2√
π
nγϕ̃−1.

Therefore we have

P(E) ≥
√

2

πe
γ ·
(
1− 2√

π
nγϕ̃−1

)
.

Setting γ =
√
πϕ̃/(4n), we obtain P(E) ≥ ϕ̃/(

√
32en). Now let I ′ = [n] \ (I ∪ {1}). Then

conditioning on event E , we have

h(w) =
n∑
i=1

aiyiσ
′(⟨w, zi⟩)zi

= a1y1σ
′(u1)z1 +

∑
i∈I

aiyiσ
′(u1⟨z1, zi⟩+ ⟨Q′u′, zi⟩

)
zi +

∑
i∈I′

aiyiσ
′(u1⟨z1, zi⟩+ ⟨Q′u, zi⟩

)
zi

= a1y1σ
′(u1)z1 +

∑
i∈I

aiyiσ
′(⟨Q′u′, zi⟩

)
zi +

∑
i∈I′

aiyiσ
′(u1⟨z1, zi⟩+ ⟨Q′u′, zi⟩

)
zi,

(4.9.2)

where the last equality follows from the fact that conditioning on event E , for all i ∈ I, it

holds that |⟨Q′u′, zi⟩| ≥ |u1| ≥ |u1⟨z1, zi⟩|. We then consider two cases: u1 > 0 and u1 < 0,

which occur equally likely conditioning on E . Therefore we have

P
[
∥h(w)∥2 ≥ inf

u
(1)
1 >0,u

(2)
1 <0

max
{∥∥h(u(1)

1 z1 +Q′u′)
∥∥
2
,
∥∥h(u(2)

1 z1 +Q′u′)
∥∥
2

}∣∣∣∣E] ≥ 1/2.

By the inequality max{∥a∥2, ∥b∥2} ≥ ∥a− b∥2/2, we have

P
[
∥h(w)∥2 ≥ inf

u
(1)
1 >0,u

(2)
1 <0

∥∥h(u(1)
1 z1 +Q′u′)− h(u

(2)
1 z1 +Q′u′)

∥∥
2
/2

∣∣∣∣E] ≥ 1/2. (4.9.3)

For any u
(1)
1 > 0 and u

(2)
1 < 0, denote w1 = u

(1)
1 z1 + Q′u′, w2 = u

(2)
1 z1 + Q′u′. We now

proceed to give lower bound for ∥h(w1)− h(w2)∥2. By (4.9.2), we have

h(w1)− h(w2) = a1y1z1 +
∑
i∈I′

a′iyizi, (4.9.4)

150

where

a′i = ai
[
σ′(u(1)

1 ⟨z1, zi⟩+ ⟨Q′u′, zi⟩
)
− σ′(u(2)

1 ⟨z1, zi⟩+ ⟨Q′u′, zi⟩
)]
.

Note that for all i ∈ I ′, we have yi = y1 and ⟨z1, zi⟩ ≥ 1 − ϕ̃2/2 ≥ 0. Therefore, since

u
(1)
1 > 0 > u

(2)
1 , we have

σ′(u(1)
1 ⟨z1, zi⟩+ ⟨Q′u′, zi⟩

)
− σ′(u(2)

1 ⟨z1, zi⟩+ ⟨Q′u′, zi⟩
)
≥ 0.

Therefore a′i ≥ 0 for all i ∈ I ′ and

h(w1)− h(w2) = a1y1z1 +
∑
i∈I′

a′iy1zi = y1

(
a1z1 +

∑
i∈I′

a′izi

)
,

We have shown that ⟨zi, z1⟩ ≥ 0 for all i ∈ I ′. Therefore we have

∥h(w1)− h(w2)∥2 ≥

∥∥∥∥∥y1
(
a1z1 +

∑
i∈I′

a′izi

)∥∥∥∥∥
2

≥

〈
a1z1 +

∑
i∈I′

a′izi, z1

〉
≥ a1.

Since the inequality above holds for any u
(1)
1 > 0 and u

(2)
1 < 0, taking infimum gives

inf
u
(1)
1 >0,u

(2)
1 <0

∥h(w1)− h(w2)∥2 ≥ a1. (4.9.5)

Plugging (4.9.5) back to (4.9.3), we obtain

P
[
∥h(w)∥2 ≥ a1/2

∣∣E] ≥ 1/2,

Since a1 = ∥a∥∞ and P(E) ≥ ϕ̃/(
√
32en), we have

P
[
∥h(w)∥2 ≥ C∥a∥∞

]
≥ C ′ϕ̃/n,

where C and C ′ are absolute constants. This completes the proof.

4.10 Conclusions

In this chapter, we studied training deep neural networks by gradient descent. We proved

that gradient descent can achieve global minima of the training loss for over-parameterized

151

deep ReLU networks with random initialization, with milder assumption on the training

data. Compared with the state-of-the-art results, our theoretical guarantees are sharper in

terms of both over-parameterization condition and convergence rate. Our result can also

be extended to stochastic gradient descent (SGD) and other loss functions (e.g., square

hinge loss and smoothed hinge loss). Such extensions can be found in the longer version

of this paper [ZCZ18]. In the future, we will further improve the over-parameterization

condition such that it is closer to width of neural networks used in practice. Our proof

technique can also be extended to other neural network architectures including convolutional

neural networks (CNNs) [KSH12], residual networks (ResNets) [HZR16] and recurrent neural

networks (RNNs) [HS97], and give sharper over-parameterization conditions than existing

results for CNNs, ResNets [DLL19; ALS19a] and RNNs [ALS19b]. Moreover, it is also

interesting to explore how our optimization guarantees of over-parameterized neural networks

can be integrated with existing universal approximation ability results such as [Hor91; Tel16;

LJ18; Zho19].

152

CHAPTER 5

Generalization of Deep ReLU Networks in the NTK

Regime

5.1 Introduction

Although existing results in the neural tangent kernel regime [ALL19; ADH19a; CG19] have

provided important insights into the learning of deep neural networks, they require the neural

network to be extremely wide. The typical requirement on the network width is a high degree

polynomial of the training sample size n and the inverse of the target error ϵ−1. As there

still remains a huge gap between such network width requirement and the practice, many

attempts, including ours, have been made to improve the over-parameterization condition

under various conditions on the training data and model initialization [OS19; ZG19; KH19;

BL19]. For two-layer ReLU networks, a recent work [JT20] showed that when the training

data are well separated, polylogarithmic width is sufficient to guarantee good optimization

and generalization performances. However, their results cannot be extended to deep ReLU

networks since their proof technique largely relies on the fact that the network model is 1-

homogeneous, which cannot be satisfied by DNNs. Therefore, whether deep neural networks

can be learned with such a mild over-parameterization is still an open problem.

In this work, we resolve this open problem by showing that polylogarithmic network

width is sufficient to learn DNNs. In particular, unlike the existing works that require the

DNNs to behave very close to a linear model (up to some small approximation error), we

show that a constant linear approximation error is sufficient to establish nice optimization

153

and generalization guarantees for DNNs. Thanks to the relaxed requirement on the linear

approximation error, a milder condition on the network width and tighter bounds on the

convergence rate and generalization error can be proved. We summarize our contributions

as follows:

• We establish the global convergence guarantee of GD for training deep ReLU networks

based on the so-called NTRF function class [CG19], a set of linear functions over

random features. Specifically, we prove that GD can learn deep ReLU networks with

width m = poly(R) to compete with the best function in NTRF function class, where

R is the radius of the NTRF function class.

• We also establish the generalization guarantees for both GD and SGD in the same

setting. Specifically, we prove a diminishing statistical error for a wide range of network

width m ∈ (Ω̃(1),∞), while most of the previous generalization bounds in the NTK

regime only works in the setting where the network width m is much greater than

the sample size n. Moreover, we establish Õ(ϵ−2) and Õ(ϵ−1) sample complexities for

GD and SGD respectively, which are tighter than existing bounds for learning deep

ReLU networks [CG19], and match the best results when reduced to the two-layer

cases [ADH19b; JT20].

• We further generalize our theoretical analysis to the scenarios with different data sep-

arability assumptions in the literature. We show if a large fraction of the training data

are well separated, the best function in the NTRF function class with radius R = Õ(1)

can learn the training data with error up to ϵ. This together with our optimization

and generalization guarantees immediately suggests that deep ReLU networks can be

learned with network width m = Ω̃(1), which has a logarithmic dependence on the

target error ϵ and sample size n. Compared with existing results [CG20; JT20] which

require all training data points to be separated in the NTK regime, our result is stronger

since it allows the NTRF function class to misclassify a small proportion of the training

154

data.

For the ease of comparison, we summarize our results along with the most related previous

results in Table 5.1, in terms of data assumption, the over-parameterization condition and

sample complexity. It can be seen that under data separation assumption (See Sections

5.4.1, 5.4.2), our result improves existing results for learning deep neural networks by only

requiring a polylog(n, ϵ−1) network width.

Table 5.1: Comparison of neural network learning results in terms of over-parameterization

condition and sample complexity. Here ϵ is the target error rate, n is the sample size, L is

the network depth.

Assumptions Algorithm Over-para. Condition Sample Complexity Network

[ZCZ19] Data nondegeneration GD Ω̃
(
n12L16(n2 + ϵ−1)

)
- Deep

this work Data nondegeneration GD Ω̃
(
L22n12

)
- Deep

[CG20] Data separation GD Ω̃(ϵ−14) · eΩ(L) Õ(ϵ−4) · eO(L) Deep

[JT20] Data separation GD polylog(n, ϵ−1) Õ(ϵ−2) Shallow

this work Data separation GD polylog(n, ϵ−1) · poly(L) Õ(ϵ−2) · eO(L) Deep

[CG19] Data separation SGD Ω̃(ϵ−14) · poly(L) Õ(ϵ−2) · poly(L) Deep

[JT20] Data separation SGD polylog(ϵ−1) Õ(ϵ−1) Shallow

this work Data separation SGD polylog(ϵ−1) · poly(L) Õ(ϵ−1) · poly(L) Deep

5.2 Preliminaries on learning neural networks

In this section, we introduce the problem setting in this work, including definitions of the

neural network and loss functions, and the training algorithms, i.e., GD and SGD with

random initialization.

Loss function. Given training dataset {xi, yi}i=1,...,n with input xi ∈ Rd and output yi ∈

{−1,+1}, we define the training loss function as

LS(W) =
1

n

n∑
i=1

Li(W),

155

Algorithm 1 Gradient descent with random initialization

Input: Number of iterations T , step size η, training set S = {(xi, yi)ni=1}, initialization

W(0)

for t = 1, 2, . . . , T do

Update W(t) = W(t−1) − η · ∇WLS(W
(t−1)).

end for

Output: W(0), . . . ,W(T).

Algorithm 2 Stochastic gradient desecent (SGD) with random initialization

Input: Number of iterations n, step size η, initialization W(0)

for i = 1, 2, . . . , n do

Draw (xi, yi) from D and compute the corresponding gradient ∇WLi(W
(i−1)).

Update W(i) = W(i−1) − η · ∇WLi(W
(i−1)).

end for

Output: Randomly choose Ŵ uniformly from {W(0), . . . ,W(n−1)}.

where Li(W) = ℓ
(
yifW(xi)

)
= log

(
1+exp(−yifW(xi))

)
is defined as the cross-entropy loss.

Algorithms. We consider both GD and SGD with Gaussian random initialization. The

gradient descent algorithm is the same as that considered in Chapter 4. The SGD algorithm

consider in this chapter uses use a new training data point in each iteration and run the

algorithm for n steps. We summarize the algorithm in Algorithms 1 and 2 respectively.

Specifically, the entries in W
(0)
1 , · · · ,W(0)

L−1 are generated independently from univariate

Gaussian distribution N(0, 2/m) and the entries in W
(0)
L are generated independently from

N(0, 1/m).

Note that our initialization method in Algorithms 1, 2 is the same as the widely used

He initialization [HZR15]. Our neural network parameterization is also consistent with the

parameterization used in prior work on NTK [JGH18; ALS19a; DLL19; ADH19b; CG19].

156

5.3 Main theory

In this section, we present the optimization and generalization guarantees of GD and SGD

for learning deep ReLU networks. For simplicity, we make the following assumption on the

training data points.

Assumption 5.3.1. All training data points satisfy ∥xi∥2 = 1, i = 1, . . . , n.

This assumption has been widely made in many previous works [ALS19a; ALS19b;

DZP18; DLL19; ZCZ19] in order to simplify the theoretical analysis. This assumption can

be relaxed to be upper bounded and lower bounded by some constant.

In the following, we give the definition of Neural Tangent Random Feature (NTRF)

[CG19], which characterizes the functions learnable by over-parameterized ReLU networks.

Definition 5.3.2 (Neural Tangent Random Feature, [CG19]). Let W(0) be the initialization

weights, and FW(0),W(x) = fW(0)(x) + ⟨∇fW(0)(x),W−W(0)⟩ be a function with respect to

the input x. Then the NTRF function class is defined as follows

F(W(0), R) =
{
FW(0),W(·) : W ∈ B(W(0), R ·m−1/2)

}
.

The function class FW(0),W(x) consists of linear models over random features defined

based on the network gradients at the initialization. Therefore it captures the key “almost

linear” property of wide neural networks in the NTK regime [LXS19; CG19]. In this work,

we use the NTRF function class as a reference class to measure the difficulty of a learning

problem. In what follows, we deliver our main theoretical results regarding the optimization

and generalization guarantees of learning deep ReLU networks. We study both GD and SGD

with random initialization (presented in Algorithms 1 and 2).

5.3.1 Gradient descent

The following theorem establishes the optimization guarantee of GD for training deep ReLU

networks for binary classification.

157

Theorem 5.3.3. For δ, R > 0, let ϵNTRF = infF∈F(W(0),R) n
−1
∑n

i=1 ℓ[yiF (xi)] be the mini-

mum training loss achievable by functions in F(W(0), R). Then there exists

m∗(δ, R, L) = Õ
(
poly(R,L) · log4/3(n/δ)

)
,

such that if m ≥ m∗(δ, R, L), with probability at least 1− δ over the initialization, GD with

step size η = Θ(L−1m−1) can train a neural network to achieve at most 3ϵNTRF training loss

within T = O
(
L2R2ϵ−1

NTRF

)
iterations.

Theorem 5.3.3 shows that the deep ReLU network trained by GD can compete with the

best function in the NTRF function class F(W(0), R) if the network width has a polynomial

dependency in R and L and a logarithmic dependency in n and 1/δ. Moreover, if the

NTRF function class with R = Õ(1) can learn the training data well (i.e., ϵNTRF is less than

a small target error ϵ), a polylogarithmic (in terms of n and ϵ−1) network width suffices

to guarantee the global convergence of GD, which directly improves over-paramterization

condition in the most related work [CG19]. Besides, we remark here that this assumption

on the NTRF function class can be easily satisfied when the training data admits certain

separability conditions, which we discuss in detail in Section 5.4.

Compared with the results in [JT20] which give similar network width requirements for

two-layer networks, our result works for deep networks. Moreover, while [JT20] essentially

required all training data to be separable by a function in the NTRF function class with a

constant margin, our result does not require such data separation assumptions, and allows

the NTRF function class to misclassify a small proportion of the training data points1.

We now characterize the generalization performance of neural networks trained by GD.

We denote L0−1
D (W) = E(x,y)∼D[1{fW(x) · y < 0}] as the expected 0-1 loss (i.e., expected

error) of fW(x).

1A detailed discussion is given in Section 5.4.2.

158

Theorem 5.3.4. Under the same assumptions as Theorem 5.3.3, with probability at least

1− δ, the iterate W(t) of Algorithm 1 satisfies that

L0−1
D (W(t)) ≤ 2LS(W

(t)) + Õ

(
4LL2R

√
m

n
∧

(
L3/2R√

n
+

L11/3R4/3

m1/6

))
+O

(√
log(1/δ)

n

)

for all t = 0, . . . , T .

Theorem 5.3.4 shows that the test error of the trained neural network can be bounded

by its training error plus statistical error terms. Note that the statistical error terms is in

the form of a minimum between two terms 4LL2R
√

m/n and L3/2R/
√
n + L11/3R4/3/m1/6.

Depending on the network width m, one of these two terms will be the dominating term

and diminishes for large n: (1) if m = o(n), the statistical error will be 4LL2R
√

m/n,

and diminishes as n increases; and (2) if m = Ω(n), the statistical error is L3/2R/
√
n +

L11/3R4/3/m1/6, and again goes to zero as n increases. Moreover, in this work we have a

specific focus on the setting m = Õ(1), under which Theorem 5.3.4 gives a statistical error of

order Õ(n−1/2). This distinguishes our result from previous generalization bounds for deep

networks [CG20; CG19], which cannot be applied to the setting m = Õ(1).

We note that for two-layer ReLU networks (i.e., L = 2) [JT20] proves a tighter Õ(1/n1/2)

generalization error bound regardless of the neural networks width m, while our result (The-

orem 5.3.4), in the two-layer case, can only give Õ(1/n1/2) generalization error bound when

m = Õ(1) or m = Ω̃(n3). However, different from our proof technique that basically uses

the (approximated) linearity of the neural network function, their proof technique largely

relies on the 1-homogeneous property of the neural network, which restricted their theory

in two-layer cases. An interesting research direction is to explore whether a Õ(1/n1/2) gen-

eralization error bound can be also established for deep networks (regardless of the network

width), which we will leave it as a future work.

159

5.3.2 Stochastic gradient descent

Here we study the performance of SGD for training deep ReLU networks. The following

theorem establishes a generalization error bound for the output of SGD.

Theorem 5.3.5. For δ, R > 0, let ϵNTRF = infF∈F(W(0),R) n
−1
∑n

i=1 ℓ[yiF (xi)] be the mini-

mum training loss achievable by functions in F(W(0), R). Then there exists

m∗(δ, R, L) = Õ
(
poly(R,L) · log4/3(n/δ)

)
,

such that if m ≥ m∗(δ, R, L), with probability at least 1 − δ, SGD with step size η =

Θ
(
m−1 · (LR2n−1ϵ−1

NTRF ∧ L−1)
)
achieves

E[L0−1
D (Ŵ)] ≤ 8L2R2

n
+

8 log(2/δ)

n
+ 24ϵNTRF,

where the expectation is taken over the uniform draw of Ŵ from {W(0), . . . ,W(n−1)}.

For any ϵ > 0, Theorem 5.3.5 gives a Õ(ϵ−1) sample complexity for deep ReLU networks

trained with SGD to achieve O(ϵNTRF + ϵ) test error. Our result extends the result for

two-layer networks proved in [JT20] to multi-layer networks. Theorem 5.3.5 also provides

sharper results compared with [ALL19; CG19] in two aspects: (1) the sample complexity

is improved from n = Õ(ϵ−2) to n = Õ(ϵ−1); and (2) the overparamterization condition is

improved from m ≥ poly(ϵ−1) to m = Ω̃(1).

5.4 Discussion on the NTRF Class

Our theoretical results in Section 5.3 rely on the radius (i.e., R) of the NTRF function class

F(W(0), R) and the minimum training loss achievable by functions in F(W(0), R), i.e., ϵNTRF.

Note that a larger R naturally implies a smaller ϵNTRF, but also leads to worse conditions on

m. In this section, for any (arbitrarily small) target error rate ϵ > 0, we discuss various data

assumptions studied in the literature under which our results can lead to O(ϵ) training/test

errors, and specify the network width requirement.

160

5.4.1 Data Separability by Neural Tangent Random Feature

In this subsection, we consider the setting where a large fraction of the training data can

be linearly separated by the neural tangent random features. The assumption is stated as

follows.

Assumption 5.4.1. There exists a collection of matrices U∗ = {U∗
1, · · · ,U∗

L} satisfying∑L
l=1 ∥U∗

l ∥2F = 1, such that for at least (1− ρ) fraction of training data we have

yi⟨∇fW(0)(xi),U
∗⟩ ≥ m1/2γ,

where γ is an absolute positive constant2 and ρ ∈ [0, 1).

The following corollary provides an upper bound of ϵNTRF under Assumption 5.4.1 for

some R.

Proposition 5.4.2. Under Assumption 5.4.1, for any ϵ, δ > 0, if R ≥ C
[
log1/2(n/δ) +

log(1/ϵ)
]
/γ for some absolute constant C, then with probability at least 1− δ,

ϵNTRF := inf
F∈F(W(0),R)

n−1

n∑
i=1

ℓ
(
yiF (xi)

)
≤ ϵ+ ρ · O(R).

Proposition 5.4.2 covers the setting where the NTRF function class is allowed to mis-

classify training data, while most of existing work typically assumes that all training data

can be perfectly separated with constant margin (i.e., ρ = 0) [JT20; Sha21]. Our results

show that for sufficiently small misclassification ratio ρ = O(ϵ), we have ϵNTRF = Õ(ϵ) by

choosing the radius parameter R logarithimic in n, δ−1, and ϵ−1. Substituting this result

into Theorems 5.3.3, 5.3.4 and 5.3.5, it can be shown that a neural network with width

m = poly(L, log(n/δ), log(1/ϵ))
)
suffices to guarantee good optimization and generalization

performances for both GD and SGD. Consequently, we can obtain that the bounds on the

test error for GD and SGD are Õ(n−1/2) and Õ(n−1) respectively.

2The factor m1/2 is introduced here since ∥∇W(0)f(xi)∥F is typically of order O(m1/2).

161

5.4.2 Data Separability by Shallow Neural Tangent Model

In this subsection, we study the data separation assumption made in [JT20] and show that

our results cover this particular setting. We first restate the assumption as follows.

Assumption 5.4.3. There exists u(·) : Rd → Rd and γ ≥ 0 such that ∥u(z)∥2 ≤ 1 for all

z ∈ Rd, and

yi

∫
Rd

σ′(⟨z,xi⟩) · ⟨ū(z),xi⟩dµN(z) ≥ γ

for all i ∈ [n], where µN(·) denotes the standard normal distribution.

Assumption 5.4.3 is related to the linear separability of the gradients of the first layer

parameters at random initialization, where the randomness is replaced with an integral by

taking the infinite width limit. Note that similar assumptions have also been studied in

[CG20; NS19; FCG19]. The assumption made in [CG20; FCG19] uses gradients with respect

to the second layer weights instead of the first layer ones. In the following, we mainly

focus on Assumption 5.4.3, while our result can also be generalized to cover the setting in

[CG20; FCG19].

In order to make a fair comparison, we reduce our results for multilayer networks to the

two-layer setting. In this case, the neural network function takes form

fW(x) = m1/2W2σ(W1x).

Then we provide the following proposition, which states that Assumption 5.4.3 implies a

certain choice of R = Õ(1) such the the minimum training loss achieved by the function in

the NTRF function class F(W(0), R) satisfies ϵNTRF = O(ϵ), where ϵ is the target error.

Proposition 5.4.4. Suppose the training data satisfies Assumption 5.4.3. For any ϵ, δ > 0,

let R = C
[
log(n/δ) + log(1/ϵ)

]
/γ for some large enough absolute constant C. If the neural

network width satisfies m = Ω
(
log(n/δ)/γ2

)
, then with probability at least 1−δ, there exist

FW(0),W(xi) ∈ F(W(0), R) such that ℓ
(
yi · FW(0),W(xi)

)
≤ ϵ,∀i ∈ [n].

162

Proposition 5.4.4 shows that under Assumption 5.4.3, there exists FW(0),W(·) ∈ F(W(0), R)

with R = Õ(1/γ) such that the cross-entropy loss of FW(0),W(·) at each training data point

is bounded by ϵ. This implies that ϵNTRF ≤ ϵ. Moreover, by applying Theorem 5.3.3 with

L = 2, the condition on the neural network width becomes m = Ω̃(1/γ8)3, which matches the

results proved in [JT20]. Moreover, plugging these results on m and ϵNTRF into Theorems

5.3.4 and 5.3.5, we can conclude that the bounds on the test error for GD and SGD are

Õ(n−1/2) and Õ(n−1) respectively.

5.4.3 Class-dependent Data Nondegeneration

In previous subsections, we have shown that under certain data separation conditions ϵNTRF

can be sufficiently small while the corresponding NTRF function class has R of order Õ(1).

Thus neural networks with polylogarithmic width enjoy nice optimization and generalization

guarantees. In this part, we consider the following much milder data separability assumption

made in [ZCZ19].

Assumption 5.4.5. For all i ̸= i′ if yi ̸= yi′ , then ∥xi−xj∥2 ≥ ϕ for some absolute constant

ϕ.

In contrast to the conventional data nondegeneration assumption (i.e., no duplicate data

points) made in [ALS19a; DZP18; DLL19; ZG19]4, Assumption 5.4.5 only requires that the

data points from different classes are nondegenerate, thus we call it class-dependent data

nondegeneration.

We have the following proposition which shows that Assumption 5.4.5 also implies the

existence of a good function that achieves ϵ training error, in the NTRF function class with

a certain choice of R.

3We have shown in the proof of Theorem 5.3.3 that m = Ω̃(R8) (see (5.7.1) for more detail).

4Specifically, [ALS19a; ZG19] require that any two data points (rather than data points from different
classes) are separated by a positive distance. [ZG19] shows that this assumption is equivalent to those made
in [DZP18; DLL19], which require that the composite kernel matrix is strictly positive definite.

163

Proposition 5.4.6. Under Assumption 5.4.5, if

R = Ω
(
n3/2ϕ−1/2 log(nδ−1ϵ−1)

)
, m = Ω̃

(
L22n12ϕ−4

)
,

we have ϵNTRF ≤ ϵ with probability at least 1− δ.

Proposition 5.4.6 suggests that under Assumption 5.4.5, in order to guarantee ϵNTRF ≤ ϵ,

the size of NTRF function class needs to be Ω(n3/2). Plugging this into Theorems 5.3.4

and 5.3.5 leads to vacuous bounds on the test error. This makes sense since Assumption

5.4.5 basically covers the “random label” setting, which is impossible to be learned with

small generalization error. Moreover, we would like to point out our theoretical analysis

leads to a sharper over-parameterization condition than that proved in [ZCZ19], i.e., m =

Ω̃
(
n14L16ϕ−4 + n12L16ϕ−4ϵ−1

)
, if the network depth satisfies L ≤ Õ(n1/3 ∨ ϵ−1/6).

5.5 Experiments

In this section, we conduct some simple experiments to validate our theory. Since our paper

mainly focuses on binary classification, we use a subset of the original CIFAR10 dataset

[Kri09], which only has two classes of images. We train a 5-layer fully-connected ReLU

network on this binary classification dataset with different sample sizes, and plot the minimal

neural network width that is required to achieve zero training error in Figure 5.1 (solid line).

We also plot O(n),O(log3(n)),O(log2(n)) and O(log(n)) in dashed line for reference. It is

evident that the required network width to achieve zero training error is polylogarithmic on

the sample size n, which is consistent with our theory.

164

0 2000 4000 6000 8000 10000
Sample Size (n)

5
10
15
20
25
30
35
40
45
50

M
in

im
um

 D
NN

 W
id

th

O(log(n))

O(log2(n))

O(log3(n))
O(n)

(a) “cat” vs. “dog”

0 2000 4000 6000 8000 10000
Sample Size (n)

5
10
15
20
25
30
35
40
45
50

M
in

im
um

 D
NN

 W
id

th

O(log(n))

O(log2(n))

O(log3(n))
O(n)

(b) “cat” vs. “ship”

Figure 5.1: Minimum network width that is required to achieve zero training error with

respect to the training sample size (blue solid line). The hidden constants in allO(·) notations

are adjusted to ensure their plots (dashed lines) start from the same point.

5.6 Proof sketch of the main theory

In this section, we introduce a key technical lemma in Section 5.6.1, based on which we

provide a proof sketch of Theorems 5.3.3.

5.6.1 A key technical lemma

Here we introduce a key technical lemma used in the proof of Theorem 5.3.3.

Our proof is based on the key observation that near initialization, the neural network

function can be approximated by its first-order Taylor expansion. In the following, we first

give the definition of the linear approximation error in a τ -neighborhood around initialization.

