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Abstract 

Synaptic vesicle transport by motor proteins along microtubules is a crucial active process 

underlying neuronal communication. It is known that microtubules are destabilized by tau-

hyperphosphorylation, which causes tau proteins to detach from microtubules and form neurofibril 

tangles. However, how tau-phosphorylation affects transport dynamics of motor proteins on the 

microtubule remains unknown. Here, we discover that long-distance unidirectional motion of 

vesicle-motor protein multiplexes (VMPMs) in living cells is suppressed under tau-

hyperphosphorylation, with the consequent loss of fast vesicle-transport along the microtubule. 

The VMPMs in hyperphosphorylated cells exhibit seemingly bidirectional random motion, with 

dynamic properties far different from VMPM motion in normal cells. We establish a parsimonious 

physicochemical model of VMPM’s active motion that provides a unified, quantitative explanation 

and predictions for our experimental results. Our analysis reveals that, under hyperphosphorylation 

conditions, motor-protein-multiplexes have both static and dynamic motility fluctuations. The loss 

of the fast vesicle-transport along the microtubule can be a mechanism of neurodegenerative 

disorders associated with tau-hyperphosphorylation.   
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INTRODUCTION 

Neuronal communication is achieved by active transport of synaptic vesicles by kinesins and 

dyneins.1-7 These molecular motors catalyze ATP-hydrolysis and convert the resulting chemical 

energy to mechanical energy required for their motion along the microtubule, a eukaryotic 

cytoskeleton formed by the polymerization of tubulin proteins. In the microtubule, tubulins are 

cross-linked by tau proteins to yield a stable helical structure, which produces the polarity of the 

microtubule.8-10 This polarity allows kinesins and dyneins to move in the opposite direction from 

each other along the microtubule. Thus, a stable helical structure of the microtubule is essential 

for the microtubule-based directional motion of these motor proteins, which underlies many 

important biological processes, including the self-assembly and positioning of the mitotic spindle 

in cell division and the transport of various subcellular cargos ranging from vesicles to 

mitochondria.11-14  

Vesicles carried by these motor proteins exhibit unique transport dynamics far different from 

the dynamics of simple active matter motion or any kind of passive thermal motion. In living cells, 

multiple kinesins and dyneins are bound to a single vesicle and transport it along the microtubule.15, 

16 In normal neuronal cells, this vesicle-motor protein multiplex (VMPM) exhibits multimode 

transport dynamics.17 When the force on the vesicle exerted by kinesins in the anterograde 

direction (the direction towards the cell membrane) is in a delicate balance with the force exerted 

by dyneins in the retrograde direction (the direction towards the nucleus), the VMPM displays 

seemingly random bidirectional motion, as modeled by a tug-of-war.18-22 The VMPM also shows 

unidirectional motion when either kinesin or dynein motors exert a far greater force on the vesicle 

23, 24, although the unidirectional motion of the VMPM is less frequent than the bidirectional 
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motion.17 At short times, fast liberation of the vesicle tethered to the motor protein multiplex 

(MPM) is dominant compared to the MPM motion along the microtubule. The resulting motion of 

the VMPM exhibits short-time sub-diffusion, transitioning to intermediate super-diffusion, and 

then ultimate diffusive motion.17, 25 This multimode transport dynamics of the VMPM in living 

cells was quantitatively explained by considering the reversible switching between unidirectional 

and bidirectional modes of the MPM as well as the liberational motion of the vesicle.17, 26  

In cells under hyperphosphorylation conditions, the motion of VMPMs along the 

microtubule is expected to differ from their motion in normal cells. Hyperphosphorylated tau has 

been identified in many neurodegenerative diseases, including Alzheimer's disease, Down 

syndrome, and CBD.27 In particular, the concentration of hyperphosphorylated tau proteins in the 

brains of Alzheimer's disease patients is found to be 3 to 4 times higher than that in normal adult 

brains.28, 29 Tau is a microtubule associated protein that plays a central role in nerve cells by 

maintaining cytoskeleton stability, regulating microtubule dynamics, promoting axon growth, and 

regulating axon migration.30, 31 Abnormally hyperphosphorylated tau proteins aggregate to form 

insoluble paired helical filaments (PHFs) and higher-order structures called intracellular 

neurofibrillary tangles (NFTs).32-35 NFTs are a primary marker of neurodegenerative disorders, 

such as Alzheimer’s and Parkinson’s; however, it is a controversial issue whether NFTs are their 

primary cause.36, 37 When hyperphosphorylated tau loses its affinity for microtubules and 

aggregates with tau oligomers in the cytoplasm, its ability to promote microtubule assembly or 

bind to microtubules is lost, resulting in the collapse of microtubules 32, 38-43. 

Despite extensive studies on the hyperphosphorylation of tau and the NFT formation and its 

physiological consequences,32, 44 we do not yet know how tau-phosphorylation and ensuing tau-
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detachment from the microtubule affect the vesicle delivery dynamics of the VMPM along the 

microtubule. Tau in the microtubule can inhibit kinesin motion. A recent in vitro study showed 

that the speed of kinesin motion along the microtubule decreases with the concentration of tau in 

the microtubule.3, 45-50 This does not necessarily mean, however, that the VMPMs move faster 

upon hyperphosphorylation-induced tau detachment from the microtubule. So far, there is no 

quantitative understanding about the effects of tau-hyperphosphorylation on the VMPM motion 

along the microtubule. 

To shed light on this issue, we monitored and analyzed individual trajectories of VMPMs 

along tau-deficient microtubules in living cells under hyperphosphorylation conditions. We treated 

human neuroblastoma cells with Forskolin, which results in a hyperphosphorylation-induced tau 

detachment from the microtubule.51 Using upconverting nanoparticle (UCNP) probes free of 

photobleaching or photoblinking, we tracked nearly 450 individual trajectories of VMPMs in our 

cell system. Our investigation showed that, upon tau-hyperphosphorylation, unidirectional motion 

of the MPM is suppressed and the MPM effectively exhibits stochastic motion which appears 

Fickian-yet non-Gaussian diffusion along the microtubule in our experimental time resolution, 0.1 

seconds. The observed transport dynamics of the VMPM is found to have qualitatively different 

stochastic properties from the previously reported thermal motion or active motion52-54. We 

propose a parsimonious physicochemical model of VMPM’s active motion in 

hyperphosphorylated cells and performed a quantitative analysis of our experimentally monitored 

VMPM motion using the model. This simple model is found to provide a simultaneous explanation 

of the mean square displacement and the non-Gaussian parameter of the VMPM displacement 

distribution (VDD) and accurate predictions for the VDD in hyperphosphorylated cells at various 
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time points. Our analysis shows the presence of both static and dynamic heterogeneity in motility 

of the MPMs in the forskolin-treated cells. The loss of fast synaptic vesicle transport along the 

microtubule upon tau-hyperphosphorylation can be a functional mechanism underlying diverse 

neurodegenerative disorders associated with tau-hyperphosphorylation 27.  

