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Abstract 

It has been hypothesized that mammalian sensory systems are efficient because they 

reduce the redundancy of natural sensory input. If correct, this theory could unify our 

understanding of sensory coding; here, we test its predictions for color coding in the 

primate primary visual cortex (V1). We apply Independent Component Analysis (ICA) to 

simulated cone responses to natural scenes, obtaining a set of colored independent 

component (IC) filters that form a redundancy-reducing visual code. We compare IC 

filters with physiologically measured V1 neurons, and find great spatial similarity 

between IC filters and V1 simple cells. On cursory inspection, there is little chromatic 

similarity; however, we find that many apparent differences result from biases in the 

physiological measurements and ICA analysis. After correcting these biases, we find that 

the chromatic tuning of IC filters does indeed resemble the population of V1 neurons, 

supporting the redundancy-reduction hypothesis.
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Introduction 

 
The mammalian visual system is believed to efficiently encode natural visual 

information. One way in which it might do this is by reducing the redundancy of the 

representation at successive stages of processing (Attneave 1954; Barlow 1959). Natural 

visual input contains features such as edges and homogenous color patches, which make 

the patterns of light falling on the retina highly redundant and which give rise to 

statistical dependencies between neighboring regions of the visual image (Field 1987). In 

order to reduce redundancy, the visual system might use these features as a basis for 

representing visual input (Barlow 1989). 

Independent Component Analysis (ICA, Comon 1994) is a widely used method 

for finding a redundancy-reducing encoding of data (such as natural visual scenes). 

Although the resulting “Independent Components” (ICs) are often only approximately 

independent, when ICA is applied to achromatic natural images, it produces ICs that are 

strikingly similar to the achromatic spatial receptive fields (RFs) of simple cells in 

primary visual cortex (V1) (Bell and Sejnowski 1997). Sparseness maximization 

(Olshausen and Field 1996) is conceptually similar to ICA and produces similar results; 

Ringach (2002) has argued that it better models the diversity of spatial RFs in V1. 

However, ICA has been validated by many rigorous comparisons with V1: van Hateren 

and van der Schaaf (1998) quantified the comparison between achromatic ICs and 

macaque V1 simple cells, and found that the distributions of all RF measurements except 

optimal spatial frequency (SF) were well matched. When a temporal dimension is added 
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and simple cells are compared to the IC filters of achromatic natural movies, the SF 

similarity improves (van Hateren and Ruderman 1998). 

Since the ICA model successfully explains the spatial tuning of V1 simple cells to 

achromatic stimuli, the model may also explain other response properties such as color 

tuning. To test this hypothesis, ICA has been applied to colored natural scenes to produce 

spatiochromatic ICs (Tailor et al. 2000; Hoyer and Hyvärinen 2000; Wachtler et al. 2001; 

Doi et al. 2003). However, these studies used varying methodologies and found 

conflicting sets of ICs. Additionally, none of the studies has quantitatively compared ICs 

to a standard set of physiological measurements of V1. Finally, a richer understanding of 

V1 color coding has recently been developing: The view that color sensitivity is 

infrequent in V1 and restricted to weakly orientation-tuned neurons in cytochrome 

oxidase blobs (Livingstone and Hubel 1984; Lennie et al. 1990) has given way to a more 

diverse picture, in which oriented cells also have a rich variety of color sensitivities 

(Conway 2001; Johnson et al. 2001). 

In this study, our goal was to rigorously test the hypothesis that ICA can account 

for the chromatic tuning of neurons in V1. We have controlled for the methodological 

variations between previous color ICA studies, and have chosen the most biologically 

realistic set of ICs for analysis. Treating the ICs as though they were real neuronal RFs, 

we use the cone-opponent grating stimuli of Derrington et al. (1984) to determine their 

color tuning. We then directly, quantitatively compare the color tuning with Lennie et 

al.’s (1990) classic V1 data. To further test the hypothesis, we compare the structure of 

ICs’ model cone inputs with recent V1 data from Conway (2001) and Johnson et al. 

(2001). At first sight, the color tuning of ICs of natural scenes does not look very similar 
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to V1 neurons, but we will show that, in fact, there is considerable similarity, once 

appropriate ICA methodology is employed, and the limitations of real experimental 

protocols are considered. 

Methods 

Colored natural scenes 

We analyzed a “hyperspectral” set of 25 distinct colored natural scenes (Párraga 

et al. 1998). Each 256x256-pixel scene was photographed through 31 filters covering the 

human visible spectrum (centered at wavelengths 400, 410…700 nm, bandwidth ~10 

nm); thus it was not limited by the spectral sensitivity of a standard RGB camera. Each 

plane was digitized to 12 bits of intensity. We aligned the color planes of each scene with 

subpixel accuracy, by maximizing cross-correlation of adjacent planes; then, to ensure 

proper alignment, we averaged pixels together in 2x2 blocks. 

We encoded the scenes in three ways that encompass previous work. Wachtler et 

al. (2001) transformed Párraga et al.’s hyperspectral images into the human visual 

colorspace defined by the absorption spectra of L, M and S cones. Hoyer and Hyvärinen 

(2000) used uncompressed images encoded in a digital camera’s RGB colorspace, while 

Tailor et al. (2000) used JPEG-compressed RGB images taken from the Internet. 

In the LMS condition, we used the Smith-Pokorny cone sensitivity curves (Figure 

1e; Smith and Pokorny 1975) to transform the 31-plane hyperspectral scenes into 3-plane 

LMS space. These human psychophysical curves are consistent with, but more precise 

than, the physiological absorption spectra of macaque photoreceptors (Baylor et al. 

1987). In the RGB condition, we converted the 31-plane hyperspectral scenes into 3-

 5
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plane RGB images, using the sensitivity curves (Figure 1f) of the red, green and blue 

detectors of a typical digital camera (Nikon Coolpix 950; C.A. Párraga, unpublished 

observations). In the JPEG condition, we applied JPEG compression to these RGB-

encoded images, in order to mimic Tailor et al.’s dataset. JPEG images were encoded at 

quality setting 90 (using Matlab’s (the MathWorks Inc.) IMWRITE function). This is 

conservative compared to the quality setting of between 50 and 75 which we estimate 

(from the encoded file sizes) was used in Tailor et al.’s image set. After performing ICA, 

we linearly transformed the resulting RGB ICs into the LMS colorspace for comparison 

with neurophysiological data. 

We pseudorandomly extracted a set of 12x12-pixel fragments from the scenes in 

each image set, excluding the calibration reference (a white card) from each scene. The 

number of fragments was 200 times the fragment dimensionality (i.e. 86400 for 12x12-

pixel, 3-plane images).  

In the LMS and RGB conditions, each image fragment was log-transformed.  The 

log transform is commonly applied as ICA preprocessing (e.g. van Hateren and van der 

Schaaf 1998) because it improves the convergence of ICA learning algorithms (see 

Willmore et al. 2000 for analysis of its effects). The raw luminance variation within our 

set of natural scenes, which covers three orders of magnitude, badly skews the data 

distribution and breaches the linear superposition model assumed by ICA (see next 

section).  There are other remedies for this problem: while raw LMS images yield poorly 

converged ICs, standardizing the mean and variance of those images produces ICs similar 

to those of log-transformed images (data not shown). We chose to use the log transform, 

however, because it makes our results comparable with other studies.   

 6
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From a functional point of view, the log transform has a clear biological correlate 

in retinal luminance adaptation (Field 1994, van Hateren and van der Schaaf 1998), a 

process which also compensates for the luminance changes (of many orders of 

magnitude) occurring in the natural environment. Our investigations of color tuning 

(below) are conducted in the equivalent of laboratory conditions, and always modulate 

cone contrast (at fixed mean luminance) rather than raw luminance.  Therefore, we did 

not apply log transformation to our “grating stimuli.” 

