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Cross-Sectional Analysis of Baseline Visual Parameters
in Subjects Recruited Into the RESCUE and REVERSE
ND4-LHON Gene Therapy Studies
Mark L. Moster, MD, Robert C. Sergott, MD, Nancy J. Newman, MD,
Patrick Yu-Wai-Man, MD, PhD, Valerio Carelli, MD, PhD, Molly Scannell Bryan, PhD,
Gerard Smits, PhD, Valérie Biousse, MD, Catherine Vignal-Clermont, MD,
Thomas Klopstock, MD, Alfredo A. Sadun, MD, PhD, Adam A. DeBusk, MD,
Michele Carbonelli, MD, Rabih Hage, MD, Siegfried Priglinger, MD, PhD,
Rustum Karanjia, MD, PhD, Laure Blouin, Magali Taiel, MD, Barrett Katz, MD,
José Alain Sahel, MD, PhD, for the LHON study group

Objective: This report presents a cross-sectional analysis of
the baseline characteristics of subjects with Leber heredi-
tary optic neuropathy enrolled in the gene therapy trials
RESCUE and REVERSE, to illustrate the evolution of visual
parameters over the first year after vision loss.
Methods: RESCUE and REVERSE were 2 phase III clinical trials
designed to assess the efficacy of rAAV2/2-ND4 gene therapy in
ND4-LHON subjects. At enrollment, subjects had vision loss for
#6 months in RESCUE, and between 6 and 12 months in
REVERSE. Functional visual parameters (best-corrected visual
acuity [BCVA], contrast sensitivity [CS], and Humphrey Visual
Field [HVF]) and structural parameters assessed by spectral-
domain optical coherence tomography were analyzed in both
cohorts before treatment. The cross-sectional analysis of func-
tional and anatomic parameters included the baseline values
collected in all eyes at 2 different visits (Screening and Inclusion).
Results: Seventy-six subjects were included in total, 39 in
RESCUE and 37 in REVERSE. Mean BCVA was significantly
worse in RESCUE subjects compared with REVERSE subjects
(1.29 and 1.61 LogMAR respectively, P = 0.0029). Similarly,
mean CS and HVF were significantly more impaired in REVERSE
vs RESCUE subjects (P , 0.005). The cross-sectional analysis
showed that the monthly decrease in BCVA, ganglion cell layer
macular volume, and retinal nerve fiber layer thickness was
much more pronounced in the first 6 months after onset (+0.24
LogMAR, 20.06 mm3, and 26.00 mm respectively) than
between 6 and 12 months after onset (+0.02 LogMAR,
20.01 mm3, and 20.43 mm respectively).
Conclusion: LHON progresses rapidly in the first months
following onset during the subacute phase, followed by
relative stabilization during the dynamic phase.
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L eber hereditary optic neuropathy (LHON) is a mater-
nally inherited blinding bilateral optic neuropathy

caused by mitochondrial DNA (mtDNA) missense point
mutations affecting complex I in the mitochondrial respira-
tory chain (1,2), resulting in selective dysfunction and sub-
sequent apoptotic loss of retinal ganglion cells (RGCs) (3,4).
LHON is considered the most common disorder caused by a
mutation of the mitochondrial DNA (5). It typically affects
mostly young men causing painless, loss of central vision that
ultimately evolves into profound visual impairment (2–8). Eyes
are affected sequentially in 50%–75% of cases, with the second
eye involved within weeks or months after the first. An initial
subacute phase, lasting approximately the first 6 months after
onset, is characterized by a fairly rapid deterioration of visual
function (2). Once a nadir is reached, visual acuity stabilizes, but
other parameters, in particular optical coherence tomography
(OCT) measurements of retinal layer thickness, will still evolve,
defining a dynamic phase over the next 6 months. About one
year after disease onset, the clinical picture enters a chronic phase
of relative stability (2). Usually, visual prognosis is poor and
most subjects reach acuities worse than 20/200 (2–4,6). The
most common (75%) and most severe clinical form of LHON
is caused by the m.11778G.A point mutation in the mtDNA
gene encoding nicotinamide adenine dinucleotide hydride dehy-
drogenase protein subunit 4 (ND4) (1–4,6). A recent meta-
analysis of reports on the natural history of LHON in subjects
15 years and older carrying the m.11778G.A mutation estab-
lished that spontaneous recovery of meaningful visual acuity
occurs in 11% of patients (9).