RESULT 

System and Probe 

Real-time trajectories of about 450 individual endosomal vesicles in a neuronal phenotype 

of human neuroblastoma SH-SY5Y cells under hyperphosphorylation conditions were collected 

(see Figure 1 and Supplementary video for the real-time video of a few UCNP containing vesicles 

moving along the axonal microtubule). To induce the hyperphosphorylation conditions, we treated 

our cells with 20μM of forskolin for 24 hours (see Material and Methods). It was previously 

reported that Forskolin is not cytotoxic when its concentration is less than 20 μM.51, 55, 56 Thus, we 

treat our cells with 20 μM Forskolin to induce hyperphosphorylation of tau proteins. 

Hyperphosphorylation of tau protein in our cell system was confirmed by Western blotting. 

(Figures 1b and S2). As an imaging probe, we employed the upconverting nanoparticle (UCNP), 

free of photobleaching or photoblinking (see Material and Methods and Figures S1 and S3), which 

enables accurate, long-time tracking of vesicle motion in living cells.57 The conventional 

fluorescence probes have many important applications in the field of high-resolution microscopy 

and single molecule experiments.57-63 However, for single vesicle tracking in living cells, our 

UCNP is advantageous over conventional fluorescence probes because of its outstanding 

photostability and low toxicity.64  
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Primary direction of VMPM motion in hyperphosphorylated cells 

The VMPMs motion along the microtubule is far more pronounced than the motion in the 

microtubule-orthogonal direction in forskolin-treated cells as well as in normal cells17 (Figure S4). 

This indicates that, even in our forskolin-treated cells, the microtubules are not broken apart and 

still play important roles in the microtubule-based transport of vesicles by motor proteins. We 

focused on VMPM motion in the microtubule direction in this work, unless stated otherwise. 

No preferred direction in VMPM motion along the microtubule 

VMPM motion does not exhibit any bias between anterograde and retrograde directions 

along the microtubule. Individual VMPMs show stochastic motion biased in either the anterograde 

or retrograde direction; however, the mean displacement averaged over VMPMs is not biased to 

either of these two directions (see the inset shown in Figure 1d). This is also the case for normal 

cells 17. Likewise, VMPM motion in the microtubule-orthogonal direction does not show any bias 

between upward and downward directions (see the inset presented in Figure 1e). 

Unique stochastic properties of VMPM motion in hyperphosphorylated cells 

The mean squared displacement (MSD) of VMPMs exhibits transient super-diffusive 

dynamics in normal cells, resulting from unidirectional MPM motion. In the forskolin-treated cells, 

however, the MSD does not exhibit such transient super-diffusive dynamics (Figure 2a). This 

observation indicates that, upon tau-hyperphosphorylation, unidirectional motion of MPM is 

suppressed.  

Although active motion of the VMPMs appears bidirectional random motion in forskolin-

treated cells, in stark contrast to active matter usually exhibiting unidirectional motion, their 
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motion here has stochastic properties far different from thermal motion of molecules in complex 

fluids65 or the Fickian yet non-Gaussian diffusion of colloidal beads along lipid tubes.66 One of 

the most prominent features is that the long-time saturation of the non-Gaussian parameter (NGP) 

of the vesicle displacement to a constant value at our experimental time scale (Figure 2b). This 

is in contrast with the NGP time-profiles of molecules and colloids undergoing thermal motion 

in complex fluidic systems, which asymptotically decreases with time t following 1t   at long 

times.65  

The NGP, 2, ( )x t , is defined by 4 2 2
2, ( ) (3 ) 1x x xt d d        where n

xd  denotes the nth 

moment of the vesicle displacement, xd  (see also Materials and Methods). When the 

displacement distribution is Gaussian, the NGP vanishes; however, when the displacement 

distribution deviates from Gaussian, the NGP assumes a finite value. A NGP carries information 

about the heterogeneity of the vesicle motility and its time-dependent relaxation. The long-time 

saturation of the NGP value signifies the presence of static heterogeneity in VMPM motility or 

dynamic heterogeneity of VMPM motility whose relaxation time scale is longer than our 

observation time scale. The experimentally measured time-profiles of the MSD and NGP of 

VMPM motion in forskolin-treated cells cannot be explained by previously reported models.  

Model and Theory of VMPM motion 

To explain the MSD and NGP time-profiles of the observed VMPM motion, we should 

account for both VMPM motion along the microtubule and the liberational motion of a vesicle 

bound to the MPM. For this model, the displacement, ,of a vesicle can be represented by 

, where  and  denote, respectively, the displacement of motor protein 

xd

x xd R x  xR x
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multiplex (MPM) and the change in the relative position of the vesicle with respect to the MPM. 

We assume that vesicle’s librational motion around the MPM is so fast that x  assumes a 

stationary distribution in our experimental time scale. Our experimental results shown in Figure 

2 tell us that the MPM motion in our forskolin-treated cells is non-Gaussian diffusion, which 

emerges when the motility of the MPM is distributed.65-74  

To explain our experiment, we construct a physicochemical model of the MPM motion in 

our system, in which MPMs alternatingly undergo unidirectional active motion and random 

changes in the direction of active motion. In this model, we assume that the MPM’s motility is 

dependent on the state,  , of the MPM and the microtubule.65 Using this model, we obtain the 

following analytic expressions of the MSD and NGP, 2( )xd t   and  4 2 2
2, ( ) 3 1x x xt d d         , 

of the VMPM displacement at time scales longer than the time scale of random changes in the 

direction of MPM’s active motion (see Material and Methods) 

2 2( ) 2xd t D t x       Γ  (1a) 

 
2 2

2, 22 2 2 20

8
( ) ( ) ( ) (0)

( ) ( )

t

x
x x

x
t dt t t D t D x

d t d t
   

        
    Γ Γ , (1b) 

Where D Γ  and ( ) (0)D t D  Γ Γ  denote, respectively, the mean and the time-correlation-

function (TCF) of the effective diffusion coefficient fluctuation of the MPM. In eq 1, 2x   and 

 2 x    designate the variance and NGP of the stationary distribution of vesicle’s relative position 

with respect to the MPM (see Material and Methods and Figure S5). 