In the JPEG condition, we did not apply the log transform, because our aim was 

to replicate the results of Tailor et al (2000), where the transform was not used. 

Independent Component Analysis: algorithm and preprocessing 

Each image fragment r Bi B was converted into a one-dimensional vector, and these 

comprised the rows of the 86400x432 data matrix R. The mean of each vector was set to 

zero. As a computational convenience for the ICA step, we whitened the data vectors; 

this transformation was inverted before the ICs were analyzed, so it has no effect on the 

final results. Our whitening method was based on Principal Components Analysis, and 

produced a data matrix S = DP

-1/2
PRE, where the columns of E are the eigenvectors of the 

covariance matrix RP

T
PR (i.e. its principal components) and D is a diagonal matrix 

containing the eigenvalues of the covariance matrix of R. 

The assumption behind the ICA algorithm is that each image fragment x is 

composed of a weighted sum of a fixed set of underlying sources aBi B whose activities are 

given by sBi B:  

∑
=

=
n

i
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These sources, also called basis functions, are identified as independent sources of 

variance of the image data, which produce image fragments by mixing together linearly. 

Along with the basis functions, one can also derive a set of IC filters which reverse the 

process: they “unmix” the image fragment to yield activity values si, which correspond to 

individual sources, and which should also be maximally independent. The set of filters 

produced by ICA is directly analogous to a population of V1 neurons, each analyzing part 

of the incoming visual stimulus. 

There are a number of ICA algorithms, which make slightly different assumptions 

about the distribution of the underlying sources, but for ICA of colored natural scenes 

most algorithms yield similar results (Wachtler et al. 2001). We used an implementation 

of the information-maximization ICA algorithm with natural gradient feature (Bell and 

Sejnowski 1997, Makeig et al. 2002). This algorithm uses gradient ascent to find vectors 

in the distribution which give us the IC filter matrix F, which is the inverse of the 

sources: F = A-1.  

IC filters were similar over multiple runs of the algorithm, with different random 

seeds and different sets of image fragments. As a control for artifacts due to 

misalignment of the spectral planes, we performed extra analyses where we sub-sampled 

the LMS images in blocks of 2x2, 3x3 and 4x4 before extracting fragments; at each block 

size, the character of filters was preserved, which shows that the color planes were 

sufficiently aligned to prevent artifacts. 

Spatial tuning 

To find the best spatial stimulus for each IC, we exploited the equivalence 

between the Fourier transform of an RF and its responses to grating stimuli. We took the 
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two-dimensional discrete Fourier transform of each IC, identified the highest amplitude 

Fourier component, and computed its orientation and spatial frequency.  

These measurements were limited in precision by the 12x12 patch size, because 

only discrete values corresponding to integer harmonics are possible. This patch size 

enabled us to measure orientation with precision of about 10 degrees, and to measure SF 

with precision of 1 octave at low SFs (near 0.1 cycles/pixel) and < 0.3 octaves at high 

SFs (near 0.5 cycles/pixel).   

We also assessed other spatial properties of each IC. Using the best achromatic 

stimulus, we computed orientation bandwidth, SF bandwidth, length and width by 

measuring full width at half-maximum (FWHM) for bandpass functions, or twice the half 

width at half-maximum for low- and high-pass functions. SF bandwidth was computed as 

the log of the SF ratio between the half-heights in the amplitude spectrum along the 

radius corresponding to peak orientation, following van Hateren and van der Schaaf 

(1998). Orientation tuning bandwidth was measured as the difference between half-

heights along the circle corresponding to peak SF. For a small number of very high-SF 

oblique filters, some measurements fell outside the boundary of the Fourier transformed 

patch; in these cases, we took the measurement at the boundary, which caused a slight 

narrowing of their bandwidth. Aspect ratio was computed as the ratio of the length and 

width, where the length is the RF envelope FWHM in the lowpass direction and width is 

the envelope FWHM in the bandpass direction (Field and Tolhurst 1986). 

Color tuning 

Color tuning was quantified using Lennie et al.’s (1990) cone-opponent stimuli in 

the “DKL” colorspace developed by Derrington et al. (1984) from the work of Macleod 
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and Boynton (1979). In this three-dimensional colorspace, the XY plane is equiluminant, 

similar to the CIE colorspace, and so any changes along the X and Y axes alter stimulus 

color without affecting luminance. Increasing x increases L-cone input while 

proportionally decreasing M-cone input (i.e. a stimulus becomes more “red” and less 

“green”), leaving S cones unaffected. Increasing y increases both L- and M-cone inputs 

while reducing S-cone input (resulting in more “yellow” and less “blue”). Increasing z 

increases input to all three cones, i.e. increases overall luminance. Lennie et al.’s white 

point was set to cone input values (0.311, 0.336, 0.353). Modulation from this point along 

the X axis to (1,0,0) corresponds to LMS cone input changes of (0.074, -0.14, 0), and 

modulation along the Y axis to (0,1,0) corresponds to changes of (0, 0, -0.84). 

Modulation along the Z axis causes a change in luminance without a change in color, so 

that modulation to (0,0,1) doubles all three cones’ inputs. Because of the overlap of L and 

M cone spectra (Figure 1e), the effect of X axis modulation on L and M cones is small 

(compared to the effect of Y axis modulation on S cones) so we followed Lennie et al. in 

scaling the X coordinate by 3.125. 

In the DKL colorspace, as defined in Lennie et al. (1990), a linearly summating 

neuron’s color tuning can be described using only two parameters. To do this, we treat 

each set of coordinates (x,y,z) as a vector and describe it in spherical coordinates (ø,θ,ρ). 

The azimuth ø is the preferred color within the equiluminant XY plane: A neuron which 

is purely sensitive to R-G variation lies along the X axis and has an azimuth of 0°, 

whereas a neuron purely sensitive to B-Y variation lies along the Y axis and has an 

azimuth of 90°. The elevation θ is the angle the vector makes with the XY plane, and it 

describes the neuron's response to luminance change relative to chromatic change. A 
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neuron with elevation 0° responds best to chromatic stimuli, while a neuron with 

elevation 90° responds best to luminance stimuli. The stimuli are cone-opponent drifting 

gratings that are spatially modulated in color and luminance along the line defined by 

(ø,θ) and crossing the sphere defined by fixed ρ. Thus, a cell’s color tuning can be fully 

described using only azimuth and elevations in the upper hemisphere (θ > 0º). 

We computed the color tuning of each IC by finding the elevation and azimuth 

values that produce the maximal response, at a resolution of 1º. We converted each (ø,θ) 

pair into (x,y,z) coordinates and then converted these coordinates into cone-specific 

luminance values (L,M,S). To measure an IC’s response to a color grating, we multiplied 

each cone luminance by the IC’s Fourier component for that cone, summed the 

components over cones, and then took the amplitude. 

Complementary to this cone-opponency analysis, we measured the cone-isolating 

grating responses of single cone inputs. In each color plane, we found the highest 

amplitude Fourier component and measured its phase, orientation, and SF. 

Comparing color tuning distributions 

The color tuning of each IC was thus represented by a single point in colorspace, 

q(ø,θ). The distribution of all 432 ICs, Q(ø,θ), was then compared with the distribution 

P(ø,θ) of the 96 neurons described by Lennie et al. (1990). To compare two DKL color 

tuning distributions P(ø,θ) and Q(ø,θ), we needed a metric valid for arbitrary two-

dimensional distributions. We used the Kullback-Leibler (K-L) distance from P to Q, 

which is also known as the relative entropy of P to Q: 

( ) ( )∑=
θφ θφ

θφθφ
, ),(

),(log,||D
Q
PPQP   
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K-L distance is not symmetric, that is, in general D(P||Q) ≠ D(Q||P). However, when 

comparing physiological distributions P(ø,θ) to IC distributions Q(ø,θ), we avoid this 

issue by consistently using it in one direction D(P||Q). 

