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Abstract

Precision Analytics: Learning and Optimization in the Personalized Setting

by

Yonatan Mintz

Doctor of Philosophy in Industrial Engineering and Operations Research

University of California, Berkeley

Assistant Professor Anil Aswani, Chair

The recent increase in data and computing resource availability has made the use of
data analytics more practical in practice than ever before. In particular, the ubiquity
of technologies such as smartphones, wearable devices, and smart sensors has allowed
for the collection of a large amount of individual level data. In contrast to traditional
data analytics, which relies on wide sampling from a population to draw conclusions
(i.e. cross-sectional sampling), this so called deep sampled data can be used through
precision analytics to create customized experiences that better serve individuals and
organizations. In this thesis, we explore this precision analytics framework that builds
upon the fields of reinforcement learning and data driven decision making by extending
their results to applications with individual level deep sampled data. One of the main
applications of this framework is to systems where a decision maker is interested in
applying an intervention (or policy) to affect the behavior of an individual agent or
group of agents. Two key challenges that arise when analyzing such systems are that
the decision maker may have scarce resources or high risk decisions that constrain
how they apply their intervention, and that the decision maker may only have partial
knowledge of how an agent will react to the intervention. The main focus of this
thesis is to begin to analyze these challenges by providing predictive models that can
accurately capture individual agent behavior, new estimation and machine learning
techniques to efficiently estimate model parameters, and effective online and batch
optimization methods to calculate these interventions. We will also discuss how these
approaches can be implemented in practice, particularly in the precision healthcare
setting.
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Chapter 1

Introduction

Over the past few years, there has been a significant increase the availability of data
and computing resources that has significantly changed how individuals interact with
analytics technology. For instance, services such as next word text prediction, fitness
activity tracking, automated climate control, and targeted advertising have become
almost completely integrated into daily life. In general, each of these services requires
two essential components: a predictive model trained using data and a recommendation
algorithm which uses this model to perform the desired function. One of the key
contributing factors for the success of these technologies is the increased adoption of
smart devices such as smart phones, wearable devices, and other smart sensors. These
devices allow for cheep and simple ways to both deploy recommendation algorithms
and collect the data needed to train the predictive models.

In particular, these new data sources and implementation strategies have created
what we will refer to as precision service systems. In general, a precision service system
can be thought of as any system which constitutes a large group of heterogeneous agents
where the overall performance of the system depends on how effectively policies are set
for each individual agent. These systems can be described abstractly as a the scenario
of a single decision maker (e.g. the ad server, fitness app etc.) attempting to influence a
group of agents (i.e. the users) towards a particular desired goal by computing a policy
or intervention. This decision maker can in general be thought of as having only partial
information of how these agents will react and may have a limited amount of resources
at their disposal to implement the intervention. Several real world applications that
can be thought of as precision service systems include personalized healthcare, targeted
advertising, demand response contracting, among other examples.

As these precision systems become more common place however, new statistical
estimation and optimization tools need to be developed to account for how they effect
and interact with users. For instance, in the realm of online advertising, initially one
of the most successful developments was the use of individual browsing data to target
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advertising displays. This however meant that users were exposed to a slew of similar
ads and eventually stopped paying attention to the advertising campaigns in an effect
called banner blindness. Similarly, in the realm of fitness tracking, currently most
devices and applications provide exercise goals to users in order to motivate them to
keep performing physical activity. In general, the goals are computed using either the
entire user population’s metrics or through an interpretation of government provided
guidelines, and generally do not vary from day to day. This may result in exercise
goals that are either too easy or too difficult to accomplish for different users resulting
in decreased interest and participation.

These examples, among others, indicate that to design better tools for optimizing
precision service systems the following engineering challenges need to be addressed:

1. The models used to mathematically describe individual behavior need to be ad-
justed to effectively capture the nuances of decision making.

2. Since recommendations are made at the individual levels, these models must be
compatible with individual level data streams, such as those provided by smart
devices, that will be effected by the recommendations provided.

3. The way the parameters of these models are estimated and recommendations
calculated needs to be scalable to a large population size.

The goal of this thesis is to begin to address these challenges by developing a
mathematical framework of precision analytics. We will first address the problem of
modeling agent behavior by using concepts from the social sciences and behavioral
theory to augment existing adaptive prediction models. In particular, we examine how
modeling agents using utility theory can lead to effective models that can capture the
complex distributions that arise in these behavioral settings. Then we examine how
these models can be used for optimization. In particular we show that these approaches
have both useful theoretical properties as well as good performance in an application
setting.

The remainder of the thesis will proceed as follows. In Chapter 2 we describe how
behavioral models can be developed, using personalized healthcare as the principal
application. In this chapter we characterize a behavioral model that can be used to
both estimate model parameters and impute values of missing data points. We expand
this model to show that its predictive power can increase using prior information in a
non-parameteric fully Bayesian framework. We further show that these models can be
trained fairly quickly using a mixed integer linear program (MILP) and standard com-
mercial solvers. To validate this approach, we compare the performance of this model
against standard machine learning methods and show that this modeling methodology
is competitive with these state of the art methods. The contents of this chapter roughly
correspond to the material in our paper (Aswani et al., 2016).
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In Chapter 3 we generalize the behavioral model and consider a precision analytics
setting with infrequent and costly decisions. In this setting, the decision maker has a
budget on how they can implement their policy, and only require recomputing their
policy on a weekly or monthly basis. We first perform a statistical analysis of the
behavioral model from the previous chapter and show that it has desirable properties
including statistical consistency. We then develop a two stage algorithm to compute an
asymptomatically optimal policy for this particular problem setting. This approach is
then evaluated using a simulation study showing how it can be used to schedule clinical
appointments and set exercise goals in the context of clinically supervised weight loss
programs. The simulation results show that using this type of precision analytics
approach is more effective then simple heuristics that could be used for policy design.
The contents of this chapter correspond to the material in our paper (Mintz et al.,
2017a).

In Chapter 4 we consider a different precision analytics setting which requires fre-
quent but relatively cheap decisions. In this setting the decision maker may not have
a cost or budget on how to implement their policy but must make a policy decision
on a daily or more frequent scale. We first discuss how this setting can be thought
of as a particular case of a non-stationary restless bandit problem which we call the
reducing or gaining unknown efficacy (ROGUE) bandit problem. We then develop an
upper confidence bounds approach to approximately solve this bandit problem and
show that it obtains an efficient rate of expected regret. We then perform computa-
tional experiments and show how this approach can be used effectively in two different
problem settings. One of our experiments shows that using this methodology could be
effective in a precision healthcare setting. The materials in this chapter correspond to
the contents of our paper (Mintz et al., 2017b).
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Chapter 2

Modeling Agent Behavior

2.1 Introduction

Effective design of systems involving human agents often requires models that charac-
terize the agents’ varied responses to changes in the system’s states and inputs. Most
operations research (OR) models quantify agent behavior as decisions generated by
optimizing static utility functions that depend upon time-varying system states and
inputs. In contrast, researchers in the social sciences have found that the motivational
psychology of agents changes in response to past states, decisions, and inputs from ex-
ternal agents (Kanfer, 1975, Ajzen and Fishbein, 1980, Gonzalez et al., 1990, Janz and
Becker, 1984, Joos and Hickam, 1990, Bandura, 2001); however, these social science
models are primarily qualitative in nature, making them challenging to incorporate
into OR design and optimization approaches. In this chapter, we focus on developing
a predictive modeling framework that incorporates time-varying motivational states
(which describe the changing efficiency or preferences of the agent) – thereby quantify-
ing agent behavior as decisions generated by optimizing utility functions that depend
upon time-varying system states, system inputs, and motivational states, all evolv-
ing according to some modeled process based on qualitative social science models of
behavior change.

Our ultimate goal is to solve optimization problems to more effectively allocate
resources in systems with human agents; to do this we need to develop behavioral
models that can be integrated as constraints in standard optimization approaches. In
this chapter, we develop a modeling framework that inputs noisy and partially-missing
data and uses this to estimate the parameters of a predictive model consisting of (a) a
utility-function describing the decision-making process that depends upon time-varying
system states, system inputs, and motivational states, and (b) temporal dynamics on
agent’s system state and motivational state (i.e., often referred to as the type of the
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agent). We consider two distinct but related kinds of estimates: estimation of the set
of parameters for the utility function and dynamics, and separately, estimation of the
distribution of future states.

The framework we develop in this chapter is described within the context of model-
ing the behavior of individuals in a weight loss program; specifically, we are interested
in using a short time-span (e.g., 15-30 days) of physical activity and weight data from
an individual participating in a weight loss program in order to effectively characterize
the likelihood of whether or not that individual will achieve clinically significant weight
loss (i.e., 5% reduction in body weight) after a long period of time (e.g., 5 months).
While machine learning approaches such as support vector machines (SVMs) (Hastie
et al., 2009, Wang et al., 2017, Oztekin et al., 2018) and artificial neural networks can
be used to make binary predictions of significant weight loss based on a short time span
of data (Hastie et al., 2009) they have two significant limitations: first there is no ob-
vious way to integrate them into an optimization model, and second these approaches
are generally limited in their interpretability (Breiman et al., 2001). Here, we show
that in contrast to these machine learning methods, our approach is interpretable since
the equations are based on models from the social sciences, and can be incorporated
into optimization models since it is posed as a mixed integer linear program (MILP),
while maintaining comparable prediction accuracy.

2.1.1 Personalized Treatments and Obesity

Obesity is a significant problem in the United States. About 70% of American adults
are overweight or obese (Flegal et al., 2012), and its annual cost to the health care
system is estimated to be $350 billion (Valero-Elizondo et al., 2016). Currently, the
most effective treatments for obesity are weight loss interventions composed of counsel-
ing sessions by clinicians and daily goals for physical activity and caloric consumption.
The Diabetes Prevention Program Research Group (2002, 2009) showed that partici-
pating in these types of treatments results in significant weight loss of 5-7% and can
prevent the onset of type-2 diabetes with few side effects. However, adherence to these
clinician-set goals decreases over time (Acharya et al., 2009), and these programs are
labor-intensive and expensive to sustain (McDonald et al., 2002, Diabetes Prevention
Program Research Group, 2003). Making these interventions more effective and effi-
cient will require designing treatments personalized to each individual’s preferences.

While individualized goal-setting and personalized interventions are crucial to the
success of these programs, these features are expensive to provide. Cost efficient pro-
grams will need automation of goal-setting and scheduling of counseling resources for
individuals to succeed in reducing their weight. Such approaches will likely involve
digital/mobile/wireless technologies, which already have high adoption rates (Lopez
et al., 2013, Bender et al., 2014) and have shown promise for improving the quality of
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and adherence to weight loss programs (Fukuoka et al., 2011). These technologies allow
clinicians and researchers to remotely collect real-time health data and communicate
with individuals participating in the program. However, healthcare data sets gener-
ated by mobile devices have been underutilized to date, and little research has focused
on effective ways to utilize individuals’ health-related data patterns to improve and
personalize weight loss interventions (Fukuoka et al., 2011, O’Reilly and Spruijt-Metz,
2013, Pagoto et al., 2013, Azar et al., 2013).

2.1.2 Overview

Ultimately, effective automated approaches will depend upon nuanced models to pre-
dict the effects different interventions (i.e., changes in activity and caloric goals, or
specific types of counseling) will have on the weight loss trajectories of different in-
dividuals. In this chapter, we present an initial step – specifically, we develop an
approach for using a short time-span (e.g., 15-30 days) of physical activity and weight
data from an individual participating in a weight loss program to effectively charac-
terize the likelihood of whether or not that individual will achieve clinically significant
(i.e., 5% reduction in body weight) weight loss after a long period of time (e.g., 5
months) as a function of the physical activity goals and amount of counseling given
to the individual. (The Diabetes Prevention Program Research Group (2002, 2009)
showed 5% weight loss provides substantial health benefits.) As discussed above, this
type of predictive tool will ultimately enable the adaptive design of more effective and
cost efficient interventions. Towards this end, we also show how our predictive model
is able to predict the impact of changes in the intervention treatment on the weight
loss trajectory of a specific individual.

A key feature of predicting future behavior is the inherent uncertainty due to having
limited data. As a result, it is natural to consider predictive modeling approaches
that generate ranges or intervals of predictions. Though frequentist approaches can
be used to construct confidence intervals, we instead propose a Bayesian approach
that constructs a range of predictions characterized by a posterior distribution. An
important benefit of our Bayesian (as compared to a frequentist) approach is that it can
incorporate data from individuals that have been in the program for a longer period
of time or have even completed a fixed duration (e.g., 5 months) of the program.
We quantitatively show in Section 2.6 that incorporating the information of other
individuals using a nonparametric Bayesian prior distribution improves the accuracy
of predictions versus not using a Bayesian framework.

Our resulting predictive modeling approach is presented in Section 2.5. In the pre-
ceding sections, we develop essential elements for constructing the model. We first
describe the structure of mobile phone-based weight loss interventions in Section 2.2.
Section 2.3 describes our utility-maximizing model of the decisions of an individual
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participating in a weight loss intervention. Mathematically, we represent prior infor-
mation in the Bayesian framework as histograms of parameter values for the utility
functions of individuals that have completed the fixed duration of the program. To
compute these parameters, we solve a maximum likelihood estimation (MLE) problem,
which is the focus of Section 2.4. Our predictive modeling approach in Section 2.5 uses
the utility-maximizing framework and corresponding histograms of parameter values
to predict the weight loss trajectory of a single individual. Both the MLE in Section
2.4 and predictive model in Section 2.5 are computed by solving a mixed integer linear
program (MILP).

To validate our predictive modeling approach, we use a longitudinal data set col-
lected from a 5-month randomized controlled trial (RCT) of a mobile phone-based
weight loss program. Section 2.6 begins with an overview of this RCT, and additional
details are available in Fukuoka et al. (2015). Next, we evaluate the effectiveness of our
approach for predicting whether or not an individual will achieve clinically significant
(i.e., 5% or more) weight loss at the end of the intervention. We validate our approach
by showing its binary predication accuracy is comparable to standard machine learning
methods (i.e., linear SVM, decision tree, and logistic regression) in terms of prediction
quality. In contrast to these machine learning methods, our predictive model is also
able to determine the impact of changing intervention parameters for a specific indi-
vidual on that individual’s weight loss trajectory, and we conclude with a discussion
of this aspect of our model and how it can be used to perform optimization.

2.1.3 Literature Review

Statistical classification methods (which include logistic regression, support vector ma-
chines, neural networks, and random forests) predict a binary {−1,+1} output label
based on an input vector (Hastie et al., 2009, Denoyel et al., 2017). In the context
of weight loss interventions, these approaches could predict whether (+1) or not (−1)
an individual will achieve 5% weight loss after 5 months, based on 30 days of an indi-
vidual’s data. However, these approaches lack interpretability (Breiman et al., 2001)
and cannot be incorporated as constraints into standard optimization approaches. Our
predictive modeling approach is similar in that it can be used as a classifier (i.e., it can
predict whether or not an individual achieves 5% weight loss), but it differs in that its
equations are based on models from the social sciences, and can be incorporated into
optimization models since it can be posed as a mixed integer linear program (MILP),
making it more applicable for addressing the problem of intervention design.

A number of predictive models have been developed to determine the impact of
changing a medical intervention on the health outcome for an individual, including:
Markov chain models (Ayer et al., 2012, Mason et al., 2013, Deo et al., 2013, Andersen
et al., 2017), dynamical systems models (Helm et al., 2015), decision tree models (Wu
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et al., 2013), graph-theoretic models (Fetta et al., 2018), bandit models (Negoescu et al.,
2014), and dynamic programming models (Engineer et al., 2009). (This literature also
studies the problem of designing optimal treatment plans, which we do not consider in
our present paper.) Our work is similar in that we develop an approach to predict future
body weight of an individual as physical activity goals and counseling scheduling are
changed. One key difference is in the data available in weight loss programs. Existing
approaches are designed for situations where data is collected infrequently (e.g., only
during clinical visits), whereas in weight loss programs the data is collected daily
using mobile devices. Our work seeks to develop a predictive modeling approach that
can leverage this increased data availability in order to make improved predictions.
Moreover, existing approaches focus either on motivational states (Mason et al., 2013)
or health states (Ayer et al., 2012, Deo et al., 2013, Helm et al., 2015, Wu et al.,
2013, Negoescu et al., 2014, Engineer et al., 2009). We seek to combine the notions
of motivational and health states into a single predictive model, which is a modeling
approach that has not been previously considered.

Previous approaches for automated exercise and diet management significantly dif-
fer in the goal of the predictive modeling. Bertsimas and O’Hair (2013) develop a
system that learns a predictive model of an individual’s dietary preferences and then
designs a plan of what food to eat and how much time to exercise to maintain low
blood glucose levels. The output of this predictive model is blood glucose levels and
satisfaction of a given dietary plan, whereas we are interested in making predictions
regarding future body weight. Additionally, this predictive model does not consider ad-
herence to the prescribed plans (e.g., the individual may overeat or may not exercise the
amount indicated by the plan), whereas our approach quantifies the level of adherence
to prescribed physical activity goals and guidance on caloric intake. The Steptacular
program (Gomes et al., 2012) used monetary incentives to encourage individuals to
walk more, but a predictive model was not developed to design the incentives; our
approach differs in that we seek to build a predictive model so that in the future we
may be able to optimize the weight loss intervention for each individual.

2.1.4 Contributions

We develop a number of novel optimization modeling and analysis techniques that we
believe will be useful for expanding the scope of predictive models of human decision-
making in complex systems. For instance, much mobile phone data contains non-
negligible noise and suffers from missing data points (Chen et al., 2012). Aswani
et al. (2018) showed that statistically consistent estimation of model parameters in
a utility-maximization framework requires joint estimation of the missing data and
model parameters. It is known (see for instance Bickel and Doksum (2006)) that such
joint estimation does not represent statistical over-fitting, and in fact all regression ap-
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proaches (even basic linear regression) jointly provide estimates of denoised data and
model parameters; however, only the model parameter estimates are statistically con-
sistent (Bickel and Doksum, 2006, Aswani et al., 2018). Existing approaches for dealing
with missing data (e.g., the EM algorithm (Hastie et al., 2009)) generate an estimate by
computing the local optimum of a suitably defined optimization problem that computes
the parameters of the predictive model. Instead, we construct optimization models
formulated as mixed integer linear programs (MILP’s) that are able to simultaneously
estimate missing/noisy data and parameters of the utility-maximizing framework; this
yields global optima of the parameter computation optimization problem.

As mentioned above, we can likely improve trajectory predictions for a specific
individual in a weight loss intervention by leveraging mobile phone data from other
individuals who have already completed the intervention. This challenge can be posed
in a Bayesian framework, but existing nonparametric approaches require computing
numerically challenging integrals. In this chapter, we provide what is to the best of
our knowledge the first Bayesian estimation approach in which the prior distribution is
purely data-driven and described by a histogram. For this Bayesian estimation, we use
integer programming, and we show that a data-driven distribution can be represented
as a piecewise constant function, which can then be formulated within a MILP (Vielma,
2015).

In many cases, patients favor behavior that does not improve (or is not optimal
with respect to) their health outcomes. Non-adherence to a medical plan falls in to
this category. Social scientists sometimes label such behavior “irrational” (Brock and
Wartman, 1990); however, an argument has been made that many instances of “ir-
rational” behavior are in fact rational decisions when considering a patient’s actual
utility function (Gafni, 1990, Cawley, 2004). In our case, we explicitly use a utility
function in which the individual is assumed to heavily discount future health states, a
behavior that is often characterized as “irrational” (Brock and Wartman, 1990). We
note, however, that while these modeling choices may be controversial, the particular
utility function framework that we develop has an alternative interpretation that does
not make reference to utility maximization. In particular, our approach can alterna-
tively be interpreted as leading to a model that has the best theoretical predictive
accuracy given the set of underlying equations that characterize this framework. For
additional details on this interpretation please see (Aswani et al., 2018). Thus, even
if the behavioral argument we advance in subsequent sections of this chapter does not
accurately capture individuals’ behavior, the framework we describe still enables us to
make the most accurate set of predictions possible using the set of equations underlying
the predictive model.
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2.2 Structure of Mobile Phone-Based Weight Loss

Interventions

Currently the healthcare community is refining a new class of weight loss interventions
that rely on mobile phones and digital accelerometers (Gomes et al., 2012, Fukuoka
et al., 2015, Flores Mateo et al., 2015). Though the particular features of these pro-
grams often differ, there is a growing consensus on the broad structure of these pro-
grams. In general, each individual is provided with (i) a mobile phone app and a digital
accelerometer, and (ii) in-person counseling sessions. The digital accelerometer is used
to measure daily physical activity, and the digital aspect of the device simplifies data
sharing and data uploading. The mobile phone app delivers physical activity goals, ed-
ucational messages (such as those from (Diabetes Prevention Program Research Group,
2002, 2009)), and provide an interface for individuals to enter dietary and body weight
information.

The accelerometer measures the number of steps taken each day since the majority
of exercise for individuals in such weight loss interventions consists of walking. Individ-
uals are also typically asked to input weight measurements multiple times a week into
the mobile app. In principle, the data available for each individual consists of daily
weight and step amounts; however, data for some dates is missing because individuals
forget to enter weight data into the mobile app, wear the accelerometer, or because of
a technical problem with the app. The age, gender, and height of each individual is
also known data in these programs.

Individuals participating in such mobile phone-based weight loss interventions re-
ceive additional interaction. After an initial baseline period, exercise goals in terms
of a minimum daily step count are provided to each individual. The goals change at
regular intervals (e.g., every week). Individuals also have office visits (or phone calls)
at regular intervals, during which they received behavioral counseling about their nu-
tritional choices and physical activity. The exercise goals and timing of the office visits
(or phone calls) are set in advance, and thus are also known data in these programs.

2.3 Formulating the Utility-Maximizing Framework

The utility-maximizing framework we propose has two components. The first describes
how an individual makes decisions regarding the amount of steps and caloric intake,
and this is formulated in terms of a utility-maximizing individual. The utility function
contains heavy discounting of future health states, a behavior that is often characterized
as “irrational” (Brock and Wartman, 1990). The second describes how the individual’s
weight and type (a set of parameters describing each individual) evolve over time as a
function of current states and decisions. This second part is formulated in terms of a
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linear dynamical system.

2.3.1 Summary of Framework

A subscript t denotes the value of a variable on the t-th day. Let ft ∈ R+ denote
the amount of calories consumed, ut ∈ R+ be the number of steps, wt ∈ R+ be
the weight of the individual, gt ∈ R+ be the given exercise goal in terms of number
of steps, and dt ∈ {0, 1} indicate whether or not an office visit occurred. We refer
to θt = (k, q, s0, st, pt, µ) as the type of the individual. The parameters a, b, c, k ∈
R describe the weight dynamics, are based on the physiology of the individual, and
can be precomputed based on the age, gender, and height of the individual (Mifflin
et al., 1990). Another set of the parameters are used in the utility function. These
include rf , ru ∈ R which represent the marginal utility of quadratic terms, q, s0 which
represent baseline preferences in terms of physical activity and caloric consumption
respectively, pt ∈ R which represent the marginal dissutility of failing exercise goals,
and st ∈ R which represents the current preference of caloric consumption. The last set
of parameters describe the type dynamics, including µ ∈ R+ that captures the impact
of achieving an exercise goal, and 0 < γ < 1 which is a discount factor representing
the diminishing effect of the intervention over time. The βt, δt ∈ R+ are random
variables with finite variance that represent the impact of an office visit, and zt ∈ R is
a zero-mean random variable with finite variance that denotes weight fluctuations from
unmodeled effects. These random variables βt, δt, zt are individual-specific, but we do
not consider them to characterize the type of the individual. This is because we assume
their distributions are the same for each individual, and so the expected behavior of
any particular individual will not depend in a unique way upon these random variables.
Using these quantities, we define the following utility functions and dynamics.

1. Individual decision-making when no exercise goals are given is

(ut, ft) = arg max
u,f
− w2

t+1 − ruu2
t + qut − rff 2

t + stft

s.t. wt+1 = a · wt + b · ut + c · ft + k.
Uno goals

Individual decision-making when exercise goals are given is

(ut, ft) = arg max
u,f
− w2

t+1 − ruu2
t + qut − rff 2

t + stft + pt · (ut − gt)−

s.t. wt+1 = a · wt + b · ut + c · ft + k.
Ugoals

Note that Uno goals and Ugoals refer to the (ut, ft) that are computed by solving
the corresponding optimization problems.
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2. Weight and type are assumed to evolve according to the following:

wt+1 = a · wt + b · ut + c · ft + k + zt (2.1)

st+1 = γ · (st − s0) + s0 − βt+1 · dt+1 (2.2)

pt+1 = γ · pt + δt+1 · dt+1 + µ · 1(ut ≥ gt). (2.3)

Observe that the time index in (2.2), (2.3) for β, δ, d is t+ 1 because we assume
that the impact of a clinical visit occurs on the day of the visit.

Note that in Uno goals the caloric consumption preference st is time-varying, whereas
the physical activity preference q is constant. The reason is that in clinically-supervised
weight loss programs, individuals are encouraged to reduce their caloric consumption
at the beginning of the program – in contrast, the individuals are asked to not increase
their physical activity level until they begin to receive goals (Fukuoka et al., 2011).
Thus, our predictive model assumes that the physical activity preference remains con-
stant during the period in which no goals are given.

2.3.2 Structure of Utility Function

We assume an individual’s utility function is separable with respect to weight, caloric
intake, and exercise amount. An individual with perfect knowledge of his or her
type θt may choose their exercise amount u and caloric intake f to maximize a util-
ity of the form

∑∞
k=0 α

−k · E(U1(wt+k+1, dt+k, gt+k; θt+k) + U2(ut+k, dt+k, gt+k; θt+k) +
U3(ft+k, dt+k, gt+k; θt+k)), subject to weight wt+k+1 = η(wt+k, ut+k, ft+k, ξt+k) and type
dynamics θt+k+1 = ζ(θt+k, wt+k, ut+k, ft+k, ξt+k, dt+k, gt+k), where ξt+k = (zt+k, βt+k, δt+k)
are random variables, α ∈ [0, 1) is a discount factor, U1, U2, U3 are utility functions, and
η, ζ are functions that define the dynamics. Note that utility depends on weight one
day ahead of the corresponding decision because future weight and present decisions
affect utility.

However, it is not true that individuals make health care decisions with the goal
of maximizing long term health benefits. Indeed, it is common for individuals to very
heavily discount the impact of present decisions on future health outcomes (Chapman
and Elstein, 1995). To capture this behavior that is sometimes characterized as “irra-
tional” (Brock and Wartman, 1990), we explicitly use a utility function in which the
individual is assumed to heavily discount future health states.

Proposition 2.1. If the discount factor is α = 0, then this is equivalent to an
equation where the individual makes a decision considering only the one-day impact:
maxu,f {E(U1(wt+1, dt, gt; θt)+U2(ut, dt, gt; θt)+U3(ft, dt, gt; θt)) | wt+1 = η(xt, ut, ft, ξt)}.

A complete proof can be found in Appendix A.1, however note that this result can
be reached using direct computation.
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2.3.3 Choice of Utility Function

Corresponding terms in the utility function are chosen to match to particular behaviors
expected by social cognitive theory (Bandura, 2001): In this context, social cognitive
theory asserts that caloric consumption and physical activity depend upon (1) self-
efficacy, which is an individual’s belief in their ability to achieve positive behavioral
changes and is characterized by the coefficients pt, q, st; and depend upon (2) receiving a
positive reward from a small amount of weight loss for engaging in positive behavioral
changes. We choose U1 = −w2

t+1, U3 = −rff 2
t + stft, U2 = −ruu2

t + qut if no goal
is given, and U2 = −ruu2

t + qut + pt · (ut − gt)
− if a goal is given. Dislike for large

amounts of steps and caloric intake is captured by the −ruu2
t and −rff 2

t terms. Positive
satisfaction for increasing steps and caloric intake is represented by the qut and stft
terms. An individual’s preference for lower weight is reflected by the −w2

t+1 term. And
an increase in satisfaction for getting closer to the exercise goal is captured by the
pt · (ut − gt)− term.

Remark 2.1. Observe that as pt increases, the utility of meeting a step goal increases,
and as st increases, the utility of higher caloric intake increases. Thus, we can interpret
the values pt, st as a quantification of the adherence of an individual to step goals and
dietary goals, respectively.

Remark 2.2. An alternative choice is U1 = −w2
t + 2wbwt, which has an additional

linear term with coefficient wb. After completing the square, this is equivalent to
choosing U1 = −(wt − wb)2, which makes its interpretation clear: The wb coefficient
should be interpreted as the preferred weight of that individual. From a computational
standpoint, wb can be estimated using the same approach that we describe in later
sections for estimation of rf , ru. However, we chose to not include the linear term for
two reasons. The first is that including this linear term does make estimation more
slow computationally. The second is that choosing wb = 0 for all individuals (which
makes U1 = −w2

t ) and then scaling for each individual the other coefficients in U2, U3

can reasonably approximate within a finite range of weights a U1 with a linear term.
Our second reason also explains why a purely linear U1 = −wt is not an appropriate
choice, because a purely linear U1 cannot capture the diminishing returns to weight
loss as weight decreases towards the desired weight. As we will show later, setting
wb = 0 leads to accurate predictions, which ultimately validates our choice.

While other functional forms can represent the behaviors expected by social cog-
nitive theory, these choices have several advantages. The choice that positive utility
(qut and stft) increases at a slower rate than disutility decreases (−ruu2

t and −rff 2
t )

ensures that an individual takes a finite number of steps and consumes a finite amount
of calories. (Other choices can lead to a situation where the individual is predicted to
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take an infinite number or steps or consume an infinite number of calories, which is
clearly unreasonable.) Moreover, these choices ensure the objective is strictly concave,
which ensures that an individual is predicted to make only one decision; if the utility
function was merely concave, then there may be multiple maximizers that correspond
to a set of different possible decisions on the number of steps and calories.

Additionally, this functional form has a relatively low parameter count, which fa-
cilitates estimation. For instance, there is no linear term for weight wt. The utility
term qut is kept constant because explicitly incorporating an increase in exercise utility
(with an office visit) would be an over-parametrization due to the pt · (ut − gt)− term.
Furthermore, we do not need to include a parameter for the −w2

t term because this
would simply scale the function, and would not change the decision. Lastly, our choice
implies that goal setting has no impact beyond the goal amount.

Remark 2.3. Restated, the utility term pt · (ut − gt)
− is at its maximum value for

all ut ≥ gt. This is a simplification to reduce the number of terms. A more detailed
framework would also incorporate positive utility for exceeding the goal, such as by
including the term ρt·(ut−gt)+. The reason we do not include a linear term ρt·(ut−gt) =
ρt · ut− ρt · gt is that such a term inherently cannot capture the satisfaction of meeting
a goal, because it has the same effect (due to ρt · gt being a constant) as including the
term ρt · ut.

2.3.4 Dynamics of Weight

We also need to specify weight dynamics. Standard physiological arguments (i.e.,
weight change is proportional to “calories-in minus calories-out”) imply that the weight
dynamics are given by wt+1 = a · wt + b · ut + c · ft + k + zt, where a, b, c, k ∈ R
are coefficients that can be computed using existing physiological models, and zt is
a zero-mean random variable that captures unmodeled changes in weight (e.g., water
fluctuation, physical activity in addition to steps, etc.). Suppose wt, k, zt are specified
in units of kilograms, ft is specified in units of kilocalories (also known as dietary
calories), and ut is specific in units of steps. Then a derivation given in the A.2 and
based on the Mifflin St Jeor Equation (Mifflin et al., 1990) for the basal metabolic rate
(BMR) gives a = 0.9987 and k = −8.0357× 10−4 · h+ 6.4286× 10−4 · a+ s, where h is
height in centimeters, a is age in years, s = −6.4286× 10−4 for males, and s = 2.0700
for females. To compute b, we note that 2000 steps is roughly equal to walking one mile
and consumes about 100 calories, largely independent of the height, weight, age, and
gender of an individual (Hill et al., 2003). This gives a value of b = −6.4287 × 10−6.
Last, the value of c = 1.2857 × 10−4 is computed by performing the unit conversion
that 3500 calories is 0.45 kilograms.
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One consequence of linear weight dynamics is simplification of the utility-maximizing
framework:

Proposition 2.2. When the weight dynamics are linear, as in (2.1), we can rewrite
the objective of the utility-maximizing framework as −(a · wt + b · ut + c · ft + k)2 +
U2(ut, dt, gt; θt) + U3(ft, dt, gt; θt)− E(z2

t ).

A complete proof of this proposition can be found in Appendix A.1 but here we
will provide some intuition. Observe that the only stochasticity in the utility function
is in zt, which has zero mean and cannot be used for decision making at time t. This
means that the terms with zt in the objective function have zero expectation and can
therefore be eliminated.

Remark 2.4. The main insight from this substitution is that decisions made by an in-
dividual following the utility-maximizing framework do not depend on the stochasticity
because −E(z2

t ) is a constant that does not depend on the decisions.

Before describing the type dynamics, we discuss a more detailed model for the
weight dynamics. Specifically, a phenomenon known as adaptive thermogenesis (Doucet
et al., 2001, Rosenbaum et al., 2008) causes the metabolism of an individual who has
lost weight to decrease. Our weight dynamics (2.1) can be modified to incorporate this
phenomenon by allowing the zt to have a non-zero mean. Though we do not use this
more detailed model in this chapter, we briefly outline how our MLE and Bayesian
prediction formulations (that will be described in upcoming sections) would change:
The first change is that the k term in the constraints would be replaced with k + mt,
where mt is a new variable that represents the mean of zt. This change allows the zt
in our formulations to have a non-zero mean. The second change is that an additional
constraint

∑n−1
t=1 |mt+1−mt|≤ σm is added to our formulations, where n is the time step

at which we are solving the formulation and σm is a constant the bounds the amount
of metabolism change, and this constraint is known as fused lasso (Tibshirani et al.,
2005) in the statistics and machine learning literature. This additional constraint has
been show to have properties (Tibshirani et al., 2005) that would lead to estimates
that ensure the estimated change in metabolism becomes roughly constant after an
individual’s weight stops changing, which is an important property because it matches
what is clinically observed with changes in metabolism after weight loss (Doucet et al.,
2001, Rosenbaum et al., 2008).

2.3.5 Dynamics of Type

The type dynamics are as specified in (2.2),(2.3), where γ, s0, µ are scalars and βt, δt are
random variables. Specific terms in these dynamics correspond to principles of social
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cognitive theory, which says in this context that self-efficacy as quantified by st, pt will
increase in response to social contact during office visits and in response to successfully
achieving past goals. The uncertain impact of office visits is modeled by the stochastic
βt and δt. The fact that office visits sometimes make external goal-setting more effective
and decrease interest in eating is described by the δt+1 · dt+1 and −βt+1 · dt+1 terms,
respectively. Because the impact of a single office visit decreases to zero over time, the
dynamics include the terms γ · (st− s0) + s0 and γ · pt. Observe that these discounting
terms are different because s0, q are the baseline preferences for caloric consumption
and physical activity, respectively. So the first discounting term ensures st goes to s0

without more office visits, and the second discounting term ensures pt goes to zero
without more office visits since q already encodes the baseline coefficient for physical
activity. Moreover, goal-setting can become more effective whenever the goal is met;
this is characterized by the µ · 1(ut ≥ gt) term.