Quantitative Analyses of MSD and NGP time-profiles 

The MSD time-profile of the VMPM in forskolin-treated cells is quantitatively explained by 
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eq 1a (see Figure 2a). From this analysis, we extracted the average value of the effective diffusion 

coefficient of the MPM motion along the microtubule as 2 21.77 10 μm /sD   Γ  in forskolin-

treated cells. This is about half the value observed in normal cells, where 2 23.44 10 μm /sD
   . 

On the other hand, the variance in the vesicle’s relative position with respect to the MPM is 

estimated to be 2 3 28.30 10 μmx      in forskolin-treated cells, which is more than six times the 

variance in normal cells ( 2 3 21.25 10 μmx     ).  

An accurate quantitative analysis of the NGP time-profile of VMPM motion is not an easy 

task. To analyze the NGP time-profile using eq 1b, we need a functional form of ( ) (0)D t D  Γ Γ , 

which depends on stochastic properties of the MPM motility fluctuation. It is often assumed that 

a TCF is a simple exponential function or a linear combination of a few exponential functions; 

however, this assumption is inconsistent with our experimental data, as discussed later. It is 

difficult to construct an accurate model at this stage due to the lack of information. 

Instead of assuming a particular model of the MPM motility fluctuation from the beginning, 

we first extract the accurate time-profile of ( ) (0)D t D  Γ Γ  from our experimental data using  

2
21 2

2,2
( ) (0) 8 ( ) ( )x x

d
D t D d t t

dt
       

, (2) 

which can be easily obtained from eqs 1a and 1b. We emphasize that eq 2 enables us to extract the 

TCF of the MPM diffusion coefficient fluctuation directly from our experimental results for the 

MSD and NGP (see inset of Figure 2b), without assuming a specific model of the MPM motility 

fluctuation. As shown in the inset of Figure 2b, ( ) (0)D t D  Γ Γ  extracted from our experimental 

results using eq 2 has a non-monotonic time-dependence and a finite long-time saturation value. 
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Partially dynamic MPM motility fluctuation 

The extracted time-profile of ( ) (0)D t D  Γ Γ  provides information useful for constructing 

a more explicit model of the MPM motility fluctuation. The long-time saturation of 

( ) (0)D t D  Γ Γ  to a plateau value signifies that a group of MPMs has a static heterogeneity in 

the diffusion coefficient or dynamic heterogeneity whose relaxation occurs at times longer than 

our observation time.65 The simple one-state model or the two-state dynamic model, 0 1
  , 

of the MPM with a state-dependent motility cannot explain the long-time saturation of 

( ) (0)D t D  Γ Γ  (Figure 3). In contrast, any model assuming an entirely static distribution of the 

MPM motility yields ( ) (0)D t D  Γ Γ  constant in time, which does not exhibit a time-dependent 

relaxation. 

We could quantitatively explain the time-profile of ( ) (0)D t D  Γ Γ  using a model that 

accounts for both static heterogeneity and dynamic heterogeneity in the MPM motility. A 

minimalistic, quantitative model is as follows. The MPM-microtubule system comprises two 

different groups. In one group, MPMs have a dynamically fluctuating motility, whose value 

changes over time depending on the MPM-microtubule state. In the other group, MPMs have a 

motility with negligible temporal fluctuations. A schematic representation of this model is given 

by  

0

1

( )

0 1 2( )

t

t




   ,  (3) 

where 0 , 1 , and 2  represent the MPM-microtubule states, which will be simply designated by 

the MPM states from now on. Throughout, jD  denotes the diffusion coefficient of the MPM at 
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state j . Reversible transitions occur between states 0  and 1 , but there is no transition to or 

from state 2 , at least in our experimental time scale. 0 ( )t  and 1( )t  denote the lifetime 

distribution of state 0  and state 1 , respectively.  

For the model in eq 3, the analytic expression of ( ) (0)D t D  Γ Γ  is given by 

1 1 2 2
2 20 0

( ) (0) ( , | )i i j j ji j
D t D D G t D p D p D 

 
         Γ Γ Γ ,  (4) 

where  jp  denotes the equilibrium probability of state j , satisfying the normalization condition, 

2

0
1jj

p


  (see Material and Methods). In eq 4, ( , | )i jG t   denotes the probability that the 

MPM is at state i  at time t, given that the MPM is initially at state j . An explicit analytic 

expression of ( , | )i jG t   is available as a functional of  0 ( )t  and 1( )t  (see eq S3 in Supporting 

Information Section 2.1).75 eq 1 with ( ) (0)D t D  Γ Γ  given by eq 4 provides a quantitative 

explanation of our experimental results for the time-profiles of the MSD and NGP of VMPM 

motion (Figures 2a and b). The optimized parameter values are given in Table 1 (see Material and 

Methods).  

Prediction of the VMPM displacement distribution 

Using our optimized model of VMPM motion in the hyperphosphorylated cells, we 

predicted the spatial profile of the VMPM displacement distribution (VDD) (see Material and 

Methods). The predictions of eqs 13, 14, and 16 in Material and Methods for our model are in 

quantitative agreement with the experimentally measured VDD at various times (Figure 2d). This 

remarkable agreement between theoretical prediction and experimental result for the VDD in our 

cell system show that our model, which accounts for both static and dynamic motility fluctuations 
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of the MPMs and the liberational motion of vesicle around the MPM, captures the essential features 

of the vesicle motion along the microtubule in hyperphosphorylated cells. 