We binned the color tuning distribution into 30° x 30° bins, centered at azimuths 

-30°, 0° … 150° and elevations 15°, 45° and 75°. Some of the distributions had a small 

number nB0 B of zero bins (oriented cells had 7, IC filters had between 1 and 4 depending on 

condition); to avoid singularity, these bins must be assigned a count. For each 

distribution, we wanted to calculate a zero-bin count which was as conservative (high) as 

possible.  Therefore, we computed the maximum probability of data in each zero bin, pB0 B, 

such that the probability of no data falling in all nB0 B observed zero bins was < 0.5 (since, in 

our single trial, we observed nB0B zero bins). The relative order of K-L distances was robust 

and our results did not change substantially for other bin sizes, center locations and zero 

bin counts between 0.01 and 1. 

 Measurements of K-L distance, like other information-theoretic measurements, 

cannot be assigned statistical confidence without extensive prior information. Therefore, 

these distances must be referenced to another distance value. We chose our reference to 

be the distance between Lennie et al.’s non-oriented and oriented cell distributions 

(shown in Figures 2c, 2d), which represents a substantial change between distributions, 

and is generally believed to represent a difference between cell classes. Because of the 

asymmetry of K-L distance, D(oriented || non-oriented) = 0.97 while 

D(non-oriented || oriented) = 1.69, so we took as our reference the average, 1.33. 

However, using either individual distance value does not affect our results. 
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Artifactuality in ICs 

In our spatial and color tuning analyses, we considered the influence of artifactual 

ICs on the distribution of color tuning. Because ICA is a noisy optimization process with 

a finite data set, it will inevitably produce some artifactual ICs. However, using low 

variance as an indicator of artifactuality (as is commonly done) would introduce a bias 

against color, because color is a smaller source of variance in natural images than 

luminance (Ruderman et al. 1998). Therefore, we used van Hateren and van der Schaaf’s 

(1998) criteria: artifactual ICs (1) extend over only a few pixels and (2) have nearly equal 

power in all four corners of the power spectrum. These criteria are entirely spatial and do 

not, a priori, introduce a color bias. 

We also considered whether the limited size of image fragments could cause 

artifacts in the color tuning data. If spatial or spatial frequency edge effects were a 

problem, we would expect to see more artifactual bias at the smaller size. Notably, we 

obtained identical results using two patch sizes: 8x8 and 12x12 (data not shown). This 

suggests that edge effects do not significantly alter color tuning. 

Spatial-chromatic separability assumption 

We replicated Lennie et al.’s (1990) study of V1 neurons in two ways: (1) under 

ideal conditions, and (2) under conditions that imitate their exact methods, including 

experimental limitations. In the ideal case, we simultaneously measured spatial tuning 

(optimal orientation and SF) and color tuning (azimuth and elevation). In the imitation 

case, we followed Lennie et al.’s assumption that color and spatial tuning are separable 

(i.e. regardless of stimulus color, a cell will have the same optimal grating stimulus). 

Therefore, in this case we first measured spatial tuning using achromatic gratings, and 
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then used the orientation and SF of the best achromatic grating to make chromatic 

gratings for color tuning measurement. Lennie et al. sometimes re-optimized spatial 

tuning with a colored grating, and used colored gratings on occasions when achromatic 

ones did not work well. However, we excluded these heuristics, because they were not 

formalizable.  

Effect of noise 

A major difference between much modeling and real experiments is the presence 

of noise in the experiments. Therefore, when imitating Lennie et al.’s (1990) 

experiments, we tested the effect of noise on color tuning. We assumed that each IC’s 

maximum amplitude of response modulation equaled 75 spikes per second, a value 

typical of Lennie et al.’s neuronal responses. For response modulations of that size, the 

amplitude standard deviation is approximately 5.25 spikes/s (Levine 1995). We simulated 

25 different experiments, in which each grating stimulus was presented for 20 trials.  To 

each trial’s “grating response” (Fourier amplitude), we added amplitude noise with a 

standard deviation of 5.25 and a mean of zero.  In each experiment, we averaged 

responses over all 20 trials and took the best stimulus as the color tuning. Then, to assess 

whether noise caused an overall bias, we computed the spherical mean of these color 

tuning measurements across 25 experiments (Fisher 1987). 

Results 

Starting with a set of hyperspectral images (Párraga et al. 1998), we constructed 

three different image sets with three color planes each (LMS-encoded, RGB-encoded, 

and JPEG-compressed RGB-encoded). We took each data set, performed Independent 
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Component Analysis, and obtained 432 IC basis functions and IC filters. Figures 1a-c 

show equivalent samples of ICA filters for the RGB, JPEG and LMS image sets, while 

Figure 1d shows a sample of LMS basis functions (see figure legend). Many of the filters 

look similar to the elongated Gabor function RFs of V1 simple cells (e.g. Ringach 2002), 

and many have apparent red-green (L-M) or blue-yellow (S-(L+M)) opponency. 

However, there are significant differences between the three sets of filters, in spatial 

structure and color tuning. 

Figure 1 near here 

JPEG Encoding Creates Artifacts in ICs 

Both Tailor et al. (2000) and Hoyer and Hyvärinen (2000) have published ICA 

results from RGB images. Since Tailor et al.’s images were encoded using JPEG 

compression, which is lossy (i.e. does not preserve all information in the image), we 

investigated whether this had affected the ICs by directly comparing the effect of the 

different encodings on IC filters derived from our data set. 

In the RGB condition, our IC filters (Figure 1a) corresponded fairly well to the basis 

functions of Hoyer and Hyvärinen, while in the JPEG condition, our filters (Figure 1b) 

were similar to those found by Tailor et al. We found that the spatial structure of the ICs 

found by Tailor et al. was indeed affected by JPEG compression of the source images: 

JPEG filters contained a large number of blue-yellow and red-green checkerboard 

patterns (e.g. rows 3-4, and 9-10 in Figure 1b) which do not correspond to any RGB 

filters. To ensure that these artifacts were the results of JPEG compression, and not the 

absence of the log transform, we also ran ICA on non-log-transformed RGB images. The 
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results (data not shown) are spatially similar to the log-transformed RGB ICs, not the 

JPEG ICs. 

These artifacts result from JPEG’s compression algorithm, which divides images into 8x8 

blocks and then discards information within blocks. Because the image fragments used 

for ICA are not aligned with block boundaries, the boundaries become artifacts. JPEG 

encoding also produces chromatic artifacts, because it imitates an idealized human visual 

system by encoding images into luminance, red-green and blue-yellow color planes. 

Thus, ICA of JPEG images reveals mechanisms of the JPEG compression algorithm 

rather than features of the natural visual world. 

RGB Encoding also Biases ICs 

We next investigated the effect of using uncompressed RGB-encoded images, 

compared to the more biologically realistic LMS encoding.  Hoyer and Hyvärinen (2000) 

justify their use of RGB images from a digital camera by arguing that the colorspace 

choice will make no difference. Because RGB and LMS colorspaces are related by a 

linear transform, they argue, the correlations in the data remain unchanged, thus ICA 

should produce the same ICs for both image sets. However, there are several 

nonlinearities in the digital camera’s imaging process, such as color balancing and 

gamma correction, and preprocessing also includes another nonlinear step, the log 

transform. Because all of these nonlinearities may cause discrepancies between the RGB 

and LMS conditions, we decided to measure their influence on spatial and chromatic 

tuning. 

