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Abstract

Essays on Retail Electricity Pricing and Markets

by

Jenya Kahn-Lang

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Meredith Fowlie, Chair

In this thesis, I investigate economic inefficiencies related to residential electricity pricing and
rate design. Two papers focus on firms’ pricing behavior in restructured retail markets, and
one focuses on the impact of electric rate design on consumers’ incentives to make greenhouse
gas-reducing investments.

The first chapter studies the causes and consequences of pricing heterogeneity in markets
for residential electricity, a nearly homogeneous good. I uncover adverse efficiency and
distributional impacts of competition when consumers face heterogeneous search frictions. I
show that consumers pay different prices for electricity in the same market, with low-income
households and marginalized communities paying systematically higher electricity prices than
their higher-income counterparts. These pricing patterns are consistent with a model of firms
price discriminating on search frictions through marketing. Using data from Baltimore, I
estimate a structural model that shows that this marketing leads to an annual welfare loss of
14% of industry-wide variable costs. Despite having only slightly larger search frictions, low-
income households pay substantially higher prices than high-income households primarily due
to lower marketing costs in low-income communities. Auxiliary analyses rule out alternative
explanations, such as differing underpayment risks or preferences for differentiated product
attributes. The model demonstrates that policy implications are nuanced: while marketing
restrictions can increase consumer surplus, they may also increase average market prices by
reducing consumers’ attention to their own prices.

The second chapter analyzes two key components of consumer welfare under government
versus market provision of a private good: price levels and price uncertainty. The electricity
sector provides a policy-relevant setting to plausibly causally estimate the directional effect
of ownership on retail prices. Specifically, this paper investigates the question: Do residen-
tial consumers face higher retail price levels and greater exposure to wholesale prices when
supplied electricity by their local government or by a private electricity supplier subject to
competitive forces? Using 2005-2017 data from 13 U.S. states that had both local government



2

and retail electricity markets, with the former’s geographic locations determined decades ear-
lier and the latter entering the leftover markets, I compare within-state differences in price
levels and pass-through of marginal costs across the two supplier types. I find evidence that
retail prices and price pass-through of volatile wholesale prices were lower under government
electricity provision than competitive retail provision during this timeframe.

The third chapter summarizes joint work with Andrew Satchwell and Chandler Miller on an
under-studied impact of increasingly popular time-based rates. While time-based electric-
ity rates can improve the economic efficiency of short-run consumption decisions, they can
also have unintended consequences on consumers’ incentives to make long-run investments
in greenhouse gas-reducing technologies. This chapter quantifies the impacts of time-based
rates on a diverse set of energy efficiency, rooftop solar, and electrification investment incen-
tives. We capture heterogeneity across households, geographies, and real-world rate designs
using National Renewable Energy Lab’s ResStock database and 14 implemented electric
rate schedules. Our analysis broadly shows that the average rate level matters more for
bill savings and economically efficient investment signals than the rate design. We also find
that time-based rates have highly heterogeneous effects on bill savings and welfare across
investments, geographies, and households. Our analysis also provides some uplifting results
for policymakers aiming to electrify buildings. Contrary to conventional wisdom, we find
that electrification can reduce consumer bills, especially when paired with energy efficiency
investments.
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Chapter 1

Competing for (In)attention: Price
Discrimination in Residential
Electricity Markets

1.1 Introduction

From telecommunications to airlines and energy, policymakers have introduced competi-
tion into many industries since 1970. In many markets, deregulation has led to large price
heterogeneity. This paper explores price discrimination as a cause of price heterogeneity
in deregulated residential electricity markets. Price discrimination can increase economic
efficiency in many markets by enabling firms to serve new market segments (Varian, 1985;
Schmalensee, 1981). Since willingness to pay and ability to pay are often positively corre-
lated, price discrimination also frequently results in wealthier consumers paying relatively
high prices. However, price discrimination can also be inefficient, especially when firms price
discriminate on consumer inattention or search frictions (Gabaix and Laibson, 2006). In the
residential electricity context, I highlight an additional pathway through which price dis-
crimination on search frictions generates economic inefficiency: incentivizing unproductive
marketing. I also show that marketing causes low-income and marginalized communities to
pay relatively high prices.

Inefficient and regressive pricing may be particularly concerning in the electricity context.
Researchers have linked high energy prices to mortality (Chirakijja et al., 2019). Many low-
income households keep their homes at unsafe temperatures and sacrifice food or medical
care due to high energy costs (NEADA 2018). Inefficiently high electricity prices may also
deter all households from investing in greenhouse-gas-reducing electrification (Borenstein
et al., 2021).

This paper begins by documenting key patterns in a deregulated residential electricity
market. Retail electricity restructuring created markets where financial intermediaries com-
pete to buy wholesale electricity and sell this electricity to individual households. I show
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that competition resulted in firms charging households very different prices for the same
electricity. Figure 1.1 shows a one-month cross-section of households’ electricity prices in
the restructured Baltimore market by zip code median annual household income.1 This mar-
ket is not concentrated by traditional metrics and exhibits limited product differentiation.
However, a quarter of households pay prices more than 35% higher than the median price,
and the top 5% pay at least double the median price, or roughly $75 more per month. Figure
1.1 also shows that households who live in low-income areas pay higher prices, on average,
than households in high-income areas. I find that these pricing patterns hold more broadly
across other states, time, data sources, and metrics of marginalized communities.

Figure 1.1: Estimated Monthly Marginal Costs

Probability density of generation supply prices for residential retail choice customers in Baltimore

Gas and Electric Company service territory by 2019 American Community Survey zip code tabu-

lation area median annual household income.

I present evidence that price heterogeneity in this market arises from firms price discrim-
inating on two consumer distortions. First, firms price discriminate on inattention-driven
inertia, which they achieve through price updating over a customer’s tenure with the firm.
Second, firms price discriminate on barriers to search, which they achieve through direct
marketing, including in-person and telemarketing. Firms charge higher prices through in-
person marketing than through active search channels. Firms also market disproportionately
in low-income areas.

1The figure excludes prices for the small percentage of households on quantity or time-differentiated price
structures.
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Next, I develop a theory that can explain the evidence. In this model, direct marketing
enables firms to gain information about consumer types and implement third-degree price
discrimination, but marketing is costly. The result is a separating equilibrium where only
consumers with high search frictions sign up through marketing, and marketing offer prices
are relatively high. Among consumers with high search frictions, consumers who live in areas
with relatively low marketing costs are more likely to interact with a marketer and, thereby,
choose to participate in the market over the outside option of a regulated price. This causes
higher average sign-up prices in areas with lower marketing costs in equilibrium. At the same
time, marketing also puts downward pressure on prices. By causing frequent attention shocks
that limit firms’ ability to take advantage of consumer inattention, marketing mitigates the
impact of price discrimination on inattention-driven inertia. Price markups can be sustained
in equilibrium in a market with free entry because firms spend their expected economic profits
on marketing to acquire consumers. This economically unproductive marketing creates a
welfare loss, which I later estimate to be 14% of industry variable costs.

This model suggests that low-income communities could face higher prices than high-
income communities due to demand- or supply-side drivers. On the demand side, the
income-price gap could be driven by low-income households having especially high barri-
ers to search, choice error, taste for marketing, or inattention to their own prices and bills.
On the supply side, a difference in marketing costs across geographic areas is sufficient to
create an income-price gap. I argue that firms face relatively low direct marketing costs in
low-income communities. Door-to-door and other in-person marketing tend to be cheapest
in densely-populated areas, and low-income households in Baltimore tend to live in especially
dense areas.2

To test these hypotheses, I estimate this model of consumer demand and firm marketing
and pricing decisions. I decompose the income-price gap and find that the largest driver
is supply-side differences in marketing costs across geographic areas, explaining about 85%
of the total gap. Approximately 30% of the gap comes from combined differences in taste
for marketing and choice error in marketing interactions, and 5% comes from differences in
barriers to search. Taken together, these positive contributions sum to more than 100% due
to offsetting negative effects. Differences in preferences for premium attributes reduce the
income-price gap by 14%. In the absence of marketing, a counterfactual suggests that dif-
ferences in inattention-driven inertia across income groups would cause an income-price gap
equal to roughly 32% of the status quo income-price gap. However, this effect is more than
offset by the interaction effect between marketing and inertia. In the presence of marketing,
the net effect of price discrimination on inattention-driven inertia, is a 6% reduction in the
income-price gap.