DISCUSSION 

The hyperphosphorylation of tau suppresses the fast, long-distance vesicle transport of the motor 

proteins along the microtubule. This is because unidirectional motion of the MPM, which delivers 

vesicles faster over a long distance than bidirectional random motion, is negligible on the 

microtubule under tau-hyperphosphorylation. The suppression of unidirectional motion of the 

MPM is also manifested on vesicle trajectories in forskolin-treated cells (Figure S4) and the spatial 

profile of VDD in forskolin-treated cells. Because the unidirectional motion causes the VDD to 

deviate from Gaussian, the VDD in normal cells has a strongly non-Gaussian heavy tail, which is 

absent in the VDD in forskolin-treated cells (Figure S6).17 Together, these results clearly shows 

that the fast, long-distance vesicle transport via unidirectional MPM motion is negligible in 

forskolin-treated cells. 

A plausible mechanism of the hyperphosphorylation-induced change in MPM motion along 

the microtubule is a destabilization or structural change of the microtubule due to detachment of 

tau proteins from the microtubule upon hyperphosphorylation. Recent single molecule 

experiments clearly showed that tau proteins, which stabilize the helical structure of the 

microtubule, detach from the microtubule upon hyperphosphorylation,76, 77 which is expected to 

deteriorate the structural stability of the microtubule. Other possible mechanisms of the change in 

the MPM motion include a structural change in the vesicle-MPM complex and a change in the 

dynamics of the ATP-hydrolysis catalyzed by the motor proteins. However, according to literature 

in this fields, the hyperphosphorylation induced destabilization of the microtubule seems the 



 

 

15 

 

primary cause of the loss of the change in the MPM motion on the microtubule upon 

hyperphosphorylation. 

The loss of fast synaptic vesicle delivery by unidirectional MPM motion may be a 

mechanism of neurodegenerative disorders. The tau-hyperphosphorylation not only deteriorates 

the structural stability of neuronal cells,76, 77 but also suppresses fast, long-distance delivery of 

synaptic vesicles by motor proteins along the microtubule, which would disrupt neuronal 

communications and brain functions. This may be a mechanism of neurodegenerative diseases 

associated with tau-hyperphosphorylation.78 

In our forskolin-treated cells, the mean diffusion coefficient of MPMs moving along the 

microtubule is estimated to be 2 21.77 10 μm /sD   Γ , far smaller than the diffusion coefficient 

value, 1.27 1 210 μm /s , of dilute vesicles in cytoplasm.79 On the other hands, the standard 

deviation of vesicle’s relative position with respect to the MPM is 2x   0.091 m in 

forskolin-treated cells, which is about three-times greater than that in normal cells (Figure S5). 

For this reason, VMPMs in forskolin-treated cells have greater MSD values at short times than 

VMPMs in normal cells (Figure 2a). 

We emphasize that eq 2 is applicable to various probe-attached systems exhibiting non-

Gaussian diffusion, which enables one to extract the TCF of the system’s motility fluctuation from 

the MSD and NGP of probe particle, without any prior knowledge or assumptions. By using this 

method, we estimate the normalized standard deviation, D D  Γ , of the MPM diffusion 

coefficient to be about 2.1 and extract the non-monotonic time profile of the TCF, 
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2( ) ( ) (0)D Dt D t D       Γ Γ , of the diffusion coefficient fluctuation (inset of Figure 2b). The 

time-profile of ( )D t , or the NGP time profile, carries a lot more information than the MSD time 

profile. As shown in Figure 3, the simple diffusion model of MPM motion, the dynamic two-state 

model, 0 1
  , of the MPM with a state-dependent diffusion coefficient, and the static, three-

state model of the MPM can all quantitatively explain the MSD time-profile of the VMPM, which 

obeys eq 1a. These models, however, cannot explain the time-profile of ( )D t  or the NGP time-

profile. In contrast, our MPM model with the partially dynamic MPM motility fluctuation, 

represented by eq 3, provides a simultaneous, quantitative explanation of the time profiles of ( )D t , 

MSD, and NGP. According to our analysis, about 37% of MPMs exhibit temporal motility 

fluctuation while the remaining 63% of MPMs show negligible motility fluctuation (Table 1). We 

can think of more elaborated models of the MPM motion in hyperphosphorylated cells than ours. 

However, in this work, we choose arguably the simplest that quantitatively explains our 

experimental results. If we further simplify our model, we cannot explain the time-profiles of  

( ) (0)D t D  Γ Γ  and the NGP (Figures 3 and S7).  

Our model captures the essential features of the VMPM motion, but it should be improved 

to provide a more detailed explanation of our experimental results. Particularly, our model of the 

MPM motion cannot explain the emergence of the small second peak in the NGP time profile, 

which appears at about 10 seconds (Figure 2b). This indicates that the MPM motility fluctuation 

is far more complicated than assumed in our three-state model. We leave the improvement of our 

model for future research.  

Finally, we discuss the effects of UCNPs on biological functions of cells according to an 
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anonymous reviewer’s request. The size and surface coating of UCNPs can influence their cyto-

toxicity.80-82 The larger nanoparticles tend to induce greater cyto-toxicity.83 It has been reported 

that polyacrylic acid (PAA)-coated UCNPs exhibit particularly lower cyto-toxicity towards 

various cell lines than bare UCNPs.64 For this reason, we have employed the PAA-coated UCNP 

probe in this work. Although it was not observed in our cell system, endocytosed UCNPs can 

induce oxidative stress, inflammation and other immune responses including autophagy or 

apoptosis. Currently, these biological consequences of UCNPs are exploited for a variety of 

biomedical applications,84 including the photodynamic therapy,85-87 immunotherapy,88 and 

noninvasive photochemical tissue bonding.89  

This work demonstrates an effective approach to quantitative investigation into dynamics of 

complex systems. For a complex system, an experimental observable is often coupled with hidden 

dynamical variables about which we do not have much information. In this case, it is difficult to 

construct an explicit and accurate model from the beginning. However, if robust information about 

hidden variables coupled to our observable can be extracted by analyzing experimental data using 

a general theory, this information is useful for constructing a quantitative model of the complex 

system.90 

CONCLUSIONS 

We shed lights on how tau-hyperphosphorylation affects the vesicle-motor-protein-

multiplex motion along the microtubule in living cells. Upon tau-hyperphosphorylation in 

neuronal cells, the fast, long-distance cargo delivery via unidirectional MPM motion is 

suppressed. In our experimental time scale, MPMs exhibit a non-Gaussian diffusion due to 

partially dynamic motility fluctuations; about 37% of MPMs exhibit dynamic motility 
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fluctuation and the remaining 63% static motility fluctuation in our experimental time window. 