Recent advances in molecular biology allow for viral
transduction of affected RGCs, allotopic expression of the
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ND4 wild-type protein from the nucleus and its co-
translocation into the mitochondrial matrix to complement
the mutant protein, offering the promise of restoration of
vision (10–13). rAAV2/2-ND4 is such a gene therapy admin-
istered as an intravitreal injection (IVT) for the treatment of
LHON caused by the m.11778G.A mutation. Treatment
with rAAV2/2-ND4 has been shown to be safe and well tol-
erated in early-phase and phase III clinical trials (14–16).

RESCUE (NCT02652767) and REVERSE
(NCT02652780) were 2 Phase III clinical trials that investi-
gated the efficacy of rAAV2/2-ND4 in LHON subjects con-
firmed to carry the m.11778G.A mutation, and with time
since onset of vision loss #6 months in RESCUE, and
between 6 months and 1 year in REVERSE. In this report,
we present the baseline characteristics of LHON subjects

enrolled in RESCUE and REVERSE, including best-
corrected visual acuity (BCVA), contrast sensitivity (CS), Hum-
phrey Visual Field (HVF), and structural parameters assessed
by spectral-domain optical coherence tomography (SD-OCT).
Using cross-sectional analysis of functional and anatomic
parameters ascertained at the baseline of different timepoints,
we explore the correlations between duration of vision loss and
these parameters before any treatment administration.

METHODS

Study Design
RESCUE and REVERSE (ClinicalTrial.gov NCT02652767
and NCT026527080) (15,16) were 2 randomized, double-
masked, sham-controlled, multicenter, international, pivotal
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clinical trials to evaluate the efficacy of a single IVT of
rAAV2/2-ND4 in subjects with LHON secondary to the
m.11778G.A mutation. Both protocols were prospec-
tively reviewed and approved by independent ethics com-
mittees (the London—West London & Gene Therapy
Advisory Committee Research Ethics Committee in the
United Kingdom; the Comité de Protection des Personnes
in France; the Ethikkommission der Medizinischen Fakul-
tät der Ludwig-Maximilians Universität München in Ger-
many; the Comitato Etico Interaziendale Bologna-Imola in
Italy; the Wills Eye Hospital Institutional Review Board,
the Emory University Institutional Review Board, and
the University of California Los Angeles General Campus
Institutional Review Board in the United States), were
conducted in accordance with the principles and require-
ments of the International Conference on Harmonization
Good Clinical Practice and adhered to the Declaration of
Helsinki. Informed consent was obtained from patients
before inclusion in trials.

Study Population
The recruitment period for REVERSE and RESCUE was
from February 2016 to March and August 2017,
respectively.

Inclusion Criteria
To be included in either study, LHON subjects had to
harbor the m.11778G.A mutation, be at least 15 years
old at enrollment, and have vision of count fingers or
better in both eyes. In RESCUE, one or both eyes could
be affected by vision loss provided the duration of vision
loss was #180 days in the affected eye(s) at screening. In
REVERSE, both eyes had to be affected by vision loss for
181–365 days at time of screening. The screening visit
occurred 28 to 1 day(s) before the inclusion visit, which
was performed the day before IVT administration. Docu-
mented genotyping was required to confirm the presence
of the m.11778G.A mutation in the MT-ND4 gene and
the absence of other primary LHON-associated muta-
tions (MT-ND1 or MT-ND6). Whole mitochondrial
genome sequencing was not performed. The subjects re-
cruited into RESCUE and REVERSE had classical
LHON phenotypes and nuclear genome sequencing
was not specifically requested to exclude other optic atro-
phy genes.

Exclusion Criteria
The exclusion criteria included any previously known
inherited retinal or optic nerve conditions. Additional
exclusion criteria were previous treatment with an ocular
gene therapy product, glaucoma, optic neuropathy other
than LHON, history of amblyopia, previous vitrectomy
in either eye, or ocular surgery within 90 days. Prior use
of idebenone was required to have ceased at least 7 days
before inclusion. This was believed to be a sufficient

length of time because idebenone is rapidly absorbed,
with an average plasma half-life of about 15 hours (17).

