
Lawrence Berkeley National Laboratory
Recent Work

Title
ENVIRONMENTS AND SEARCH PATHS FOR THE SOFTWARE TOOLS

Permalink
https://escholarship.org/uc/item/9fs633p1

Author
Breckon, T.

Publication Date
1983-08-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9fs633p1
https://escholarship.org
http://www.cdlib.org/

LBL-16445
'"'·d-..

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

E n g i n e e r i n g & T e c h n i c a laER!<F/-;~:·:'{;~~1·~~;,. rn~y

Services Division J.WG 29 1983
LiE~f-<f.~F:(Y f\l\[)

DOCUMENTS SECTiON

Presented at the USENIX/Software Tools Joint
Conference, Toronto, Canada, July 11-15, 1983

ENVIRONMENTS AND SEARCH PATHS FOR THE SOFTWARE TOOLS

T. Breckon --- ~--- -------- - ---~---:- - ---\
(- l
\ TWO-WEEK LOAN COPY I

August 1983
This is a Library Circulating Copy

which may be borrowed for two weeks. ,

For a personal retention copy, c~/1
Tech. Info. Division, Ext. 6782.

>~~~~~

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

..

..

Environments and Search Paths
for the Software Tools

Theresa Breckon

Real Time Systems Group
Lawrence Berkeley Laboratory

University of California
Berkeley, California 9.4720

August 3, 1983

1. Why Environments?
There are many tools that need to know various bits

of information concerning the structure of a computer
system. Several tools need to know how files are organ­
ized on a system; compilers to expand include files, link­
ers to locate library object files, shells to locate current
working directories, home directories, and executable
programs, man tools to locate manual entries, mail tools
to locate mail boxes and mailing lists. Visual editors
need to locate information about terminal capabilities.
Some system dependent primitives may need to rely on
concepts such as user ID number, user group number,
task number, etc.

Software that requires this information must know
how to get this information and what the information
will look like when it is retrieved. Generally, software
that relies on a particular bit of information can decide
on what it should look like, and then the code that
extracts the information can massage it to meet this
requirement. The code that extracts the information is
usually a machine dependent system call. In the past,
the Software Tools have provided system information by
either specifying a machine dependent primitive which
each implementor must supply, or by hard-wiring the
information into the software.

These two methods are costly and inconvienent for
implementors of the Software Tools. They must either
spend time implementing the machine dependent primi­
tive, or they must modify, debug, and test software
which has this information hard-wired into it. Environ­
ments provide a method for portably describing these

This work supported in part by the United States Department of
Energy under Contract Number DE·AOJ3-76SF00098.

Paper presented at the USENIX/Software Tools Joint Confer­
ence, Toronto, Canada, July 11-15, 1983.

- 1 -

various bits of system structure information.

The set of routines to support environments is very
small and need only be implemented once. This set need
never be expanded to handle new bits of system struc­
ture information. New information is simply added to
the Tools by specifying a new environment variable.
This does not involve adding or modifying code.

In order to maximize on the efficiency and minimize
on the cost of environments, the following criteria was
followed in developing a model for the Software ~ools:

(1) Keep the set of environment routines to a
minimum. Try to avoid changes to existing
software.

(2) Use existing Tools software whenever possible.

(3) Design a model that can be portably implemented,
but don't restrict the design to a single implemen­
tation.

2. Environment Model
Using the above design criteria, the environment

model described in this paper is based on the concept of
a symbol table. In other words, an environment is simple
a set of names (or symbols) and their values. This con­
cept allows environments to be portably implemented
using existing symbol table routines. The model con­
sists of a very small set of routines because it is based
on such a simple concept. This concept is general
enough to not restrict environments to a single imple­
mentation.

Children inherit environments from their parents.
Changes to environments within a child are local to the
child's environment and do not effect the parent.
Changes are made to an environment with a builtin shell
command called setenv. Setenv is used to set or define
environment variables. An environment variable has a

En•ironments and Search Paths

single value associated with it. There is no concept of a
"legal" environment variable. A user can set any vari­
able name desired. Setenv is specified as a builtin shell
command so that a user can change the environment of
the current shell. The synopsis for setenv is:

% setenv name [value]

Both name and value are single character strings,
optionally enclosed in quotes. The name and value
specified are stored in the environment symbol table. As
a convienence to the user, if the value of an environ­
ment variable consists of multiple parts, the quotes that
would normally enclose the string can be left off, i.e.