The spatial structures of IC filters in the RGB condition (Figure 1a) and the LMS 

condition (Figure 1c) were very similar, insofar as both sets contain mostly elongated 

 16
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Gabor-like features. There was noise in the LMS filters that was not present in the RGB 

filters, which was also true of the basis functions (data not shown). This may have 

resulted from the substantially greater overlap of L and M cone spectra (Figure 1e) 

compared to R and G detectors (Figure 1f): A given color image will have very similar L 

and M activations, and thus, image noise within the non-overlapping spectral regions will 

have an exaggerated effect on ICs in which L and M are opponent. 

To compare color tuning in the RGB condition with the LMS condition, we 

linearly transformed RGB filters into the LMS colorspace, using the matrix of dot 

products between the RGB and LMS spectra in Figures 1f and 1e. Color tuning was 

summarized as the elevation (luminance sensitivity) and azimuth (chromatic preference) 

of the drifting sinusoidal grating that evoked the greatest response (see Methods). The 

color tuning of RGB filters (Figure 2a) differed substantially from LMS filters’ color 

tuning (Figure 2b): RGB filters fell into a small number of line-like, continuous clusters 

corresponding to yellow (30° azimuth), magenta (135°), and blue (90°). LMS filters 

clustered at red (0°) and blue-magenta (120°), and were much more diffusely clustered. 

The shift in the centers of azimuth clusters suggests that the difference between RGB and 

LMS is not merely due to noise, and that, contrary to the claim of Hoyer and Hyvärinen 

(2000), RGB-encoded ICs are not appropriate after all for comparison with the visual 

system. Therefore, an ICA model of the visual cortex should use the visual system’s LMS 

encoding of the chromatic information in natural scenes. 

Insofar as RGB filters are comparable to the visual cortex, RGB encoding has one 

provisional advantage over LMS encoding: it reduces noise in the ICs, as explained 
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above. Consequently, although RGB encoding produces biased IC filters, any similarity 

to V1 cells actually supports our claim (below) that IC filters resemble V1 cells. 

Figure 2 near here 

LMS IC Filters have Similar Spatial Tuning to Simple Cells and 

Achromatic ICs  

To examine whether color information affects the spatial structure of ICs, we 

compared the spatial properties of LMS IC filters with the spatial properties of 

achromatic IC filters (van Hateren and van der Schaaf 1998) and macaque simple cells 

(DeValois et al. 1982; Parker and Hawken 1988). We obtained the distributions of best 

orientation, orientation bandwidth, spatial frequency, spatial frequency bandwidth, and 

aspect ratio (envelope length divided by envelope width), using the best achromatic 

stimulus for each IC. 

We identified artifactual ICs following van Hateren and van der Schaaf (1998)’s 

criteria; they constituted 29% (124/432) of our ICs. However, some of these artifactual 

ICs ad high variances (i.e. they were robust sources for the image data), so we also show, 

but do not discuss, spatial analyses for the full set of ICs. 

The orientation distribution of non-artifactual filters (Figure 3a, gray bars) was 

similar to the distribution of achromatic filters, with peaks at 0º (vertical), 45º, 90º 

(horizontal) and 135º. The orientation bandwidth peak (Figure 3b, gray bars) was near 

60º in our colored ICs, and the entire distribution seemed to be shifted towards higher 

values, compared to achromatic ICs and older studies of macaque V1 (DeValois et al. 

1982; Parker and Hawken 1988), Interestingly, more recent physiological studies have 

reported an orientation tuning distribution much like ours (Ringach et al. 2002); in fact, 
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Ringach (2002) comments on the discrepancy between their data and achromatic ICA 

data, which is resolved by color ICA. The distribution of color filter spatial frequencies 

(Figure 3c) was qualitatively similar to achromatic filters, in that it increased 

exponentially with SF and peaked at the Nyquist frequencies for horizontal/vertical and 

diagonal filters. However, color filters were more diverse in preferred SF than 

achromatic, and better resemble the physiological data. The spatial frequency bandwidth 

distribution of color filters (Figure 3d) was similar to both achromatic filters (van Hateren 

and van der Schaaf 1998) and simple cells (DeValois et al. 1982). The aspect ratio 

distribution of color filters (Figure 3e) was centered at 1 (envelope length equal to 

envelope width), as with achromatic filters and simple cells (van Hateren and van der 

Schaaf 1998). Overall, with artifactual ICs removed, the distributions of the spatial 

parameters of colored IC filters were similar to the distributions reported for achromatic 

ICs, and fit the simple cell distributions about as well. The fit between the spatial 

properties of colored IC filters and simple cells was somewhat better for SF, marginally 

worse for aspect ratio, and while colored IC filters fit the most recent orientation tuning 

bandwidth data, achromatic IC filters fit the older data. 

Figure 3 near here 

LMS IC Filters, but not Basis Functions, have Similar Color Tuning to 

Oriented V1 Cells 

Since LMS IC filters are spatially similar to simple cells, we compared the filters’ 

color tuning with V1. We used the data of Lennie et al. (1990), who divided V1 cells into 

three classes: oriented, non-oriented and complex. We were primarily interested in the 

comparison with their oriented cells, which roughly correspond to simple cells, but since 
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many ICs are chromaticity sensitive we also considered non-oriented cells, which Lennie 

et al. found to be most color sensitive. 

Comparing the color tuning of LMS filters (Figure 2b) to oriented V1 cells 

(Figure 2c), we found similar classes of color tuning in both.  The azimuth distributions 

were bimodal, with a red-green (L-M) opponent cluster near 0° azimuth, and a slightly 

larger blue-yellow (S-(L+M)) opponent cluster near 90°. However, the azimuth 

distribution of chromaticity-tuned, S-cone sensitive filters was actually centered near 

120°; thus, filters are closer to (S+L)-M cone opponency (135°). In both distributions, we 

found chromaticity-tuned and luminance-tuned RFs. Chromaticity-tuned RFs (at lower 

elevations) were bimodal, with very few intermediates. However, filters seemed 

substantially more chromaticity tuned than oriented V1 cells; a large number of L-M 

opponent filters with azimuths near 0° were purely chromatic, with elevations near 0°.  

According to Lennie et al.’s (1990) strict criteria, which require a non-oriented 

cell to respond better to full-field modulation than to any grating, only one of our IC 

filters (a full-field noise patch) was non-oriented. Nevertheless, a moderately large 

population of filters had a center-surround-like organization reminiscent of blob cells 

(Livingstone and Hubel 1984), so we also compared the filters to Lennie et al.’s non-

oriented (presumed blob) cells (Figure 2d). Like filters, non-oriented cells were basically 

bimodal in azimuth, with a red-green (L-M) cluster near 0° and a blue-yellow (S-(L+M)) 

cluster near 90°; however, the non-oriented cells’ L-M mode was dominant, and azimuths 

between 30°-60° were more common. The elevation distributions of non-oriented cells 

and filters were similar: Both were bimodal, although non-oriented cells were less 

sharply so. 
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Previously, LMS IC basis functions (rather than LMS filters) have been compared 

to V1 (Hoyer and Hyvärinen 2000; Lee et al. 2002). Although there are a priori reasons 

why basis functions should not be analyzed this way (see Discussion), we have also 

observed that the color tuning of basis functions (Figure 2e) was markedly different from 

both V1 cells and filters: the distribution contained only a single cluster near azimuth 75° 

and elevation 75°. This is somewhat surprising, since basis functions are apparently 

diverse in color; however, their cone inputs were typically poorly balanced. Full-field 

luminance modulation, which is a poor stimulus for V1 cells, was the best stimulus for 

73% of basis functions and <1% of filters; this empirically confirms that IC filters are the 

correct comparison for V1 cells. 

Quantitative Comparison between IC Filters and V1 Shows Significant 

Similarity, once Experimental Biases are Removed 

The color tuning of the LMS filters showed some qualitative similarities with 

Lennie et al’s (1990) V1 cells; still, the raw filters contained two notably chromatic 

groups, near 0° and 120° azimuth, which were not strongly evident in the raw V1 data. 