Assessments at Baseline
Demographic characteristics were collected before treat-
ment, along with visual function and anatomic parameters.
Ophthalmic evaluations included BCVA using the Early-
Treatment Diabetic Retinopathy Study (ETDRS) charts at
1 or 4 m, assessment of CS using the Pelli–Robson chart,
HVF 30-2 testing, Farnsworth-Munsell 100-Hue Color
Vision testing, slit-lamp microscopy, Goldmann applana-
tion tonometry, funduscopy, SD-OCT, and color fundus
photography. The predefined baseline for functional visual
parameters (BCVA, CS, HVF, color vision) was the last
available assessment before treatment; for anatomic metrics
(OCT), the baseline was defined as the average of values
measured at screening and inclusion visits. In this manu-
script, to better characterize the evolution of these previous
parameters before treatment, we have included the values
both at screening (within one month before inclusion) and
at inclusion (one day before treatment).

When subjects could not read any letters on the ETDRS
chart, they were asked to count the assessor’s fingers or to
detect hand motion. An off-chart Snellen equivalent was
derived using both the distance at which the assessment
was made and the size of the assessor’s fingers, as described
by Karanjia et al (18) (this method was also adapted to hand
motion visual acuity), then was converted into a LogMAR
value. Light perception and no light perception visual acu-
ities were assigned a value of 4.0 and 4.5 LogMAR,
respectively.

CS—the reciprocal of contrast threshold—was measured
using the Pelli–Robson chart at 1 m, performed according
to test instructions and expressed as a logarithm (LogCS)
(19). Subjects who could not read more than one letter of
the first triplet on the Pelli–Robson chart were considered
off-chart, and the value assigned according to the statistical
analysis plan was the worst possible score (0 LogCS).

For visual field assessment, the standardized automated
procedure HVF 30-2, Central Threshold, SITA-FAST was
performed using the HVF Analyzer II. A reading center
masked to treatment allocation (Optic Nerve Research
Center, William H Annesley Jr. EyeBrain Center, Thomas
Jefferson University) performed quality control, analysis,
and interpretation of all OCT and HVF data. The HVF test
was repeated if considered unreliable by the reading center
(i.e., fixation losses $15%, false positive errors $20%, or
false negative errors $33%).

SD-OCT was performed with the Spectralis OCT
(Heidelberg Engineering). Among other parameters, retinal
nerve fiber layer (RNFL) and ganglion cell layer (GCL)
were measured for the optic nerve and posterior pole per
standard protocols included in the Spectralis software. At
prespecified visits, certified technicians performed one
“Optic Nerve Head—Radial Scan and Concentric Circle
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Scan” (ONH-RC) and one “Posterior Pole N Scan” (PPo-
leN) for each eye, after maximal dilation. The OCT assess-
ments were performed using triplicate scans of high quality
(Q values .20). Borders of the retinal layers were manually
adjusted when algorithm errors were detected.

HVF and OCT analyses were also masked to BCVA,
CS, ophthalmic examinations, and duration of visual loss.

Statistical Approach
Statistical analyses were performed using SAS.

Software version 9.4 (SAS Institute, Cary, NC).
Summary statistics for continuous variables were described

using N, mean standardization, and range. This approach was
applied both to independent data (e.g., age) and to dependent
data representing both eyes from the same subject. Numbers
and percentages were described in the same manner, repre-
senting both independent and dependent summaries. Analyses
of dependent data were performed using a mixed-effects
analysis of variance and the covariance between paired eyes
was determined by the model.

The monthly rates of loss of visual function and retinal
anatomy were estimated based on a linear fit from mixed-
effect models of individual data points collected at baseline
and plotted relative to onset of vision loss. They represent
the slope of the linear fit derived from the scatterplot of
individual data for a given visual parameter over time since
onset. The eyes with no vision loss were included in the
regression model, with a duration of vision loss set to zero.

A locally estimated scatterplot smoothing (LOESS)
nonparametric, local regression model was used on the
individual data points. The resulting curve depicting the
evolution of visual and anatomical parameters over time was
based on a series of polynomial regressions around each data
point. The regressions used a limited look back and look
forward, giving distant points less weight.