% setenv PATH -/bin jusrjbin jete/bin

Setenv will store the value for PATH as a single string
consisting of 3 blank delimited parts. No other attempt
is made to interpret the value string. This is left to the
software which uses the variable. Interpreting special
characters such as escapes at the setenv level would only
place restrictions on the tools which use particular
environment variables. This is analagous to the shell not
interpreting command arguments. If setenv is called
with a name and no value, the variable is set to have no
value, i.e. it is removed from the symbol table.

Since setenv has been specified as a builtin shell
command, code must be added to the shell. This
requires two routines; envset and envrm. The added
shell code looks like:

if (command is "setenv")
{
Get name, value from command line
if no value

sts = envrm(name)
else

sts = envset(name, value)
}

The envrm function removes the environment vari­
able from the symbol table. The envset function installs
the name and value in the symbol table. The portable
version of these two routines would call the existing
symbol table routines.

The only other two pieces of code to be added to the
set of environment software is a printenv tool to print
out all set environment variables and a envget routine to
retrieve an environment variable. The portable version of
printenv would use the symbol table routine sctabl to
extract all environment variables and their values from

July 28,1983

the symbol table. The synopsis for the envget routine is:

sts = envget(name, value)

sts is OK if the value for the specified variable name is
retrieved successfully, ERR if the name is not defined.
The value is returned as a single ascii string.

3. Search Paths
Since many of the tools in the standard and in exten­

sions to the standard are based on UNIXt models, it
stands to reason that we would look to UNIX to model
our environment variables. A typical set of environment
variables defined by UNIX users is:

PATH · shell search path
HOME user's login directory
TERM terminal canabi/ities

The environment variable PATH is the only search path
variable used in UNIX There are many other tools
whose usefulness could be enhanced greatly by the abil­
ity to search for specified files using search paths.
Search paths are simply lists of places to search for a
specified file. For example, the shell search path is a list
of directories to look for specified commands. Any tool
which searches for a file needs to know where to look for
the file. If search paths aren't used, then this knowledge
must be hard-wired into the code. This presumes that all
system file structures are constructed similiarly and all
users want to look in the same places for every file.
And, if one system keeps their files elsewhere, the user
must either copy the file to the designated spot in order
to use it, or must modify the code searching for the file.
For example, include files can and do reside in different
places on many systems. Compilers need to know where
to search for a specified include file. On UNIX, the C
compiler looks in two places; the user's current working
directory and jusrjincl. This implies that a user must
keep all include files that do not reside in fusrjincl in
the working directory. The user must also keep all
library files there in order for the linker to be able to
find them. Unless a user keeps all files in one directory,
all relevant files must be copied into the current working
directory for each compilation. This is very chaotic if
more than one person is involved in modifying and
creating a large program with multiple include files and
libraries.

An include search path variable and a library search
path variable allow users to keep their files in seperate
directories and access them in an orderly fashion. Typi­
cal include and library search path variables would have

t UNIX is a Trademark of Bell laboratories.

- 2-

I'

Environ.meuts and Search Paths

· the following values:

-;inc/ jprojectfinc/ jusrjinc/
-;ub jprojectjlib jusrj/ib

The compiler would use the include search path variable
to search for specified include files. The search would
begin in the user's own include directory, then go on to
a project's include directory where all of the files for a
large software project are stored, and then the standard
set of include files for the system would be searched.
Other tools which search for a file and could benefit
from search paths are a man tool which must search for
manual entries (especially if a system has different sets
of manual entries pertaining to different projects), a
mail tool which searches for mailing list files (so that
users may keep their own set of mailing list files), and a
roff tool which searches for desired macro files.

The mechanism used by R1SG for implementing
search paths is a portable function called pathopen
which has the exact same interface as the standard Tools
open routine. Search path variable names are incor­
porated into file names by simple preceding the variable
name with a special character. The name of the file to
be searched for follows this pattern. The metacharacter
used is '+'. For example, an include search path file
name would look like:

+ INCLjratdef

The function pathopen would recognize the metacharac­
ter, get the value for the specified search path environ­
ment variable INCL, and search each of the directories
listed for the include file ratdef. Pathopen would then
call open with the full pathname of the file. At sites
like R1SG where most of our effort is spent in maintain­
ing and upgrading large project programs, the open rou­
tine can be completely replaced by pathopen in order to
keep modification procedures orderly and programmer­
friendly. This replacement is very simple because of the
twin calling conventions of pathopen and open.