A counterfactual scenario suggests that ending direct marketing would increase aggregate
consumer surplus, primarily due to more consumers choosing the outside option, which is
a regulated rate. However, ending marketing would also increase average market prices for
low- and high-income households that remain in the market because these households would

2There may also be meaningful geographic differences in labor costs or legal risks.
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experience fewer attention shocks.
I also consider alternative explanations for the income-price gap, including differing costs

to serve, differing risks of underpayment, and differing preferences for premium bundled
attributes. The analyzed market provides a unique setting where firms bear a negligible por-
tion of the risk of their own customers’ underpayment. Cost of service also varies negligibly
across geographic areas, and any differences in temporal electricity usage patterns should
result in low-income households being cheaper to serve.

To my knowledge, this is the first paper to analyze price discrimination through marketing
in retail electricity markets. In doing so, this paper contributes to four literatures. First,
there is an extensive literature rationalizing the existence of price variation in unconcentrated
markets. The literature is mainly theoretical with some notable exceptions that empirically
test select theories (Puller et al., 2015; Escobari and Gan, 2007; Orlov, 2011; Baylis and
Perloff, 2002). This paper builds on and combines the heterogeneous search cost (Salop and
Stiglitz, 1977; Varian, 1980) and costly marketing (Butters, 1977) theories, allowing firms to
use marketing as a means to identify consumers with high search costs or other search-related
frictions. In addition, I empirically estimate welfare and distributional implications of price
discrimination.

A second literature studies the effects of poverty on household financial decision-making.
Researchers have argued that poverty causes more present-biased behavior, tunneled focus on
urgent tasks, and neglect of longer-term financial planning (Ong et al., 2019; Carvalho et al.,
2016; Shafir and Mullainathan, 2013; Haushofer and Fehr, 2014; Spears, 2011; Loibl, 2017;
Campbell, 2016; Handel and Kolstad, 2021). Mendoza (2011) offers some reasons house-
holds in poverty may pay higher prices even under identical decision-making processes. In
many contexts, identifying the role of price discrimination on price disparities is confounded
by differing risks of underpayment, large differences in the cost to serve across geographic
areas, or unobserved variation in marginal costs. The retail electricity markets I analyze
provide a particularly clean setting to study price discrimination that is largely free of these
confounders.

Third, this paper also contributes to a long debate in the marketing literature on whether
marketing is welfare-improving or welfare-reducing (e.g., Chamberlin, 1933; Kaldor, 1950;
Ozga, 1960; Stigler, 1961).3 Evidence is mixed but primarily supports the welfare improve-
ment theory (Dubé and Manchanda, 2005; Ackerberg, 2001; Garthwaite, 2014; Carpio and
Isengildina-Massa, 2016; Benham, 1972; Glazer, 1981; Milyo and Waldfogel, 1999). Analysis
of door-to-door marketing is scarce. My paper builds on ideas from the persuasive theory
of advertising (Braithwaite, 1928; Robinson, 1933; Kaldor, 1950) and on targeting advertis-
ing to consumers less likely to comparison shop (Iyer et al., 2005) to empirically estimate a
door-to-door marketing setting where marketing appears to be welfare decreasing.

Fourth, I build on previous literature on pricing and decision-making in retail electricity
choice markets. Much of this literature analyzes how average prices have changed with
the implementation of restructuring (e.g., Dormady et al., 2019; Hartley et al., 2019; Ros,

3See Bagwell (2007) and Schmalensee (1988) for literature reviews.
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2017; Borenstein and Bushnell, 2015; Su, 2015; Joskow, 2006; Taber et al., 2006). Results
are mixed and tend to vary across locations and time periods. Under weak assumptions,
my results suggest that restructuring increased prices for some households and decreased
prices for others across several U.S. states. I, therefore, focus on two key parts of the overall
pricing question: incidence and underlying mechanisms. A small body of research on retail
restructuring documents consumer inertia and search costs (Hortaçsu et al., 2017; Giulietti
et al., 2014, 2005; Flores and Price, 2013; Davis, 2021) and unexplained consumer decision
error in plan selection (Wilson and Price, 2010). Researchers have explored firm responses
to inattentive or behavioral consumers in other markets (Gabaix and Laibson, 2006; Ericson,
2014; Agarwal et al., 2014, 2015; Houde, 2018; McCoy, 2015), but research in the retail choice
market is limited (Gugler et al., 2018; Byrne et al., 2022).

The closest paper in terms of research question is Byrne et al. (2022). The authors
conduct an audit study of consumers searching by phone for a retail marketing supplier. They
find no evidence that electricity suppliers explicitly discriminate on low-income subsidy status
by charging higher prices to consumers who receive electricity subsidies. In contrast, I study
firms’ decisions to actively market to consumers since direct marketing is responsible for most
switching. I find evidence of structural discrimination: profit-driven marketing strategies
interact with pre-existing residential segregation to disproportionately harm marginalized
communities.

This research may have applications to many other markets, particularly markets for sub-
scription products where consumers demonstrate substantial inattention and heterogeneous
search. Examples may include markets for mortgages and other loans, cell phone service,
Internet service, newspaper subscriptions, gym memberships, and health, automobile, and
life insurance.

1.2 Background on Retail Electricity Choice Markets

Under traditional electric utility regulation, one regulated monopoly provides electricity
generation, distribution, transmission, and retail supply. Of these four services, only distri-
bution and transmission are currently considered natural monopolies. Around the turn of
the 21st century, many countries and U.S. states deregulated the electric generation function
(“wholesale restructuring”) and the retail supply function (“retail restructuring” or “retail
choice”).4 Restructuring opened these electricity services to competition from other for-profit
firms.

Under retail restructuring, these for-profit firms (“suppliers”) compete to purchase whole-
sale electricity and sell it to households. Economists who pushed for retail electricity re-
structuring argued that it would reduce prices, improve incentives for innovation, and reduce
monopsony power in wholesale markets (Bohi and Palmer, 1996; Littlechild, 2000). However,
other economists raised skepticism about the ability of retail suppliers to reduce electricity

4As of 2022, Texas, Ohio, Illinois, the District of Columbia, and ten states in the New England and
Mid-Atlantic regions had restructured residential electricity markets.
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supply costs and argued that the opportunities for other value-added services were likely
small for residential consumers (Joskow, 2000).

Politicians and regulators in multiple states have recently raised concerns about the high
prices that low-income households pay in restructured markets. These concerns led to some
market reforms. Multiple states banned or heavily restricted the participation of low-income
subsidy recipients in the retail choice market.5 As of September 2022, another state is
actively considering ending the retail choice market entirely, largely due to its impact on
low-income households.6

This paper focuses on the Baltimore Gas and Electric Company (BGE) market in Mary-
land and, to a lesser extent, markets in Connecticut and Maine. In these areas, consumers
have a default option, which is a regulated rate. There are no limits on the prices suppliers
can charge consumers for non-default products in these states. In this paper, I will treat the
default and regulated option as the outside option and consider the market of non-utility
suppliers (henceforth, “suppliers”) and consumers who actively decide to participate in the
retail choice market. In 2019, about 24% of all BGE residential customers participated in
the retail choice market. All of these customers participate in the individual retail choice
market. There were no areas where local governments or communities bargained with suppli-
ers on behalf of households (“Community Choice Aggregation” or “Municipal Aggregation”)
during the period I study.