Multiple equation choices would lead to the behaviors suggested by social cognitive
theory, but this set of choices ensures the dynamics are linear in st, pt and reduces the
parameter count. The latter objective is achieved through (i) using the same parameter
γ for both the γ·(st−s0) and γ·pt terms, and (ii) using a constant parameter µ instead of
allowing this to be a time varying quantity. Linearity in st, pt is important for favorable
computational properties. Though the term µ · 1(ut = gt) is nonlinear, it has special
structure that allows efficient computation.

2.4 Maximum Likelihood Estimation (MLE) for Utility-

Maximization

Estimating parameters of the utility-maximizing framework for a specific individual re-
quires solving an optimization problem. However, formulating this model is challenging
because the measurements suffer from noise and missing weight and step data. This
can be overcome by formulating the optimization model so that its minimizer simul-
taneously estimates the values of weight, caloric intake, steps, type, and the random
variables in the model for each individual. The optimization model for simultaneous
estimation is generally a nonconvex, nonlinear program; and it is typical to generate an
estimate by computing a local optimum (e.g., the EM algorithm (Hastie et al., 2009)).
However, we show that simultaneous estimation can be modeled using as a MILP,
allowing us to compute the global optimum of the optimization model for estimation.

We pose the estimation problem in the framework of MLE. Suppose that the data
for a single individual consists of (ti, w̃ti), for i = 1, . . . , nw, and (τi, ũτi), for i =
1, . . . , nu, where nw are the number of weight measurements, nu are the number of
step measurements, and the noise model is w̃ti = wti + νti and ũτi = uτi + ωτi , where
νti , ωτi are zero-mean random variables with finite variance. Note that the times ti, τi
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do not coincide in general. Let ψν(·), ψω(·), ψz(·) by the probability density function
(pdf) for the random variables νt, ψt, zt. The MLE problem seeks to estimate the type
θt of each individual, using the above described data. It is important to further discuss
the interpretation of the type θt that is estimated. Clearly there will be additional
factors beyond the ones we have included in our predictive model that influence how an
individual decides their daily caloric intake and number of steps, and so the measured
data cannot be expected to exactly match our predictive model. In this context,
the type θt that is estimated for each individual should be interpreted as those that
maximize the prediction accuracy of the predictive model (Aswani et al., 2018) – a
concept sometimes known as risk consistency in the statistics literature.

2.4.1 Initial Optimization Model for Computing MLE

Let n = max{tnw , τnu} be the number of days of data used for estimation, and let m by
the number of initial days before an exercise goal was given to the individual. For the
utility-maximizing framework, the MLE is the minimizer of an optimization problem
defined as

min
∑nw

i=1− logψν(w̃ti − wti) +
∑nu

i=1− logψω(ũτi − uτi) +
∑n

t=1− logψz(zt)

s.t. Uno goals, (2.1) for t = 1, . . . ,m− 1; Ugoals, (2.1), (2.2), (2.3) for t = m, . . . , n.

Pmle

Recall that Uno goals captures decision-making without goals, Ugoals captures decision-
making model with goals, equations (2.1) are dynamics on weight, (2.2) and (2.3) are
the dynamics of parameters st, pt respectively. Note that the first office visit is on the
same day the first exercise goal is given. Since st, pt cannot change until the start of
the intervention their dynamics begin at time m.

The problem Pmle is more challenging to solve than may initially appear. The vari-
ables ut, ft are defined as the minimizing arguments of Uno goals and Ugoals. This makes
the MLE the solution to a bilevel optimization problem (Dempe, 2002). Among the
bilevel optimization problems that have been considered in the literature include inverse
optimization with linear objectives (Ahuja and Orlin, 2001) and inverse optimization
for combinatorial problems like assignment and spanning tree problems (Heuberger,
2004). In the context of bilevel optimization problems for estimating utility functions,
approaches have been derived under the assumption of small noise (Keshavarz et al.,
2011, Bertsimas et al., 2014); more recently, statistically consistent approaches for noisy
measurements have also been proposed (Aswani et al., 2018). Here, we develop a new
integer programming approach for solving our specific bilevel optimization problem in
Pmle.
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2.4.2 Choosing the Distribution of Random Variables Repre-
senting Noise

We first must select the distribution of random variables representing noise νt, ψt, zt.
Their variances σ1, σ2, σ3 are constants that can be chosen based on our prior knowl-
edge regarding the measurement accuracy of weight scales, measurement accuracy of
accelerometers for measuring steps, and physiological information about the modeling
errors of the Mifflin St Jeor Equation (Mifflin et al., 1990) for BMR. In our modeling,
we used σ1 = 2, σ2 = 0.1, and σ3 = 0.1.

Choosing zero-mean Gaussian random variables yields a quadratic objective for
Pmle: κ1 + 1

σ1

∑nw
i=1(w̃ti − wti)

2 + 1
σ2

∑nu
i=1(ũτi − uτi)

2 + 1
σ3

∑n
t=1(zt)

2, where κ1 is a
constant. Alternatively, one could select νt, ψt, zt to be zero-mean Laplace random
variables, which have a pdf of ψ(x) = 1√

2σ
exp(−|x|/

√
σ/2) with variance σ. The

resulting objective of Pmle is proportional to σ
−1/2
1

∑nw
i=1|w̃ti − wti |+σ

−1/2
2

∑nu
i=1|ũτi −

uτi |+σ
−1/2
3

∑n
t=1|zt|.

Remark 2.5. This resulting objective function becomes a linear objective function
after a minor reformulation (see, for example, Section 6.1.1 of (Boyd and Vandenberghe,
2004)).

We assume the noise is Laplacian because this results in MILP optimization prob-
lems for estimation and prediction. Note that if we had assumed Gaussian noise, then
this would have resulted in MIQP optimization problems for estimation and prediction.
We have found that these resulting MIQP’s are solvable using standard software, but
that the prediction accuracy was not better than that of the MILP formulations arising
from the Laplacian assumption. Hence we chose to assume Laplace noise because of
the faster computation time for the resulting MILP’s. The similar predictive accuracy
under both assumptions is not surprising given that the difference in the objective is
simply an absolute value of deviation versus the square of deviation.

2.4.3 Reformulating the MLE Using KKT

One approach to solving bilevel programs is to replace the convex optimization prob-
lems that are constraints by their corresponding necessary and sufficient optimality
conditions (Dempe, 2002).

Proposition 2.3. Necessary and sufficient optimality conditions for Uno goals can be
written as

2b(awt + but + cft + k) + 2ruut − q = 0

2(awt + but + cft + k) + 2rfft − s0 = 0.
(2.4)
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The complete proof of this proposition can be found in Appendix A.1 but here
we will provide some intuition for this proposition. Essentially, the constraints of
Uno goals can be eliminated by direct substitution, and equations (2.4) can be derived
by computing the KKT conditions of the resulting optimization problem.

Proposition 2.4. Neccesary and sufficient optimality conditions for Ugoals can be
written as

2b(awt + but + cft + k) + 2ruut − q − λ2
t = 0

2(awt + but + cft + k) + 2rfft − st = 0

gt − ε− (gt − ε) · x1
t ≤ ut ≤M + (gt − ε−M) · x1

t

(gt − ε) · x2
t ≤ ut ≤M + (gt + ε−M) · x2

t

(gt + ε) · x3
t ≤ ut ≤ gt + ε+ (M − gt − ε) · x3

t

0 ≤ λ2
t ≤ pt; pt −M · (1− x1

t ) ≤ λ2
t ≤M · (1− x3

t )

x1
t + x2

t + x3
t = 1; x1

t , x
2
t , x

3
t ∈ {0, 1}.

(2.5)

The full proof of this proposition can be found in Appendix A.1 but here we will
provide some intuition for the proof. To compute the optimality conditions of Ugoals,
we can first reformulate problem as a quadratic program (QP). The resulting QP
has a strictly concave objective and will satisfy constraint qualification meaning that
the KKT conditions are both necessary and sufficient for optimality. After algebraic
manipulation the KKT conditions can be rewritten as the equations (2.5).

Remark 2.6. We include an 0 < ε� 1 term to ensure all three regions for the integer
program have a non-zero width. The resulting regions are ut ≤ gt−ε, gt−ε ≤ ut ≤ gt+ε,
and ut ≥ gt + ε, and note that the binary variables xt1, x

2
t , x

3
t indicate if ut respectively

belongs to one of these three regions.

Remark 2.7. If gt is not fixed, as would be the case in an optimization problem for
personalizing physical activity goals, then the constraints (2.5) can be further refor-
mulated as MILP constraints using the approach discussed in Section 2.4.5.

2.4.4 Exercise Goal Inequalities to Constrain Integer Vari-
ables

We define an additional set of inequalities that lead to order of magnitude faster com-
putation times when computing the MLE. Social cognitive theory suggests that if an
exercise goal gt is not achieved at a particular time point t (i.e., ut < gt), then it will
not be achieved at time t+1 unless the goal decreases gt+1 < gt or an office visit occurs
dt+1 = 1. This insight leads to additional inequalities on the integer variables.
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Proposition 2.5. For fixed gt, the logical constraint (ut < gt, gt+1 ≥ gt, dt+1 = 0) ⇒
(ut+1 < gt+1) can be formulated as linear inequalities:

x1
t+1 ≥ x1

t − dt+1 − 1(gt+1 − gt < 0)

x2
t+1 ≤ x2

t + dt+1 + 1(gt+1 − gt < 0)

x3
t+1 ≤ x3

t + dt+1 + 1(gt+1 − gt < 0).

(2.6)

The complete proof of this proposition can be found in Appendix A.1, but here we
will present some intuition for the proof. The first equation indicates that if ut ≤ gt,
then this must also be true at time t+ 1 unless an office visit is scheduled or the goal
has been reduced. The remaining equations indicate that for ut+1 ≥ gt+1 to hold either
this condition must have been met at time t, an office visit has been scheduled, or the
goal has been reduced.

Remark 2.8. When gt is not fixed, the above constraints (2.6) can be further refor-
mulated as MILP constraints using big-M formulations (Vielma, 2015).

These inequalities further constrain the estimates beyond the equations of the
utility-maximizing framework. Restated, depending upon the parameters the utility-
maximizing framework could potentially predict that goals are not attained at t but
then attained at t + 1 because of an increase in weight wt+1 > wt. We constrain the
parameters using the inequalities (2.6) so as to prevent such behavior in the utility-
maximizing framework.

2.4.5 Addressing Bilinear Terms

Because we are jointly estimating noisy/missing data and parameters, our optimization
model contains nonconvex quadratic terms. For instance, the dynamics on pt (2.3) have
the nonconvex quadratic term µ · 1(ut ≥ gt). It is difficult to directly solve nonconvex
mixed-integer quadratically constrained quadratic programs (MIQCQP) problems, and
so we discuss reformulations that allow us to solve the resulting problem more efficiently.
We begin by reformulating (2.3).

Proposition 2.6. The dynamics on pt (2.3) can be represented by the linear con-
straints:

pt+1 ≥ γ · pt + δt+1 · dt+1

pt+1 ≤ γ · pt + δt+1 · dt+1 +M · (1− x1
t )

pt+1 ≥ γ · pt + δt+1 · dt+1 + µ−Mx1
t

pt+1 ≤ γ · pt + δt+1 · dt+1 + µ.

(2.7)
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A complete proof of this proposition can be found in Appendix A.1, but here we will
present some intuition for the proof. First note that the bilinear term µ · 1(ut ≥ gt)
in equation (2.3) can be reformulated using the variables x1

t , x
2
t , x

3
t from the integer

reformulation of the KKT conditions (2.5) as µ(1−x1
t ). Then, since the resulting term

is a product of a continuous and binary variable it can be linearized using standard
techniques resulting in the constraint set (2.7).

Finally, to eliminate bilinear terms in our MLE formulation note that the exact-
linearization dynamics of pt (2.7) have the term γ ·pt, the dynamics of st (2.2) have the
term γ ·(st−s0), and the integer-reformulated KKT conditions for decision-making with
goals (2.5) have the terms 2ruut, 2rfft. When we fix the value of γ, rf , ru, the resulting
MLE formulation will be a MILP. We use an enumeration approach, as described in
the next subsection, to address these final bilinear terms.

2.4.6 MILP Formulation of MLE

We reformulate the initial MLE problem Pmle as optimization problem described below,
Pmle−milp. This is a MILP for fixed values of γ, rf , ru and after rewriting the absolute
values using linear constraints (as in Section 6.1.1 of (Boyd and Vandenberghe, 2004),
for example), because a, b, rf , ru, γ are constants when solving Pmle−milp. The full
MILP formulation for MLE can be found in the A.3.

min σ
−1/2
1

∑nw
i=1|w̃ti − wti |+σ

−1/2
2

∑nu
i=1|ũτi − uτi |+σ

−1/2
3

∑n
t=1|zt|

s.t. (2.1), (2.4), for t = 1, . . . ,m− 1

(2.1), (2.2), (2.5), (2.6), (2.7), for t = m, . . . , n.

Pmle−milp

Recall that (2.1) are weight dynamics, (2.2) are dynamics on the st parameter, (2.4)
are KKT conditions for the decision-making model without goals, (2.5) are integer-
reformulated KKT conditions for the decision-making model with goals, (2.6) are the
exercise goal inequalities that constrain the integer variables, and (2.7) are exact-
linearization dynamics of pt.

If γ, rf , ru are not fixed, then Pmle−milp is a nonconvex MIQCQP. To solve Pmle−milp,
observe that we can enumerate over γ, rf , ru and solve a series of MILP’s. This is com-
putationally viable because we only need to enumerate over three variables. We can
gain an additional computational speedup by using a simple and accurate approxima-
tion that allows us to compute the MLE by solving a single MILP. The approximation
is due to an observation we made while using enumeration to compute the MLE. We
noticed that the MLE was insensitive to the values of γ, rf , ru: There was less than
a 5% difference in the objective value over a large range of values for γ ∈ [0.8, 1] and
rf , ru ∈ [1 × 10−7, 1 × 10−5], and the estimates of the type parameters were relatively
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constant over this range as well. As a result, we approximate this problem by fixing
γ = 0.85, rf = 8.1633 × 10−6, and ru = 1 × 10−6 for all individuals: This allows us
to compute the MLE by solving Pmle−milp for a single value of γ, r, which is a single
MILP. This approximation also reduces the number of parameters we are trying to
estimate.

2.5 Bayesian Predictions of Individual Trajectories

Problem Pmle−milp provides joint estimation of noisy/missing data and model parame-
ters. However, this is not by itself useful for predicting the future weight loss trajectory
of an individual given a short period of initial data. We would ideally like a framework
to provide such predictions under different intervention scenarios, since this would sup-
port the adaptive design of personalized interventions. Moreover, we would like the
predictions to be able to leverage past/historical data in order to improve the accuracy
of predictions. Given this last constraint, a natural choice for predictions is to use this
past data for a prior distribution in a Bayesian framework.

In particular, suppose we have past/historical data from many individuals that have
completed the entire weight loss intervention. We can perform MLE to estimate the
parameters for the utility-maximizing framework for each of these individuals. Then
we can form our priors by computing histograms of these estimates. Let tf be the
total length of an intervention, and define Θ = (θ1, . . . , θtf ). We use the pdf notation

ψ̂(Θ) to collectively refer to a set of histograms for the parameters Θ, because these
histograms are be assumed to be normalized such that they are a pdf.

Now suppose we have an additional individual that has completed only T days of
the intervention and has a remaining tf − T days left in the intervention, where tf is
the total days in the intervention. The data available for this new individual is (ti, w̃ti),
for i = 1, . . . , nw, and (τi, ũτi), for i = 1, . . . , nu, where nw are the number of weight
measurements, nu are the number of step measurements, and the noise model is as
before. We would like to construct an optimization model whose solution provides a
prediction of the distribution of the individual’s weight at the end of the intervention at
time tf using the histograms of the past individuals and the first T days of data for this
new individual. In this section, we demonstrate that we can incorporate data-driven
histograms as priors in Bayesian estimation using integer programming.

2.5.1 Initial Formulation for Bayesian Estimation

Our goal is to compute ψ(wtf | C, W̃ , Ũ), which is the posterior distribution of weight
at the end of the intervention wtf conditioned (i) on the intervention parameters

C = (d1, g1, . . . , dtf , gtf ), and (ii) on the data available for the new individual W̃ =
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((ti, w̃ti), for i = 1, . . . , nw) and Ũ = ((τi, w̃τi), for i = 1, . . . , nu). To accomplish this,
we apply Bayes’s theorem and then eliminate nuisance parameters by averaging over
them.

First we calculate ψ(W,U, F,Θ | C, W̃ , Ũ), which is the joint posterior distribution
of weight W = (w1, . . . , wtf ), steps U = (u1, . . . , utf ), caloric intake F = (f1, . . . , ftf ),
and type Θ. This requires specifying prior distributions for W,U, F,Θ. The typical
approach is to choose priors that admit efficient computation or are uninformative/non-
constraining (Gelman et al., 2013). Because we have data from past individuals, we can
use the histogram ψ̂(Θ) as a prior distribution for Θ. We choose a uniform prior distri-
bution for W,U, F because this is relatively uninformative/non-constraining (Gelman
et al., 2013). Consequently, applying Bayes’s theorem yields ψ(W,U, F,Θ | C, W̃ , Ũ) =
1
Z
· ψ(W̃ , Ũ | W,U, F,Θ, C) · ψ̂(Θ), where ψ(W̃ , Ũ | W,U, F,Θ, C) is the likelihood of

the observations conditioned on the parameters of the utility-maximizing framework,
Z is a normalization constant that ensures the integral of the posterior is one, and we
have used the fact that ψ(W ) = ψ(U) = ψ(F ) = 1 over their supports since they are
uniform. Recall that the log-likelihood (i.e., logψ(W̃ , Ũ | W,U, F,Θ, C)) is given by
the objective and constraints of Pmle−milp.

The next step is to eliminate nuisance parameters, which can be accomplished
in principle by averaging (Gelman et al., 2013). Averaging gives ψ(wtf | C, W̃ , Ũ) =∫
ψ(W,U, F,Θ | C, W̃ , Ũ)·dW−tf ·dU ·dF ·dΘ, where W−tf = (w1, . . . , wtf−1). However,

this integral is difficult to compute both symbolically (because of integer constraints in
the formulation of the model) and computationally (the posterior ψ(W,U, F,Θ | C, W̃ , Ũ)
can be sharply peaked and so Monte Carlo-based approaches converge slowly). (In fact,
our initial approach was to use a Monte Carlo algorithm to compute the posterior distri-
bution, but we found through empirical testing that the resulting posterior was simply
a uniform distribution with a very broad support, which indicates convergence to the
actual posterior was too slow for making accurate predictions with the posterior; such
slow convergence is not surprising given the high-dimensionality of the nuisance param-
eters.) Our approach is to use the profile likelihood (Severini, 1999, Murphy and Vaart,
2000) as an approximation: The profile likelihood is computed by an optimization prob-
lem Ppl that is given by ψ(wtf | C, W̃ , Ũ) ≈ maxW−tf ,U,F,Θ ψ(W,U, F,Θ | C, W̃ , Ũ), and
our approximation can be justified by arguments relating the asymptotic consistency
of Bayesian and MLE estimation under general conditions (Severini and Wong, 1992,
Severini, 1999, Gelman et al., 2013). The key computational question is how to solve
Ppl. The normalizing factor Z can be computed by numerically integrating a one-
dimensional function.
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2.5.2 Histogram Construction

Before constructing the histograms defining ψ̂(Θ), we need to specify which parame-
ters are statistically independent. Assuming every parameter is correlated will not be
successful because it would require high-dimensional histograms, which will be a statis-
tically poor estimate of the true parameter distribution. Hence, specifying that some
parameters are independent will enable expressing ψ̂(Θ) in terms of low-dimensional
histograms. Therefore, we assume that µ, q, s0, β0, δ0 are jointly independent. Further-
more, we assume that βk+1 conditioned on βk is jointly independent with the other
parameters. Similarly, δk+1 conditioned on δk is assumed to be jointly independent
with the other parameters. Lastly, we assume that the conditional relationships be-
tween βk+1, βk and between δk+1, δk are not a function of k.

Remark 2.9. Under our assumptions, we can factor the histogram as ψ̂(Θ) = ψ̂(µ) ·
ψ̂(q) ·ψ̂(s0) ·ψ̂(β0) ·

∏nd
k=0 ψ̂(βk+1 | βk) ·ψ̂(δ0) ·

∏nd
k=0 ψ̂(δk+1 | δk), where nd be the number

of office visits.

It will be the case that the objective function we use will involve the logarithm of
ψ̂(Θ), and so the above remark implies that we can construct a MILP formulation of the
resulting optimization problem as long as we are able to define MILP representations
of ψ̂(X), ψ̂(Xk+1 | Xk), where X is a random variable. Observe, that these constituent
histograms are piecewise constant:

Remark 2.10. We can represent the one-dimensional histogram for parameter X
(where X could be any of µ, q, s0, β0, δ) as ψ̂(X) =

∑mx
i=1 π

x
i · 1(hxi ≤ X ≤ hxi+1), where

mx is the number of bins, hxi are the edges of these bins, and πxi is the value of the
histogram in the i-th bin.

Remark 2.11. We can represent the histograms for parameter Xk+1 conditioned on
Xk (where X could be any of βk, δk) as ψ̂(Xk+1 | Xk) =

∑mx
i=1

∑ηx
j=1 π

x
i,j · 1(hxi ≤

Xk+1 ≤ hxi+1) ·1(φxj ≤ Xk ≤ φxj+1), where mx is the number of bin divisions in the Xk+1

dimension, ηx is the number of bin divisions in the Xk dimension, hxi are the edges
of the bins in the Xk+1 dimension, φxi are the edges of the bins in the Xk dimension,
and πxi,j is the value of the histogram in the (i, j)-th bin. Note that the histogram
values πxi,j should be normalized such that the above representation is a conditional
distribution – an incorrect normalization would cause the above representation to be
a joint distribution instead.

2.5.3 MILP Formulation for Computing Posterior Distribu-
tion of Final Weight

One of our goals is to show that data-driven prior distributions can be used to per-
form Bayesian estimation by formulating the problem as a MILP. Here, we focus on
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approximating the posterior ψ(wtf | C, W̃ , Ũ) by solving Ppl. It is worth noting that
an almost identical formulation can be used to perform Bayesian maximum a poste-
riori (MAP) estimation with data-driven priors by solving problem Pmap, which is
given by maxW,U,F,Θ ψ(W,U, F,Θ | C, W̃ , Ũ); compare this problem to Ppl. Observe
that because a histogram is a piecewise constant function, it can be represented using
inequality constraints with integers (Vielma, 2015). This requires some minor refor-
mulations, which we describe below, in order to ensure linearity of the optimization
model.

Proposition 2.7. The objective of Ppl (after computing its negative logarithm) is

σ
−1/2
1

nw∑
i=1

|w̃ti − wti |+σ
−1/2
2

nu∑
i=1

|ũτi − uτi |+σ
−1/2
3

n∑
t=1

|zt|+

2−1/2
∑

X∈{µ,q,s0,β0,δ0}

mx∑
i=1

log πxi · yxi + 2−1/2
∑

X∈{β,δ}

nd−1∑
k=0

mx∑
i=1

ηx∑
j=1

log πxi,j · y
x,k
i,j ,

(2.8)

subject to constraints for one-dimensional histograms

mx∑
i=1

hxi · yxi ≤ X ≤
mx∑
i=1

hxi+1 · yxi ;
∑mx

i=1 y
x
i = 1; yxi ∈ {0, 1}, ∀i = 1, . . . ,mx, (2.9)

for all X ∈ {µ, q, s0, β0, δ0}, and constraints for conditional histograms∑mx
i=1

∑ηx
j=1 h

x
i,j · y

x,k
i,j ≤ Xk+1 ≤

∑mx
i=1

∑ηx
j=1 h

x,k
i+1 · yxi,j∑mx

i=1

∑ηx
j=1 φ

x
i,j · y

x,k
i,j ≤ Xk ≤

∑mx
i=1

∑ηx
j=1 φ

x
i+1 · y

x,k
i,j

yx,ki,j ∈ {0, 1}, ∀i = 1, . . . ,mx, j = 1, . . . , ηx;
∑mx

i=1

∑ηx
j=1 y

x,k
i,j = 1,

(2.10)

for all X ∈ {β, δ} and k = 0, . . . , nd − 1.

A complete proof of this result can be found in Appendix A.1 but here we will
present some intuition for the proof. Taking the log of ψ̂(Θ) we obtain an objective
function which comprises of both terms logψ(W̃ , Ũ | W,U, F,Θ, C) as well as the
equations for the one and two dimensional histograms. Then by defining indicator
variables yxi ∈ {0, 1} for x ∈ {µ, q, s0, β0, δ0}, where yxi is equal to 1 if parameter x
is in interval i of the histogram, and similarly indicator variables yx,ki,j ∈ {0, 1} for
parameters x ∈ {β, δ}, we can rewrite the objective function as the form above.

Remark 2.12. An important benefit of the rewritten objective (2.8) and subsequent
constraints (2.9), (2.10) is that they are linear in the decision variables. Note that the
y decision variables in these equations are binary variables and indicate which bin of
the histogram the corresponding variable belongs to.
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The posterior is computed by solving a series of MILPs and then using numerical
integration to compute the normalization constant Z. In particular, define the following
parametric (in ω) MILP:

`(wtf = ω) = min (2.8)

s.t. (2.1), (2.4), for t = 1, . . . ,m− 1

(2.1), (2.2), (2.5), (2.6), (2.7), for t = m, . . . , n

(2.9), for X ∈ {µ, q, s0, β0, δ0}
(2.10), for X ∈ {β, δ}, k = 0, . . . , nd − 1; wtf = ω.

Ppl−milp

The complete formulation can be found in the A.4.
Let κ2 = mini `(wtf = ωi). If we solve Ppl−milp over a grid of values ω1, . . . , ωng ,

then we can compute the normalization Z by numerically integrating the set of points
(ωi, exp(−`(wtf = ωi) + κ2)), for i = 1, . . . , ng, where (i) we take the exponent
of the negative of `(·) because we reformulated the objective for our MILP using a
negative logarithm, and (ii) we scale this exponent using κ2 because this improves
the numerics of the computations. Finally, the posterior at ωi is given by ψ(wtf =

ωi | C, W̃ , Ũ) = exp(−`(wtf = ωi) + κ2)/Z. Consequently, we can approximate the
posterior distribution of wtf by solving a series of problem Ppl−milp. Observe that in
this approximation process, we are in fact approximating the posterior likelihood of
the final weight wtf = ω at different ω using different patient behaviors trajectories.
Such an approximation approach has been previously proposed and is well-behaved
asymptotically as more data is collected (Lindley, 1961, Tierney and Kadane, 1986,
Evans and Swartz, 1995). The intuition from Evans and Swartz (1995) for why such
an approximation is justified begins with the defining integral ψ(wtf | C, W̃ , Ũ) =∫
ψ(W,U, F,Θ | C, W̃ , Ũ) · dW−tf · dU · dF · dΘ. For a fixed wtf , by the law of large

numbers most of the mass of ψ(W,U, F,Θ | C, W̃ , Ũ) is concentrated about its max-
imizer, which corresponds to the minimizer of Ppl−milp. Hence we can approximate
this integral by considering its behavior at the optimizer. We will further discuss the
theoretical properties of this approximation in Chapter 3.

2.6 Computational Results and Validation of Pre-

dictive Modeling

In this section, we first describe the data source used for the computational results
and validation of our predictive model. Next, we provide computational results of
solving Pmle−milp to compute MLE and of solving Ppl−milp to compute the Bayesian

26



predictive model. Representative plots are shown in these first two subsections. Cross-
validation (Hastie et al., 2009) is used to validate our approach through comparison to a
benchmark approach from machine learning, and we specifically consider the prediction
of 5% weight loss at 5 months based on the first 30 days of an individual’s data. This
validation compares all individuals in the data set. We conclude by demonstrating
the ability of our approach to make predictions on the weight loss trajectory of an
individual as the number of counseling sessions is changed, and we discuss how this
can be used for optimization.

2.6.1 Data Source of Mobile Phone Delivered Diabetes Pre-
vention Program (mDPP) Trial

We used data from the mDPP trial (Fukuoka et al., 2015), which was a randomized con-
trolled trial (RCT) to evaluate the efficacy of a 5-month mobile phone-based weight loss
intervention among overweight English-speaking adults at risk for developing T2DM.
The intervention was adapted from the Diabetes Prevention Program (DPP) 2002,
2009, but the frequency of in-person sessions was reduced from 16 to 6 sessions and
group exercise sessions were replaced with a home based exercise program to reduce
costs. Sixty-one overweight adults were randomized to an active control (accelerometer
only) (n = 31) group or an mDPP mobile app plus accelerometer intervention (n = 30).
Demographics are available in (Fukuoka et al., 2015), and changes in primary and sec-
ondary outcomes were promising: The intervention group lost an average of 6.2± 5.9
kg (−6.8% ± 5.7%) between baseline and 5-month follow-up compared to the control
group’s gain of 0.3± 3.0 kg (0.3%± 5.7%) (p < 0.001). The intervention group’s steps
per day increased by 2551±4712 compared to the control’s group decrease of 734±3308
steps per day (p < 0.001).

The data available from this RCT matches that described in Section 2.2. Specifi-
cally, we have step data from a digital accelerometer and body weight data recorded
at least twice a week every week into the mobile app. We also have access to the
age, gender, and height of each individual. After an initial two week period, exercise
goals in desired number of steps per day were provided to each individual. The goals
increased by 20% each week, starting at 1.2 times the average number of steps during
the initial two weeks; the goals increased to a maximum of 12,000 steps a day (about
6 miles of walking). Individuals were also asked to make office visits (at 2, 4, 6, 10,
14, 18, and 20 weeks) during which they received behavioral counseling about their
nutritional choices and physical activity.
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Figure 2.1: Comparison of data (blue dots) with MLE estimates of weight, exercise,
and caloric intake (red line).

2.6.2 Computational Results

We used the Gurobi solver (Gurobi Optimization, 2015) to solve Pmle−milp and Ppl−milp.
The CVX toolbox (Grant and Boyd, 2014) for MATLAB was used to generate each in-
stance of the MILP. A 2.5GHz laptop computer with 4Gb of RAM was used to generate
these results.

Results of MLE for Utility-Maximizing Model

The problem Pmle−milp was solved for each individual in the mDPP. The fastest com-
putation time was 3 sec, the slowest computation time was 550 sec, and the median
computation time was 10 sec. The second and third quartiles of computation time
were 6 sec and 70 sec, respectively. Overall, the computation was quick and can be
easily parallelized because each MILP is solved independently.

Figure 2.1 shows a representative example of the weight, steps, and caloric intake
trajectory estimated by solving Pmle−milp. The blue dots are measured data, and
the red lines are estimated trajectories. The utility-maximizing framework captures
increasing positive impacts from achieving exercise goals, as well as negative impacts
from not meeting goals. The MLE reduces noise in measured data and estimates values
for time points without data. Observe that the large drops in caloric intake correspond
to reductions in the preference of caloric consumption st that occurs after an office
visit; however, the reductions are not constant for each office visit. This is because
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the impact of an office visit is characterized by βt, δt, which are random variables.
Moreover, when we computed the conditional histograms for βt+1 given βt and for δt+1

given δt, we empirically found that these histograms were such that they indicated
subsequent office visits are generally less effective in encouraging increases in physical
activity and reductions in caloric intake.

From a clinical standpoint, an additional benefit of our utility-maximizing frame-
work is its ability to estimate caloric intake. Effective mobile technologies for directly
measuring caloric intake are not commercially available, and self-reported caloric in-
take diaries are known to be highly inaccurate (Schoeller et al., 1990). Our approach
indirectly estimates this by integrating physiology into the framework. This can be
used to improve self-monitoring of an individual’s food consumption.

Results of Bayesian Trajectory Prediction using MILP Formulation

Problem Ppl−milp was solved using the first month of data for each individual in the
intervention group of the mDPP in order to compute a posterior distribution of wtf . To
generate the histograms for Ppl−milp, we used the MLE parameters for the remaining
individuals computed using the entire data set for these individuals. We did not use
an individual’s data when computing the histogram used to make predictions for that
particular individual; we constructed a different histogram for each individual by using
the data excluding that individual.

For our computations, we chose ng = 100 grid points at which we computed the
posterior. The fastest, slowest, and median computation times were 190 sec, 1000 sec,
and 360 sec, respectively. The second and third quartiles of computation time were
230 sec and 470 sec, respectively. Overall, the computation was relatively quick and
can be easily parallelized because each MILP is solved independently.

A representative example of the posterior likelihood ψ(wtf | C, W̃ , Ũ) for the final
weight of an individual (at 5 months) conditioned on 1 month of weight and step data
is shown in Figure 2.2. The dashed line denotes the initial weight of the individual
before starting the weight loss intervention, and the dotted line represents a final
weight corresponding to 5% weight loss. We can also plot the entire weight, exercise,
and caloric intake trajectories corresponding to the MAP estimate: This is shown in
Figure 2.3. Data from the first month (dark blue and left of the dotted line) was used
to compute the posterior and the MAP estimate of the past and future trajectories.
The MAP prediction of the future trajectories is compared to the actual measurements
(light blue and right of the dotted line); there is good agreement between the predicted
and actual weight trajectories. An additional benefit of this approach is its ability to
estimate past caloric intake.
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Figure 2.2: Posterior likelihood of final weight conditioned on 30 days of data (solid)
compared to initial weight (dashed) and final weight corresponding to a 5% weight loss
(dotted).
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Figure 2.3: Comparison of MAP estimates of weight, exercise, and caloric intake tra-
jectories (trained using data marked with dark blue dots) with future data not used to
computed estimates (light blue dots).
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2.6.3 Predicting Clinically Significant Weight Loss

This subsection evaluates the ability of our predictive model from Section 2.5 to predict
whether an individual will achieve clinically significant weight loss at the end of the
intervention. We refer to a situation where an individual achieves 5% weight loss as
a positive, and similarly if an individual does not achieve 5% weight loss then this is
be a negative. We validate the predictive capabilities of our model by comparing it
to three standard methods from machine learning. Specifically we consider a linear
support vector machine (SVM) model, a decision tree model, and a logistic regression
model for classification (Hastie et al., 2009). We additionally consider a version of our
predictive model that does not incorporate a Bayesian prior in order to validate that
our Bayesian approach improves prediction accuracy. For the purpose of comparison,
we specifically consider a scenario in which the first 30 days of mobile phone data are
used to predict whether an individual will achieve 5% weight loss after 5 months of
participating in the weight loss intervention. Cross-validation (Hastie et al., 2009) is
used to separate the data into a training set that is used to estimate the models and a
hold-out set that is used to quantitatively validate the model.