ϵapp(τ) := sup
i=1,...,n

sup
W′,W∈B(W(0),τ)

∣∣fW′(xi)− fW(xi)− ⟨∇fW(xi),W
′ −W⟩

∣∣.
If all the iterates of GD stay inside a neighborhood around initialization with small linear ap-

proximation error, then we may expect that the training of neural networks should be similar

to the training of the corresponding linear model, where standard optimization techniques

165

can be applied. Motivated by this, we also give the following definition on the gradient upper

bound of neural networks around initialization, which is related to the Lipschitz constant of

the optimization objective function.

M(τ) := sup
i=1,...,n

sup
l=1,...,L

sup
W∈B(W(0),τ)

∥∇Wl
fW(xi)∥F .

By definition, we can chooseW∗ ∈ B(W(0), Rm−1/2) such that n−1
∑n

i=1 ℓ
(
yiFW(0),W∗(xi)

)
=

ϵNTRF. Then we have the following lemma.

Lemma 5.6.1. Set η = O(L−1M(τ)−2). Suppose that W∗ ∈ B(W(0), τ) and W(t) ∈

B(W(0), τ) for all 0 ≤ t ≤ t′ − 1. Then it holds that

1

t′

t′−1∑
t=0

LS(W
(t)) ≤ ∥W(0) −W∗∥2F − ∥W(t′) −W∗∥2F + 2t′ηϵNTRF

t′η
(
3
2
− 4ϵapp(τ)

) .

Lemma 5.6.1 plays a central role in our proof. In specific, if W(t) ∈ B(W(0), τ) for all

t ≤ t′, then Lemma 5.6.1 implies that the average training loss is in the same order of ϵNTRF

as long as the linear approximation error ϵapp(τ) is bounded by a positive constant. This is

in contrast to the proof in [CG19], where ϵapp(τ) appears as an additive term in the upper

bound of the training loss, thus requiring ϵapp(τ) = O(ϵNTRF) to achieve the same error

bound as in Lemma 5.6.1. Since we can show that ϵapp = Õ(m−1/6) (See Section 5.7.1), this

suggests that m = Ω̃(1) is sufficient to make the average training loss in the same order of

ϵNTRF.

Compared with the recent results for two-layer networks by [JT20], Lemma 5.6.1 is

proved with different techniques. In specific, the proof by [JT20] relies on the 1-homogeneous

property of the ReLU activation function, which limits their analysis to two-layer networks

with fixed second layer weights. In comparison, our proof does not rely on homogeneity, and

is purely based on the linear approximation property of neural networks and some specific

properties of the loss function. Therefore, our proof technique can handle deep networks, and

is potentially applicable to non-ReLU activation functions and other network architectures

(e.g, Convolutional neural networks and Residual networks).

166

5.6.2 Proof sketch of Theorem 5.3.3

Here we provide a proof sketch of Theorem 5.3.3. The proof consists of two steps: (i) showing

that all T iterates stay close to initialization, and (ii) bounding the empirical loss achieved

by gradient descent. Both of these steps are proved based on Lemma 5.6.1.

Proof sketch of Theorem 5.3.3. Recall that we choose W∗ ∈ B(W(0), Rm−1/2) such that

n−1
∑n

i=1 ℓ
(
yiFW(0),W∗(xi)

)
= ϵNTRF. We set τ = Õ(L1/2m−1/2R), which is chosen slightly

larger than m−1/2R since Lemma 5.6.1 requires the region B(W(0), τ) to include both W∗

and {W(t)}t=0,...,t′ . Then by Lemmas 4.1 and B.3 in [CG19] we know that ϵapp(τ) =

Õ(τ 4/3m1/2L3) = Õ(R4/3L11/3m−1/6). Therefore, we can set m = Ω̃(R8L22) to ensure that

ϵapp(τ) ≤ 1/8.

Then we proceed to show that all iterates stay inside the region B(W(0), τ). Since the

L.H.S. of Lemma 5.6.1 is strictly positive and ϵapp(τ) ≤ 1/8, we have for all t ≤ T ,

∥W(0) −W∗∥2F − ∥W(t) −W∗∥2F ≥ −2tηϵNTRF,

which gives an upper bound of ∥W(t)−W∗∥F . Then by the choice of η, T , triangle inequality,

and a simple induction argument, we see that ∥W(t) −W(0)∥F ≤ m−1/2R +
√
2TηϵNTRF =

Õ(L1/2m−1/2R), which verifies that W(t) ∈ B(W(0), τ) for t = 0, . . . , T − 1.

The second step is to show that GD can find a neural network with at most 3ϵNTRF

training loss within T iterations. To show this, by the bound given in Lemma 5.6.1 with

ϵapp ≤ 1/8, we drop the terms ∥W(t) −W∗∥2F and rearrange the inequality to obtain

1

T

T−1∑
t=0

LS(W
(t)) ≤ 1

ηT
∥W(0) −W∗∥2F + 2ϵNTRF.

We see that T is large enough to ensure that the first term in the bound above is smaller than

ϵNTRF. This implies that the best iterate among W(0), . . . ,W(T−1) achieves an empirical loss

at most 3ϵNTRF.

167

5.7 Proof of Main Theorems

In this section we provide the full proof of Theorems 5.3.3, 5.3.4 and 5.3.5.

5.7.1 Proof of Theorem 5.3.3

We first provide the following lemma which is useful in the subsequent proof.

Lemma 5.7.1 (Lemmas 4.1 and B.3 in [CG19]). There exists an absolute constant κ such

that, with probability at least 1−O(nL2) exp[−Ω(mτ 2/3L)], for any τ ≤ κL−6[log(m)]−3/2,

it holds that

ϵapp(τ) ≤ Õ
(
τ 4/3L3m1/2

)
, M(τ) ≤ Õ(

√
m).

Proof of Theorem 5.3.3. Recall that W∗ is chosen such that

1

n

n∑
i=1

ℓ
(
yiFW(0),W∗(xi)

)
= ϵNTRF

andW∗ ∈ B(W(0), Rm−1/2). Note that to apply Lemma 5.6.1, we need the region B(W(0), τ)

to include both W∗ and {W(t)}t=0,...,t′ . This motivates us to set τ = Õ(L1/2m−1/2R),

which is slightly larger than m−1/2R. With this choice of τ , by Lemma 5.7.1 we have

ϵapp(τ) = Õ(τ 4/3m1/2L3) = Õ(R4/3L11/3m−1/6). Therefore, we can set

m = Ω̃(R8L22) (5.7.1)

to ensure that ϵapp(τ) ≤ 1/8, where Ω̃(·) hides polylogarithmic dependencies on network

depth L, NTRF function class size R, and failure probability parameter δ. Then by Lemma

5.6.1, we have with probability at least 1− δ, we have

∥W(0) −W∗∥2F − ∥W(t′) −W∗∥2F ≥ η

t′−1∑
t=0

LS(W
(t))− 2t′ηϵNTRF (5.7.2)

as long as W(0), . . . ,W(t′−1) ∈ B(W(0), τ). In the following proof we choose η = Θ(L−1m−1)

and T = ⌈LR2m−1η−1ϵ−1
NTRF⌉.

168

We prove the theorem by two steps: 1) we show that all iterates {W(0), · · · ,W(T)} will

stay inside the region B(W(0), τ); and 2) we show that GD can find a neural network with

at most 3ϵNTRF training loss within T iterations.

All iterates stay inside B(W(0), τ). We prove this part by induction. Specifically, given

t′ ≤ T , we assume the hypothesis W(t) ∈ B(W(0), τ) holds for all t < t′ and prove that

W(t′) ∈ B(W(0), τ). First, it is clear that W(0) ∈ B(W(0), τ). Then by (5.7.2) and the fact

that LS(W) ≥ 0, we have

∥W(t′) −W∗∥2F ≤ ∥W(0) −W∗∥2F + 2ηt′ϵNTRF

Note that T = ⌈LR2m−1η−1ϵ−1
NTRF⌉ and W∗ ∈ B(W(0), R ·m−1/2), we have

L∑
l=1

∥W(t′)
l −W∗

l ∥2F = ∥W(t′) −W∗∥2F ≤ CLR2m−1,

where C ≥ 4 is an absolute constant. Therefore, by triangle inequality, we further have the

following for all l ∈ [L],

∥W(t′)
l −W

(0)
l ∥F ≤ ∥W(t′)

l −W∗
l ∥F + ∥W(0)

l −W∗
l ∥F

≤
√
CLRm−1/2 +Rm−1/2

≤ 2
√
CLRm−1/2. (5.7.3)

Therefore, it is clear that ∥W(t′)
l − W

(0)
l ∥F ≤ 2

√
CLRm−1/2 ≤ τ based on our choice of τ

previously. This completes the proof of the first part.

Convergence of gradient descent. (5.7.2) implies

∥W(0) −W∗∥2F − ∥W(T) −W∗∥2F ≥ η

(T−1∑
t=0

LS(W
(t))− 2TϵNTRF

)
.

Dividing by ηT on the both sides, we get

1

T

T−1∑
t=0

LS(W
(t)) ≤ ∥W(0) −W∗∥2F

ηT
+ 2ϵNTRF ≤ LR2m−1

ηT
+ 2ϵNTRF ≤ 3ϵNTRF,

169

where the second inequality is by the fact that W∗ ∈ B(W(0), R · m−1/2) and the last

inequality is by our choices of T and η which ensure that Tη ≥ LR2m−1ϵ−1
NTRF. Notice that

T = ⌈LR2m−1η−1ϵ−1
NTRF⌉ = O(L2R2ϵ−1

NTRF). This completes the proof of the second part,

and we are able to complete the proof.

5.7.2 Proof of Theorem 5.3.4

Following [CG20], we first introduce the definition of surrogate loss of the network, which is

defined by the derivative of the loss function.

Definition 5.7.2. We define the empirical surrogate error ES(W) and population surrogate

error ED(W) as follows:

ES(W) := − 1

n

n∑
i=1

ℓ′
[
yi · fW(xi)

]
, ED(W) := E(x,y)∼D

{
− ℓ′

[
y · fW(x)

]}
.

The following lemma gives uniform-convergence type of results for ES(W) utilizing the

fact that −ℓ′(·) is bounded and Lipschitz continuous.

Lemma 5.7.3. For any R̃, δ > 0, suppose that m = Ω̃(L12R̃2) · [log(1/δ)]3/2. Then with

probability at least 1− δ, it holds that

|ED(W)− ES(W)| ≤ Õ

(
min

{
4LL3/2R̃

√
m

n
,
LR̃√
n
+

L3R̃4/3

m1/6

})
+O

(√
log(1/δ)

n

)
for all W ∈ B(W(0), R̃ ·m−1/2)

We are now ready to prove Theorem 5.3.4, which combines the trajectory distance anal-

ysis in the proof of Theorem 5.3.3 with Lemma 5.7.3.

Proof of Theorem 5.3.4. With exactly the same proof as Theorem 5.3.3, by (5.7.3) and in-

duction we have W(0),W(1), . . . ,W(T) ∈ B(W(0), R̃m−1/2) with R̃ = O(
√
LR). Therefore

by Lemma 5.7.3, we have

|ED(W(t))− ES(W(t))| ≤ Õ

(
min

{
4LL2R

√
m

n
,
L3/2R√

n
+

L11/3R4/3

m1/6

})
+O

(√
log(1/δ)

n

)

170

for all t = 0, 1, . . . , T . Note that we have 1{z < 0} ≤ −2ℓ′(z). Therefore,

EL0−1
D (W(t)) ≤ 2ED(W(t))

≤ 2LS(W
(t)) + Õ

(
min

{
4LL2R

√
m

n
,
L3/2R√

n
+

L11/3R4/3

m1/6

})
+O

(√
log(1/δ)

n

)
for t = 0, 1, . . . , T , where the last inequality is by ES(W) ≤ LS(W) because −ℓ′(z) ≤ ℓ(z)

for all z ∈ R. This finishes the proof.

5.7.3 Proof of Theorem 5.3.5

In this section we provide the full proof of Theorem 5.3.5. We first give the following result,

which is the counterpart of Lemma 5.6.1 for SGD. Again we pick W∗ ∈ B(W(0), Rm−1/2)

such that the loss of the corresponding NTRF model FW(0),W∗(x) achieves ϵNTRF.

Lemma 5.7.4. Set η = O(L−1M(τ)−2). Suppose that W∗ ∈ B(W(0), τ) and W(n′) ∈

B(W(0), τ) for all 0 ≤ n′ ≤ n− 1. Then it holds that

∥W(0) −W∗∥2F − ∥W(n′) −W∗∥2F ≥
(3
2
− 4ϵapp(τ)

)
η

n′∑
i=1

Li(W
(i−1))− 2nηϵNTRF.

We introduce a surrogate loss Ei(W) = −ℓ′[yi · fW(xi)] and its population version

ED(W) = E(x,y)∼D[−ℓ′[y · fW(x)]], which have been used in [JT19; CG19; JT20]. Our

proof is based on the application of Lemma 5.7.4 and an online-to-batch conversion ar-

gument [CCG04; CG19; JT20]. We introduce a surrogate loss Ei(W) = −ℓ′[yi · fW(xi)]

and its population version ED(W) = E(x,y)∼D[−ℓ′(y · fW(x))], which have been used in

[JT19; CG19; NS19; JT20].

Proof of Theorem 5.3.5. Recall that W∗ is chosen such that

1

n

n∑
i=1

ℓ
(
yiFW(0),W∗(xi)

)
= ϵNTRF

and W∗ ∈ B(W(0), Rm−1/2). To apply Lemma 5.7.4, we need the region B(W(0), τ) to

include both W∗ and {W(t)}t=0,...,t′ . This motivates us to set τ = Õ(L1/2m−1/2R), which

171

is slightly larger than m−1/2R. With this choice of τ , by Lemma 5.7.1 we have ϵapp(τ) =

Õ(τ 4/3m1/2L3) = Õ(R4/3L11/3m−1/6). Therefore, we can set

m = Ω̃(R8L22)

to ensure that ϵapp(τ) ≤ 1/8, where Ω̃(·) hides polylogarithmic dependencies on network

depth L, NTRF function class size R, and failure probability parameter δ.

Then by Lemma 5.7.4, we have with probability at least 1− δ,

∥W(0) −W∗∥2F − ∥W(n′) −W∗∥2F ≥ η

n′∑
i=1

Li(W
(i−1))− 2nηϵNTRF (5.7.4)

as long as W(0), . . . ,W(n′−1) ∈ B(W(0), τ).

We then prove Theorem 5.3.5 in two steps: 1) all iterates stay inside B(W(0), τ); and 2)

convergence of online SGD.

All iterates stay inside B(W(0), τ). Similar to the proof of Theorem 5.3.3, we prove this

part by induction. Assuming W(i) satisfies W(i) ∈ B(W(0), τ) for all i ≤ n′ − 1, by (5.7.4),

we have

∥W(n′) −W∗∥2F ≤ ∥W(0) −W∗∥2F + 2nηϵNTRF

≤ LR2 ·m−1 + 2nηϵNTRF,

where the last inequality is by W∗ ∈ B(W(0), Rm−1/2). Then by triangle inequality, we

further get

∥W(n′)
l −W

(0)
l ∥F ≤ ∥W(n′)

l −W∗
l ∥F + ∥W∗

l −W
(0)
l ∥F

≤ ∥W(n′) −W∗∥F + ∥W∗
l −W

(0)
l ∥F

≤ O(
√
LRm−1/2 +

√
nηϵNTRF).

Then by our choices of η = Θ
(
m−1 · (LR2n−1ϵ−1

NTRF ∧L−1)
)
, we have ∥W(n′) −W(0)∥F ≤

2
√
LRm−1/2 ≤ τ . This completes the proof of the first part.

172

Convergence of online SGD. By (5.7.4), we have

∥W(0) −W∗∥2F − ∥W(n) −W∗∥2F ≥ η

(n∑
i=1

Li(W
(i−1))− 2nϵNTRF

)
.

Dividing by ηn on the both sides and rearranging terms, we get

1

n

n∑
i=1

Li(W
(i−1)) ≤ ∥W(0) −W∗∥2F − ∥W(n) −W∗∥2F

ηn
+ 2ϵNTRF ≤ L2R2

n
+ 3ϵNTRF,

where the second inequality follows from facts thatW∗ ∈ B(W(0), R·m−1/2) and η = Θ
(
m−1 ·

(LR2n−1ϵ−1
NTRF∧L−1)

)
. By Lemma 4.3 in [JT20] and the fact that Ei(W(i−1)) ≤ Li(W

(i−1)),

we have

1

n

n∑
i=1

L0−1
D (W(i−1)) ≤ 2

n

n∑
i=1

ED(W(i−1))

≤ 8

n

n∑
i=1

Ei(W(i−1)) +
8 log(1/δ)

n

≤ 8L2R2

n
+

8 log(1/δ)

n
+ 24ϵNTRF.

This completes the proof of the second part.

5.8 Proof of Results in Section 5.4

5.8.1 Proof of Proposition 5.4.2

We first provide the following lemma which gives an upper bound of the neural network

output at the initialization.

Lemma 5.8.1 (Lemma 4.4 in [CG19]). Under Assumption 5.3.1, if m ≥ C̄L log(nL/δ) with

some absolute constant C̄, with probability at least 1− δ, we have

|fW(0)(xi)| ≤ C
√

log(n/δ)

for some absolute constant C.

173

Proof of Proposition 5.4.2. Under Assumption 5.4.1, we can find a collection of matrices

U∗ = {U∗
1, · · · ,U∗

L} with
∑L

l=1 ∥U∗
l ∥2F = 1 such that yi⟨∇fW(0)(xi),U

∗⟩ ≥ m1/2γ for at least

1 − ρ fraction of the training data. By Lemma 5.8.1, for all i ∈ [n] we have |fW(0)(xi)| ≤

C
√

log(n/δ) for some absolute constant C. Then for any positive constant λ, we have for

at least 1− ρ portion of the data,

yi
(
fW(0)(xi) + ⟨∇fW(0) , λU∗⟩

)
≥ m1/2λγ − C

√
log(n/δ).

For this fraction of data, we can set

λ =
C ′[log1/2(n/δ) + log(1/ϵ)

]
m1/2γ

,

where C ′ is an absolute constant, and get

m1/2λγ − C
√

log(n/δ) ≥ log(1/ϵ).

Now we let W∗ = W(0) + λU∗. By the choice of R in Proposition 5.4.2, we have W∗ ∈

B(W(0), R ·m−1/2). The above inequality implies that for at least 1− ρ fraction of data, we

have ℓ
(
yiFW(0),W∗(xi)

)
≤ ϵ. For the rest data, we have

yi
(
fW(0)(xi) + ⟨∇fW(0) , λU∗⟩

)
≥ −C

√
log(n/δ)− λ∥∇fW(0)∥22 ≥ −C1R

for some absolute positive constant C1, where the last inequality follows from fact that

∥∇fW(0)∥2 = Õ(m1/2) (see Lemma 5.7.1 for detail). Then note that we use cross-entropy

loss, it follows that for this fraction of training data, we have ℓ
(
yiFW(0),W∗(xi)

)
≤ C2R for

some constant C2. Combining the results of these two fractions of training data, we can

conclude

ϵNTRF ≤ n−1

n∑
i=1

ℓ
(
yiFW(0),W∗(xi)

)
≤ (1− ρ)ϵ+ ρ · O(R)

This completes the proof.

174

5.8.2 Proof of Proposition 5.4.4

Proof of Proposition 5.4.4. We are going to prove that Assumption 5.4.3 implies the exis-

tence of a good function in the NTRF function class.

By Definition 5.3.2 and the definition of cross-entropy loss, our goal is to prove that

there exists a collection of matrices W = {W1,W2} satisfying max{∥W1 −W
(0)
1 ∥F , ∥W2 −

W
(0)
2 ∥2} ≤ R ·m−1/2 such that

yi ·
[
fW(0)(xi) + ⟨∇W1fW(0) ,W1 −W

(0)
1 ⟩+ ⟨∇W2fW(0) ,W2 −W

(0)
2 ⟩
]
≥ log(2/ϵ).

We first consider ∇W1fW(0)(xi), which has the form

(∇W1fW(0)(xi)
)
j
= m1/2 · w(0)

2,j · σ′(⟨w(0)
1,j ,xi⟩) · xi.

Note that w
(0)
2,j and w

(0)
1,j are independently generated from N (0, 1/m) and N (0, 2I/m) re-

spectively, thus we have P(|w(0)
2,j | ≥ 0.47m−1/2) ≥ 1/2. By Hoeffeding’s inequality, we know

that with probability at least 1 − exp(−m/8), there are at least m/4 nodes, whose union

is denoted by S, satisfying |w(0)
2,j | ≥ 0.47m−1/2. Then we only focus on the nodes in the set

S. Note that W
(0)
1 and W

(0)
2 are independently generated. Then by Assumption 5.4.3 and

Hoeffeding’s inequality, there exists a function u(·) : Rd → Rd such that with probability at

least 1− δ′,

1

|S|
∑
j∈S

yi · ⟨u(w(0)
1,j),xi⟩ · σ′(⟨w(0)

1,j ,xi⟩) ≥ γ −

√
2 log(1/δ′)

|S|
.

Define vj = u(w
(0)
1,j)/w2,j if |w2,j| ≥ 0.47m−1/2 and vj = 0 otherwise. Then we have

m∑
j=1

yi · w(0)
2,j · ⟨vj,xi⟩ · σ′(⟨w(0)

1,j ,xi⟩) =
∑
j∈S

yi · ⟨u(w(0)
1,j),xi⟩ · σ′(⟨w(0)

1,j ,xi⟩)

≥ |S|γ −
√
2|S| log(1/δ′).

Set δ = 2nδ′ and apply union bound, we have with probability at least 1− δ/2,

m∑
j=1

yi · w(0)
2,j · ⟨vj,xi⟩ · σ′(⟨w(0)

1,j ,xi⟩) ≥ |S|γ −
√

2|S| log(2n/δ).

175

Therefore, note that with probability at least 1−exp(−m/8), we have |S| ≥ m/4. Moreover,

in Assumption 5.4.3, by yi ∈ {±1} and |σ′(·)|, ∥u(·)∥2, ∥xi∥2 ≤ 1 for i = 1, . . . , n, we see that

γ ≤ 1. Then ifm ≥ 32 log(n/δ)/γ2, with probability at least 1−δ/2−exp
(
−4 log(n/δ)/γ2

)
≥

1− δ,

m∑
j=1

yi · w(0)
2,j · ⟨vj,xi⟩ · σ′(⟨w(0)

1,j ,xi⟩) ≥ |S|γ/2.

Let U = (v1,v2, · · · ,vm)⊤/
√

m|S|, we have

yi⟨∇W1fW(0)(xi),U⟩ = 1√
|S|

m∑
j=1

yi · w(0)
2,j · ⟨vj,xi⟩ · σ′(⟨w(0)

1,j ,xi⟩) ≥
√

|S|γ
2

≥ m1/2γ

4
,

where the last inequality is by the fact that |S| ≥ m/4. Besides, note that by concentration

and Gaussian tail bound, we have |fW(0)(xi)| ≤ C log(n/δ) for some absolute constant C.

Therefore, let W1 = W
(0)
1 + 4

(
log(2/ϵ) + C log(n/δ)

)
m−1/2U/γ and W2 = W

(0)
2 , we have

yi ·
[
fW(0)(xi) + ⟨∇W1fW(0) ,W1 −W

(0)
1 ⟩+ ⟨∇W2fW(0) ,W2 −W

(0)
2 ⟩
]
≥ log(2/ϵ). (5.8.1)

Note that ∥u(·)∥2 ≤ 1, we have ∥U∥F ≤ 1/0.47 ≤ 2.2. Therefore, we further have ∥W1 −

W
(0)
1 ∥F ≤ 8.8γ−1

(
log(2/ϵ) + C log(n/δ)

)
·m−1/2. This implies that W ∈ B(W(0), R) with

R = O
(
log
(
n/(δϵ)

)
/γ
)
. Applying the inequality ℓ(log(2/ϵ)) ≤ ϵ on (5.8.1) gives

ℓ(yi · FW(0),W(xi)) ≤ ϵ

for all i = 1, . . . , n. This completes the proof.

5.8.3 Proof of Proposition 5.4.6

Based on our theoretical analysis, the major goal is to show that there exist certain choices

of R and m such that the best NTRF model in the function class F(W(0), R) can achieve

ϵ training error. In this proof, we will prove a stronger results by showing that given the

quantities of R and m specificed in Proposition 5.4.6, there exists a NTRF model with

parameter W∗ that satisfies n−1
∑n

i=1 ℓ
(
yiFW(0),W∗(xi)

)
≤ ϵ.

176

In order to do so, we consider training the NTRF model via a different surrogate loss

function. Specifically, we consider squared hinge loss ℓ̃(x) =
(
max{λ − x, 0}

)2
, where λ

denotes the target margin. In the later proof, we choose λ = log(1/ϵ) + 1 such that the

condition ℓ̃(x) ≤ 1 can guarantee that x ≥ log(ϵ). Moreover, we consider using gradient

flow, i.e., gradient descent with infinitesimal step size, to train the NTRF model. Therefore,

in the remaining part of the proof, we consider optimizing the NTRF parameter W with the

loss function

L̃S(W) =
1

n

n∑
i=1

ℓ̃
(
yiFW(0),W(xi)

)
.

Moreover, for simplicity, we only consider optimizing parameter in the last hidden layer (i.e.,

WL−1). Then the gradient flow can be formulated as

dWL−1(t)

dt
= −∇WL−1

L̃S(W(t)),
dWl(t)

dt
= 0 for any l ̸= L− 1.

Note that the NTRF model is a linear model, thus by Definition 5.3.2, we have

∇WL−1
L̃S(W(t)) = yiℓ̃

′(yiFW(0),W(t)(xi)
)
· ∇WL−1

FW(0),W(t)(xi)

= yiℓ̃
′(yiFW(0),W(t)(xi)

)
· ∇

W
(0)
L−1

fW(0)(xi). (5.8.2)

Then it is clear that ∇WL−1
L̃S(W(t)) has fixed direction throughout the optimization.

In order to prove the convergence of gradient flow and characterize the quantity of R, We

first provide the following lemma which gives an upper bound of the NTRF model output

at the initialization.

Then we provide the following lemma which characterizes a lower bound of the Frobenius

norm of the partial gradient ∇WL−1
L̃S(W).

Lemma 5.8.2 (Lemma B.5 in [ZCZ19]). Under Assumptions 5.3.1 and 5.4.5, if m =

Ω̃(n2ϕ−1), then for all t ≥ 0, with probability at least 1 − exp
(
− O(mϕ/n)

)
, there ex-

ist a positive constant C such that

∥∇WL−1
L̃S(W(t))∥2F ≥ Cmϕ

n5

[n∑
i=1

ℓ̃′
(
yiFW(0),W(t)(xi)

)]2
.

177

We slightly modified the original version of this lemma since we use different models (we

consider NTRF model while [ZCZ19] considers neural network model). However, by (5.8.2),

it is clear that the gradient ∇L̃S(W) can be regarded as a type of the gradient for neural

network model at the initialization (i.e., ∇WL−1
LS(W

(0))) is valid. Now we are ready to

present the proof.

Proof of Proposition 5.4.6. Recall that we only consider training the last hidden weights, i.e.,

WL−1, via gradient flow with squared hinge loss, and our goal is to prove that gradient flow

is able to find a NTRF model within the function class F(W(0), R) around the initialization,

i.e., achieving n−1
∑n

i=1 ℓ
(
yiFW(0),W∗(xi)

)
≤ ϵ. Let W(t) be the weights at time t, gradient

flow implies that

dL̃S(W(t))

dt
= −∥∇WL−1

L̃S(W(t))∥2F ≤ −Cmϕ

n5

(n∑
i=1

ℓ̃′
(
yiFW(0),W(t)(xi)

))2

=
4CmϕL̃S(W(t))

n3
,

where the first equality is due to the fact that we only train the last hidden layer, the first

inequality is by Lemma 5.8.2 and the second equality follows from the fact that ℓ̃′(·) =

−2

√
ℓ̃(·). Solving the above inequality gives

L̃S(W(t)) ≤ L̃S(W(0)) · exp
(
− 4Cmϕt

n3

)
. (5.8.3)

Then, set T = O
(
n3m−1ϕ−1 · log(L̃S(W(0))/ϵ′)

)
and ϵ′ = 1/n, we have L̃S(W(t)) ≤ ϵ′.