4. Implementation Issues
So far the model of environments has been very

high-level, with the single concept of retrieving and put­
ting environment variables and their values into a desig­
nated symbol table. This was done to facilitate machine
dependent implementation of the environment routines.
For instance, on a UNIX system, the code for the envget
routine would probably be replaced with a call to the
UNIX getenv routine. Users of the Tools on a
VAX/VMS system may want to implement environment
variables using VMS symbols.

July 28, 1983

There is another point in the portable implementa­
tion where implementors may choose to supply their own
code. This is the point at which environment variables
are passed from parent to child. The code to initialize
the environment symbol table is kept in a single routine
called envini. A call is automatically made to envini the
first time an environment variable is referenced in a pro­
cess. This was done so that there would be no extra
overhead for programs that choose not to access the
environment at all. A global flag is used to tell whether
the environment has been referenced before. The fol­
lowing code is placed at the beginning of the envset and
envget routines:

if (envflg ==NO)
{
sts = envini()
envflg =YES
}

Envim· inherits the environment from the parent and
stores the environment variables' names and values in •
the symbol table. Envini first gets a name, value pair .
from the inherited environment. It then stores this pair
in the global environment symbol table.

The portable implementation of envini opens a pre­
designated environment file which contains an environ­
ment variable description on each line. The envset rou­
tine updates the environment file each time it installs a
name, value pair in the symbol table.

One problem to beware of in this simple implementa­
tion concerns keeping the environment in a pre­
designated file. If a user is logged in twice and is setting
environment variables during both login sessions, vari­
able value conflicts could arise because a single environ­
ment file is being updated. A suggested solution to this
problem is to have a re-constructable, temporary file
name which is unique to each login session.

The envini routine can be implemented as seen fit.
For instance, an implementor may choose to pass
environment variables via the spawn argument facility.
Envini would simply retrieve the environment variables
in the same way that command arguments are retrieved,
and then store them in the symbol table. This imple­
mentation is a bit more complicated then using files to
store the environment, but it removes the problem of
conflicting environments from two concurrent login ses­
sions.

The last implementation issue is the lifetime of the
environment. UNIX begins each login session with a
clean environment and leaves it up to the user to set up
the environment with calls to the command setenv. At
sites which use a login shell and a login startup file, this
is recommended. The setenv commands are placed in the

- 3-

.
·I

EnYironments and Search Paths

login startup file to be loaded by the login shell. Sites
which don't have this setup may have to use the pre­
designated environment file scheme to store initial
environment variable values. The first call to envget or
envset will then read the environment from this file into
the symbol table.

S. Conclusion
The Software Tools need environments and search

paths. RTSG plans to submit the portable environment
model described in this paper for distribution in the
extensions section of the next Software Tools basic tape.
After refining the model based on input from Tools
users, we will submit the environment package (along
with search path code for the shell), to the standards
committee for final approval and distribution.

REFERENCFS

1. K Thompson and D.M.Ritchie, UNIX Programmer's
Manual, Bell Laboratories, May 1975. See prin­
tenv(l), csh(l), exec(2), getenv(3), path(5),
environ(5).

2. B.W.Kernighan and P.J.Plauger, Software Tools,
Addison-Wesley, 1976.

3. R.B.Upshaw and V.Jacobson, Paths, LBL internal
document, Nov 1981.

4. RTSG Software Tools Manual, Lawrence Berkeley
Labs, Nov 1981. See paths(O), sh(l), incl(l),
man(1), mail(l), splb(2).

5. J.Kunze, Why the C Shell Has Not Been Universally
Accepted, U.C.Berkeley.
Thanks to D.Scherrer and KD.Poulton for their mail

concerning environments, and to Bob Upshaw and Van
Jacobson for their many ideas and suggestions concern­
ing this paper.

-4-

July 28, 1983

'rj

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

1!~;. ;.

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

,.

.... ,

~.,;,;_ --;..