Machine Learning Models

Let x ∈ R2 be a vector of percent weight loss to date and percent of step goals met,
and let y be such that if y = 1 then an individual has achieved at least 5% weight loss
and y = −1 otherwise. Machine learning methods use data in this form to fit functions
f : R2 → {−1, 1} to best capture the relationship between x and y. We refer to the
output of this function as ŷ(x) = f(x), to signify that we are generating an estimate of
the y values. The value ŷ(x) = −1 is a prediction that the individual will not achieve
5% weight loss after 5 months, and ŷ(x) = +1 is a prediction that the individual will
achieve 5% weight loss after 5 months.

A linear SVM is the predictive model ŷ(x) = sign(β0 + x′β). The hyperplane
β0 + x′β cuts the space Rp into two regions, and the two sides of the hyperplane are
predicted to be positive or negative, respectively. The parameters β0, β are computed
by a quadratic program (Hastie et al., 2009), and we used the MATLAB Statistics
and Machine Learning Toolbox to identify the SVM parameters using data from the
mDPP trial. The identified parameters are 64 for percent weight loss to date and 1.715
for percent of step goals met; the parameter values normalized by sample standard
deviation were similar. These magnitudes indicate that for predicting 5% weight loss:
percent weight loss to date is the most important feature and percent of step goals
met is the second most important. Because all parameters are positive, this means
increased weight loss to date and percent of step goals met both lead to increased
likelihood of achieving 5% weight loss.
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A decision tree model (i.e., classification and regression trees or CART) is a sequen-
tial classifier. Each node of the tree partitions a different column of the data to ensure
maximum separation between the two classes, and each leaf of the tree is assigned a
label of 1 or −1. For prediction, data is compared along the nodes of the tree and
then assigned a value that corresponds to the leaf of the final comparison. Computing
the optimal decision tree model is NP-hard, and heuristics are used to construct these
models (Hastie et al., 2009). For our implementation, we used the MATLAB Statistics
and Machine Learning Toolbox to train the decision tree model from the mDPP data.
Our trained decision tree model first branches on the percent of weight lost to date,
with those who lost at least 2.6% being classified to the class which will achieve 5%
weight loss. Next, the model branches on the average amount of exercise goals met,
with those who met at least 84% of their goals being classified as successful and the
remainder as unsuccessful.

A Logistic Regression model specifies a classifier of the form ŷ(x) = 2·1{ 1
1+exp(−β0−x′β)

≥
1
2
}− 1. This probabilistic interpretation of this classifier is that the labels transformed

to {0, 1} follow a Bernoulli distribution with parameter p where log( p
1−p) = β0 + x′β.

Hence if the probability that y = 1 is greater than 0.5 we predict ŷ = 1, and otherwise
we predict ŷ = −1. The problem of training a logistic regression model can be posed
as a convex optimization problem (Hastie et al., 2009) that can be solved by stochas-
tic gradient descent. For our analysis, we used the MATLAB Statistics and Machine
Learning Toolbox to train the logistic regression model. The coefficient for weight lost
to date was 73 and the coefficient for percent of goals met was 0.889. These coefficients
are similar to the SVM coefficients, which is unsurprising since logistic regression can
be interpreted as a continuous relaxation of linear SVM (Hastie et al., 2009).

Adjusting True and False Positive Rate of Predictions

The quality of our models can be evaluated by estimating and comparing the true
and false positive rates of different models. The true positive rate (TPR) specifies
the probability of a model correctly predicting a positive, and the false positive rate
(FPR) quantifies the probability of a model incorrectly predicting a positive. In making
predictions, there is tradeoff between the TPR and FPR. It is customary for practi-
tioners to choose the FPR, and this choice fixes the TPR (Bickel and Doksum, 2006,
Lehmann and Romano, 2006). Choosing the FPR requires an understanding of how
the model is used to make predictions and how parameters in the model impact the
FPR. For instance, we can adjust the FPR of a linear SVM model by choosing the
value of β0. For example, if β0 = −∞, then the prediction will always be −1; sim-
ilarly, if β0 = +∞, then the prediction will always be +1. By choosing intermedi-
ate values for β0, we can adjust the FPR of the model. To specify the FPR of the
Bayesian predictive model, we compute the posterior probability of 5% weight loss
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P(wtf ≤ 0.95w0 | C, W̃ , Ũ) =
∫ 0.95w0

−∞ ψ(wtf | C, W̃ , Ũ) · dwtf and then threshold this at
successively lower levels. This is similar to the standard approach used to choose the
FPR for logistic regression.

Estimating an ROC Curve

It is common to choose the FPR using a receiver operating characteristic (ROC) curve.
An ROC curve explicitly displays the tradeoff between the TPR and FPR. We can esti-
mate such a curve for the various machine learning models and our Bayesian predictive
model both with and without the empirical prior distribution. In particular, we use
leave-one-out cross-validation (Hastie et al., 2009) to estimate each ROC curve. The
idea of this standard approach is that when making the prediction for each individual,
we use a model that was computed using data from everyone excluding the present
individual. The final result is a summation over the predictions for each individual.
The benefit of this approach is we do not use data from a specific individual when
making the prediction for that specific individual.

We estimated an ROC curve for each of the models using leave-one-out cross-
validation, and these ROC curves are shown in Figure 2.4. These ROC curves com-
pare the prediction accuracy for all individuals. The ROC curves have been smoothed
using a binormal model (Metz et al., 1998), and the unsmoothed version of the ROC
curves can be found in Appendix A.5. The results show that our predictive model-
ing framework is competitive in terms of prediction accuracy with the linear SVM,
logistic regression, and decision tree models, which further justifies our choice of the
utility-maximizing framework and its ability to capture “irrational” discounting in the
decision-making of individuals participating in the intervention. Furthermore, our pre-
dictive model with the Bayesian empirical prior makes slightly better predictions than
our predictive model without a Bayesian prior, though the difference in their ROC
curves is not statistically significant (P = 0.16) when compared using a standard hy-
pothesis testing approach developed by Hanley and McNeil (1983). In contrast, the
difference in the ROC curves of our predictive model (with and without the prior) and
the benchmark approaches of linear SVM, logistic regression, and decision tree models
is statistically significant (P = 0.001). Our empirical results suggest that the Bayesian
prior gives a slight improvement for this data set, but this is not expected to generally
hold. Essentially, we expect that using a prior will give improvements in prediction
accuracy when an individual is similar to those individuals used to construct the prior.
On the other had, if an individual is very different from those used to construct the
prior, then we expect the prior to make predictions worse. However, the situation may
be improved with a demographics-dependent prior: We could imagine constructing
different priors for individuals with different demographics. Then when making pre-
dictions for an individual, we could either use a prior constructed by the data of those
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Figure 2.4: ROC curves computed using leave-one-out cross-validation for our predic-
tive model with an empirical Bayesian prior (blue solid), our predictive model without
a Bayesian prior (red dashed), linear SVM model (purple dash dot), decision tree model
(green dashed dot), and logistic regression (cyan dashed) are compared.

with matching demographics, or not use a prior if the individual has very different
demographics than was used to construct any of the priors.

2.6.4 Personalizing Goal Setting Using the Predictive Model

One of our reasons for developing a predictive model is to enable the design of ap-
proaches for optimizing elements of large weight loss programs. In contrast to other
predictive models, our behavioral framework can be used to formulate an optimization
problem to determine the number of visits, timing of visits, and the physical activity
goals for each individual in order to maximize the expected number of individuals that
achieve clinically significant weight loss at the end of the program. It is in this way
that our predictive model has the potential to be used to personalize the weight loss
program for each individual.

Here, we present an example that demonstrates the ability of our model to make
predictions about how future weight loss changes as the step goals for an individual
are changed. Figure 2.5 shows the posterior likelihood of final weight of an individual
conditioned on 50 days of data and on either having 12,000 steps/day goals after 50
days (dash dotted) or having 8,000 steps/day goals after 50 days (solid). When the
goals are 8,000 steps/day, our model predicts a 51% chance of achieving 5% weight loss
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Figure 2.5: Posterior likelihood of final weight of an individual conditioned on 50 days
of data and conditioned on either having 12,000 steps/day goals after 50 days (dash
dotted) or 8,000 steps/day goals after 50 days (solid), and compared to initial weight
(dashed) and final weight corresponding to a 5% weight loss (dotted).

and that the expected final weight conditioned on not achieving 5% weight loss is 86.6
kg. When goals are 12,000 steps/day, our model predicts a 3% chance of achieving
5% weight loss and that the expected final weight conditioned on not achieving 5%
weight loss is 86.8 kg. Our model predicts 8,000 steps/day goals are superior to 12,000
steps/day goals for motivating this individual to increase their physical activity and
consequently lose weight.

The above example shows the possibility of improving weight loss outcomes, and
next we briefly describe how an optimization model can be constructed (based on our
predictive model) to personalize the weight loss program. We will discuss the full
details of these optimization models in Chapter 3, and we have completed a rigorous
clinical trial to experimentally validate the efficacy of our predictive modeling and
optimization framework in a setting where the aim was to only increase the physical
activity of individuals through a mobile phone app (Zhou et al., 2018). Specifically, the
weight loss program can be personalized by first solving our formulation for computing
the MAP estimate of an individual’s type. Next, we solve the problem minwtf subject
to constraints defined by our predictive model and the MAP estimate of the individual’s
type; this problem can be written as a MILP using reformulation techniques similar to
the ones described in this chapter.
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2.6.5 Reducing the Number of Office Visits

Most of the costs and person hours spent on administering weight loss programs are
associated with conducting office visits. Thus, it is essential to be able to optimize
the total number of visits and when they are scheduled. Our model is able to capture
differences in predicted weight loss trajectories that occur when changing the number
of office visits. For instance, Figure 2.6a shows the posterior likelihood of final weight of
an individual conditioned on 50 days of data and on either having no office visits after
50 days (dash dotted) or having 4 office visits after 50 days (solid). When scheduling 4
office visits, our model predicts a 96% chance of achieving 5% weight loss and that the
expected final weight conditioned on not achieving 5% weight loss is 59.3 kg. When
scheduling 0 office visits, our model predicts a 94% chance of achieving 5% weight loss
and that the expected final weight conditioned on not achieving 5% weight loss is 59.3
kg. Our model predicts that for this individual the benefit of scheduling additional
office visits is minor.

Another example is shown in Figure 2.6b, which displays the posterior likelihood
of final weight of another individual conditioned on 50 days of data and on either
having no office visits after 50 days (dash dotted) or having 4 office visits after 50 days
(solid). When scheduling 4 office visits, our model predicts an 18% chance of achieving
5% weight loss and that the expected final weight conditioned on not achieving 5%
weight loss is 78.6 kg. When scheduling 0 office visits, our model predicts a 3% chance
of achieving 5% weight loss and that the expected final weight conditioned on not
achieving 5% weight loss is 78.7 kg. Our model predicts a clinically significant benefit
of scheduling additional office visits for this particular individual.

These two examples demonstrate the ability of our predictive model to identify
which individuals are responsive to office visits, and thus our predictive model can be
combined with an optimization model to reduce the average number of office visits when
considering a large number of individuals participating in a weight loss program. We
briefly describe how an optimization model can be constructed (based on our predictive
model) to reduce the average number of office visits; full details of the corresponding
optimization models are out of the scope of this chapter but will be discussed in Chapter
3. Specifically, we can use a decomposition scheme: In the first step of the scheme, we
vary the total number of office visits for each individual over a range of values, and
we solve the problem minwtf subject to constraints defined by our predictive model,
the MAP estimate of the individual’s type, and the total number of office visits. This
problem can be written as a MILP using reformulation techniques similar to the ones
described in this chapter. In the second step of the scheme, we solve a knapsack-
like problem that allocates the number of office visits to each individual based on the
predicted effectiveness of different numbers of office visits.
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Figure 2.6: Posterior likelihood of final weight of an individual conditioned on 50 days
of data and conditioned on either having no office visits after 50 days (dash dotted)
or having 4 office visits after 50 days (solid), and compared to initial weight (dashed)
and final weight corresponding to a 5% weight loss (dotted).

2.7 Conclusion

We constructed a predictive model of individual behavior in a weight loss intervention,
employing a utility-maximizing framework based on qualitative concepts from social
cognitive theory. MILP formulations were developed to compute (i) parameters of
the framework using MLE, and (ii) a Bayesian predictive model using an empirical his-
togram (constructed using parameters estimated by MLE) as a prior. Model prediction
quality was assessed using leave-one-out cross-validation to compute an ROC curve,
and the results show that the utility-maximizing framework leads to predictions on par
with predictions of a linear SVM model. We concluded by showing how our predictive
model is able to capture differences in weight outcomes as the number of office visits is
varied, and we briefly discussed how these models may be used in designing algorithms
to optimize and personalize office visit schedules and exercise goals.
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Chapter 3

Interventions with Costly and
Infrequent Decisions

3.1 Introduction

The increasing availability of data presents an opportunity to transform the design of
incentives (i.e., costly inputs that are provided to agents to modify their behavior and
decisions) from a single analysis into an adaptive and dynamic process whereby the
incentive design is optimized as new data becomes available. Historically, this adap-
tive setting has been studied under the framework of repeated games (Radner, 1985,
Fudenberg et al., 1994, Laffont and Martimort, 2002), where researchers have focused
on the analysis and identification of structural properties of effective policies, and on
equilibria. In contrast, continuing advances in optimization software and statistical
estimation tools, utilized with the vast amount of data now available in many settings,
enable a new approach that in many circumstances has the potential to lead to practi-
cal tools for designing effective incentives in real-world settings. This approach, which
we call behavioral analytics, is built around a three step framework: first, we develop
a behavioral model that describes the decision-making process of an agent; next, we
iterate repeatedly over two steps as new information is collected. In the second step,
we use data to estimate behavioral model parameters for each agent and then use these
estimates to predict future decisions of each agent; and in the third, we use the esti-
mated behavioral model parameters to optimize a set of costly incentives to provide to
each agent. In this chapter, we describe a specific set of tools, models, and approaches
that fit into this framework, and that adapt models and incentives as new information
is collected while the second and third steps of the framework are repeated.

Specifically, we consider the following discrete-time setting: There is a large pool
of agents each with a set of utility function parameters (which we will refer to as the
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motivational state) and system state at time t, and each agent makes a decision at t by
maximizing a myopic utility function. A single coordinator makes noisy observations
at t of the system states and decisions of each agent, and then assigns behavioral or
financial incentives (e.g., bonuses, payments, behavioral goals, counseling sessions) at
t to a subset of agents. The incentives change the motivational and system states of
assigned agents at time t+ 1, while the motivational and system states of non-assigned
agents evolve at t + 1 according to some dynamics. This process repeats, and time
t advances towards infinity in unit increments. Here, the coordinator’s problem is to
decide what incentives to provide to which agents in order to minimize the coordinator’s
loss function, a function that depends on the system states and decisions of all agents.
This problem is challenging because the motivational states of agents are neither known
nor measured by the coordinator, because agents make decisions by maximizing an
unknown utility function, because measurements are noisy, and because the coordinator
has a fixed budget (over a specified time horizon) from which to allocate incentives.

3.1.1 Potential Applications for Behavioral Analytics

The setting described above is found in many domains, including personalized health-
care, demand response programs, and franchise logistics. Below, we elaborate on these
potential applications of our framework. The first application is the design of a weight
loss program. The coordinator is a clinician and the agents are individuals trying to
lose body weight. The next application is the design of a demand response program
in which the coordinator is an electric utility company and the agents are homeowners
(since they consume electricity). The final application is in decentralized supply chain
management where a manufacturer is a coordinator for a large network of indepen-
dently operated retailers that act as agents.

Weight Loss Programs

In a clinically-supervised weight loss program, a clinician provides two types of be-
havioral incentives to a group of individuals who are trying to lose body weight. The
first type of incentive is behavioral goals provided to each individual by the clinician,
and it is costless when communication costs are negligible, as is the case with mo-
bile phone-delivered programs (Fukuoka et al., 2015). The second type of incentive is
that the clinician can provide a limited amount of counseling to individuals, but this
is costly and the clinician must decide how to allocate a limited budget of counsel-
ing sessions to the entire pool of individuals. For example, the Diabetes Prevention
Program Research Group (2002, 2003, 2009) has shown that such programs lead to a
clinically significant loss of 5-7% body weight on average, which can prevent or delay
the onset of type 2 diabetes with few side effects. However, these programs are difficult
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to design because variations in individual motivational states mean there is not just
one set of optimal behavioral goals and assignment of counseling sessions, but rather
that behavioral goals and the number/timing of counseling needs to be personalized
to individuals’ motivational states to maximize weight loss.

Personalizing the behavioral incentives for each individual can improve efficacy of
weight loss programs and reduce the associated program costs through a reduction
in the average amount of counseling for each individual. Mobile phone technology
is one promising avenue for implementing such personalization, due to its relatively
low cost and pervasiveness among diverse communities (Lopez et al., 2013). Mobile
phones allow clinicians to collect real time health data through use of personal logs and
devices such as accelerometers, which provides noisy measurements of the health state
and decisions of each individual. Randomized controlled trials (RCT’s) have found that
the use of mobile phones can reduce the cost of implementing weight loss programs with
maintaining efficacy (Fukuoka et al., 2015); however, little research to date has explored
how to use the data generated by mobile phones and digital accelerometers in order
to personalize behavioral incentives (Fukuoka et al., 2011, O’Reilly and Spruijt-Metz,
2013, Azar et al., 2013, Pagoto et al., 2013).

Several adaptive methods have been proposed for designing personalized healthcare
treatments, including: multi-armed bandits (Negoescu et al., 2014, Deo et al., 2013,
Bastani and Bayati, 2015a), robust optimization (Bertsimas and O’Hair, 2013), and
dynamic programming (Engineer et al., 2009). One common approach for optimal
treatment design and clinical appointment scheduling has been Markov decision process
(MDP) models (Ayer et al., 2015, Mason et al., 2013, Deo et al., 2013, Kucukyazici
et al., 2011, Leff et al., 1986, Liu et al., 2010, Wang and Gupta, 2011, Gupta and Wang,
2008, Savelsbergh and Smilowitz, 2016). These methods are designed for situations
with infrequent data collection (e.g., only during clinical visits), whereas in weight
loss programs the data is collected daily (or more often) using mobile devices. Our
work develops an approach that can leverage this increased data availability to better
design incentives. Moreover, existing approaches focus either on motivational states
characterizing adherence (Mason et al., 2013) or health states describing prognosis
(Ayer et al., 2012, Deo et al., 2013, Helm et al., 2015, Wu et al., 2013, Negoescu
et al., 2014, Engineer et al., 2009). In contrast, we seek to combine motivational and
health states into a single predictive model that is used for personalizing the weight
loss program.

Demand Response (DR)

DR programs are used by electric utilities to alter homeowners’ electricity usage to
better match electricity generation and reduce peak electricity demand. Utilities in-
centivize homeowners to shift or reduce electricity consumption using price-based pro-
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grams (e.g., time-of-day electricity rates). Utilities also incentivize reduced electricity
consumption through exchange programs in which a homeowner’s inefficient appli-
ances are replaced (for free by the electric utility) with efficient appliances (Palensky
and Dietrich, 2011, Deng et al., 2015). Implementations of such DR programs have
decreased peak electricity demand by almost 10% and have improved the balance be-
tween electricity supply and demand (Lee et al., 2014). However, adverse selection is
a major issue in these programs because incentives are often provided to homeowners
who already have low electricity consumption or already had plans to replace inefficient
appliances.

Better targeting in a DR program may lead to improved efficacy with lower asso-
ciated costs. For example, electric utilities have the capability to send an auditor to
homes to assess what appliance upgrades are needed (PG&E, 2016). Consequently,
an electric utility would be interested in finding the most effective way to schedule its
auditors and set its rebates and tariffs. Homeowner electricity usage data can be col-
lected by the utility in real time using smart electricity meters, and the adoption rate
of these smart electricity meters is increasing in the US (Lee et al., 2014). Moreover,
the two way communication capabilities of smart electricity meters and mobile phones
can be used to communicate billing and incentive information to homeowners (Darby,
2010), which opens the possibility for better targeting of price-based programs and
appliance-replacement programs.

DR programs are often designed using game-theoretic approaches (Saghezchi et al.,
2015, Samadi et al., 2010, 2012), multi-armed bandits (Wijaya et al., 2013), convex op-
timization (Li et al., 2011, Mohsenian-Rad and Leon-Garcia, 2010, Ratliff et al., 2014),
dynamic programming (Jiang and Low, 2011, Costa and Kariniotakis, 2007, Molderink
et al., 2010), and MDP’s (O’Neill et al., 2010, Kim and Poor, 2011). These approaches
commonly assume the electric utility has perfect information on the motivational state
of each homeowner, and that the uncertainty is primarily in electricity generation and
pricing. In contrast, our proposed methodology has the ability to estimate the mo-
tivational state of each homeowner to better design DR programs through improved
targeting of price-based and appliance-replacement incentives. (Existing work also
does not consider the option of the power company to provide rebates for upgrading
inefficient equipment, while our framework can incorporate this scheduling problem.)

Decentralized Supply Chain Logistics

Consider a supply chain in which a single manufacturer is distributing its products
through a network of several retailers that are managed independently of the manufac-
turer, where these retailers can decide on factors such as purchase quantity, inventory,
and product shelf placement. The manufacturer can set incentives as part of a con-
tractual agreement with the retailers in order to maximize their profits and ensure a
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favorable future relationship with the retailers. These incentives can take the form
of different types of promotions such as volume based discounts or reimbursements on
currently stocked inventory in exchange for better shelf placement and larger wholesale
orders from the retailer (Feighery et al., 2003). However, retailers serve heterogeneous
markets, and have heterogeneous resources and managerial priorities. As such, the
manufacturer should take into consideration various retailer-specific parameters when
negotiating contracts to better achieve their goals.

Over the past several decades, many companies have invested in information sharing
programs to aide production planning and retail inventory planning in decentralized
supply chains (Sahin and Robinson, 2002). In particular, sharing of information be-
tween retailers and manufacturers has become easier due to the implementation of
modern point of sale systems and ERP software (Lee and Whang, 2000). However,
while some information is shared, for various reasons the retailer firms may not want
to have perfect information sharing with the manufacturer (Corbett and Tang, 1999).
Therefore the manufacturer could potentially improve their contract design with each
of the retailers by using the data which is shared with them to estimate various un-
known retailer parameters (e.g. local market conditions, internal cost structure, etc.).
Since the contracts are often renegotiated on a quarterly or bi-annual basis, using an
adaptive method for contract design could improve the construction of future contracts.

There is a significant amount of literature on modeling this relationship between
retailers and manufacturers as a repeated Stackelberg game (He et al., 2007). In par-
ticular, several different model dynamics have been considered for various contract
designs such as seasonal demand with the contract quantity being a fixed wholesale
price (Eliashberg and Steinberg, 1987, Desai, 1996) and time varying wholesale cost
contracts (Desai, 1992), and demand that depends on the pricing policy of the retailer
and contracts that include wholesale price and shelf space allocation (He and Sethi,
2008, Gutierrez and He, 2011, Kogan and Tapiero, 2007). The majority of this work
considers models with only a single retail agent, and perfect information sharing be-
tween the retailer and manufacturer. In contrast to these assumptions, the behavioral
analytics framework we consider in this chapter can be seen as an extension of these
models for the case where the manufacturer has imperfect information of retailer spe-
cific information (e.g. internal organization, local market conditions etc.) and must
estimate these unknown factors. Additionally, much of this existing work is focused on
analyzing the equilibrium behavior of these supply chain systems and on characteriz-
ing closed form policies for the optimal contracts. The resulting closed form policies
are thus heavily dependent on the specific dynamics and contract structures used in
each scenario and cannot be easily adapted to changing conditions. In contrast, our
behavioral analytics framework for adaptively designing incentives – which consists
of repeatedly estimating utility functions and then refining the incentives using opti-
mization modeling – is focused on computing a policy which improves as more data is
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collected on the behavior of the retailers. Our framework can be used to analyze a more
general class of contract structures and retailer behavior with additional operational
flexibility at the cost of not having a closed form for the optimal policy.

3.1.2 Literature Review

The behavioral analytics framework we develop in this chapter builds upon existing
literature on data driven and adaptive methods for stochastic optimization. Ban and
Rudin (2016) and Vahn (2015) consider how predictive and data driven models can
be incorporated into inventory management problems, and both parametric and non-
parametric predictive models are used by a decision maker to estimate demand and
compute an optimal reorder policy. These models are constructed to estimate demand
through i.i.d observations; this differs from the setup in this chapter where the obser-
vations are generated by temporal dynamics and are thus not i.i.d. A more general
set of approaches are reinforcement learning and Bayesian optimization (Aswani et al.,
2013, Frazier and Wang, 2016, Osband and Roy, 2015, Osband et al., 2016), which
leverage statistical estimation to compute asymptotically optimal control inputs for
systems with appropriate model structures. However, the relationship between the
computed control inputs and the estimated model is often difficult to interpret because
of the nonparametric nature of the estimation (Breiman et al., 2001). Our approach
offers improved interpretability of the incentives computed by our framework because
we simultaneously generate estimates of the parameters of the utility function (i.e.,
motivational states) for each agent. These estimates provide insights into the resulting
incentive allocations computed by our framework because these parameters usually
have behavioral or financial interpretations (e.g., responsiveness to incentives, produc-
tion efficiency, level of risk aversion).

Our behavioral analytics framework is also related to research that explores stochas-
tic control of multi-agent systems. Related methods include decentralized control (Li
et al., 2012), approximate dynamic programming (Boukhtouta et al., 2011, George and
Powell, 2007), game-theoretic approaches (Adlakha and Johari, 2013, Iyer et al., 2011,
2014, Zhou et al., 2016), and robust optimization (Blanchet et al., 2013, Bertsimas and
Goyal, 2012, Lorca and Sun, 2015). In general, these models consider very different
settings from the ones we consider in this chapter. This body of work studies settings
where the agents can strategically interact with other agents (without the presence of
a coordinator) and where the agents are able to consider long time horizons when mak-
ing decisions. Our setting differs in that we have a single coordinator that provides
incentives to a group of agents that do not interact strategically with other agents,
and where the agents are myopic (meaning they make decisions based on short time
horizons). The three examples of weight loss programs, demand response programs,
and franchise logistics more closely match the setting we consider in this chapter.
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3.1.3 Contributions

Our overall goal in this chapter is to provide tools and approaches that form a spe-
cific implementation of the three steps of a behavioral analytics framework, and our
secondary goal is to give an example that demonstrates how our implementation of
behavioral analytics can be applied to a real-world engineering problem. Recall that
these three steps involve designing a behavioral model, and then repeatedly estimat-
ing the parameters of this behavioral model, and using the estimated parameters to
optimize the incentives provided to each agent. To do this, we first need to identify a
general (and practically useful) class of models that describe agent behavior and can
be incorporated into optimization models for incentive design. This is non-obvious
because incentive design in principle requires solving bilevel programs, precluding the
straightforward use of commercial optimization software packages. We address this by
abstracting and generalizing our earlier work on the development of predictive models
of the behavior of individuals participating in a weight loss program (Aswani et al.,
2016). Given these behavioral models, we design an optimization approach that, rather
than directly solving the relevant bilevel program, is built around formulations that
incorporate the individual behavior model into mathematical programs that can be
solved in a straightforward way with commercial solvers, and that lead to incentives
that are asymptotically optimal as more data is collected. Below, we describe these
contributions in further detail:

First, we develop and analyze an abstract model of agent behavior. This model
consists of a myopic utility function (meaning the agent makes decisions based on a
utility function that depends on states only one time period into the future) and tem-
poral dynamics on the system states and on the parameters of the utility function.
It abstracts and generalizes a predictive model we created in our prior work on be-
havioral modeling for weight loss (Aswani et al., 2016). In addition, we explore (for
the first time) theoretical questions related to statistical consistency of utility function
parameter estimates. Such consistency is important because in order to design opti-
mal incentives we need to be able to correctly estimate the parameters of the utility
functions of each agent, and it was recently shown that not all approaches that have
been proposed for estimating parameters of utility functions are statistically consistent
(Aswani et al., 2018). Here, we provide mixed integer linear programming (MILP)
formulations for estimating the parameters of the utility functions, and we prove these
formulations generate estimates that are statistically consistent.

We also develop novel mathematical programs for incentive design that incorporate
our model for agent behavior, and we prove that the incentives are asymptotically
optimal (in time). Incentive design in principle requires solving a bilevel program, and
the situation is complicated in our setting because the mathematical structure of our
abstract model for agent behavior leads to incentive design problems that consist of
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bilevel mixed integer programs (BMIP’s). BMIP’s are computationally difficult to solve
(Ralphs and Hassanzadeh, 2014, DeNegre and Ralphs, 2009, James and Bard, 1990,
Moore and Bard, 1992) since solution techniques for continuous bilevel programming
(Ahuja and Orlin, 2001, Aswani et al., 2018, Ouattara and Aswani, 2018, Dempe, 2002,
Heuberger, 2004) cannot be used. Consequently, we develop an adaptive two-stage
decomposition algorithm. In the first stage, we solve the coordinator’s problem for each
agent considered individually by estimating the utility function parameters of an agent
by solving a single MILP and then solving a series of MILP sub-problems. The second
stage consists of an integer linear program (ILP) master problem that aggregates the
sub-problem solutions and solves the coordinator’s problem for all agents considered
jointly. We prove this asymptotically designs the optimal incentives.

To evaluate the efficacy of the specific behavioral models, parameter estimation
techniques, and optimization models in our instantiation of a behavioral analytics
framework, we perform computational experiments in the context of goal-setting and
clinical appointment scheduling for individuals participating in a clinically-supervised
weight loss program. The first step of our behavioral analytics approach involves con-
structing a model that describes individuals’ decisions on how much to eat and how
much physical activity (in terms of daily steps) to do – subject to a utility function
that captures the tradeoffs inherent in achieving one-day-ahead weight loss with re-
ducing dietary consumption and increasing physical activity. The second step of our
behavioral analytics approach uses past data for each individual in order to quantify
(for each individual) the tradeoffs captured by the utility function, as well as estimate
the responsiveness of each individual to the incentives of providing physical activity
goals and providing counseling sessions, and the third step of our behavioral analyt-
ics approach uses the behavioral model and estimated parameters to determine what
physical activity goals to provide to each individual and to determine how to allo-
cate a fixed number of counseling sessions to a pool of individuals participating in the
program. These second and third steps are repeated as more data is collected from
each individual. Through a simulation study, we compare personalized treatment plans
computed by our approach with treatment plans computed by an adaptive heuristic,
and we find that our approach performs substantially better than the heuristic. Com-
mon heuristics implicitly assume monotonicity in individuals’ behaviors with respect to
the treatment plan values, while actual behavior (captured by our predictive models)
displays substantial non-monotonicity: For example, losing weight causes individuals
to eat more and exercise less, so the speed of weight loss can impact the final weight
loss outcomes.
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3.1.4 Outline

Section 3.2 describes the first step of our behavioral analytics framework – the devel-
opment of the behavioral model. The model consists of a utility function – describing
how an agent makes decisions – and temporal dynamics on the system states and pa-
rameters of the utility function. We refer jointly to both components of this abstract
model as the behavioral model. Section 3.3 presents approaches for estimating pa-
rameters of this behavioral model using MILP formulations to solve the problems of
maximum likelihood estimation (MLE) and Bayesian inference. We prove that solu-
tions of our MILP formulations provide consistent estimates of the agent’s parameters.
In Section 3.4, we present algorithms for optimizing the incentives provided to agents
by the coordinator. We first present an algorithm based on solving two MILP’s that
allows the coordinator to allocate incentives in the situation where there is only a single
agent with unknown-to-the-coordinator parameters, and we prove that this algorithm
computes incentives that are asymptotically optimal (in the sense of minimizing the
coordinator’s loss function) as time t goes to infinity. Next, we develop a two-stage
decomposition algorithm (building on the single-agent formulation) to solve the coor-
dinator’s problem in a multi-agent setting, and we generalize our proof of asymptotic
optimality to this setting Finally in Section 3.5, we study (via simulation) the effec-
tiveness of our algorithms for designing personalized weight loss treatment plans. Our
results show that treatment plans computed by our behavioral analytics approach could
potentially reduce the cost of running such weight loss programs by as much as 60%
without affecting the efficacy of these programs.

3.2 Predictive Modeling of a Single Myopic Agent

In this section, we present our behavioral model for a single myopic agent. This forms
the first step of our specific implementation of a behavioral analytics framework, and
the key design problem is formulating a predictive model that is amenable to perform-
ing the second and third steps of our behavioral analytics framework of parameter
estimation and incentive optimization. This model is an extension and abstraction of
a behavioral model that was validated in our past work on behavioral modeling for
weight loss (Aswani et al., 2016), in which we used cross-validation (i.e., out-of-sample
comparisons) to perform a data-based validation of the predictive accuracy of our be-
havioral model by comparison to a standard machine learning algorithm for prediction.

Let X ,U ,Π,Θ be compact finite-dimensional sets with X ,U ,Θ convex. We will
refer to the agent’s system states xt ∈ X , motivational states (or type) θt ∈ Θ, and
decisions ut ∈ U at time t. The coordinator provides an incentive (or input) πt ∈ Π
to the agent at time t, and we assume that the motivational states are unknown to
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the coordinator but known to the agent. In our behavioral model, the system and
motivational states are subject to temporal dynamics:

xt+1 = h(xt, ut),

θt+1 = g(xt, ut, θt, πt).
(3.1)

The intuition of the above dynamics is that future system states xt+1 depend on the
current system states xt and decision ut, while future motivational states θt+1 depend
on the current system states xt, decision ut, motivational states θt, and incentives πt.

The agents are modeled to be myopic in the sense that agents make decisions at
time t by considering only their present utility function. We assume the agent’s utility
function belongs to a parametrized class of functions F := {(x, u) 7→ f(x, u, θ, π) : θ ∈
Θ, π ∈ Π}; and the agent’s utility function at time t is f(·, ·, θt, πt). Thus at time t the
agent’s decisions are

ut ∈ argmax {f(xt+1, u, θt, πt) | xt+1 = h(xt, u), u ∈ U}, (3.2)

which means we are assuming the agent has perfect knowledge of xt, θt, πt. This model
says that the agent’s decisions depend on the current system states, motivational states,
and incentives. For notational simplicity, we have assumed each agent has the same f ,
h, g; however, our behavioral analytics framework immediately generalizes to a setting
where these functions are different for each agent. To reflect this in terms of notation,
we would replace these functions with the functions fa, ha, ga for a ∈ A, where A is
the set of agents.