RESULTS

Demographic Characteristics
Seventy-six subjects with LHON confirmed to carry the
m.11778G.A mutation were included from both studies,
39 from RESCUE and 37 from REVERSE. Participants
were on average 35 years of age and mostly men (61
(80.2%) of 76 patients) (Table 1). Mean age and gender
distribution were similar in both trials. Overall, 26 (34.2%)
of 76 subjects reported simultaneous bilateral onset of
vision loss.

Duration of Vision Loss
As expected from the study design, the mean duration of
vision loss was shorter in RESCUE (3.7 months/112.1
days) than in REVERSE (8.9 months/271.0 days) (Table
1). This difference was statistically significant (P, 0.0001).

Visual Function: BCVA, CS, and HVF

Best-Corrected Visual Acuity
At baseline, BCVA was on average more preserved in
RESCUE subjects compared with REVERSE subjects, a
difference that was statistically significant (1.29 LogMAR
[20/400 Snellen] and 1.61 LogMAR [20/800 Snellen]
respectively, P = 0.0029) (Table 1). In RESCUE, 4 eyes
had normal visual acuity ($20/20) at baseline, as monoc-
ular vision loss was allowed for inclusion in this study (see
Supplemental Digital Content 1, Supplementary Table
1, http://links.lww.com/WNO/A484).

BCVA values, collected and analyzed per eye in both
studies at screening and inclusion (for a total of 304
observations in 152 eyes), were grouped, averaged and
plotted as a function of duration of vision loss (Fig. 1A).
Cross-sectional BCVA values substantially worsened in the
first 8 months (w250 days) after onset of vision loss, and
were globally off-chart after 8 months of vision loss. These
results were validated by a nonparametric LOESS regression
model (see Supplemental Digital Content 2, Supplemen-
tary Figure 3, http://links.lww.com/WNO/A475).

Linear regression on individual data points showed that
each additional month after symptom onset was associated
with a +0.24 logMAR difference in BCVA during the 0–6-
month period, compared with a +0.02 logMAR difference
during the 6–12 month period (Table 2).

Contrast Sensitivity
At baseline, CS was on average more preserved in RESCUE
subjects compared with REVERSE subjects, a difference that
was statistically significant (0.62 LogCS and 0.30 LogCS
respectively, P = 0.0031) (Table 1). In REVERSE, 27/74
(36.5%) eyes were off-chart for CS at inclusion (i.e., these
eyes could not correctly read 2 letters at the maximum con-
trast possible on the Pelli–Robson chart). In RESCUE, all
eyes were on-chart for CS at inclusion. As per protocol, the
value assigned to off-chart eyes was the worst possible score (0
LogCS), enabling the inclusion of all eyes in CS analyses.

Baseline CS values collected in both studies were averaged
and plotted as a function of duration of vision loss (Fig. 1B).
Cross-sectional CS values declined similarly as BCVA mea-
sures in the first 8 months (w250 days) of vision loss, then
were globally around 0.3 LogCS (equivalent to a detection
threshold of 50% contrast when normal control subjects can
detect on average a 1.6% contrast [1.8 LogCS]) (20). These
results were validated by a nonparametric LOESS regression
model (see Supplemental Digital Content 3, Supplemen-
tary Figure 4, http://links.lww.com/WNO/A476).

Linear regression on individual data points showed that
each additional month after symptom onset was associated
with a 20.15 LogCS difference in CS during the 0–6
month period, compared to a +0.01 LogCS difference dur-
ing the 6–12 month period (Table 2).
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Mean Deviation of HVF
At baseline, 65 (42.8%) of 152 eyes had reliable HVF 30-2
test results: 33 (42.3%) of 78 eyes in RESCUE and 32
(43.2%) of 74 eyes in REVERSE. The average mean
deviation of HVF 30-2 was significantly worse in REVERSE
subjects compared with RESCUE subjects, with 229.0 dB
and 219.9 dB, respectively (P = 0.0039) (Table 1).

Mean deviation (MD) values from reliable HVF tests,
collected in both studies at screening and inclusion (for a
total of 128 reliable observations in 110 eyes), were
grouped, averaged, and plotted as a function of duration

of vision loss (Fig. 1C). Similar to BCVA and CS, cross-
sectional HVF MD values substantially worsened in the first
8 months (w250 days) after onset of vision loss. These
results were validated by a nonparametric LOESS regression
model (see Supplemental Digital Content 4, Supplemen-
tary Figure 5, http://links.lww.com/WNO/A477).

