
UC Berkeley
International Conference on GIScience Short Paper Proceedings

Title
Accessing Distributed WFS Data Through A RDF Query Interface

Permalink
https://escholarship.org/uc/item/9fs8s68v

Journal
International Conference on GIScience Short Paper Proceedings, 1(1)

Authors
Zhao, Tian
Zhang, Chuanrong
Li, Weidong

Publication Date
2016

DOI
10.21433/B3119fs8s68v
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9fs8s68v
https://escholarship.org
http://www.cdlib.org/


Accessing Distributed WFS Data Through A

RDF Query Interface

Tian Zhao1, Chuanrong Zhang2, and Weidong Li2

1 University of Wisconsin – Milwaukee
2 University of Connecticut

Abstract. Geospatial data stored in databases and other formats can
be accessed through Web Feature Service (WFS). However, it is not
convenient to access data in multiple WFS servers since WFS protocol
is geared towards single server. In this paper, we propose an algorithm
to query and synthesize distributed WFS data through a RDF query
interface, where users can specify data requests to multiple WFS servers
using a single RDF query. The algorithm translates each RDF query
written in SPARQL-like syntax to multiple WFS get-feature requests,
and then convert the WFS results to answers to the original query. A
lightweight Web-based prototype is implemented based on this approach.

1 Introduction

In this paper, we propose the design of a RDF query interface for distributed
WFS data, which accepts queries in SPARQL-like syntax to provide more flexi-
bility and usability than direct WFS queries.

As a motivational example, imagine a scenario where a developer needs to
implement a program to display the flooded streets near the high schools of a
city. The programmers can define an interface backed by some predefined WFS
queries to fetch data from two servers. For each user request, the interface will
request data from the servers and then integrate the results. If the servers use
di↵erent data definitions, a translation step is needed to reconcile and integrate
the data. If the developer needs to support another query such as finding the
bridges of major highways, the developer has to perform the above steps again.

While the implementation of two queries shares many similarities, it is not
apparent how to re-factor the duplicated code, which include the communication
with WFS servers and the transformation and integration of the responses. The
di�culty is not with building shared library but with composing specific WFS
requests and interpreting and integrating the corresponding results, which may
be di↵erent from each query. In addition, while queries may involve the same
intermediate data, it is not straightforward to implement a caching strategy to
improve performance. This is especially critical during emergency when peak
data requests can overwhelm data servers.

Our design of RDF query interface aims to improve the productivity for
rapid prototyping of WFS query applications. The RDF interface automatically

GIScience 2016 Short Paper Proceedings

376



translates user queries formulated in a SPARQL-like syntax to WFS requests
sent to multiple servers and then integrates WFS response to answer the original
user queries. Using this design, application developers do not need to write code
for WFS request and data processing. Instead, they can accomplish the same
goal by defining mappings from WFS feature types to RDF definitions and by
writing RDF queries.

Note that the data provided by WFS servers may be backed by databases
or shapefiles. The cost of converting the data to a uniform format may not be
feasible for large or frequently updated data sets.

2 Related Work

In literature, ontology has been used in search tools to help to discover geospatial
web services related to certain domain concepts [2]. Tools have also been devel-
oped to convert geospatial ontology data to forms that can be accessed via WFS
protocol [1]. Given the abundance of data available from geospatial web services
and databases, a more interesting direction is to make data from geospatial web
services and databases accessible via RDF protocols.

The closest study is the work of Tschirner et al. [3], who proposed a method to
convert GML data into ontology data by translating SPARQL queries into WFS
requests. Their approach maps a SPARQL query to a WFS request that returns
a superset of intended results, transforms the WFS results into ontology data,
and then applies the original SPARQL query to obtain the final answer. While
this paper shares similar workflow, our approach is di↵erent in several ways.
Firstly, we do not assume the WFS data is centralized in one server or having
a unified definition. This requires the translated WFS requests be separated for
each feature type and the final join is done at the client side. We generate multiple
OGC filter encoding for each SPARQL query. Secondly, our approach implements
a light-weight Web client with roughly 1000 lines of JavaScript without library
dependencies for query processing, which is easier for deployment. Lastly, our
approach is designed to use a SPARQL-like syntax to bring more convenient
query interface to WFS services while Tschirner et al. provide a more complete
service of SPARQL endpoint for GML data.

In our prior work [4], we proposed a query rewriting algorithm to trans-
late SPARQL query to WFS requests and database queries using idealized syn-
tax. This paper extends that approach by considering a more realistic subset of
SPARQL syntax and by implementing a Web-based prototype that incorporates
caching optimization and data rendering.