Though the coordinator also has perfect knowledge of the incentives πt, the coor-
dinator can only make noisy observations of past system states and agent decisions:

x̃ti = Dxti + νti ∀i = 0, . . . , nx,

ỹτi = Cuτi + ωτi ∀i = 0, . . . , nu,
(3.3)

where C,D are known output matrices, and xti , uτi are the systems states and agent
decisions generated by (3.1) and (3.2) with initial conditions (x0, θ0) and incentives
(π1, π2, . . .). Here, the sequences {ti}nxi=0 and {τi}nui=0 denote the time instances at which
noisy measurements of the system state and agent’s decisions are made, respectively.
Similarly, nx and nu are the number of measurements of the system state and agent’s
decisions that have been made, respectively. Observe that in our setting the coordinator
has complete information about the temporal dynamics of system and motivational
states, while the state observations are noisy. This is a realistic assumption for many
applications, such as the ones described in the introduction. For instance, we have
recently completed a rigorous clinical trial to experimentally validate the efficacy of
our behavioral analytics framework in a setting where the aim of the coordinator was
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to increase the physical activity of individuals through a mobile phone app (Zhou et al.,
2018). However, some settings may involve scenarios where the temporal dynamics of
system and motivational states are unknown to the coordinator, and our approach
described in this chapter will not be applicable to this more challenging scenario. If
the dynamics are unknown, the coordinator would be required to use an approach such
as reinforcement learning (Aswani et al., 2013, Frazier and Wang, 2016, Osband and
Roy, 2015, Osband et al., 2016), but the disadvantage of reinforcement learning is that
its convergence rate in time to the optimal policy will be slower because of the need
to estimate dynamics. Interpreted in this way, our work develops an approach that
lies between deterministic optimization with complete information and reinforcement
learning in terms of the information known about the overall system.

For our subsequent optimization modeling and theoretical analysis, we make the
following assumptions about this behavioral model:

Assumption 3.1. The sets X ,U ,Π,Θ are bounded and finite-dimensional. Moreover,
the sets X ,U ,Θ are convex polyhedra described by a finite number of linear inequalities,
and Π can be described by a finite number of mixed integer linear constraints.

This mild assumption ensures that states, decisions, and inputs are bounded; that
the range of possible values for states and inputs are polytopes; and that the set of
possible incentives is representable by mixed integer linear constraints.

Assumption 3.2. The function f : X × U ×Θ× Π→ R is deterministic, concave in
x, strictly concave in u, and concave in θ; moreover, f can be expressed as

f(x, u, θ, π) = −(x;u)T ·Q · (x;u) + (θ; π)T ·H · (x;u)

+
K∑
i=1

min
j∈Ji
{Fi,j · (x;u; θ; π) + ζi,j}, (3.4)

where Q is a positive semidefinite matrix, the Fi,j, H are matrices of appropriate dimen-
sion, the ζi,j are scalars, K is a positive scalar corresponding to the number of piecewise
linear components, and the Ji are sets of indices where each index corresponds to a
particular linear function which forms the piecewise linear component i.

Strict concavity in u ensures argmaxu∈U f(x, u, θ, π) is singleton for all (x, θ, π) ∈
X ×Θ×Π, and the concavity assumptions also model diminishing returns and ensure
ut is polynomial-time computable by the agent (Brock and Wartman, 1990, Gafni,
1990, Cawley, 2004). The specific form of f , a combination of concave quadratic and
piecewise linear terms, is useful for modeling as it allows for a rich family of functions
that in practice can be used to approximate various possible utility functions, while
also ensuring that the states can be estimated using a MILP.
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Assumption 3.3. The functions h : X × U → X and g : X × U × Θ × Π → Θ are
deterministic surjective functions of the form

h(x, u) = Ax+Bu+ k

g(x, u, θ, π) = Gi · (x;u; θ; π) + ξi when Bi · (x;u; θ; π) ≤ ψi
(3.5)

where A,B,Gi, Bi are matrices; γi, ψi, k are vectors; ξi are scalars; and the interiors of
the polytopes Bi · (x;u; θ; π) ≤ ψi are disjoint.

This condition on h, g allows us to formulate problems of statistical estimation as
a MILP. The specific form of h (i.e., a linear function) and g (i.e., a piecewise linear
function) is useful for modeling as it allows for a rich family of functions that in practice
can be used to approximate various possible dynamics, while also ensuring that the
states can be estimated using a MILP.

Assumption 3.4. The {νti}nxi=0 and {ωτi}nui=0 from the measurement noise model (3.3)
are sequences of i.i.d random vectors with i.i.d components with zero mean and (known)
finite variance. Moreover, the logarithm of their probability density functions can be
expressed using integer linear constraints and integer linear objective terms.

This means Eωτi = Eνti = 0 and E(νti)
2
j = σ2

ν < ∞ and E(ωτi)
2
j = σ2

ω < ∞ with
known σ2

ν , σ
2
ω. Furthermore, the density functions can be reformulated so that the

estimation problem is amenable to MILP solvers. Examples of noise distributions sat-
isfying the integer linear representability assumption include the Laplace distribution,
the shifted exponential distribution, and piecewise linear distributions. This assump-
tion can be relaxed to requiring integer quadratic representability (such as is the case
for Gaussian distributed noise), and the subsequent results change in that the opti-
mization formulations become MIQP’s, rather than the MILP’s that occur with the
above assumption.

Assumption 3.5. The discrete-time system with temporal dynamics (3.1) and (3.2)
and measurement model (3.3) is observable (i.e., there exists a T and sequence πt
such that (x0, θ0) can be exactly computed if the measurements from 0 ≤ t ≤ T are
noiseless).

This last assumption is an identifiability condition (Bickel and Doksum, 2006),
meaning that different initial conditions (x0, θ0) on the agent’s system and motiva-
tional states produce different sequences of measurements and states, and this is a
common assumption for control systems (Callier and Desoer, 1994). This assumption
is equivalent to assuming that exact knowledge of the current state completely charac-
terizes all past and future states (Callier and Desoer, 1994), and it is a frequently-made
assumption because it ensures enough predictability in the state trajectories so that
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theoretical results can be proved. However, in some real applications it may be that as
time proceeds, the impact of the initial condition of the state may become more neg-
ligible. In such cases, a common heuristic known as a “forgetting factor” (Fortescue
et al., 1981, Dasgupta and Huang, 1987, Nelles, 2001, Leung and So, 2005) is often
used. This heuristic modifies the optimization problem that is solved to perform state
estimation by placing an exponentially-decaying-in-time weight on older data. It is in
this way that the “forgetting factor” heuristic emphasizes more recent measurements
and allows the estimation to become less sensitive to the initial condition. Though
theoretical results can sometimes be proved for frameworks with a “forgetting factor”,
we do not consider this extension here because it requires substantial additional anal-
ysis that is beyond the scope of this chapter. The second assumption is common for
utility functions (Brock and Wartman, 1990, Gafni, 1990, Cawley, 2004). The third
assumption says the system state dynamics are linear, and that the motivational state
dynamics are piecewise affine, which are common models for control systems (Callier
and Desoer, 1994, Mignone et al., 2000, Aswani and Tomlin, 2009). We believe all
five assumptions are satisfied by agents in the three examples of weight loss programs,
demand response programs, and decentralized supply chain management. Section 3.5
provides a behavioral model for agents in a weight loss program that satisfies our above
assumptions, and we conclude that section with a computational study where we solve
the coordinator’s problem for a weight loss program.

3.3 Estimating Model Parameters

In this section, we explore how the coordinator can estimate the agent’s initial states
(x0, θ0), and predict the agent’s future behavior for a fixed policy π. We refer to these
states (x0, θ0) as the agent model parameters (not to be confused with the structural
parameters of the model: f, g, and h) since by Assumptions 3.1–3.5 these values com-
pletely characterize the behavior of the system and are not fully known to the coordina-
tor. This forms the second step of our implementation of a behavioral analytics frame-
work, and we leverage the mathematical structure of the behavioral model described in
Section 3.2 to construct techniques and methods for estimation and prediction. This
second step is important because the estimated parameters of the behavioral model
and subsequent predictions of future agent behavior are used to optimize incentives in
the third step of our behavioral analytics approach. We will assume the coordinator
makes noisy and partial observations – according to the measurement model (3.3) – of
the agent’s state and decisions for n time periods (with some missing observations).
In Section 3.3.1, we present a Maximum Likelihood Estimation approach to estimate
the agent’s initial system states and motivational states. In Section 3.3.2, we consider
a setting in which the coordinator has some prior knowledge about the possible values

50



of the motivational states, and consider a Bayesian setting.

3.3.1 Maximum Likelihood Estimation

Let {x̃ti}nxi=0 denote the process of the state observations, and let {ỹτi}nui=0 denote the
process of the behavior observations.

Our approach to estimating the agent’s initial parameters will be to compute esti-
mates (x̂0, θ̂0) ∈ argmin(x0,θ0)∈X×Θ L(x0, θ0, {x̃ti}nxi=0, {ỹτi}

nu
i=0; π) by minimizing an ap-

propriately chosen loss function L. More specifically, we use the approach of Maximum
Likelihood Estimation (MLE), which is equivalent to choosing a loss function that cor-
responds to the negative likelihood. Let pν , pω be the density functions of νti , ωτi ; then
the joint likelihood function of (θ0, x0) for a fixed π is

L(x0, θ0, {x̃ti}nxi=0, {ỹτi}
nu
i=0, π) = p({x̃ti}nxi=0, {ỹτi}

nu
i=0|θ0, x0, π)

=
nx∏
i=0

pν(x̃ti −Dxti)
nu∏
j=0

pω(ỹτj − Cuτj)
(3.6)

Thus the coordinator’s estimation problem is given by the following:

(x̂0, θ̂0) ∈ argmax
{(xt,θt,ut)}Tt=0

nx∑
i=0

log pν(x̃ti −Dxti) +
nu∑
j=0

log pω(ỹτj − Cuτj)

s.t.
ut ∈ argmaxf(xt+1, u, θt, πt)

s.t. xt+1 = h(xt, u), u ∈ U
0 ≤ t ≤ T − 1,

θt+1 = g(xt, ut, θt, πt) 0 ≤ t ≤ T − 1,

xt ∈ X , θt ∈ Θ 0 ≤ t ≤ T.

(3.7)

Problem (3.7) is a bilevel optimization problem because the ut are minimizers of
f(xt+1, ·, θt, πt), and such bilevel problems frequently arise in the context of estimating
utility functions (Keshavarz et al., 2011, Bertsimas et al., 2014, Aswani et al., 2018).
We note that the constraints are in effect for all t and not simply for the values where
observations are collected, which ensures that the optimization problem can account
for missing observations by imputing parameter values using the model dynamics. For
the setting we consider in this chapter, we show that the bilevel program for MLE (3.7)
can be exactly reformulated as a MILP.

Proposition 3.1. If Assumptions 3.1–3.5 hold; then the feasible region of (3.7) can
be formulated as a set of mixed integer linear constraints with respect to (xt, ut, θt, πt).

The full proof for this proposition can be found in Appendix B.1 but here we
will provide some intuition for this proof. First we note that by Assumption 3.3 the
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constraints θt+1 = g(xt, ut, θt, πt) can be linearized using a big M formulation and the
additions of binary variables ιi that indicate whether the parameters are contained
in polytopes Bi · (x;u; θ; π) ≤ ψi. For the remainder of the proof, we show that
the optimality set of f(x, u, θ, π) can be expressed as a set of mixed integer linear
constraints. Using assumptions 3.2 and 3.3, we can reformulate this optimization
problem as a constrained convex quadratic program with a strictly concave objective
in ut. This means that the first order KKT conditions are both necessary and sufficient
to describe ut as the maximizer of f , and these conditions can be written in a mixed
integer linear form.

An important consequence of this proposition is that it is possible to compute the
global solution of the MLE problem (3.7) using standard optimization software.

Corollary 3.2. If Assumptions 3.1–3.5 hold, then the MLE problem (3.7) can be
expressed as a MILP.

Remark 3.1. If the logarithm of the noise densities can be expressed using integer
quadratic constraints (e.g., Gaussian distributions), then the MLE problem (3.7) can
be expressed as a MIQP.

3.3.2 Bayesian Estimation

Solving the MLE problem (3.7) gives an estimate of the agent’s initial system states and
motivational states, which completely characterize the agent. However, the coordinator
often has some prior knowledge about the possible values of the motivational states.
In such a case, a Bayesian framework is a natural setting for making predictions of the
agent’s future system states.

Suppose the coordinator has interacted with the agent over T time periods, has
measured {x̃ti}nxi=0, {ỹτi}

nu
i=0 with Tnx , Tnu ≤ T , and wants to predict the agent’s fu-

ture states and decisions {xi, θi, ui}T+n
i=T for some n > 0 time steps into the future. In

principle, this means the coordinator wants to calculate the posterior distribution of
{xi, θi, ui}T+n

i=T . But (x0, θ0) completely characterize the agent in our model (recall As-
sumption 3.5 states that distinct initial conditions produce different state and decision
trajectories), and so we can predict the agent’s future states and decisions using the
posterior distribution of (x0, θ0). Hence we focus on computing the posterior of (x0, θ0).
A direct application of Bayes’s Theorem (Bickel and Doksum, 2006) gives

p(x0, θ0|{x̃ti}nxi=0, {ỹτi}
nu
i=0, {πi}T+n

i=0 ) =

Z−1 × p({x̃ti}nxi=0, {ỹτi}
nu
i=0|x0, θ0, {πi}T+n

i=0 )× p(x0, θ0). (3.8)

Here Z is a normalization constant that ensures the right hand side is a probability
distribution, and p(x0, θ0) reflects the coordinator’s prior beliefs. We begin with an
assumption on p(x0, θ0).
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Assumption 3.6. The function log p(x0, θ0) can be expressed using a finite number
of mixed integer linear constraints, and p(x0, θ0) > 0 for all (x0, θ0) ∈ X ×Θ.

This is a mild assumption because it holds for the Laplace distribution, the shifted
exponential distribution, and piecewise linear distributions. Significantly, it is true
when the prior distribution p(x0, θ0) is an empirical histogram with data in each his-
togram bin (Aswani et al., 2016).

Next, we describe an optimization approach to computing the posterior distribution
of (x0, θ0). Consider the following feasibility problem for fixed initial conditions (x̄0, θ̄0):

ψT (x̄0, θ̄0) = log p(x0 = x̄0, θ0 = θ̄0|{x̃ti}nxi=0, {ỹτi}
nu
i=0, {πi}T+n

i=0 ) + logZ

= max
{(xt,θt,ut)}Tt=0

nx∑
i=0

log pν(x̃ti −Dxti) +
nu∑
j=0

log pω(ỹτj − Cuτj) + log p(x0, θ0)

s.t.
ut ∈ argmaxf(xt+1, u, θt, πt)

s.t. xt+1 = h(xt, u), u ∈ U
0 ≤ t ≤ T − 1,

θt+1 = g(xt, ut, θt, πt) 0 ≤ t ≤ T + n− 1,

x0 = x̄0, θ0 = θ̄0,

xt ∈ X , θt ∈ Θ 0 ≤ t ≤ T + n.

(3.9)

The above problem is almost the same as the MLE problem (3.7), with the only
differences that the above has additional constraints x0 = x̄0, θ0 = θ̄0 and an additional
term in the objective log p(x0, θ0). Thus we have that the above problem (3.9) can be
expressed as a MILP or MIQP.

Corollary 3.3. If Assumptions 3.1–3.6 hold, then (3.9) can be formulated as a MILP.

Remark 3.2. Under appropriate relaxed representability conditions on the noise dis-
tributions and the prior distribution, the problem (3.9) can be formulated as a MIQP.

Solving (3.9) does not directly provide the posterior distribution of (x0, θ0) be-
cause Z is not known a priori, though it can be computed using numerical integra-
tion. (See for instance the approach by Aswani et al. (2016).) But since Z only
scales the posterior estimate, we instead propose a simpler scaling. Let (x̂0,T , θ̂0,T ) ∈
argmax(x0,θ0) ψT (x0, θ0) be the maximum a posteriori (MAP) estimates of the initial
conditions, and note that the above corollaries apply to the computation of the MAP
because the corresponding optimization problem for computing the MAP is simply
(3.9) but with the constraints x0 = x̄0, θ0 = θ̄0 removed. We propose using

p̂(x0, θ0|{x̃ti}nxi=0, {ỹτi}
nu
i=0, {πi}Ti=0) =

exp(ψT (x0, θ0))

exp(ψT (x̂0,T , θ̂0,T ))
(3.10)
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as an estimate of the posterior distribution of (x0, θ0). Two useful properties of our
estimate are that p̂(x0, θ0|{x̃ti}nxi=0, {ỹτi}

nu
i=0, {πi}Ti=0) ∈ [0, 1] by construction, and that

p̂(x̂0,T , θ̂0,T |{x̃ti}nxi=0, {ỹτi}
nu
i=0, {πi}Ti=0) = 1 by construction. We will show this estimate

is statistically consistent in a Bayesian sense (Bickel and Doksum, 2006):

Definition The posterior estimate (3.10) is consistent if for all (x∗0, θ
∗
0) ∈ X × Θ

and ε, δ > 0 we have p(x∗0,θ
∗
0)(p̂(E(δ)|{x̃ti}nxi=0, {ỹτi}

nu
i=0, {πi}Ti=0) ≥ ε) → 0 as T → ∞,

where p(x∗0,θ
∗
0) is the probability law under (x∗0, θ

∗
0), E(δ) = {(x0, θ0) /∈ B(x∗0, θ

∗
0, δ)}, and

B(x∗0, θ
∗
0, δ) is an open δ ball around (x∗0, θ

∗
0).

The meaning of this definition is that if (x∗0, θ
∗
0) are the true initial conditions of the

agent, then a consistent posterior estimate is such that it collapses until all probability
mass is on the true initial conditions. Statistical consistency of (3.10) also needs an
additional technical assumption:

Assumption 3.7. Let (x∗0, θ
∗
0) be the agent’s true initial conditions. The incentives πt

are such that

max
E(δ)

lim
T→∞

nx∑
i=0

log
pν(x̃ti −Dxti)
pν(x̃ti −Dxti)

+
nu∑
j=0

log
pω(ỹτj − Cuτj)
pω(ỹτj − Cuτj)

= −∞ (3.11)

for any δ > 0, almost surely, where xt, ut are the states and decisions under initial con-
ditions (x∗0, θ

∗
0), and xt, ut are the states and decisions under initial conditions (x0, θ0).

This type of assumption is common in the adaptive control literature (Craig et al.,
1987, Astrom and Wittenmark, 1995), and is known as a sufficient excitation or a
sufficient richness condition. It is a mild condition because there are multiple ways
of ensuring this condition holds (Bitmead, 1984, Craig et al., 1987, Astrom and Wit-
tenmark, 1995). One simple approach (Bitmead, 1984) is to compute an input πt and
then add a small amount of random noise (whose value is known since it is generated
by the coordinator) to the input before applying the input to the agent.

Proposition 3.4. If Assumptions 3.1–3.7 hold, then the estimated posterior distri-
bution denoted by p̂(x0, θ0|{x̃ti}nxi=0, {ỹτi}

nu
i=0, {πi}Ti=0) and given in (3.10) is consistent.

The full proof of this proposition can be found in Appendix B.1 but here we will
provide some intuition for the proof. First suppose that the true initial conditions of
the system (x∗0, θ

∗
0) are known. If this is the case then the log of the posterior likelihood

of having any other initial conditions (x0, θ0) can be expressed as the posterior likeli-
hood of the initial conditions minus the log likelihood ratio between the distribution
generated by (x∗0, θ

∗
0) and (x0, θ0). Since the ratio of the prior distributions is constant,
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and the posterior likelihood of (x∗0, θ
∗
0) is between 0 and 1, we observe that these terms

are negative. This means the remaining terms follow the form of Assumption 3.6,
and by this assumption this implies that for any δ > 0 the posterior likelihood of any
(x0, θ0) that are not within a δ ball of (x∗0, θ

∗
0) approaches zero. Hence it follows that

this posterior likelihood estimate is consistent.

Corollary 3.5. If Assumptions 3.1–3.7 hold, then (x̂0,T , θ̂0,T )
p→ (x∗0, θ

∗
0) as T →∞.

A full proof of this corollary can be found in Appendix B.1 but here we will provide
some intuition for this proof. First we consider the event that the MAP estimator
(x̂0,T , θ̂0,T ) is not within a δ ball around (x∗0, θ

∗
0) for some δ > 0. This event is contained

in the event that the largest value of the posterior likelihood outside this δ ball is
greater then the largest value of the posterior likelihood inside the ball. However, by
Proposition 3.4 we see that the posterior probability measure must concentrate about
(x∗0, θ

∗
0) for the probability law p(x∗0,θ

∗
0). This means that as T →∞, the probability of

the maximum being outside B(x∗0, θ
∗
0, δ) approaches zero thus completing the proof.

The above two results imply that future agent behavior can be reasonably predicted
using the MAP parameters. Recall that calculating the MAP can be formulated as
a MILP or MIQP, since the corresponding optimization problem is (3.9) with the
constraints x0 = x̄0, θ0 = θ̄0 removed.

3.4 Optimizing Incentives

The final step of our behavioral analytics framework involves using estimates of be-
havioral model parameters for each agent to optimize the design of costly incentives
provided to the agents by the coordinator. In Section 3.4.1, we develop an algorithm
for the single agent case. In Section 3.4.2, we use this single-agent algorithm as a
sub-problem in the multi-agent case. In both cases, we show that our algorithms are
asymptotically optimal (as time continues and more data is collected) with respect to
the coordinator’s loss function when the agents behave according to the model con-
structed in Section 3.2. The two algorithms we present in fact combine the second and
third steps of our framework by first applying the parameter estimation algorithms
(described in Section 3.3) that comprise the second step, and then optimizing incen-
tives. The benefit of combining the second and third steps into a single algorithm is
that this makes it easier to recompute the incentives as more data is collected over
time from each agent.

3.4.1 Optimizing Incentives for a Single Agent

Consider the problem of designing optimal incentives for a single agent at time T by
choosing {πi}T+n

i=T+1 ∈ Πn to minimize a bounded loss function ` : X n × Un → R of
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the agent’s system states and decisions over the next n time periods. In this and
subsequent sections, we use the notation ` instead of L for the loss functions in order
to signify that we are interested in a function of the decision maker’s policy and not
an estimation loss. We consider losses of a fairly general form:

Assumption 3.8. The loss function ` can be described by mixed integer linear con-
straints and mixed integer linear objective terms.

As in the previous section, this assumption assures that ` can be expressed in a
form that can be used with a MILP solver. Since the coordinator only has noisy and
incomplete observations of the agent’s system states and decisions {x̃ti}nxi=0, {ỹτi}

nu
i=0,

one design approach is to minimize the expected posterior loss

min
{
E[`({xt, ut}T+n

t=T+1)|{x̃ti}nxi=0, {ỹτi}
nu
i=0, {πi}Ti=0]

∣∣∣ {πi}T+n
i=T+1 ∈ Πn

}
. (3.12)

However, recalling our previous discussion, the agent’s behavior is completely charac-
terized by the initial conditions (x0, θ0), and so by the sufficiency and the smoothing
theorem (Bickel and Doksum, 2006), there exists ϕ : X × Θ × Πn 7→ R such that the
design problem can be exactly reformulated as

min
{
E[ϕ(x0, θ0, {πi}T+n

i=0 )|{x̃ti}nxi=0, {ỹτi}
nu
i=0, {πi}Ti=0]

∣∣∣ {πi}T+n
i=T+1 ∈ Πn

}
. (3.13)

Calculating this expectation is difficult because the posterior distribution of (x0, θ0)
does not generally have a closed form expression. In principle, discretization approaches
from scenario generation (Kaut and Wallace, 2003) could be used to approximate the
design problem as

min
{∑M

i=1 ϕ(xi,0, θi,0, π) exp(ψT (xi,0, θi,0; π))∑M
i=1 exp(ψT (xi,0, θi,0; π))

∣∣∣ {πi}T+n
i=T+1 ∈ Πn

}
. (3.14)

where (xi,0, θi,0) is an exhaustive enumeration of X × Θ. This approximation (3.14)
is still challenging to solve because the objective has a fractional, nonconvex form,
and ψT is defined as the value function of a MILP, meaning that it does not have
an easily computable closed form expression (Ralphs and Hassanzadeh, 2014). This
means (3.14) is a Bi-level Mixed Integer Program (BMIP) with lower level problems
that are MILP’s. This is a complex class of optimization problems for which existing
algorithms can only solve small problem instances (James and Bard, 1990, Moore and
Bard, 1992, DeNegre and Ralphs, 2009).

In this section, we develop a practical algorithm for optimizing incentives for a
single agent. We first summarize our algorithm, and show it only requires solving two
MILP’s. Next we prove this algorithm can be interpreted as solving an approximation
of solving either (3.12) or the optimal incentive design problem under perfect noiseless
information. More substantially, we also show that our algorithm provides a set of
incentives that are asymptotically optimal as time advances.
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Two Stage Adaptive Algorithm (2SSA)

Algorithm 1 summarizes our two stage adaptive approach (2SSA) for designing optimal
incentives for a single agent. The idea of the algorithm is to first compute a MAP
estimate of the agent’s initial conditions, use the MAP estimate as data for the first two
arguments of ϕ, and then minimize ϕ. In fact, we can solve this minimization problem
without having to explicitly compute ϕ. Because ϕ is defined as the composition of
the agent’s dynamics with initial conditions (x0, θ0) and the coordinator’s loss function
`, it can be written as the value function of a feasibility problem:

ϕ(x0, θ0, {πi}T+n
i=0 ) =

min
{(xt,θt,ut,πt)}T+n

t=0

`({xt, ut}T+n
t=T+1)

s.t.
ut ∈ argmaxf(xt+1, u, θt, πt)

s.t. xt+1 = h(xt, u), u ∈ U
0 ≤ t ≤ T + n− 1,

θt+1 = g(xt, ut, θt, πt) 0 ≤ t ≤ T + n− 1,

xt ∈ X , θt ∈ Θ, πt ∈ Π 0 ≤ t ≤ T + n,

x0 = x0, θ0 = θ0, πt = πt 0 ≤ t ≤ T.

(3.15)

More importantly, the problem of minimizing this ϕ can be formulated as a MILP.

Corollary 3.6. If Assumptions 3.1–3.8 hold, then ϕ(x0, θ0, {πi}T+n
i=0 ) is lower semicon-

tinuous in x0, θ0, {πi}T+n
i=T+1, and the optimization problem given by min{ϕ(x0, θ0, {πi}T+n

i=0 )

| {πi}T+n
i=T+1 ∈ Πn} can be formulated as a MILP for all fixed values of (x0, θ0, {πi}Ti=0) ∈

X ×Θ× ΠT+1.

The full proof of this corollary can be found in Appendix B.1 but here we will provide
some intuition for the proof of the proposition. First we note that by Proposition 3.1
the feasible region of (3.15) can be expressed as a set of mixed integer linear constraints.
Hence ϕ(x0, θ0, {πi}T+n

i=0 ) is the value function of a MILP in which x0, θ0, πt belong to
an affine term, and is thus lower semicontinuous. The second result of the proposition
follows by noting that the desired optimization problem is equivalent to (3.15) with
the removal of the constraints πt = πt for t = T +1, . . . , T +n. Hence the result follows
by the assumptions and Proposition 3.1.

Asymptotic Optimality of 2SSA

The next result provides the underlying intuition of 2SSA. In particular, we are ap-
proximating E[ϕ(x0, θ0, {πi}T+n

t=0 )|{x̃ti}nxi=0, {ỹτi}
nu
i=0, {πi}Ti=0] using ϕ(x̂0,T , θ̂0,T , {πi}T+n

i=0 ),
and both these functions are converging to ϕ(x∗0, θ

∗
0, {πi}T+n

t=0 ).
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Algorithm 1 Two Stage Single Agent Algorithm (2SSA)

Require: {x̃ti}nxi=0, {ũτi}
nu
i=0, {πi}Ti=0

1: compute (x̂0,T , θ̂0,T ) ∈ arg max(x0,θ0) ψT (x0, θ0)

2: return π2SSA(T ) ∈ arg min{ϕ(x̂0,T , θ̂0,T , {πi}T+n
i=0 ) | {πi}T+n

i=T+1 ∈ Πn}

Proposition 3.7. Suppose that Assumptions 3.1–3.8 hold. Then as T →∞ we have
that: E[ϕ(x0, θ0, {πi}T+n

t=0 )|{x̃ti}nxi=0, {ỹτi}
nu
i=0, {πi}Ti=0]

p→ ϕ(x∗0, θ
∗
0, {πi}T+n

t=0 ) for all fixed

{πi}T+n
i=0 ; and ϕ(x̂0,T , θ̂0,T , {πi}T+n

t=0 )
l-prob−−−→

Πn
ϕ(x∗0, θ

∗
0, {πi}T+n

t=0 ). Here, Λn
l-prob−−−→
X

Λ means

random function Λn : X → R is a lower semicontinuous approximation to function
Λ : X → R (Vogel and Lachout, 2003a).

We provide a full proof of this proposition in Appendix B.1 but here we will provide
some intuition for the proof. For the first result, we note that since the posterior
distribution p(x0, θ0|{x̃ti}nxi=0, {ỹτi}

nu
i=0, {πi}Ti=0) is consistent this means that in the limit

it becomes a degenerate distribution centered at (x∗0, θ
∗
0). Then the first result follows

by applying this fact in combination with the dominated convergence theorem. The
second result follows by an application of Corollary 3.5 and Corollary 3.5. Essentially,
since the MAP estimates are consistent and φ is lower semicontinuous, then the result
follows by using Proposition 2.1.ii of (Vogel and Lachout, 2003b).

If the coordinator had perfect knowledge of the agent’s true initial conditions
(x∗0, θ

∗
0), then the optimal incentives are arg min{ϕ(x∗0, θ

∗
0, {πi}T+n

i=0 ) | {πi}T+n
i=T+1 ∈ Πn}.

But since we do not know the initial conditions, the above result shows that both (3.12)
and arg min{ϕ(x̂0,T , θ̂0,T , {πi}T+n

i=0 ) | {πi}T+n
i=T+1 ∈ Πn} are reasonable approximations.

In fact, we can show a stronger result for the solution generated by 2SSA.

Theorem 3.8. Note that arg min{ϕ(x∗0, θ
∗
0, {πi}T+n

i=0 )|{πi}T+n
i=T+1 ∈ Πn} is the set of

optimal solutions under the agent’s true initial conditions (x∗0, θ
∗
0). If Assumptions

3.1–3.8 hold, then we have that

dist
(
π2SSA(T ), arg min{ϕ(x∗0, θ

∗
0, {πi}T+n

i=0 ) | {πi}T+n
i=T+1 ∈ Πn}

)
p→ 0 (3.16)

as T →∞, for any π2SSA(T ) returned by 2SSA. Note dist(x,B) = infy∈B‖x− y‖.

The full proof of this theorem can be found in Appendix B.1, but here we will
provide some intuition for the proof. This result follows by applying Proposition 3.7
and Theorem 4.3 from (Vogel and Lachout, 2003a).

This result suggests that any solution returned by 2SSA is asymptotically included
within the set of optimal incentives computed for the agent’s true initial conditions.
Restated, the result says 2SSA provides a set of incentives that are asymptotically
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optimal. This is a non-obvious result because in general pointwise-convergence of a
sequence of stochastic optimization problems is not sufficient to ensure convergence
of the minimizers of the sequence of optimization problems to the minimizer of the
limiting optimization problem. Rockafellar and Wets (2009) provide an example in
their Figure 7–1 that demonstrates this possible lack of convergence of minimizers.

3.4.2 Policy Calculation With Multiple Agents

We next study the general setting where the coordinator designs incentives for a large
group of agents. We let A be the set of agents, and the quantities corresponding to a
specific agent a ∈ A are denoted using subscript a. Now suppose that at time T the
coordinator measures {x̃ati}

nax
i=0, {ỹaτi}

nau
i=0 for all agents a ∈ A. One approach to designing

incentives is by solving:

min
{
E[Φ(xa0, θ

a
0 , {πai }T+n

i=0 for a ∈ A)|{x̃ati}
Tax
i=0, {ỹaτi}

Tau
i=0, {πai }Ti=0 for a ∈ A]

∣∣∣
{{πai }T+n

i=T+1 for a ∈ A} ∈ Ω
}

(3.17)

Here, Φ : X#A × θ#A × Ω → R is a joint loss function that depends on the behavior
of all agents. For the settings we are interested in, this loss function has a separable
structure.

Assumption 3.9. Loss Φ is additively Φ(xa0, θ
a
0 , {πai }T+n

i=0 for a ∈ A) =
∑

a∈A ϕ
a(xa0, θ

a
0 , {πai }T+n

i=0 )
or multiplicatively separable Φ(xa0, θ

a
0 , {πai }T+n

i=0 for a ∈ A) =
∏

a∈A ϕ
a(xa0, θ

a
0 , {πai }T+n

i=0 ).

Without loss of generality, we assume Φ is additively separable since we can obtain
similar results for the case of multiplicative separability by taking the logarithm of Φ.
We also make an assumption that states Ω is decomposable in a simple way.

Assumption 3.10. There exist a finite set V = {v1, v2, . . .} with vector-valued, sets
Sv ⊆ Πn for v ∈ V , and a vector-valued constant β such that

Ω =
{
{πai }T+n

i=T+1 for a ∈ A : yav ∈ {0, 1},
∑

v∈V y
a
v = 1 for a ∈ A,

∑
a∈A

∑
v∈V v·yav ≤ β

{πai }T+n
i=T+1 ∈ Sv if yav = 1

}
. (3.18)

Moreover, the sets Sv are compact sets that are representable by a finite number of
mixed integer linear constraints.

The underlying idea of this assumption is that the set V describes a vector of
discrete elements that can be used as incentives, and β is the vector-valued budget on
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Algorithm 2 Adaptive Behavioral Multi-Agent Algorithm (ABMA)

Require: {x̃ati}
nax
i=0, {ũaτi}

nau
i=0, {πai }Ti=0 for a ∈ A

1: for all a ∈ A do
2: compute (x̂a0,T , θ̂

a
0,T ) = argmax(x0,θ0) ψT (x0, θ0)

3: for all v ∈ V do
4: set πav ∈ arg min{ϕa(x̂0,T , θ̂0,T , {πi}T+n

i=0 ) | {πi}T+n
i=T+1 ∈ Sv}

5: set φav = ϕa(x̂a0,T , θ̂
a
0,T , π

a
v)

6: end for
7: end for
8: compute y := {yav : a, v ∈ A× V}:

y ∈ argmin
∑

a∈A
∑

v∈V φ
a
v · yav

s.t.
∑

a∈A
∑

v∈V v · yav ≤ β∑
v∈V y

a
v = 1 for a ∈ A

yav ∈ {0, 1} for a, v ∈ A× V

9: for all a ∈ A and v ∈ V do
10: set πaABMA(T ) = πav if yav = 1
11: end for
12: return πaABMA(T ) for a ∈ A

the discrete incentives. When the discrete incentives are fixed at v, the set Sv keeps
the discrete incentives fixed and describes the feasible set of continuous incentives.

Even with these assumptions on separability and decomposibility, solving (3.17) is
difficult because it is a BMIP with #A MILP’s in the lower level. Thus, we develop
an adaptive algorithm (based on the 2SSA algorithm) for optimizing incentives for
multiple agents. We first summarize our algorithm, and demonstrate that it only
requires solving a small number of computable MILP’s. Next we prove this algorithm
provides a set of incentives that are asymptotically optimal as time advances.