Then it follows that ℓ̃
(
yiFW(0),W(t)(xi)

)
≤ 1, which implies that yiFW(0),W(t)(xi) ≥ log(ϵ)

and thus n−1
∑n

i=1 ℓ
(
yiFW(0),W∗(xi)

)
≤ ϵ. Therefore, W(T) is exactly the NTRF model we

are looking for.

The next step is to characterize the distance between W(T) and W(0) in order to char-

acterize the quantity of R. Note that ∥∇WL−1
L̃S(W(t))∥2F ≥ 4CmϕL̃S(W(t))/n3, we have

d

√
L̃S(W(t))

dt
= −

∥∇WL−1
L̃S(W(t))∥2F

2

√
L̃S(W(t))

≤ −∥∇WL−1
L̃S(W(t))∥F · C

1/2m1/2ϕ1/2

n3/2
.

178

Taking integral on both sides and rearranging terms, we have∫ T

t=0

∥∇WL−1
L̃S(W(t))∥Fdt ≤

n3/2

C1/2m1/2ϕ1/2
·
(√

L̃S(W(0))−
√

L̃S(W(t))

)
.

Note that the L.H.S. of the above inequality is an upper bound of ∥W(t)−W(0)∥F , we have

for any t ≥ 0,

∥W(t)−W(0)∥F ≤ n3/2

C1/2m1/2ϕ1/2
·
√

L̃S(W(0)) = O
(
n3/2 log

(
n/(δϵ)

)
m1/2ϕ1/2

)
,

where the second inequality is by Lemma 5.8.1 and our choice of λ = log(1/ϵ) + 1. This

implies that there exists a point W∗ within the class F(W(0), R) with

R = O
(
n3/2 log

(
n/(δϵ)

)
ϕ1/2

)
such that

ϵNTRF := n−1

n∑
i=1

ℓ
(
yiFW(0),W∗(xi)

)
≤ ϵ.

Then by Theorem 5.3.3, and, more specifically, (5.7.1), we can compute the minimal required

neural network width as follows,

m = Ω̃(R8L22) = Ω̃

(
L22n12

ϕ4

)
.

This completes the proof.

5.9 Proof of Technical Lemmas

Here we provide the proof of Lemmas 5.6.1, 5.7.3 and 5.7.4.

5.9.1 Proof of Lemma 5.6.1

The detailed proof of Lemma 5.6.1 is given as follows.

179

Proof of Lemma 5.6.1. Based on the update rule of gradient descent, i.e., W(t+1) = W(t) −

η∇WLS(W
(t)), we have the following calculation.

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F

=
2η

n

n∑
i=1

⟨W(t) −W∗,∇WLi(W
(t))⟩︸ ︷︷ ︸

I1

− η2
L∑
l=1

∥∇Wl
LS(W

(t))∥2F︸ ︷︷ ︸
I2

, (5.9.1)

where the equation follows from the fact that LS(W
(t)) = n−1

∑n
i=1 Li(W

(t)). In what

follows, we first bound the term I1 on the R.H.S. of (5.9.1) by approximating the neural

network functions with linear models. By assumption, for t = 0, . . . , t′ − 1, W(t),W∗ ∈

B(W(0), τ). Therefore by the definition of ϵapp(τ),

yi · ⟨∇fW(t)(xi),W
(t) −W∗⟩ ≤ yi ·

(
fW(t)(xi)− fW∗(xi)

)
+ ϵapp(τ) (5.9.2)

Moreover, we also have

0 ≤ yi ·
(
fW∗(xi)− fW(0)(xi)− ⟨∇fW(0)(xi),W

∗ −W(0)⟩
)
+ ϵapp(τ)

= yi ·
(
fW∗(xi)− FW(0),W∗(xi)

)
+ ϵapp(τ), (5.9.3)

where the equation follows by the definition of FW(0),W∗(x). Adding (5.9.3) to (5.9.2) and

canceling the terms yi · fW∗(xi), we obtain that

yi · ⟨∇fW(t)(xi),W
(t) −W∗⟩ ≤ yi ·

(
fW(t)(xi)− FW(0),W∗(xi)

)
+ 2ϵapp(τ). (5.9.4)

We can now give a lower bound on first term on the R.H.S. of (5.9.1). For i = 1, . . . , n,

applying the chain rule on the loss function gradients and utilizing (5.9.4), we have

⟨W(t) −W∗,∇WLi(W
(t))⟩ = ℓ′

(
yifW(t)(xi)

)
· yi · ⟨W(t) −W∗,∇WfW(t)(xi)⟩

≥ ℓ′
(
yifW(t)(xi)

)
·
(
yifW(t)(xi)− yifW∗(xi) + 2ϵapp(τ)

)
≥ (1− 2ϵapp(τ))ℓ

(
yifW(t)(xi)

)
− ℓ
(
yiFW(0),W∗(xi)

)
, (5.9.5)

where the first inequality is by the fact that ℓ′
(
yifW(t)(xi)

)
< 0, the second inequality is by

convexity of ℓ(·) and the fact that −ℓ′
(
yifW(t)(xi)

)
≤ ℓ
(
yifW(t)(xi)

)
.

180

We now proceed to bound the term I2 on the R.H.S. of (5.9.1). Note that we have

ℓ′(·) < 0, and therefore the Frobenius norm of the gradient ∇Wl
LS(W

(t)) can be upper

bounded as follows,

∥∇Wl
LS(W

(t))∥F =

∥∥∥∥ 1n
n∑
i=1

ℓ′
(
yifW(t)(xi)

)
∇Wl

fW(t)(xi)

∥∥∥∥
F

≤ 1

n

n∑
i=1

−ℓ′
(
yifW(t)(xi)

)
· ∥∇Wl

fW(t)(xi)∥F ,

where the inequality follows by triangle inequality. We now utilize the fact that cross-entropy

loss satisfies the inequalities −ℓ′(·) ≤ ℓ(·) and −ℓ′(·) ≤ 1. Therefore by definition of M(τ),

we have

L∑
l=1

∥∇Wl
LS(W

(t))∥2F ≤ O
(
LM(τ)2

)
·
(
1

n

n∑
i=1

−ℓ′
(
yifW(t)(xi)

))2

≤ O
(
LM(τ)2

)
· LS(W(t)). (5.9.6)

Then we can plug (5.9.5) and (5.9.6) into (5.9.1) and obtain

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F

≥ 2η

n

n∑
i=1

[
(1− 2ϵapp(τ))ℓ

(
yifW(t)(xi)

)
− ℓ
(
yiFW(0),W∗(xi)

)]
−O

(
η2LM(τ)2

)
· LS(W(t))

≥
[
3

2
− 4ϵapp(τ)

]
ηLS(W

(t))− 2η

n

n∑
i=1

ℓ
(
yiFW(0),W∗(xi)

)
,

where the last inequality is by η = O(L−1M(τ)−2) and merging the third term on the second

line into the first term. Taking telescope sum from t = 0 to t = t′ − 1 and plugging in the

definition 1
n

∑n
i=1 ℓ

(
yiFW(0),W∗(xi)

)
= ϵNTRF completes the proof.

5.9.2 Proof of Lemma 5.7.3

Proof of Lemma 5.7.3. We first denote W = B(W(0), R̃ ·m−1/2), and define the correspond-

ing neural network function class and surrogate loss function class as F = {fW(x) : W ∈ W}

and G = {−ℓ[y · fW(x)] : W ∈ W} respectively.

181

By standard uniform convergence results in terms of empirical Rademacher complexity

[BM02; MRT18; SB14], with probability at least 1− δ we have

sup
W∈W

|ES(W)− ED(W)| = sup
W∈W

∣∣∣∣∣− 1

n

n∑
i=1

ℓ′
[
yi · fW(xi)

]
+ E(x,y)∼Dℓ

′[y · fW(x)
]∣∣∣∣∣

≤ 2R̂n(G) + C1

√
log(1/δ)

n
,

where C1 is an absolute constant, and

R̂n(G) = Eξi∼Unif({±1})

{
sup
W∈W

1

n

n∑
i=1

ξiℓ
′[yi · fW(xi)

]}

is the empirical Rademacher complexity of the function class G. We now provide two bounds

on R̂n(G), whose combination gives the final result of Lemma 5.7.3. First, by Corollary 5.35

in [Ver10], with probability at least 1−L·exp(−Ω(m)), ∥W(0)
l ∥2 ≤ 3 for all l ∈ [L]. Therefore

for all W ∈ W , we have ∥Wl∥2 ≤ 4. Moreover, standard concentration inequalities on the

norm of the first row of W
(0)
l also implies that ∥Wl∥2 ≥ 0.5 for all W ∈ W and l ∈ [L].

Therefore, an adaptation of the bound in [BFT17]5 gives

R̂n(F) ≤ Õ

(
sup
W∈W

{
m1/2

√
n

·

[
L∏
l=1

∥Wl∥2

]
·

[
L∑
l=1

∥W⊤
l −W

(0)⊤
l ∥2/32,1

∥Wl∥2/32

]3/2})

≤ Õ

(
sup
W∈W

{
4Lm1/2

√
n

·

[
L∑
l=1

(
√
m · ∥W⊤

l −W
(0)⊤
l ∥F)2/3

]3/2})

≤ Õ

(
4LL3/2R̃ ·

√
m

n

)
. (5.9.7)

We now derive the second bound on R̂n(G), which is inspired by the proof provided in

[CG20]. Since y ∈ {+1, 1}, |ℓ′(z)| ≤ 1 and ℓ′(z) is 1-Lipschitz continuous, by standard

5[BFT17] only proved the Rademacher complexity bound for the composition of the ramp loss and the
neural network function. In our setting essentially the ramp loss is replaced with the −ℓ′(·) function, which
is bounded and 1-Lipschitz continuous. The proof in our setting is therefore exactly the same as the proof
given in [BFT17], and we can apply Theorem 3.3 and Lemma A.5 in [BFT17] to obtain the desired bound
we present here.

182

empirical Rademacher complexity bounds [BM02; MRT18; SB14], we have

R̂n(G) ≤ R̂n(F) = Eξi∼Unif({±1})

[
sup
W∈W

1

n

n∑
i=1

ξifW(xi)

]
,

where R̂n(F) is the empirical Rademacher complexity of the function class F . We have

R̂n[F] ≤ Eξ

{
sup
W∈W

1

n

n∑
i=1

ξi
[
fW(xi)− FW(0),W(xi)

]}
︸ ︷︷ ︸

I1

+Eξ

{
sup
W∈W

1

n

n∑
i=1

ξiFW(0),W(xi)

}
︸ ︷︷ ︸

I2

,

(5.9.8)

where FW(0),W(x) = fW(0)(x)+
〈
∇WfW(0)(x),W−W(0)

〉
. For I1, by Lemma 4.1 in [CG19],

with probability at least 1− δ/2 we have

I1 ≤ max
i∈[n]

∣∣fW(xi)− FW(0),W(xi)
∣∣ ≤ O

(
L3R̃4/3m−1/6

√
log(m)

)
,

For I2, note that Eξ

[
supW∈W

∑n
i=1 ξifW(0)(xi)

]
= 0. By Cauchy-Schwarz inequality we have

I2 =
1

n

L∑
l=1

Eξ

{
sup

∥W̃l∥F≤R̃m−1/2

Tr

[
W̃⊤

l

n∑
i=1

ξi∇Wl
fW(0)(xi)

]}

≤ R̃m−1/2

n

L∑
l=1

Eξ

[∥∥∥∥∥
n∑
i=1

ξi∇Wl
fW(0)(xi)

∥∥∥∥∥
F

]
.

Therefore

I2 ≤
R̃m−1/2

n

L∑
l=1

√√√√Eξ

[∥∥∥∥∥
n∑
i=1

ξi∇Wl
fW(0)(xi)

∥∥∥∥∥
2

F

]

=
R̃m−1/2

n

L∑
l=1

√√√√ n∑
i=1

∥∥∇Wl
fW(0)(xi)

∥∥2
F

≤ O
(
L · R̃√

n

)
,

where we apply Jensen’s inequality to obtain the first inequality, and the last inequality

follows by Lemma B.3 in [CG19]. Combining the bounds of I1 and I2 gives

R̂n[F] ≤ Õ
(
LR̃√
n
+

L3R̃4/3

m1/6

)
.

Further combining this bound with (5.9.7) and recaling δ completes the proof.

183

5.9.3 Proof of Lemma 5.7.4

Proof of Lemma 5.7.4. Different from the proof of Lemma 5.6.1, online SGD only queries

one data to update the model parameters in each iteration, i.e., Wi+1 = Wi−η∇Li+1(W
(i)).

By this update rule, we have

∥W(i) −W∗∥2F − ∥W(i+1) −W∗∥2F

= 2η⟨W(i) −W∗,∇WLi+1(W
(i))⟩ − η2

L∑
l=1

∥∇Wl
Li+1(W

(i))∥2F . (5.9.9)

With exactly the same proof as (5.9.5) in the proof of Lemma 5.6.1, we have

⟨W(t) −W∗,∇WLi(W
(t))⟩ ≥ (1− 2ϵapp(τ))ℓ

(
yifW(t)(xi)

)
− ℓ
(
yiFW(0),W∗(xi)

)
, (5.9.10)

for all i = 0, . . . , n′ − 1. By the fact that −ℓ′(·) ≤ ℓ(·) and −ℓ′(·) ≤ 1, we have

L∑
l=1

∥∇Wl
Li+1(W

(i))∥2F ≤
L∑
l=1

ℓ
(
yi+1fWt(xi+1)

)
· ∥∇Wl

fW(i)(xi+1)∥2F

≤ O
(
LM(τ)2

)
· Li+1(W

(i)). (5.9.11)

Then plugging (5.9.10) and (5.9.11) into (5.9.9) gives

∥W(i) −W∗∥2F − ∥W(i+1) −W∗∥2F

≥ (2− 4ϵapp(τ))ηLi+1(W
(i))− 2ηℓ

(
yiFW(0),W∗(xi)

)
−O

(
η2LM(τ)2

)
Li+1(W

(i))

≥ (
3

2
− 4ϵapp(τ))ηLi+1(W

(i))− 2ηℓ
(
yiFW(0),W∗(xi)

)
,

184

where the last inequality is by η = O(L−1M(τ)−2) and merging the third term on the second

line into the first term. Taking telescope sum over i = 0, . . . , n′ − 1, we obtain

∥W(0) −W∗∥2F − ∥W(n′) −W∗∥2F

≥
(3
2
− 4ϵapp(τ)

)
η

n′∑
i=1

Li(W
(i−1))− 2η

n′∑
i=1

ℓ
(
yiFW(0),W∗(xi)

)
.

≥
(3
2
− 4ϵapp(τ)

)
η

n′∑
i=1

Li(W
(i−1))− 2η

n∑
i=1

ℓ
(
yiFW(0),W∗(xi)

)
.

≥
(3
2
− 4ϵapp(τ)

)
η

n′∑
i=1

Li(W
(i−1))− 2nηϵNTRF.

This finishes the proof.

5.10 Conclusions

In this work, we established the global convergence and generalization error bounds of GD

and SGD for training deep ReLU networks for the binary classification problem. We show

that a network width condition that is polylogarithmic in the sample size n and the inverse

of target error ϵ−1 is sufficient to guarantee the learning of deep ReLU networks. Our results

resolve an open question raised in [JT20].

185

CHAPTER 6

Generalization of Adam and SGD in Learning Neural

Networks with Regularization

6.1 Introduction

Adaptive gradient methods [DHS11; HSS12; KB15; RKK18] such as Adam are very popular

optimizers for training deep neural networks. By adjusting the learning rate coordinate-

wisely based on historical gradient information, they are known to be able to automatically

choose appropriate learning rates to achieve fast convergence in training. Because of this

advantage, Adam and its variants are widely used in deep learning. Despite their fast

convergence, adaptive gradient methods have been observed to achieve worse generaliza-

tion performance compared with gradient descent and stochastic gradient descent (SGD)

[WRS17; LXL18; CZT20; ZFM20] in many deep learning tasks such as image classification

(we have done some simple deep learning experiments to justify this, the results are reported

in Table 6.1). Even with explicit weight decay regularization, achieving good test error with

Models AlexNet VGG-16 ResNet-18

SGD 75.22 93.25 94.62

Adam 73.08 92.19 92.93

Table 6.1: Test accuracy (%) comparison between Adam and SGD on the CIFAR-10 dataset.

186

adaptive gradient methods seems to be challenging.

In this paper, we aim to provide a theoretical explanation towards the generalization

gap between GD and Adam in image classification task. Specifically, we study Adam and

GD for training neural networks with weight decay regularization on an image-like data

model, and demonstrate the different behaviors of Adam and GD based on the notion of

feature learning/noise memorization decomposition. We consider a model where the data are

generated as a combination of feature and noise patches under certain sparsity conditions,

and analyze the convergence and generalization of Adam and GD for training a two-layer

convolutional neural network (CNN). The contributions of this paper are summarized as

follows.

• We establish global convergence guarantees for Adam and GD with weight decay reg-

ularization. We show that, starting at the same random initialization, Adam and GD

can both train a two-layer convolutional neural network to achieve zero training error

after polynomially many iterations, despite the nonconvex optimization landscape.

• We further show that GD and Adam in fact converge to different global solutions with

different generalization performance: when performed on the considered image-like

data model, GD can achieve nearly zero test error, while the generalization performance

of the model found by Adam is no better than a random guess. In particular, we show

that the reason for this gap is due to the different training behaviors of Adam and GD:

Adam is more likely to fit dense noises and output a model that is largely contributed

by the noise patches; GD prefers to fit training data using their feature patch and

finds a solution that is mainly composed by the true features. We also illustrate such

different training processes in Figure 6.1, where it can be seen that the model trained

by Adam is clearly more “noisy” than that trained by SGD.

• We also show that for convex settings with weight decay regularization, both Adam

and gradient descent converge to the same solution and therefore have no test error

187

(a) Adam (b) SGD

Figure 6.1: Visualization of the first layer of AlexNet trained by Adam and SGD on the

CIFAR-10 dataset. Both algorithms are run for 100 epochs with weight decay regularization

and standard data augmentations, but without batch normalization. Clearly, the model

learned by Adam is more “noisy” than that learned by SGD, implying that Adam is more

likely to overfit the noise in the training data.

difference. This suggests that the difference between Adam and GD cannot be fully

explained by linear models or neural networks trained in the “almost convex” neural

tangent kernel (NTK) regime [JGH18; ALS19a; DLL19; ZCZ19; ADH19b; CG19; JT20;

CCZ21]. It also demonstrates that the inferior generalization performance of Adam is

closely tied to the nonconvex landscape of deep learning optimization, and cannot be

solved by adding regularization.

6.2 Problem Setup and Preliminaries

We consider learning a CNN with Adam and GD based on n independent training exam-

ples {(xi, yi)}ni=1 generated from a data model D. In the following. we first introduce our

data model D, and then explain our neural network model and the details of the training

188

algorithms.

Data model. We consider a data model where the data inputs consist of feature and noise

patches. Such a data model is motivated by image classification problems where the label of

an image usually only depends on part of an image, and the other parts of the image showing

random objects, or features that belong to other classes, can be considered as noises. When

using CNN to fit the data, the convolution operation is applied to each patch of the data

input separately. We claim that our data model is more practical than those considered

in [WRS17; RKK18], which are handcrafted for showing the failure of Adam in term of

either convergence or generalization. For simplicity, we only consider the case where the

data consists of one feature patch and one noise patch. However, our result can be easily

extended to cover the setting where there are multiple feature/noise patches. The detailed

definition of our data model is given in Definition 6.2.1 as follows.

Definition 6.2.1. Each data (x, y) with x ∈ R2d and y ∈ {−1, 1} is generated as follows,

x = [x⊤
1 ,x

⊤
2]

⊤,

where one of x1 and x2 denotes the feature patch that consists of a feature vector y · v,

which is assumed to be 1-sparse, and the other one denotes the noise patch and consists of

a noise vector ξ. Without loss of generality, we assume v = [1, 0, . . . , 0]⊤. The noise vector

ξ is generated according to the following process:

• Randomly select s coordinates from [d]\{1} with equal probabilities, which is denoted

as a vector s ∈ {0, 1}d.

• Generate ξ from distribution N (0, σ2
pI), and then mask off the first coordinate and

other d− s− 1 coordinates, i.e., ξ = ξ ⊙ s.

• Add feature noise to ξ, i.e., ξ = ξ − αyv, where 0 < α < 1 is the strength of the

feature noise.

189

In particular, throughout this paper we set d = Ω(n4), s = Θ
(
d1/2

n2

)
, σ2

p = Θ
(

1
s·polylog(n)

)
and

α = Θ
(
σp · polylog(n)

)
.

The most natural way to think of our data model is to treat x as the output of some

intermediate layer of a CNN. In literature, [PRE17] pointed out that the outputs of an

intermediate layer of a CNN are usually sparse. [Yan19] also discussed the setting where the

hidden nodes in such an intermediate layer are sampled independently. This motivates us

to study sparse features and entry-wisely independent noises in our model. In this paper,

we focus on the case where the feature vector v is 1-sparse and the noise vector is s-sparse

for simplicity. However, these sparsity assumptions can be generalized to the settings where

the feature and the noises are denser, as long as the sparsity gap between feature and noises

exists.

Note that in Definition 6.2.1, each data input consists of two patches: a feature patch yv

that is positively correlated with the label, and a noise patch ξ which contains the “feature

noise” −αyv as well as random Gaussian noises. Importantly, the feature noise −αyv in

the noise patch plays a pivotal role in both the training and test processes, which connects

the noise overfitting in the training process and the inferior generalization ability in the test

process.

Moreover, we would like to clarify that the data distribution considered in our paper is an

extreme case where we assume there is only one feature vector and all data has a feature

noise, since we believe this is the simplest model that captures the fundamental difference

between Adam and SGD. With this data model, we aim to show why Adam and SGD

perform differently. Our theoretical results and analysis techniques can also be extended to

more practical settings where there are multiple feature vectors and multiple patches, each

data can either contain a single feature or multiple features, together with pure random noise

or feature noise.

Two-layer CNN model. We consider a two-layer CNN model F using truncated polyno-

190

mial activation function σ(z) = (max{0, z})q and fix the weights of second layer to be all

1’s, where q ≥ 3. Mathematically, given the data (x, y), the j-th output of the CNN can be

formulated as

Fj(W,x) =
m∑
r=1

[
σ(⟨wj,r,x1⟩) + σ(⟨wj,r,x2⟩)

]
=

m∑
r=1

[
σ(⟨wj,r, y · v⟩) + σ(⟨wj,r, ξ⟩)

]
,

(6.2.1)

where m is the width of the network, wj,r ∈ Rd denotes the weight at the r-th neuron, and

W is the collection of model weights. We remark that we set the output layer as all 1’s for

the ease of analysis, our analyses and results can still be applied if using an random weights

for different neurons, i.e., Fj(W,x) =
∑m

r=1 vj,r
[
σ(⟨wj,r,x1⟩) + σ(⟨wj,r,x2⟩)

]
, where vj,r are

randomly generated with a constant scaling.

Besides, the motivation of using polynomial ReLU activation function is to guarantee

that the loss function is (locally) smooth and the amplification ability of pattern learning.

It can be replaced by a smoothed ReLU activation function (e.g., the activation function

used in [AL20]). If we assume the input data distribution is Gaussian, we can also deal with

ReLU activation function [LMZ20]. Moreover, we would like to emphasize that x1 and x2

denote two data patches, which are randomly assigned with feature vector or noise vector

independently for each data point. The leaner has no knowledge about which one is the

feature patch (or noise patch).

In this paper we assume the width of the network is polylogarithmic in the training

sample size, i.e., m = polylog(n). We assume j ∈ {−1, 1} in order to make the logit index

be consistent with the data label. Moreover, we assume that the each weight is initialized

from a random draw of Gaussian random variable ∼ N(0, σ2
0) with σ0 = Θ

(
d−1/4

)
.

Training objective. Given the training data {(xi, yi)}i=1,...,n, we consider to learn the model

parameter W by optimizing the empirical loss function with weight decay regularization

L(W) =
1

n

n∑
i=1

Li(W) +
λ

2
∥W∥2F , (6.2.2)

191

where Li(W) = − log eFyi (W,xi)∑
j∈{−1,1} e

Fj(W,xi)
denotes the individual loss for the data (xi, yi) and

λ ≥ 0 is the regularization parameter. In particular, the regularization parameter can be

arbitrary as long as it satisfies λ ∈
(
0, λ0

)
with λ0 = Θ

(
1

d(q−1)/4n·polylog(n)

)
. We claim that the

λ0 is the largest feasible regularization parameter that the training process will not stuck at

the origin point (recall that L(W) admits zero gradient at W = 0.)

Training algorithms. In this paper, we consider gradient descent and Adam with full

gradient1. In particular, starting from initialization W(0) = {w(0)
j,r , j = {±1}, r ∈ [m]}, the

gradient descent update rule is

w
(t+1)
j,r = w

(t)
j,r − η · ∇wj,r

L(W(t)),

where η is the learning rate. Meanwhile, Adam store historical gradient information in the

momentum m(t) and a vector v(t) as follows

m
(t+1)
j,r = β1m

(t)
j,r + (1− β1) · ∇wj,r

L(W(t)), (6.2.3)

v
(t+1)
j,r = β2v

(t)
j,r + (1− β2) · [∇wj,r

L(W(t))]2, (6.2.4)

and entry-wisely adjusts the learning rate:

w
(t+1)
j,r = w

(t)
j,r − η ·m(t)

j,r/

√
v
(t)
j,r, (6.2.5)

where β1, β2 are the hyperparameters of Adam (a popular choice in practice is β1 = 0.9,

and β2 = 0.99), and in (6.2.4) and (6.2.5), the square (·)2, square root
√
·, and division ·/·

all denote entry-wise calculations. We would like to clarify the original Adam paper [KB15]

considers to normalize the gradient m
(t)
j,r via

√
v
(t)
j,r + ϵ, while the small bias term ϵ is ignored

in our paper. In practice, tuning ϵ can help improve the generalization ability of Adam in

practice [CSN19], as it allows to make a trade-off between the normalized gradient update

and gradient update (i.e., GD). We also do not consider the initialization bias correction in

the original Adam paper for the ease of analysis.

1Our theory can still hold when applying mini-batch stochastic gradients, which we will discuss in later.

192

6.3 Main Results

In this section we will state the main theorems in this paper. We first provide the learning

guarantees of Adam and Gradient descent for training a two-layer CNNmodel in the following

theorem. Recall that in this setting the training objective is nonconvex.

Theorem 6.3.1 (Nonconvex setting). Consider a two-layer CNN defined in (6.2.1) with

d = Ω(n4) and regularized training objective (6.2.2) with a regularization parameter λ > 0,

suppose the network width is m = polylog(n) and the data distribution follows Definition

6.2.1, then we have the following guarantees on the training and test errors for the models

trained by Adam and Gradient descent:

• Suppose we run Adam for T = poly(n)
η

iterations with η = 1
poly(n)

, then with probability

at least 1−O(n−1), we can find a NN model W∗
Adam such that ∥∇L(W∗

Adam)∥1 ≤ 1
Tη
.

Moreover, the model W∗
Adam also satisfies:

– Training error is zero: 1
n

∑n
i=1 1

[
Fyi(W

∗
Adam,xi) ≤ F−yi(W

∗
Adam,xi)

]
= 0.

– Test error is high: P(x,y)∼D
[
Fy(W

∗
Adam,x) ≤ F−y(W

∗
Adam,x)

]
≥ 1

2
.

• Suppose we run gradient descent for T = poly(n)
η

iterations with learning rate η =

1
poly(n)

, then with probability at least 1−O(n−1), we can find a NN model W∗
GD such

that ∥∇L(W∗
GD)∥2F ≤ 1

Tη
. Moreover, the model W∗

GD also satisfies:

– Training error is zero: 1
n

∑n
i=1 1

[
Fyi(W

∗
GD,xi) ≤ F−yi(W

∗
GD,xi)

]
= 0.

– Test error is nearly zero: P(x,y)∼D
[
Fy(W

∗
GD,x) ≤ F−y(W

∗
GD,x)

]
= 1

poly(n)
.