Linear regression on individual data points showed that
each additional month after symptom onset was associated
with a 22.55 dB difference in HVF MD during the 0–6
month period, compared to a +0.40 dB difference during
the 6–12 month period (Table 2).

TABLE 1. Demographic characteristics—Visual function and retinal anatomy before treatment

All RESCUE REVERSE P*

N subjects 76 39 37
N males (%) 61 (80.2%) 32 (82.0%) 29 (78.4%) 0.7770
Age (years)
Mean (SD) 35.3 (15.3) 36.3 (15.5) 34.2 (15.2) 0.5451
Min; max 15; 69 15; 69 15; 67

Simultaneous bilateral onset
N subjects (%) 26 (34.2%) 19 (48.7%) 7 (18.9%) 0.0062

Duration of vision loss (days)†
N eyes 147 73 74
Mean (SD) 192.1 (95.0) 112.1 (42.8) 271.0 (59.5) ,0.0001
Min; max 24; 364 24; 179 181; 364

N eyes 152 78 74
BCVA (LogMAR)
Mean (SD) 1.45 (0.54) 1.29 (0.56) 1.61 (0.46) 0.0029
Min; max 20.20; 3.17 20.20; 2.51 0.70; 3.17

Contrast sensitivity (LogCS)
Mean (SD) 0.46 (0.51) 0.62 (0.54) 0.30 (0.43) 0.0031
Min; max 0; 1.65 0; 1.65 0; 1.50

HVF mean deviation (dB)‡
Mean (SD) 224.4 (10.9) 219.9 (12.1) 229.0 (7.2) 0.0039
Min; max 234.7; 21.9 234.7; 21.9 234.6; 25.1

HVF pattern SD (dB)‡
Mean (SD) 5.9 (3.4) 6.5 (3.6) 5.3 (3.1) 0.1865
Min; max 1.3; 13.0 1.3; 13.0 1.7; 12.6

GCL macular volume (mm3)
Mean (SD) 0.63 (0.16) 0.73 (0.17) 0.53 (0.066) ,0.0001
Min; max 0.42; 1.28 0.50; 1.28 0.42; 0.72

ETDRS total macular volume (mm3)
Mean (SD) 8.12 (0.51) 8.40 (0.47) 7.83 (0.36) ,0.0001
Min; max 6.54; 9.58 7.54; 9.58 6.54; 8.75

RNFL temporal quadrant (mm)
Mean (SD) 39.2 (19.2) 49.6 (20.9) 28.2 (8.0) ,0.0001
Min; max 13.5; 147.5 24.5; 147.5 13.5; 62.5

PMB RNFL thickness (mm)
Mean (SD) 29.2 (12.7) 34.8 (14.4) 23.4 (6.7) ,0.0001
Min; max 1.5; 123.0 21.0; 123.0 1.5; 39.5

Average RNFL thickness (mm)
Mean (SD) 84.8 (23.3) 99.1 (18.2) 69.7 (18.1) ,0.0001
Min; max 39.5; 162.0 47.0; 162.0 39.5; 116.5

Means were calculated based on data collected at inclusion for BCVA, CS, and HVF. For OCT parameters, the means were calculated
based on the average values of data collected at screening and inclusion.
*P-values compare results from RESCUE and REVERSE.
†The onset of vision loss was based on patient testimony; the duration of vision loss was assessed at screening in eyes with vision loss

perceived by the patient. In RESCUE, 4 eyes had no vision loss and one eye had vision loss not perceived by the patient (LogMAR +0.1 [20/
25]); these 5 eyes were not included in the calculation of mean duration of vision loss.
‡Means were calculated in 65 eyes with reliable HVF test results at study inclusion (33 in RESCUE and 32 in REVERSE).
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Pattern Standard Deviation of HVF
At baseline, the average pattern standard deviation (PSD) of
HVF 30-2 was similar in RESCUE and REVERSE eyes,
with 6.5 and 5.3 dB, respectively (P = 0.1865) (Table 1).