Adaptive Algorithm for Multiple Agents

We design incentives for multiple agents with the Adaptive Behavioral Multi-Agent
Algorithm (ABMA) presented in Algorithm 2. The main idea behind this method is
to use the assumptions on Φ and Ω to decompose the initial problem into #A sub-
problems that solve a single agent problem, and a single master problem that combines
these solutions into a global optimum across all agents. Because of the assumptions
on Ω, each sub-problem can be further decomposed into #V sub-problems. For each
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sub-problem, we use the 2SSA algorithm to solve the #A·#V sub-problems; however,
we do not explicitly call the 2SSA algorithm because it is more efficient to solve the
MAP estimator once and then solve the incentive design problem for each single agent.
Our first result concerns the computability of this algorithm.

Proposition 3.9. If Assumptions 3.1–3.10 hold, then the main computational steps
of the ABMA algorithm involve solving a total of #A · (#V + 1) MILP’s and 1 ILP.

The full proof of this proposition can be found in Appendix B.1 but here we will
provide some intuition for this proof. The result can be directly calculated by noting
that Step 2 of ABMA can be computed by solving a single MILP. Similarly, steps 4
and 5 and also be computed by solving a single MILP each. Then Step 8 requires
computing a pure ILP by construction. Since the remaining steps of ABMA do not
require solving optimization problems, we only need to count the amount of times each
step is repeated thus yielding the result.

This means the ABMA algorithm performs incentive design for the multi-agent case
by solving #A·(#V +1)+1 MILP’s, which is significantly less challenging than solving
a BMIP with #A MILP’s in the lower level as would be required to solve (3.17).

The ABMA algorithm also has an alternative interpretation, and to better under-
stand this consider the following feasibility problem:

Φ(xa0, θ
a

0, {πai }T+n
i=0 for a ∈ A) =

min
{xat ,uat ,θat ,πat }

T+n
t=0 ,∀a∈A

Φ(xa0, θ
a
0 , {πai }T+n

i=0 for a ∈ A)

s.t.
uat ∈ argmaxf(xat+1, u, θ

a
t , π

a
t )

s.t. xat+1 = h(xat , u), u ∈ U
∀a, 0 ≤ t ≤ T + n− 1,

θat+1 = g(xat , u
a
t , θ

a
t , π

a
t ) ∀a, 0 ≤ t ≤ T + n− 1,

xat ∈ X a, θat ∈ Θ, πat ∈ Π ∀a, 0 ≤ t ≤ T + n− 1,

xa0 = xa0, θ
a
0 = θ

a

0, {πat }T+n
t=0 = {πat }T+n

t=0 ∀a,
{{πat }T+n

t=T+1 for a ∈ A} ∈ Ω.

(3.19)

Our first result concerns regularity properties of the above written feasibility problem.

Proposition 3.10. If Assumptions 3.1–3.10 hold, then Φ(xa0, θ
a
0 , {πai }T+n

i=0 for a ∈ A) is
lower semicontinuous in its arguments, and min{Φ(xa0, θ

a
0 , {πai }T+n

i=0 for a ∈ A) | {{πat }T+n
t=T+1 for a ∈

A} ∈ Ω} can be formulated as a MILP for all fixed values of (xa0, θ
a
0 , {πai }Ti=0) ∈

X ×Θ× ΠT+1 for a ∈ A.

The full proof of this proposition can be found in Appendix B.1 but here we will
provide some intuition for the proof. We can obtain the first result by first showing
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that problem (3.19) can be reformulated as a MILP. Since (xa0, θ
a

0, {πai }T+n
i=0 for a ∈ A)

appear in affine terms in this new MILP formulation, this means that the value function
of the optimization problem is lower semicontinuous thus proving the first result. The
second result follows by showing that the desired optimization problem is equivalent
to (3.19) but with removal of the constraints πat = πat for t = T + 1, . . . , T + n.

The optimization problem (3.19) and the above result provide an alternative inter-
pretation of the ABMA algorithm, which is formalized by the next corollary.

Corollary 3.11. If Assumptions 3.1–3.10 hold, then the solution of min{Φ(xa0, θ
a
0 , {πai }T+n

i=0

for a ∈ A) | {{πat }T+n
t=T+1 for a ∈ A} ∈ Ω}, is given by the ABMA algorithm but with

Step 2 replaced with the step: set (x̂a0,T , θ̂
a
0,T ) = (xa0, θ

a
0).

This is straightforward from the reformulation shown in (B.12).
Thus, though (3.19) is a large MILP, the assumptions we have made allow us to

decompose the solution of this problem into a series of substantially smaller MILP’s.

Asymptotic Optimality of ABMA

The optimization problem in (3.19) is a useful construction because it can also be
used to compute the optimal set of incentives. If each agent’s true initial conditions
(x∗,a0 , θ∗,a0 ) were known, then an optimal solution belongs to arg min{Φ(x∗,a0 , θ∗,a0 , {πai }T+n

i=0

for a ∈ A) | {{πat }T+n
t=T+1 for a ∈ A} ∈ Ω}. More importantly, we have the following

relationship to the solutions of the ABMA algorithm:

Theorem 3.12. Note that arg min{Φ(x∗,a0 , θ∗,a0 , {π∗,ai }T+n
i=0 for a ∈ A) | {{πat }T+n

t=T+1 for a ∈
A} ∈ Ω} is the set of optimal solutions under the agents’ true initial conditions
(x∗,a0 , θ∗,a0 ). If Assumptions 3.1–3.8 hold, then we have that

dist
(
{πaABMA(T ) for a ∈ A},

arg min{Φ(x∗,a0 , θ∗,a0 , {πai }T+n
i=0 for a ∈ A) | {{πat }T+n

t=T+1 for a ∈ A} ∈ Ω}
)

p→ 0 (3.20)

as T →∞, for any πaABMA(T ) returned by ABMA. Recall that dist(x,B) = infy∈B‖x−
y‖.

A complete proof for this theorem can be found in Appendix B.1 but here we will
provide some intuition for the proof. Since the MAP estimator is consistent and by
Corollary 3.6 we have that Φ is lower semicontinuous, this means that Φ(x̂a0, θ̂

a
0 , {πai }T+n

i=0

for a ∈ A) is a lower semicontinuous approximation to Φ(x∗,a0 , θ∗,a0 , {πai }T+n
i=0 for a ∈ A).

Hence applying Corollary 3.11 and Theorem 4.3 from (Vogel and Lachout, 2003a) we
obtain the desired result.
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Thus any solution returned by ABMA is asymptotically included within the set of
optimal incentives computed for the agents’ true initial conditions. Restated, the above
result says ABMA provides a set of incentives that are asymptotically optimal. This is a
non-obvious result because in general pointwise-convergence of a sequence of stochastic
optimization problems is not sufficient to ensure convergence of the minimizers of
the sequence of optimization problems to the minimizer of the limiting optimization
problem. Rockafellar and Wets (2009) provide an example that demonstrates this
possible lack of convergence of minimizers.

3.5 Computational Experiments: Weight Loss Pro-

gram Design

We have completed computational experiments applying the tools and techniques de-
veloped in this chapter that form a specific implementation of a behavioral analytics
framework. We compare several approaches, including ours, for designing incentives for
multiple myopic agents to the problem described in Section 3.1.1 of designing personal-
ized behavioral incentives for a clinically-supervised weight loss program. The first step
of our behavioral analytics approach is to construct a behavioral model of individuals
in weight loss programs. We describe the data source used for the simulations, and then
summarize our behavioral model (Aswani et al., 2016) for individuals participating in
such loss programs. To demonstrate the second and third steps of our framework, we
simulate a setting in which behavioral incentives chosen using our ABMA algorithm
are evaluated against behavioral incentives computed by (intuitively-designed) adap-
tive heuristics. Both our implementation of a behavioral analytics framework and the
heuristic provide adaptation by recomputing the incentives at regular intervals as more
data is collected from each individual. Our metric for comparison is the number of in-
dividuals who achieve clinically significant weight loss (i.e., a 5% reduction in body
weight) at the end of the program. We also compare the percentage of weight loss
for individuals who do not achieve clinically significant weight loss in order to better
understand how clinical visits are allocated by the different methods. We conclude by
performing a sensitivity analysis of design choices for the second and third steps of our
behavioral analytics framework.

3.5.1 mDPP Program Trial Data Source

Our computational experiments used data from the mDPP trial (Fukuoka et al., 2015).
This was a randomized control trial (RCT) that was conducted to evaluate the efficacy
of a 5 month mobile phone based weight loss program among overweight and obese
adults at risk for developing type 2 diabetes. This program was adapted from the
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Diabetes Prevention Program (DPP) (Diabetes Prevention Program Research Group,
2002, 2009), but the number of in person clinical visits was reduced from 16 to 6 per
person, and group exercise sessions were replaced with a home based exercise program
to reduce costs. Sixty one overweight adults were randomized into an active control
group which only received an accelerometer (n=31) or a treatment group which receive
the mDPP mobile app plus the accelerometer and clinical office visits (n=30). Changes
in primary and secondary outcomes for the trial were promising. The treatment group
lost an average of 6.2 ± 5.9 kg (-6.8% ± 5.7%) between baseline and the 5 month follow
up while the control group gained 0.3 ± 3.0 kg (0.3% ± 5.7 %) (p < 0.001). The treat-
ment group’s steps per day increased by 2551 ± 4712 compared to the control group’s
decrease of 734 ± 3308 steps per day (p < 0.001). Additional details on demograph-
ics and other treatment parameters are available in (Fukuoka et al., 2015). The data
available from the mDPP trial includes step data (from accelerometer measurements),
body weight data (which was measured at least twice a week every week and recorded
in the mobile app by individuals in the treatment group, as well as measured three
times in a clinical setting at baseline, 3 month, and 5 month), and demographic data
(i.e., age, gender, and height of each individual). We note that this data matches the
assumptions in Section 3.2.

3.5.2 Summary of Behavioral Model

We construct a behavioral model for each individual participating in the weight loss
program. Using the terminology and notation of Section 3.2, the system state of each
individual xt is their body weight on day t which we denote as wt, and their decisions
ut = (ft, st) on day t are how many calories they consume ft and how many steps they
walk st. The behavioral incentives πt = (gt, dt) provided to an individual on day t
consist of (numeric) step goals gt and an indicator dt equal to one if a clinical visit was
scheduled for that day. The motivational state (or type) is θt := (sb, fb,t, Fb,t, pt, µ, δ, β).
The state sb captures the individual’s baseline preference for number of steps taken
each day, while fb,t, Fb,t capture the individual’s short term and long term caloric
intake preference, respectively. The variable pt captures the disutility an individual
experiences from not meeting a step goal. The last set of motivational states describe
the individual’s response to behavioral incentives. The states β, δ describe the amount
of change in the individual’s caloric consumption and physical activity preferences,
respectively, after undergoing a single clinical visit. The state µ describes the self
efficacy effect (Bandura, 1998, Conner and Norman, 1996) from meeting exercise goals.

The utility function of an individual on day t is given by f(wt+1, ft, st; θt, πt) =
−w2

t+1 − rs(st − sb)2 − rf (f − fb,t)2 + pt(st − gt)−. In our past modeling work (Aswani
et al., 2016), we found that the predictions of this behavioral model were relatively
insensitive to the value of rf , rs. And our numerical experiments in (Aswani et al.,
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2016) found that fixing the value of rf , rs to be the same for each individual provided
accurate predictions. And so we assume that rf , rs is a fixed and known constant in
our numerical experiments here. The temporal dynamics for an individual’s system
and motivational states are the dynamics of an individual’s type by:

wt+1 = a · wt + b · st + c · ft + k (3.21)

Fb,t+1 = (1− α) · Fb,t + α · fb,t (3.22)

fb,t+1 = γ · (fb,t − Fb,t) + Fb,t − β · dn (3.23)

pt+1 = γ · pt + δ · dt + µ · 1(st ≥ gt). (3.24)

Equation (3.21) is a “calories in minus calories out” description of weight change, and
a standard physiological formula (Mifflin et al., 1990) is used to compute the values
of a, b, c, k based on the demographics of the individual. Equation (3.22) models the
long term caloric intake preference as an exponential moving average of the short
term caloric intake preferences. We found that the predictions for different individuals
were relatively insensitive to the value of α, and so in our numerical experiments we
assume α is known and fixed to a value satisfying α < 1. In (3.23), we model the
dynamics of baseline food consumption as always tending towards their initial value
unless perturbed by a clinical visit. In (3.24) we model the tendency for meeting the
step goal as tending towards zero unless there is a clinical visit or the individual has met
the previous exercise goal, which increases their self efficacy and makes the individual
more likely to meet their step goal in the future. In both (3.23) and (3.24), γ < 0 is
assumed to be a known decay factor since we found that predictions were relatively
insensitive to the value of γ (Aswani et al., 2016). Note that these temporal dynamics
and utility functions satisfy the assumptions in Section 3.2.

For the MLE and MAP calculations, we assumed that step and weight data were
measured with zero-mean noise distributed according to a Laplace distribution with
known variance. We found that predictions of the behavioral model estimated when
assuming the noise had a Gaussian distribution were of the same quality as those esti-
mated when assuming Laplace noise, and so we assume Laplace noise so that the MAP
and MLE problems can be formulated as MILP’s (as shown in Section 3.2). Further-
more, the prior distribution used for the MAP calculation for each individual was a
histogram of the MLE estimates of all the other individual’s parameters. Note that this
form for a prior distribution can be expressed using integer linear constraints (Aswani
et al., 2016). The complete MILP formulations for MAP and MLE are provided in the
appendix.
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3.5.3 Weight Loss Program Design

Since the majority of implementation costs for weight loss programs are due to clinical
visits, the clinician’s design problem is to maximize the expected number of individuals
who reduce their weight by a clinically significant amount (i.e., 5% reduction in body
weight). The clinician is able to personalize the step goals for each individual, and can
change the number and timing of clinical visits for each individual. However, there
is a budget constraint on the total number of visits that can be scheduled across all
individuals. This constraint captures the costliness of clinical visits.

We optimize the weight loss program using our ABMA algorithm to implement the
second and third steps of our behavioral analytics framework. This requires choosing
a loss function for each individual, and Figure 3.1 shows three choices that we consid-
ered. These three losses make varying tradeoffs between achieving the primary health
outcome of number of individuals with clinically significant weight loss (i.e., 5% weight
loss) at the end of the program versus the secondary health outcome of maximizing
weight loss of individuals who were not able to achieve 5% weight loss. The first choice
of a loss function is the step loss, which is given by

ϕ =

{
−1, if wT+n ≤ 0.95 · w̃0

0, otherwise
(3.25)

This discontinuous choice of a loss function gives minimal loss to 5% or more reduction
in body weight and maximal loss to less than 5% reduction in body weight. The second
choice of a loss function is the hinge loss, which is given by

ϕ =


−1, if wT+n < 0.95 · w̃0

−0.2 · (wT+n/w̃0 − 1), if 0.95 · w̃0 ≤ wT+n ≤ w̃0

0, if wT+n > w̃0

(3.26)

This continuous choice of a loss function gives minimal loss to 5% or more reduction
in body weight, maximal loss to less than 0% reduction in body weight, and an in-
termediate loss for intermediate reductions in body weight. The third choice of a loss
function is the time-varying hinge loss, which is given by

ϕ =


−1, if wT+n

w̃0
< 0.95− 0.05

log T

10(log T )(wT+n

w̃0
− (0.95 + 0.05

log T
)), if 0.95− 0.05

log T
≤ wT+n

w̃0
≤ 0.95 + 0.05

log T

0, if wT+n

w̃0
> 0.95 + 0.05

log T

(3.27)

Much like the hinge loss (3.26), it promotes intermediate amounts of weight loss that
might not meet the 5% threshold of clinically significant weight loss. However, as
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Figure 3.1: The left plot shows the step loss function (3.25), and the right plot shows
the hinge loss function (3.26). The x-axis on both plots is 100 · (xT+n/x̃0 − 1), which
is percent reduction in body weight.

more data is collected it approaches the step loss (3.25) to reflect a higher degree
of confidence in the estimated parameters. Thus, this choice of loss function can be
considered an intermediate between the hinge (3.26) and step (3.25) losses. There is
one computational note. Since these losses are non-decreasing, we can modify Step 4
of the ABMA algorithm to instead minimize the body weight of each individual and
then compose the body weight with the loss function.

For the purpose of comparing various program designs through simulations, we
considered three additional designs for the weight loss program. We used an adaptive
heuristic to design the weight loss program: Clinical visits were scheduled towards the
end of the treatment at least one week apart, with more visits given to individuals
who were closer to meeting the weight loss goal of a 5% weight reduction based on
their latest observed weight, and step goals were set to be a 10% increase over a linear
moving average of the individual’s observed step count over the prior week. The second
design was a “do nothing” plan where individuals were given exactly one clinical visit
after two weeks, and their step goals were a constant 10,000 steps each day. The third
design was the original design of the mDPP trial: Clinical visits were scheduled on
predetermined days during the treatment after 2, 4, 6, 19, 14, 18, and 20 weeks of the
trials. The first two weeks of this design did not contain any clinical visits or exercise
goals but instead served as an initialization period. After the first two weeks, exercise
goals increased 20% each week, starting with a 20% increase over the average number of
steps taken by individuals during the the two week initialization period. The exercise
goals were capped at a maximum of 12,000 steps a day. Since the adaptive heuristic
and ABMA are both adaptive, we recalculated both at the beginning of each month of
the treatment and allowed both adaptive methods a 2 week initialization time similar
to the mDPP trial.
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3.5.4 Simulation Comparison

We compared the six different program designs using simulations of a weight loss pro-
gram with a five month duration and with 30 individuals participating. Each individual
in the simulation followed our behavioral model, and the parameters corresponding to
the behavioral model for each individual were chosen to be those estimated by comput-
ing the MLE using the data from the mDPP trial. Since we also wanted to test how
these different designs account for missing data, we assumed that the data available
to each algorithm would be limited to days of the mDPP study where a particular
individual reported their weight and steps. Since the adaptive heuristic and our be-
havioral analytics framework are both adaptive, we recalculated the program design at
the beginning of each month of the program (by re-runnning the heuristic calculations
and rerunning the ABMA algorithm) and allowed both adaptive methods a two-week
initialization time similar to the design of the program in the mDPP trial. All simu-
lations were run using MATLAB on a laptop computer with a 2.4GHz processor and
16GB RAM. The Gurobi solver (Gurobi Optimization, 2015) in conjunction with the
CVX toolbox for MATLAB (Grant and Boyd, 2014) were used to perform the initial
estimation of the individual parameters, compute designs for the weight loss program,
and perform simulations of each design.

Figure 3.2 compares the primary outcome of interest to clinicians, which is the
number of individuals that achieve clinically significant weight loss (i.e., 5% or more
reduction in body weight). We repeated the simulations for our behavioral analytics
framework and the adaptive heuristic under different constraints on the total number
of clinical visits that could be allocated to individuals. The x-axis of Figure 3.2 is
the average number of clinical visits provided to individuals. The horizontal line at 18
is the number of individuals who achieved 5% weight loss in the actual mDPP trial,
in which each individual received 7 clinical visits. Figure 3.2 shows that all forms
of behavioral analytics program and adaptive heuristic program designs outperform
the “do nothing” policy. Furthermore, our behavioral analytics approach and the
adaptive heuristic achieve results comparable to the original mDPP program design
but with significantly less resources (i.e., less clinical visits). The simulations predict
that using our behavioral analytics approach in which ABMA has a step (3.25) or time-
varying hinge loss (3.27) to design the weight loss program can provide health outcomes
comparable to current clinical practice while using only 40-60% of the resources (i.e.,
clinical visits) of current practice. In contrast, the adaptive heuristic would require 80-
95% of resources (i.e., clinical visits) to attain health outcomes comparable to current
clinical practice. This suggests that appropriate choice of the loss function for our
ABMA algorithm, as part of behavioral analytics approach, to personalize the design
of a weight loss program could increase capacity (in terms of the number of individuals
participating in the program for a fixed cost) by up to 60%, while achieving comparable
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Figure 3.2: Comparison of different program design methods with respect to number
of successful individuals (i.e., lost 5% or more body weight)

health outcomes.
Figure 3.3 compares the different program designs using a secondary outcome of

interest to clinicians of the average amount of weight loss of individuals who did not
successfully achieve 5% weight loss. The original treatment plan of mDPP and the “do
nothing” treatment plan slightly outperform the adaptive program designs at certain
clinical visit budgets. This effect however is mainly due to these static plans not
identifying individuals who are on the cusp of achieving 5% weight loss but might
still achieve around 3-4% weight loss, while both adaptive program designs allocate
clinical visits to these individuals and ensure they reach the weight loss goal of 5%
weight loss. Restated, the lower weight loss of unsuccessful individuals under the
behavioral analytics treatment plans is an artifact of the improved success rate of
the behavioral analytics plans in helping individuals achieve 5% weight loss. This
effect is further exemplified in the region of between an average of 2.8-4.2 visits per
individual, where we see that individuals who were not successful in achieving 5%
weight loss in the behavioral analytics treatment plans on average lose more weight
then those under the heuristic policy, while in the region of an average of 5.6-7 visits per
individual we see that individuals under the heuristic treatment lose more weight. The
effect in this last region is mainly due to the behavioral model used in our behavioral
analytics framework, which is more effective at identifying the individuals who would
most benefit from additional clinical visits. Therefore, more resources are spent on
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Figure 3.3: Comparison of different program design methods with respect to the percent
weight lost by unsuccessful individuals (i.e., lost less than 5% body weight)

individuals who could potentially reach their 5% weight loss goal, while the adaptive
heuristic uses these resources in a less effective manner.

Figures 3.2 and 3.3 demonstrate a tradeoff between the primary and secondary
outcomes, and the various loss functions provide different tradeoffs. Note the line for
the step loss (3.25) is the first to achieve a primary outcome comparable to that of
the original mDPP trial while fluctuating relatively little in terms of the secondary
outcome. This matches intuition that the step loss function (3.25) is focused on en-
suring individuals achieve 5% weight loss while not being concerned with their final
weight. On the other hand, the line for the hinge loss (3.26) lags behind the other
behavioral analytics policies in achieving comparable primary outcomes to the mDPP
trial while having an extremely effective secondary outcome. These results follow our
intuition that this loss favors intermediate weight loss over achieving clinically signifi-
cant weight loss. Finally, the line corresponding to the time-varying hinge loss function
(3.27) has a clear transition at an average of 5 visits per individual from favoring the
primary outcome to the secondary outcome. This behavior indicates that using such
time scaling leads to interventions that focus on primary outcomes when resources are
constrained but also accounts for secondary outcomes when resources are less scarce.
Such behavior may be useful for implementing a behavioral analytics approach when
the relative abundance of resources is not known a priori.
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3.5.5 Computational Performance and Sensitivity Analysis

The simulation experiments assumed that treatment plans were updated at the begin-
ning of each month by re-running the second and third steps of our behavioral analytics
approach (through applying the ABMA algorithm), and so we conducted a sensitivity
analysis to examine the effect of updating the program design more or less frequently.
Figures 3.4 and 3.5 compare the health outcomes of using a program designed by
our behavioral analytics framework with a time-varying hinge loss (3.27), where the
treatment was recalculated once every two weeks, once a month, and once every two
months. These results show that recomputing the treatment plan with lesser or higher
frequency does not significantly impact the efficacy of the resulting treatment. This in-
dicates that for practical implementation, the statistical convergence rate of estimated
parameters in our behavioral model is sufficiently fast that it would suffice to rerun
the weight loss program design algorithm at most once a month.

We also conducted time-benchmarks for the sub-problems involved in computing
2SSA, MAP, and ABMA, which are the algorithms comprising the second and third
steps of our implementation o a behavioral analytics framework. The results of the
time-benchmarks are summarized in Tables B.1,B.2, and B.3 in the appendix. On av-
erage, solving all sub-problems took 17s per individual. This is promising for practical
implementation, particularly because each sub-problem calculation can be performed
in parallel for each size constraint of the clinical visit schedule (from 1 to 7 visits). The
results show that computation time increases with respect to the number of available
visits and data available in the treatment plan calculation. However, the calculation
times still remain below 30s on average per individual for each step of the program cal-
culation. This would imply that our methodology for weight loss program calculation
is suitable for large scale program design since the program design would be updated
at most once every month.

3.6 Conclusion

In this chapter, we develop a behavioral analytics framework for multi-agent systems in
which a single coordinator provides behavioral or financial incentives to a large number
of myopic agents. Our framework is applicable in a variety of settings of interest to the
operations research community, including the design of demand-response programs for
electricity consumes, the personalized design of a weight loss program, and adaptive
logistics allocation for franchises. The framework we develop involves the definition
of a behavioral model, the estimation of model parameters, and the optimization of
incentives. We show (among other results) that under mild assumptions, the incentives
computed by our approach converge to the optimal incentives that would be computed
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Figure 3.4: Comparison of calculation schedules and their effects on the number of
successful individuals (i.e., lost 5% or more body weight)
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knowing full information about the agents. We evaluated our approach for personaliz-
ing the design of a weight loss program, and showed via simulation that our approach
can improve outcomes with reduced treatment cost.
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Chapter 4

Interventions with Cheep and
Frequent Decisions

4.1 Introduction

Multi-armed bandits are commonly used to model sequential decision-making in set-
tings where there is a set of actions that can be chosen at each time step, each action
provides a stochastic reward, and the distribution for the reward provided by each ac-
tion is initially unknown. The problem of constructing a policy for sequentially choosing
actions in multi-armed bandits requires balancing exploration versus exploitation, the
tradeoff between selecting what is believed to be the action that provides the best
reward and choosing other actions to better learn about their underlying distributions.
Bandit models have been applied in a variety of healthcare settings (Thompson, 1933,
Wang and Gupta, 2011, Bastani and Bayati, 2015b, Schell et al., 2016). For instance,
Bastani and Bayati (2015b) considered the problem of selecting drugs to give to a pa-
tient from a set (where each drug is an action) in order to treat a specific disease (the
reward is the improvement in patient health in response to the drug); the bandit policy
asymptotically identifies the optimal drug for that particular patient. Other common
applications involve online advertising (Agrawal and Goyal, 2013, Johari et al., 2015),
where selecting an ad to show is an action and the reward is the total number (from
a large population) of viewers who click on the ad, as well as in various supply chain
settings (Afèche and Ata, 2013, Ban and Rudin, 2014, Caro and Gallien, 2007).

However, most bandit models assume that the distribution for the reward provided
by each action is constant over time. This is a reasonable assumption in a large number
of applications, such as the ones described above. However, many applications involve
actions that are applied to a single individual, where the rewards depend upon behav-
ioral responses of the individual to the applied actions. In these behavioral settings,
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the response to a particular action is not generally stationary. Frequent selection of
a particular action will lead to habituation to that action by the individual, and the
reward for that action will decrease each time it is selected. For example, repeatedly
showing the same ad to a single individual may cause the ad to become less effective in
soliciting a response from that individual. Furthermore, another complimentary phe-
nomenon can also occur; refraining for a period of time from showing a particular ad
to a single individual may cause the ad to become more effective when reintroduced.

Most techniques for designing policies for decision-making for multi-armed bandits
apply to the setting where the rewards for each action are stationary. However, design-
ing a policy without considering the non-stationarity of a system (when the system is in
fact non-stationary) often leads to poor results in terms of maximizing rewards (Besbes
et al., 2014, Hartland et al., 2006) because policies eventually converge to a stationary
policy. The problem of designing policies for bandit models with non-stationarity has
been studied in specific settings, but approaches in the literature are either compu-
tationally intractable, or the settings analyzed are not flexible enough to capture the
habituation and recovery phenomenon described above. The aim of this chapter is
to propose a flexible bandit model that is able to effectively model habituation and
recovery, and to present an approach for designing an effective policy for this bandit
model.

4.1.1 Literature Review

Data-driven decision-making can be categorized into batch formulations and online
formulations. Batch formulations (Aswani et al., 2016, Mintz et al., 2017a, Ban and
Rudin, 2014, Ban, 2015, Bertsimas et al., 2014) use a large amount of data to estimate
a predictive model and then use this model for optimization. Adaptation to new data
occurs by reestimating the predictive model, which is done periodically after a specified
amount of additional data is collected.

On the other hand, online formulations involve constructing a policy that is updated
every time a new data point is collected. Bandit models are a particularly important
example of online formulations, and there has been much work on constructing policies
for stationary bandits. Approaches for designing policies for stationary bandits include
those using upper confidence bounds (Auer et al., 2002a, Chang et al., 2005, Bastani
and Bayati, 2015b), Thompson sampling (Thompson, 1933, Russo and Roy, 2014, 2016,
Agrawal and Goyal, 2013), Bayesian optimization (Frazier and Wang, 2016, Xie and
Frazier, 2013, Xie et al., 2016), knowledge gradients (Ryzhov and Powell, 2011, Ryzhov
et al., 2012), robust optimization (Kim and Lim, 2015), and adversarial optimization
(Auer et al., 2002b, Agrawal et al., 2014, Koolen et al., 2014, 2015).

Restless bandits are a notable class of bandit models that capture non-stationarity,
because choosing any single action causes the rewards of potentially all the actions to
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change. Though dynamic programming (Liu and Zhao, 2010, Whittle, 1988), approxi-
mation algorithms (Guha et al., 2010), and mathematical programming (Bertsimas and
Nino-Mora, 1994, Bertsimas and Niño-Mora, 2000, Caro and Gallien, 2007) have been
proposed as tools for constructing policies in this setting, the problem of computing an
optimal policy for restless bandits is PSPACE-complete (Papadimitriou and Tsitsiklis,
1999), meaning that designing policies that are approximately optimal is difficult.

Another related research stream designs policies for non-stationary multi-armed
bandits with specific structures. For instance, model-free approaches have been pro-
posed (Besbes et al., 2014, 2015, Garivier and Moulines, 2008, Anantharam et al.,
1987) for settings with bounded variations, so that rewards of each action are as-
sumed to change abruptly but infrequently. These policies have been shown to achieve
O(
√
T log T ) suboptimality. Recently, there has been interest in studying more struc-

tured non-stationary bandits. Two relevant examples are Adjusted Upper Confidence
Bounds (A-UCB) and rotting bandits (Bouneffouf and Féraud, 2016, Levine et al.,
2017), where each action has a set of unknown but stationary parameters and a set
of known non-stationary parameters that characterize its reward distribution. Poli-
cies designed for these settings achieve O(log T ) suboptimality, but these settings are
unable to capture the habituation and recovery phenomenon that is of interest to us.

4.1.2 ROGUE Bandits

In this chapter, we define the ROGUE (reducing or gaining unknown efficacy) bandit
model, which can capture habituation and recovery phenomenon, and then we design a
nearly-optimal policy for this model. ROGUE bandits are appropriate for application
domains where habituation and recovery are important factors for system design; we
present two such examples, in online advertising and personalized healthcare, below.

Personalized Healthcare-Adherence Improving Interventions

One hundred fifty minutes of moderate-intensity aerobic physical activity each week
has been shown to reduce the risk of cardiovascular disease, other metabolic disorders,
and certain types of cancers (Committee et al., 2008, Friedenreich et al., 2010, Sat-
telmair et al., 2011, Lewis et al., 2017). However, maintaining this level of moderate
intensity activity is challenging for most adults. As such, proper motivation through
providing daily exercise goals and encouragement has been found to be effective in
helping patients succeed in being active (Fukuoka et al., 2011, 2014, 2015).

In recent years, there has been an increased rate of adoption of fitness applications
and wearable activity trackers, making it easier and less costly to implement physical
activity programs (PwC, 2014). These trackers and mobile applications record daily
activity, communicate activity goals, and send motivational messages. Despite these
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digital devices having collected a large amount of personal physical activity data, many
of the most popular activity trackers provide static and non-personalized activity goals
and messages to their users (Rosenbaum, 2016). Furthermore, the choice of motiva-
tional messages sent to users may have significant impact on physical activity, because
if users receive similar messages too frequently they may become habituated and not re-
spond with increased activity, while seldom sent messages may better increase activity
due to their novelty and diversity. Because the ROGUE bandits can model habituation
and recovery of rewards for different actions, we believe they present a useful framework
for the design of policies that choose which messages to send to users based on data
consisting of what messages they received each day and the corresponding amounts of
physical activity on those days.

Personalized healthcare has been extensively studied in the operations literature.
Aswani et al. (2016), Mintz et al. (2017a) explore the use of behavioral analytics to
personalize diet and exercise goals for clinically supervised weight loss interventions in
an offline setting. Markov decision processes have also been used for decision-making
in personalized healthcare (Ayer et al., 2015, Mason et al., 2013, Deo et al., 2013,
Kucukyazici et al., 2011, Leff et al., 1986, Wang and Gupta, 2011, Gupta and Wang,
2008, Savelsbergh and Smilowitz, 2016, Schell et al., 2016). In contrast to bandit models
where only the reward for the prescribed action can be observed, these methods broadly
assume that the full state of the system can be observed, and thus do not require
statistical estimation. Additionally, various multi-armed bandit approaches (Bastani
and Bayati, 2015b, Wang and Gupta, 2011) have also been proposed for healthcare
problems where habituation and recovery are not significant factors.

Online Content Creation and Advertising

Online advertising is one of the fastest-growing industries in the US. In fact, as of
2016, US Internet advertising spending has increased to over $72.5 billion, surpassing
the amount spent on TV ads (Richter, 2017). However, as this form of advertising
becomes more prevalent, advertisers have been struggling to ensure that ads retain
there effectiveness.This has been attributed to Internet users being habituated by im-
personal and standardized ads (Goldfarb and Tucker, 2014, Portnoy and Marchionini,
2010) which are rarely varied. For these reasons, there has been significant interest in
the operations literature in creating automated systems that can utilize user-level data
to better target and customize ads (Ghose and Yang, 2009, Goldfarb and Tucker, 2011).
In particular, since the effect of a no-longer-effective advertisement may recover after
a user has not seen it for some period of time, incorporating recovery and habituation
dynamics into advertising models could yield more effective advertising campaigns.

In general, multi-armed bandit models have been proposed to model online adver-
tising, where each action corresponds to a different type of advertisement, and the
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reward is equivalent to either a conversion or a click from a prospective consumer.
Several approaches have been used to design such an ad targeting system, including
adversarial and stochastic multi-armed bandit models (Bertsimas and Mersereau, 2007,
Chen et al., 2013, Kleinberg et al., 2008, Liu et al., 2010, Yi-jun et al., 2010), and online
statistical testing (Johari et al., 2015). However, while some of these approaches use
contextual data to better serve ads to individuals, they are still designed under as-
sumptions of stationarity. As a result, these approaches will lead to policies that show
duplicated ads to individuals, which can potentially causing habituation, whereas other
ads that might have recovered efficacy may not be served at all. In contrast, ROGUE
Bandit models can explicitly consider the time-varying efficacy each type of ad, and
thus directly capture user habituation to a specific ad, and track the recovery of efficacy
of a particular ad for a specific individual.