By traditional competition metrics, the BGE residential retail choice market appears rea-
sonably competitive. Seventy-nine suppliers, owned by 65 unique companies, served house-
holds during the 38-month analysis timeframes. During this short period, 12 firms (i.e.,
parent companies) entered the market, and seven firms exited. Consumers have access to all
suppliers. The Herfindahl Hirschman Index (HHI) classifies the market as unconcentrated
in almost all analysis months.7

The regulatory agencies governing the retail electricity markets in Maryland and Con-
necticut, Maryland Public Service Commission (PSC) and Connecticut Public Utilities Reg-
ulatory Authority (PURA), run free websites that allow suppliers to publicly post electricity
plan offers. Households can view and compare these offers. While electricity is typically
considered a homogeneous good, the products offered on the comparison websites show that
suppliers differentiate products by bundling electricity with other attributes. Common at-
tributes include renewable energy certificates (RECs) and financial products, such as gift
cards (e.g., Walmart, Amazon) and price stability for a given contracted time period.8 Sup-

5See State of New York Public Service Commission CASE 15-M-0127 and Connecticut Public Utilities
Regulatory Authority Docket 18-06-02.

6See Massachusetts Senate Bill No. 2150.
7A market is considered unconcentrated if it has an HHI below 1,500. The median HHI is 1,423, and

the maximum HHI is 1,538. In general, the market exhibited a downward trend in market concentration
between 2019 and 2022. In comparison, the Connecticut market is classified as unconcentrated, and the
Maine market is classified as highly concentrated throughout the entire relevant timeframe. A market is
considered highly concentrated if it has an HHI above 2,500.

8Renewable energy certificates are tradeable permits that give the owner financial rights to the renewable
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pliers may also differentiate themselves as a company, for example, by offering superior
customer service.

Differentiation through electric rate design or bill design is limited. As of 2022, all house-
holds in Connecticut and Maine and most households in Maryland receive one bill from their
utility that includes the utility’s charges and the supplier’s charges. Some industry mem-
bers have argued that this practice reduces suppliers’ ability to differentiate their products.9

Maryland does allow suppliers to send their customers a separate bill for supply charges, but
this practice is very uncommon.

In addition to consumers actively searching for new electricity plans, suppliers may ac-
quire customers through direct marketing, such as door-to-door marketing, tabling, telemar-
keting, and mail marketing. Suppliers frequently outsource this marketing to third parties,
but regulators hold suppliers fully responsible for the behavior of marketers acting on their
behalf. In this paper, I treat a supplier and its marketing partners as one entity. Policymak-
ers have expressed concerns about misleading and aggressive marketing tactics.10 Of the 283
supplier-related complaints the Maryland PSC reported in 2021, 49% were about disputing
an enrollment or misrepresentation of the supplier or marketer.11

When consumers sign up with a supplier, they sign up at a price that is fixed for a
specified number of months. Based on the frequency of price changes in the BGE data
set, the median sign-up price duration is two months. When the initial contract ends,
most contracts automatically renew at a potentially updated price. In the BGE data set,
the median renewal contract lasts one month, suggesting that most contracts automatically
renew on a month-to-month basis.

Sometimes a consumer cannot pay their entire bill, but the consumer’s supplier does
not bear much—if any—of this underpayment risk in Maryland and Connecticut. Through
a program known as “Purchase of Receivables” (POR), the PSC and PURA require con-
sumers’ utilities to purchase suppliers’ receivables at a regulated industry-wide percentage
discount. Under this program, a supplier will receive the same revenue, equal to the amount
they charged less this regulated discount, whether or not a customer pays their bill. This
configuration is analogous to a risk-free market with a tax. In the short run, any additional
underpayment is socialized across consumers. In the long run, the state regulator updates the
percentage discount in a regulatory proceeding based on historical underpayments, thereby
socializing costs across suppliers.

content of electricity previously generated by a renewable generator.
9e.g., See the Retail Energy Supply Association (RESA) comments in Maryland Public Service Commis-

sion Case No. 9461.
10e.g., See the Massachusetts Joint Committee on Telecommunications, Utilities, and Energy Hearing.

Available at: https://malegislature.gov/Events/Hearings/Detail/3891/Video1
11See Maryland Public Service Commission. “Retail Energy Supplier Complaint Reports.” Accessed July

2022. Available at: https://www.psc.state.md.us/retail-energy-supplier-complaint-reports/
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1.3 Data

The primary data set used in this paper is Baltimore Gas and Electric Company (BGE)
billing data for December 2018 through March 2022. The data set includes billing information
for all residential BGE accounts that participated in retail choice during this timeframe. The
billing information includes total electricity supply bill ($), monthly electricity usage (kWh),
rate structure, supplier, zip code, and whether the customer applied to participate in a
low-income program through the Maryland Office of Home Energy Programs. These data
include 96,014, 101,357, and 205,773 accounts, respectively, for households in zip codes with
median annual income below $60,000, $60,000-80,000, and above $80,000. I supplement these
data with historical prices for consumers on the default rate from BGE, Maryland Office of
People’s Council, and MD PSC Case No. 9064.

The Maryland PSC also provided data from their MDElectricChoice.gov offer comparison
website. These data allow me to analyze search behavior and preferences for plan attributes.
While consumers do not sign up on the comparison website, they can click on a plan to be
directed to the relevant supplier’s website and start signing up. I have weekly data on all
residential offers on the website and all clicks on the website by plan and rough IP address
geography from late January through July 2022. I map these geographies to zip codes for
comparisons by median zip code annual household income. Figure A1 shows a screenshot of
the website.

To analyze geographic variation in marketing presence, I use a cross-section of data on
door-to-door marketing presence in the Baltimore metropolitan area. These data come from
the PSC (PSC 2020). The PSC requires all suppliers to report when and for how long they
plan to conduct marketing activity by zip code. The PSC report documents the number
of suppliers that reported marketing door-to-door in each zip code from November 2019
through October 2020.

I estimate suppliers’ marginal cost of supplying one additional kWh by cost component
and month. Suppliers’ marginal costs include wholesale electricity costs scaled up for losses,
payments for grid-balancing ancillary services, and the cost of meeting Maryland’s Renewable
Portfolio Standard. Although capacity costs only vary with kWh usage at certain times in
the year with a one-year delay, I also treat generation capacity-related costs as marginal
costs for simplicity. In this sense, it may be more appropriate to consider the marginal costs
as the incremental cost per kWh of supplying a consumer with electricity. This incremental
cost excludes any customer service or administrative costs. See Appendix A.7 for a detailed
discussion of cost calculations.

Figure 1.2 displays one-month-ahead estimated marginal costs for each month of the
analysis timeframe. The figure also shows default prices and summary statistics of market
prices for comparison.

Finally, I also conducted a consumer survey of 905 Baltimore and Maryland households in
August and September 2022 to gain additional information about consumer behavior, beliefs,
and experiences searching for and signing up with electricity suppliers. Roughly two-thirds
of the participants also received one of two randomized information interventions. Of the
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Figure 1.2: Prices and Estimated Marginal Costs

Market prices reflect electricity supply prices of consumers who are active in the Baltimore retail

choice market. The default rate is the BGE Standard Offer Service (SOS) rate. Estimated marginal

costs are one-month ahead estimates.

baseline survey participants, 471 responded to a one-month follow-up survey. MFour Mobile
Research administered the surveys using their mobile application. Eligible participants lived
in an area of Maryland, Connecticut, or the District of Columbia open to retail choice, were
over 18 years old, and made decisions about their electricity bill. To facilitate comparison
across low- and high-income communities, I undersampled zip codes with median household
income between $60,000 and $80,000. Of the 905 respondents, 25.6%, 44.5%, and 29.8%,
respectively, come from zip codes with median annual income below $60,000, $60,000-80,000,
and above $80,000. See Appendix A.8 for a copy of the survey instruments and Appendix
A.9 for all survey response summary tables.