The TCF of the diffusion coefficient fluctuation can be extracted from the MSD and NGP time 

profiles using eq 2; the TCF of the MPM diffusion coefficient fluctuation exhibits a unique, non-

monotonic time-dependence. Using this information, we construct a minimalistic model that 

provides a simultaneous, quantitative explanation of the TCF of the MPM diffusion coefficient 

fluctuation, the MSD and NGP time-profiles of VMPM and even accurate predictions for the 

VMPM displacement distribution at various times for the VMPM moving along the microtubule 

in living cells under hyperphosphorylation conditions. The mean diffusion coefficient of the 

vesicle carried by MPMs on unstable microtubules is estimated to be 2 21.77 10 μm /sD   Γ , 

only 14% of the diffusion coefficient of dilute vesicles undergoing thermal motion in cytoplasm. 

The normalized standard deviation, D D  Γ , of the MPM diffusion coefficient is about 2.1. 

The standard deviation of the vesicle position with respect to the MPM is approximately 0.091 

m in forskolin-treated cells, about three-times greater than that in normal cells. The loss of fast 

cargo delivery dynamics may be a functional mechanism of various neurodegenerative diseases 

associated with tau-hyperphosphorylation.  

Supporting Information 
The Supporting Information is available free of charge at https://pubs.acs.org/doi/ 
 

 Supplementary Materials and Methods, Theory and quantitative analysis of 
experimental data, and Supplementary Figures (PDF) 

 Supplementary video: vesicle motion in hyperphosphorylated neuronal cells 
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MATERIAL AND METHODS 

Cell system and imaging probe 

SH-SY5Y cells were differentiated to neuronal phenotype by retinoic acid treatment (see 

Supporting Information Section 1). Then, the differentiated cells were treated by Forskolin to 

induce hyperphosphorylation of Tau. We confirm hyperphosphorylation of tau protein in our cells 

by Western blotting to estimate pTau-S214 and pTau-T231 levels (see Supporting Information 

Section 1.2). As the imaging probe, we adopted Yb3+, Er3+ doped core/shell UCNPs 

(NaY0.78F4:Yb3+
0.2, Er3+

0.02@NaYF4@PAA). These probes have hexagonal structure and a 24.5 

(±1.0) nm size (Figure S1) and have green (530 nm and 550 nm) and red emissions (650 nm) under 

980 nm excitation (Figure S3a). For simultaneous, real-time tracking of multiple UCNP probes, 

we use the wide-field based epi-fluorescence microscope developed in our previous work17 (Figure 

S3b). 

MSD and NGP of the VMPM 

The displacement of the MPM and the change in the relative motion of the vesicle with 

respect to the MPM are not strongly correlated. Therefore, the second and fourth moments of 

vesicle displacement are given by  

2 2 2( ) ( )x xd t R t x        , (5a) 

4 4 4 2 2( ) ( ) 6 ( )x x xd t R t x R t x             , (5b)  

where ( )n
xR t   and nx   denote, respectively, the nth moment of the MPM displacement 

distribution and the nth moment of the distribution of vesicle’s relative displacement with respect 
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to the MPM. The MSD of the VMPM designates 2 ( )xd t   given in eq 5a.  

Substituting eqs 1a and 1b into the definition of the non-Gaussian parameter (NGP), 

4 2 2[ ( ) 3 ( ) ] 1x xd t d t     , we obtain a general expression of the NGP of the VMPM displacement, 

   
2 2 2 2

2, 2 22 2 2 2

( )
( ) ,

( ) ( )
x

x x
x x

R t x
t R t x

d t d t
  

     
   

, (6) 

where 2 ( , )xR t  and 2 ( )x   represent, respectively, the NGP of the xR  distribution and the NGP 

of the x  distribution. In eqs 5 and 6, because x  assumes a stationary distribution in our 

experimental time resolution, 2x   and 2 ( )x   are set to be constant in time. On the other hand, 

the displacement of the MPM motion along the microtubule has a non-stationary distribution, so 

that the values of 2( )xR t   and 2 ( , )xR t  change over time. We emphasize that eqs 5 and 6 are 

applicable not only to our VMPM system but also to any probe-attached system regardless of the 

system’s transport dynamics. However, to analyze the NGP time profile using eq 6, we need an 

explicit functional form of 2 ( )xR t  , which is dependent on a model of MPM motion along the 

microtubule. 

Transport equation describing MPM motion along the microtubule in hyperphosphorylated 

cells 

In our model, the MPM alternatingly undergoes unidirectional active motion and a random 

change in the direction of the active motion where the speed of the unidirectional MPM motion is 

dependent on the MPM state,  , which include the microtubule state. At time scales far longer 

than the time scale of the random change in the direction of the MPM motion, the probability 

distribution of the position and state of MPMs can be described by  
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2

2
ˆ ˆ ˆ( , , ) ( , , ) ( ) ( , , )p x s D p x s L p x s

x


 

ΓΓ Γ Γ Γ , (7) 

where  ( , , )p x tΓ  designates the joint probability density that an MPM is located at position x and 

the MPM is at state Γ  at time t, satisfying the normalization condition: ( , , ) 1dx d p x t



  Γ Γ . In 

eq 7, ˆ ( , , )p x sΓ  and ˆ( , , )p x sΓ  denote the Laplace transforms of ( , , )p x tΓ  and ( , , )t p x t Γ  with s  

being the Laplace variable. DΓ  and ( )L Γ  in eq 7 denote, respectively, the effective diffusion 

coefficient of the MPM at state  and a mathematical operator describing dynamics of MPM state 

Γ . At this stage, we do not have information about the MPM-state dynamics required to construct 

an explicit mathematical form of operator ( )L Γ . However, by analyzing our experimental results 

using a general solution of eq 7, we obtain the analytic expressions for the MSD and NGP of the 

VMPM and extract information about the MPM state dynamics and the mathematical form of 