From the optimization perspective, Theorem 6.3.1 shows that both Adam and GD can

be guaranteed to find a point with a very small gradient, which can also achieve zero clas-

sification error on the training data. Moreover, it can be seen that given the same iteration

number T and learning rate η, Adam can be guaranteed to find a point with up to 1/(Tη)

gradient norm in ℓ1 metric, while gradient descent can only be guaranteed to find a point

193

with up to 1/
√
Tη gradient norm in ℓ2 metric. This suggests that Adam could enjoy a faster

convergence rate compared to SGD in the training process, which is consistent with the

practice findings. We would also like to point out that there is no contradiction between

our result and the recent work [RKK18] showing that Adam can fail to converge, as the

counterexample in [RKK18] is for the online version of Adam, while we study the full batch

Adam.

In terms of the test performance, their generalization abilities are largely different, even

with weight decay regularization. In particular, the output of gradient descent can generalize

well and achieve nearly zero test error, while the output of Adam gives nearly 1/2 test error.

In fact, this gap is due to two major aspects of the training process: (1) At the early stage of

training where weight decay exhibits negligible effect, Adam and GD behave very differently.

In particular, Adam prefers the denser and thus tends to fit the noise vectors ξ, gradient

descent prefers the data patch of larger ℓ2 norm and thus will learn the feature patch; (2)

At the late stage of training where the weight decay regularization cannot be ignored, both

Adam and gradient descent will be enforced to converge to a local minimum of the regularized

objective, which maintains the pattern learned in the early stage. Consequently, the model

learned by Adam will be biased towards the noise patch to fit the feature noise vector −αyv,

which is opposite in direction to the true feature vector and therefore leads to a test error

no better than a random guess. More details about the training behaviors of Adam and GD

are given in Section 6.4.

Theorem 6.3.1 shows that when optimizing a nonconvex training objective, Adam and

gradient descent will converge to different global solutions with different generalization er-

rors, even with weight decay regularization. In comparison, the following theorem gives

the learning guarantees of Adam and gradient descent when optimizing convex and smooth

training objectives (e.g., linear model F (w,x) = w⊤x with logistic loss).

Theorem 6.3.2 (Convex setting). For any convex and smooth training objective with

positive regularization parameter λ, suppose we run Adam and gradient descent for

194

T = poly(n)
η

iterations, then with probability at least 1 − n−1, the obtained parameters

W∗
Adam and W∗

GD satisfy that ∥∇L(W∗
Adam)∥1 ≤ 1

Tη
and ∥∇L(W∗

Adam)∥22 ≤ 1
Tη

respectively.

Moreover, let F (W,x) ∈ R be the output of the convex model with parameter W and input

x, it holds that:

• Training errors are the same, 1
n

∑n
i=1 1

[
yiF (W∗

Adam,xi) > 0
]
= 1

n

∑n
i=1 1

[
yiF (W∗

GD,xi) >

0
]
.

• Test errors are nearly the same: P(x,y)∼D
[
yiF (W∗

Adam,xi) > 0
]
= P(x,y)∼D

[
yiF (W∗

GD,x) >

0
]
± 1/poly(n).

Theorem 6.3.2 shows that when optimizing a convex and smooth training objective (e.g.,

a linear model with logistic loss) with weight decay regularization, both Adam and gradient

can converge to almost the same solution and enjoy very similar generalization performance.

The proof will be relying on the strong convexity of the training objective and the convergence

(to the first-order stationary) guarantee of Adam [DBB20] and GD. Combining this result

and Theorem 6.3.1, it is clear that the inferior generalization performance is closely tied to

the nonconvex landscape of deep learning, and cannot be understood by standard weight

decay regularization.

6.4 Proof Outline of the Main Results

In this section we provide the proof sketch of Theorem 6.3.1 and explain the different gen-

eralization abilities of the models found by gradient descent and Adam.

Before moving to the proof of main results, we first give the following lemma which

shows that for data generated from the data distribution D in Definition 6.2.1, with high

probability all noise vectors {ξi}i=1,...,n have nearly disjoint supports.

Lemma 6.4.1. Let {(xi, yi)}i=1,...,n be the training dataset generated by Definition 6.2.1.

Moreover, recall that xi = [yiv
⊤, ξ⊤i]

⊤ (or xi = [ξ⊤i , yiv
⊤]⊤), let Bi = supp(ξi)\{1} be the

195

support of ξi except the first coordinate. Then with probability at least 1−n−2, Bi∩Bj = ∅

for all i ̸= j.

This lemma implies that the optimization of each coordinate of the model parameter

W, except for the first one, is mostly determined by only one training data. Technically,

this lemma can greatly simplify the analysis for Adam so that we can better illustrate its

optimization behavior and explain the generalization performance gap between Adam and

gradient descent.

Proof outline. For both Adam and gradient descent, we will show that the training process

can be decomposed into two stages. In the first stage, which we call pattern learning stage, the

weight decay regularization will be less important and can be ignored, while the algorithms

tend to learn the pattern from the training data. In particular, we will show that in the

patter learning stage, the optimization algorithms have different algorithmic bias : Adam

tends to fit the noise patch while gradient descent will mainly learn the feature patch. In

the second stage, which we call it regularization stage, the effect of regularization cannot be

neglected, which will regularize the algorithm to converge at some local stationary points.

However, due to the nonconvex landscape of the training objective, the pattern learned in

the first stage will remain unchanged, even when running an infinitely number of iterations.

6.4.1 Proof sketch for Adam

Recall that in each iteration of Adam, the model weight is updated by using a moving-

averaged gradient, normalized by a moving average of the historical gradient squares. As

pointed out in [BH18; BWA18], Adam behaves similarly to sign gradient descent (signGD)

when using sufficiently small step size or the moving average parameters β1, β2 are nearly

zero. This motivates us to understand the optimization behavior of signGD and then extends

it to Adam using their similarities. In particular, sign gradient descent updates the model

196

parameter according to the following rule:

w
(t+1)
j,r = w

(t+1)
j,r − η · sgn(∇wj,r

L(W(t))).

Recall that each data has two patches: feature and noise patches. By Lemma 6.4.1 and

the data distribution (see Definition 6.2.1), we know that all noise vectors {ξi}i=1,...,n are

supported on disjoint coordinates, except the first one. For data point xi, let Bi denote its

support, except the first coordinate. In the subsequent analysis, we will always assume that

those Bi’s are disjoint, i.e., Bi ∩ Bj = ∅ if i ̸= j.

Next we will characterize two aspects of the training process: feature learning and noise

memorization. Mathematically, we will focus on two quantities: ⟨w(t)
j,r, j · v⟩ and ⟨w(t)

yi,r, ξi⟩.

In particular, given the training data (xi, yi) with xi = [yiv
⊤, ξ⊤i]

⊤, larger ⟨w(t)
yi,r, yi · v⟩

implies better feature learning and larger ⟨w(t)
yi,r, ξi⟩ represents better noise memorization.

Then regarding the feature vector v that only has nonzero entry at the first coordinate, we

have the following by the update rule of signGD

⟨w(t+1)
j,r , jv⟩ = ⟨w(t)

j,r, jv⟩ − η ·
〈
sgn
(
∇wj,r

L(W(t))
)
, jv
〉

(6.4.1)

= ⟨w(t)
j,r, jv⟩+ jη · sgn

(n∑
i=1

yiℓ
(t)
j,i

[
σ′(⟨w(t)

j,r, yiv⟩)− ασ′(⟨w(t)
j,r, ξi⟩)

]
− nλw

(t)
j,r[1]

)
,

where ℓ
(t)
j,i := 1yi=j −logitj(F,xi) and logitj(F,xi) =

eFj(W,xi)∑
k∈{−1,1} e

Fk(W,xi)
. From (6.4.1) we can

observe three terms in the signed gradient. Specifically, the first term represents the gradient

over the feature patch, the second term stems from the feature noise term in the noise patch

(see Definition 6.2.1), and the last term is the gradient of the weight decay regularization.

On the other hand, the memorization of the noise vector ξi can be described by the following,

⟨w(t+1)
yi,r

, ξi⟩ − ⟨w(t)
yi,r

, ξi⟩ = −η ·
〈
sgn
(
∇wyi,r

L(W(t))
)
, ξi
〉

(6.4.2)

= η
∑

k∈Bi∪{1}

sgn

(
ℓ
(t)
yi,i

σ′(⟨w(t)
yi,r

, ξi⟩)ξi[k]− nλw(t)
yi,r

[k]

)
· ξi[k].

Throughout the proof, we will show that the training process of Adam can be decomposed

into two stages: pattern learning stage and regularization stage. In the first stage, the algo-

rithm learns the pattern of training data quickly, without being affected by the regularization

197

term. In the second stage, the training data has already been correctly classified since the

pattern has been well captured, the regularization will play an important role in the training

process and guide the model to converge.

Stage I: Learning the pattern. Mathematically, the first stage is defined as the iterations

that the neural network output is smaller than some constant. In this stage, all training data

remains under-fitted and can provide large gradient for model training, and the effect of

weight decay regularization can be ignored due to our choice of λ. We will show that in this

stage the inner product ⟨w(t)
yi,r, ξi⟩ grows much faster than ⟨w(t)

j,r, jv⟩ since feature learning

only makes use of the first coordinate of the gradient, while noise memorization could take

advantage of all the coordinates in Bi (see (6.4.2), note that |Bi| = s ≫ 1).

Lemma 6.4.2 (General results in Stage I). Suppose the training data is generated according

to Definition 6.2.1, assume λ = o(σq−2
0 σp/n) and η = 1/poly(d), then for any t ≤ T0 with

T0 = Õ
(

1
ηsσp

)
and any i ∈ [n],

⟨w(t+1)
j,r , j · v⟩ ≤ ⟨w(t)

j,r, j · v⟩+Θ(η), ⟨w(t+1)
yi,r

, ξi⟩ = ⟨w(t)
yi,r

, ξi⟩+ Θ̃(ηsσp).

Since ⟨w(t)
j,r, ξi⟩ enjoys much faster increasing rate than that of ⟨w(t)

j,r, j ·v⟩, after a certain

number of iterations, the learning of noise patch will dominate the learning of feature patch

(i.e., ασ′(⟨w(t)
j,r, ξi⟩) > σ′(⟨w(t)

j,r, yiv⟩)). Thus, by (6.4.1), the model will tend to fit the feature

noise in the noise patch (i.e., −αyiv), leading to a flipped feature learning phenomenon.

Lemma 6.4.3 (Flipping the feature learning). Suppose the training data is generated ac-

cording to Definition 6.2.1, α ≥ Θ̃
(
(sσp)

1−q ∨ σq−1
0

)
and σ0 < Õ((sσp)

−1), then for any

t ∈ [Tr, T0] with Tr = Õ
(

σ0
ηsσpα1/(q−1)

)
≤ T0,

⟨w(t+1)
j,r , j · v⟩ = ⟨w(t)

j,r, j · v⟩ −Θ(η).

Moreover, it holds that

• w
(T0)
j,r [1] = −sgn(j) · Ω̃

(
1
sσp

)
198

• w
(T0)
j,r [k] = sgn(ξi[k]) · Ω̃

(
1
sσp

)
or w

(T0)
j,r [k] = ±Õ(η) for k ∈ Bi with yi = j

• w
(T0)
j,r [k] = ±Õ(η) otherwise.

From Lemma 6.4.3 it can be observed that at the iteration T0, the sign of the first

coordinate of w
(T0)
j,r is different from that of the true feature, i.e., j · v. This implies that

at the end of the first training stage, the model is biased towards the noise patch to fit the

feature noise.

Stage II: Regularizing the model. In this stage, as the neural network output becomes

larger, part of training data starts to be well fitted and gives smaller gradient. As a con-

sequence, the feature learning and noise memorization processes will be slowed down and

the weight decay regularization term cannot be ignored. However, although weight decay

regularization can prevent the model weight from being too large, it will maintain the pat-

tern learned in Stage I and cannot push the model back to “forget” the noise and learn

the feature and stops at some local stationary points. We summarize these results in the

following lemma.

Lemma 6.4.4 (Maintain the pattern). If α = O
(
sσ2

p/n
)
and η = o(λ), then let r∗ =

argmaxr∈[m]⟨w(t)
yi,r, ξi⟩, for any t ≥ T0, i ∈ [n], j ∈ [2] and r ∈ [m], it holds that

⟨w(t)
yi,r∗ , ξi⟩ = Θ̃(1),

∑
k∈Bi

|w(t)
yi,r∗ [k]| · |ξi[k]| = Θ̃(1), ⟨w(t)

j,r, sgn(j) · v⟩ ∈ [−o(1), O(λ−1η)].

Lemma 6.4.4 shows that in the second stage, ⟨w(t)
yi,r, ξi⟩ will always be large while ⟨w

(t)
yi,r, yi·

v⟩ is still negative, or positive but extremely small. Next we will show that within polynomial

steps, the algorithm can be guaranteed to find a point with small gradient.

Lemma 6.4.5 (Convergence guarantee). If η = O(d−1/2), then for any t it holds that

L(W(t+1))− L(W(t)) ≤ −η∥∇L(W(t))∥1 + Θ̃(η2d).

Lemma 6.4.5 shows that we can pick a sufficiently small η and T = poly(n)/η to ensure

that the algorithm can find a point with up to O(1/(Tη)) in ℓ1 norm. Then we can show that

199

given the results in Lemma 6.4.4, the formula of the algorithm output W∗ can be precisely

characterized, which we can show that ⟨w∗
yi,r

, yi ·v⟩ < 0. This implies that the output model

will be biased to fit the feature noise −αyv but not the true one v. Then when it comes

to a fresh test example the model will fail to recognize its true feature. Also note that the

noise in the test data is nearly independent of the noise in training data. Consequently, the

model will not be able to identify the label of the test data and therefore cannot be better

than a random guess.

6.4.2 Proof sketch for gradient descent

Similar to the proof for Adam, we also decompose the entire training process into two stages.

Stage I: Learning the pattern. In this stage the gradient from training loss function

is large and and the effect of regularization can be ignored. Unlike Adam that is sensitive to

the sparsity of the feature vector or noise vector, gradient descent is more focusing on the

ℓ2 norm of them, where the vector (which can be either feature vector or noise vector) with

larger ℓ2 norm is more likely to be discovered and learnt by GD. Note that the feature vector

has a larger ℓ2 norm than the noise, we can show that, in the following lemma, gradient

descent will learn the feature vector very quickly, while barely tend to memorize the noise.

Lemma 6.4.6. Let Λ
(t)
j = maxr∈[m]⟨w(t+1)

j,r , j · v⟩, Γ
(t)
j,i = maxr∈[m]⟨w(t)

j,r, ξi⟩, and Γ
(t)
j =

maxi:yi=j Γ
(t)
j,i . Let Tj be the iteration number that Λ

(t)
j reaches Θ(1/m) = Θ̃(1), then we

have

Tj = Θ̃(σ2−q
0) for all j ∈ {−1, 1}.

Moreover, let T0 = maxj{Tj}, then for all t ≤ T0 it holds that Γ
(t)
j = Õ(σ0) for all j ∈ {−1, 1}.

Stage II: Regularizing the model. Similar to Lemma 6.4.4, we show that in the

second stage at which the impact of weight decay regularization cannot be ignored, the

pattern of the training data learned in the first stage will remain unchanged.

200

Lemma 6.4.7. If η ≤ O(σ0), it holds that Λ
(t)
j = Θ̃(1) and Γ

(t)
j = Õ(σ0) for all t ≥ minj Tj.

The following lemma further shows that within polynomial steps, gradient descent is

guaranteed to find a point with small gradient.

Lemma 6.4.8. If the learning rate satisfies η = o(1), then for any t ≥ 0 it holds that

L(W(t+1))− L(W(t)) ≤ −η

2
∥∇L(W(t))∥2F .

Lemma 6.4.8 shows that we can pick a sufficiently small η and T = poly(n)/η to ensure

that gradient descent can find a point with up to O(1/(Tη)1/2) in ℓ2 norm. By Lemma 6.4.7,

it is clear that the output model of GD can well learn the feature vector while memorizing

nearly nothing from the noise vectors, which can therefore achieve nearly zero test error.

6.5 Experiments

In this section we perform numerical experiments on the synthetic data generated according

to Definition 6.2.1 to verify our main results. In particular, we set the problem dimension d =

1000, the training sample size n = 200 (100 positive examples and 100 negative examples),

feature vector v = [1, 0, . . . , 0]⊤, noise sparsity s = 0.1d = 100, standard deviation of

noise σp = 1/s1/2 = 0.1, feature noise strength α = 0.2, initialization scaling σ0 = 0.01,

regularization parameter λ = 1 × 10−5, network width m = 20, activation function σ(z) =

max{0, z}3, total iteration number T = 1×104, and the learning rate η = 5×10−5 for Adam

(default choices of β1 and β2 in pytorch), η = 0.02 for GD.

We first report the training error and test error achieved by the solutions found by

SGD and Adam in Table 6.2, where the test error is calculated on a test dataset of size

104. It is clear that both Adam and SGD can achieve zero training error, while they have

entirely different results on the test data: SGD generalizes well and achieve zero test error;

Adam generalizes worse than SGD and gives > 0.5 test error, which verifies our main result

(Theorem 6.3.1).

201

Algorithm Adam SGD

Training error 0 0

Test error 0.884 0

Table 6.2: Training and test errors achieved by GD and Adam.

Moreover, we also calculate the inner products: maxr⟨w1,r,v⟩ and minimaxr⟨w1,r, ξi⟩,

representing feature learning and noise memorization respectively, to verify our key lemmas.

Here we only consider positive examples as the results for negative examples are similar. The

results are reported in Figure 6.2. For Adam, from Figure 6.2(a), it can be seen that the

algorithm will perform feature learning in the first few iterations and then entirely forget the

feature (but fit feature noise), i.e., the feature learning is flipped, which verifies Lemma 6.4.3.

In the meanwhile, the noise memorization happens in the entire training process and enjoys

much faster rate than feature learning, which verifies Lemma 6.4.2. In addition, we can also

observe that there are two stages for the increasing of minimaxr⟨w1,r, ξi⟩: in the first stage

minimaxr⟨w1,r, ξi⟩ increases linearly, and in the second stage its increasing speed gradually

slows down and minimaxr⟨w1,r, ξi⟩ will remain in a constant order. This verifies Lemma

6.4.2 and Lemma 6.4.4. For GD, from Figure 6.2(b), it can be seen that the feature learning

will dominate the noise memorization: feature learning will increases to a constant in the

first stage and then remains in a constant order in the second stage; noise memorization

will keep in a low level which is nearly the same as that at the initialization. This verifies

Lemmas 6.4.6 and 6.4.7.

6.6 Extensions to Mini-batch Stochastic Gradients

One natural extension of our paper is proving the separation between mini-batch SGD and

mini-batch Adam, which we believe is not difficult. In particular, let It of size B be the set

202

0 2000 4000 6000 8000 10000
Iterations

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Va
lu

e Feature Learning: max
r w1, r, v

Noise Memorization: min
i

max
r w1, r, i

(a) Adam

0 2000 4000 6000 8000 10000
Iterations

0.0

0.5

1.0

1.5

2.0

Va
lu

e Feature Learning: max
r w1, r, v

Noise Memorization: min
i

max
r w1, r, i

(b) GD

Figure 6.2: Visualization of the feature learning (maxr⟨w1,r,v⟩) and noise memorization

(minimaxr⟨w1,r, ξi⟩) in the training process.

of indices of the mini-batch data used in the t-th iteration, the update rule of SGD is

w
(t+1)
j,r = w

(t)
j,r − η · 1

B

∑
i∈It

∇wj,r
Li(W

(t))− γw
(t)
j,r.

The update rule of mini-batch Adam is

m
(t+1)
j,r = β1m

(t)
j,r + (1− β1) ·

[
1

B

∑
i∈It

∇wj,r
Li(W

(t))− γw
(t)
j,r

]
,

v
(t+1)
j,r = β2v

(t)
j,r + (1− β2) ·

[
1

B

∑
i∈It

∇wj,r
Li(W

(t))− γw
(t)
j,r

]2
,

and

w
(t+1)
j,r = w

(t)
j,r − η ·m(t)

j,r/

√
v
(t)
j,r.

Then we will take a deeper look at the speeds of feature learning and noise learning for

mini-batch SGD and Adam, where we focus on the period that |⟨wt
j,r,v⟩|, |⟨wt

j,r, ξi⟩| = o(1)

for all j, i, and r (i.e., the pattern learning stage). This further implies that |ℓ(t)j,i | = 0.5±o(1)

for all j, i, and t. Thus in the following, we will assume that all |ℓ(t)j,i | has nearly the same

quantity.

203

Feature Learning. First, according to Definition 6.2.1, we know that the feature vector

v and feature noise are the same for all data, which implies that the learning pattern of the

feature coordinate will be largely the same as that of full-batch algorithms. In particular,

for mini-batch Adam, we can show that the update of the first coordinate (i.e., feature

coordinate) is similar to sign-GD when using sufficiently small learning rate η = 1/poly(d)

since all stochastic gradients ∇Li(W
(t)) have the same component in this coordinate. Then

using the fact that |ℓ(t)j,i |’s are nearly the same for all i, we have

⟨w(t+1)
j,r , jv⟩ ∼ ⟨w(t)

j,r, jv⟩+ jη · sgn
(n∑

i=1

yiℓ
(t)
j,i

[
σ′(⟨w(t)

j,r, yiv⟩)− ασ′(⟨w(t)
j,r, ξi⟩)

]
− nλw

(t)
j,r[1]

)
.

which is the same as full-batch Adam (see (6.4.1)). For SGD, using the fact that |ℓ(t)j,i |’s are

nearly the same for all i, we can get that

⟨w(t+1)
j,r , jv⟩ ∼ (1− ηλ) · ⟨w(t)

j,r, j · v⟩

+
η

n
· j ·

(n∑
i=1

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩)− α

n∑
i=1

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩)

)
which is also the same as that of GD (see (6.7.28)).

Noise Memorization. Note that due to the normalization term v
(t)
j,r in the Adam update,

all coordinates will be updated with nearly the same amount. Therefore, we only need to

count the number of coordinates that are updated by full-batch Adam and mini-batch Adam.

Recall that we have shown that using mini-batch gradients will not affect the feature

learning. However, the noise memorization will be slightly different, since in each iteration,

full-batch Adam can update Θ(ns) coordinates while mini-batch Adam can only update

Θ̃(Bs) coordinates. To show this, we note that for any coordinate k ̸= 1, the gradient

momentum of full-batch Adam is

m
(t)
j,r[k] ∼

τ̄∑
τ=0

βτ1 (1− β1) ·
1

n

∑
i∈[n]

[
∇wj,r

Li(W
(t−τ))[k] + λw

(t−τ)
j,r [k]

]
,

204

while for mini-batch Adam,

m
(t)
j,r[k] ∼

τ̄∑
τ=0

βτ1 (1− β1) ·
1

B

∑
i∈It−τ

[
∇wj,r

Li(W
(t−τ))[k] + λw

(t−τ)
j,r [k]

]
,

where we only maintain the recent τ̄ = polylog(n) gradients since for τ ≤ t− τ̄ , the decaying

terms (β1)
τ ≤ (βi)

τ̄ becomes negligible. Therefore, by comparing the above two equations

and applying Definition 6.2.1, it is clear that for full-batch Adam can update all noise

coordinates, i.e., k ∈ ∪i∈[n]Bi, which is of size Θ(ns). In contrast, mini-batch Adam can only

update a subset of noise coordinates, i.e., k ∈ ∪τ∈[τ̄]∪i∈[It−τ]Bi, which is of size τ̄Bs = Θ̃(Bs).

This further implies that in each epoch (one pass of the data, Θ(n/B) steps), the noise

coordinates in Bi will be updated by mini-batch Adam in at most τ̄ = Θ̃(1) steps, while

within the same amount of iterations, the noise coordinates in Bi will be updated by full-

batch Adam for Θ(n/B) steps, suggesting that mini-batch Adam admits a slower rate of

noise memorization by a Θ̃(n/B) factor.

For SGD, it is easy to show that the rate of noise memorization will still be nearly the

same as that of GD. In particular, during each training epoch (Θ(n/B) steps), SGD will

learn the noise vector ξi in only one step with the mini-batch gradient 1
B
∇Li(W

τ) for some

τ in this epoch, while within the same amount of steps, GD will learn the noise vector ξi in

all Θ(n/B) steps but with strength 1
n
∇Li(W

τ), giving the same total learning ability. This

suggests that SGD admits a nearly the same rate of noise memorization compared to GD.

To sum up, we have shown that (1) mini-batch SGD and mini-batch Adam will not

change the learning rate of feature vector v compared to their full-batch counterparts; (2)

mini-batch Adam reduces the noise memorization rate of full-batch Adam by a Θ̃(n/B)

factor, while mini-batch SGD has nearly the same noise memorization rate compared to

full-batch GD. Additionally, recall that in our paper, the separation between Adam and GD

is characterized by a poly(d) factor: the speed of feature learning in Adam and GD, and

the rate of noise memorization in GD are both in the order of O(η) (in each step), while

the rate of noise memorization in Adam is proportional to the number of nonzero entries,

205

which is in the order of η · poly(d). Therefore, the separation between mini-batch SGD and

mini-batch Adam in terms of the generalization error can still hold under a stronger over-

parameterization condition (the previous poly(d) separation needs to dominate the Θ̃(n/B)

improvement brought by mini-batch Adam).

6.7 Proof of Theorem 6.3.1: Nonconvex Case

In the beginning of the proof we first present the following useful lemma.

6.7.1 Preliminaries

We first recall the magnitude of all parameters:

d = poly(n), η =
1

poly(n)
, s = Θ

(
d1/2

n2

)
, σ2

p = Θ

(
1

s · polylog(n)

)
, σ2

0 = Θ

(
1

d1/2

)
,

m = polylog(n), α = Θ
(
σp · polylog(n)

)
, λ = O

(
1

d(q−1)/4n · polylog(n)

)
.

Here poly(n) denotes a polynomial function of n with degree of a sufficiently large constant,

poly(n) denotes a polynomial function of log(n) with degree of a sufficiently large constant.

Based on the parameter configuration, we claim that the following equations hold, which

will be frequently used in the subsequent proof.

λ = o

(
σq−2
0 σp
n

)
, α = ω

(
(sσp)

1−qσq−1
0

)
, σ0 = o

(
1

sσp

)
, α = o

(
sσ2

p

n

)
, η = o

(
λσq0σ

q
p

)
.

Lemma 6.7.1 (Non-overlapping support). Let {(xi, yi)}i=1,...,n be the training dataset sam-

pled according to Definition 6.2.1. Moreover, let Bi = supp(ξi)\{1} be the support of xi

except the first coordinate2. Then with probability at least 1 − n−2, Bi ∩ Bj = ∅ for all

i, j ∈ [n].

Proof of Lemma 6.7.1. For any fixed k ∈ [n] and j ∈ supp(ξk)\{1}, by the model assumption

2Recall that all data inputs have nonzero first coordinate by Definition 6.2.1

206

we have

P{(ξi)j ̸= 0} = s/(d− 1),

for all i ∈ [n]\{k}. Therefore by the fact that the data samples are independent, we have

P(∃i ∈ [n]\{k} : (ξi)j ̸= 0) = 1− [1− s/(d− 1)]n.

Applying a union bound over all k ∈ [n] and j ∈ supp(ξk)\{1}, we obtain

P(∃k ∈ [n], j ∈ supp(ξk)\{1}, i ∈ [n]\{k} : (ξi)j ̸= 0) ≤ n · s · {1− [1− s/(d− 1)]n}.

(6.7.1)

By the data distribution assumption we have s ≤
√
d/(2n2), which clearly implies s/(d−1) ≤

1/2. Therefore we have

n · s · [1− (1− s/d)n] = n · s · {1− exp[n log(1− s/(d− 1))]}

≤ n · s · [1− exp(n · 2s/(d− 1))]

≤ n · s · [1− exp(n · 4s/d)]

≤ n · s · (4ns/d)

= 4n2s2/d

≤ n−2,

where the first inequality follows by the inequalities log(1 − z) ≥ −2z for z ∈ [0, 1/2], the

second inequality follows by s/(d− 1) ≥ 2s/d, the third inequality follows by the inequality

1 − exp(−z) ≤ z for z ∈ R, and the last inequality follows by the assumption that s ≤
√
d/(2n2). Plugging the bound above into (6.7.1) finishes the proof.