4.1.3 Outline

In Section 4.2, we formally introduce the ROGUE bandit model. To the best of our
knowledge, this is the first work where a non-stationary bandit model has been defined
that is able to capture habituation and recovery phenomenon, and is at the same time
amenable to the design of nearly-optimal policies. Because the ROGUE bandit is a
general model, we describe two specific instantiations: the ROGUE generalized linear
model and the ROGUE agent.

Next, in Section 4.3 we analyze the problem of estimating the parameters of a single
action. We present a statistical analysis of maximum likelihood estimation (MLE) for
a single action, and use empirical process theory to derive finite sample bounds for the
convergence of parameters estimates. Specifically, we show that the MLE estimates
converge to the true parameters at a 1/

√
T rate.

Section 4.4 describes an upper-confidence bound policy for ROGUE bandits, and
we call this policy the ROGUE-UCB algorithm. The main result of this section is
a rigorous O(log T ) bound on the suboptimality of the policy in terms of regret, the
difference between the reward achieved by the policy and the reward achieved by an
optimal policy. Our O(log T ) bound is significant because this is the optimal rate
achievable for approximate policies in the stationary case (Lai and Robbins, 1985). We
prove our bound using methods from the theory of concentration of measure.

We conclude with Section 4.5, where we introduce a “tuned” version of ROGUE-
UCB and then conduct numerical experiments to compare the efficacy of our ROGUE-
UCB algorithm to other policies that have been developed for bandit models. Our
experiments involve two instantiations of ROGUE bandit models. First, we compare
different bandit policies using a ROGUE generalized linear bandit to generate data.
Second, we compare different bandit policies using a ROGUE agent to generate data,
where the parameters of this bandit model are generated using data from a physical
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activity and weight loss clinical trial (Fukuoka et al., 2014). This second experiment
specifically addresses the question of how to choose an optimal sequence of messages to
send to a particular user in order to optimally encourage the user to increase physical
activity, and it can be interpreted as a healthcare-adherence improving intervention.
Our experiments show that ROGUE-UCB outperforms all other considered bandit
policies, and that it achieves logarithmic regret, in contrast to other bandit algorithms
that achieve linear regret.

4.2 Defining Reducing or Gaining Unknown Effi-

cacy (ROGUE) Bandits

This section first describes the stationary multi-armed bandit (MAB) model, in order
to emphasize modeling differences in comparison to our ROGUE bandit model that is
introduced in this section. Our goal in defining ROGUE bandits is to have a model
that can capture specific non-stationary phenomena found in behavioral applications,
and so we next formally introduce the model elements of ROGUE bandits. To provide
better intuition about ROGUE bandits, we also present two specific instantiations of
a ROGUE bandit that incorporate different behavioral effects.

4.2.1 Stationary MAB Model

The stationary MAB is a setting where there is a finite set of actions A that can be
chosen at each time step t, each action a ∈ A provides a stochastic reward ra with
distribution Pθa , and the parameters θa ∈ Θ for a ∈ A are constants that are initially
unknown but lie in a known compact set Θ. The problem is to construct a policy
for sequentially choosing actions in order to maximize the expected reward. More
specifically, let πt ∈ A be the action chosen at time t = 1, . . . , T . Then the policy
consists of functions πt(rπ1 , . . . , rπt−1 , π1, . . . , πt−1) ∈ A that depend on past rewards
and actions. For notational convenience, we will use Π = {πt(·)}Tt=1 to refer to the
policy. In this notation, the problem of constructing an optimal policy to maximize
expected reward can be written as maxΠ∈AT

∑T
t=1 Erπt . Note that certain regularity is

needed from the distributions to ensure this maximization problem is well-posed. One
common set of assumptions is that the distributions Pθa for a ∈ A are sub-Gaussian,
and that the reward distributions are all independent.

For the stationary MAB, we can define an optimal action a∗ ∈ A, which is any
action such that Era∗ ≥ Era for all a ∈ A. The benefit of this definition is it allows us
to reframe the policy design problem in terms of minimizing the cumulative expected
regret ERΠ(T ) = E[Tra∗−

∑T
i=1 rπt ], where the quantity ra∗−rπt is known as the regret

at time t. Observe that minimizing ERΠ(T ) is equivalent to maximizing
∑T

t=1 Erπt . It
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has been shown by Gittins (1979) that an index policy is optimal for the stationary
MAB. Since these indexing policies are difficult to compute, other approximate policies
have been proposed (Lai and Robbins, 1985, Auer et al., 2002a). Some of the most
common policies use upper confidence bounds (Auer et al., 2002a, Garivier and Cappé,
2011), which take actions optimistically based on estimates of the parameters θa. Un-
fortunately, it has been shown that these index policies and upper confidence bound
policies can have arbitrarily bad performance in a non-stationary setting (Hartland
et al., 2006, Besbes et al., 2014).

4.2.2 Reducing or Gaining Unknown Efficacy (ROGUE) Ban-
dits

A disadvantage of the stationary MAB is that it does not allow rewards to change over
time in response to previous actions, and this prevents the stationary MAB model from
being able to capture habituation or recovery phenomena. Here, we define ROGUE
bandits that can describe such behavior. The ROGUE bandit is a setting where there
is a finite set of actions A that can be chosen at each time step t, each action a ∈ A
at time t provides a stochastic reward ra,t that has a sub-Gaussian distribution Pθa,xa,t
with expectation Era,t = g(θa, xa,t) for a bounded function g, the parameters θa ∈ Θ
for a ∈ A are constants that are initially unknown but lie in a known compact, convex
set Θ, and each action a ∈ A has a state xa,t with nonlinear dynamics

xa,t+1 = projX (Aaxa,t +Baπa,t +Ka) = h(xa,t, πa,t), (4.1)

where πa,t = 1[πt = a], X is a known compact, convex set, Aa, Ba, Ka are known
matrices and vectors, and xa,0 is initially unknown for a ∈ A. Note that the effect of
the projection in the dynamics (4.1) is to act as a saturator of the state, so that the
state does not become unbounded.

The problem is to construct a policy for sequentially choosing actions in order
to maximize the expected reward. Observe that the ROGUE bandit model is non-
stationary since the reward distributions depend upon previous actions. This makes
the problem of designing policies more difficult than that of designing policies for the
stationary MAB. More specifically, let πt ∈ A be the action chosen at time t = 1, . . . , T .
Then the policy consists of functions πt(rπ1 , . . . , rπt−1 , π1, . . . , πt−1) ∈ A that depend
on past rewards and actions. For notational convenience, we will use Π = {πt(·)}Tt=1 to
refer to the policy. In this notation, the problem of constructing an optimal policy to
maximize expected reward can be written as

maxΠ∈AT {
∑T

t=1 g(θπt , xπt,t) : xa,t+1 = ha(xa,t, πa,t) for a ∈ A, t ∈ {0, ..., T−1}}. (4.2)

This can be reframed as minimizing expected cumulative regret (Besbes et al., 2014,
Garivier and Moulines, 2008, Bouneffouf and Féraud, 2016): Unlike the stationary
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MAB, we cannot define an optimal action, but rather must define an optimal policy
Π∗ = {π∗t (·)}Tt=0, which can be thought of as an oracle that chooses the optimal action
at each time step. Then the problem of designing an optimal policy is equivalent to
minimizing RΠ(T ) =

∑T
t=1 rπ∗t ,t − rπt,t subject to the state dynamics defined above.

4.2.3 Technical Assumptions on ROGUE Bandits

In this chapter, we will design a policy for ROGUE bandits that follow the assumptions
described below:

Assumption 4.1. The rewards ra,t are conditionally independent given xa,0, θa (or
equivalently the complete sequence of xa,t, πt and θa).

This assumption states that for any two time points t, t′ such that t 6= t′ we have
that ra,t|{xa,t, θ} is independent of ra,t′|{xa,t′ , θ}, and it is a mild assumption because it
is the closest analogue to the assumption of independence of rewards in the stationary
MAB.

Assumption 4.2. The reward distribution Pθ,x has a log-concave probability density
function (p.d.f.) p(r|θ, x) for all x ∈ X and θ ∈ Θ.

This assumption provides regularity for the reward distributions, and is met by
many common distributions (e.g., Gaussian and Bernoulli).

Now define f(·) to be L-Lipschitz continuous if |f(x1) − f(x2)|≤ L‖x1 − x2‖2 for
all x1, x2 in the domain of f . Our next assumption is on the stability of the above
distributions with respect to various parameters.

Assumption 4.3. The log-likelihood ratio `(r; θ′, x′, θ, x) = log p(r|θ′,x′)
p(r|θ,x)

associated with
the distribution family Pθ,x is Lf -Lipschitz continuous with respect to x, θ, and g is
Lg-Lipschitz continuous with respect to x, θ.

This assumption ensures that if two sets of parameters are close to each other
in value then the resulting distributions will also be similar. We make the following
additional assumption about the functional structure of the reward distribution family:

Assumption 4.4. The reward distribution Pθ,x for all θ ∈ Θ and x ∈ X is sub-
Gaussian with parameter σ, and either p(r|θ, x) has a finite support or `(r; θ′, x′, θ, x)
is Lp-Lipschitz with respect to r.

This assumption (or a similar type of regularity) is needed to ensure that sample
averages are close to their means, and it is satisfied by many distributions (e.g., a
Gaussian location family with known variance).

Last, we impose conditions on the dynamics for the state of each action:
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Assumption 4.5. We assume ‖Aa‖2≤ 1 for all a ∈ A, where ‖·‖2 is the usual matrix
2-norm.

This assumption is needed to ensure the states of each action do not change too
quickly, and it is equivalent to assuming that the linear portion of the dynamics is
stable.

4.2.4 Instantiations of ROGUE Bandits

The above assumptions are general and apply to many instantiations of ROGUE bandit
models. To demonstrate the generality of these assumptions, we present two particular
instances of ROGUE bandit models.

ROGUE Agent

Our first instantiation of a ROGUE bandit model consists of a dynamic version of a
principal-agent model (Stackelberg, 1952, Radner, 1985, Laffont and Martimort, 2002,
Mintz et al., 2017a), which is a model where a principal designs incentives to offer
to an agent who is maximizing an (initally unknown to the principal) utility function
that depends on the incentives. In particular, consider a setting with a single (myopic)
agent to whom we would like to assign a sequence of behavioral incentives πt ∈ A, and
the states xa,t and parameters θa are scalars. Given a particular incentive πt at time t,
the agent responds by maximizing the (random) utility function

rt = argmaxr∈[0,1]−1
2
r2 − (ca,t +

∑
a∈A xa,tπt,a)r, (4.3)

where for fixed a ∈ A we have that ca,t are i.i.d. random variables with a distribution
Pθa such that Var(ca,t) = σ2(θa) < ∞ and σ2 : R → R+ is invertible. Moreover, the
state dynamics are

xa,t+1 = projX (αaxa,t + ba(1− πa,t)− ka), (4.4)

which is of form (4.1) with Ba = −ka, Ka = ba − ka, and Aa = αa. Note the distri-
bution of rt is fully determined by xa,t, θa, {πk}tk=0, which means the rewards satisfy
Assumption 4.1.

We can further analyze the above ROGUE agent model. Solving the agent’s opti-
mization problem (4.3) gives

rt|{xa,t, θa} =


0 if ca,t ≤ −xa,t,
1 if ca,t ≥ 1− xa,t,
ca,t + xa,t otherwise

(4.5)
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We can express the distribution of rt|{xa,t, θa} in terms of the cumulative distribution
function (c.d.f.) F (·) and p.d.f. f(·) of ca,t:

p(rt|{xa,t, θa}) = F (−xa,t)δ(rt) + (1− F (1− xa,t))δ(1− rt)
+ f(rt − xa,t)1[rt ∈ (0, 1)]. (4.6)

Though p(rt|{xa,t, θa}) is not an absolutely continuous function, it satisfies Assumptions
4.2 and 4.3, whenever ct has a log-concave p.d.f. that is Lipschitz continuous, if we
interpret the above probability measure p(rt|{xa,t, θa}) as a p.d.f.

ROGUE Generalized Linear Model (GLM)

Dynamic logistic models and other dynamic generalized linear models (McCullagh,
1984, Filippi et al., 2010) can be interpreted as non-stationary generalizations of the
classical (Bernoulli reward) stationary MAB (Gittins, 1979, Lai and Robbins, 1985,
Garivier and Cappé, 2011). Here, we further generalize these models: Consider a
setting where ra,t|{θa, xa,t} is an exponential family with mean parameter

µa,t = Ert = g(αTa θa + βTa xa,t), (4.7)

for known vectors αa, βa, where the action states xa,t have the dynamics (4.1). In
this situation, we can interpret g(·) as a link function of a generalized linear model
(GLM). For example, if g is a logit function, then this model implies the rewards have
a Bernoulli distribution with parameter

µa,t =
1

1 + exp(−(αTa θa + βTa xa,t))
. (4.8)

For the logistic case, the ra,t is bounded and satisfies Assumptions 4.1-4.2. These
assumptions are also satisfied if ra,t can be linked to a truncated exponential family
distribution restricted to [0, 1], meaning if the p.d.f. of ra,t|{xa,t, θa} is

h(r)

F (1)− F (0)
exp (T (r)g(αTa θa + βTa xa,t)− A(αTa θa + βTa xa,t)), (4.9)

where T (r) is a sufficient statistic. If instead we consider sub-Gaussian exponential
families with infinite support, Assumption 4.4 is satisfied if the sufficient statistic of
the GLM is Lipschitz or bounded with respect to r. While we will mainly consider one-
dimensional rewards (i.e., ra,t ∈ R), we note that this framework can also be extended
to vector and array dynamic GLM’s.
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4.3 Parameter Estimation for ROGUE Bandits

Our approach to designing a policy for ROGUE bandits will involve generalizing the
upper confidence bound policies (Auer et al., 2002a, Chang et al., 2005, Bastani and
Bayati, 2015b) that have been developed for variants of stationary MAB’s. As per
the name of these policies, the key step involves constructing a confidence bound for
the parameters θa, xa,0 characterizing the distribution of each action a ∈ A. This
construction is simpler in the stationary case because the i.i.d. structure of the rewards
allows use of standard Chernoff-Hoeffding bounds (Wainwright, 2015), but we can no
longer rely upon such i.i.d. structure for ROGUE bandits which are fundamentally
non-stationary. This is because in ROGUE bandits the reward distributions depend
upon states xa,t, and so the structure of ROGUE bandits necessitates new theoretical
results on concentration of measure in order to construct upper confidence bounds for
the relevant parameters.

For this analysis, let the variables {ra,t}Tt=1 be the observed rewards for action
a ∈ A. It is important to note that the ra,t here are no longer random variables, but
are rather the actual observed values. Since the reward distributions for each action
are mutually independent by the dynamics (4.1), we can study the estimation problem
for only a single action. Specifically, consider the likelihood p({ra,t}t∈Ta |θa, xa,0), where
Ta ⊂ {1, ..., T} is the set of times when action a was chosen (i.e., πt = a for t ∈ Ta).
Let n(Ta) denote the cardinality of the set Ta. Using Assumption 4.1, the likelihood
can be expressed as

p({ra,t}t∈Ta |θa, xa,0) =
∏
t∈Ta

p(ra,t|θa, xa,t)
∏
t∈Ta

p(xt|θa, xa,t−). (4.10)

where t− = max{s ∈ Ta : s < t} is the latest observation before time t. Note the MLE
of θa, xa,0 is (θ̂a, x̂a,0) ∈ argmax

∏
t∈Ta p(ra,t|θa, xa,t)

∏
t∈Ta p(xt|θa, xa,t−). Observe that

by (4.1), the one step likelihood p(xt|θa, xa,t−1) is a degenerate distribution with all
probability mass at xa,t, by perpetuation of the dynamics (4.1) with initial conditions
xa,t−1. Thus we can express the MLE as the solution to the constrained optimization
problem

(θ̂a, x̂a,0) = arg min{−
∑

t∈Ta log p(ra,t|θa, xa,t) :

xa,t+1 = h(xa,t, πa,t) for t ∈ {0, . . . , T}}, (4.11)

where we have also taken the negative logarithm of the likelihood (4.10). In this section,
we will consider concentration properties of the solution to the above optimization
problem. If θ∗a, x

∗
0,a for a ∈ A are the true parameter values of a ROGUE Bandit

model, then we show that
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Theorem 4.1. For any constant ξ > 0 we have

P

(
1

n(Ta)
Da,πT1

(θ∗a, x
∗
a,0||θ̂a, x̂a,0) ≤ ξ +

cf (dx, dθ)√
n(Ta)

)
≥ 1− exp

(
−ξ2n(Ta)

2L2
pσ

2

)
(4.12)

where

cf (dx, dθ) = 8Lf diam(X )
√
π + 48

√
2(2)

1
dx+dθLf diam(X ×Θ)

√
π(dx + dθ) (4.13)

is a constant that depends upon dx (the dimensionality of X ) and dθ (the dimension-
ality of Θ), and Da,πT1

(θa, xa,0||θ′a, x′a,0) =
∑

t∈Ta DKL(Pθa,xa,t ||Pθ′a,x′a,t) is the trajectory
KullbackLeibler (KL) divergence between two different initial conditions.

4.3.1 Conceptual Reformulation of MLE

Our analysis begins with a reformulation of the MLE that removes the constraints
corresponding to the dynamics (4.1) through repeated composition of the function ha
defining the dynamics (4.1).

Proposition 4.2. Let θ∗a ∈ Θ and x∗a,0 ∈ X for a ∈ A be the true underlying parame-
ters of the system, then the MLE is given by

(θ̂a, x̂a,0) = argmin
θa,xa,0∈Θ×X

1

n(Ta)
∑
t∈Ta

log
p(ra,t|θ∗a, hta(x∗a,0, θ∗a, πt1))

p(ra,t|θa, hta(xa,0, θa, πt1))
(4.14)

where the notation hka represents the repeated functional composition of ha with itself
k times, and πt1 is the sequence of input decisions from time 1 to time t.

The complete proof for this proposition is found in Appendix C.1, and here we
provide a sketch of the proof. Observe that this formulation is obtained by first adding
constant terms equal to the likelihood of the true parameter values to the objective
function and dividing by the total number of observations (which does not change
the optimal solution), and then composing our system dynamics and writing them
as explicit functions of the initial conditions. In practice, this reformulation is not
practical to solve since clearly θ∗a, x

∗
a,0 are not known a priori and the composite function

hta may have a complex form. However, for theoretical analysis this reformulation is
quite useful, since for fixed θa, xa,0 taking the expected value of the objective under
Pθ∗a,x∗a,0 yields

Eθ∗a,x∗a,0
1

n(Ta)
∑
t∈Ta

log
p(ra,t|θ∗a, hta(x∗a,0, θ∗a, πt1))

p(ra,t|θa, hta(xa,0, θa, πt1))
=

1

n(Ta)
∑
t∈Ta

DKL(Pθ∗a,x∗a,t ||Pθa,xa,t)

=
1

n(Ta)
Da,πT1

(θ∗a, x
∗
a,0||θa, xa,0). (4.15)

85



Essentially, we have reformulated the MLE problem in terms of minimizing the KL
divergence between the trajectory distribution of potential sets of parameters to the
trajectory distribution of the true parameter set. Since we have clear interpretation for
the expectation of our objective function we can now proceed to compute concentration
inequalities.

4.3.2 Uniform Law of Large Numbers for ROGUE Bandits

Since our estimates are computed by solving an optimization problem, a pointwise law
of large numbers is insufficient for our purposes since such a result would not be strong
enough to imply convergence of the optimal solutions. To obtain proper concentration
inequalities we must consider a uniform law of large numbers for the MLE problem.

Theorem 4.3. For any constant ξ > 0 we have

P

(
sup

θa,xa,0∈Θ×X

∣∣∣∣∣ 1

n(Ta)
∑
t∈Ta

log
p(ra,t|θ∗a, hta(x∗a,0, θ∗a, πt1))

p(ra,t|θa, hta(xa,0, θa, πt1))

− 1

n(Ta)
Da,πT1

(θ∗a, x
∗
a,0||θa, xa,0)

∣∣∣∣∣ > ξ +
cf (dx, dθ)√

n(Ta)

)
≤ exp

(
−ξ2n(Ta)

2L2
pσ

2

)
(4.16)

where

cf (dx, dθ) = 8Lf diam(X )
√
π + 48

√
2(2)

1
dx+dθLf diam(X ×Θ)

√
π(dx + dθ) (4.17)

is a constant.

We will prove this result in several steps, the first of which uses the following lemma:

Lemma 4.1. Consider the mapping

ϕ
(
{rt}n(Ta)

t=1

)
= sup

θa,xa,0∈Θ×X

∣∣∣∣∣ 1

n(Ta)
∑
t∈Ta

log
p(ra,t|θ∗a, hta(x∗a,0, θ∗a, πt1))

p(ra,t|θa, hta(xa,0, θa, πt1))

− 1

n(Ta)
Da,πT1

(θ∗a, x
∗
a,0||θa, xa,0)

∣∣∣∣∣. (4.18)

The mapping ϕ is Lp-Lipschitz with respect to {rt}n(Ta)
t=1 .

A detailed proof is provided in Appendix C.1, and the main argument of the proof
relies on the preservation of Lipschitz continuity through functional composition and
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pointwise maximization. This result is necessary since showing that objective value
variations are bounded is a prerequisite for the formalization of concentration bounds.
Next we consider the Lipschitz constant of the log-likelihood with respect to the pa-
rameters.

Lemma 4.2. For any r ∈ R, θ̄ ∈ Θ, x̄ ∈ X , define the function ` : Θ×X×{1, ..., T} →
R such that `(θ, x, t) = log

p(r|θ̄,hta(x̄,θ̄,πt1))

p(r|θ,hta(x,θ,πt1))
. Then for fixed t, the function ` is Lipshitz

with constant Lf . Moreover, for all (x, θ) ∈ X ×Θ and for all t, t′ ∈ {1, ..., T} we have
that |`(θ, x, t)− `(θ, x, t′)|≤ Lf diam(X ), where diam(X ) = maxx∈X‖x‖2.

The result of this lemma can be derived using a similar argument to that of Lemma
4.1, by noting that the dynamics are bounded and Lipschitz, and then applying As-
sumption 4.3. The full proof of this lemma is in Appendix C.1. Next we show the
expected behavior of π is bounded.

Lemma 4.3. Let ϕ be defined as in Lemma 4.1. Then Eϕ({rt}n(Ta)
t=1 ) ≤ cf (dx,dθ)√

n(Ta)
, where

cf (dx, dθ) = 8Lf diam(X )
√
π + 48

√
2(2)

1
dx+dθLf diam(X ×Θ)

√
π(dx + dθ). (4.19)

The result of this lemma is derived by first using a symmetrization argument to
bound the expectation by a Rademacher average and then using metric entropy bounds
to derive the final result, and a complete proof is found in Appendix C.1. Additional
insight into these results is provided by the following remarks:

Remark 4.1. The result of Lemma 4.3 implies that Eϕ({ra,t}n(Ta)
t=1 ) = O(

√
dx+dθ
n(Ta)

)

Remark 4.2. An improved constant can be achieved by using weaker metric en-
tropy bounds (namely the union bound) however this would yield a bound of order

O(
√

(dx+dθ) logn(Ta)
n(Ta)

)

Using the results of Lemmas 4.1–4.3, we can complete the sketch of the proof for
Theorem 4.3. Lemma 4.1 says the mapping ϕ is Lp-Lipschitz, and combining this
with Assumption 4.4 implies that by Theorem 1 in (Kontorovich, 2014) we have with

probability at most exp(−ξ
2n(Ta)

2ε2L2
P σ

2 ) that the maximum difference between the empirical

KL divergence and the true trajectory divergence is sufficiently far from its mean.
Then using Lemma 4.3 we obtain an upper bound on this expected value with the
appropriate constants. For a complete proof of the theorem please refer to Appendix
C.1. This theorem is useful because it indicates the empirical KL divergence derived
from the MLE objective converges uniformly in probability to the true trajectory KL
divergence.
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4.3.3 Concentration of Trajectory Divergence

We can complete the proof of Theorem 4.1 using the results of Theorem 4.3 and the
definition of the MLE. First, Theorem 4.3 implies that with high probability the tra-
jectory divergence between the MLE parameters θ̂a, x̂a,0 and true parameters θ∗a, x

∗
a,0 is

within O(
√

dx+dθ
n(Ta)

) of the empirical divergence between these two sets of parameters.

Then, since θ̂a, x̂a,0 minimize the empirical divergence and the empirical divergence of
θ∗a, x

∗
a,0 is zero, this means that the empirical divergence term is non-positive. Combin-

ing these two facts yields the concentration bound of Theorem 4.1, and the complete
proof is given in Appendix C.1.

We conclude this section with an alternative statement of Theorem 4.1.

Corollary 4.4. For α ∈ (0, 1), with probability at least 1− α we have

1

n(Ta)
Da,πT1

(θ∗a, x
∗
a,0||θ̂a, x̂a,0) ≤ B(α)

√
log(1/α)

n(Ta)
. (4.20)

Where B(α) =
cf (dx,dθ)√

log(1/α)
+ Lpσ

√
2.

This result can be obtained by making the substitution ξ = Lpσ
√

log(1/α)
n(Ta)

into

the expression in Theorem 4.1. This corollary is significant because it allows us to
derive confidence bounds for our parameter estimates with regards to their trajectory
divergence. Note that the term B(α) differs from the term that would be derived
by Chernoff-Hoeffding bounds applied to i.i.d. random variables by the addition of
cf (dx,dθ)√

log(1/α)
to the standard variance term. The reason for this addition is that since we

are using MLE for our parameter estimation our estimates will be biased, and this
bias must be accounted for in the confidence bounds. Though there may exist specific
models where MLE can provide unbiased estimates, we will only present analysis for
the more general case.

4.4 ROGUE Upper Confidence Bounds (ROGUE-

UCB) Policy

This section develops our ROGUE-UCB policy for the ROGUE bandit model. Though
several upper confidence bounds (UCB) policies have been proposed in the non-stationary
setting (Garivier and Moulines, 2008, Besbes et al., 2014), these existing policies pro-
vide regret of order O(

√
T log T ). In contrast, the ROGUE-UCB policy we construct

88



achieves regret of order O(log T ), which is optimal in that it matches the lowest achiev-
able rate for approximate policies in the stationary case.

Pseudocode for ROGUE-UCB is given in Algorithm 3, and the algorithm is written
for the situation where the policy chooses actions over the course of T time periods
labeled {1, ..., T}. The upper confidence bounds used in this algorithm are computed
using the concentration inequality from Theorem 4.1. Much like other UCB policies,
for the first |A| time steps of the algorithm each action a will be tried once. Then
after this initialization, at each time step, we will first compute the MLE estimates
of the parameters for each action (i.e., (θa, x̂0,a)∀a ∈ A) and then use Theorem 4.1 to
form the upper confidence bound on the value of g(θa, xt,a), which we call gUCBa,t . Our
approach for forming these bounds is similar to the method first proposed by Garivier
and Cappé (2011) for the KL-UCB algorithm used for stationary bandits. Here, since
we know that with high probability the true parameters belong to X and Θ, we find the
largest possible value of g(θa, xt,a) within these sets. Finally, we choose the action that
has the largest upper confidence bound, observe the result, and repeat the algorithm
in the next time step.

The key theoretical result about the ROGUE-UCB algorithm concerns the regret
RΠ(T ) of the policy computed by the ROGUE-UCB algorithm.

Theorem 4.5. The expected regret ERΠ(T ) for a policy Π computed by the ROGUE-
UCB algorithm is

ERΠ(T ) ≤ Lg diam(X ×Θ)
∑
a∈A

(
A(|A|)2 4 log T

δ2
a

+
π2

3

)
. (4.21)

where A(x) = B(x−4), and

δa = min{ 1

n(Ta)
Da,πT1

(θa, xa,0||θa′ , xa′,0) :

|g(hta(xa,0), θa)− g(hta(xa′,0), θa′)|≥
εa
2
}

εa = min
a′∈A\a,t

{|g(θa, h
t
a(xa,0))− g(θa′ , h

t
a(xa′,0))|:

g(θa, h
t
a(xa,0)) 6= g(θa′ , h

t
a(xa′,0))}

(4.22)

are finite and strictly positive constants.

Remark 4.3. This corresponds to a rate of order O(log T ) when lim infT δa > 0.
In fact, lim infT δa > 0 for many settings such as (with appropriate choice of model
parameter values) the ROGUE GLM and ROGUE agent defined in Section 4.5.
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Algorithm 3 Reducing or Gaining Unknown Efficacy Upper Confidence Bounds
(ROGUE-UCB)

1: for t ≤ |A| do
2: πt = a such that a hasn’t been chosen before
3: end for
4: for |A|≤ t ≤ T do
5: for a ∈ A do
6: Compute: θ̂a, xa,0 = argmin{−

∑
t∈Ta log p(ra,t|θa, xa,t) : xa,t+1 =

ha(xa,t, πa,t)∀t ∈ 0, ..., T}
7: Compute: gUCBa,t = maxθa,xa,0∈Θ×X{g(θa, h

t
a(xa,0)) :

1
n(Ta)

Da,πT1
(θ∗a, x

∗
a,0||θ̂a, x̂a,0) ≤ A(t)

√
4 log(t)
n(Ta)

}
8: end for
9: Choose πt = argmaxa∈A g

UCB
a,t

10: end for

To prove Theorem 4.5, we first present two propositions. The first proposition
bounds the expected regret RΠ(T ) by the number of times an action is taken while it
is suboptimal.

Proposition 4.6. For a policy Π calculated using the ROGUE-UCB algorithm, if
T̃a =

∑T
t=1 1{πt = a, a 6= π∗t }, then ERΠ(T ) ≤ Lg diam(X ×Θ)

∑
a∈A ET̃a.

For this proposition, we first use Assumption 4.3 to upper bound the value of the
regret with respect to the Lg and the diameter of the parameter set. Then since we
are left with a finite sum of positive numbers, we can rearrange the summation term to
obtain the expected number of suboptimal actions. For the detailed proof, please see
Appendix C.1. Next we proceed to prove a bound on the expected number of times a
suboptimal action will be chosen.

Proposition 4.7. For a policy Π calculated using the ROGUE-UCB algorithm, we
have that ET̃a ≤ A(|A|)2 4 log T

δ2a
+π2

3
, whereA(t) = B(t−4), δa = min{ 1

n(Ta)
Da,πT1

(θa, xa,0||θa′ , xa′,0) :

|g(hta(xa,0), θa)−g(hta(xa′,0), θa′)|≥ εa
2
}, and εa = mina′∈A\a,t{|g(θa, h

t
a(xa,0))−g(θa, h

t
a(xa,0))|:

g(θa, h
t
a(xa,0)) 6= g(θa, h

t
a(xa,0))}.

To prove this proposition, we proceed in a manner similar to the structure first
proposed by Auer et al. (2002a). We must show that if an action is chosen at a time
when it is suboptimal, then this implies that either we have not properly estimated
its parameters (i.e., have not explored enough) or the true values of the parameters
xa,0, θa or xπ∗t ,0, θπ∗t are not contained inside their confidence bounds. Using these facts,
we use Theorem 4.1 to show that the probability that all of these events occurring
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simultaneously is bounded, and then upper bound the expected number of times these
events can occur. Combining the results of Propositions 4.6 and 4.7, we thus prove the
desired result of Theorem 4.5. The full proofs of Proposition 4.7 and Theorem 4.5 are
provided in Appendix C.1.

4.5 Numerical Experiments

In this section, we perform two numerical experiments where the policy computed
by the ROGUE-UCB algorithm is compared against the policy computed by other
non-stationary bandit algorithms. The first experiment considers the ROGUE GLM
described in Section 4.2.4, and specifically looks at the logistic regression instantiation
of ROGUE GLM. We use synthetically generated data for this first experiment. Next,
we perform an experiment in the context of healthcare-adherence improving interven-
tions to increase physical activity, which can be modeled using the ROGUE agent from
Section 4.2.4. Using real world data from the mDPP trial (Fukuoka et al., 2015), we
show how ROGUE-UCB can be implemented to personalize messages for participants
in this intervention. All experiments in this section were run using Python 3.5.2 and
Anaconda on a laptop computer with a 2.4GHz processor and 16GB RAM.

4.5.1 Tuned ROGUE-UCB

As has been noted for other UCB policies (Auer et al., 2002a, Garivier and Moulines,
2008, Bouneffouf and Féraud, 2016), the high probability bounds derived theoretically

for these methods are often too conservative. While the O(
√

log t
n(Ta)

) is a tight rate, the

term A(t) is too conservative. Drawing inspiration from Auer et al. (2002a) who used
asymptotic bounds for Tuned UCB, we similarly construct a variant of our algorithm:
This variant is described in Algorithm 4 and called Tuned ROGUE-UCB. Using the
results of Shapiro (1993), we note that if the MLE θ̂a, x̂a,0 are in the interior of the
feasible region and are consistent, then they are asymptotically normally distributed
with a variance equal to their Fisher information. Using these results and the delta
method (Qu and Keener, 2011), we can derive the quantity Sa,πT1 (θa, xa,0||θ̂a, x̂a,0) =

1
n(Ta)2

∇θ′,x′Da,πT1
(θa, xa,0||θ′, x′)TI{rt}t∈Ta (θ′, x′)−1∇θ′,x′Da,πT1

(θa, xa,0||θ′, x′)|θ′,x′=θ̂a,x̂a,0 , which
is the asymptotic variance of the average trajectory KL-Divergence. Here, η is a con-
stant that corresponds to the maximum value of the KL-divergence; I{rt}t∈Ta (θ′, x′)
represents the observed trajectory Fisher information, which can be calculated as
I{rt}t∈Ta (θ′, x′) =

∑
t∈Ta Irt(θ

′, x′), due to Assumption 4.1. As an implementation note,
if the empirical information matrix is singular, then the Moore-Penrose pseudoinverse
should be used to achieve similar asymptotic results (Hero et al., 1997). Note that
although these asymptotic bounds work well in practice, they are not high probability
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bounds and do not provide the same theoretical guarantees as the ROGUE-UCB al-
gorithm. A full analysis of regret for Tuned ROGUE-UCB is beyond the scope of this
work. Instead, we only consider empirical analysis of this algorithm to show its strong
performance.

Algorithm 4 Tuned ROGUE-UCB

1: for t ≤ |A| do
2: πt = a such that a hasn’t been chosen before
3: end for
4: for |A|≤ t ≤ T do
5: for a ∈ A do
6: Compute: θ̂a, xa,0 = argmin{−

∑
t∈Ta log p(ra,t|θa, xa,t) : xa,t+1 =

ha(xa,t, πa,t)∀t ∈ 0, ..., T}
7: Compute: gUCBa,t = maxθa,xa,0∈Θ×X

{
g(θa, h

t
a(xa,0)) :

1
n(Ta)

Da,πT1
(θa, xa,0||θ̂a, x̂a,0) ≤

√
min{η

4
,Sa,πT1 (θa, xa,0||θ̂a, x̂a,0)} log(t)

n(Ta)

}
8: end for
9: Choose πt = argmaxa∈A g

UCB
a,t

10: end for

4.5.2 Experimental Design

We examined two settings for our experiments, which correspond to the instantiations
of ROGUE bandits presented in Sections 4.2.4 and 4.2.4. For each of the scenarios, we
compared the Tuned ROGUE-UCB algorithm to policies determined by five alternative
methods. For each scenario, we present two result metrics: cumulative regret of each
algorithm in that scenario and the average reward to date of the algorithm. While these
two measures are related, a key difference is that in the non-stationary setting sub-
optimal actions may not have a significantly lower expected reward than the optimal
action at all time periods. Hence, while an algorithm may incur a significant amount
of regret it could still achieve a high amount of reward. The five alternative algorithms
we used for comparison are as follows:

1. Pure Exploration: First, we considered a completely random, or “pure explo-
ration” algorithm, which chooses an action uniformly at random from the set of
available actions.