( )L Γ , as demonstrated in the main text. Equation 7 can also be derived by considering the 

continuum limit of an unbiased random walk of the MPM, in which the speed of the unidirectional 

motion of the MPM to the nearest neighbor site on the microtubule is not a constant but a function 

of MPM state Γ (see Supporting Information Section 2.5). We also note there that eq 7 is a limiting 

form of the general transport equation describing non-Fickian and non-Gaussian motion in 

complex systems,65, 91 which can be derived either by considering the environmental state 

dependent continuous time random walk model or by applying the projection operator technique 

to a general many-particle system that obeys Newton’s classical dynamics.92, 93 

Mean square displacement and the non-Gaussian parameter of MPM motion 

From eq 7, we obtain the general analytic expression for the second and fourth moments, 
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2 2( ) ( [ ( ) (0)] )x x xR t R t R       and 4 4( ) ( [ ( ) (0)] )x x xR t R t R      , of the MPM displacement using 

the similar mathematical method as ref.65. The analytic results are given by 

2( ) 2xR t D t    Γ , (8a) 

4 2 2

0
( ) 3 ( ) 24 ( ) ( ) (0)

t

x xR t R t d t D D             Γ Γ , (8b) 

where D Γ  and ( ) (0)D D   Γ Γ  denotes, respectively, the mean and the time correlation 

function (TCF) of the diffusion coefficient fluctuation of the MPM moving along the microtubule 

in hyperphosphorylated cells. 

Substituting eqs 8a and 8b into the definition of the NGP, 4 2 2
2( , )[ (3 ( ) ) 1]x x xR t R R t       , 

of the MPM displacement, we obtain  

2 2
2 0
( , ) 2 ( ) ( )

t

x D DR t t d t       , (9a) 

where 2
D  and ( )D   denotes the relative variance and the normalized TCF of the diffusion 

coefficient fluctuation, defined by 2 2 2
D D D     Γ Γ and 2( ) ( ) (0)D D D D         Γ Γ Γ . 

Substituting eqs 8a and 9a into the eqs 5 and 6, we obtain eq 1 in the main text. At short times 

where ( ) 1D   , the NGP given in eq 9a becomes approximately the same as 2
D , i.e., 

2
2( , )x DR t  . In contrast, at long times, the NGP has the following asymptotic behavior: 

2 2
2( , ) ( ) 2x D D D DR t t t      ,  (9b) 

where Dt  is the relaxation time of the diffusion coefficient fluctuation, defined by 

0
[ ( ) ( )]D D Dt d   


   . 
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The long-time limit value of 2 ( , )xR t  is finite only when ( )D t  does not vanish at long 

times. From eq 9b, one can see that 2lim ( , )t xR t  2)D D  , likewise one can obtain 

asymptotic behavior of the non-Gaussian parameter of the vesicle-motor protein multiplex (see 

Supporting Information Section 2.2). ( )D   has a finite value only when the MPM motility 

depends on the MPM state and there exists an MPM state or a group of MPM states from or to 

which no transition occurs. 

Analytic expression for the TCF of the diffusion coefficient fluctuation 

The time-correlation function of the diffusion coefficient is defined by  

00 0 0( ) (0) ( , | ) ( )ID t D d d D G t D p         Γ Γ , (10) 

where 0( , | )G t   denotes the probability that the MPM state is found at   at time t, given that 

the MPM is initially at state 0 . 0( )Ip   denotes the probability that the MPM is initially at state 

0 . The TCF of the diffusion coefficient fluctuation, ( ) ( )D t D t D    Γ Γ Γ , is given by  

2( ) (0) ( ) (0)D t D D t D D        Γ Γ Γ Γ Γ . (11) 

For our discrete MPM state model given in eq 3, eqs 10 and 11 yield eq 4 in the main text, and the 

analytic expression of ( , | )i jG t   in the Laplace domain is given in Supporting Information 

Section 2.1, eq S3 

Quantitative model of MPM motion in hyperphosphorylated cells. 

The time-profile of ( ) (0)D t D  Γ Γ  extracted from our analysis of experimental data is 

quantitatively explained by eq 4, obtained for the model of MPM motion in eq 3, if the MPM state 
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lifetime distributions, 0 ( )t  and 1( )t , are assumed to be gamma distributions (Figure S8). The 

mean and relative variance of the MPM state lifetimes are extracted as 0t   2.85s and 

2 2
0 0t t      0.14 for state  and 1.34s and 2 2

1 1t t      0.74 for state 1 . According to 

these results, the transitions between the MPM states are sub-Poisson processes for which the 

relative variance of the MPM state lifetime is less than unity. The sub-Poisson state transition 

dynamics emerges when the state transition is a multi-step process.94 The non-monotonic time 

dependence of the normalized TCF of the diffusion coefficient fluctuation, 

2( ) ( ) (0)D t D t D D         Γ Γ Γ , shown in inset of Figure 2b, results from the sub-Poisson MPM 

state transition processes. ( ) (0)D t D  Γ Γ  would have monotonically decreased with time if the 

transitions between the MPM states were Poisson processes or first-order kinetic processes with 

constant rate coefficients (Figure S7) or if they were super-Poisson processes or multi-channel 

processes. 

Distribution of a vesicle’s position relative to the MPM carrying the vesicle 

The relative position of a vesicle with respect to the MPM assumes a stationary distribution 

in our experimental time resolution, 0.1 seconds. We obtain the stationary distribution of vesicle 

position with respect to the MPM from the VDD at short times at which MPM motion is negligible 

(Figure S5). The  experimentally observed stationary distribution of vesicle around the MPM can 

be explained by the following superposition of Gaussians with heterogeneous variance17: 

2
20 0

2 2
( ) exp ( | )

2 (1 ) 2(1 ) q

x
f x dq N q

q q

  






 
     
 , (12) 

where 0  and 2
q  are constant (Figure S5). In eq 12, 2( | )qN q   denotes the normal distribution of 

0 1t  
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q  with zero mean and variance 2
q . The optimized parameter values are given by 

1 3 2
0 2.4 10 μm     and 2

q  2.46. The variance, 2x  , and NGP, 2 ( )x  , are given by 

 1 2 2
0 (1 ) 0.0083μmq     and    24 22 1 1.0096q q    respectively. The Fourier transform of 

eq 12 is given by  

   2 2 2
0 0( ) exp 2 1qf k k k     . (13) 

with k denoting the Fourier variable, i.e., ( ) ( )ikxf k dx e f x
 


   . 