However, comparing raw color tuning is misleading because it fails to take account of 

three discrepancies between the V1 data and the filters (see Methods). First, the raw ICA 

data included a subpopulation of artifactual low-variance ICs. Second, the V1 data 

assumed that spatial tuning can be determined achromatically before determining color 

tuning; that is, it assumes the best chromatic stimulus is spatially identical to the best 

luminance stimulus. This spatial-chromatic separability assumption might have biased 

measurements of color tuning. Third, the firing rates of V1 cells are subject to noise; this 

could also have biased estimates of cells’ color tuning. Since we could not test the effects 

 21



 JN-00775-2003.R2

of noise and separability on actual neurons, we measured their effects on the color tuning 

of the model IC filters. 

Using van Hateren and van der Schaaf’s criteria, we found that 29% of color ICs 

are artifactual, compared to the 25% of achromatic ICs they report. In terms of color 

tuning, these artifactual ICs (Figure 4a) tended to have very low elevations.  Eliminating 

them made the color tuning of the remaining filters more similar to V1, in addition to 

improving spatial tuning. 

To test what difference the spatial-chromatic separability assumption makes for 

our dataset, we compared chromatic tuning when spatial tuning was measured 

achromatically, with chromatic tuning when spatial and chromatic tuning were 

simultaneously determined. Measuring spatial tuning achromatically did bias color 

tuning. It caused elevations to increase and azimuths to decrease; that is, filters 

apparently became more luminance sensitive, and red-green opponency became more 

prominent (Figure 4b). Therefore, the physiological data’s higher elevations, as well as 

its azimuth cluster at 90° rather than 120° (Figures 2c and 2d), may have been partly 

caused by this separability assumption. 

Noise in neuronal responses is another possible source of bias. In Lennie et al.’s 

spherical coordinate system, there is a nonlinear relationship between elevation and 

stimulus contrast. In essence, because Z-axis modulation strength dominates the X and Y 

axes, cone contrast changes little with changes at low elevations, and much more with 

changes at medium elevations. For most cells, contrast determines the firing rate (and 

therefore noise level). Because noise increases with elevation, stimuli with higher 
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elevations are more likely to be experimentally misidentified as the optimal stimulus, 

which could cause a systematic upward elevation bias.  

We measured the distance between the color tuning of noiseless IC filters and 

their mean color tuning with noise added, and found that noise biased the color tuning 

towards higher elevations (Figure 4c), causing a mean elevation overestimate of 7.6º and 

a number of severe (> 30°) overestimates. Thus, some of the higher elevations seen in the 

physiological data (Figures 2c and 2d) compared to the noiseless LMS IC filters (Figure 

2b) may have arisen from noise in the physiological responses. 

Thus, the assumption of spatial-chromatic separability, and the presence of noise 

in real V1 neuronal responses, both result in experimental biases that make cells appear 

dissimilar to IC filters. Furthermore, the inclusion of low-variance artifactual ICs in the 

comparison with real neurons also makes the IC filters look dissimilar to the real cells. 

Figure 4d shows how the color tuning of our IC filters (from Figure 2b) changes once we 

account for these three biases; it shows more similarity to the color tuning distributions of 

real V1 neurons (Figures 2c, 2d). 

Figure 4 near here 

To make the comparison between IC filters and V1 cells more rigorous, we 

measured the Kullback-Leibler (K-L) distance between the color tuning distribution of 

filters and the distributions of oriented cells (Figure 2c), non-oriented cells (Figure 2d), 

and both cell types combined (i.e. all non-complex V1 cells). K-L distances were 

normalized relative to a reference distance, which we took to be the distance between the 

distributions of oriented and non-oriented cells (see Methods). 
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We measured these normalized K-L distances for raw IC filters, filters corrected 

for each individual bias, filters corrected for noise and separability, and filters corrected 

for all three biases. While raw IC filters best resembled the pool of V1 cells, they were 

not especially similar to this group, or to the oriented or non-oriented groups, since all 

K-L distances were near 1 (Table 1, column 1).  However, every single bias correction 

improved the fit between filters and all types of cells (Table 1, columns 2-4); correcting 

the noise bias had the largest effect. Noise and separability corrections appeared to be 

most important; subsequent to these, the effect of removing artifactual IC filters was only 

moderate (Table 1, column 5). When all three biases were taken into account (Table 1, 

column 6), the filters revealed a strong similarity to the pool of V1 cells, and substantial 

similarity to oriented and non-oriented cell groups. 

Even after all biases were corrected, some residual differences between filters and 

V1 cells remained, contributing to the K-L distance.  The low-elevation S-cone cluster 

fell at higher azimuths in filters than cells (120° rather than 90°), even after correction of 

the spatial-chromatic separability assumption. Also, there were non-oriented cells, but not 

filters, at intermediate azimuths (30-75°). 

Ultimately, in all analyses of our filters, we found that the closest match (smallest 

K-L distance) was with the overall pool of V1 cells (Table 1, last row) rather than with 

any subpopulation, such as the more chromaticity-preferring non-oriented cells or the 

more Gabor-like oriented cells. It seems that IC filters are a heterogeneous group most 

similar in color tuning to the pool of oriented and non-oriented V1 cells. 

Figure 5 near here 
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Dependence of Chromaticity on Orientation Selectivity is Consistent 

with Experimental Observations 

Since it has been widely believed that responsiveness to purely chromatic stimuli 

is concentrated among non-oriented cells (Livingstone and Hubel 1984, Lennie et al. 

1990), we examined the relation between orientation tuning bandwidth and chromaticity 

sensitivity (elevation in DKL space). Figure 5 shows that, indeed, filters with broad 

orientation tuning tend to be chromaticity sensitive and have low elevations.  Filters with 

narrow orientation tuning are more diverse but have a tendency towards higher 

elevations.  Non-artifactual filters are primarily responsible for this observation, since 

almost all artifactual filters have elevations near zero. Since most filters have relatively 

sharp orientation tuning, we can thus account for the physiological observation that non-

oriented cells tend to be more chromatic, without assuming this implies that oriented cells 

are achromatic.  In fact, our results are also consistent with Johnson et al.’s (2001) recent 

report that 79% of color-responsive neurons, stimulated with cone-isolating gratings (see 

below), had oriented RFs. Since most filters are well tuned for orientation, it emerges that 

most chromaticity-preferring filters do have fairly narrow orientation tuning. 

Table 1 near here 

Filters Fall into Two Strongly Double-Opponent Clusters 

In order to compare ICs to another body of more recent physiological data 

(Conway 2001), we simulated the LMS IC filters’ responses to cone-isolating stimuli. 

These stimuli avoid some of the confounds of cone-opponent stimuli, by modulating only 

one cone type at a time. For instance, in an L-cone isolating grating, the light stripe 

 25



 JN-00775-2003.R2

increases L-cone excitation relative to background while the dark stripe decreases L-cone 

excitation. Although physiological cone-isolating measurements are often noisy and 

difficult to calibrate because of the overlap between cone absorption spectra (Conway 

2001), in our model this measurement is trivial: we simply look at the filter’s three color 

planes, which represent the individual LMS inputs. 

For each IC filter, we measured its response amplitude to the optimal L, M, and S-

isolating gratings, which indicates the relative strength of different cone inputs. We also 

measured its response phase to each grating, because this determines the spatial 

relationship between the cone inputs. For example, a cell could have L and M inputs with 

identical best orientation and SF, and if those inputs are in phase with each other (0° 

apart) the cell will be (L+M) or yellow sensitive. However, if they are 180° apart in 

phase, it will be L-M double-opponent. Figure 7a shows a schematic receptive field 

containing a double-opponent component (Michael 1978; Livingstone and Hubel 1984), 

which responds fairly specifically to a border between two colors (yellow and blue) 

because its inputs from the corresponding cones are opposite in sign. 