2. Stationary Upper Confidence Bound (UCB1): Next, we considered the
UCB1 algorithm (Auer et al., 2002a), which is designed for stationary bandits.
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This approach uses the sample average as an estimate of the expected reward
of each action and utilizes a padding upper confidence bound term derived from
Hoeffding’s bound. In our experiments, we implemented Tuned UCB1 (Auer
et al., 2002a), which replaces the theoretical constants by the asymptotic variance
of the sample average and a small constant that corresponds to the maximum
variance of a Bernoulli random variable (since the rewards are bounded between
0 and 1).

3. Discounted Upper Confidence Bounds (D-UCB): D-UCB is an upper con-
fidence bound approach designed for non-stationary systems. It utilizes an expo-
nentially weighted average of the reward observations to estimate the expected
reward at the current time period and a square root padding function to provide
upper confidence bounds (Garivier and Moulines, 2008). The weighted average is
constructed with a positive discount factor that decreases the influence of older
observations on the reward estimate to zero as time goes on. We implemented
this algorithm with its optimal theoretical parameters, as described in Garivier
and Moulines (2008).

4. Sliding Window Upper Confidence Bounds (SW-UCB): The next ap-
proach we considered is the SW-UCB approach. This algorithm considers a fixed
window size of how many action choices to “keep in memory”, and computes the
estimate of the expected action rewards as the average of these choices (Garivier
and Moulines, 2008). We implemented this algorithm with its optimal theoretical
parameters as proposed by Garivier and Moulines (2008).

5. Exploration and Exploitation with Exponential Weights (EXP3): The
last bandit algorithm we considered in our experiments is the EXP3 algorithm.
Essentially, EXP3 is a modification of the exponential weights algorithm used
in online optimization to the bandit setting where not all action rewards are
observed (Auer et al., 2002b). Though EXP3 is designed for stationary ban-
dits, unlike UCB approaches that assume a stochastic setting, it is meant for
adversarial bandits, which makes it potentially robust to non-stationarity. The
particular variant of EXP3 we utilized is EXP3.S proposed by Auer et al. (2002b),
which is designed for arbitrary reward sequences, using the theoretically optimal
parameters as proposed by the authors.

4.5.3 ROGUE Logistic Regression

For this experiment, we consider the logistic regression instantiation of the ROGUE
GLM presented in Section 4.2.4. Our setup includes two actions whose rewards rt,a are
Bernoulli with a logistic link function of the form g(x, θ) = 1

1+exp(−aθ−bx)
. The initial
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parameters and dynamics matrices for each of the actions are presented in Table 4.1.
Here, the sets X and Θ were set to [0, 1]. Action 0 has a significant portion of its
reward dependent on the time varying state xt, and recovers its reward slowly but also
decreases slowly. On the other hand, Action 1 has more of its expectation dependent
on the stationary component θ, but it expectation decreases faster than that of Action
0.

Action x0 θ A B K α β
0 0.1 0.5 0.6 -1.0 0.5 0.4 0.6
1 0.3 0.7 0.7 -1.2 0.5 0.7 0.3

Table 4.1: Experimental parameters for each action for the logistic ROGUE GLM
simulation

The experiments were run for 20,000 action choices and replicated 30 times for each
of the candidate algorithms. Figure 4.1 shows the cumulative regret accrued by each of
the algorithms averaged across the replicates, and Figure 4.2 shows the average reward
per action for each algorithm averaged across the replicates. As expected in these
experiments, the UCB1 algorithm achieves linear regret since it assumes a stationary
model and thus converges to a single action, which causes a large gap between the
expectations of the two actions. Interestingly, SW-UCB and D-UCB also perform worse
than random choices. A key note here is that D-UCB and SW-UCB assume that action
rewards do not change frequently and are independent of the choices. However, D-UCB
outperforms SW-UCB since the weighted average contains more information about the
trajectory of the expected reward of each action while data from earlier choices are
removed from the estimates in the sliding window. EXP3 and random action selection
perform approximately the same in terms of both regret and expected reward. This
is unsurprising because the weighting scheme in EXP3 emphasizes the rewards of the
past action states as opposed to current action states. In terms of both regret and
reward, Tuned ROGUE-UCB substantially outperforms the other approaches. While
the other approaches seem to obtain linear regret, ROGUE-UCB does in fact have
regret on the order of O(log T ) in this experiment.

4.5.4 Healthcare-Adherence Improving Intervention for In-
creasing Physical Activity

Next, we consider an experiment using real world data from the mobile diabetes pre-
vention program (mDPP) (Fukuoka et al., 2015). This was a randomized control trial
(RCT) that was conducted to evaluate the efficacy of a 5 month mobile phone based
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Figure 4.1: Comparison of cumulative regret between the different bandit algorithms
for the logistic ROGUE GLM.
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Figure 4.2: Comparison of average reward to date between the different bandit algo-
rithms for the logistic ROGUE GLM.
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weight loss program among overweight and obese adults at risk for developing type 2
diabetes and was adapted from the Diabetes Prevention Program (DPP) (Diabetes Pre-
vention Program Research Group, 2002, 2009). Sixty one overweight/obese adults were
randomized into an active control group that only received an accelerometer (n=31)
or a treatment group that received the mDPP mobile app plus the accelerometer and
clinical office visits (n=30). Changes in primary and secondary outcomes for the trial
were clinically and statistically significant. The treatment group lost an average of
6.2 ± 5.9 kg (-6.8% ± 5.7%) between baseline and the 5 month follow up while the
control group gained 0.3 ± 3.0 kg (0.3% ± 5.7 %) (p < 0.001). The treatment group’s
steps per day increased by 2551 ± 4712 compared to the control group’s decrease of
734 ± 3308 steps per day (p < 0.001). Additional details on demographics and other
treatment parameters are available in (Fukuoka et al., 2015).

One key feature of the mDPP application was the ability for the clinicians to send
daily messages to the participants to encourage that they adhere to the intervention
and maintain a sufficiently increased activity level. Broadly speaking, there were 5
different message categories that the clinicians could choose to send to the patients.
These categories are self-efficacy/confidence, motivation/belief/attitude, knowledge,
behavior reinforcement, and social support. Each day the experimental group would
receive a preprogrammed message from one of these categories, and all participants
received the same messages each day. For our simulations, we used the data of what
messages were sent to what participants, as well as their daily step counts.

Patient Model

For our experiment, we used a behavioral analytics model of patient behavior first
proposed by Aswani et al. (2016). Here, each patient is assumed to be a utility max-
imizing agent who chooses how many steps to take each day based on previous be-
havior and the intervention implemented. We defined each of the different message
categories be one of the actions of the bandit, which forms a ROGUE agent model as
described in Section 4.2.4. Using the notation of Section 4.2.4, let ct be a sequence of
i.i.d. Laplace random variables with mean zero and shape parameter θ. This means
σ2(θ) = 2θ2. After normalizing the step counts to be in [0, 1] (where 1 is equal 14,000
steps), we can then write the reward distribution of a particular message type a as

p(rt|{xa,t, θa}) = 1
2

exp(−xa,t
θa

)δ(rt)+ 1
2

exp(xa,t−1

θa
)δ(1−rt)+ 1

2θa
exp(−|rt−xt|

θa
)1[rt ∈ (0, 1)],

where the state xa,t ∈ [0, 1] and θa ∈ [ε, 1] for a small ε > 0. This results in a reward
function g(x, θ) = x + θ

2
(exp(−x

θ
) − exp(x−1

θ
)). Using Laplace noise has the advan-

tage of allowing commercial mixed integer programming solvers to be used for offline
parameter estimation by solving inverse optimization problems (Aswani et al., 2015,
Aswani, 2017, Mintz et al., 2017a). Using this MILP reformulation and behavioral
models, we estimated the respective trajectory parameters for each message group and
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each patient of the treatment group for which we had data. These initial parameters
were found using the Gurobi Solver in Python (Gurobi Optimization, 2015).

Simulation Results

This simulation was conducted using the mDPP data described above. Each exper-
iment consisted of 1,000 action choices, which would correspond to about two years
of a message based physical activity intervention, and 10 replicates of the simulation
were conducted per patient and algorithm. The results in Figures 4.3 and 4.4 represent
averages across all patients and replicates. Since we are using real data, the interpreta-
tion of the y-axis of each of the plots corresponds to number of steps in units of 1,000
steps, and the x-axis corresponds to the day of the intervention.

ROGUE-UCB outperforms all other algorithms both in terms of regret and average
reward. In terms of regret, ROGUE-UCB is the only algorithm that obtains logarithmic
regret. While D-UCB is the only other algorithm that can outperform pure exploration,
it only obtains linear regret. In terms of average reward, ROGUE-UCB and D-UCB are
the only two algorithms that outperform pure exploration. Interpreting these results in
the healthcare context of this intervention, we find that the improved predictive model
and use of MLE estimates within our ROGUE-UCB algorithm results in an increase
of 1,000 steps a day (approximately a half-mile more of walking per day) relative to
the next best algorithm, which is a significant increase in activity.

4.6 Conclusion

In this chapter, we defined a new class of non-stationary bandit models where the
specific actions chosen influence the reward distributions of each action in subsequent
time periods through a specific model. We conducted a finite sample analysis of the
MLE estimates in this setting, and showed how these concentration bounds can be used
to create a ROGUE-UCB algorithm that provides a policy for these bandit models.
Our theoretical results show that in expectation ROGUE-UCB achieves logarithmic
regret. This is a substantial improvement over model-free algorithms, which can only
achieve a square-root regret. We then showed through simulations using real and
artificial data, that with minor modification, the ROGUE-UCB algorithm significantly
outperforms state of the art bandit algorithms both in terms of cumulative regret and
average reward. These results suggest that ROGUE bandits have strong potential
for personalizing health care interventions, and in particular for healthcare-adherence
improving interventions.
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Figure 4.3: Comparison of cumulative regret between the different bandit algorithms
for the healthcare-adherence improving intervention.
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Figure 4.4: Comparison of average reward to date between the different bandit algo-
rithms for the healthcare-adherence improving intervention.
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Chapter 5

Conclusion

In this thesis we described a new precision analytics framework that can be used
to design and optimize personalized systems. While for the most part the technical
implications and future work of the methodologies was described at the end of each
of the chapters, these models will need to be extended to accommodate additional
engineering specification.

For instance, a natural extension of the methodologies in this thesis would include
incorporating notions of risk into the policy calculation and parameter estimation.
While we discussed and developed interpretable models which account for human be-
havior and used them for optimization, these were primarily designed with low risk
scenarios in mind (such as fitness tracking or advertisement targeting) where the cost
of making a single bad prediction is minimal. However, if we consider other riskier
scenarios such as personalized diagnosis where the cost of a wrong policy may be life
or death, we need to extend the models to provide additional safety guarantees while
still being effective.

In addition, while we only considered numerical or categorical data in our analysis
another extension of these methods could include incorporating new forms of unor-
ganized and qualitative data (e.g. speech, text, images etc.) to improve prediction
accuracy and intervention efficacy. There exist many examples of precision systems
which collect qualitative data in the form of text and images as feedback from partici-
pants. For instance, in the case of diet tracking participants are often asked to provide
images of their meals and have text or in person conversations with their clinician
which are later transcribed. State of the art methods for processing this type of data
often involve deep learning models which are challenging to incorporate into reinforce-
ment learning and precision analytics settings and thus require additional anlysis to be
properly incorporated into a precision analytics framework.
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Appendix A

A.1 Proofs of Propositions in Chapter 2

Proof of Proposition 2.1. The result can be found using direct computation. This is
because as α ↓ 0, α0 → 1 while αk → 0 for all k > 0.

Proof of Proposition 2.2. This follows by first substituting the linear weight dynamics
(2.1) and then noting that (i) the only stochasticity is in zt, (ii) zt is zero mean, (iii)
zt is unobservable at time t and cannot be used to make a decision at time t, and (iv)
the terms involving zt have an expectation of zero since the decisions are independent
of zt.

Proof of Proposition 2.3. Because the constraints in Uno goals can be eliminated by
rewriting the problem as (ut, ft) = arg maxu,f −(a · wt + b · ut + c · ft + k)2 − ruu2

t +
qut − rff 2

t + stft, the KKT conditions consist of only the stationarity conditions and
are given by (2.4). A minor note is that st = s0 here, because there are no dynamics
on st when goals are not provided as in Uno goals.

Proof of Proposition 2.4. Computing optimality conditions for Ugoals requires refor-
mulation as a quadratic program (QP) by using pt ·(ut−gt)− = −max{−pt ·(ut−gt), 0}.
This QP reformulation has a differentiable, strictly concave objective and satisfies the
linear independence constraint qualification (LICQ), and so the KKT conditions are
necessary and sufficient for optimality. The KKT conditions can be rewritten after
some manipulation as the first two lines of (2.5) combined with the following logical
conditions on the Lagrange multipliers: λ2

t = pt if ut < gt, 0 ≤ λ2
t ≤ pt if ut = gt,

and λ2
t = 0 if ut > gt. Finally, let M be a constant such that M ≥ pt. Using a big-M

formulation (Vielma, 2015), we can express these logical conditions as in (2.5).

Proof of Proposition 2.5. The first inequality states x1
t+1 ∈ {0, 1} (which indicates if

ut+1 ≤ gt+1) can only decrease from x1
t+1 if the goal decreases (gt+1 < gt) or there is

an office visit (dt+1 = 1). Similarly, the second and third inequalities state x2
t+1, x

3
t+1 ∈
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{0, 1} can only increase from x2
t , x

3
t if the goal decreases (gt+1 < gt) or there is an office

visit (dt+1 = 1).

Proof of Proposition 2.6. Recall that (2.3) has the nonconvex quadratic term µ·1(ut ≥
gt). Using the integer variables x1

t , x
2
t , x

3
t from the integer-reformulated KKT conditions

(2.5), we can express this as the bilinear term µ · (1 − x1
t ). This term has the special

structure of a binary variable multiplied by a continuous scalar, and so a standard
exact-linearization approach (Glover, 1975, Torres, 1991) can be used to reformulate
the dynamics on pt as in (2.7).

Proof of Proposition 2.7. First, note that the objective of Ppl, after computing its
negative logarithm, is proportional to:

σ
−1/2
1

nw∑
i=1

|w̃ti − wti |+σ
−1/2
2

nu∑
i=1

|ũτi − uτi |+σ
−1/2
3

n∑
t=1

|zt|

+ 2−1/2
∑

X∈{µ,q,s0,β0,δ0}

mx∑
i=1

log πxi · 1(hxi ≤ X ≤ hxi+1)

+ 2−1/2
∑

X∈{β,δ}

nd−1∑
k=0

mx∑
i=1

ηx∑
j=1

log πxi,j · 1(hxi ≤ Xk+1 ≤ hxi+1) · 1(φxi ≤ Xk ≤ φxi+1),

(A.1)

where we have used the factorization of ψ̂(Θ), the equation for one-dimensional his-
tograms, the equation for the conditional histograms, and the equation for logψ(W̃ , Ũ |W,
U, F,Θ, C) from Pmle−milp. By defining yxi ∈ {0, 1} for parameters X ∈ {µ, q, s0, β0, δ0}
and yx,ki,j ∈ {0, 1} for parameters X ∈ {β, δ}, we can rewrite the objective function as
in the hypothesis of the proposition.

A.2 Derivation of Weight Dynamics

The Mifflin St Jeor Equation1 states that the basal metabolic rate (BMR) in units of
calories/day is 10wt + 6.25h − 5a + σ, where wt is weight in kilograms, h is height in
centimeters, a is age in years, σ = +5 for males, and σ = −161 for females. Addition-
ally, 2000 steps is roughly equal to walking one mile and consumes about 100 calories,
largely independent of the height, weight, age, and gender of an individual2. Based

1Mifflin, M., St Jeor, S., Hill, L., Scott, B., Daugherty, S., & Koh, Y. (1990). A new predictive
equation for resting energy expenditure in healthy individuals. The American Journal of Clinical
Nutrition, 51, 241247.

2Hill, J., Wyatt, H., Reed, G., & Peters, J. (2003). Obesity and the environment: Where do we go
from here? Science, 299, 853855.
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on the conversion factor that 3500 calories is equivalent to 1 pound, and 1 pound is
equivalent to 0.45 kilograms: let c = −0.45/3500. Then the weight dynamics are

wt+1 = wt + c · 100
2000
· ut + c · ft + c · (10wt + 6.25h− 5a+ s)

= (1 + 10c) · wt + c · 100
2000
· ut + c · ft + c · (6.25h− 5a+ s)

= awt + but + cft + k

where s = −6.4286× 10−4 for males, s = 2.0700 for females, and

a = 0.9987

b = −6.4287× 10−6

c = −1.2857× 10−4

k = −8.0357× 10−4h+ 6.4286× 10−4a+ s.
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A.3 Complete MILP Formulation for MLE

min σ
−1/2
1

∑nw
i=1 ξw,i + σ

−1/2
2

∑nu
i=1 ξu,i + σ

−1/2
3

∑n
t=1 ξz,t

s.t. 2b(awt + but + cft + k) + 2ruut − q = 0, for t = 1, . . . ,m− 1

2(awt + but + cft + k) + 2rfft − s0 = 0, for t = 1, . . . ,m− 1

2b(awt + but + cft + k) + 2ruut − q − λ2
t = 0, for t = m, . . . , n

2(awt + but + cft + k) + 2rfft − st = 0, for t = m, . . . , n

gt − ε− (gt − ε) · x1
t ≤ ut ≤M + (gt − ε−M) · x1

t , for t = m, . . . , n

(gt − ε) · x2
t ≤ ut ≤M + (gt + ε−M) · x2

t , for t = m, . . . , n

(gt + ε) · x3
t ≤ ut ≤ gt + ε+ (M − gt − ε) · x3

t , for t = m, . . . , n

0 ≤ λ2
t ≤ pt, for t = m, . . . , n

pt −M · (1− x1
t ) ≤ λ2

t ≤M · (1− x3
t ), for t = m, . . . , n

x1
t , x

2
t , x

3
t ∈ {0, 1}, for t = m, . . . , n

x1
t + x2

t + x3
t = 1, for t = m, . . . , n

wt+1 = a · wt + b · ut + c · ft + k + zt, for t = 1, . . . , n− 1

st+1 = γ · (st − s0) + s0 − βt+1 · dt+1, for t = m, . . . , n− 1

pt+1 ≥ γ · pt + δt+1 · dt+1, for t = m, . . . , n− 1

pt+1 ≤ γ · pt + δt+1 · dt+1 +M · (1− x1
t ), for t = m, . . . , n− 1

pt+1 ≥ γ · pt + δt+1 · dt+1 + µ−Mx1
t , for t = m, . . . , n− 1

pt+1 ≤ γ · pt + δt+1 · dt+1 + µ, for t = m, . . . , n− 1

x1
t+1 ≥ x1

t − dt+1 − 1(gt+1 − gt < 0), for t = m, . . . , n− 1

x2
t+1 ≤ x2

t + dt+1 + 1(gt+1 − gt < 0), for t = m, . . . , n− 1

x3
t+1 ≤ x3

t + dt+1 + 1(gt+1 − gt < 0), for t = m, . . . , n− 1

− ξw,i ≤ w̃ti − wti ≤ ξw,i, for i = 1, . . . , nw

− ξu,i ≤ ũτi − uτi ≤ ξu,i, for i = 1, . . . , nu

− ξz,t ≤ zt ≤ ξz,t, for t = 1, . . . , n
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A.4 Complete MILP Formulation for Bayesian Pos-

terior

`(wtf = ω) =

min σ
−1/2
1

∑nw
i=1 ξw,i + σ

−1/2
2

∑nu
i=1 ξu,i + σ

−1/2
3

∑n
t=1 ξz,t+

2−1/2
∑

X∈{µ,q,s0,β0,δ0}
∑mx

i=1 log πxi · yxi +

2−1/2
∑

X∈{β,δ}
∑nd−1

k=0

∑mx
i=1

∑ηx
j=1 log πxi,j · y

x,k
i,j

s.t. 2b(awt + but + cft + k) + 2ruut − q = 0, for t = 1, . . . ,m− 1

2(awt + but + cft + k) + 2rfft − s0 = 0, for t = 1, . . . ,m− 1

2b(awt + but + cft + k) + 2ruut − q − λ2
t = 0, for t = m, . . . , n

2(awt + but + cft + k) + 2rfft − st = 0, for t = m, . . . , n

gt − ε− (gt − ε) · x1
t ≤ ut ≤M + (gt − ε−M) · x1

t , for t = m, . . . , n

(gt − ε) · x2
t ≤ ut ≤M + (gt + ε−M) · x2

t , for t = m, . . . , n

(gt + ε) · x3
t ≤ ut ≤ gt + ε+ (M − gt − ε) · x3

t , for t = m, . . . , n

0 ≤ λ2
t ≤ pt, for t = m, . . . , n

pt −M · (1− x1
t ) ≤ λ2

t ≤M · (1− x3
t ), for t = m, . . . , n

x1
t , x

2
t , x

3
t ∈ {0, 1}, for t = m, . . . , n

x1
t + x2

t + x3
t = 1, for t = m, . . . , n

wt+1 = a · wt + b · ut + c · ft + k + zt, for t = 1, . . . , n− 1

st+1 = γ · (st − s0) + s0 − βt+1 · dt+1, for t = m, . . . , n− 1

pt+1 ≥ γ · pt + δt+1 · dt+1, for t = m, . . . , n− 1

pt+1 ≤ γ · pt + δt+1 · dt+1 +M · (1− x1
t ), for t = m, . . . , n− 1

pt+1 ≥ γ · pt + δt+1 · dt+1 + µ−Mx1
t , for t = m, . . . , n− 1

pt+1 ≤ γ · pt + δt+1 · dt+1 + µ, for t = m, . . . , n− 1

x1
t+1 ≥ x1

t − dt+1 − 1(gt+1 − gt < 0), for t = m, . . . , n− 1

x2
t+1 ≤ x2

t + dt+1 + 1(gt+1 − gt < 0), for t = m, . . . , n− 1

x3
t+1 ≤ x3

t + dt+1 + 1(gt+1 − gt < 0), for t = m, . . . , n− 1

(A.2)
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− ξw,i ≤ w̃ti − wti ≤ ξw,i, for i = 1, . . . , nw

− ξu,i ≤ ũτi − uτi ≤ ξu,i, for i = 1, . . . , nu

− ξz,t ≤ zt ≤ ξz,t, for t = 1, . . . , n∑mx
i=1 h

x
i · yxi ≤ X ≤

∑mx
i=1 h

x
i+1 · yxi , for X ∈ {µ, q, s0, β0, δ0}

yxi ∈ {0, 1}, ∀i = 1, . . . ,mx, for X ∈ {µ, q, s0, β0, δ0}∑mx
i=1 y

x
i = 1, for X ∈ {µ, q, s0, β0, δ0}∑mx

i=1

∑ηx
j=1 h

x
i,j · y

x,k
i,j ≤ Xk+1 ≤

∑mx
i=1

∑ηx
j=1 h

x,k
i+1 · yxi,j,

for X ∈ {β, δ}, k = 0, . . . , nd − 1∑mx
i=1

∑ηx
j=1 φ

x
i,j · y

x,k
i,j ≤ Xk ≤

∑mx
i=1

∑ηx
j=1 φ

x
i+1 · y

x,k
i,j ,

for X ∈ {β, δ}, k = 0, . . . , nd − 1

yx,ki,j ∈ {0, 1}, ∀i = 1, . . . ,mx, j = 1, . . . , ηx,

for X ∈ {β, δ}, k = 0, . . . , nd − 1∑mx
i=1

∑ηx
j=1 y

x,k
i,j = 1, for X ∈ {β, δ}, k = 0, . . . , nd − 1

wtf = ω
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A.5 Raw ROC Curve
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Figure A.1: Unsmoothed ROC computed using leave-one-out cross-validation for our
predictive model with an empirical Bayesian prior (blue solid), our predictive model
without a Bayesian prior (red dashed), linear SVM model (purple dash dot), decision
tree model (green dashed dot), and logistic regression (cyan dashed) are compared.
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Appendix B

B.1 Proofs of Propositions in Chapter 3

Proof of Proposition 3.1. The constraints θt+1 = g(xt, ut, θt, πt) can be reformulated
using Assumption 3.3 as

θt+1 ≤ Gi · (xt;ut; θt; πt) + ξi + (1− ιi) ·M
θt+1 ≥ Gi · (xt;ut; θt; πt) + ξi − (1− ιi) ·M

Bi · (xt;ut; θt; πt) ≤ ψi + (1− ιi) ·M
ιi ∈ {0, 1}

(B.1)

where M > 0 is a large-enough constant. Such a finite M exists because X ,U ,Π,Θ are
compact. Hence it suffices to show ut ∈ argmax {f(xt+1, u, θt, πt) | xt+1 = h(xt, u), u ∈
U} can be represented (by its optimality condition) using a finite number of mixed
integer linear constraints. Suppose U = {u : Ξu ≤ κ}, where Ξ is a matrix and κ is a
vector. Recall Assumption 3.2

f(x, u, θ, π) = −(x;u)T ·Q · (x;u) + (θ; π)T ·H · (x;u) +
K∑
i=1

min
j∈Ji
{Fi,j · (x;u; θ; π) + ζi,j}.

(B.2)
We cannot characterize optimality by differentiating f because it is generally not dif-
ferentiable, but we can reformulate the maximization of (B.2) as the following convex
quadratic program:

ut ∈ arg max − (xt+1;u)T ·Q · (xt+1;u) + (θt; πt)
T ·H · (xt+1;u) +

K∑
i=1

wi

s.t. wi ≤ Fi,j · (xt+1;u; θt; πt) + ζi,j for all i, j

Ξu ≤ κ

(B.3)
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Using Assumption 3.3, we can rewrite the above as

ut ∈ arg max − uT · (B; I)T ·Q · (B; I) · u+ ((θt; πt)
TH − 2(Axt + k; 0)TQ) · (B; I) · u+

K∑
i=1

wi

s.t. wi ≤ Fi,j · (B; I; 0; 0) · u+ Fi,j · (Axt + k; 0; θt; πt) + ζi,j for all i, j

Ξu ≤ κ
(B.4)

where we have eliminated the constant (θt; πt)
T ·H ·(Axt+k; 0) since xt, θt, πt are known

to the agent. The above optimization problem is convex with a with a strictly concave
objective function by assumption, and all constraints are linear for fixed πt. Hence the
optimality conditions for (B.4) can be characterized using the KKT conditions (Dempe,
2002, Boyd and Vandenberghe, 2004). Let λi,j and µ be the Lagrange Multipliers for
the first and second set of constraints given in (B.4), and note the KKT conditions are

2(B; I)T ·Q · (B; I) · u+ (B; I)T · (2Q · (Axt + k; 0)−HT · (θt; πt)) + ΞT · µ =

K∑
i=1

∑
j∈Ji

λi,j · (B; I; 0; 0)T · F T
i,j∑

j∈Ji

λi,j = 1 for i = 1, . . . , K

λi,j · (wi − Fi,j · (B; I; 0; 0) · u+ Fi,j · (Axt + k; 0; θt; πt) + ζi,j) = 0 for all i, j

wi ≤ Fi,j · (B; I; 0; 0) · u+ Fi,j · (Axt + k; 0; θt; πt) + ζi,j for all i, j

Ξu ≤ κ and λi,j ≥ 0 for all i, j

(B.5)

Note that the only nonlinear conditions are those which represent complimentary slack-
ness. However, these conditions can be reformulated as integer linear conditions by
posing them as disjunctive constraints (Wolsey and Nemhauser, 1999): For sufficiently
large M – which exists because of the compactness of X ,U ,Π,Θ – the complimentary
slackness conditions are

λi,j ≤Mιi,j for all i, j

Fi,j · (B; I; 0; 0) · u+ Fi,j · (Axt + k; 0; θt; πt) + ζi,j ≤ wi +M · (1− ιi,j) for all i, j

ιi,j ∈ {0, 1} for all i, j
(B.6)

This shows that feasible region of (3.7) of can be represented using a finite number of
mixed integer linear constraints.

Proof of Proposition 3.4. Let (x∗0, θ
∗
0) be the agent’s true initial conditions, and observe
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that

log p̂(x0, θ0|{x̃ti}nxi=0, {ỹτi}
nu
i=0, {πi}Ti=0) = log p̂(x∗0, θ

∗
0|{x̃ti}nxi=0, {ỹτi}

nu
i=0, {πi}Ti=0)+

nx∑
i=0

log
pν(x̃ti −Dxti)
pν(x̃ti −Dxti)

+
nu∑
j=0

log
pω(ỹτj − Cuτj)
pω(ỹτj − Cuτj)

+ log
p(x0, θ0)

p(x∗0, θ
∗
0)
, (B.7)

where xt, ut are the states and decisions under initial conditions (x∗0, θ
∗
0), and xt, ut are

the states and decisions under initial conditions (x0, θ0). But log p(x0,θ0)
p(x∗0,θ

∗
0)

is a constant by

assumption, and log p̂(x∗0, θ
∗
0|{x̃ti}nxi=0, {ỹτi}

nu
i=0, {πi}Ti=0) ≤ 0 since p̂(x0, θ0|{x̃ti}nxi=0, {ỹτi}

nu
i=0, {πi}Ti=0) ∈

[0, 1] by construction. So using Assumption 3.6 gives maxE(δ) log p̂(x0, θ0|{x̃ti}nxi=0, {ỹτi}
nu
i=0, {πi}Ti=0)→

−∞ for any δ > 0 almost surely. Equivalently, maxE(δ) p̂(x0, θ0|{x̃ti}nxi=0, {ỹτi}
nu
i=0, {πi}Ti=0)→

0 for any δ > 0 almost surely. Thus for any δ > 0 we have that

p̂(E(δ)|{x̃ti}nxi=0, {ỹτi}
nu
i=0, {πi}Ti=0) =

∫
E(δ)

p̂(x0, θ0|{x̃ti}nxi=0, {ỹτi}
nu
i=0, {πi}Ti=0)×dx0×dθ0 ≤

volume(X ×Θ) ·maxE(δ) p̂(x0, θ0|{x̃ti}nxi=0, {ỹτi}
nu
i=0, {πi}Ti=0)→ 0 (B.8)

almost surely. This proves the result since (B.8) holds almost surely for any δ > 0.

Proof of Corollary 3.5. Consider the events:

E1 ={(x̂0,T , θ̂0,T ) /∈ B(x∗0, θ
∗
0, δ)}

E2 ={max
E(δ)

p̂(x0, θ0|{x̃ti}nxi=0, {ỹτi}
nu
i=0, {πi}Ti=0)

≥ max
B(x∗0,θ

∗
0 ,δ)

p̂(x0, θ0|{x̃ti}nxi=0, {ỹτi}
nu
i=0, {πi}Ti=0)}

(B.9)

where E(δ) is defined as before for some δ > 0. Then observe that E1 ⊂ E2, therefore
p(x∗0,θ

∗
0)(E1) ≤ p(x∗0,θ

∗
0)(E2). By Proposition 3.4 as T → ∞, p(x∗0,θ

∗
0)(E2) → 0 hence

p(x∗0,θ
∗
0)(E1)→ 0. Thus the result of the corollary follows.

Proof of Corollary 3.6. For the first result, note Proposition 3.1 implies the feasible
region of (3.15) can be expressed as mixed integer linear constraints with respect to
(xt, ut, θt, πt). Thus ϕ(x0, θ0, {πi}T+n

i=0 ) is the value function of a MILP in which x0, θ0, πt
belong to an affine term. Standard results (Ralphs and Hassanzadeh, 2014) imply the
value function is lower semicontinuous with respect to x0, θ0, {πi}T+n

i=T+1.

To show the second result, note that the problem of min{ϕ(x0, θ0, {πi}T+n
i=0 ) | {πi}T+n

i=T+1 ∈
Πn} is equivalent to (3.15) but with removal of the constraints πt = πt for t =
T + 1, . . . , T + n. And so the result follows by Proposition 3.1 and by recalling the
assumptions on Π and `.
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Proof of Proposition 3.7. We begin by proving the first result. By definition we have
that

E[ϕ(x0, θ0, {πi}T+n
i=0 )|{x̃ti}nxi=0, {ỹτi}

nu
i=0, {πi}Ti=0] =∫

X×Θ
ϕ(x0, θ0, {πi}T+n

i=0 )p(x0, θ0|{x̃ti}nxi=0, {ỹτi}
nu
i=0, π)× dx0 × dθ0. (B.10)

Also, Proposition 3.4 implies the posterior p(x0, θ0|{x̃ti}nxi=0, {ỹτi}
nu
i=0, {πi}Ti=0) is con-

sistent, and thus becomes degenerate at (x∗0, θ
∗
0) in the limit. Hence the Dominated

Convergence Theorem gives

(B.10)
p→
∫
X×Θ

ϕ(x0, θ0, π)× δ(x0−x∗0)× δ(θ0− θ∗0)×dx0×dθ0 = ϕ(x∗0, θ
∗
0, π), (B.11)

where in the equation above δ(·) is the Dirac delta function.

For the second result, recall that Corollary 3.5 implies (x̂0,T , θ̂0,T )
p→ (x∗0, θ

∗
0). And

Corollary 3.6 gives that ϕ(x0, θ0, {πi}T+n
i=0 ) is lower semicontinuous in x0, θ0, {πi}T+n

i=T+1.
The result then follows by direct application of Proposition 2.1.ii of (Vogel and Lachout,
2003b).

Proof of Theorem 3.8. The result follows by combining the second part of our Propo-
sition 3.7 with Theorem 4.3 from (Vogel and Lachout, 2003a).

Proof of Proposition 3.9. Step 2 of ABMA is a MAP estimate, which can be computed
by solving a single MILP by Corollary 3.3. A similar argument used to prove Corollary
3.6 shows that Steps 4 and 5 can be computed by solving a single MILP. Step 8 can
be seen to be an ILP by construction. The remaining steps of ABMA are assignment
steps and do not require solving any optimization problems.