See Appendix A.6 for information on data sources used to analyze other states.

1.4 Descriptive Evidence

This section presents some descriptive and reduced-form evidence to support six key facts
about the BGE residential electricity market. The first two facts document the extent of price
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heterogeneity and provide evidence of adverse implications on social equity. The remaining
facts illuminate the importance of price discrimination based on inattention-driven inertia
and price discrimination through marketing for explaining this price heterogeneity.

Stylized Fact 1: Markets exhibit large price variation

Figure 1.3 presents cross-sectional distributions of all billed prices in the BGE retail choice
market in four months.12 Looking across all months, the standard deviation in residualized
prices after controlling for time fixed effects is $0.041/kWh or roughly $37/month at the mean
2019 BGE household electricity usage of 903 kWh.13 I observe substantial pricing variation
within firms as well as across firms. Adding controls for supplier parent company fixed effects
reduces the standard deviation in residualized prices by only 14% to $0.035/kWh.

The months included in Figure 1.3 are typical of the price distributions in a random
month during the analysis timeframe. I selected these months to capture variation over time
and seasons, excluding the atypical period near the beginning of the COVID-19 pandemic.

Stylized Fact 2: Low-income households and marginalized
communities face particularly high prices

Figure 1.4 shows plots of mean and median prices over time by three zip code-level annual
median household income categories: below $60,000, $60,000-80,000, and above $80,000.
Across all months of the analysis timeframe, households in the lowest-income category paid
the highest mean and median prices, and households in the highest-income category paid the
lowest mean and median prices. On average, households in zip codes with a median income
below $60,000 and between $60,000-80,000 face $0.0094/kWh (t = 53) and $0.0042/kWh
(t = 26) higher mean prices, respectively, than households in zip codes with a median
income above $80,000. These estimates come from a regression of price on income group and
time fixed effects with errors clustered on consumer. A similar regression at an individual
household level shows that households who applied for low-income electricity bill assistance
face $0.008/kWh higher prices, on average, than other households (t = 41).

I also observe relatively high prices in zip codes with a large percentage of Black, Latino
and Hispanic, and immigrant households as well as few high school graduates, many rented
housing units, and low English proficiency. Figure 1.5 displays coefficients and 95% confi-
dence intervals from regressions of price on zip code demographics across all time periods,
controlling for time fixed effects and clustering standard errors by supplier. For example, the
linear model predicts that households in a zip code with exclusively Black residents will pay
$0.019/kWh (≈20%) more than households in a zip code with only white residents. It also
predicts that households in the BGE zip code with the highest percent of non-U.S. citizens,

12These distributions do not include prices on the default regulated rate or BGE charges for electricity
delivery.

13Source: Energy Information Administration Form EIA-861.
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Figure 1.3: Price Distributions in Four Months by Income Group

Probability density plots of electricity supply prices billed in Baltimore Gas and Electric Company

service area in four months. Excludes standard offer service prices. Only includes prices for con-

sumers on linear tariffs that are not time-differentiated. Income definitions reflect 2019 American

Community Survey zip code tabulation area median household income.

about 18%, will pay $0.016/kWh (≈15%) more than households who only live around U.S.
citizens. Figure A2 shows scatterplots of mean zip code price by the percentage of the zip
code population that falls into each of four demographic groups in September 2019. The
percentage of Black residents is a particularly strong metric for predicting variation in mean
price across zip codes. This variable can explain 45% of the variation in mean September
2019 prices across zip codes.

Many of these demographic variables are correlated. Median household income is highly
correlated with metrics of wealth, such as the percentage of occupied homes that are rented
(r=-0.46), and with education metrics, such as the percentage of households without a high
school diploma (r=-0.48). Median household income is also correlated with race, such as the
percentage of Black residents (r=-0.19). For simplicity, I focus only on the income-price gap
for the remainder of this paper.

The aggregate price distributions shown in Figure 1.3 combined contracts that started
in different months as well as “new” and “renewal” contracts. When a consumer switches
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Figure 1.4: Mean and Median Prices Over Time by Income Group

Mean (left) and median (right) electricity supply prices billed in Baltimore Gas and Electric Com-

pany service area by month and zip code median household income. Only includes prices for

consumers on linear tariffs that are not time-differentiated. Income definitions reflect 2019 Amer-

ican Community Survey zip code tabulation area median household income.

suppliers, they execute a “new” contract with the new supplier. When a consumer’s initial
contract term with a supplier ends, they either switch suppliers or execute a “renewal”
contract.

The income-price gap also exists in the restricted sample of new contracts. Figure 1.6
shows the sign-up price distributions by median zip code household income. Across all
months, the mean sign-up price difference between households in zip codes with median
household income below $60,000 and above $80,000 is $0.0091/kWh (t = 68). Moderate-
income households have a sign-up price premium of $0.0052/kWh (t = 38).14

Contracts that were renewed display an even larger income-price gap. As an approxima-
tion, I identify contract renewals as any instance in which a consumer has the same supplier
but a different price than they had the previous month. This definition includes households
who actively renewed a contract and households who passively allowed their contracts to re-
new automatically. Across all months, households in zip codes with a median income below
$60,000 and between $60,000-80,000 face $0.0102/kWh (t = 34) and $0.0044/kWh (t = 16)
higher renewal prices, respectively, than households in zip codes with a median income above
$80,000.

14See Figure A5 for a map of mean sign-up price by Baltimore City zip code.
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Figure 1.5: Coefficient Estimates from Regressions of Price on Key Zip Code Demographics

Coefficients and 95% confidence intervals from regressions of electricity supply price on time fixed

effects and zip code tabulation area (ZCTA) demographics from the 2019 American Community

Survey. Baltimore Gas and Electric Company service territory residential customer accounts on

retail choice only.

Stylized Fact 3: Households in low-income areas switch suppliers
more frequently and are more likely to opt into retail choice

One potential hypothesis for the income-price gap is that low-income households are less
active in the market and switch suppliers less frequently. However, I observe the oppo-
site: households in low-income communities are significantly more likely to participate in
the market and switch suppliers than other households. About 24% of households in low-
income communities participated in the retail choice market in a given month, on average.15

Comparable participation rates in moderate- and high-income communities were 22% and
20%, respectively.16 Households in low-income communities were also more than twice as
likely as households in high-income communities to switch their electricity supplier in a given

15Calculations exclude the early COVID-19 pandemic period from February 2020 through September
2020.

16These estimates equal the ratio of residential accounts in the BGE billing data to total households
in the 2019 American Community Survey by zip code median annual household income category, scaled
proportionately to the total residential accounts in the BGE service territory from Energy Information
Administration Form EIA-861.
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Figure 1.6: Sign-up Price Distributions in Four Months by Income Group

Probability density plots of electricity supply prices for consumers who switched suppliers in four

specific months in Baltimore Gas and Electric Company service area. Excludes standard offer

service prices. Only includes prices for consumers on linear tariffs that are not time-differentiated.

Income definitions reflect 2019 American Community Survey zip code tabulation area median

household income.

month. Mean monthly switching rates were 8.0%, 5.3%, and 3.3% for low-, moderate-, and
high-income communities, respectively.

Survey responses suggest that these differences in switching and participation are not
due to systematic differences in search cost-benefit calculations. While respondents in low-
income zip codes tend to report higher expected benefits of searching than respondents in
high-income zip codes (t = 2.5), these differences are almost perfectly offset by differences in
reported search costs. Table A7 reports the mean and median responses by income group of
expected one-month bill savings from an hour of searching, one-month bill savings required
to justify an hour of searching, and the differences between these two values. The mean net
expected cost of searching for one hour differs across low and high-income households by less
than $1 (t = 0.05).