Figure 6 near here 

The response amplitude of all our IC filters to L, M, and S-isolating gratings of 

optimal orientation and SF is shown in Figure 6a (open circles). Filters fell into three 

clusters: One elongated cluster with high S response, some M response, and little L 

response; another elongated cluster with L and M response but little S response; and a 

diffuse cluster near zero. These roughly correspond to the azimuth modes of the cone-

opponency data in Figure 2b. 
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To quantify the double-opponency of the different clusters, we compared the 

response phases of cone pairs. Among strongly L- and M- responsive filters 

(amplitudes > 100), L and M cones were almost always 180° apart in phase (94%, Figure 

6b). Moreover, even though the optimal cone-isolating stimuli were not constrained by 

orientation and SF, 94% of L and M cone-isolating stimuli did have identical orientations 

and 95% did have identical SFs. Thus, for these double-opponent ICs, the 

spatiochromatic tuning to an L-cone-isolating stimulus predicts the tuning to the M-cone-

isolating stimulus, which is consistent with Johnson et al.’s (2001) physiological 

measurements of SF. 

Conway (2001) reported that, in a population of weakly oriented L-M cells 

studied with cone-isolating pixel stimuli, most S responses were in phase with M 

responses. These cells could therefore be called red-cyan (i.e. L-(M+S)). Among our L-M 

filters, the amplitude of S response indeed correlates with M response (lower cluster in 

Figure 6a), but the M and S inputs were phase opponent (Figure 6c) when measured at 

the M-isolating grating’s best orientation and SF. Thus, our filters tend to show magenta-

green ((L+S)-M) opponency, which was atypical but occasionally seen in Conway’s data. 

This tendency of our filters may arise from the spectral overlap of M and S cones, which 

ICA will attempt to decorrelate even within L-M opponent IC filters. 

Although there is little physiological data on S-cone double-opponency in V1, we 

measured its prevalence in our filters. Among S-responsive filters (S-isolating response 

amplitude > 20 units) we found double-opponency between M and S when measured at 

the S-isolating grating’s best orientation and SF (Figure 6d). We might have expected 

that these S-cone driven filters would be opponent to yellow (L+M). However, in the 
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majority of filters, L and S actually have similar phase (Figure 6e), while the remainder 

are phase opponent. This is probably also due to the spectral overlap described above. 

Thus, our strongly S-responsive filters are also mostly magenta-green opponent, although 

a few are red-cyan. This prediction of our model has not yet been explicitly tested, 

although it does appear consistent with Lennie et al.’s data. 

Figure 7 near here 

Discussion 

The colored IC filters of LMS-encoded natural scenes are similar to primate V1 

cells in their color tuning, and are spatially similar to both simple cell receptive fields and 

achromatic ICs. This is a surprising result, given that V1 cells have often been reported to 

be mostly achromatic, especially those with oriented receptive fields (Hubel and Wiesel 

1968; Livingstone and Hubel 1984; Lennie et al. 1990), whereas ICs have been reported 

to be unbiologically chromatic and double-opponent (Tailor et al. 2000). However, it 

emerges naturally from a biologically realistic set of LMS IC filters, when care is taken 

with the ICA methodology in order to make proper comparisons between V1 cells and 

ICA output, and when the reality of physiological experiments (such as response noise) is 

taken into account. 

It is methodologically essential to use LMS encoding of natural scenes (as was 

also done by Wachtler et al 2001, Lee et al. 2002, and Doi et al. 2003); this accurately 

represents the chromatic information available to the cortical, experience-dependent 

stages of the visual system. Colored images encoded in the usual ways for transmission 

over, say, the internet (RGB or even JPEG encoding) produce filters that are not 
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appropriate for comparison; moreover, they are unlike real cells. Additionally, it is 

important to compare IC filters, not basis functions, with the physiological data. 

Although some previous studies (Hoyer and Hyvärinen 2000, Lee et al. 2002) have 

focused on basis functions, there is no theoretical justification for this (see below); 

additionally, we find that basis functions are dominated by properties (such as their 

strong response to full-field illumination) that have no counterpart in visual neurons. 

The other major factor in this comparison is the correction of biases both in the IC 

analysis and the physiological data.  A simplistic, uncorrected comparison between the IC 

filters and V1 cells (Lennie et al. 1990) suggests only a weak similarity (figures 2b and 

2c).  The ICs appear to be more chromatically tuned than the real neurons.  However, we 

find that this comparison is skewed by several biases.  Some of the IC filters are highly 

chromatic noisy structures; when these are eliminated, the remaining filters better 

resemble simple cells, spatially and chromatically. Similarly, we estimate that Lennie et 

al’s V1 data are biased by their assumption of spatial-chromatic separability and by the 

effect of cortical noise.  

Cortical noise is a particularly important source of bias in the Lennie et al 

physiological data. We find that, in a simulated neurophysiological experiment, 

achromatic (high-elevation) stimuli, which modulate all cones in concert, tend to produce 

noisier responses than chromatic (low-elevation) stimuli, which modulate contrast 

between two cone types. This skews measurements of color tuning, so that even cells’ 

averaged responses make them appear much less chromaticity-sensitive than they 

actually are. Any method of finding the best color direction will be swayed by this noise, 

especially if it interpolates between (as do many experiments) or picks the best stimulus 
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(as does our simulation). Johnson et al. (2001) speculate that one reason for the lack of 

chromaticity-tuned cells in Lennie et al.’s study is that their stimuli only weakly modulate 

chromatic neurons. For modulation strength to directly influence tuning in the DKL 

colorspace, however, a nonlinearity is necessary; we suggest that noise is a very 

significant source of nonlinearity. 

Analysis of these biases suggests that simple cells, which are generally not 

considered the substrate for color coding, are in fact more chromatically sensitive than 

has often been depicted.  This result is independent of the correctness of our model, and 

aids in reconciling Lennie et al.’s study with a growing body of recent neurophysiology 

(Johnson et al 2001, Conway 2001).  

The similarity between IC filters and V1 cells suggests that chromatic and spatial 

information are distributed across cells in V1 in a way that is compatible with theoretical 

principles of independence and sparse representation.  In other words, the response 

spatial and chromatic properties of neurons in V1 can be accounted for by the 

redundancy-reduction hypothesis (Attneave 1954, Barlow 1961) 

Some systematic differences between IC filters and V1 cells remain.  Even the 

corrected filters shown in Figure 4d are still more chromaticity sensitive than V1 oriented 

cells (in the canonical view portrayed in Figure 2c, which disregards double-opponency), 

although they are not more so than non-oriented cells.  Filters are also probably more 

double-opponent than simple cells.  These differences are discussed below. 

Limitations of the IC analysis 
 

ICA is not a guaranteed method for finding an independent code for a data set.  It 

is designed to discover independent sources of variability (basis functions), assuming 

 30



 JN-00775-2003.R2

these are linearly superposed to form the observed data.  Natural images break this 

assumption, because they are not formed by a linear superposition of sources (occlusion 

would be a better model than superposition).  Under these circumstances, ICA can only 

discover sources that appear (by their non-Gaussianity) to be independent; these may be 

unrelated to the underlying structure of the data set.   

Another limitation of our study is that the number of IC filters is capped by the 

dimensionality of the input data, which can artificially limit our ability to capture the 

structure of the input distribution. This limitation may become more critical as 

dimensionality increases, as when going from achromatic to chromatic images.  

Generating an overcomplete basis set (e.g. Olshausen and Field 1996; Lewicki and 

Sejnowski 2000) from colored natural scenes would likely change the distribution of 

spatial tuning, and may also change the distribution of color tuning. 

Although we consider the effects of noise on neurophysiological experiments, we 

do not consider its effects on the redundancy-reduction hypothesis. Atick and Redlich 

(1990) have shown that, under noisy conditions, the receptive fields need to be more 

correlated (less independent), in order to preserve information about the image. We do 

not yet have an ICA model which allows us to take this into account. 