Proof of Proposition 3.10. Using the assumptions on separability of the joint loss func-
tion Φ (Assumption 3.9) and decomposibility on the incentive set Ω (Assumption 3.10),
we have that (3.19) can be reformulated as

min
yav ,∀v,a∈V×A

∑
a∈A

∑
v∈V φ

a
v · yav

s.t. min{ϕa(x0,T , θ0,T , {πi}T+n
i=0 ) | {πi}T+n

i=T+1 ∈ Sv} ≤ φav

xa0 = xa0, θ
a
0 = θ

a

0, {πat }T+n
t=0 = {πat }T+n

t=0 for all a∑
a∈A

∑
v∈V v · yav ≤ β∑

v∈V y
a
v = 1 for a ∈ A

yav ∈ {0, 1}

(B.12)
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Since φav · yav is the product of a continuous and binary decision variable, standard
integer programming reformulation techniques allow us to reformulate the above as

min
yav ,∀v,a∈V×A

∑
a∈A

∑
v∈V z

a
v

s.t. ϕa(x0,T , θ0,T , {πi}T+n
i=0 ) ≤ φav

{πi}T+n
i=T+1 ∈ Sv

xa0 = xa0, θ
a
0 = θ

a

0, {πat }T+n
t=0 = {πat }T+n

t=0 for all a∑
a∈A

∑
v∈V v · yav ≤ β∑

v∈V y
a
v = 1 for a ∈ A

yav ∈ {0, 1}
zav ≥ φav −M · (1− yav)
zav ≤ φav +M · (1− yav)
zav ≤M · yav
zav ≥ −M · yav

(B.13)

where M > 0 is a large-enough constant. Such a finite M exists because X ,U ,Π,Θ are
compact, and because `a is representable by a finite number of mixed integer linear con-
straints. Since Corollary 3.6 (and its proof) implies we can represent ϕa(x0,T , θ0,T , {πi}T+n

i=0 ) ≤
φav and {πi}T+n

i=T+1 ∈ Sv by mixed integer linear constraints, this means we can reformu-

late (3.19) as a MILP with linear constraints that are affine in (xa0, θ
a

0, {πai }T+n
i=0 for a ∈

A). And so standard results (Ralphs and Hassanzadeh, 2014) imply its value function
is lower semicontinuous with respect to these variables, which is our first result. The
second result follows by noting min{Φ(xa0, θ

a
0 , {πai }T+n

i=0 for a ∈ A) | {{πat }T+n
t=T+1 for a ∈

A} ∈ Ω} is equivalent to (3.19) but with removal of the constraints πat = πat for
t = T + 1, . . . , T + n.

Proof of Theorem 3.12. Corollary 3.5 implies (x̂a0,T , θ̂
a
0,T )

p→ (x∗,a0 , θ∗,a0 ), and Corollary

3.6 states Φ is lower semicontinuous in its arguments. This means Φ(x̂a0, θ̂
a
0 , {πai }T+n

i=0 for a ∈
A) is a lower semicontinuous approximation to Φ(x∗,a0 , θ∗,a0 , {πai }T+n

i=0 for a ∈ A) by
Proposition 2.1.ii of (Vogel and Lachout, 2003b). But Corollary 3.11 shows that

{πaABMA(T ) for a ∈ A} ∈ arg min{Φ(x̂a0, θ̂
a
0 , {πai }T+n

i=0 for a ∈ A) | {{πat }T+n
t=T+1 for a ∈ A} ∈ Ω}.

(B.14)
This means that the result follows by applying Theorem 4.3 from (Vogel and Lachout,
2003a).
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B.2 Complete MILP Formulation of MLE Problem

min

√
2

σ1

nw∑
i=1

ζw,ti +

√
2

σ2

ns∑
i=1

ζs,ti (B.15)

s.t. − ζw,ti ≤ w̃ti − wti ≤ ζw,ti ∀1 ≤ ti ≤ nw (B.16)

− ζs,ti ≤ s̃τi − sτi ≤ ζs,ti ∀1 ≤ ti ≤ ns (B.17)

− b(aw1 + bs0 + cf0 + k)− rs(s0 − sb) = 0 (B.18)

− (aw1 + bs0 + cf0 + k)− rf (f0 − Fb,1) = 0 (B.19)

− b(awt + bst + cft + k)− rs(st − sb) = 0 ∀1 ≤ t ≤ m (B.20)

− (awt + bst + cft + k)− rf (ft − fb,t) = 0 ∀1 ≤ t ≤ m (B.21)

− 2b(awt + bst + cft + k)− 2rs(st − sb) + λ1,t = 0 ∀m ≤ t ≤ n (B.22)

− 2(awt + bst + cft + k)− 2(ft − fb,t) = 0 ∀m ≤ t ≤ n (B.23)

(gt − ε)−Mx1,t ≤ st ≤ gt − ε+M(1− x1,t) ∀m ≤ t ≤ n (B.24)

(gt − ε)−M(1− x2,t) ≤ st ≤ gt + ε+M(1− x2,t) ∀m ≤ t ≤ n (B.25)

(gt + ε)−M(1− x3,t) ≤ st ≤ gt + ε+Mx3,t ∀m ≤ t ≤ n (B.26)

pt −M(1− xt,1) ≤ λ1,t ≤M(1− x3,t) ∀m ≤ t ≤ n (B.27)

0 ≤ λ1,t ≤ pt ∀m ≤ t ≤ n (B.28)

(B.29)

xt,1 + xt,2 + xt,3 = 1 ∀m ≤ t ≤ n (B.30)

pt+1 ≥ γpt + δdt+1 ∀m ≤ t ≤ n (B.31)

pt+1 ≤ γpt + δdt+1 +M(1− x1,t) ∀m ≤ t ≤ n (B.32)

pt+1 ≥ γpt + δdt+1 + µ−Mx1,t ∀m ≤ t ≤ n (B.33)

pt+1 ≤ γpt + δdt+1 + µ ∀m ≤ t ≤ n (B.34)

Fb,t+1 = (1− α)Fb,t + αfb,t ∀t (B.35)

fb,t+1 = γ(fb,t − Fb,t) + Fb,t − βdt ∀t (B.36)

xt+1,1 ≥ xt,1 − dt+1 − 1(gt+1 − gt < 0) ∀m ≤ t ≤ n (B.37)

xt+1,2 ≤ xt,2 − dt+1 + 1(gt+1 − gt < 0) ∀m ≤ t ≤ n (B.38)

xt+1,3 ≤ xt,3 − dt+1 + 1(gt+1 − gt < 0) ∀m ≤ t ≤ n (B.39)

wt, st, ft, Fb,t, fb,t, pt ≥ 0 ∀t (B.40)

xt,1, xt,2, xt,3 ∈ B ∀t (B.41)
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B.3 Complete MILP Formulation of MAP Problem

min

√
2

σ1

nw∑
i=1

ζw,ti +

√
2

σ2

ns∑
i=1

ζs,ti −
∑
x∈θ

mx∑
i=1

zi,x log φxi (B.42)

s.t. − ζw,ti ≤ w̃ti − wti ≤ ζw,ti ∀1 ≤ ti ≤ nw (B.43)

− ζs,ti ≤ s̃τi − sτi ≤ ζs,ti ∀1 ≤ ti ≤ ns (B.44)

− b(aw1 + bs0 + cf0 + k)− rs(s0 − sb) = 0 (B.45)

− (aw1 + bs0 + cf0 + k)− rf (f0 − Fb,1) = 0 (B.46)

− b(awt + bst + cft + k)− rs(st − sb) = 0 ∀1 ≤ t ≤ m (B.47)

− (awt + bst + cft + k)− rf (ft − fb,t) = 0 ∀1 ≤ t ≤ m (B.48)

− 2b(awt + bst + cft + k)− 2rs(st − sb) + λ1,t = 0 ∀m ≤ t ≤ n (B.49)

− 2(awt + bst + cft + k)− 2(ft − fb,t) = 0 ∀m ≤ t ≤ n (B.50)

(gt − ε)−Mx1,t ≤ st ≤ gt − ε+M(1− x1,t) ∀m ≤ t ≤ n (B.51)

(gt − ε)−M(1− x2,t) ≤ st ≤ gt + ε+M(1− x2,t) ∀m ≤ t ≤ n (B.52)

(gt + ε)−M(1− x3,t) ≤ st ≤ gt + ε+Mx3,t ∀m ≤ t ≤ n (B.53)

pt −M(1− xt,1) ≤ λ1,t ≤M(1− x3,t) ∀m ≤ t ≤ n (B.54)

0 ≤ λ1,t ≤ pt ∀m ≤ t ≤ n (B.55)

xt,1 + xt,2 + xt,3 = 1 ∀m ≤ t ≤ n (B.56)

pt+1 ≥ γpt + δdt+1 ∀m ≤ t ≤ n (B.57)

pt+1 ≤ γpt + δdt+1 +M(1− x1,t) ∀m ≤ t ≤ n (B.58)

pt+1 ≥ γpt + δdt+1 + µ−Mx1,t ∀m ≤ t ≤ n (B.59)

pt+1 ≤ γpt + δdt+1 + µ ∀m ≤ t ≤ n (B.60)

(B.61)
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Fb,t+1 = (1− α)Fb,t + αfb,t ∀t (B.62)

fb,t+1 = γ(fb,t − Fb,t) + Fb,t − βdt ∀t (B.63)

xt+1,1 ≥ xt,1 − dt+1 − 1(gt+1 − gt < 0) ∀m ≤ t ≤ n (B.64)

xt+1,2 ≤ xt,2 − dt+1 + 1(gt+1 − gt < 0) ∀m ≤ t ≤ n (B.65)

xt+1,3 ≤ xt,3 − dt+1 + 1(gt+1 − gt < 0) ∀m ≤ t ≤ n (B.66)

zi,xh
x
lb,i ≤ xi ≤ zi,xh

x
ub,i ∀x∀i (B.67)

mx∑
i=1

zi,x = 1 ∀x∀i (B.68)

mx∑
i=1

xi = x ∀x∀i (B.69)

zi,x ∈ B ∀x∀i (B.70)

wt, st, ft, Fb,t, fb,t, pt ≥ 0 ∀t (B.71)

xt,1, xt,2, xt,3 ∈ B ∀t (B.72)
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B.4 Complete MILP Formulation of Personalized

Treatment Plan Design Problem

min wn (B.73)

s.t. Fb,t+1 = (1− α)Fb,t + αfb,t ∀t > T (B.74)

fb,t+1 = γ(fb,t − Fb,t) + Fb,t − β̂dt ∀t > T (B.75)

pt+1 = γpt + δ̂dt + µ̂(1− x1,t) ∀t > T (B.76)

dt ≤ 1 [mod(t, 7) = 1] ∀t > T (B.77)

dt ≤ 1− dτ ∀τ > T, τ + 1 ≤ t ≤ τ + 6 ∀t > T (B.78)

− 2b(awt + bst + cft + k)− 2rs(st − sb) + λ1,t + λ4,t = 0 ∀t > T (B.79)

− 2(awt + bst + cft + k)− 2(ft − fb,t) + λ3,t = 0 ∀t > T (B.80)

(gt − ε)−Mx1,t ≤ st ≤ gt − ε+M(1− x1,t) ∀t > T (B.81)

(gt − ε)−M(1− x2,t) ≤ st ≤ gt + ε+M(1− x2,t) ∀t > T (B.82)

(gt + ε)−M(1− x3,t) ≤ st ≤ gt + ε+Mx3,t ∀t > T (B.83)

pt −M(1− xt,1) ≤ λ1,t ≤M(1− x3,t) ∀t > T (B.84)

0 ≤ ft ≤M(1− xf,t) ∀t > T (B.85)

0 ≤ st ≤M(1− xs,t) ∀t > T (B.86)

0 ≤ λ3,t ≤Mxf,t ∀t > T (B.87)

0 ≤ λ4,t ≤Mxs,t ∀t > T (B.88)

0 ≤ λ1,t ≤ pt ∀t > T (B.89)

xt,1 + xt,2 + xt,3 = 1 ∀t > T (B.90)

gt+1 − gt ≤M(1− gind,t) ∀t > T (B.91)

gt+1 − gt ≥ −Mgind,t ∀t > T (B.92)

xt+1,1 ≥ xt,1 − dt+1 − gind,t ∀t > T (B.93)

xt+1,2 ≤ xt,2 − dt+1 + gind,t ∀t > T (B.94)

xt+1,3 ≤ xt,3 − dt+1 + gind,t ∀t > T (B.95)

gind,t ∈ B (B.96)

xt,1, xt,2, xt,3, xf,t, xs,t ∈ B (B.97)

dt = d̄t; gt = ḡt;wt = ŵt; st = ŝt; ft = f̂t; θt = θ̂t ∀t ≤ T (B.98)

B.5 Benchmarking Performance Tables
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Average Runtimes for Candidate Treatment Plan Calculation (in seconds)
Date of Calculation During the Program

15 30 60 90 120 Average

Visit Budget

54 21.715 9.3363 8.8984 9.5618 10.003 11.903
63 21.715 7.7624 14.714 18.736 16.692 15.924
72 21.715 8.8894 21.239 26.186 16.091 18.824
81 21.715 11.408 43.147 28.112 23.284 25.533
90 21.715 10.274 23.935 13.421 33.6 20.589
99 21.715 9.3366 26.251 14.16 19.855 18.263
108 21.715 9.4194 24.208 12.774 21.757 17.975
117 21.715 9.9031 22.962 9.9226 31.865 19.273
126 21.715 10.217 21.749 10.199 28.664 18.509
135 21.715 9.973 16.307 23.129 18.893 18.003
144 21.715 11.208 14.626 14.851 8.9203 14.264
153 21.715 12.978 13.913 13.892 8.0501 14.11
162 21.715 12.403 14.674 14.434 10.965 14.838
171 21.715 13.305 12.102 11.585 23.78 16.497
180 21.715 14.879 12.116 11.964 18.473 15.829
189 21.715 11.731 11.835 12.221 21.715 15.843

Average 21.715 10.814 18.917 15.322 19.538 17.261

Table B.1

Average Runtimes for MAP Calculation (in seconds)
Date of Calculation During the Program

15 30 60 90 120 Average

Visit Budget

54 16.365 11.416 9.537 11.479 7.6851 11.296
63 16.365 13.249 12.816 17.157 11.493 14.216
72 16.365 11.913 14.15 13.846 12.884 13.832
81 16.365 17.448 16.11 11.936 17.237 15.819
90 16.365 12.251 9.9218 8.9877 16.463 12.798
99 16.365 9.9473 10.59 9.3482 13.666 11.983
108 16.365 10.412 10.199 9.377 14.746 12.22
117 16.365 10.696 9.5879 8.9027 23.187 13.748
126 16.365 10.36 10.737 9.6123 23.524 14.12
135 16.365 9.7085 10.241 12.753 18.221 13.458
144 16.365 9.3022 13.258 12.135 11.654 12.543
153 16.365 8.5183 11.297 11.527 11.152 11.772
162 16.365 9.4638 8.4174 11.279 14.812 12.068
171 16.365 8.0878 11.092 9.8865 18.003 12.687
180 16.365 8.8929 7.5454 6.5939 12.739 10.427
189 16.365 7.679 7.6401 6.9321 16.365 10.996

Average 16.365 10.584 10.821 10.735 15.239 12.749

Table B.2

Average Runtimes for Knapsack Calculation (in seconds)
Date of Calculation During the Program

15 30 60 90 120 Average

Visit Budget

54 0.21791 0.19278 0.14949 0.1666 0.19679 0.18471
63 0.19295 0.16084 0.19613 0.23577 0.22246 0.20163
72 0.21302 0.2516 0.17474 0.18052 0.3125 0.22648
81 0.25345 0.3542 0.18128 0.17449 0.25997 0.24468
90 0.21698 0.17154 0.168 0.16942 0.21394 0.18798
99 0.17072 0.17607 0.15058 0.15699 0.20012 0.1709
108 0.17086 0.17178 0.17235 0.15172 0.19029 0.1714
117 0.17958 0.17073 0.16465 0.16171 0.20232 0.1758
126 0.18599 0.24335 0.17326 0.16726 0.20706 0.19538
135 0.20403 0.16143 0.16626 0.16681 0.19607 0.17892
144 0.17733 0.14174 0.16112 0.1618 0.18708 0.16581
153 0.18841 0.15411 0.17753 0.17965 0.18822 0.17758
162 0.17892 0.2167 0.18539 0.17419 0.21756 0.19455
171 0.1771 0.29787 0.21357 0.2248 0.21789 0.22625
180 0.20535 0.18508 0.22285 0.16565 0.19392 0.19457
189 0.18554 0.2104 0.19875 0.17776 0.20053 0.1946

Average 0.19488 0.20376 0.1785 0.17595 0.21292 0.1932

Table B.3
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Appendix C

C.1 Proofs of Propositions in Chapter 4

Proof of Proposition 4.2: To obtain this formulation first we can augment the objec-
tive function of the log-likelihood problem by adding the constant term log

∑
t∈Ta p(ra,t|θ

∗
a, x

∗
a,t)

and multiplying by the positive constant 1
n(Ta)

which does not change the value of the
optimal solution. Next we use functional compositions to contract the dynamics and
obtain an objective function which is explicitly a function of θa, x0,a.

Proof of Lemma 4.1: We can see that this is the case by noting that by Assumption
4.4 we have that each of the log-likelihood ratios are Lipschitz with constant Lp. Since
Lipschitz continuity is preserved by addition and averaging we note that the average
of all of these log-likelihood ratios is also Lp-Lipschitz. Next we use the property
that functional compositions of Lipschitz functions are Lipschitz with a constant equal
to the product of their respective constants and the Lipschitz continuity is preserved
through point wise maxima (Rockafellar and Wets, 2009). Since the absolute value
function is 1-Lipschitz and we are performing maximization we have that φ is indeed
Lp-Lipschitz with respect to the input sequence.

Proof of Lemma 4.2: To show the first result we use a similar argument to that of
the proof of Lemma 4.1 by showing that the likelihood is Lipschitz and then using
the preservation of Lipschitz continuity across functional compositions. First consider
hta(x). Using the definition of ha from (4.1) we observe that ha is the composition
of a linear function with a projection operator onto the set X . Since projections are
1-Lipschitz (Rockafellar and Wets, 2009) and by Assumption 4.5 ‖Aa‖op< 1 we have
that with respect to x, x′ ∈ X ‖hta(x) − hta(x′)‖2< ‖x − x′‖2. Hence hta(x) is locally
1-Lipschitz continuous with respect to x, t. Next, applying Assumption 4.3 shows that
since the likelihood ratio is Lf -Lipschitz with respect to its two inputs we simply have
a composition of Lipschitz functions and the result follows.

To show the second result note that ` depends on t only through the composite
dynamics mapping hta. By definition ht(x) ∈ X which is a bounded set, we have that
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for any t, t′ ∈ {1, ..., T} ‖hta(x) − ht
′
a (x)‖2≤ diam(X ), thus using Assumption 4.3 we

obtain the desired result.

Proof of Lemma 4.3. To prove this result we first bound the expectation by a Rademacher
average (Bartlett and Mendelson, 2002) and then apply Dudley’s Integral bound (Wain-

wright, 2015). First let us consider the explicit form of Eϕ({ra,t}n(Ta)
t=1 ). Using an iden-

tically distributed sequence of rewards {r′a,t}
n(Ta)
t=1 which is independent of the observed

sequence we see that

E sup
θa,xa,0∈Θ×X

| 1

n(Ta)
∑
t∈Ta

log
p(ra,t|θ∗a, hta(x∗a,0, θ∗a, πt1))

p(ra,t|θa, hta(xa,0, θa, πt1))

− 1

n(Ta)
Da,πT1

(θ∗a, x
∗
a,0||θa, xa,0)|

= E sup
θa,xa,0∈Θ×X

∣∣∣ 1

n(Ta)
E[
∑
t∈Ta

log
p(ra,t|θ∗a, hta(x∗a,0, θ∗a, πt1))

p(ra,t|θa, hta(xa,0, θa, πt1))

−
∑
t∈Ta

log
p(r′a,t|θ∗a, hta(x∗a,0, θ∗a, πt1))

p(r′a,t|θa, hta(xa,0, θa, πt1))
|{ra,t}n(Ta)

t=1 ]
∣∣∣

≤ E sup
θa,xa,0∈Θ×X

∣∣∣ 1

n(Ta)

(∑
t∈Ta

log
p(ra,t|θ∗a, hta(x∗a,0, θ∗a, πt1))

p(ra,t|θa, hta(xa,0, θa, πt1))

−
∑
t∈Ta

log
p(r′a,t|θ∗a, hta(x∗a,0, θ∗a, πt1))

p(r′a,t|θa, hta(xa,0, θa, πt1))

)∣∣∣.

(C.1)

Here the inequality follows from Jensen’s Inequality (Qu and Keener, 2011). Let

{εt}n(Ta)
t=1 be a sequence of i.i.d. Rademacher random variables, which are indepen-

dent of the observations ra,t, r
′
a,t, then through a symmetrization argument its clear

that

Eϕ({ra,t}n(Ta)
t=1 ) ≤ 2E sup

θa,xa,0∈Θ×X

∣∣∣ 1

n(Ta)
∑
t∈Ta

εt log
p(ra,t|θ∗a, hta(x∗a,0, θ∗a, πt1))

p(ra,t|θa, hta(xa,0, θa, πt1))

∣∣∣. (C.2)

Since x∗a,0, θ
∗
a are constants we can use simplify the above expression using the notation

introduced in Lemma 4.2 to 2E supθa,xa∈Θ×X

∣∣∣ 1
n(Ta)

∑
t∈Ta εt`(θa, x0,a, t)

∣∣∣. We can bound
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this expression as follows

2E sup
θa,xa∈Θ×X

∣∣∣ 1

n(Ta)
∑
t∈Ta

εt`(θa, x0,a, t)
∣∣∣,

= 2E sup
θa,xa∈Θ×X

∣∣∣ 1

n(Ta)
∑
t∈Ta

εt(`(θa, x0,a, t)− `(θa, x0,a, 0) + `(θa, x0,a, 0))
∣∣∣,

≤ 2E sup
θa,xa∈Θ×X

∣∣∣ 1

n(Ta)
∑
t∈Ta

εt(`(θa, x0,a, t)− `(θa, x0,a, 0))
∣∣∣

+ 2E sup
θa,xa∈Θ×X

∣∣∣ 1

n(Ta)
∑
t∈Ta

εt`(θa, x0,a, 0)
∣∣∣.

(C.3)

For our analysis we can consider each of these terms separately and bound them
using Dudley’s Integral Bound (Wainwright, 2015) and Lemmas 4.2,C.1. Consider
the first term, note that by Lemma 4.2 we have that |`(θa, x0,a, t) − `(θa, x0,a, 0)|≤
Lf diam(X ) and is contained in an `2 ball of this radius, hence by Lemma C.1

2E sup
θa,xa∈Θ×X

∣∣∣ 1

n(Ta)
∑
t∈Ta

εt(`(θa, x0,a, t)− `(θa, x0,a, 0))
∣∣∣,

≤ 8

∫ Lf diam(X )

0

√
logN (Lf diam(X )B2, α, ‖‖2)

n(Ta)
dα ≤ 8Lf diam(X )

√
π

n(Ta)
. (C.4)

The last inequality follows from using a volume bound on the covering number and
using integration by parts. Next consider the second term in (C.3), we can bound this
term using a direct application of Dudley’s entropy integral as follows

2E sup
θa,xa∈Θ×X

∣∣∣ 1

n(Ta)
∑
t∈Ta

εt`(θa, x0,a, 0)
∣∣∣ ≤ 16

√
2

∫ ∞
0

√
log 2N (α, `(Θ×X ), ‖‖2)

n(Ta)
dα,

≤ 16
√

2

∫ ∞
0

√
log 2N ( α

Lf
,Θ×X , ‖‖2)

n(Ta)
dα. (C.5)

Let v`B2 be the `2 ball on Rdx+dθ with radius v` = diam(X ×Θ), then

(C.5) ≤ 16
√

2

∫ ∞
0

√
log 2N ( α

Lf
, B`, ‖‖2)

n(Ta)
dα ≤ 16

√
2

∫ ∞
0

√
log 2(

3v`Lf
α

)dx+dθ

n(Ta)
dα (C.6)

Solving the integral shows that (C.6) ≤ 48
√

2(2)
1

dx+dθLfv`

√
π(dx+dθ)
n(Ta)

. Hence the result

follows.
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Proof of Theorem 4.3: Lemma 4.1 guarantees that the mapping ϕ is Lispschitz con-
tinuous with respect to the observed rewards with parameter Lp, furthermore we have
by Assumption 4.4 that the reward distributions are sub-Gaussian with parameter σ2.
By applying Theorem 1 from Kontorovich (2014) we obtain for ξ > 0:

P
(
ϕ({rt}n(Ta)

t=1 )− Eϕ({rt}n(Ta)
t=1 ) > ξ

)
≤ exp(

−ξ2n(Ta)
2L2

pσ
2

). (C.7)

Hence, using the upper bound obtained from Lemma 4.3, we can substitute the
result into the above equation giving the desired result.

Proof of Theorem 4.1: Using Theorem 4.3 we know that with probability at least

1− exp(−ξ
2n(Ta)

2L2
pσ

2 ) we have:

1

n(Ta)
Da,πT1

(θ∗a, x
∗
a,0||θ̂a, x̂a,0)− 1

n(Ta)
∑

t∈n(Ta)

log
p(ra,t|θ∗a, hta(x∗a,0, θ∗a, πt1))

p(ra,t|θ̂a, hta(x̂a,0, θ̂a, πt1))

≤ cf (dx, dθ)√
n(Ta)

+ ξ. (C.8)

Also since θ̂a, x̂a are minimizers of the empirical trajectory divergence implies that

1

n(Ta)
∑

t∈n(Ta)

log
p(ra,t|θ∗a, hta(x∗a,0, θ∗a, πt1))

p(ra,t|θ̂a, hta(x̂a,0, θ̂a, πt1))

≤ 1

n(Ta)
∑

t∈n(Ta)

log
p(ra,t|θ∗a, hta(x∗a,0, θ∗a, πt1))

p(ra,t|θ∗a, hta(x∗a,0, θ∗a, πt1))
= 0. (C.9)

Hence the desired result follows.

Proof of Proposition 4.6: Recall that by definition ERΠ(T ) =
∑T

t=1 g(θpi∗t , xpi∗t ) −
g(θpit , xpit). Since by Assumption 4.3 we have that g is Lg-Lipschitz then we have ∀t
that g(θpi∗t , xpi∗t ) − g(θpit , xpit) ≤ Lg‖(θpi∗t , xpi∗t ) − (θpit , xpit)‖≤ Lg diam(X × Θ)P(πt 6=
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π∗t ). Hence

ERΠ(T ) ≤ Lg diam(X ×Θ)
T∑
t=0

P(πt 6= π∗t )

= Lg diam(X ×Θ)
T∑
t=0

∑
a∈A

P(πt = a, a 6= π∗t )

= Lg diam(X ×Θ)
∑
a∈A

T∑
t=0

P(πt = a, a 6= π∗t )

= Lg diam(X ×Θ)
∑
a∈A

ET̃a

(C.10)

Proof of Proposition 4.7: We proceed to prove this proposition in a similar method
to that presented in Auer et al. (2002b). Suppose that at time t, the ROGUE-
UCB policy chooses a 6= π∗t . If the upper confidence bounds hold then we observe
that gUCBa,t ≥ gUCBπ∗t ,t

≥ gπ∗t ,t. Also define the mapping ψa(γ) = max{|g(θ, hta(x0)) −
g(θ̂a, h

t
a(x̂a,0))|: 1

n(Ta)
Da,πT1

(θ, x0||θ̂a, x̂a,0) ≤ γ}. Then clearly gUa,tCB − g(θ̂a, h
t
a(x̂a,0)) ≤

ψa(A(t)
√

4 log(t)
n(Ta)

) and g(θ̂a, h
t
a(x̂a,0)) − ga,t ≤ ψa(A(t)

√
4 log(t)
n(Ta)

). Hence we have that

gUCBa,t ≤ 2ψ(A(t)
√

4 log(t)
n(Ta)

) + ga,t. Therefore ψ(A(t)
√

4 log(t)
n(Ta)

) ≥ 1
2
(gπ∗t ,t − ga,t). By defi-

nition of εa we thus have that ψ(A(t)
√

4 log(t)
n(Ta)

) ≥ εa
2

. Therefore, by definition of δa we

observe that A(t)
√

4 log t
n(Ta)

≥ δa and hence n(Ta) ≤ 4A(t)2 log t
δ2a

.
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Now, consider T̃a:

T̃a =
T∑
t=1

1{πt = a, a 6= π∗t } (C.11)

=
T∑
t=1

1{πt = a, a 6= π∗t , n(Ta) ≤
4A(t)2 log t

δ2
a

}

+
T∑
t=1

1{πt = a, a 6= π∗t , n(Ta) >
4A(t)2 log t

δ2
a

}

(C.12)

≤
T∑
t=1

1{πt = a, a 6= π∗t , n(Ta) ≤
4A(|A|)2 log T

δ2
a

}

+
T∑
t=1

1{πt = a, a 6= π∗t , n(Ta) >
4A(t)2 log t

δ2
a

}

(C.13)

≤ 4 log(T )

δ2
a

A(|A|)2 +
T∑
t=1

1{πt = a, a 6= π∗t , n(Ta) >
4A(t)2 log t

δ2
a

} (C.14)

Observe that if we play sub optimal action a at time t this means we either severely
over estimate the value of ga,t, severely under estimate the value of gπ∗t ,t, or the two
values are very close to each other. Hence

{πt = a, a 6= π∗t , n(Ta) >
4A(t)2 log t

δ2
a

}

⊆ {gUCBa,t − ga,t > 2ψa(A(t)

√
4 log(t)

n(Ta)
), n(Ta) >

4A(t)2 log t

δ2
a

}︸ ︷︷ ︸
(a)

∪ {gπ∗t ,t > g
π∗t ,t
UCB, n(Ta) >

4A(t)2 log t

δ2
a

}︸ ︷︷ ︸
(b)

∪ {gπ∗t ,t − ga,t ≤ 2ψa(A(t)

√
4 log(t)

n(Ta)
), n(Ta) >

4A(t)2 log t

δ2
a

}︸ ︷︷ ︸
(c)

.

(C.15)

However, as we established in the beginning of the proof the event (c) = ∅. Also note
that for events (a), (b) to occur this would imply that θa, xa,0 and θπ∗t , xπ∗t ,0 are not
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feasible points of their respective UCB deriving problems, hence

{πt = a, a 6= π∗t , n(Ta) >
4A(t)2 log t

δ2
a

}

⊆ {∃s < t :
1

s
Dπ∗t ,π

s
1
(θ̂π∗t , x̂π∗t ,0||θπ∗t , xπ∗t ,0) > A(t)

√
4 log(t)

s
}

∪ {∃s′ < t :
1

s′
Da,πs

′
1

(θ̂a, x̂a,0||θa, xa,0) > A(t)

√
4 log(t)

s′
}

⊆
⋃

1≤s<t

{1

s
Dπ∗t ,π

s
1
(θ̂π∗t , x̂π∗t ,0||θπ∗t , xπ∗t ,0) > A(t)

√
4 log(t)

s
}

⋃
1≤s′<t

{ 1

s′
Da,πs

′
1

(θ̂a, x̂a,0||θa, xa,0) > A(t)

√
4 log(t)

s′
}.

(C.16)

Taking the expected value of T̃a we obtain

ET̃a ≤
4 log(T )

δ2
a

A(|A|)2 + E
T∑
t=1

1{πt = a, a 6= π∗t , n(Ta) >
4A(t)2 log t

δ2
a

}

≤ 4 log(T )

δ2
a

A(|A|)2

+
T∑
t=1

t∑
s=1

t∑
s′=1

P(
1

s
Dπ∗t ,π

s
1
(θ̂π∗t , x̂π∗t ,0||θπ∗t , xπ∗t ,0) > A(t)

√
4 log(t)

s
)

+
T∑
t=1

t∑
s=1

t∑
s′=1

P(
1

s′
Da,πs

′
1

(θ̂a, x̂a,0||θa, xa,0) > A(t)

√
4 log(t)

s′
)

≤ 4 log(T )

δ2
a

A(|A|)2 + 2
T∑
t=1

t∑
s=1

t∑
s′=1

t−4 ≤ 4 log(T )

δ2
a

A(|A|)2 +
π2

3
.

(C.17)

Here the third inequality is derived by Theorem 4.1 and the final inequality by utilizing
the solution to the Basel Problem (Rockafellar and Wets, 2009). Hence we obtain the
desired result.

Proof of Theorem 4.5: Using Proposition 4.6 we bound the expected regret as ERΠ(T ) ≤
Lg diam(X ×Θ)

∑
a∈A ET̃a. Then applying the result of Proposition 4.7 we obtain the

desired result.

141



C.2 Technical Metric Entropy Lemma

Lemma C.1. Let a ∈ A ⊆ Rn such that A is bounded and K = maxa∈A
d(a,0)
n

with
respect to some metric d and ∀a ∈ A, ‖a‖2≤ d(a, 0) . Then for i.i.d Rademacher process
{εi}ni=1 :

E sup
a∈A
| 1
n

n∑
i=1

εiai|≤ 4

∫ K

0

√
log 2N (α,A, d)

n
dα (C.18)

Proof: We proceed to prove this result in a similar technique to that used by (Wain-
wright, 2015). Let Ā = A ∪ A− and {Âi}Ni=0 be a sequence of successively finer covers
of set Ā, such that Âi is an αi cover of set Ā with respect to metric d and αi = 2−iK.
Next, define a sequence of approximating vectors of a and denote these by âi such
that for any two successive approximations âi ∈ Âi and âi−1 ∈ Âi−1 we have that
d(âi, âi−1) ≤ αi. Then observe we can rewrite a as follows:

a = a+ âN − âN = â0 +
N∑
i=1

(âi − âi−1) + a− ân (C.19)

Observe that we can set â0 to the 0 vector since clearly a metric ball of radius K will
form a K cover of set A. Hence we obtain:

E sup
a∈A
| 1
n

n∑
i=1

εiai|= E sup
a∈A
| 1
n
〈ε, a〉|= E sup

a∈Ā

1

n
〈ε, a〉 = E sup

a∈Ā

1

n
〈ε,

N∑
j=1

(âi − âi−1) + a− âN〉

(C.20)

≤ E
N∑
j=1

sup
âj∈Âj ,âj−1∈Âj−1

〈ε, âj − âj−1〉+ E sup
a∈Ā
〈ε, a− âN〉 (C.21)

≤
N∑
j=1

αi

√
2 log|Âj||Âj−1|

n
+ αN (C.22)

Here the final inequality is obtained by applying the finite class lemma (Wainwright,
2015). Observe that |Âj−1|≤ |Âj−1|= N (αi, Ā, d) and that by construction αj = 2(αj−
αj+1). Hence:

E sup
a∈A
| 1
n

n∑
i=1

εiai|≤
N∑
j=1

4(αj − αj+1)

√
logN (αi, Ā, d)

n
+ αN (C.23)

≤ 4

∫ α0

αN+1

√
logN (α, Ā, d)

n
dα + αN → 4

∫ K

0

√
logN (α, Ā, d)

n
dα (C.24)

Note that N (α, Ā, d) ≤ 2N (α,A, d) thus completing the proof.
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