Survey results shown in Table A8 provide evidence that consumers are partially inat-
tentive to their own prices and bills. However, attention levels appear similar across low-
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and high-income zip codes. Among respondents who reported ever being active in the re-
tail choice market, only 51% reported ever switching suppliers due to a change in price or
bill amount. Only 77% reported looking at their bill approximately every month, and 53%
reported looking at their price approximately every month. When asked to guess their elec-
tricity price, 84% of households guessed a price outside of the reasonable range, defined as
a price above the maximum price charged in the Connecticut retail choice market in that
month.17 While point estimates may suggest low-income households look at their prices
especially frequently, this does not translate to better price estimates.

Stylized Fact 4: Prices increase with contract renewals, with
larger price increases in low-income communities

Suppliers appear to be aware that consumers are partially inattentive to price, and they
seem to price discriminate on this inattention through gradual price increases over a cus-
tomer’s tenure. The renewal price distributions discussed in Stylized Fact 2 described renewal
prices irrespective of customers’ tenures. To analyze price discrimination on attention, I seg-
ment these price distributions further by the number of times a consumer has—actively or
passively—renewed their contract with an individual supplier (e.g., 1 = sign-up price, 2 =
first renewal, etc.). Figure 1.7 shows estimates and 95% confidence intervals from a regres-
sion of renewal and sign-up prices on the number of renewals, zip code income group, their
interactions, and time fixed effects. All values are relative to sign-up prices of households in
zip codes with a median household income above $80,000.18

As shown in Figure 1.7, prices tend to increase with the number of renewals for all income
groups. The magnitudes are large. A household that renews their contract for the 11th to
20th time can expect to pay an extra $0.035/kWh, or roughly $32 per month, relative to the
price they would get if they switched suppliers that month. At the mean sign-up price, this
reflects a 38% price increase.19

This result suggests that suppliers price discriminate on consumers’ attention to their
prices. For example, suppose consumers rarely notice small price increases. Then suppliers
would have an incentive to increase their prices a small amount with each renewal. This
strategy would explain the observed pricing pattern. In contrast, conventional search or
switching costs cannot create this pricing pattern of continued price increases over time.
After initial sign-up, conventional search and switching costs remain constant. As a result,
profit-maximizing renewal prices under search and switching costs alone would increase on
the first renewal but then cease to change with additional renewals.

17Increasing this cutoff to $0.50/kWh only reduces this proportion to 82%.
18For example, a dark blue dot at an estimated contract number of 3 captures the difference between the

mean second renewal price for a household in a below $60, 000 income zip code and the mean sign-up price
for households in an above $80, 000 income zip code.

19It is common for consumers to experience many renewals. See Figure A3 for shares of consumers on
each renewal contract number.
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Figure 1.7: Residualized Price by Number of Contract Renewals

Estimates from a regression of electricity supply price on time fixed effects, number of unique prices

a consumer has faced since last switching suppliers, and income group. Excludes standard offer

service prices. Only includes prices for consumers on linear tariffs that are not time-differentiated.

Income definitions reflect 2019 American Community Survey zip code tabulation area median

household income.

Figure 1.7 also shows that the income-price gap increases on renewal. The gap almost
doubles between sign-up and the first contract renewal and persists at some magnitude
through the 14th renewal.

The result that the income-price gap increases on renewal may seem contradictory to
some of the earlier findings about switching and attention. If low-income households were
relatively inattentive, we might also expect them to switch relatively infrequently. Section
1.7 shows that marketing can reconcile these findings.

Stylized Fact 5: Suppliers appear to offer low prices online and
high prices through marketing

This subsection further explores the sign-up price gap by asking two questions about
consumers’ sign-up methods: 1) How do consumers sign up with electricity suppliers? 2)
Do prices differ by sign-up method? I cannot explicitly observe sign-up prices by the asso-
ciated sign-up method. Instead, I use survey evidence to answer the first question. For the
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second question, I use activity on MDElectricChoice.gov to analyze how sign-up prices from
comparison website search differ from sign-up prices from other methods. I then leverage
COVID-19 restrictions that prohibited in-person marketing to analyze how sign-up prices
through in-person marketing differ from sign-up prices from other methods.

Among survey respondents, the most commonly reported method of signing up with an
electricity supplier was through an in-person marketing interaction. Significantly more re-
spondents report signing up through an in-person marketer (43%) than from actively search-
ing (36%) within the past ten years (χ2 = 8). In addition, 27% reported signing up through
a telemarketer, and 29% reported signing up through other types of marketing, such as mail
or online marketing.

To explore how sign-up prices through comparison website search differ from sign-up
prices from other sign-up methods, compare two sets of price distributions: 1) prices associ-
ated with each plan click on the comparison website, and 2) all sign-up prices in the BGE
service territory. Figure 1.8 plots these two price distributions in February 2022, and Table
1.1 displays associated summary statistics.20 The mean and variance of website click prices
are lower than the overall price distribution of new contracts (t = −19, F93,5437 = 0.09).
These results suggest that firms can price discriminate on sign-up method. Consumers who
sign up through methods other than online tend to receive higher prices.

Table 1.1: Summary Statistics by Price Distribution

Price Distribution Mean Price ($/kWh) Price Variance ($/kWh)
Comparison Website Clicks 0.086 0.0001
New Contracts 0.111 0.0014

I formally test the hypothesis that high sign-up prices predominantly come from in-
person marketing while low sign-up prices come from other sign-up methods, such as active
search. I use COVID-19 marketing restrictions as a natural experiment. To achieve this, I
first estimate the distributions of low and high sign-up prices for each month in the analysis
timeframe. I then assess whether COVID-19 marketing restrictions have a larger effect on
the number of high-price sign-ups than the number of low-price sign-ups.

To estimate the distributions of low and high sign-up prices, I leverage the bimodal nature
of sign-up price distributions demonstrated in Figure 1.6.21 I assume the higher mode reflects
the mode of marketing-related sign-up prices and the lower mode is the search-related sign-up
price mode. Assuming each of these distributions is symmetric, I estimate the two underlying
sign-up price distributions. For more estimation details, see Appendix A.5.

Figure 1.9 shows the resulting estimates of the number of presumed marketing-related
(i.e., high-price) and search-related (i.e., low-price) sign ups.22 Each observation is a daily
estimate based on a two-week rolling average. The orange-shaded region indicates when

20See Table A4 for a comparison to renewal prices.
21The February 2022 sign-up price distribution is an outlier in this respect.
22Comparing cross-sectional variation across zip codes, I find an 89% correlation between these estimates
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Figure 1.8: Comparison Website Click Prices vs. All New Contract Prices

In blue, probability density of sign-up prices for all consumers who switched electricity suppliers

in February 2022 in the Baltimore Gas and Electric Company (BGE) service area. In green, prob-

ability density of prices associated with plan-specific clicks on the MDElectricChoice.gov website

in February 2022 in the BGE service area. Excludes standard offer service prices. Only includes

prices for consumers on linear tariffs that are not time-differentiated.

suppliers were not allowed to market in person in Baltimore City due to COVID-19 restric-
tions. This restricted period began on March 30, 2020, and ended on June 22, 2020, with a
Baltimore City executive order that lifted restrictions on non-essential businesses.23

To test whether the estimated marketing- and search-related distributions are picking up
meaningful variation in sign-up method, I conduct two tests. The first test is a difference-
in-differences analysis. I analyze differences in the reduction of marketing-related sign-ups
relative to search-related sign-ups during days when Maryland or Baltimore City restricted
non-essential business operations due to COVID-19 relative to other days. All observations
received treatment simultaneously, from March 30 through June 22. The short nature of
the treatment period relative to the analysis timeframe minimizes potential concerns about

of the number of suppliers marketing door-to-door by zip code and the reported numbers in the administrative
marketing activity data.