Finally, ICA produces a strictly linear encoding; real neurons exhibit output 

nonlinearities and contrast normalization (e.g. Heeger 1992a, b), which are not part of our 

ICA model. There is evidence that nonlinearities play a role in V1 color processing (De 

Valois et al. 2000, Hanazawa et al. 2000).  However, these nonlinearities primarily seem 

to sharpen a cell’s tuning across color stimuli (De Valois et al. 2000). We surmise that 
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this kind of sharpening nonlinearity might enhance the effect of noise and separability 

bias in studies of V1.   

Filters vs. basis functions 

In order to compare the Independent Components of natural visual input with the 

receptive fields of real neurons, it is necessary to decide whether the IC filters or the IC 

basis functions are comparable to real receptive fields. For achromatic images, the basis 

functions and filters are very similar to one another, and this decision is not very 

significant (van Hateren and van der Schaaf 1998). For color data, however, there are 

substantial differences between the spatial and chromatic structure of the basis functions 

and filters (compare the color tuning of filters in Figure 2b to the equivalent basis 

functions in 2e), which makes the choice critical.  There has been some disagreement 

about this question in the color ICA literature: Hoyer and Hyvärinen (2000) and Lee et al 

(2002) focus on basis functions, whilst Tailor et al. (2000) and Doi et al (2003) focus on 

filters. 

The mathematical formulation of ICA is unambiguous that IC filters are the 

correct choice for comparison with neuronal receptive fields. Basis functions represent 

sources of variability in the data set; they are notional image patches that can be 

superposed to generate the data set. IC filters, on the other hand, are simply linear filters 

designed to extract information from the data set; in this way, they are completely 

compatible with the popular linear-filtering model of simple cells (e.g. Field 1987). 
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Retinal cone mosaic 

There is a discrepancy between our results and those of Doi et al. (2003), who 

also analyzed LMS IC filters, but used a model featuring a fixed preprocessing stage 

mimicking the distribution of cones in the retinal mosaic. Their results, however, 

compare rather poorly to their choice of V1 data (Hanazawa et al. 2000), in both the 

prevalence of color selectivity (54% in V1 vs. 5% in their filters) and color tuning 

distribution (broad in V1 vs. extremely peaked in their filters).In addition, their model’s 

retinogeniculate stage included many fewer S-preferring cells (~3%) than 

koniocellular/parvocellular LGN (~12%). The likely explanation for these differences is 

that Doi et al. only modeled the fovea (actually foveola), so that just 3% of the cone 

inputs to their model cortex were S-type. Most primate studies of color, including the 

data they use for comparison, were done in the perifovea, where the proportion of S 

cones is much higher: Lennie et al. (1990) studied cells within the central 3° of the visual 

field, and in fact Hanazawa et al.’s cells were between 0.8° and 2.4°. Within the central 

2° (excluding the foveola), S cones represent at least 10% of the population (de 

Monasterio et al. 1985).  Therefore, Doi et al.’s results may be most valid for minute 

foveolar RFs that are acutely sensitive to the structure of the cone mosaic. 

Our present model, which assumes that S-cone density does not constrain RFs’ 

spatial structure, compares better with existing physiological data. However, if the model 

were to incorporate a retinal mosaic stage with a normal perifoveal concentration of S 

cones, we would expect an increase in the proportion of luminance-preferring filters 

(given Doi et al.’s results), and possibly improvement in the fit between the model and 

V1. 
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Double-opponency and separability 

An interesting feature of our IC filters is that the vast majority is double-

opponent. This double-opponency has two components: first, each cone type’s excitatory 

and inhibitory inputs balance across the RF; second, the inputs from opponent cones are 

exactly opposite in phase. The balance of excitatory and inhibitory inputs is a natural 

outcome for ICA, primarily because unbalanced filters would be correlated. The phase 

opponency, however, arises from a fixed property of the early visual system: the overlap 

in the absorption spectra of L and M cones, as well as S and M cones, forces the filters to 

decorrelate those input pairs as much as possible. The color statistics of natural scenes 

may also contribute significantly to opponency (Lee et al. 2002). 

Double-opponency seemed rare in Lennie et al.’s study (1990). This is likely to be 

an underestimate because they used achromatic gratings to measure the optimal SF and 

orientation of the cells in their sample.  This reflects an assumption of spatial-chromatic 

separability, and generates especially misleading results for double-opponent cells. 

Figure 7a shows a schematic double-opponent cell whose preferred stimulus contains a 

yellow-blue edge. When an achromatic grating (of optimal orientation and SF) is 

presented at any position, its light stripe will excite the yellow (L+M)and blue (S) inputs 

in one subfield equally, causing them to cancel out. Its dark stripe will do the same, and 

thus the response will not modulate. As a result, the estimates of preferred SF and 

orientation will be inaccurate; achromatic gratings cannot be used to estimate the tuning 

of double-opponent cells. 

This effect can be demonstrated in our ICA data. An IC filter that responds poorly 

to achromatic gratings, much like the schematic cell in Figure 7a, is shown in Figure 7b. 
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Its true best color grating stimulus, which has the filter’s dominant orientation and shows 

the influence of its yellow (L+M) and green (M) inputs, is shown in Figure 7c. However, 

if one assumes separability and stimulates this filter with an achromatic grating, the 

orientation and SF measurement is confounded by the double-opponency, and the 

resulting “best” grating (Figure 7d) bears no relation to the RF; it seems primarily 

influenced by spatial noise, and gives rise to arbitrary color tuning (with error shown by 

the open circle in Figure 4b).  

More recent studies, using reverse correlation (Conway 2001) and cone-isolating 

stimuli (Johnson et al. 2001), have found a population of double-opponent cells. 

However, it is likely that the nearly obligatory double-opponency of our filters exceeds 

that of cortical cells. One possible reason is that the cortex, being subject to noise, does 

not decorrelate its receptive fields to the same degree as our noise-free IC filters. Another 

possible reason is that our image preprocessing excludes some known properties of the 

precortical visual system, such as chromatic aberration, the lower spatial resolution of the 

S-cone system, and the scattered color tuning of LGN cells. It may be that such 

considerations also help explain why our filters show magenta-green opponency rather 

than the red-cyan reported by Conway (2001). 

Non-oriented cells 
It has often been supposed that non-oriented cells in V1 are the substrate for color 

tuning, rather than oriented simple and complex cells (Hubel and Livingstone 1984). 

However, ICA generates few non-oriented, center-surround filters, because oriented 

features are more significant sources of variance in natural scenes than center-surround 

features. This would seem to make ICA a poor model for the center-surround color-

selective cells in cytochrome oxidase blobs. However, we did find many small, 
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chromatically double-opponent filters, especially among the lower-variance ICs. These 

resemble the side-by-side double-opponent subunits found by Johnson et al. (2001) and 

the wide-band orientation tuned cells of Conway (2001), both of which probably occur in 

blobs. Also, consistent with the traditional understanding of blobs, we found that strength 

of chromaticity is inversely related to strength of orientation tuning. ICA might therefore 

be able to partially model color selectivity within blobs, however a complete model for 

V1 will require additional organizing principles such as topography (Barrow et al. 1996; 

Hyvärinen et al. 2001). 

Conclusions 
The similarity between the color independent components of natural scenes and 

receptive fields in V1 suggests that redundancy reduction (by ICA in particular) provides 

a plausible account of spatiochromatic receptive field structure in V1. This similarity is 

not apparent from inspection, largely because some filters that appear colored are often 

very sensitive to luminance variations. It is likely that a similar effect is present in V1, 

where simple cells are conventionally thought to be luminance-dominated, but we find 

that they are likely to have substantial color tuning that would be evident if their inputs 

were visualized. 