PSD values from reliable HVF tests, collected in both
studies at screening and inclusion (for a total of 128
reliable observations in 110 eyes), were grouped, averaged,
and plotted as a function of duration of vision loss (see
Supplemental Digital Content 5, Supplementary Fig-
ure 1B, http://links.lww.com/WNO/A473). Cross-
sectional PSD values increased during the first 100 days
after onset of vision loss, and then decreased. These results
were validated by a nonparametric LOESS regression
model (see Supplemental Digital Content 6, Supplemen-
tary Figure 6, http://links.lww.com/WNO/A478).

Linear regression on individual data points showed
that each additional month after symptom onset was
associated with a +0.44 dB difference in HVF PSD dur-
ing the 0–6-month period, compared with a 20.30 dB
difference during the 6–12 month period (Table 2).

Retinal Anatomy: SD-OCT Assessment
The analyses of retinal anatomy focused on the thickness
and volume of the retinal layers most affected in LHON
subjects, the GCL and RNFL. Both these retinal parameters
showed more advanced loss in REVERSE subjects com-
pared with RESCUE subjects (P , 0.0001) (Table 1). The
average GCL macular volume was 0.530 mm3 vs
0.734 mm3 in RESCUE and REVERSE, respectively, and
the average RNFL thickness in the temporal quadrant was
28.2 mm vs 49.6 mm, respectively.

Baseline OCT parameters collected in both studies
were averaged and plotted as a function of duration of
vision loss (Fig. 2 and see Supplemental Digital Con-
tent 5, Supplementary Figure 1A, 1C, http://links.lww.
com/WNO/A473). All cross-sectional OCT parameters
dramatically deteriorated in the first 8 months (w250
days) after onset of vision loss and were then globally stable.
These results were validated by a nonparametric LOESS
regression models (see Supplemental Digital Contents
7–11, Supplementary Figures 7–11, http://links.lww.com/
WNO/A479, http://links.lww.com/WNO/A480, http://
links.lww.com/WNO/A481, http://links.lww.com/WNO/
A482, http://links.lww.com/WNO/A483).

Based on cross-sectional data, linear regression on
individual data points showed that, in the first 6 months
after onset of vision loss, the monthly structural loss was on
average:20.06 mm3 of GCL macular volume,20.07 mm3

of ETDRS total macular volume, 26.00 mm of RNFL
thickness in the temporal quadrant, 25.76 mm of RNFL
thickness in the papillomacular bundle, and 23.06 mm of
average RNFL thickness (Table 2).

FIG. 1. Visual function parameters up to one year after
onset of vision loss in subjects with LHON harboring the
m.11778G.A mutation. N: number of observations pooled
together to calculate the means. Individual values were
collected at screening and inclusion, then grouped and
averaged by time since onset of vision loss. Because of a
very low number of observations available before onset of
vision loss, no standard error was calculated. A. Best-cor-
rected visual acuity, B. contrast sensitivity, C. HVF mean
deviation. HVF, Humphrey Visual Field; LHON, Leber
hereditary optic neuropathy.
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Eyes Unaffected by BCVA Loss
Four eyes were not affected by BCVA loss at the time of study
enrollment in RESCUE (see Supplemental Digital Content 1,
Supplementary Table 1, http://links.lww.com/WNO/A484).
Although they all had normal BCVA (#0.0 LogMAR), they
were already showing signs of loss of CS, with values below 1.8
LogCS. When HVF tests were reliable, MD values ranged from
22.4 to 21.14 dB and PSD values ranged from 1.29 to
1.87 dB. In the 4 eyes assessed before onset of vision loss, an
increase of thickness/volume was observed in all retinal layers of
interest: GCL, RNFL in the temporal quadrant and papillomac-
ular bundle, RNFL average thickness, and ETDRS total mac-
ular volume. A detailed description of these 4 eyes, including
fundus photographs, HVFs, peripapillary RNFL thickness per

quadrant, and GCL macular thickness and volume, is provided
in Supplemental Digital Content 12, (see Supplementary
Figure 2, http://links.lww.com/WNO/A474).