23Maryland’s shelter-in-place executive order began on March 30, 2020. When the Maryland governor
lifted these restrictions, Baltimore City imposed its own restrictions on non-essential business operations
until the June 22, 2020, executive order.
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Figure 1.9: Estimated Daily Sign Ups by Type and Date

Estimated number of search- and marketing-related sign ups in the Baltimore Gas and Electric

Company service area based on an assumption that bimodal sign-up price distributions reflect

a mixture of two underlying distributions: a high-price distribution from marketing and a low-

price distribution from search. Shaded region portrays the time between the Maryland COVID-19

shelter-in-place ordinance and the lifting of Baltimore City COVID-19 restrictions on non-essential

businesses.

parallel trends. Specifically, I estimate the following linear probability model:

yijt = β1(Marketing)i + β2(Shelter)t + β3(Marketing)i × (Shelter)t + δj + εijt

where yijt is an indicator of whether consumer i switches to supplier j in period t,
(Marketing)i equals one if the sign-up occurred at a high price, (Shelter)t equals one during
the treatment period and zero otherwise, and δj denotes supplier fixed effects. I also test
specifications without supplier fixed effects. Our parameter of interest is β3.

Difference-in-differences results in Table A1 suggest that shelter-in-place reduced esti-
mated marketing-related switching probability by about 2.7 percentage points more than
that of search-related switching. This estimate is about 83% of the overall mean switching
rate in the data set. Excluding supplier fixed effects reduces these estimates slightly to 2.6
percentage points and 80%.
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I also perform regression discontinuity analysis of search- and marketing-related sign-up
rates when Baltimore City allowed non-essential businesses to open. Specifically, I estimate
the following linear probability model using data from the 38 days before and after June 22,
2020:

yijt = β1(After Event)t + β2(Datet − Event Date)

+ β3(After Event)t × (Datet − Event Date) + δj + εijt

where Event Date is June 22, 2020, Datet is calendar date, (After Event)t is an indicator
for whether the calendar date falls after June 22, and yijt and δj have the same interpretations
as in the Difference-in-Differences model. I estimate the difference Datet − Event Date in
days. The coefficient of interest is β1. Assuming suppliers could not influence the timing
of the June 22 executive order, we can interpret this estimate as the immediate effect of
allowing in-person marketing to resume.

Table A2 presents the results of the regression discontinuity analysis. Marketing-related
switching increased by 0.54 percentage points due to Baltimore City lifting restrictions on
non-essential businesses. There was no significant discontinuity in search-related switching on
June 22, 2020. With 95% confidence, I can rule out an increase greater than 0.22 percentage
points, which is half the estimated increase for marketing-related switching. This provides
further evidence that suppliers offer higher prices through in-person marketing than through
other sign-up methods, such as online search.

Stylized Fact 6: There is more marketing in low-income areas

Sign-up prices in Figure 1.7 (i.e., contract #1) show that even when consumers actively
choose to switch suppliers, low-income consumers tend to sign up at higher-priced plans than
high-income consumers, on average. Is this because consumers in low-income zip codes are
relatively more likely to sign up through marketing than through active search? Figure 1.8
showed that no consumers clicked on a plan on the comparison website in February 2022
that had a price above $0.1165/kWh. Comparing this result with the bottom right quadrant
of Figure 1.6, observe that low-income households were particularly likely to sign up with
a new supplier at a price above this $0.1165/kWh threshold price in February 2022. I can
reject the null of equal proportions of sign-up prices above and below $0.1165/kWh in low vs.
high-income zip codes (χ2 = 85). In addition, only 19% of comparison website clicks come
from low-income areas, while 32% of overall February 2022 sign-ups come from low-income
areas (χ2 = 6.2).24 This suggests that low-income households may be particularly likely to
sign up with a new supplier through methods that do not involve full search.

Suppliers disproportionately market in low-income areas. Figure 1.10 shows box-and-
whisker charts of the number of suppliers that marketed door-to-door in each Baltimore
metropolitan area zip code by zip code median household income bin between November

24Areas defined as closest zip code based on Google Analytic’s city tag for each user.
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2019 and October 2020. There is a strong negative correlation between income and door-to-
door marketing presence. At least 15 suppliers marketed door-to-door in almost every zip
code with a median household income below $60,000, and fewer than 15 suppliers marketed
door-to-door in every zip code with a median household income above $100,000.

Figure 1.10: Number of Suppliers Marketing Door-to-door by Zip Code Median Household
Income

Box-and-whisker plots of number of suppliers reporting door-to-door marketing activity in each

Baltimore metropolitan area zip code by 2019 American Community Survey zip code tabulation

area median annual household income bin.

The survey confirms that there is more direct marketing in low-income areas. As shown
in Table A9, about 77% of respondents in low-income areas reported being approached by an
in-person marketer within the past two years. Marketing is significantly lower in high-income
areas, where only 57% met an in-person marketer (χ2 = 33). Low-income households are
also more likely to be approached by a telemarketer (χ2 = 18). This difference in marketing
probability translates to more marketing-related sign-ups in low-income areas. As shown in
Table A10, 57% percent of respondents in low-income areas report signing up through an
in-person marketer in the past ten years, compared to 35% in high-income areas (χ2 = 22).
Telemarketing led to 35% and 28% consumers signing up in low- and high-income areas,
respectively (χ2 = 2.9). Respondents in low- and high-income zip codes were roughly equally
likely to have signed up through active search.

Why do consumers sign up with marketers? I find evidence of persuasive marketing.
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Among consumers who signed up through direct marketing, the majority (59%) said they
signed up to save money, 24.5% selected plan attributes, and 54-61% cited an aspect of the
marketing interaction itself.

To what extent can these marketing level differences be explained by differences in pop-
ulation density-driven marketing costs? It is difficult to disentangle these potential drivers
since population density and income are highly correlated. Within the Baltimore metropoli-
tan area, the correlation between population density and whether a zip code has a median
household income below $60,000 is -0.59. However, as an initial exploration, Table A3 shows
results from regressions of the number of suppliers that marketed door-to-door on zip code
income metrics with and without controlling for population and population density. Adding
these controls reduces the coefficients on the income variables by 68-84%, although most
of these coefficients remain statistically significant. This result suggests that differences
in marketing costs may be an important driver, but they cannot fully explain differences
in door-to-door marketing presence across zip codes. Section 1.8 explores the individual
contributions of marketing costs and demand-side drivers in detail.

Discussion

This section presented six key facts about the Baltimore market. The market exhibits
large price variation. Low-income and marginalized communities pay especially high prices
despite switching more frequently and being more likely to opt into the market. Evidence
suggests that suppliers price discriminate on inattention-driven inertia, with larger price
increases on renewal for low-income households. Suppliers also appear to price discriminate
on search by offering low prices online and high prices through marketing. They also market
disproportionately in low-income areas.

Some of these results may initially appear contradictory. For instance, relative to high-
income communities, low-income communities pay higher prices and face higher price in-
creases on renewal, which may suggest they also have greater inertia. However, households
in low-income communities switch more frequently and are more active in the market. Sec-
tion 1.7 shows that differential marketing across areas can explain how these facts may hold
simultaneously.

These results generally appear to hold within the Northeastern and Mid Atlantic regions
of the U.S. Appendix A.6 presents results for other states. I corroborate the result that low-
income household pay especially high prices in four other states. In Maine and Connecticut,
I also test and corroborate other stylized facts. Renewal prices tend to be significantly
higher than prices of new contracts, and households in low-income areas have particularly
high levels of retail choice participation and especially frequent switching. The proportion
of clicks coming from low-income areas on the official Connecticut plan comparison website
is significantly and substantially smaller than the overall proportion of sign-ups from low-
income areas. See Appendix A.6 for details.
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1.5 Alternative Theories

This section presents a brief overview of auxiliary facts and analyses that largely rule
out alternative explanations as key drivers of the income-price gap. See Appendix A.4 for
additional details.

Underpayment Risk

Low-income consumers may be particularly likely to underpay their bills. In many in-
dustries, firms may need to charge these high-risk consumers higher prices to account for the
additional risk. In Maryland, however, the “Purchase of Receivables” program discussed in
Section 1.2 insures retail electricity suppliers against such underpayments. The BGE Pur-
chase of Receivables discount was zero throughout the period I study. Suppliers received
exactly the amount they billed.