207

6.7.2 Proof for Adam

Before moving to the detailed proof, we first state the update rules of feature learning and

noise memorization when the sign gradient is applied.

⟨w(t+1)
j,r , jv⟩ = ⟨w(t)

j,r, jv⟩ − η ·
〈
sgn
(
∇wj,r

L(W(t))
)
, jv
〉

= ⟨w(t)
j,r, jv⟩+ jη · sgn

(n∑
i=1

yiℓ
(t)
j,i

[
σ′(⟨w(t)

j,r, yiv⟩)− ασ′(⟨w(t)
j,r, ξi⟩)

]
− nλw

(t)
j,r[1]

)
,

(6.7.2)

where ℓ
(t)
j,i := 1yi=j −logitj(F,xi) and logitj(F,xi) =

eFj(W,xi)∑
k∈{−1,1} e

Fk(W,xi)
. From (6.7.2) we can

observe three terms in the signed gradient. Specifically, the first term represents the gradient

over the feature patch, the second term stems from the feature noise term in the noise patch

(see Definition 6.2.1), and the last term is the gradient of the weight decay regularization.

On the other hand, the memorization of the noise vector ξi can be described by the following

update rule,

⟨w(t+1)
yi,r

, ξi⟩ = ⟨w(t)
yi,r

, ξi⟩ − η ·
〈
sgn
(
∇wyi,r

L(W(t))
)
, ξi
〉

= ⟨w(t)
yi,r

, ξi⟩+ η ·
∑
k∈Bi

〈
sgn

(
ℓ
(t)
yi,i

σ′(⟨w(t)
yi,r

, ξi⟩)ξi[k]− nλw(t)
yi,r

[k]

)
, ξi[k]

〉

− αyiη · sgn
(n∑

i=1

yiℓ
(t)
yi,i

[
σ′(⟨w(t)

yi,r
, yiv⟩)− ασ′(⟨w(t)

yi,r
, ξi⟩)

]
− nλw(t)

yi,r
[1]

)
.

(6.7.3)

In this subsection we first provide the following lemma that shows for most of the coor-

dinate (with slightly large gradient), the Adam update is similar to signGD update (up to

some constant factors). In the remaining proof for Adam, we will largely apply this lemma to

get a signGD-like result for Adam (similar to the technical lemmas in Section 6.4). Besides,

the proofs for all lemmas in Section 6.4 can be viewed as a simplified version of the proofs

for technical lemmas for Adam, thus are omitted in the paper.

208

Lemma 6.7.2 (Closeness to SignGD). Recall the update rule of Adam, let W(t) be the t-th

iterate of the Adam algorithm. Suppose that ⟨w(t)
j,r,v⟩, ⟨w

(t)
j,r, ξi⟩ = Θ̃(1) for all j ∈ {±1} and

r ∈ [m]. Then if β2 ≥ β2
1 , we have

• For all k ∈ [d], ∣∣∣∣ m(t)
j,r[k]√
v
(t)
j,r[k]

∣∣∣∣ ≤ Θ(1).

• For every k /∈ ∪ni=1Bi (including k = 1) we have either |∇wj,r
L(W(t))[k]| ≤ Θ̃(η) or

m
(t)
j,r[k]√
v
(t)
j,r[k]

= sgn
(
∇wj,r

L(W(t))[k]
)
·Θ(1).

• For every k ∈ Bi, we have |∇wj,r
L(W(t))[k]| ≤ Θ̃

(
ηn−1sσp|ℓ(t)j,i |

)
≤ Θ̃(ηsσp) or

m
(t)
j,r[k]√
v
(t)
j,r[k]

= sgn
(
∇wj,r

L(W(t))[k]
)
·Θ(1).

Proof. First recall that the gradient ∇wj,r
L(W(t)) can be calculated as

∇wj,r
L(W(t)) = − 1

n

[n∑
i=1

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩) · v +

n∑
i=1

ℓ
(t)
j,i · σ′(⟨w(t)

j,r, yiξi⟩) · ξi
]
+ λw

(t)
j,r.

More specifically, for the first coordinate of ∇wj,r
L(W(t)), we have

∇wj,r
L(W(t))[1] = − 1

n

[n∑
i=1

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩)− α

n∑
i=1

yiℓ
(t)
j,i · σ′(⟨w(t)

j,r, ξi⟩)
]
+ λw

(t)
j,r[1].

(6.7.4)

For any k ∈ Bi, by Lemma 6.7.1 we know that the gradient over this coordinate only depends

on the training data ξi, therefore, we have

∇wj,r
L(W(t))[k] = − 1

n
ℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩)ξi[k] + λw

(t)
j,r[k]. (6.7.5)

For the remaining coordinates, we have

∇wj,r
L(W(t))[k] = λw

(t)
j,r[k]. (6.7.6)

209

Now let us focus on the moving averaged gradient m
(t)
j,r and squared gradient v

(t)
j,r. We

first show that for all k ∈ [d], it holds that∣∣m(t)
j,r[k]

∣∣√
v
(t)
j,r[k]

≤ Θ(1). (6.7.7)

By the update rule of m
(t)
j,r, we have

m
(t)
j,r[k] = β1m

(t−1)
j,r [k] + (1− β1) · ∇wj,r

L(W(t))[k]

=
t∑

τ=0

βτ1 (1− β1) · ∇wj,r
L(W(t−τ))[k].

Similarly, we also have

v
(t)
j,r[k] =

t∑
τ=0

βτ2 (1− β2) · ∇wj,r
L(W(t−τ))[k]2.

Then by Cauchy-Schwartz inequality we have

(
m

(t)
j,r[k]

)2 ≤ (t∑
τ=0

[βτ1 (1− β1)]
2

α2
τ

· ∇wj,r
L(W(t−τ))[k]2

)
·
(t∑

τ=0

α2
τ

)
.

Let α2
τ =

[βτ
1 (1−β1)]2
βτ
2 (1−β2)

, which forms an exponentially decaying sequence if β2 ≥ β2
1 . Therefore,

we have
∑t

τ=0 α
2
τ = Θ(1) and the above inequality implies that(

m
(t)
j,r[k]

)2 ≤ v
(t)
j,r[k] ·Θ(1),

which proves (6.7.7).

Now we are going to prove the main argument of this lemma. Note that m
(t)
j,r, which is a

weighted average of all historical gradients, where the weights decay exponentially fast, then

we can take on a threshold τ̄ = polylog(η−1) such that
∑t

τ=τ̄ β
τ
1 (1 − β1) =

1
poly(η−1)

. Then

for each k ∈ [d] we have

m
(t)
j,r[k] =

τ̄∑
τ=0

βτ1 (1− β1) · ∇wj,r
L(W(t−τ))[k] +

t∑
τ=τ̄

βτ1 (1− β1) · ∇wj,r
L(W(t−τ))[k]

=
τ̄∑
τ=0

βτ1 (1− β1) · ∇wj,r
L(W(t−τ))[k]± 1

poly(η−1)
,

210

where in the last inequality we use the fact that |∇wj,r
L(W(t−τ))[k]| = Õ(1) for all k ∈ [d].

Similarly, we can also have the following on v
(t)
j,r,

v
(t)
j,r[k] =

τ̄∑
τ=0

βτ2 (1− β2) · ∇wj,r
L(W(t−τ))[k]2 ± 1

poly(η−1)
.

Here we slightly abuse the notation by using the same τ̄ . Then we have

m
(t)
j,r[k]√
v
(t)
j,r[k]

=

∑τ̄
τ=0 β

τ
1 (1− β1) · ∇wj,r

L(W(t−τ))[k]± 1
poly(η−1)√∑τ̄

τ=τ̄ β
τ
2 (1− β2) · ∇wj,r

L(W(t−τ))[k]2 ± 1
poly(η−1)

.

In order to prove the main argument of this lemma, the key is to show that within τ̄ iterations,

the gradient ∇wj,r
L(W(t))[k] barely changes. In particular, by (6.7.7), we have the update

of each coordinate in one step is at most Θ(η). This implies that

∣∣⟨w(t)
j,r,v⟩ − ⟨w(τ)

j,r ,v⟩
∣∣ ≤ Θ(ητ̄),∣∣⟨w(t)

j,r, ξi⟩ − ⟨w(τ)
j,r , ξi⟩

∣∣ ≤ Θ(ητ̄sσp),

|w(t)
j,r[k]−w

(τ)
j,r [k]| ≤ Θ(ητ̄).

Then applying the fact that |⟨w(τ)
j,r ,v⟩| ≤ Θ̃(1) and |⟨w(τ)

j,r , ξi⟩| ≤ Θ̃(1), we further have

∣∣Fj(W(τ),xi)− Fj(W
(t),xi)

∣∣ ≤ Θ(mητ̄sσp) = Θ̃(ητ̄sσp),

where we use the fact that m = Θ̃(1) and sσp = ω(1). Then it holds that

ℓ
(τ)
j,i =

eFj(W
(τ),xi)∑

k∈{−1,1} e
Fk(W(τ),xi)

≤ eFj(W
(t),xi)+Θ̃(ητ̄sσp)

eFj(W(τ),xi)+Θ̃(ητ̄sσp) + eF−j(W(t),xi)−Θ̃(ητ̄sσp)

= sgn(ℓ
(t)
j,i) ·Θ(|ℓ(t)j,i |),

where we use the fact that Θ̃(ητ̄sσp) = o(1). Similarly, we can also show that ℓ
(τ)
j,i ≥

sgn(ℓ
(t)
j,i) ·Θ(|ℓ(t)j,i |), which further implies

ℓ
(τ)
j,i = sgn(ℓ

(t)
j,i) ·Θ(|ℓ(t)j,i |)

211

for all τ ∈ [t− τ̄ , t]. Note that |ℓ(τ)j,i | ≤ 1, then it holds that

ℓ
(τ)
j,i σ

′(⟨w(τ)
j,r ,v⟩) = sgn(ℓ

(t)
j,i) ·Θ(|ℓ(t)j,i |) · σ′(⟨w(τ)

j,r ,v⟩)

≤ sgn(ℓ
(t)
j,i) ·Θ(|ℓ(t)j,i |) · σ′(⟨w(t)

j,r,v⟩) + Θ(|ℓ(t)j,i |) · Θ̃(ητ̄).

We can also similarly derive the following

ℓ
(τ)
j,i σ

′(⟨w(τ)
j,r ,v⟩) ≥ sgn(ℓ

(t)
j,i) ·Θ(|ℓ(t)j,i |) · σ′(⟨w(t)

j,r,v⟩)−Θ(|ℓ(t)j,i |) · Θ̃(ητ̄),

ℓ
(τ)
j,i σ

′(⟨w(τ)
j,r , ξi⟩) ≤ sgn(ℓ

(t)
j,i) ·Θ(|ℓ(t)j,i |) · σ′(⟨w(t)

j,r, ξi⟩) + Θ(|ℓ(t)j,i |) · Θ̃(ητ̄sσp),

ℓ
(τ)
j,i σ

′(⟨w(τ)
j,r , ξi⟩) ≥ sgn(ℓ

(t)
j,i) ·Θ(|ℓ(t)j,i |) · σ′(⟨w(t)

j,r, ξi⟩)−Θ(|ℓ(t)j,i |) · Θ̃(ητ̄sσp).

Combining the above results, applying (6.7.4), (6.7.5), and (6.7.6), we can show that for the

first coordinate, we have

∇wj,r
L(W(τ))[1] = Θ

(
∇wj,r

L(W(t))[1]
)
±Θ

(
1

n

n∑
i=1

|ℓ(t)j,i |
)
· Õ(ητ̄)±Θ(λητ̄);

for any k ∈ Bj, we have

∇wj,r
L(W(τ))[k] = Θ

(
∇wj,r

L(W(t))[k]
)
±Θ

(|ℓ(t)j,i |
n

)
· Õ(ητ̄sσp)±Θ(λητ̄);

and for remaining coordinates, we have

∇wj,r
L(W(τ))[k] = Θ

(
∇wj,r

L(W(t))[k]
)
±Θ(λητ̃).

Now we can plug the above results into the formula of m
(t)
j,r and v

(t)
j,r. Using the fact that

τ̄ = Θ̃(1), λ = o(1), and |ℓ(t)j,i | ≤ 1, we have for all k = 1 or k /∈ Bi for any i,

m
(t)
j,r[k]√
v
(t)
j,r[k]

=
∇wj,r

L(W(t))[k]± Θ̃(η)

Θ
(
|∇wj,r

L(W(t))[k]|
)
± Θ̃(η))

.

For k ∈ Bi we have

m
(t)
j,r[k]√
v
(t)
j,r[k]

=
∇wj,r

L(W(t))[k]± Θ̃
(
ηsσp|ℓ(t)j,i |

n

)
± Θ̃(λη)

Θ
(
|∇wj,r

L(W(t))[k]|
)
± Θ̃

(
ηsσp|ℓ(t)j,i |

n

)
± Θ̃(λη)

.

212

Then, we can conclude that for all k = 1 or k /∈ Bi for any i, we have either |∇wj,r
L(W(t))[k]| ≤

Θ̃(η) or

m
(t)
j,r[k]√
v
(t)
j,r[k]

= sgn
(
∇wj,r

L(W(t))[k]
)
·Θ(1).

For any k ∈ Bi, we have either |∇wj,r
L(W(t))[k]| ≤ Θ̃

(
ηn−1sσp|ℓ(t)j,i |+ λη

)
or

m
(t)
j,r[k]√
v
(t)
j,r[k]

= sgn
(
∇wj,r

L(W(t))[k]
)
·Θ(1).

This completes the proof.

Lemma 6.7.3 (Lemma 6.4.2, restated). Suppose the training data is generated according

to Definition 6.2.1, assume λ = o(σq−2
0 σp/n) and η = 1/poly(d), then for any t ≤ T0 with

T0 = Õ
(

1
ηsσp

)
and any i ∈ [n],

⟨w(t+1)
j,r , j · v⟩ ≤ ⟨w(t)

j,r, j · v⟩+Θ(η),

⟨w(t+1)
yi,r

, ξi⟩ = ⟨w(t)
yi,r

, ξi⟩+ Θ̃(ηsσp).

Proof. At the initialization, we have

|⟨w(0)
j,r ,v⟩| = Θ̃(σ0), |⟨w(0)

j,r , ξi⟩| = Θ̃(s1/2σpσ0 + α) = Θ̃(s1/2σpσ0), w
(0)
j,r [k] = Θ̃(σ0),

which also imply that |ℓ(0)j,i | = Θ(1). Besides, note that ℓ
(t)
j,i = 1j=yi −logitj(F

(t),xi), we have

sgn
(
yiℓ

(t)
j,i

)
= sgn(j),

where we recall that j ∈ {−1, 1}. Therefore, given that λ = o(σq−1
0), α = o(1), s1/2σp = Õ(1),

and assume ℓ
(t)
j,i = Θ(1) (which will be verified later),

sgn

(n∑
i=1

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩)− α

n∑
i=1

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩)− nλw

(t)
j,r[1]

)
= sgn

[
j · Θ̃(nσq−1

0)− j · Θ̃(αn(s1/2σpσ0)
q−1)± o

(
σq−1
0 σp)

]
= sgn(j).

213

Since v is 1-sparse, then by Lemma 6.7.2, the following inequality naturally holds,

⟨w(t+1)
j,r , j · v⟩ ≤ ⟨w(t)

j,r, j · v⟩ − η
〈
m

(t)
j,r/

√
v
(t)
j,r, j · v

〉
≤ ⟨w(t)

j,r, j · v⟩+Θ(η).

Additionally, in terms of the memorization of noise, we first consider the iterate in the

initialization. By the condition that η = o(1/d) = o(1/(sσp)) and note that for a sufficiently

large fraction of k ∈ Bi (e.g., 0.99), we have |ξi[k]| ≥ Θ̃(σp) ≥ Θ̃(ηn−1sσp|ℓ(0)j,i |) and thus

sgn
(
∇wyi,r

L(W(0))[k]
)
= sgn

(
ℓ
(t)
yi,i

σ′(⟨w(t)
yi,r

, ξi⟩)ξi[k]− nλw(0)
yi,r

[k]

)
= −sgn

[
Θ̃
(
(d1/2σpσ0)

q−1σp · sgn(ξi[k])
)
± o(σq−1

0 σp)
]
= −sgn(ξi[k]).

(6.7.8)

Therefore, by Lemma 6.7.2 we have the following according to (6.7.3),

⟨w(1)
yi,r

, ξi⟩ = ⟨w(0)
yi,r

, ξi⟩ − η
〈
m

(t)
j,r/

√
v
(t)
yi,r, ξi

〉
≥ ⟨w(0)

yi,r
, ξi⟩+Θ(η) ·

∑
k∈Bi

⟨sgn(ξi[k]), ξi[k]⟩ −O(ηsσp)−O(ηα)

= ⟨w(0)
yi,r

, ξi⟩+ Θ̃(ηsσp),

where in the first inequality the term O(ηsσp) represents the coordinates that |ξi[k]| ≤ O(σp)

(so that we cannot use the sign information of ∇yi,rL(W
(0)) but directly bound it by Θ(1))

and the last inequality is due to the fact that |Bi| ≥ s − 1 and α = o(1). For general t, we

will consider the following induction hypothesis:

⟨w(t+1)
yi,r

, ξi⟩ = ⟨w(t)
yi,r

, ξi⟩+ Θ̃(ηsσp), (6.7.9)

which has already been verified for t = 0. By Hypothesis (6.7.9), the following holds at time

t,

⟨w(t)
yi,r

, ξi⟩ = ⟨w(0)
yi,r

, ξi⟩+ Θ̃(tηsσp) = Θ̃(s1/2σpσ0 + tηsσp).

In the meanwhile, we have the following upper bound for |w(t)
j,r[k]|,

|w(t)
j,r[k]| ≤ |w(t)

j,r[k]|+ η| sign(∇wj,r
L(W(t)))| ≤ |w(0)

j,r [k]|+ tη = Θ̃(σ0 + tη). (6.7.10)

214

Besides, it is also easy to verify that for any t ≤ T0 = Θ̃
(

1
sσpηm

)
= Θ̃

(
1

sσpη

)
, we have

⟨w(t)
yi,r, ξi⟩, ⟨w

(t)
yi,r, j · v⟩ < Θ(1/m) and thus |ℓ(t)j,i | = Θ(1). Then similar to (6.7.8), we have

sgn
(
∇wyi,r

L(W(t))[k]
)

= sgn

(
ℓ
(t)
yi,i

σ′(⟨w(t)
yi,r

, ξi⟩)ξi[k]− nλw(0)
yi,r

[k]

)
= −sgn

(
Θ̃
[
(s1/2σpσ0 + tηsσp)

q−1σp · sgn(ξi[k])
)
± o
(
σq−2
0 σp · (σ0 + tη)

)]
= −sgn(ξi[k]). (6.7.11)

This further implies that

⟨w(t+1)
yi,r

, ξi⟩ ≥ ⟨w(t)
yi,r

, ξi⟩ −Θ(η) ·
∑
k∈Bi

⟨sgn
(
∇wyi,r

L(W(t))[k]
)
, ξi[k]⟩ −O(η2s2σ2

p)−O(ηα)

= ⟨w(t)
yi,r

, ξi⟩+ Θ̃(ηsσp),

where the term −O(η2s2σ2
p) is contributed by the gradient coordinates that are smaller than

Θ(ηsσp). This verifies Hypothesis (6.7.9) at time t and thus completes the proof.

From Lemma 6.7.3, note that sσp = ω(1), then it can be seen that ⟨w(t)
j,r, j · v⟩ increases

much faster than ⟨w(t)
j,r, j · v⟩. By looking at the update rule of ⟨w(t)

j,r, j · v⟩ (see (6.7.2)), it

will keeps increasing only when, roughly speaking, σ′(⟨w(t)
j,r, j · v⟩) > ασ′(⟨w(t)

j,r, ξi⟩). Since

⟨w(t)
j,r, ξi⟩ increases much faster than ⟨w(t)

j,r, j ·v⟩, it can be anticipated after a certain number

of iterations, ⟨w(t)
j,r, j ·v⟩ will start to decrease. In the following lemma, we provide an upper

bound on the iteration number such that this decreasing occurs.

Lemma 6.7.4 (Lemma 6.7.4, restated). Suppose the training data is generated according

to Definition 6.2.1, α ≥ Θ̃
(
(sσp)

1−q ∨ σq−1
0

)
and σ0 < Õ((sσp)

−1), then for any t ∈ [Tr, T0]

with Tr = Õ
(

σ0
ηsσpα1/(q−1)

)
≤ T0,

⟨w(t+1)
j,r , j · v⟩ = ⟨w(t)

j,r, j · v⟩ −Θ(η).

215

Moreover, it holds that

w
(T0)
j,r [k] =

−sgn(j) · Ω̃

(
1
sσp

)
, k = 1,

sgn(ξi[k]) · Ω̃
(

1
sσp

)
or ± Õ(η), k ∈ Bi, with yi = j,

±Õ(η), otherwise.

Proof. Recall from Lemma 6.7.3 that for any t ≤ T0 we have

⟨w(t+1)
j,r , j · v⟩ ≤ ⟨w(t)

j,r, j · v⟩+Θ(η) ≤ ⟨w(0)
j,r , j · v⟩+Θ(tη),

⟨w(t+1)
ys,r , ξs⟩ = ⟨w(t)

ys,r, ξs⟩+ Θ̃(ηsσp) ≤ ⟨w(0)
ys,r, ξs⟩+ Θ̃(tηsσp).

Besides, by Lemma 6.7.2 we also have |w(t)
j,r[k]| ≤ |w(0)

j,r [k]| + O(tη). Then it can be verified

that for some Tr = Õ
(

σ0
ηsσpα1/(q−1)

)
, we have for all i ∈ [n] and t ∈ [Tr, T0]

ασ′(⟨w(t)
yi,r

, ξi⟩) ≥ C ·
[
σ′(⟨w(t)

j,r, j · v⟩) + λn|w(t)
j,r[1]|

]
for some constant C. This further implies that

sgn
(
∇wj,r

L(W(t))[1]
)

= −sgn

(n∑
i=1

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩)− α

n∑
i=1

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩)− nλw

(t)
j,r[1]

)
= −sgn

[
− α

n∑
i=1

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩)

]
= sgn(j),

where we use the fact that sgn(yiℓ
(t)
j,i) = sgn(j) for all i ∈ [n]. Then by Lemma 6.7.2 and

(6.7.2), we have for all t ∈ [Tr, T0],

⟨w(t+1)
j,r , j · v⟩ = ⟨w(t)

j,r, j · v⟩ −Θ(η) · sgn(j) · sgn
(
∇wj,r

L(W(t))[1]
)
= ⟨w(t)

j,r, j · v⟩ −Θ(η).

Then at iteration T0, for the first coordinate we have

w
(T0)
j,r [1] = w

(0)
j,r [1] + sgn(j) ·Θ(Trη)− sgn(j) ·Θ((T0 − Tr)η) ≥ −sgn(j) · Ω̃

(
1

sσp

)

216

For any k ∈ Bi with yi = j, we have either the coordinate will increase at a rate of Θ(1) or

fall into 0. As a consequence we have either w
(T0)
j,r [k] ∈ [−Θ̃(η), Θ̃(η)] or

w
(T0)
j,r [k] = w

(0)
j,r [k] + sgn(ξi[k]) ·Θ(T0η) ≥ sgn(ξi[k]) · Ω̃

(
1

sσp

)
.

For the remaining coordinate, its update will be determined by the regularization term,

which will finally fall into the region around zero since we have T0η = ω(σ0). By Lemma

6.7.2 it is clear that w
(T0)
j,r [k] ∈ [−Θ̃(η), Θ̃(η)].

Lemma 6.7.5 (Lemma 6.4.4, restated). If α = O
(sσ2

p

n

)
and η = o(λ), then let r∗ =

argmaxr∈[m]⟨w(t)
yi,r, ξi⟩, for any t ≥ T0, i ∈ [n], j ∈ [2] and r ∈ [m], it holds that

⟨w(t)
yi,r∗ , ξi⟩ = Θ̃(1),

∑
k∈Bi

|w(t)
yi,r∗ [k]| · |ξi[k]| = Θ̃(1),

∀r ∈ [m], ⟨w(t)
j,r, sgn(j) · v⟩ ∈ [−Õ

(nα
sσ2

p

)
, O(λ−1η)].

Proof. The proof will be relying on the following three induction hypothesis:

⟨w(t)
yi,r∗ , ξi⟩ = Ω̃(1), (6.7.12)∑

k∈Bi

|w(t+1)
yi,r∗ [k]| · |ξi[k]| = Θ̃(1), (6.7.13)

∀r ∈ [m], ⟨w(t)
j,r, sgn(j) · v⟩ ∈

[
− Õ

(nα
sσ2

p

)
, O(λ−1η)

]
, (6.7.14)

which we assume they hold for all τ ≤ t and r ∈ [m], i ∈ [n], and j ∈ [2]. It is clear that all

hypothesis hold when t = T0 according to Lemma 6.7.4.