Distribution of the MPM displacement  

For our MPM model given in eq 3, we obtain the analytic expression for the MPM displace 

distribution (see Supporting Information Section 2.3) in the Fourier-Laplace transform domain, 

which read as 

    
 

2

0 0 1 1 0 1 2
2

0 1 0 0 1 1 0 1 0 1 2

ˆ ˆ1 ( ) 1 ( ) 1 1ˆ( , ) 1
ˆ ˆ( ) 1 ( ) ( )

 
 

   
          

 s s p p p
P k s p

t t s s s s s s s , (14) 

where ˆ( , )P k s  designates the Fourier-Laplace transform of the MPM displacement distribution, 

( , )xP R t , i.e., ˆ( , )P k s 
0

exp( ) exp( ) ( , )x x xdR ikR ds st P R t
 


   and is  denotes 2

is D k  with s  

and k  denoting the Laplace variable and the Fourier variable, respectively  In eq 14, ip denotes 

the equilibrium probability of MPM state i , which satisfies 
2

0
1ii

p


 , and 0p  and 1p  are 

dependent on the mean lifetimes of 0  and 1  and 2p , i.e.,  0 2 0 0 1(1 )p p t t t          and  

 1 2 1 0 1(1 )p p t t t          with 0t   and 1t   being the mean lifetime of MPM state 0 and 1, 
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that is, 
0

 ( )i it dt t t


    . 

Analytic expression of the vesicle displacement distribution in hyperphosphorylated cells 

Given that the position of a vesicle can be represented by x xd R x   where xR  and x   

denote, respectively, the position of the MPM and the relative position of the vesicle with respect 

to the MPM, the displacement distribution ( , )xg d t  of the vesicle-MPM along the microtubule can 

be written  

( , ) ( ) ( , ) ( )

( , ) ( )

x x x x x

x

g d t dR dx d R x P R t f x

dx P d x t f x


 

 





    

   

 


, (15) 

where ( )x , ( , )xP R t  and ( )f x  denote, respectively, Dirac’s delta function, the distribution of 

the MPM displacement, and the distribution of the relative position x , of the vesicle with respect 

to the MPM. Taking the Fourier-Laplace transform of eq 15, we obtain  

ˆˆ( , ) ( , ) ( )g k s P k s f k  , (16) 

This equation with eqs 13 and 14 provides the analytic expression of the displacement distribution 

of the vesicle transported by MPM in the Fourier-Laplace domain.  

We confirm the correctness of eq 16 against an accurate stochastic simulation result for our 

model (Figure S9). Numerical inversion95 of eq 16 using the optimized parameter values in Table 

1 allows us to predict the spatial profile of the vesicle displacement distribution. As shown in 

Figure 2d, our theoretical prediction is in excellent agreement with the experimental results for the 

vesicle displacement distribution.  
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Figures and Tables 

 

 

Figure 1. Trajectories of vesicle carried by motor protein multiplex on unstable microtubules 

in forskolin-treated cells. (a) Schematic representation of vesicle-motor protein multiplex 

(VMPM) on the microtubule in normal cells (left) and in forskolin-treated cells (right). Under 

forskolin treatment, microtubules are destabilized by hyperphosphorylation of tau proteins and 

ensuing tau detachment from the microtubules. Both kinesins and dyneins simultaneously carry 

and transport a vesicle along the microtubules. Vesicle-encapsulated upconverting nanoparticles 
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(UCNP) are employed to track vesicle motion in our cell systems. (b) Western blotting image after 

forskolin treatment (20 μM for 24 hours) in SH-SY5Y cells. Tau-hyperphosphorylation at SER-

214 site is induced selectively by forskolin treatment (see Figure S2). (c) A snapshot of vesicle 

motion in live SH-SY5Y cells. The x-axis and y-axis directions designate the microtubule direction 

and microtubule-orthogonal direction, respectively. (d and e) Trajectories of VMPMs in the cells 

under hyperphosphorylation conditions. (insets) the mean displacement of VMPMs. In the 

hyperphosphorylated cells, trajectories of VMPMs have far different shapes from trajectories of 

VMPMs in normal cells (see Figure S4). The average motion of VMPMs is not biased in any 

direction.  
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Figure 2. Mean square displacement, Non-Gaussian parameter, and Distribution of the 

vesicle motor protein multiplex’s displacement along the microtubule. (a and b) The mean 

square displacement (MSD) and the non-Gaussian parameter (NGP) of VMPM motion along the 

microtubule: (blue circles) experiment results of the forskolin-treated cells (red line) theoretical 

result of eq 1 (see also Material and Methods). (orange circles) experiment results of the normal 

cells (green dashed line) theoretical result of the multimode MPM model (see Supplementary 

Method 2 in ref.17). In forskolin-treated cells, the MSD time-profile of VMPMs exhibits the direct 

transition from the initial sub-diffusion to ultimate diffusion without transient super-diffusion that 

emerges in the MSD time-profile in normal cells; at short times, liberational motion of a vesicle 
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bound to the MPM makes the dominant contribution to the MSD of the VMPM and at long times, 

diffusive motion of the MPM makes the dominant contribution to the MSD, i.e., 2 2xd D t    Γ . 

(inset of B), The normalized time correlation function, 2( ) ( ) (0)D t D t D D         Γ Γ Γ , of 

diffusion coefficient fluctuation of the MPM, extracted from the MSD and NGP data using eq 2 

without assuming a particular model. Using the time-profile of ( )D t , we construct the explicit 

model of the MPM motility fluctuation, shown in (c). In (b), the left-y axis and right y-axis 

represent the NGP value in the forskolin-treated cells and the NGP value in the normal cells, 

respectively. (c) Schematic representation of the MPM motion on an unstable microtubule lacking 

tau in the forskolin-treated cells. Unidirectional motion of the MPM is suppressed. MPMs only 

bidirectional random motion with a partially dynamic motility fluctuation. Our model of the MPM 

motion with motility fluctuation is schematically represented. iD  designates the effective 

diffusion coefficient of the MPM in state i . A unified, quantitative explanation of our 

experimental results for the MSD and NGP time-profile is achieved when the waiting time 

distribution, ( )i t  {0,1}i  of State 0  or State 1 , is modeled by a gamma distribution (see 

Methods). (d) The VMPM displacement distribution in forskolin-treated cells: (circles) experiment 

results, (lines) theoretical predictions by our model optimized against the MSD and NGP data of 

VMPM motion in forskolin-treated cells. 
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Figure 3. The MPM motility fluctuation dependent NGP time-profiles and the displace 

distribution of VMPMs. (a) Various models of the MPM state dynamics. At the MPM state i , 

the MPM undergo diffusive random motion with the MPM state-dependent diffusion coefficient, 

iD . ( )i t  denotes the lifetime distribution of the MPM state i , modeled as a gamma distribution. 