3 Translate RDF Query to WFS Requests

Typically, a SPARQL query is translated to multiple WFS requests by grouping
triples related to the same feature type together so that there is one WFS request
per feature type. Any remaining triples are translated to spatial joins to be
applied to the results of the WFS requests.

GIScience 2016 Short Paper Proceedings

377



As a concrete example, the below query Q1 is an RDF query in a SPARQL-
like syntax for retrieving the streets nearby each high school in New Haven, CT,
where a geometry is nearby another one if their distance is less than 500 meters
(this distance is arbitrarily chosen and can be modified).

select ?s ?p where (Q1)

?s rdf:type streets.

?p nh:category "High School".

?s nearby ?p

In the query, identifiers starting with ? are variables. The solutions to the
variables ?s and ?p (which stand for streets and points respectively) between
select and where are the intended results of the query. The lines after where
are called triples that specify the conditions with which the variable solutions
must satisfy. Each triple has the form of subject predicate object, which restricts
the relation between the subject and object with the predicate. For example,
the triple ?s rdf:type streets says that the solution to ?s must has a type called
streets. The triple ?p nh:category “High School” specifies that the category of ?p
is High School. Finally, the triple ?s nearby ?p relates the spatial attributes of
?s to those of ?p by the distances between them. Note that users can change the
RDF definitions by editing a configuration file.

Pre-processing The pre-processing phase separates the triples into four groups
based on the triple predicates. For example, the triples in Query Q1 can be
separated as below, where ?p nh:category ?c and ?c == “High School” are au-
tomatically generated from ?p nh:category “High School”.

type triple ?s rdf:type streets.

property triple ?p nh:category ?c.

filter triple ?c == ”High School”.

spatial join triple ?s nearby ?p

Query rewriting Based on the separated triples, the rewriting phase includes five
steps: (1) identify the set of feature variables that correspond to feature types;
(2) find the set of triples related to each feature variable; (3) find the set of
feature types for each feature variable; (4) find the set of filter expressions for
each pair of feature variable and its type; (5) construct a set of WFS get-feature
requests for each feature variable.

For the query Q1, the feature variables are ?s and ?p and their feature types
are new_haven_streets and new_haven_places respectively. The following get-
feature requests can be generated.

getFeature(new haven streets)
getFeature(new haven places, CATEGORY PropertyIsEqualTo ‘High School’)

Post-processing After receiving the responses from the get-feature requests, we
perform spatial joins on the retrieved geospatial features if necessary. The results
of the spatial join are filtered by the types of the features identified from the

GIScience 2016 Short Paper Proceedings

378



selection variables of the SPARQL query. The features retrieved from the get-
feature requests are cached, which greatly improves performance by avoiding
network and server overhead.

Implementation Figure 1 is a screen shot of our prototype, which is available
at boyang.cs.uwm.edu:8080/newHaven/bing.html. It parses each SPARQL
query in text form and generates a set of get-feature requests, which are sent as
AJAX calls to WFS servers and the responses are joined before being displayed
on a map. There are some pre-defined queries though they are not hard-wired
in any way and users can revise the query in the textbox. The query interface
actions are logged below the textbox so that user can track the query progress.

Fig. 1. Highways near high schools

4 Conclusion

In this paper, we present an algorithm to convert RDF queries to WFS requests
so that users can query distributed WFS features as if they were RDF instances.
The algorithm avoids the cost of converting features to RDF objects while re-
taining the benefits of RDF queries. As future work, we will extend the algorithm
to include static checking capability to detect semantic errors before runtime.

References

1. J. Jones, W. Kuhn, C. Keler, and S. Scheider. Making the web of data available via
web feature services. In AGILE 2014, 2014.

2. W. Li, C. Yang, D. Nebert, R. Raskinc, P. Houser, H. Wu, and Li Z. A semantic-
based web service discovery and chaining for building an arctic spatial data infras-
tructure. Computers & Geosciences, 37:1752–1762, 2011.

3. Sven Tschirner, Ansgar Scherp, and Ste↵en Staab. Semantic access to inspire how
to publish and query advanced gml data. In Workshop in Conjunction of 10th
International Semantic Web Conference, 2011.

4. T. Zhao, C. Zhang, M. Wei, and Z.-R Peng. Ontology-based geospatial data query
and integration. In Lecture Notes in Computer Science LNCS5266: Geographic
Information Science, 5266, pages 370–392, 2008.

GIScience 2016 Short Paper Proceedings

379