CONCLUSION

We present a large data set of retinal anatomic measure-
ments and visual function ascertained during the first year
following visual loss in LHON subjects carrying the
m.11778G.A mutation. Our cross-sectional data collec-
tion was performed at screening (#1 month pre-
treatment) and inclusion (1 day pretreatment), shortly
before patients received gene therapy in one eye. As such,
this report does not constitute a longitudinal study of the

TABLE 2. Monthly rates of change in visual parameters

Monthly Rate Estimate

All RESCUE REVERSE

BCVA (LogMAR)
Estimate +0.08 +0.24 +0.02
95% CI 0.061 to 0.104 0.201 to 0.278 20.013 to 0.052
P-value ,0.0001 ,0.0001 0.2503

CS (LogCS)
Estimate 20.05 20.15 +0.01
95% CI 20.073 to 20.032 20.197 to 0.111 20.014 to 0.034
P-value ,0.0001 ,0.0001 0.4235

HVF MD (dB)
Estimate 20.62 22.55 +0.40
95% CI 21.095 to 20.136 23.863 to 21.230 20.066 to 0.871
P-value 0.0141 0.0007 0.1000

HVF PSD (dB)
Estimate 20.08 +0.44 20.30
95% CI 20.283 to 0.116 20.170 to 1.059 20.502 to 20.098
P-value 0.4159 0.1669 0.0059

GCL macular volume (mm3)
Estimate 20.03 20.06 20.01
95% CI 20.033 to 20.024 20.068 to 20.053 20.013 to 20.003
P-value ,0.0001 ,0.0001 0.0023

ETDRS total macular volume (mm3)
Estimate 20.04 20.07 20.01
95% CI 20.052 to 20.026 20.087 to 20.049 20.028 to 0.011
P-value ,0.0001 ,0.0001 0.3869

RNFL temporal quadrant (mm)
Estimate 22.71 26.00 20.43
95% CI 23.269 to 22.160 27.174 to 24.830 20.848 to 20.005
P-value ,0.0001 ,0.0001 0.0502

PMB RNFL (mm)
Estimate 22.06 25.76 20.02
95% CI 22.552 to 21.561 26.846 to 24.673 20.616 to 0.569
P-value ,0.0001 ,0.0001 0.9392

Average RNFL (mm)
Estimate 23.25 23.06 22.49
95% CI 23.890 to 22.611 24.493 to 21.635 23.135 to 21.844
P-value ,0.0001 ,0.0001 ,0.0001

BCVA, best-corrected visual acuity; CS, contrast sensitivity; CI, confidence interval; ETDRS, Early-Treatment Diabetic Retinopathy Study;
GCL, ganglion cell layer; HVF, Humphrey visual field; MD, mean deviation; PMB, papillomacular bundle; PSD, pattern SD; RNFL, retinal nerve
fiber layer.
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natural history of untreated individuals with LHON. None-
theless, since enrollment in the RESCUE and REVERSE
clinical trials spanned the course of one year from onset of
vision loss, the collected data allowed for cross-sectional
analysis of the natural history of LHON over the first year
after onset.

Our findings are in keeping with the evolution of the
disease process in LHON. Unsurprisingly, longer durations
of vision loss were associated with worse retinal anatomy
parameters and visual function. All cross-sectional func-
tional (BCVA, CS, and HVF) and retinal anatomic
measurements (GCL macular volume, RNFL thickness,
and total macular volume) drastically worsened in approx-
imately the first 8 months after onset, and were then
globally stable. The deterioration of OCT anatomic
parameters lagged slightly behind the visual functions.
However, pathological thickening of these retinal structures
before visual loss and in the early stages of visual decline, as
particularly demonstrated in those patients with presymp-
tomatic second eyes at baseline, may have contributed partly
to this delay in measurable deterioration.

The loss of function and retinal structure was more
pronounced at later cross-sectional data points and ultimately
correlated with the degree of visual acuity deficit. In 2017, a
consortium of LHON experts established 3 stages in the
disease progression: the “subacute” phase, the “dynamic”
phase, and the “chronic” phase (2). The international con-
sensus statement on the clinical and therapeutic management
of LHON defined the first 6 months after onset as the sub-
acute or acute phase, depending on how rapidly the loss of
central vision evolves. Visual acuity usually stabilizes between
4 and 6 months after onset, but other clinical metrics such as
visual fields and OCT measurements may still evolve in the
dynamic phase, up to 12 months after onset. One year after
onset, visual function and retinal anatomy should have pla-
teaued and the patient typically transitions into the chronic
stage of the disease (2). Our results align with the description
of the subacute and dynamic phases observed over the first
year of the disease. In this cross-sectional analysis, BCVA
stabilized a bit later at approximately 8 months after onset.