See Table 2 for the parameter values used in the theoretical calculation for Model 1-3.  For our 
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model, the parameter values are listed in Table 1. (b and c) Time-profiles of the MSD and NGP of 

the VMPM. Theoretical results are calculated by eq 1 for all models. (d) Time correlation function 

of the diffusion coefficient fluctuation calculated for each model. For model 1, ( ) 0DD t   . 

For Model 2, the TCF is given by eq 4 with 2 0p  . The values of other parameters are given in 

Table 2. For Model 3, ( ) 1D t   because 2( ) (0)D t D D      Γ Γ Γ  at all time t. The TCF of Model 

3 is given by eq 4 with ( , | )i jG t   replaced by ( , | )i j ijG t     with ij  denoting the Kronecker 

delta. The TCF of our model is given by eq 4. (e) The VMPM displacement distribution (VDD) at 

6.0 sec. Theoretical results are calculated by numerical inversion of eq 1695, where the expressions 

of ˆ( , )P k s  are given in Table 3 for Model 1, 2, and 3. For our model, ˆ( , )P k s  is given in eq 14. 

For all models, ( )f k  in eq 16 is given by eq 13. Model 1, 2, and 3 cannot explain our experimental 

results of the non-Gaussian parameter and the VDD regardless of the parameter values.  
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Table 1. Optimized values of the adjustable parameters of the vesicle-motor protein 

multiplex model shown in Figure 2c. 

Adjustable parameters Values 

0D  8.95×10-3 μm2/s 

1D  1.18×10-1 μm2/s 

2D  2.12×10-3 μm2/s 

2p  0.626 

0t   2.85 s 

2 2
0 0t t     0.14 

1t   1.34 s 

2 2
1 1t t     0.74 

0D , 1D , and 2D  designate the effective diffusion coefficient characterizing the bidirectional 

motion of the MPM at states, 0 , 1 , and 2 , respectively. 2p  denotes the probability that a 

vesicle is in State 2 . The probabilities, 0p  and 1p , of State 0  and State 1  are related to 2p  by 

 0 2 0 0 1(1 ) 0.254p p t t t           and  1 2 1 0 1(1 ) 0.120p p t t t          , where it   

denotes the mean lifetime of State i . 2 2
i it t     denotes the relative variance of the lifetime 

distribution ( )i t  of State i , which is modeled by a gamma distribution, i.e., 

1 /( ) / ( ), {0,1}i i ia a t b
i i it b t e a i       with i i it a b   and 2 2 1

i iit t a      . The values of these 

parameters are extracted from the time-profiles of the mean square displacement and the non-
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Gaussian parameter of the vesicle-motor protein multiplex motion in forskolin-treated cells, shown 

in Figures 2a and b.  
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Table 2. Parameter values used in the calculation for Model 1-3 shown in Figure 3.  

Adjustable parameters Model 1 Model 2 Model 3 

D  20.0177μm /s  - - 

0D  - 1 29.89 10 μm /s  1 27.98 10 μm /s  

1D  - 2 21.63 10 μm /s  1 22.85 10 μm /s  

2D  - - 3 29.77 10 μm /s  

0p  - 31.46 10  38.99 10  

1p  - 19.98 10  11.76 10  

2p  - - 18.15 10  

0t   - 1.23s  - 

2 2
0 0t t     - 18.91 10  - 

1t   - 28.44 10 s  - 

2 2
1 1t t     - 23.35 10  - 

In Model 1, the MPM has a single state. D  denotes the diffusion coefficient characterizing the 

bidirectional motion of the MPM at the state. In Model 2, the MPM has two different states, 0  

and 1 . jD  denotes the diffusion coefficient of the MPM at state j . The lifetime distribution 

( )j t  of MPM state j  is modeled as a gamma distribution as in our model (see Table 1 caption). 

jt   and 2
jt   denote the mean and variance of the lifetime of the MPM state j . jp  denotes the 

equilibrium probability of MPM state j . 0p  and 1p  are given by  0 0 0 1p t t t         and 
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1 01p p  . In Model 3, the MPM has three different states, 0 , 1 , and 2 , and there is no 

transition among the three states. Model 1, 2, and 3 cannot explain our experimental results of the 

NGP time-profile and the VMPM displacement distribution regardless of parameter values.  
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Table 3. Analytic expression of ˆ( , )P k s  for Model 1,2, and 3 shown in Figure 3. 

Model 1 2

1

s Dk
 

Model 2 
  

 

2

0 0 1 10 1

0 1 0 1 0 0 1 1 0 1

ˆ ˆ1 ( ) 1 ( ) 1 1
ˆ ˆ( ) 1 ( ) ( )

s sp p

s s t t s s s s

 
 

   
          

 

Model 3 
0 1 2

0 1 2

p p p

s s s
   

ˆ( , )P k s  designates the Fourier-Laplace transform of the probability distribution of the motor-

protein-multiplex (MPM) displacement, i.e., ˆ( , )P k s 
0

exp( ) exp( ) ( , )x x xdR ikR ds st P R t
 


  . D , 

jD , 0t   and 1t   have the same meaning as in Table 2. js  denotes 2
js D k  with s  being the 

Laplace variable. ˆ ( )j s  denotes the Laplace transform of the lifetime distribution ( )j t  of the 

MPM state j , i.e., 
0

ˆ ( ) ( )st
j js dte t 

   . ( )j t  is modeled as a gamma distribution (see caption 

of Table 1).  
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