We predict that, as our understanding of V1 color coding improves, the color 

sensitivity of oriented cells will assume a more important role. In place of a clear division 

between luminance and color coding, our results suggest that simple cells may multiplex 

spatial and color information. Similarly, our results highlight the importance of 

double-opponency, which is advantageous for coding of colored borders and, as we have 

shown, for redundancy reduction. Finally, the success of ICA in accounting for 
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spatiochromatic receptive field structure in V1 suggests that redundancy reduction will 

also prove to be a fruitful hypothesis in other sensory systems. 
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Figure Legends 
 
Figure 1. Sample of IC filters and IC basis functions generated by running ICA on 

differently encoded input, and RGB and LMS absorption spectra used in encoding 

 

ICs, which contain positive- and negative-valued pixels with arbitrary range, were 

normalized so that a value of 0 is displayed as medium intensity (0.5) and all pixels of an 

IC are between 0 and 1. (a-b) IC filters generated from RGB input (a), and from JPEG-

encoded RGB input (b). Filters were manually separated into approximate color 

opponency type (blue-yellow vs. red-green).  Within color groups, they are subdivided by 

spatial structure (full-field, Gabor-like, checkerboard (present in (b) only), and small 

noisy patches. Finally, within these groups, they are arranged in descending order by 

variance. (c) IC filters generated from images encoded using human LMS cone 

sensitivities, shown in pseudocolor so that L is red, M green, and S blue. LMS filters are 

divided into two groups (short vertical white line): significant and artifactual, using the 

criteria of van Hateren and van der Schaaf (1998).  Within groups, they are shown in 

decreasing order by variance. (d) LMS IC basis functions, matched to the filters in (c).  

(e) Absorption spectra of human L, M and S cones. (f) R, G and B absorption spectra of a 

typical digital camera. 

 

Figure 2. The color tuning of IC filters and V1 cells is similar 

The color tuning of each IC (a, b, e) was measured in the DKL colorspace following the 

methods of Lennie et al. (1990), except that we optimized the grating stimulus over all 
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spatial and chromatic gratings (the “ideal case”). The color tuning of V1 cells (c,d) is 

replotted from Lennie et al., and assumes that spatial and chromatic tuning are separable, 

with separate stages for finding the optimal achromatic and chromatic stimuli. Each 

plot’s marginal distributions indicate density, as a percentage of the total distribution. (a) 

IC filters derived from RGB input and transformed into the LMS cone space. (b) LMS 

filters. (c) Oriented cells. (d) Non-oriented cells. (e) IC basis functions from LMS filters. 

Following Lennie et al., azimuth is plotted between -45° and 135° to better depict 

clustering near 0°, and is taken modulo 180° to emphasize color opponency rather than 

exact color preference. 

 

Figure 3. Spatial tuning parameters of LMS IC filters resemble achromatic ICs and 

simple cells 

The spatial properties of each IC were measured using each IC’s best achromatic 

stimulus. White bars are the distributions for all ICs; gray bars are the distribution of ICs 

that were non-artifactual by van Hateren and van der Schaaf (1998)’s criteria. Solid 

circles and lines show the reported V1 distributions (De Valois et al. 1982, Parker and 

Hawken 1988), and open circles and dashed lines show the achromatic IC distributions 

(van Hateren and van der Schaaf 1998).  (a) best orientation; 0º corresponds to vertical. 

(b) bandwidth (full width at half maximum) of orientation tuning. (c) best spatial 

frequency, (d) bandwidth of spatial frequency tuning, (e) aspect ratio of the RF envelope. 

 

Figure 4. Experimental biases strongly affect the comparison between ICs and 

physiological data, but correction greatly improves the correspondence with V1 
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Three sources of bias were considered: low variance artifactual ICs, the assumption of 

spatial-chromatic separability, and physiological noise. (a) Color tuning (plotted as in 

Figure 2) of the LMS filters that were artifactual according to van Hateren and van der 

Schaaf’s (1998) criteria. Marginal distributions indicate density, as a percentage of the 

total distribution. (b) Bias in physiological color tuning data due to assuming separability, 

inferred from comparing measurements of filter color tuning made under ideal and 

experimental conditions. The open circle represents the example in Figure 7. (c) Bias due 

to physiological noise. The displacement shown is between the mean of 25 color tuning 

estimates  and the ideal tuning. (d) Distribution of LMS IC filters after all biases—

artifactual ICs, separability, and noise—are taken into account. Marginal distributions are 

as in (a). 

 

Figure 5. Width of orientation tuning correlates with preference for chromaticity 

Color tuning elevation, measured with optimal chromatic gratings, is shown as a function 

of orientation tuning bandwidth. Solid circles: non-artifactual LMS IC filters.  Open 

circles: artifactual filters. 

 

Figure 6. LMS IC filter responses to cone-isolating gratings fall into distinct double-

opponent groups 

LMS IC filter responses were measured in each color plane, using cone-isolating 

gratings, and the spatial relationship between cone inputs was determined. (a) Response 

amplitudes of each filter to its optimal L, M and S-isolating gratings (open circles). Dots 

indicate the projections of the open circles onto the cardinal (L=0, M=0, S=0) planes; 
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near (0,0,0) the open circles are superimposed on the projection dots. Axes are in 

arbitrary units; the L and M axes are much greater in magnitude than the S axis because 

of the overlapping absorption spectra of L and M cones. In order to make those two 

dimensions independent, the filter must be stronger along those axes. (b-e) Phase 

difference between the optimal cone-isolating gratings for pairs of cones. A peak at 180° 

indicates phase opponency, while a peak at 0° indicates phase coherence. Among the 

strongly L- and M-sensitive filters, (b) shows the phase difference between M and L, and 

(c) the difference between M and S. Among the strongly S-sensitive filters, (d) shows the 

phase difference between S and M, and (e) the difference between S and L. 

 

Figure 7. Assuming separability may cause severe biases when measuring double-

opponent cells 

The problem with assuming separability of spatial and chromatic RFs is illustrated, 

schematically and with an example IC filter. For clarity, we describe stimuli using RGB 

terms, even though the filter is LMS-encoded.  (a) Schematic double-opponent cell with 

four subfields. The leftmost subfield is inhibited by red, and the rightmost is excited by 

green. The middle two subfields are yellow-blue double-opponent; the middle left 

subfield is excited by red and green (R+ and G+) and inhibited by blue (B-) while the 

middle right is inhibited by red and green (R- and G-) and excited by blue (B+).(b) A 

filter from our data set (open circle in figure 4b) which is modeled by the schematic cell. 

It is shown in full color (left), and then separated into color planes for clarity (right). In 

all figures, medium gray indicates zero input. (c) The true best cone-opponent grating. 

Note that it is spatially aligned with the filter and shows the influence of its L and M cone 
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inputs. (d) False “best” cone-opponent grating, assuming spatial-chromatic separability. 

Note that the grating is completely misaligned and shows little evidence of the filter’s 

strong L input.  
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Table 1. Normalized Kullback-Leibler distances between color 
tuning distributions of V1 cells and IC filters 
 

IC group 

Cell class Raw 
Non-

artifactual 
Separability 
corrected 

Noise 
corrected 

Separability 
+ Noise 

All 
corrections

Oriented 1.02 0.84 0.88 0.89 0.72 0.58 

Non-oriented 0.88 0.79 0.84 0.64 0.50 0.48 

Pool of both 0.79 0.66 0.71 0.59   0.44 0.37 

 
All distances are normalized relative to the Kullback-Leibler distance between oriented 

and non-oriented cell classes (see Methods).   “Pool of both” contains both oriented and 

non-oriented cells.  “All corrections” indicates that high variance ICs have been corrected 

for both separability and noise.
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 

 55



 JN-00775-2003.R2

Figure 7 
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