Quantity- and Time-differentiated Rate Designs

Some suppliers charge consumers quantity-differentiated rates, such as two-part tariffs
or rates that differ by time of day or day of the week. If differences in electricity usage
cause low-income consumers to benefit relatively less from these rate designs, they may pay
high average prices despite facing identical price schedules. However, during the analysis
timeframe, 95% of consumers in the BGE service area faced linear per-kWh rates, 5.0% had
plans with fixed charges, and 0.006% were on time-differentiated rates.25

I restrict the analysis to consumer-months where consumers faced a flat per-kWh rate. I
also drop about 3.9% of consumer-months because they are on budget billing. Under budget
billing, a consumer’s BGE bill may differ from the amount they owe.26 This applies to all
results presented in other sections of this paper, so quantity- and time-differentiated rates
cannot explain price heterogeneity shown in Section 1.4.

Cost to Serve

Differences in marginal costs across geographic areas also cannot explain difference prices.
Per-kWh marginal electricity costs are similar across geographic locations within the BGE
service area. The entire BGE service area is located within the same transmission zone and
locational deliverability area within the PJM market, so there is no capacity cost variation
and limited transmission-related cost variation.

25Estimates are averages across across a subset of 94.4% of consumer-months for which I observe the full
rate structure.

26Budget billing is an attempt to reduce the month-to-month variability in bill amounts by smoothing
an expected annual bill over months of the year. While budget billing for transmission and distribution
service is mandatory for BGE customers receiving low-income subsidies, there is not a similar mandate for
electricity supply.
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Marginal cost may vary with the timing of a consumer’s electricity consumption since
suppliers’ marginal costs differ by time of a day and day of year. However, both literature
(e.g., Zethmayr and Makhija, 2019) and external data sources suggest that, if anything,
low-income consumers use relatively less of their electricity during high-cost hours.

If suppliers recover fixed administrative or customer service costs in a variable price,27

This hypothesis is inconsistent with the finding of more direct marketing in low-income
areas since suppliers should find these consumers less profitable. In addition, the correlation
between residualized price and customer-specific usage after controlling for time fixed effects
is small (r =-0.089). Furthermore, the variable price income gap persists in the restricted
subset of consumers on two-part tariffs. Finally, I estimate that fixed costs can account for
less than one-hundredth of a cent per kWh of the income-price gap. See Appendix A.4 for
details.

Preferences for Premium Attributes

Another theory is that low-income households have a higher willingness to pay (WTP) for
some attributes that suppliers bundle with electricity. However, on the MDElectricChoice
comparison website,consumers in low-income areas click on lower -priced plans, on average,
than do consumers in high- and moderate-income areas (t = 2.2). The mean price difference
is $0.0038/kWh. Furthermore, as shown in Table A4, there is no statistically significant
differences between income groups in WTP for any attribute. Point estimates suggest that,
if anything, high-income households have larger WTP for most attributes. Low-income
households may have a stronger distaste for fixed charges, but differences in electricity usage
can fully rationalize this result. See Appendix A.4 for details.

Subsidies

The government offers some low-income consumers electricity bill subsidies. These sub-
sidies may explain an income-price gap if they change low-income consumers’ price respon-
siveness. However, Baltimore’s electricity bill assistance subsidies are generally lump-sum
transfers that do not vary with electricity price.28 The income-price gap only decreases
slightly (4%) when I exclude subsidy recipients. This result is consistent with the results
of Byrne et al. (2022), who find no evidence that suppliers price discriminate based on low-
income subsidy recipient status in Australia. See Appendix A.4 for a detailed analysis of
pricing differences between low-income program applicants and non-applicants.

27The term “variable price” in this context refers to the charges that vary with a consumer’s electricity
usage. The term does not take the industry meaning of a price that may change each month.

28Subsidy amounts vary with household income, type of fuel used for heating, and electricity usage.
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Negotiation

Consumers can negotiate their prices with suppliers. If low-income households are less
willing to negotiate or have less negotiating power than high-income households, this could
explain the income-price gap. I do not find any evidence for this theory. Among sur-
vey respondents, there is no statistically significant difference across low- and high-income
households in the probability of having ever negotiated price (χ2 = 0.3; see Table A14). Re-
call that negotiation is not very common in the market, with 66% of surveyed retail choice
participants reporting that they had never negotiated their electricity price.

1.6 Theoretical Model

Overview

This section outlines the general model I will use in Section 1.7 to explain the stylized facts
and then estimate in Section 1.8 to conduct income-price gap decomposition, counterfactual,
and welfare analyses. I will later make simplifying assumptions and add additional structure
for these purposes, but the underlying model is the same.

In this model, firms compete for a homogeneous subscription product under imperfect
information and costly marketing. There are two demand-side market distortions: 1) het-
erogeneous search frictions and 2) inattention-based inertia. Although barriers to search and
inattention-driven inertia both reduce search, it is important to distinguish between factors
affecting a consumer’s binary decision to consider alternative electricity plans (“inattention-
based inertia”) and factors governing the consumer’s search process conditional on consider-
ing alternative electricity plans (“search frictions”). In this model, inattention-driven inertia
determines the binary outcome, while search frictions determine choice sets.

There is also one supply-side distortion: marketing is costly. Despite the costs, the
presence of consumers with high search frictions may make it profitable for suppliers to
provide price information by marketing directly to consumers. I build on the marketing
model in Varian (forthcoming).

In the model, marketing reveals a single price to a prospective customer. The marketing
interaction may also temporarily increase the consumer’s willingness to pay (WTP) for the
marketed plan due to persuasive marketing or decrease it due to a distaste for the interaction.
Notably, the interaction does not affect the consumer’s WTP for any of the supplier’s other
plans or for the same plan offered at another time. There are no network effects; the
interaction does not impact other consumers’ WTP for the plan. Marketing also does not
create market power through product differentiation.

In equilibrium, suppliers price discriminate. This creates a separating equilibrium in
which consumers with low or no search frictions search and receive a low price, while con-
sumers with high search frictions sign up with marketers at a high price. Arbitrage is
cost prohibitive. Moreover, inattention-driven inertia enables suppliers to charge renewal
prices above sign-up prices for all customers. Suppliers compete away all ex-ante expected
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inattention-related profits from consumers who search in sign-up prices. While I do not
model entry formally, I assume there is sufficient entry for suppliers to compete away ex-
ante expected profits from consumers who do not search through marketing.

Consumer Behavior

Each consumer has a fixed type. There are two consumer types: 1) a proportion α ∈ (0, 1)
search fully whenever they pay attention (“searchers”), and 2) a proportion 1-α never search
but have access to a default outside option (“non-searchers”). Consumers can participate in
the market or stick with the default outside option, a regulated rate. Consumers who choose
to participate in the market can select a supplier by searching in a competitive marketplace
or purchasing from a direct marketer who comes to their door. Searching in the competitive
marketplace is prohibitively costly for non-searchers and free for searchers. Talking to a
direct marketer is free for all consumers.

All consumers, including searchers, are partially inattentive to their price and bill unless
they receive an attention shock. Any marketing interaction creates an attention shock.
Consumers may also receive a “bill shock” from an unexpectedly high price or bill. Formally,
a consumer i will pay attention in period t if Ait({piτ}tτ=1, {Billiτ}tτ=1) > 0 where {piτ}tτ=1

and {Billiτ}tτ=1 are the entire histories of the consumer’s prices and bills. The following
sections will add more structure to this latent attention function Ait.

When a marketer attempts to contact a consumer, the consumer interacts with them with
some fixed probability ϕ. For door-to-door marketing, we can think of ϕ as the probability
that a consumer will open their door when a stranger knocks on it. A consumer who does
not answer their door does not receive an attention shock.