217

Verifying Hypothesis (6.7.12). We first verify Hypothesis (6.7.12). Recall that the up-

date rule for ⟨w(t)
yi,r, ξi⟩ is given as follows,

⟨w(t+1)
yi,r

, ξi⟩

= ⟨w(t)
yi,r

, ξi⟩ − η ·
〈
m(t)

yi,r
/

√
v
(t)
yi,r, ξi

〉
≥ ⟨w(t)

yi,r
, ξi⟩ −Θ(η) ·

〈
sgn
(
∇wyi,r

L(W(t))
)
, ξi
〉
− Θ̃(η2s2σ2

p)

= ⟨w(t)
yi,r

, ξi⟩+Θ(η) ·
∑
k∈Bi

〈
sgn

(
ℓ
(t)
yi,i

σ′(⟨w(t)
yi,r

, ξi⟩)ξi[k]− nλw(t)
yi,r

[k]

)
, ξi[k]

〉

− αyiΘ(η) · sgn
(n∑

i=1

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩)− α

n∑
i=1

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩)− nλw

(t)
j,r[1]

)
− Θ̃(η2s2σ2

p). (6.7.15)

Note that for any a and b we have sgn(a− b) · a ≥ |a| − 2|b|. Then it follows that

∑
k∈Bi

〈
sgn

(
ℓ
(t)
yi,i

σ′(⟨w(t)
yi,r

, ξi⟩)ξi[k]− nλw(t)
yi,r

[k]

)
, ξi[k]

〉
≥
∑
k∈Bi

(
|ξi[k]| −

2nλ|w(t)
yi,r[k]|

ℓ
(t)
yi,i

σ′(⟨w(t)
yi , ξi⟩)

)
≥ Θ̃(sσp)− Θ̃

(
nλ

ℓ
(t)
yi,i

σp

)
,

where the last inequality follows from Hypothesis (6.7.12) and (6.7.13). Further recall that

λ = o(σq−2
0 σp/n), plugging the above inequality to (6.7.15) gives

⟨w(t+1)
yi,r

, ξi⟩ ≥ ⟨w(t)
yi,r

, ξi⟩+ Θ̃(ηsσp)− Θ̃

(
ηnλ

ℓ
(t)
yi,i

σp

)
− Θ̃(η2s2σ2

p)

≥ ⟨w(t)
yi,r

, ξi⟩+ Θ̃(ηsσp)−Θ(αη)− Θ̃

(
ησq−2

0

ℓ
(t)
yi,i

)
. (6.7.16)

Then it is clear that ⟨w(t)
yi,r, ξi⟩ will increase by Θ̃(ηsσp) if ℓ

(t)
yi,i

is larger than some constant of

order Ω̃(nλ
sσ2

p
) = Ω̃(

σq−2
0

sσp
). We will first show that as soon as there is a iterate W(τ) satisfying

ℓ
(τ)
yi,i

≤ Õ
(
nλ
sσ2

p

)
for some τ ≤ t, then it must hold that ℓ

(τ ′)
yi,i

will also be smaller than some

constant in the order of Õ
(
nλ
sσ2

p

)
for all τ ′ ∈ [τ, t+ 1]. To prove this, we first note that if ℓ

(t)
yi,i

218

reaches some constant in the order of Õ
(
nλ
sσ2

p

)
, we have for all r ∈ [m] by (6.7.16)

⟨w(t+1)
yi,r

, ξi⟩ ≥ ⟨w(t)
yi,r

, ξi⟩+ Θ̃(ηsσp),

⟨w(t+1)
−yi,r , ξi⟩ ≤ ⟨w(t)

−yi,r, ξi⟩+O(αη),

|⟨w(t+1)
j,r ,v⟩| ≤ |⟨w(t)

j,r,v⟩|+O(η). (6.7.17)

Therefore, we have

ℓ
(t+1)
yi,i

=
eF−yi (W

(t+1),xi)∑
j∈{−1,1} e

Fj(W(t+1),xi)

=
1

1 + exp
[∑m

r=1

[
σ(⟨w(t+1)

yi,r ,v⟩) + σ(⟨w(t+1)
yi,r , ξi⟩)− σ(⟨w(t+1)

−yi,r ,v⟩)− σ(⟨w(t+1)
−yi,r , ξi⟩)

]
≤ 1

1 + exp
[∑m

r=1

[
σ(⟨w(t)

yi,r,v⟩) + σ(⟨w(t)
yi,r, ξi⟩)− σ(⟨w(t)

−yi,r,v⟩)− σ(⟨w(t)
−yi,r, ξi⟩)

]
+ Θ̃(ηsσ2

p)
]

≤ 1

1 + exp
[∑m

r=1

[
σ(⟨w(t)

yi,r,v⟩) + σ(⟨w(t)
yi,r, ξi⟩)

]
− σ(⟨w(t)

−yi,r,v⟩)− σ(⟨w(t)
−yi,r, ξi⟩)

]]
= ℓ

(t)
yi,i

,

where inequality follows from (6.7.17). Therefore, this implies that as long as ℓ
(t)
yi,i

is larger

than some constant b = Õ
(
nλ
sσ2

p

)
, then the adam algorithm will prevent it from further

increasing. Besides, since mησ2
p = o(1), then we must have ℓ

(t+1)
yi,i

∈ [0.5ℓ
(t)
yi,i

, 2ℓ
(t)
yi,i

]. As a

consequence, we can deduce that ℓ
(t)
yi,i

cannot be larger than 2b, since otherwise there must

exists a iterateW(τ) with τ ≤ t such that ℓ
(τ)
yi,i

∈ [b, 2b] and ℓ
(τ+1)
yi,i

≥ ℓ
(τ)
yi,i

, which contradicts the

fact that ℓ
(τ)
yi,i

should decreases if ℓ
(τ)
yi,i

≥ b. Therefore, we can claim that if ℓ
(τ)
yi,i

≤ b = Õ
(
nλ
sσ2

p

)
for some τ ≤ t, then we have

ℓ
(τ ′)
yi,i

≤ Õ

(
nλ

sσ2
p

)
(6.7.18)

219

for all τ ′ ∈ [τ, t+ 1]. Then further note that

2ℓ
(t+1)
yi,i

≥ ℓ
(t)
yi,i

=
eF−yi (W

(t),xi)∑
j∈{−1,1} e

Fj(W(t),xi)

≥ exp

(
−

m∑
r=1

[
σ(⟨w(t)

yi,r
, yiv⟩) + σ(⟨w(t)

yi,r
, ξi⟩)

])
≥ exp

(
−Θ

(
mmax

r∈[m]
σ(⟨w(t)

yi,r
, ξi⟩)

))
, (6.7.19)

where in the last inequality we use Hypothesis (6.7.14). Then by the fact that ℓ
(t+1)
yi,i

≤

Õ
(
nλ
sσ2

p

)
= o(1) and m = Θ̃(1), it is clear that exp

(
− Θ

(
mmaxr∈[m] σ(⟨w(t+1)

yi,r , ξi⟩)
))

= o(1)

so that maxr∈[m]⟨w(t+1)
yi,r , ξi⟩ = Ω̃(1). This verifies Hypothesis (6.7.12).

Verifying Hypothesis (6.7.13). Now we will verify Hypothesis (6.7.13). First, note that

we have already shown that ⟨w(t+1)
yi,r∗ , ξi⟩ = Ω̃(1) so it holds that∑

k∈Bi

|w(t+1)
yi,r∗ [k]| · |ξi[k]|+ α|w(t+1)

yi,r∗ [1]| ≥ ⟨w(t+1)
yi,r∗ , ξi⟩ = Ω̃(1).

By Hypothesis (6.7.14), we have |w(t+1)
yi,r∗ [1]| ≤ |w(t)

yi,r∗ [1]|+ η = o(1). Besides, since each coor-

dinate in ξi is a Gaussian random variable, then maxk∈Bi
|ξi[k]| = Õ(σp). This immediately

implies that ∑
k∈Bi

|w(t+1)
yi,r∗ [k]| · |ξi[k]| = Ω̃(1).

Then we will prove the upper bound of
∑

k∈Bi
|w(t+1)

yi,r [k]| · |ξi[k]|. Recall that by Lemma

6.7.2, for any k ∈ Bi such that ∇wyi,r
L(W(t))[k] ≥ Θ̃(n−1ηsσpℓ

(t)
yi,i

), we have

w(t+1)
yi,r

[k] = w(t)
yi,r

[k] + Θ(η) · sgn
(
ℓ
(t)
yi,i

σ′(⟨w(t)
yi,r

, ξi⟩)ξi[k]− nλw(t)
yi,r

[k]

)
.

Note that by Lemma 6.7.4, for every k ∈ Bi, we have either w
(T0)
yi,r [k] = sgn(ξi[k]) · Θ̃

(
1
sσp

)
or |w(T0)

yi,r [k]| ≤ η. Then during the training process after T0, we have either sgn(w
(t)
yi,r[k]) =

sgn(ξi[k]) or sgn(ξi[k]) · w(t)
yi,r ≥ −Õ(η) since if for some iteration number t′ that we have

sgn(w
(t′)
yi,r[k]) = −sgn(ξi[k]) but sgn(w

(t′−1)
yi,r [k]) = sgn(ξi[k]), then after τ̄ = Õ(1) steps (see

220

the proof of Lemma 6.7.2 for the definition of τ̄) in the constant number of steps the gradient

will must be in the same direction of ξi[k], which will push wyi,r[k] back to zero or become

positive along the direction of ξi[k]. Therefore, based on this property we have the following

regarding the inner product ⟨w(t)
yi,r, ξi⟩,

⟨w(t)
yi,r

, ξi⟩ =
∑

k∈Bi∪{1}

w(t)
yi,r

[k] · ξi[k]

≥
∑

k∈Bi∪{1}

|w(t)
yi,r

[k]| · |ξi[k]| − Õ(η) ·
∑

k∈Bi∪{1}

|ξi[k]|

=
∑

k∈Bi∪{1}

|w(t)
yi,r

[k]| · |ξi[k]| − Õ(ηsσp),

where the second inequality follows from the fact that the entry w
(t)
yi,r[k] that has different

sign of ξi[k] satisfies |w(t)
yi,r[k]| ≤ Õ(η). Then let B

(t)
i =

∑
j∈Bi∪{1}

∣∣w(t)
yi,r[k] · 1(|w

(t)
yi,r[k]| ≥

Õ(η))
∣∣ · |ξi[k]|, which satisfies B

(T0)
i = Θ̃(1) by Lemma 6.7.4. Then assume B

(t)
i keeps

increasing and reaches some value in the order of Θ
(
log(dnη−1)

)
, it holds that according to

the inequality above

⟨w(t)
yi,r

, ξi⟩ = Θ
(
log(dnη−1)

)
− Θ̃(ηsσp) = Θ

(
log(dnη−1)

)
,

where we use the condition that η = O
(
(sσp)

−1
)
. Then by Hypothesis (6.7.12) and (6.7.14)

we know that |⟨w(t)
j,r,v⟩| = o(1), ⟨w(t)

yi,r∗ , ξi⟩ = Ω̃(1), and |⟨w(t)
−yi,r∗ , ξi⟩| = Õ(dη)+α|⟨w(t)

−yi,r∗ ,v⟩| =

o(1) then similar to (6.7.19), it holds that

ℓ
(t)
yi,i

=
eF−yi (W

(t),xi)∑
j∈{−1,1} e

Fj(W(t),xi)
≤ exp

(
−Θ

(
σ(⟨w(t)

yi,r∗ , ξi⟩)
))

≤ poly(d−1, n−1, η).

Therefore, at this time we have for all k ∈ Bi,

ℓ
(t)
yi,i

σ⟨(w(t)
yi,r

, ξi⟩)ξi[k] ≤ poly(d−1, n−1, η) ·Θ
(
logq−1(dnη−1)

)
· Θ̃(σp) ≤ nλη.

Then for all |w(t)
yi,r[k]| ≥ Õ(η), the sign of the gradient satisfies

sgn
(
∇wyi,r

L(W(t))[k]
)
= −sgn

(
ℓ
(t)
yi,i

σ′(⟨w(t)
yi,r

, ξi⟩)ξi[k]− nλw(t)
yi,r

[k]

)
= sgn(nλη −w(t)

yi,r
[k])

= sgn(w(t)
yi,r

[k]).

221

Then note that |∇wyi,r
L(W(t))[k]| = Θ(|λw(t)

yi,r[k]|) ≥ Θ
(
n−1ηsσpℓ

(t)
yi,i

+ λη
)
, by the update

rule ofw
(t)
yi,r[k] and Lemma 6.7.2, we know the sign gradient will dominate the update process.

Then we have |w(t+1)
yi,r [k]| = |w(t)

yi,r[k] − Θ(η) · sgn(w(t)
yi,r[k])| ≤ |w(t)

yi,r[k]|, which implies that∣∣w(t)
yi,r[k] · 1(|w

(t)
yi,r[k]| ≥ Õ(η))

∣∣ decreases so that B
(t)
i also decreases. Therefore, we can

conclude that B
(t)
i will not exceed Θ

(
log(dnη−1)

)
. Then combining the results for all i ∈ [n]

gives

∑
k∈Bi

|w(t)
yi,r∗ [k]| · |ξi[k]| ≤ B

(t)
i + Õ(sησp) ≤ Θ

(
log(dnη−1)

)
+O(1) = Θ̃(1),

where in the first inequality we again use the condition that η = o(1/d) = o
(
(sσp)

−1
)
. This

verifies Hypothesis (6.7.13). Notably, this also implies that ⟨w(t)
yi,r∗ , ξi⟩ = maxr∈[m]⟨w(t)

yi,r, ξi⟩ ≤

Θ̃(1).

Verifying Hypothesis (6.7.14). In order to verify Hypothesis (6.7.14), let us first recall

the update rule of ⟨w(t)
j,r,v⟩:

⟨w(t+1)
j,r ,v⟩ = ⟨w(t)

j,r,v⟩ − η

〈
m

(t)
j,r√
v
(t)
j,r

,v

〉
.

Then by Lemma 6.7.2, we know that if |∇wj,r
L(W(t))[1]| ≤ Θ̃(η), then |m(t)

j,r/
√
v
(t)
j,r| ≤ Θ(1)

and otherwise〈
m

(t)
j,r√
v
(t)
j,r

,v

〉
= −sgn

(n∑
i=1

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩)− α

n∑
i=1

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩)− nλw

(t)
j,r[1]

)
·Θ(1).

Without loss of generality we assume j = 1, then by Lemma 6.7.4 we know that w
(T0)
1,r [1] =

−Ω̃
(

1
sσp

)
. In the remaining proof, we will show that either w

(t+1)
1,r [1] ∈ [0, Θ̃(λ−1η)] or

w
(t+1)
1,r [1] ∈

[
− Õ

(
nα
sσ2

p

)
, 0
)
.

First we will show that w
(t+1)
1,r [1] ∈ [0, Θ̃(λ−1η)] for all r. Note that in the beginning of

this stage, we have w
(T0)
1,r [1] < 0. In order to make the sign of w

(t′)
1,r [1] flip, we must have, in

222

some iteration t′ ≤ t that satisfies w
(t′)
1,r [1] ∈ [0, Θ̃(λ−1η)], therefore

−n∇w1,rL(W
(t′))[1] =

n∑
i=1

yiℓ
(t′)
j,i σ

′(⟨w(t′)
j,r , yiv⟩)− α

n∑
i=1

yiℓ
(t′)
j,i σ

′(⟨w(t′)
j,r , ξi⟩)− nλw

(t′)
j,r [1]

≤ n
[(
w

(t′)
j,r [1]

)q−2 − λ
]
·w(t′)

j,r [1] ≤ −Θ̃(nη) ≤ 0,

where the second inequality holds since η = o(λ(q−1)/(q−2)). Note that |∇w1,rL(W
(t′))[1]| ≥

Θ̃(η), then by Lemma 6.7.2 we know that Adam is similar to sign gradient descent and thus

w
(t′+1)
1,r [1] = w

(t′)
1,r [1]−Θ(η) which starts to decrease. This implies that if w

(t+1)
1,r [1] is positive,

then it cannot exceed Θ̃(λ−1η) = o(1).

Then we can prove that if w
(t+1)
1,r [1] is negative, then |w(t+1)

1,r [1]| = Õ
(
nα
sσ2

p

)
. In this case

we have for all t′ ≤ t,

−n∇
w

(t)
1,r
L(W(t′))[1] =

n∑
i=1

yiℓ
(t′)
1,i σ

′(⟨w(t′)
1,r , yiv⟩)− α

n∑
i=1

yiℓ
(t′)
1,i σ

′(⟨w(t′)
1,r , ξi⟩)− nλw

(t′)
1,r [1]

≥ −
∑
i:yi=1

|ℓ(t
′)

1,i | · Θ̃(α) + nλ|w(t′)
1,r [1]|+

∑
i:yi=−1

|ℓ(t
′)

1,i | · |w
(t′)
1,r [1]|q−1,

≥ −
∑
i:yi=1

|ℓ(t
′)

1,i | · Θ̃(α) + nλ|w(t′)
1,r [1]|,

where in the inequality we use Hypothesis (6.7.13) and (6.7.14) to get that

⟨w(t′)
yi,r

, ξi⟩ ≤
∑
k∈Bi

|w(t′)
yi,r

[k]| ·max
k∈Bi

|ξi[k]|+ α|⟨w(t′)
yi,r

,v⟩| = Θ̃(1).

Recall from (6.7.18) that we have |ℓ(t
′)

j,i | = Õ
(
nλ
sσ2

p

)
, therefore we have if w

(t′)
j,r [1] is smaller than

some value in the order of −Θ̃
(
nα
sσ2

p

)
· polylog(d), then

−n∇
w

(t)
1,r
L(W(t′))[1] ≥ −Θ̃

(
αn2λ

sσ2
p

)
+ Θ̃

(
nλ · nα
sσ2

p

)
· polylog(d) ≥ Θ̃(nη),

which by Lemma 6.7.2 implies that w
(t′)
j,r [1] will increase. Therefore, we can conclude that

w(t+1) ∈
[
− Õ

(
nα
sσ2

p

)
, 0
)
in this case, which verifies Hypothesis (6.7.14).

Lemma 6.7.6 (Lemma 6.4.5, restated). If the step size satisfies η = O(d−1/2), then for any

t it holds that

L(W(t+1))− L(W(t)) ≤ −η∥∇L(W(t))∥1 + Θ̃(η2d).

223

Proof. Let ∆Fj,i = Fj(W
(t+1),xi)− Fj(W

(t),xi). Then regarding the loss function

Li(W) = − log
eFyi (W,xi)∑
j e

Fj(W,xi)
= −Fyi(W,xi) + log

(∑
j

eFj(W,xi)
)
.

It is clear that the function Li(W) is 1-smooth with respect to the vector [F−1(W,xi), F1(W,xi)].

Then based on the definition of ∆Fj,i, we have

Li(W
(t+1))− Li(W

(t)) ≤
∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
·∆Fj,i +

∑
j

(∆Fj,i)
2. (6.7.20)

Moreover, note that

Fj(W
(t),xi) =

m∑
r=1

[
σ(⟨w(t)

j,r, yiv⟩) + σ(⟨w(t)
j,r, ξi⟩)

]
.

By the results that ⟨w(t)
j,r,v⟩ ≤ Θ̃(1) and ⟨w(t)

j,r, ξ⟩ ≤ Θ̃(1), for any η = O(d−1/2), we have

⟨w(t+1)
j,r ,v⟩ ≤ ⟨w(t)

j,r,v⟩+ η ≤ Θ̃(1), ⟨w(t+1)
j,r , ξi⟩ ≤ ⟨w(t)

j,r, ξi⟩+ Θ̃(ηs1/2) ≤ Θ̃(1),

which implies that the smoothness parameter of the functions σ(⟨w(t)
j,r, yiv⟩) and σ(⟨w(t)

j,r, ξi⟩)

are at most Θ̃(1) for any w in the path between w
(t)
j,r and w

(t+1)
j,r . Then we can apply first

Taylor expansion on σ(⟨w(t)
j,r, yiv⟩) and σ(⟨w(t)

j,r, ξi⟩) and bound the second-order error as

follows,

∣∣σ(⟨w(t+1)
j,r , yiv⟩)− σ(⟨w(t)

j,r, yiv⟩)−
〈
∇wj,r

σ(⟨w(t)
j,r, yiv⟩),w

(t+1)
j,r −w

(t)
j,r⟩
∣∣

≤ Θ̃
(
∥w(t+1)

j,r −w
(t)
j,r∥22

)
= Θ̃(η2d), (6.7.21)

where the last inequality is due to Lemma 6.7.2 that

[w
(t+1)
j,r −w

(t)
j,r]

2 = η2

∥∥∥∥∥ m
(t)
j,r√
v
(t)
j,r

∥∥∥∥∥
2

2

≤ Θ(η2d).

Similarly, we can also show that

∣∣σ(⟨w(t+1)
j,r , ξi⟩)− σ(⟨w(t)

j,r, ξi⟩)−
〈
∇wj,r

σ(⟨w(t)
j,r, ξi⟩),w

(t+1)
j,r −w

(t)
j,r⟩
∣∣ ≤ Θ(η2d). (6.7.22)

224

Combining the above bounds on the second-order errors, we have∣∣∆Fj,i − ⟨∇WFj(W
(t),xi),W

(t+1) −W(t)⟩
∣∣ ≤ Θ̃(mη2d) = Θ̃(η2d), (6.7.23)

where the last equation is due to our assumption that m = Θ̃(1). Besides, by (6.7.21) and

(6.7.22) the convexity property of the function σ(x), we also have∣∣σ(⟨w(t+1)
j,r , yiv⟩)− σ(⟨w(t)

j,r, yiv⟩)
∣∣ ≤ |

〈
∇wj,r

σ(⟨w(t)
j,r, yiv⟩),w

(t+1)
j,r −w

(t)
j,r⟩|+ Θ̃(η2d)

= Θ̃
(
η|σ′(⟨w(t+1)

j,r , yiv⟩)| · ∥v∥1
)
+ Θ̃(η2d)

= Θ̃(η + η2d);∣∣σ(⟨w(t+1)
j,r , ξi⟩)− σ(⟨w(t)

j,r, ξi⟩)
∣∣ ≤ |

〈
∇wj,r

σ(⟨w(t)
j,r, ξi⟩),w

(t+1)
j,r −w

(t)
j,r⟩|+ Θ̃(η2d)

= Θ̃
(
η|σ′(⟨w(t+1)

j,r , ξi⟩)| · ∥ξ∥1
)
+ Θ̃(η2d)

= Θ̃(ηsσp + η2d).

These bounds further imply that

|∆Fj,i| ≤ Θ̃
(
m · (ηsσp + η2d)

)
= Θ̃

(
ηsσp + η2d

)
. (6.7.24)

Now we can plug (6.7.23) and (6.7.24) into (6.7.20) and get

Li(W
(t+1))− Li(W

(t)) ≤
∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
·∆Fj,i +

∑
j

(∆Fj,i)
2

≤
∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
· ⟨∇WFj(W

(t),xi),W
(t+1) −W(t)⟩

+ Θ̃(η2d) + Θ̃
(
(ηsσp + η2d)2

)
= ⟨∇Li(W

(t)),W(t+1) −W(t)⟩+ Θ̃(η2d), (6.7.25)

where in the second inequality we use the fact that Li(W) is 1-Lipschitz with respect to

Fj(W,xi) and the last equation is due to our assumption that σp = O(s−1/2) so that

Θ̃((ηsσp + η2d)2) = Õ(η2d).

Now we are ready to characterize the behavior on the entire training objective L(W) =

n−1
∑n

i=1 Li(W) + λ∥W∥2F . Note that λ∥W∥2F is 2λ-smoothness, where λ = o(1). Then

225

applying (6.7.25) for all i ∈ [n] gives

L(W(t+1))− L(W(t)) =
1

n

n∑
i=1

[
Li(W

(t+1))− Li(W
(t))
]
+ λ
(
∥W(t+1)∥2F − ∥W(t)∥2F

)
≤ ⟨∇L(W(t)),W(t+1) −W(t)⟩+ Θ̃(η2d),

where the second equation uses the fact that ∥W(t+1) − W(t)∥2F = Θ̃(η2d). Recall that we

have

w
(t+1)
j,r −w

(t)
j,r = −η ·

m
(t)
j,r√
v
(t)
j,r

.

Then by Lemma 6.7.2, we know that m
(t)
j,r[k]/

√
v
(t)
j,r[k] is close to sign gradient if ∇L(w(t))[k]

is large. Then we have〈
∇wj,r

L(W(t)),
m

(t)
j,r√
v
(t)
j,r

〉
≥ Θ

(∥∥∇wj,r
L(W(t))

∥∥
1

)
− Θ̃

(
d · η

)
− Θ̃(ns · ηsσp)

≥ Θ
(∥∥∇wj,r

L(W(t))
∥∥
1

)
− Θ̃(dη),

where the second and last terms on the R.H.S. of the first inequality are contributed by the

small gradient coordinates k /∈ ∪ni=1Bi and k ∈ ∪ni=1Bi respectively, and the last inequality

is by the fact that ns2σp = O(d). Therefore, based on this fact (6.7.25) further leads to

L(W(t+1))− L(W(t)) ≤ −η∥∇L(W(t))∥1 + Θ̃(η2d),

which completes the proof.

Lemma 6.7.7 (Generalization Performance of Adam). Let

W∗ = argmin
W∈{W(1),...,W(T)}

∥∇L(W)∥1.

Then for all training data, we have

1

n

n∑
i=1

1
[
Fyi(W

∗,xi) ≤ F−yi(W
∗,xi)

]
= 0.

226

Moreover, in terms of the test data (x, y) ∼ D, we have

P(x,y)∼D
[
Fy(W

∗,x) ≤ F−y(W
∗,x)

]
≥ 1

2
.

Proof. By Lemma 6.7.6, we know that the algorithm will converge to a point with very small

gradient (up to O(ηd) in ℓ1 norm). Then in terms of a noise vector ξi, we have

∑
k∈Bi

∣∣∇wyi,r
L(W∗)[k]

∣∣ ≤ O(ηd). (6.7.26)

Note that

n∇wyi,r
L(W∗)[k] = ℓ∗yi,iσ

′(⟨w∗
yi,r

, ξi⟩)ξi[k]− nλw∗
yi,r

[k],

where ℓ∗yi,i = 1 − logityi(F
∗,xi). Then by triangle inequality and (6.7.26), we have for any

r ∈ [m],∣∣∣∣∑
k∈Bi

|ℓ∗yi,i|σ
′(⟨w∗

yi,r
, ξi⟩)|ξi[k]| − nλ

∑
k∈Bi

|w∗
yi,r

[k]|
∣∣∣∣ ≤ n

∑
k∈Bi

∣∣∇wyi,r
L(W∗)[k]

∣∣ ≤ O(nηd).

Then by Lemma 6.7.5, let r∗ = argmaxr∈[m]⟨w∗
yi,r

, ξi⟩, we have ⟨wyi,r∗ , ξi⟩ = Θ̃(1) and∑
k∈Bi

|w∗
yi,r∗

[k]| · |ξi[k]| = Θ̃(1). Note that |ξi[k]| = Õ(σp), we have
∑

k∈Bi
|w∗

yi,r∗
[k]| ≥

Θ̃(1/σp). Then according to the inequality above, it holds that

|ℓ∗yi,i| · Θ̃(sσp) ≥ Θ̃

(
nλ
∑
k∈Bi

|w∗
yi,r

[k]| − nηd

)
≥ Θ̃

(
nλ

σp

)
,

where the second inequality is due to our choice of η. This further implies that |ℓ∗yi,i| =

|ℓ∗−yi,i| = Θ̃
(
nλ
sσ2

p

)
by combining the above results with (6.7.18). Then let us move to the

gradient with respect to the first coordinate. In particular, since ∥∇L(W∗)∥1 ≤ O(ηd), we

have

|n∇wj,r
L(W∗)[1]| =

∣∣∣∣ n∑
i=1

yiℓ
∗
j,iσ

′(⟨w∗
j,r, yiv⟩)− α

n∑
i=1

yiℓ
∗
j,iσ

′(⟨w∗
j,r, ξi⟩)− nλw∗

j,r[1]

∣∣∣∣
≤ O(nηd). (6.7.27)

227

Then note that sgn(yiℓ
∗
j,i) = sgn(j), it is clear that w∗

j,r∗ [1] · j ≤ 0 since otherwise

|n∇wj,r∗L(W
∗)[1]| ≥

∣∣∣∣α n∑
i=1

yiℓ
∗
j,i

[
σ′(⟨w∗

j,r∗ , ξi⟩)− σ′(⟨w∗
j,r∗ , yiv⟩)

]∣∣∣∣ ≥ Θ̃

(
αn2λ

sσ2
p

)
≥ Ω̃(nηd),

which contradicts (6.7.27). Therefore, using the fact that w∗
j,r∗ [1] · j ≤ 0, we have

|n∇wj,r∗L(W
∗)[1]| =

∣∣∣∣α n∑
i:yi=j

yiℓ
∗
j,iσ

′(⟨w∗
j,r∗ , ξi⟩)−

n∑
i:yi=−j

yiℓ
∗
j,iσ

′(|w∗
j,r∗ [1]|)

]
− nλ|w∗

j,r∗ [1]|
∣∣∣∣.

Then applying (6.7.27)and using the fact that |ℓ∗yi,i| = |ℓ∗−yi,i| = Θ̃
(
nλ
sσ2

p

)
for all i ∈ [n], it is

clear that

|w∗
j,r∗ [1]| ≥ Θ̃

(
α1/(q−1) ∧ nα

sσ2
p

)
≥ Θ̃

(
nα

sσ2
p

)
,

where the second equality is due to our choice of σp and α. Then combining with Lemma

6.7.5 and the fact that w∗
j,r∗ [1] · j < 0, we have

w∗
j,r∗ [1] · j ≤ −Θ̃

(
nα

sσ2
p

)
.

Now we are ready to evaluate the training error and test error. In terms of training error, it is

clear that by Lemma 6.7.5, we have ⟨w∗
yi,r∗

, ξi⟩ ≥ Θ̃(1), ⟨w∗
yi,r

, ξi⟩ ≥ −o(1), and |⟨w∗
yi,r

,v⟩| =

o(1), |⟨w∗
−yi,r, ξi⟩| = o(1). Then we have for any training data (xi, yi),

Fyi(W
∗,xi) =

m∑
r=1

[
σ(⟨w∗

yi,r
, yiv⟩) + σ(⟨w∗

yi,r
, ξi⟩)

]
= Θ̃(1),

F−yi(W
∗,xi) =

m∑
r=1

[
σ(⟨w∗

−yi,r,−yiv⟩) + σ(⟨w∗
−yi,r, ξi⟩)

]
= o(1),

which directly implies that the NN model W∗ can correctly classify all training data and

thus achieve zero training error.