The demographic characteristics of LHON subjects were
similar between the RESCUE and REVERSE trials. The
cohorts recruited for both studies were aligned with a typical
LHON population as regards gender and age distributions
(80% men, mean age at onset 35 years old) (2–4,6,9).
Based on protocol inclusion criteria, only the average dura-
tion of vision loss at enrollment was significantly different
between studies. As expected, this difference in duration of
vision loss was associated with worse visual functions and
anatomic structural parameters in the REVERSE popula-
tion, compared to RESCUE.

FIG. 2. Retinal parameters up to one year after onset of
vision loss in subjects with LHON harboring the
m.11778G.A mutation. N: number of observations pooled
together to calculate the means. Individual values were
collected at screening and inclusion, then grouped and
averaged by time since onset of vision loss. Because of a
very low number of observations available before onset of
vision loss, no standard error was calculated. A. Ganglion
cell layer macular volume, B. Retinal nerve fiber layer (RNFL)
temporal quadrant thickness, C. Average RNFL thickness.
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One year after onset of vision loss, the final average
BCVA was off chart. CS followed a similar pattern of acute
decline. Our cross-sectional data showed that the visual field
deteriorated as well, first with the appearance of focal
defects, mainly a central scotoma, which is the hallmark of
LHON, resulting in an increase in PSD. Then, the overall
diffuse deterioration of the visual field caused a slow
decrease in PSD, as observed in eyes with more than 6
months of vision loss. Of note, only reliable HVF tests were
included in this analysis, resulting in more than half of the
data being excluded.

Overall, the dramatic BCVA drop reported in this cross-
sectional analysis is consistent with the poor visual prognosis
associated with the m.11778G.A mtDNA mutation re-
ported in a recent natural history meta-analysis (9). Among
204 LHON subjects carrying the primary MT-ND4 muta-
tion and aged 15 or older at onset, spontaneous recovery
was detected in only 11% of cases (9).

Based on cross-sectional data, our results support previous
work reporting relatively rapid loss of retinal tissues in the
first few months following onset of vision loss in LHON
patients (21–25). The dramatic loss of tissue occurs during
the subacute and dynamic phases of the disease and reaches a
nadir a short time after the nadir of visual acuity. During the
subacute phase, there is evidence that the thinning in the
GCL occurs before the thinning in the RNFL, the average
RNFL thickness being relatively stable (24). Further deteri-
oration may remain undetected by a “floor effect” because of
technical limitations of currently available OCT platforms.
On the other end of the spectrum, the 4 eyes with normal
visual acuity at enrollment shed light on the changes in
retinal anatomy that precede the onset of BCVA loss. As
previously described in other studies, assessment of key ana-
tomic parameters showed presymptomatic increase of thick-
ness of the RNFL, macular volume, and GCL volume,
suggestive of evolving swelling heralding the imminent occur-
rence of visual symptoms (22,24,25). Interestingly, worsen-
ing of CS may also be a harbinger of the onset of BCVA loss,
because eyes with preserved BCVA were already showing CS
impairment. The occurrence of BCVA loss perhaps can be
viewed as the ultimate outcome of anatomic and visual func-
tion (CS) changes that began at an earlier phase of the disease
expression process (22,25). However, it should be noted that
many patients in the acute phase of LHON may not have
visible or demonstrable RNFL thickening (6), and, con-
versely, the presence of transient RNFL thickening in asymp-
tomatic carriers who never proceed to symptomatic visual loss
makes it difficult to use anatomic or functional measures as
predictors of visual outcome (26,27).

The limitations of our analyses are related to the cross-
sectional nature of the data, as subjects naive to LHON
treatment were subsequently administered gene therapy and
not followed longitudinally as untreated individuals. Thus,
our reconstruction of the events occurring as the natural
history during the first year after onset of visual loss is not

based on the preferred prospective follow-up of individual
patients, but rather on the collection of independent cross-
sectional data points. However, the data assembled from
these 2 trials provide a valuable landscape of the clinical
characteristics of LHON patients harboring the
m.11778G.A mutation in MT-ND4, and the cross-
sectional evolution of key visual functional and anatomic
parameters over one year. Our study thus broadens the char-
acterization of LHON, and affords complementary evidence
supporting the use of BCVA as the key endpoint currently
available to assess the efficacy of LHON therapy (15,16).
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