In terms of the test data (x, y) where x = [yv, ξ], which is generated according to

Definition 6.2.1. Note that for each neural, its weight w∗
j,r can be decomposed into two

parts: the first coordinate and the rest d − 1 coordinates. As previously discussed, for any

j ∈ [2] and r = r∗, we have sgn(j) ·w∗
j,r[1] ≤ −Θ̃

(
nα/(sσ2

p)
)
and sgn(j) ·w∗

j,r[1] ≤ Θ̃(λ−1η)

228

for r ̸= r∗. Therefore, using the fact that Θ̃
(
nα/(sσ2

p)
)
= ω(λ−1η) and Lemma 6.7.5, given

the test data (x, y), we have

Fy(W
∗,x) =

m∑
r=1

[
σ(⟨w∗

y,r, yv⟩) + σ(⟨w∗
y,r, ξ⟩)

]
≤

m∑
r=1

Θ̃

([
α · nα

sσ2
p

+ ζy,r

]q
+

)
,

F−y(W
∗,x)) =

m∑
r=1

[
σ(⟨w∗

−y,r, yv⟩) + σ(⟨w∗
−y,r, ξ⟩)

]
≥ Θ̃

[
|w∗

−y,r∗ [1]|q + [ζ−y,r∗]
q
+

]
≥ Θ

([
nα

sσ2
p

]q
+

+ [ζ−y,r∗]
q
+

)
,

where the random variables ζy,r and ζy,r are symmetric and independent of v. Besides, note

that α = o(1), it can be clearly shown that α · nα/(sσ2
p) ≪ nα/(sσ2

p). Therefore, if the

random noise ζy,r and ζ−y,r are dominated by the feature noise term ⟨w∗
−y,r∗ , yv⟩, we can

directly get that Fy(W
∗,x) ≤ F−y(W

∗,x)) (recall that m = Θ̃(1)), which implies that the

model has been biased by the feature noise and the true feature vector in the test dataset

will not give any “positive” effect to the classification. Also note that ζy and ζ−y are also

independent of v, which implies that if the random noise dominates the feature noise term,

the model W∗ will give at least 0.5 error on test data. In sum, we can conclude that with

probability at least 1/2 it holds that Fy(W
∗,x) ≤ F−y(W

∗,x), which implies that the output

of Adam achieves 1/2 test error.

229

6.7.3 Proof for Gradient Descent

Recall the feature learning and noise memorization of gradient descent can be formulated by

⟨w(t+1)
j,r , j · v⟩ = (1− ηλ) · ⟨w(t)

j,r, j · v⟩

+
η

n
· j ·

(n∑
i=1

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, yiv⟩)− α

n∑
i=1

yiℓ
(t)
j,iσ

′(⟨w(t)
j,r, ξi⟩)

)
,

⟨w(t+1)
yi,r

, ξi⟩ = (1− ηλ) · ⟨w(t)
yi,r

, ξi⟩+
η

n
·
∑
k∈Bi

ℓ
(t)
yi,i

σ′(⟨w(t)
yi,r

, ξi⟩) · ξi[k]2

+
ηα

n
·
(
α

n∑
s=1

ℓ(t)yi,sσ
′(⟨w(t)

yi,r
, ξs⟩)−

n∑
s=1

ysℓ
(t)
yi,s

σ′(⟨w(t)
yi,r

, ysv⟩)
)
. (6.7.28)

Then similar to the analysis for Adam, we decompose the gradient descent process into

multiple stages and characterize the algorithmic behaviors separately. The following lemma

characterizes the first training stage, i.e., the stage where all outputs Fj(W
(t),xi) remain in

the constant level for all j and i.

Lemma 6.7.8. [Lemma 6.4.6, restated] Suppose the training data is generated accord-

ing to Definition 6.2.1 and λ = o(σq−2
0 σp/n). Let Λ

(t)
j = maxr∈[m]⟨w(t+1)

j,r , j · v⟩, Γ
(t)
j,i =

maxr∈[m]⟨w(t)
j,r, ξi⟩, and Γ

(t)
j = maxi:yi=j Γ

(t)
j,i . Then let Tj be the iteration number that Λ

(t)
j

reaches Θ(1/m), we have

Tj = Θ̃(σ2−q
0 /η) for all j ∈ {−1, 1}.

Moreover, let T0 = minj∈{±1}{Tj}, then for all t ≤ T0 it holds that Γ
(t)
j = Õ(σ0) for all

j ∈ {−1, 1}.

We first provide the following useful lemma.

Lemma 6.7.9. Let {xt, yt}t=1,... be two positive sequences that satisfy

xt+1 ≥ xt + η · Axq−1
t ,

yt+1 ≤ yt + η ·Byq−1
t ,

230

for some A = Θ(1) and B = o(1). Then for any q ≥ 3 and suppose y0 = O(x0) and

η < O(x0), we have for every C ∈ [x0, O(1)], let Tx be the first iteration such that xt ≥ C,

then we have Txη = Θ(x2−q
0) and

yTx ≤ O(x0).

Proof. By Claim C.20 in [AL20], we have Txη = Θ(x2−q
0). Then we will show

yt ≤ 2x0

for all t ≤ Tx. In particular, let Txη = C ′x2−q
0 for some absolute constant C ′ and assume

C ′B2q−1 < 1 (this is true since B = o(1)), we first made the following induction hypothesis

on yt for all t ≤ Ta,

yt ≤ y0 + tηB′(2x0)
q−1.

Note that for any t ≤ T0, this hypothesis clearly implies that

yt ≤ y0 + TxηB
′2q−1xq−1

0 ≤ x0 + CB2q−1x2−q
0 · xq−1

0 ≤ 2x0.

Then we are able to verify the hypothesis at time t+ 1 based on the recursive upper bound

of yt, i.e.,

yt+1 ≤ yt + η ·Byq−1
t

≤ y0 + tηB(2x0)
q−1 + η ·Byq−1

t

≤ y0 + (t+ 1)ηB(2x0)
q−1.

Therefore, we can conclude that yt ≤ 2x0 for all t ≤ Tx. This completes the proof.

Now we are ready to complete the proof of Lemma 6.7.8.

Proof of Lemma 6.7.8. Note that at the initialization, we have |⟨w(0)
j,r ,v⟩| = Θ̃(σ0) and

|⟨w(0)
j,r , ξi⟩| = Θ̃(s1/2σpσ0). Then based on the parameter scaling summarized in Section 6.7.1,

231

we have

Fj(W
(0),xi) =

m∑
r=1

[
σ(⟨w(0)

j,r , yiv⟩) + σ(⟨w(0)
j,r , ξi⟩)

]
= o(1)

for all j ∈ {−1, 1}. Then we have

|ℓ(0)j,i | ≥ min

{
eFj(W

(0),xi)∑
j e

F+1(W(0),xi)
,

eF−1(W(0),xi)∑
j e

Fj(W(0),xi)

}
= Θ(1).

Then we will consider the training period where |ℓ(t)j,i | = Θ(1) for all j, i, and t. Besides, note

that sgn(yiℓ
(t)
j,i) = j. Therefore, let r∗ = argmaxr⟨w(t−1)

j,r , j · v⟩, (6.7.28) implies that

Λ
(t)
j = ⟨w(t−1)

j,r∗ , j · v⟩

= (1− ηλ) · ⟨w(t−1)
j,r∗ , j · v⟩

+
η

n
·
(n∑

i=1

|ℓ(t−1)
j,i |σ′(⟨w(t−1)

j,r∗ , yiv⟩)− α
n∑
i=1

|ℓ(t−1)
j,i |σ′(⟨w(t−1)

j,r∗ , ξi⟩)
)

≥ (1− ηλ) · ⟨w(t−1)
j,r∗ , j · v⟩+Θ(η) ·

[
σ′(⟨w(t−1)

j,r∗ , j · v⟩)− ασ′(Γ
(t−1)
j)

]
≥ (1− ηλ)Λ

(t−1)
j + η ·Θ

(
(Λ

(t−1)
j)q−1

)
− η ·Θ

(
α(Γ

(t−1)
j)q−1

)
. (6.7.29)

Similarly, let r∗ = argmaxr⟨w(t)
yi,r, ξi⟩, we also have the following according to (6.7.28)

Γ
(t)
yi,i

= ⟨w(t)
yi,r∗ , ξi⟩

≤ (1− ηλ)⟨w(t−1)
yi,r∗ , ξi⟩+ Θ̃

(
ηsσ2

p

n

)
· σ′(⟨w(t−1)

yi,r∗ , ξi⟩) + Θ

(
ηα2

n

)
·

n∑
s=1

σ′(⟨w(t−1)
yi,r∗ , ξs⟩)

≤ Γ
(t−1)
yi,i

+ Θ̃

(
ηsσ2

p

(
Γ
(t−1)
yi,i

)q−1

n

)
+Θ

(
ηα2

n
·

n∑
s=1

(
Γ(t−1)
yi,s

)q−1
)
.

Then by our definition of Γ
(t)
j = maxi∈[n] Γ

(t)
j,i , we further get the following for all j ∈ {−1, 1},

Γ
(t)
j ≤ Γ

(t−1)
j + Θ̃

(
ηsσ2

p + nηα2

n
·
(
Γ
(t−1)
j

)q−1
)

= Γ
(t−1)
j +Θ

(
ηsσ2

p

n
·
(
Γ
(t−1)
j

)q−1
)
, (6.7.30)

where the last equation is by our assumption that α = Õ(sσ2
p/n).

232

Then we will prove the main argument for general t, which is based on the following two

induction hypotheses

Λ
(t)
j ≥ Λ

(t−1)
j + η ·Θ

(
(Λ

(t−1)
j)q−1

)
, (6.7.31)

Γ
(t)
j ≤ Γ

(t−1)
j +Θ

(
ηsσ2

p

n
·
(
Γ
(t−1)
j

)q−1
)
. (6.7.32)

Note that when t = 0, we have already verified these two hypotheses in (6.7.29) and (6.7.30),

where we use the fact that λ = o(σq−2
0 σp/n) ≤

(
Λ

(0)
j

)q−2
and α = o(1). Suppose that (6.7.29)

and (6.7.30) hold for iterations τ ≤ t. At time t+ 1, for all τ ≤ t, we have

Γ
(τ)
j ≤ O(Λ

(τ)
j),

as sσ2/n = o(1) and Λ
(t)
j increases faster than Γ

(t)
j . Besides, we can also show that λΓ

(t)
j ≤(

Γ
(t)
j

)q−1
, which has been verified at time t = 0, since Γ

(t)
j keeps increasing. Therefore, we

have

λΓ
(t)
j ≤

(
Γ
(t)
j

)q−1 ≤ O
((
Λ

(t)
j

)q−1)
,

and hence (6.7.29) implies

Λ
(t+1)
j ≥ (1− ηλ)Λ

(t)
j + η ·Θ

(
(Λ

(t)
j)q−1

)
− η ·Θ

(
α(Γ

(t)
j)q−1

)
≥ Λ

(t)
j + η ·Θ

(
(Λ

(t)
j)q−1

)
,

which verifies Hypothesis (6.7.31) at t+ 1. Additionally, (6.7.30) implies

Γ
(t+1)
j ≤ Γ

(t)
j +Θ

(
ηsσ2

p

n
·
(
Γ
(t)
j

)q−1
)
,

which verifies Hypothesis (6.7.32) at t+ 1. Then by Lemma 6.7.9, we have that Λ
(t)
j = Õ(1)

for all t ≤ T0 = Θ̃
(
(Λ

(0)
j)2−q/η

)
= Θ̃(σ2−q

0 /η). Moreover, Lemma 6.7.9 also shows that

Γ
(t+1)
j = O(Λ

(0)
j) = Õ(σ0). This completes the proof.

Lemma 6.7.10. For all i ∈ [n] and t ≤ T−yi , it holds that ⟨w
(t)
−yi,r, ξi⟩ ≤ Θ̃(α).

233

Proof. First of all, for j ∈ {±1}, by the definition of Tj, we have

⟨w(t)
j,r, j · v⟩ ≤ Θ̃(1).

Moreover, with the same proof as Lemma 6.7.8, it is clear that −⟨w(t)
j,r, j ·v⟩ is decreasing in

t for t ≤ Tj. Therefore, by the fact that |⟨w(0)
j,r ,v⟩| ≤ Θ̃(1), we have

|⟨w(t)
j,r,v⟩| ≤ Θ̃(1) (6.7.33)

for all t ≤ Tj.

Now by the update form of GD, we have for any k ∈ Bi,

w
(t+1)
−yi,r [k] · ξi[k] = (1− ηλ) ·w(t)

−yi,r[k] · ξi[k] +
η

n
·
∑
k∈Bi

ℓ
(t)
−yi,iσ

′(⟨w(t)
−yi,r, ξi⟩) · ξi[k]

2.

Note that ℓ
(t)
−yi,iσ

′(⟨w(t)
−yi,r, ξi⟩) < 0, which implies that w

(t)
−yi,r[k] · ξi[k] is decreasing in t.

Therefore, for all r and i, we have

⟨w(t)
−yi,r, ξi⟩ = w

(t)
−yi,r[1] · ξi[1] +

∑
k∈Bi

w
(t)
−yi,r[k]ξi[k]

≤ w
(t)
−yi,r[1] · ξi[1] +

∑
k∈Bi

w
(0)
−yi,r[k]ξi[k]

≤ |w(t)
−yi,r[1] · ξi[1]|+

∣∣∣∣∑
k∈Bi

w
(0)
−yi,r[k]ξi[k]

∣∣∣∣
≤ Θ̃(α) + Θ̃(σ0σps

1/2)

= Θ̃(α),

where the third inequality follows by (6.7.33). This completes the proof.

Note that for different j, the iteration numbers when Λ
(t)
j reaches Θ̃(1/m) are different.

Without loss of generality, we can assume T1 ≤ T−1. Lemma 6.7.8 has provided a clear

understanding about how Λ
(t)
j varies within the iteration range [0, Tj]. However, it remains

unclear how Γ
(t)
1 varies within the iteration range [T1, T−1] since in this period we no longer

have |ℓ(t)j,i | = Θ(1) and the effect of gradient descent on the feature learning (i.e., increase of

234

⟨wj,r, j · v⟩) becomes weaker. In the following lemma we give a characterization of Λ
(t)
1 for

every t ∈ [T1, T−1].

Lemma 6.7.11 (Stage I of GD: part II). Without loss of generality assuming T1 < T−1.

Then it holds that Λ
(t)
1 = Θ̃(1) for all t ∈ [T1, T−1].

Proof. Recall from (6.7.29) that we have the following general lower bound for the increase

of Λ
(t)
j

Λ
(t+1)
j ≥ (1− ηλ) · ⟨w(t)

j,r∗ , j · v⟩+
η

n
·
(n∑

i=1

|ℓ(t)j,i |σ′(⟨w(t)
j,r∗ , yiv⟩)− α

n∑
i=1

|ℓ(t)j,i |σ′(⟨w(t)
j,r∗ , ξi⟩)

)
≥ (1− ηλ)Λ

(t)
j +Θ

(
η

n

)
·
∑
i:yi=j

|ℓ(t)j,i | ·
(
Λ

(t)
j

)q−1 −Θ(αη) ·
(
Γ
(t)
j ∨ Θ̃(α)

)q−1
, (6.7.34)

where the last inequality is by Lemma 6.7.10. Note that by Lemma 6.7.8, we have Γ
(t)
j =

Õ(σ0) for all t ≤ T−1 and . Then the above inequality leads to

Λ
(t+1)
j ≥ (1− ηλ)Λ

(t)
j +Θ

(
η

n

)
·
∑
i:yi=j

|ℓ(t)j,i | ·
(
Λ

(t)
j

)q−1 −Θ(αqη), (6.7.35)

where we use the fact that α = ω(σ0). The the remaining proof consists of two parts: (1)

proving Λ
(t)
j ≥ Θ(1/m) = Θ̃(1) and (2) Λ

(t)
j ≤ Θ(log(1/λ)).

Without loss of generality we consider j = 1. Regarding the first part, we first note

that Lemma 6.7.8 implies that Λ
(T1)
1 ≥ Θ(1/m). Then we consider the case when Λ

(t)
1 ≤

Θ(log(1/α)/m), it holds that for all yi = 1,

ℓ
(t)
1,i =

eF−1(W(t),xi)∑
j∈{−1,1} e

Fj(W(t),xi)

= exp

(
Θ

(m∑
r=1

[
σ(⟨w(t)

−1,r, yiv⟩) + σ(⟨w(t)
−1,r, ξi⟩)

]
−

m∑
r=1

[
σ(⟨w(t)

1,r, yiv⟩) + σ(⟨w(t)
1,r, ξi⟩)

]))
≥ exp

(
−Θ(mΛ

(t)
1)
)

≥ exp(−Θ(log(1/α)))

= Θ̃(α).

235

Then (6.7.35) implies that if Γ
(t)
1 ≤ Θ(log(1/σ0)/m), we have

Λ
(t+1)
1 ≥ (1− ηλ)Λ

(t)
1 +Θ(ηα) · Λ(t)

1 −Θ(αqη) ≥ Λ
(t)
1 +Θ(ηα) · Λ(t)

1 ≥ Λ
(t)
1 ,

where the second inequality is due to λ = o(α). This implies that Λ
(t)
1 will keep increases in

this case so that it is impossible that Λ
(t)
1 ≤ Θ(1/m), which completes the proof of the first

part.

For the second part, (6.7.28) implies that

Λ
(t+1)
1 ≤ (1− ηλ)Λ

(t)
1 +Θ

(
η

n

)
·
∑
i:yi=1

|ℓ(t)1,i| ·
(
Λ

(t)
1

)q−1
. (6.7.36)

Consider the case when Γ
(t)
1 ≥ Θ(log(d)), then for all yi = 1,

ℓ
(t)
1,i =

eF−1(W(t),xi)∑
j∈{−1,1} e

Fj(W(t),xi)

= exp

(
Θ

(m∑
r=1

[
σ(⟨w(t)

−1,r, yiv⟩) + σ(⟨w(t)
−1,r, ξi⟩)

]
−

m∑
r=1

[
σ(⟨w(t)

1,r, yiv⟩) + σ(⟨w(t)
1,r, ξi⟩)

]))
≤ exp

(
−Θ(Λ

(t)
1)
)

≤ exp(−Θ(log(1/λ))

= Θ̃(poly(λ)).

Then (6.7.36) further implies that

Λ
(t+1)
1 ≤ (1− ηλ)Λ

(t)
1 +Θ

(
η

poly(d)

)
·
(
Λ

(t)
1

)q−1

≤ Λ
(t)
1 −Θ

(
ηΛ

(t)
1

)
·
(
λ− poly(λ) ·

(
Λ

(t)
1

)q−2
)

≤ Λ
(t)
1 ,

which implies that Λ
(t)
1 will decrease. As a result, we can conclude that λ

(t)
1 will not exceed

Θ(log(1/λ)), this completes the proof of the second part.

Lemma 6.7.12 (Lemma 6.4.7, restated). If η ≤ O(σ0), it holds that Λ
(t)
j = Θ̃(1) and

Γ
(t)
j = Õ(σ0) for all t ∈ [T−1, T].

236

Proof. We will prove the desired argument based on the following three induction hypothesis:

Λ
(t+1)
j ≥ (1− λη)Λ

(t)
j + Θ̃

(
η

n

) ∑
i:yi=j

|ℓ(t)j,i | − Θ̃(αqη) · 1
n

n∑
i=1

|ℓ(t)j,r|, (6.7.37)

Γ
(t)
j = Õ(σ0), (6.7.38)

Λ
(t)
j = Θ̃(1). (6.7.39)

In terms of Hypothesis (6.7.37), we can apply Hypothesis (6.7.38) and (6.7.39) to (6.7.34)

and get that

Λ
(t+1)
j ≥ (1− ηλ)Λ

(t)
j +Θ

(
η

n

)
·
∑
i:yi=j

|ℓ(t)j,i | ·
(
Λ

(t)
j

)q−1 −Θ(αη) ·
(
Γ
(t)
j ∨ Θ̃(α)

)q−1 · 1
n

n∑
i=1

|ℓ(t)j,r|

≥ (1− λη)Λ
(t)
j + Θ̃

(
η

n

) ∑
i:yi=j

|ℓ(t)j,i | − Θ̃(αqη) · 1
n

n∑
i=1

|ℓ(t)j,r|.

where the last inequality we use the fact that α ≥ σ0. This verifies Hypothesis (6.7.37).

In order to verify Hypothesis (6.7.38), we have the following according to (6.7.37),

∑
j∈{−1,1}

Λ
(t+1)
j ≥ (1− λη)

∑
j∈{−1,1}

[
Λ

(t)
j + Θ̃

(
η

n

) n∑
i=1

|ℓ(t)j,i | − Θ̃(αqη) · 1
n

n∑
i=1

|ℓ(t)j,r|

]

= (1− λη)
∑

j∈{−1,1}

[
Λ

(t)
j + Θ̃

(
η

n

) n∑
i=1

|ℓ(t)j,i |

]
,

where the last equality holds since α = o(1). Recursively applying the above inequality from

T−1 to t gives

∑
j∈{−1,1}

Λ
(t)
j ≥ (1− λη)t−T−1

∑
j∈{−1,1}

[
Λ

(T−1)
j + Θ̃

(
η

n

)
·
t−T−1−1∑
τ=0

(1− λη)τ
n∑
i=1

|ℓ(t−1−τ)
j,i |

]
.

Then by Hypothesis (6.7.39) we have

Θ̃

(
η

n

)
·
t−T−1−1∑
τ=0

(1− λη)τ
n∑
i=1

|ℓ(t−1−τ)
j,i | ≤ Θ̃(1).

237

Now let us look at the rate of memorizing noises. By (6.7.28) and use the fact that α2 ≤

O(sσ2
p/n), we have

Γ
(t)
j ≤ (1− ηλ)Γ

(t−1)
j + Θ̃

(
ηsσ2

p

n

)
·
∑
i=1

|ℓj,i| ·
(
Γ
(t−1)
j

)q−1

≤ (1− ηλ)Γ
(t−1)
j + Θ̃

(
ηsσ2

pσ
q−1
0

n

)
·
∑
i=1

|ℓj,i|

≤ Γ
(T−1)
j + Θ̃

(
ηsσ2

pσ
q−1
0

n

)
·
t−T−1−1∑
τ=0

(1− λη)τ
n∑
i=1

|ℓ(t−1−τ)
j,i |

≤ Θ̃
(
σ0 + sσ2

pσ
q−1
0

)
≤ Θ̃(σ0),

which verifies Hypothesis (6.7.38).

Given Hypothesis (6.7.37) and (6.7.38), the verification of (6.7.39) is straightforward by

applying the same proof technique of Lemma 6.7.11 and thus we omit it here.

Lemma 6.7.13 (Lemma 6.4.8, restated). If the step size satisfies, then for any t ≥ T−1 it

holds that

L(W(t+1))− L(W(t)) ≤ −η

2
∥∇L(W(t))∥2F .

Proof. The proof of this lemma is similar to that of Lemma 6.7.6, which is basically relying

the smoothness property of the loss function L(W) given certain constraints on the inner

products ⟨wj,r,v⟩ and ⟨wj,r, ξi⟩.

Let ∆Fj,i = Fj(W
(t+1),xi)− Fj(W

(t),xi), we can get the following Taylor expansion on

the loss function Li(W
(t+1)),

Li(W
(t+1))− Li(W

(t)) ≤
∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
·∆Fj,i +

∑
j

(∆Fj,i)
2. (6.7.40)

In particular, by Lemma 6.7.12, we know that ⟨w(t)
j,r, yiv⟩ ≤ Θ̃(1) and ⟨w(t)

j,r, ξi⟩ ≤ Θ̃(σ0) ≤

Θ̃(1). Then similar to (6.7.21), we can apply first-order Taylor expansion to Fj(W
(t+1),xi),

238

which requires to characterize the second-order error of the Taylor expansions on σ(⟨w(t+1)
j,r , yiv⟩)

and σ(⟨w(t+1)
j,r , ξi⟩),∣∣σ(⟨w(t+1)

j,r , yiv⟩)− σ(⟨w(t)
j,r, yiv⟩)−

〈
∇wj,r

σ(⟨w(t)
j,r, yiv⟩),w

(t+1)
j,r −w

(t)
j,r⟩
∣∣

≤ Θ̃
(
∥w(t+1)

j,r −w
(t)
j,r∥22

)
= Θ̃(η2∥∇wj,r

L(W(t))∥22),∣∣σ(⟨w(t+1)
j,r , ξi⟩)− σ(⟨w(t)

j,r, ξi⟩)−
〈
∇wj,r

σ(⟨w(t)
j,r, ξi⟩),w

(t+1)
j,r −w

(t)
j,r⟩
∣∣

≤ Θ̃
(
∥w(t+1)

j,r −w
(t)
j,r∥22

)
= Θ̃(η2∥∇wj,r

L(W(t))∥22). (6.7.41)

Then combining the above bounds for every r ∈ [m], we can get the following bound for

∆Fj,i ∣∣∆Fj,i − ⟨∇WFj(W
(t),xi),W

(t+1) −W(t)⟩
∣∣ ≤ Θ̃

(
η2
∑
r∈[m]

∥∇wj,r
L(W(t))∥22

)
= Θ̃

(
η2∥∇L(W(t))∥2F

)
. (6.7.42)

Moreover, since ⟨w(t)
j,r, yiv⟩ ≤ Θ̃(1) and ⟨w(t)

j,r, ξi⟩ ≤ Θ̃(1) and σ(·) is convex, then we have

|σ(⟨w(t+1)
j,r , yiv⟩)− σ(⟨w(t)

j,r, yiv⟩)| ≤ max
{
|σ′(⟨w(t+1)

j,r , yiv⟩)|, |σ′(⟨w(t)
j,r, yiv⟩)|

}
· |⟨v,w(t+1)

j,r −w
(t)
j,r⟩|

≤ Θ̃
(
∥w(t+1)

j,r −w
(t)
j,r∥2

)
.

Similarly we also have

|σ(⟨w(t+1)
j,r , ξi⟩)− σ(⟨w(t)

j,r, ξi⟩)| ≤ Θ̃
(
∥w(t+1)

j,r −w
(t)
j,r∥2

)
.

Combining the above inequalities for every r ∈ [m], we have∣∣∆Fj,i
∣∣2 ≤ Θ̃

([∑
r∈[m]

∥w(t+1)
j,r −w

(t)
j,r∥2

]2)
≤ Θ̃

(
mη2∥∇L(W(t))∥2F

)
= Θ̃

(
η2∥∇L(W(t))∥2F

)
.

(6.7.43)

Now we can plug (6.7.42) and (6.7.43) into (6.7.40), which gives

Li(W
(t+1))− Li(W

(t)) ≤
∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
·∆Fj,i +

∑
j

(∆Fj,i)
2

= ⟨∇Li(W
(t)),W(t+1) −W(t)⟩+ Θ̃(η2∥∇L(W(t))∥2F). (6.7.44)

239

Taking sum over i ∈ [n] and applying the smoothness property of the regularization function

λ∥W∥2F , we can get

L(W(t+1))− L(W(t)) =
1

n

n∑
i=1

[
Li(W

(t+1))− Li(W
(t))
]
+ λ
(
∥W(t+1)∥2F − ∥W(t)∥2F

)
≤ ⟨∇L(W(t)),W(t+1) −W(t)⟩+ Θ̃(η2∥∇L(W(t))∥2F)

= −
(
η − Θ̃(η2)

)
· ∥∇L(W(t))∥2F

≤ −η

2
∥∇L(W(t))∥2F ,

where the last inequality is due to our choice of step size η = o(1) so that gives η− Θ̃(η2) ≥

η/2. This completes the proof.

Lemma 6.7.14 (Generalization Performance of GD). Let

W∗ = arg min
{W(1),...,W(T)}

∥∇L(W(t))∥F .

Then for all training data, we have

1

n

n∑
i=1

1
[
Fyi(W

∗,xi) ≤ F−yi(W
∗,xi)

]
= 0.

Moreover, in terms of the test data (x, y) ∼ D, we have

P(x,y)∼D
[
Fy(W

∗,x) ≤ F−y(W
∗,x)

]
= o(1).

Proof. By Lemma 6.7.12 it is clear that all training data can be correctly classified so that

the training error is zero. Besides, for test data (x, y) with x = [yv⊤, ξ⊤]⊤, it is clear that

with high probability ⟨w∗
y,r, yv⟩ = Θ̃(1) and [⟨w∗

y,r, ξ⟩]+ ≤ Õ(σ0), then

Fy(W
∗,x) =

m∑
r=1

[
σ(⟨w∗

y,r, yv⟩) + σ(⟨w∗
y,r, ξ⟩)

]
≥ Ω̃(1).

If j = −y, we have with probability at least 1−1/poly(n), ⟨w∗
−y,r, yv⟩ ≤ 0 and [w∗

−y,r, ξ⟩]+ ≤

Õ(α), which leads to

F−y(W
∗,x) =

m∑
r=1

[
σ(⟨w∗

−y,r, yv⟩) + σ(⟨w∗
−y,r, ξ⟩)

]
≤ Õ(mαq) = Õ(αq) = o(1).

This implies that GD can also achieve nearly at most 1/poly(n) test error. This completes

the proof.

240

6.8 Proof of Theorem 6.3.2: Convex Case

Theorem 6.8.1 (Convex setting, restated). Assume the model is over-parameterized. Then

for any convex and smooth training objective with positive regularization parameter λ, sup-

pose we run Adam and gradient descent for T = poly(n)
η

iterations, then with probability

at least 1−n−1, the obtained parametersW∗
Adam andW∗

GD satisfy that ∥∇L(W∗
Adam)∥1 ≤ 1

Tη

and ∥∇L(W∗
Adam)∥22 ≤ 1

Tη
respectively. Moreover, it holds that:

• Training errors are the same:

1

n

n∑
i=1

1
[
sgn
(
F (W∗

Adam,xi)
)
̸= yi

]
=

1

n

n∑
i=1

1
[
sgn
(
F (W∗

GD,xi)
)
̸= yi

]
.

• Test errors are nearly the same:

P(x,y)∼D
[
sgn
(
F (W∗

Adam,xi)
)
̸= y
]
= P(x,y)∼D

[
sgn
(
F (W∗

GD,x)
)
̸= y
]
± o(1).

Proof. The proof is straightforward by applying the same proof technique used for Lemmas

6.7.6 and 6.7.13, where we only need to use the smoothness property of the loss function.

Then it is clear that both Adam and GD can provably find a point with sufficiently small

gradient. Note that the training objective becomes strongly convex when adding weight

decay regularization, implying that the entire training objective only has one stationary

point, i.e., point with sufficiently small gradient. This further imply that the points found

by Adam and GD must be exactly same and thus GD and Adam must have nearly same

training and test performance.

Besides, when the problem is sufficiently over-parameterized, with proper regularization

(feasibly small), we can still guarantee zero training errors.

6.9 Conclusions

In this paper, we study the generalization of Adam and compare it with gradient descent. We

show that when training neural networks, Adam and GD starting from the same initialization

241

can converge to different global solutions of the training objective with significantly different

generalization errors, even with proper regularization. Our analysis reveals the fundamental

difference between Adam and GD in learning features or noise, and demonstrates that this

difference is closely tied to the nonconvex landscape of neural networks.

We would also like to remark several important research directions. First, our current

result is for two-layer networks. Extending the results to deep networks could be an impor-

tant next step, where we will not only look at the input data but also consider the output

of each intermediate layer as “input”. Second, our current data model is motivated by the

image data (i.e., sparse feature and denser noise), where Adam has been observed to perform

worse than SGD in terms of generalization. In fact, our theoretical analysis can lead to an

opposite conclusion on the generalization comparison between Adam and GD if the noise is

sparse and feature is denser. Therefore, it would also be interesting to explore whether this

is the case in other machine learning tasks such as natural language processing, where Adam

is often observed to perform better than SGD.

242

CHAPTER 7

Conclusions

This dissertation provided a theoretical analysis towards the role of optimization algorithms

in learning over-parameterized models. In the first part, we developed a novel analysis to

characterize the generalization ability of SGD for learning over-parameterized linear regres-

sion problems. We provided sharp problem-dependent upper bounds on the excess risk and

demonstrated its tightness by proving a matching lower bound. Based on the developed

bounds, we are able to indicate the problem instance than can be well learned by SGD.

By comparing the generalization error of SGD to that achieved by ridge regression, we also

partially explains the implicit regularization effect of SGD.

In the second part, we investigated the optimization and generalization for neural net-

work models. We developed the state-of-the-art optimization guarantees under general con-

ditions on the data distribution and established the generalization guarantees for GD and

SGD under certain separation conditions on the data distribution. Lastly, we studied the

generalization performance achieved by different optimization algorithms and provided a

theoretical explanation towards the empirical generalization gap between Adam and GD in

image classification problem.

243

Bibliography

[ACH18] Sanjeev Arora, Nadav Cohen, and Elad Hazan. “On the optimization of deep

networks: Implicit acceleration by overparameterization.” In International Con-

ference on Machine Learning, pp. 244–253. PMLR, 2018.

[ADH19a] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. “Fine-

grained analysis of optimization and generalization for overparameterized two-

layer neural networks.” In International Conference on Machine Learning, pp.

322–332. PMLR, 2019.

[ADH19b] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and

Ruosong Wang. “On exact computation with an infinitely wide neural net.” In

Advances in Neural Information Processing Systems, 2019.

[ADT20] Alnur Ali, Edgar Dobriban, and Ryan Tibshirani. “The implicit regularization

of stochastic gradient flow for least squares.” In International Conference on

Machine Learning, pp. 233–244. PMLR, 2020.

[AGC19] Sanjeev Arora, Nadav Golowich, Noah Cohen, and Wei Hu. “A Convergence

Analysis of Gradient Descent for Deep Linear Neural Networks.” In International

Conference on Learning Representations, 2019.

[AKT19] Alnur Ali, J Zico Kolter, and Ryan J Tibshirani. “A continuous-time view of early

stopping for least squares regression.” In The 22nd International Conference on

Artificial Intelligence and Statistics, pp. 1370–1378. PMLR, 2019.

[AL20] Zeyuan Allen-Zhu and Yuanzhi Li. “Towards Understanding Ensemble, Knowl-

edge Distillation and Self-Distillation in Deep Learning.” arXiv preprint

arXiv:2012.09816, 2020.

244

[ALL19] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. “Learning and Generalization

in Overparameterized Neural Networks, Going Beyond Two Layers.” In Advances

in Neural Information Processing Systems, 2019.

[ALS19a] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. “A convergence theory for deep

learning via over-parameterization.” In International Conference on Machine

Learning, pp. 242–252. PMLR, 2019.

[ALS19b] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. “On the convergence rate of

training recurrent neural networks.” Advances in neural information processing

systems, 32, 2019.

[Bah67] R. R. Bahadur. “Rates of Convergence of Estimates and Test Statistics.” Annals

of Mathematical Statistics, 38:303–324, 1967.

[Bah71] R. R. Bahadur. Some Limit Theorems in Statistics. Society for Industrial and

Applied Mathematics, 1971.

[BBG20] Raphaël Berthier, Francis Bach, and Pierre Gaillard. “Tight nonparametric con-

vergence rates for stochastic gradient descent under the noiseless linear model.”

Advances in Neural Information Processing Systems, 33:2576–2586, 2020.

[BFT17] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. “Spectrally-normalized

margin bounds for neural networks.” In Advances in Neural Information Pro-

cessing Systems, pp. 6240–6249, 2017.

[BG17] Alon Brutzkus and Amir Globerson. “Globally optimal gradient descent for a

convnet with gaussian inputs.” In Proceedings of the 34th International Confer-

ence on Machine Learning-Volume 70, pp. 605–614. JMLR. org, 2017.

[BGM18] Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. “SGD

245

Learns Over-parameterized Networks that Provably Generalize on Linearly Sep-

arable Data.” In International Conference on Learning Representations, 2018.

[BH18] Lukas Balles and Philipp Hennig. “Dissecting adam: The sign, magnitude and

variance of stochastic gradients.” In International Conference on Machine Learn-

ing, pp. 404–413. PMLR, 2018.

[BHL18] Peter Bartlett, Dave Helmbold, and Phil Long. “Gradient descent with iden-

tity initialization efficiently learns positive definite linear transformations.” In

International Conference on Machine Learning, pp. 520–529, 2018.

[BHX20] Mikhail Belkin, Daniel Hsu, and Ji Xu. “Two models of double descent for weak

features.” SIAM Journal on Mathematics of Data Science, 2(4):1167–1180, 2020.

[BL19] Yu Bai and Jason D Lee. “Beyond Linearization: On Quadratic and Higher-

Order Approximation of Wide Neural Networks.” In International Conference

on Learning Representations, 2019.

[BLL20] Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. “Benign

overfitting in linear regression.” Proceedings of the National Academy of Sciences,

2020.

[BM02] Peter L Bartlett and Shahar Mendelson. “Rademacher and Gaussian complexi-

ties: Risk bounds and structural results.” Journal of Machine Learning Research,

3(Nov):463–482, 2002.

[BM13] Francis Bach and Eric Moulines. “Non-strongly-convex smooth stochastic approx-

imation with convergence rate o(1/n).” Advances in neural information processing

systems, 26:773–781, 2013.

[BR89] Avrim Blum and Ronald L Rivest. “Training a 3-node neural network is NP-

246

complete.” In Advances in neural information processing systems, pp. 494–501,

1989.

[BWA18] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree

Anandkumar. “signSGD: Compressed optimisation for non-convex problems.”

In International Conference on Machine Learning, pp. 560–569. PMLR, 2018.

[CB18] Lenaic Chizat and Francis Bach. “A note on lazy training in supervised differen-

tiable programming.” arXiv preprint arXiv:1812.07956, 2018.

[CCG04] Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. “On the generaliza-

tion ability of on-line learning algorithms.” IEEE Transactions on Information

Theory, 50(9):2050–2057, 2004.

[CCZ21] Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu. “How Much Over-

parameterization Is Sufficient to Learn Deep ReLU Networks?” In International

Conference on Learning Representations, 2021.

[CG19] Yuan Cao and Quanquan Gu. “Generalization Bounds of Stochastic Gradient

Descent for Wide and Deep Neural Networks.” In Advances in Neural Information

Processing Systems, 2019.

[CG20] Yuan Cao and Quanquan Gu. “Generalization error bounds of gradient descent

for learning over-parameterized deep relu networks.” In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 34, pp. 3349–3356, 2020.

[CHM15] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and

Yann LeCun. “The loss surfaces of multilayer networks.” In Artificial Intelligence

and Statistics, pp. 192–204, 2015.

[CL21] Niladri S Chatterji and Philip M Long. “Finite-sample Analysis of Interpolat-

247

ing Linear Classifiers in the Overparameterized Regime.” Journal of Machine

Learning Research, 22:1–30, 2021.

[CLT20] Xi Chen, Qiang Liu, and Xin T Tong. “Dimension Independent Generalization

Error with Regularized Online Optimization.” arXiv preprint arXiv:2003.11196,

2020.

[CSN19] Dami Choi, Christopher J Shallue, Zachary Nado, Jaehoon Lee, Chris J Mad-

dison, and George E Dahl. “On empirical comparisons of optimizers for deep

learning.” arXiv preprint arXiv:1910.05446, 2019.

[CZT20] Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan

Gu. “Closing the Generalization Gap of Adaptive Gradient Methods in Training

Deep Neural Networks.” In International Joint Conferences on Artificial Intelli-

gence, 2020.

[DB15a] Alexandre Défossez and Francis Bach. “Averaged least-mean-squares: Bias-

variance trade-offs and optimal sampling distributions.” In Artificial Intelligence

and Statistics, pp. 205–213, 2015.

[DB15b] Aymeric Dieuleveut and Francis R. Bach. “Non-parametric Stochastic Approxi-

mation with Large Step sizes.” The Annals of Statistics, 2015.

[DBB20] Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. “A simple

convergence proof of adam and adagrad.” arXiv preprint arXiv:2003.02395, 2020.

[DFB17] Aymeric Dieuleveut, Nicolas Flammarion, and Francis Bach. “Harder, better,

faster, stronger convergence rates for least-squares regression.” The Journal of

Machine Learning Research, 18(1):3520–3570, 2017.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods

248

for online learning and stochastic optimization.” Journal of Machine Learning

Research, 12(Jul):2121–2159, 2011.

[DLL19] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. “Gradient

descent finds global minima of deep neural networks.” In International conference

on machine learning, pp. 1675–1685. PMLR, 2019.

[DLT18] Simon S Du, Jason D Lee, and Yuandong Tian. “When is a Convolutional Filter

Easy to Learn?” In International Conference on Learning Representations, 2018.

[DZP18] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. “Gradient Descent

Provably Optimizes Over-parameterized Neural Networks.” In International Con-

ference on Learning Representations, 2018.

[FCG19] Spencer Frei, Yuan Cao, and Quanquan Gu. “Algorithm-Dependent Generaliza-

tion Bounds for Overparameterized Deep Residual Networks.” In Advances in

Neural Information Processing Systems, pp. 14769–14779, 2019.

[FHT01] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. The elements of sta-

tistical learning, volume 1. Springer series in statistics New York, 2001.

[GLS18a] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. “Characterizing

implicit bias in terms of optimization geometry.” In International Conference on

Machine Learning, pp. 1832–1841. PMLR, 2018.

[GLS18b] Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. “Implicit bias

of gradient descent on linear convolutional networks.” Advances in Neural Infor-

mation Processing Systems, 31, 2018.

[HDY12] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N

Sainath, et al. “Deep neural networks for acoustic modeling in speech recognition:

249

The shared views of four research groups.” IEEE Signal Processing Magazine,

29(6):82–97, 2012.

[HKZ12] Daniel Hsu, Sham M Kakade, and Tong Zhang. “Random design analysis of

ridge regression.” In Conference on learning theory, pp. 9–1. JMLR Workshop

and Conference Proceedings, 2012.

[HKZ14] Daniel J. Hsu, Sham M. Kakade, and Tong Zhang. “Random Design Analysis of

Ridge Regression.” Foundations of Computational Mathematics, 14(3):569–600,

2014.

[HM16] Moritz Hardt and Tengyu Ma. “Identity matters in deep learning.” arXiv preprint

arXiv:1611.04231, 2016.

[HMR22] Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. “Sur-

prises in high-dimensional ridgeless least squares interpolation.” The Annals of

Statistics, 50(2):949–986, 2022.

[Hor91] Kurt Hornik. “Approximation capabilities of multilayer feedforward networks.”

Neural networks, 4(2):251–257, 1991.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.” Neural

computation, 9(8):1735–1780, 1997.

[HSS12] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. “Neural networks for

machine learning lecture 6a overview of mini-batch gradient descent.”, 2012.

[HZR15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving deep into

rectifiers: Surpassing human-level performance on imagenet classification.” In

Proceedings of the IEEE international conference on computer vision, pp. 1026–

1034, 2015.

250

[HZR16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learn-

ing for image recognition.” In Proceedings of CVPR, pp. 770–778, 2016.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural tangent kernel:

Convergence and generalization in neural networks.” In Advances in neural in-

formation processing systems, pp. 8571–8580, 2018.

[JKK18a] Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, Venkata Kr-

ishna Pillutla, and Aaron Sidford. “A Markov Chain Theory Approach to Char-

acterizing the Minimax Optimality of Stochastic Gradient Descent (for Least

Squares).” In 37th IARCS Annual Conference on Foundations of Software Tech-

nology and Theoretical Computer Science, 2018.

[JKK18b] Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron

Sidford. “Accelerating Stochastic Gradient Descent for Least Squares Regres-

sion.” In Proceedings of the 31st Conference On Learning Theory, volume 75 of

Proceedings of Machine Learning Research. PMLR, 2018.

[JNK17] Prateek Jain, Praneeth Netrapalli, Sham M Kakade, Rahul Kidambi, and Aaron

Sidford. “Parallelizing stochastic gradient descent for least squares regression:

mini-batching, averaging, and model misspecification.” The Journal of Machine

Learning Research, 18(1):8258–8299, 2017.

[JT19] Ziwei Ji and Matus Telgarsky. “The implicit bias of gradient descent on nonsep-

arable data.” In Conference on Learning Theory, pp. 1772–1798. PMLR, 2019.

[JT20] Ziwei Ji and Matus Telgarsky. “Polylogarithmic width suffices for gradient de-

scent to achieve arbitrarily small test error with shallow ReLU networks.” In

International Conference on Learning Representations, 2020.

[Kaw16] Kenji Kawaguchi. “Deep learning without poor local minima.” In Advances in

Neural Information Processing Systems, pp. 586–594, 2016.

251

[KB15] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-

tion.” International Conference on Learning Representations, 2015.

[KH19] Kenji Kawaguchi and Jiaoyang Huang. “Gradient descent finds global minima

for generalizable deep neural networks of practical sizes.” In 2019 57th Annual

Allerton Conference on Communication, Control, and Computing (Allerton), pp.

92–99. IEEE, 2019.

[KLS20] Dmitry Kobak, Jonathan Lomond, and Benoit Sanchez. “The optimal ridge

penalty for real-world high-dimensional data can be zero or negative due to the

implicit ridge regularization.” Journal of Machine Learning Research, 21(169):1–

16, 2020.

[KMN16] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,

and Ping Tak Peter Tang. “On large-batch training for deep learning: General-

ization gap and sharp minima.” arXiv preprint arXiv:1609.04836, 2016.

[Kri09] Alex Krizhevsky. “Learning multiple layers of features from tiny images.” Tech-

nical report, Citeseer, 2009.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification

with deep convolutional neural networks.” In Advances in neural information

processing systems, pp. 1097–1105, 2012.

[LBB98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-based

learning applied to document recognition.” Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[LJ18] Hongzhou Lin and Stefanie Jegelka. “ResNet with one-neuron hidden layers

is a Universal Approximator.” In Advances in Neural Information Processing

Systems, pp. 6172–6181, 2018.

252

[LL18] Yuanzhi Li and Yingyu Liang. “Learning overparameterized neural networks via

stochastic gradient descent on structured data.” Advances in Neural Information

Processing Systems, 31, 2018.

[LMZ20] Yuanzhi Li, Tengyu Ma, and Hongyang R Zhang. “Learning over-parametrized

two-layer neural networks beyond ntk.” In Conference on Learning Theory, pp.

2613–2682. PMLR, 2020.

[LPA20] Shengchao Liu, Dimitris Papailiopoulos, and Dimitris Achlioptas. “Bad global

minima exist and sgd can reach them.” Advances in Neural Information Process-

ing Systems, 33:8543–8552, 2020.

[LS18] Chandrashekar Lakshminarayanan and Csaba Szepesvari. “Linear stochastic ap-

proximation: How far does constant step-size and iterate averaging go?” In

International Conference on Artificial Intelligence and Statistics, pp. 1347–1355,

2018.

[LXL18] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. “Adaptive Gradient

Methods with Dynamic Bound of Learning Rate.” In International Conference

on Learning Representations, 2018.

[LXS19] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Jascha Sohl-

Dickstein, and Jeffrey Pennington. “Wide neural networks of any depth evolve

as linear models under gradient descent.” In Advances in Neural Information

Processing Systems, 2019.

[LY17] Yuanzhi Li and Yang Yuan. “Convergence analysis of two-layer neural networks

with relu activation.” Advances in neural information processing systems, 30,

2017.

[MNS21] Vidya Muthukumar, Adhyyan Narang, Vignesh Subramanian, Mikhail Belkin,

Daniel Hsu, and Anant Sahai. “Classification vs regression in overparameterized

253

regimes: Does the loss function matter?” Journal of Machine Learning Research,

22(222):1–69, 2021.

[MRT18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of

machine learning. MIT press, 2018.

[NKB21] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and

Ilya Sutskever. “Deep double descent: Where bigger models and more data hurt.”

Journal of Statistical Mechanics: Theory and Experiment, 2021(12):124003,

2021.

[NS19] Atsushi Nitanda and Taiji Suzuki. “Refined Generalization Analysis of Gradient

Descent for Over-parameterized Two-layer Neural Networks with Smooth Acti-

vations on Classification Problems.” arXiv preprint arXiv:1905.09870, 2019.

[NTS14] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. “In search of the real

inductive bias: On the role of implicit regularization in deep learning.” arXiv

preprint arXiv:1412.6614, 2014.

[NVK20] Preetum Nakkiran, Prayaag Venkat, Sham M Kakade, and Tengyu Ma. “Optimal

Regularization can Mitigate Double Descent.” In International Conference on

Learning Representations, 2020.

[OS19] Samet Oymak and Mahdi Soltanolkotabi. “Towards moderate overparameteriza-

tion: global convergence guarantees for training shallow neural networks.” arXiv

preprint arXiv:1902.04674, 2019.

[PJ92] Boris T Polyak and Anatoli B Juditsky. “Acceleration of stochastic approximation

by averaging.” SIAM journal on control and optimization, 30(4):838–855, 1992.

[PRE17] Vardan Papyan, Yaniv Romano, and Michael Elad. “Convolutional neural net-

254

works analyzed via convolutional sparse coding.” The Journal of Machine Learn-

ing Research, 18(1):2887–2938, 2017.

[RKK18] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. “On the convergence of adam

and beyond.” In International Conference on Learning Representations, 2018.

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning:

From theory to algorithms. Cambridge university press, 2014.

[Sha21] Ohad Shamir. “Gradient methods never overfit on separable data.” Journal of

Machine Learning Research, 22(85):1–20, 2021.

[SHM16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. “Mastering the game of Go with deep neural networks

and tree search.” Nature, 529(7587):484–489, 2016.

[SPR18] Arun Suggala, Adarsh Prasad, and Pradeep K Ravikumar. “Connecting opti-

mization and regularization paths.” Advances in Neural Information Processing

Systems, 31:10608–10619, 2018.

[SSB02] Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with

kernels: support vector machines, regularization, optimization, and beyond. MIT

press, 2002.

[TB20] Alexander Tsigler and Peter L Bartlett. “Benign overfitting in ridge regression.”

arXiv preprint arXiv:2009.14286, 2020.

[Tel16] Matus Telgarsky. “Benefits of depth in neural networks.” In Conference on

learning theory, pp. 1517–1539. PMLR, 2016.

255

[Tia17] Yuandong Tian. “An analytical formula of population gradient for two-layered

relu network and its applications in convergence and critical point analysis.” In

International conference on machine learning, pp. 3404–3413. PMLR, 2017.

[Tih63] Andrei Nikolajevits Tihonov. “Solution of incorrectly formulated problems and

the regularization method.” Soviet Math., 4:1035–1038, 1963.

[Ver10] Roman Vershynin. “Introduction to the non-asymptotic analysis of random ma-

trices.” arXiv preprint arXiv:1011.3027, 2010.

[Ver18] Roman Vershynin. High-dimensional probability: An introduction with applica-

tions in data science, volume 47. Cambridge university press, 2018.

[WRS17] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin

Recht. “The marginal value of adaptive gradient methods in machine learning.”

In Advances in Neural Information Processing Systems, pp. 4151–4161, 2017.

[Yan19] Greg Yang. “Scaling limits of wide neural networks with weight sharing: Gaussian

process behavior, gradient independence, and neural tangent kernel derivation.”

arXiv preprint arXiv:1902.04760, 2019.

[ZBH16] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

“Understanding deep learning requires rethinking generalization.” arXiv preprint

arXiv:1611.03530, 2016.

[ZCZ18] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. “Stochastic gradi-

ent descent optimizes over-parameterized deep relu networks.” arXiv preprint

arXiv:1811.08888, 2018.

[ZCZ19] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. “Gradient descent op-

timizes over-parameterized deep ReLU networks.” Machine Learning, Oct 2019.

256

[ZFM20] Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al.

“Towards Theoretically Understanding Why Sgd Generalizes Better Than Adam

in Deep Learning.” Advances in Neural Information Processing Systems, 33,

2020.

[ZG19] Difan Zou and Quanquan Gu. “An Improved Analysis of Training Over-

parameterized Deep Neural Networks.” In Advances in Neural Information Pro-

cessing Systems, 2019.

[Zho19] Ding-Xuan Zhou. “Universality of deep convolutional neural networks.” Applied

and Computational Harmonic Analysis, 2019.

[ZSD17] Kai Zhong, Zhao Song, and Inderjit S Dhillon. “Learning Non-overlapping

Convolutional Neural Networks with Multiple Kernels.” arXiv preprint

arXiv:1711.03440, 2017.

[ZWB21] Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham Kakade.

“Benign overfitting of constant-stepsize sgd for linear regression.” In Conference

on Learning Theory, pp. 4633–4635. PMLR, 2021.

[ZYW19] Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. “Learning one-

hidden-layer relu networks via gradient descent.” In The 22nd international con-

ference on artificial intelligence and statistics, pp. 1524–1534. PMLR, 2019.

257

	Introduction
	Organization of the paper
	Notations

	I Learning Over-parameterized Linear Models
	Generalization of SGD for Linear Regression
	Introduction
	Main Results
	Benign Overfitting of SGD
	The Effect of Tail-Averaging

	Further Related Work
	Proof Outline
	Preliminaries
	The Bias-Variance Decomposition
	Bounding the Variance Error
	Bounding the Bias Error

	Examples of Assumption 2.2.2
	Proofs of the Upper Bounds
	Technical Lemma
	Bias-Variance Decomposition
	Bounding the Variance Error
	Bounding the Bias Error
	Proof of Theorem 2.2.4
	Proof of Corollary 2.2.8
	Proof of Corollary 2.2.9

	Proofs of the Lower Bounds
	Lower Bound for Bias-Variance Decomposition
	Lower Bounding the Variance Error
	Lower Bounding the Bias Error
	Proof of Theorem 2.2.6

	Proofs for Tail-Averaging
	Upper Bounds for Tail-Averaging
	Lower Bounds for Tail-Averaging

	Conclusions

	Implicit Regularization of SGD for Linear Regression
	Introduction
	Preliminaries
	Warm-Up: One-Hot Least Squares Problems
	Gaussian Least Squares Problems
	An Overview of the Proof
	Proof of One-hot Least Squares
	Excess risk bound of SGD
	Excess risk bound of ridge regression
	Proof of Theorem 3.3.1
	Proof of Theorem 3.3.2

	Proof of Gaussian Least Squares
	Excess risk bounds of SGD and ridge regression
	Proof of Theorem 3.4.2
	Proof of Corollary 3.4.3
	Proof of Corollary 3.4.4
	Proof of Theorem 3.4.5
	Proof of Theorem 3.4.6

	Proof of Theorem 3.7.2
	Conclusions

	II Learning Over-parameterized Neural Network Models
	Optimization of Over-parameterized Deep ReLU Networks
	Introduction
	Additional Related Work
	Preliminaries
	Problem Setup
	Optimization Algorithms
	Calculations for Neural Network Functions

	Main Theory
	Proof of the Main Theory
	Experiments
	Proof of Lemmas in Section 4.5
	Proof of Lemma 4.5.1
	Proof of Lemma 4.5.2
	Proof of Lemma 4.5.3

	Proof of Lemmas in Section 4.7
	Proof of Lemma 4.7.1
	Proof of Lemma 4.7.2

	Proof of Lemmas in Section
	Proof of Lemma 4.8.1
	Proof of Lemma 4.8.2

	Conclusions

	Generalization of Deep ReLU Networks in the NTK Regime
	Introduction
	Preliminaries on learning neural networks
	Main theory
	Gradient descent
	Stochastic gradient descent

	Discussion on the NTRF Class
	Data Separability by Neural Tangent Random Feature
	Data Separability by Shallow Neural Tangent Model
	Class-dependent Data Nondegeneration

	Experiments
	Proof sketch of the main theory
	A key technical lemma
	Proof sketch of Theorem 5.3.3

	Proof of Main Theorems
	Proof of Theorem 5.3.3
	Proof of Theorem 5.3.4
	Proof of Theorem 5.3.5

	Proof of Results in Section 5.4
	Proof of Proposition 5.4.2
	Proof of Proposition 5.4.4
	Proof of Proposition 5.4.6

	Proof of Technical Lemmas
	Proof of Lemma 5.6.1
	Proof of Lemma 5.7.3
	Proof of Lemma 5.7.4

	Conclusions

	Generalization of Adam and SGD in Learning Neural Networks with Regularization
	Introduction
	Problem Setup and Preliminaries
	Main Results
	Proof Outline of the Main Results
	Proof sketch for Adam
	Proof sketch for gradient descent

	Experiments
	Extensions to Mini-batch Stochastic Gradients
	Proof of Theorem 6.3.1: Nonconvex Case
	Preliminaries
	Proof for Adam
	Proof for Gradient Descent

	Proof of Theorem 6.3.2: Convex Case
	Conclusions

	Conclusions