Conditional on receiving an attention shock, consumers will select the plan in their choice
set that provides them with the highest utility. All consumers have their current plan and
the outside option in their choice sets. Searchers also have competitive marketplace offers.
If marketing stimulates a consumer’s search, the consumer also has the marketing offer.
Marketing offers are sequential with no recall; consumers cannot receive another marketing
offer before accepting or rejecting an existing offer. However, accepting one marketing offer
does not preclude consumers from accepting any future marketing offer.29 Searchers may
compare the marketing offer with the competitive marketplace offers.

Consumer i’s latent utility for a supplier’s plan j is:

uijt = −pijt + γ1{j is a marketing offer}+ εijt

where εijt is a random error term with some known distribution and γ captures the direct
impact of the marketing interaction on a consumer’s perceived utility of signing up for plan
j. A positive γ may reflect persuasive, aggressive, or misleading marketing, while a negative
γ captures distaste for marketing.

29I abstract from consideration of early termination fees. This abstraction is reasonable if suppliers are
typically willing to pay another supplier’s termination fee to acquire a customer.
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For simplicity, I assume electricity usage is perfectly price-inelastic. This assumption is
common in electricity models.

Supplier Behavior

I assume there are many suppliers that are each small relative to the market. An individ-
ual supplier’s actions negligibly impact aggregate marketing levels and price distributions.
The market also exhibits free entry and exit.

For each geographic area, suppliers simultaneously choose marketing levels M > 0, mar-
keting offer prices pm, competitive marketplace offer prices po, and renewal prices pri. Re-
newal prices can vary by observable consumer characteristics and history. Marketing levels
reflect the number of marketing attempts or, specifically, the number of doors marketers
knock on.

Suppliers can fully observe their competitors’ prices and marketing levels, and they have
rational expectations about all underlying demand distributions. Suppliers can observe the
types of their existing customers but not prospective customers. They can observe the other
components of consumers’ attention and decision-making processes (i.e., Ait, uijt) up to
consumer-specific attention error, choice error (i.e., εijt), and marketing availability draws.

Suppliers are risk neutral and maximize expected profits subject to costs. Suppliers face
costs ct and marketing costs C(M) ≥ 0 with C ′(M), C ′′(M) > 0. While the model could
be adapted to include a fixed entry cost, the analytical or structural model results treat the
number of suppliers as fixed and do not explicitly analyze supplier entry and exit decisions.

To summarize, play proceeds as follows:

1. Nature determines the outside option price

2. Suppliers choose sign-up offer prices, marketing offer prices, marketing levels, and
renewal prices

3. Nature determines bill shock attention error draws, choice error draws, marketing
availability draws, and which consumers receive marketing visits given the marketing
level in their area

4. Consumers who receive an attention shock each make a choice from their choice sets

5. Suppliers receive period profits

Discussion

This simple model can explain a lot of the price heterogeneity in the market. The
following section uses a simplified version of this model to demonstrate some simple dynamics
that are useful for explaining the stylized facts. Section 1.8 discusses the empirical estimation
of the underlying model parameters.
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This model allows consumers to be rationally or irrationally attentive as well as naive
or sophisticated about their inattention. For example, rationally inattentive consumers may
perceive a specific cost of paying attention and hold beliefs about the money they could
save if they paid attention and switched plans. Price or bill changes may cause consumers
to update these beliefs. To the extent that consumers are also sophisticated about their
inattention, their default plan utility would embed these beliefs.

Incorporating negotiation and product differentiation may explain even more of the price
heterogeneity, but survey evidence supports focusing on search costs, inattention, and mar-
keting. Most survey respondents who indicated ever participating in the retail choice market
reported never having considered negotiating price with a supplier. Only 34% had ever
negotiated any electricity price. Survey evidence also suggests that consumers have hetero-
geneous preferences for attributes, but these preferences only drive a minority of consumers’
decisions to sign up with a supplier. When asked in an open-response question about the
most influential factors in their decisions to sign up with a non-default supplier, 62% of re-
spondents who said they participated in retail choice mentioned price or cost, 8% mentioned
a plan attribute, and 7-9% cited a characteristic of the supplier itself. The income-price gap
decompositions will relax the homogeneous good assumption.

1.7 Analytical Model to Explain Stylized Facts

Simplifying Assumptions

This section uses a simplified version of the model outlined in the previous section to
present a coherent explanation for the stylized facts in Section 1.4. As a key simplification,
this version considers only one geographic area and one time period. We can still gain
insights about differences across geographic areas through comparative statics with respect
to marketing costs and consumer search. To easily perform comparative statics on marketing
costs, I rewrite marketing costs as λC(M) where λ > 0.

Consider also a simplified choice and attention setting where there is no choice error,
persuasive marketing, or non-zero taste for marketing, i.e., γ = 0, εij = 0 ∀i, j ̸= D where
D denotes the default and outside option plan. Assume further that consumers are only
inattentive up to a common price threshold p̄ >> c.30 Formally, I write this attention
assumption as Ai = pri − p̄. A consumer will search if and only if they receive a price above
p̄. To ensure that consumers still switch away from their current supplier in equilibrium with
this simplified attention assumption, I also add an exogenous attention shock, which occurs
with fixed probability, ζ. We can think of ζ as capturing the probability that a consumer
has a negative interaction with their supplier. When this occurs, a searcher will switch
to another competitively-priced plan, but a non-searcher will return to the outside option.
Assume also that consumers have full marketing availability (i.e., ϕ = 1). Without loss of
generality, I also normalize each consumer’s electricity usage to one.

30The threshold p̄ must be greater than the optimal marketing price in the single-period model.
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For notational convenience, define ri as the threshold market price at which consumer i
would be indifferent between taking that price and being on the exogenous outside option
plan with price pD. This reservation price has density f(ri) and cumulative density F (ri)
such that f(ri) > 0 ∀ri > 0. Reservation prices are independent of consumer type.

For simplicity, the following subsection demonstrates the key theoretical results using
a single-period model. I also discuss findings with the addition of pricing dynamics. See
Appendices A.2 and A.3 for a detailed discussion and proofs for the dynamic case.

Single-period Model

Equilibrium

First, observe that the online market is a perfectly competitive market with no distortions.
This means that all suppliers are price takers and set price po equal to the common constant
marginal cost c.

Next, observe that free disposal requires a supplier’s marketing price to be above po.
Because the supplier faces marketing costs, charging a price at or below c would cause the
supplier to lose money. This price difference creates a separating equilibrium in which no
searchers will sign up with a marketer. The probability that a randomly chosen consumer
will sign up with a marketer at price pm is, therefore, D(pm) ≡ (1− α)(1− F (pm)).

Since suppliers face symmetric problems, consider the marketing problem of a represen-
tative supplier. The firm’s marketing problem is to choose marketing price and marketing
level to maximize expected period profit:31

max
pm,M

(pm − c) ((1− α)D(pm) + 1{pm ≤ c}αD(pm))M − λC(M)

We start by considering the firm’s marketing offer price. The firm’s first order condition
with respect to pm is

(p∗m − c)(1− α)D′(p∗m)M + (1− α)D(p∗m)M = 0

This simplifies to
(p∗m − c)D′(p∗m) +D(p∗m) = 0

and is independent of M (Varian forthcoming). Marketing costs are sunk at the time con-
sumers choose to accept or reject the price offer.

Knowing this optimal price, the firm chooses M using the following first-order condition:

(p∗m − c)(1− α)D(p∗m) = λC ′(M∗)

The firm will stop marketing when the marginal cost of another marketing interaction equals
the expected revenue from that marketing interaction.

31Note that this specification assumes non-searchers will select the representative firm’s offer if it is weakly
better than all other offers in the market. The results are robust to making this inequality strict.
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Comparative Statics

We now consider comparative statics of key market outcomes on search frictions and
marketing costs. I model an increase in marketing costs as an increase in λ. Proposition
1 formalizes the key marketing level, market participation, and average price comparative
static results. For notational ease, define πM as the equilibrium probability that a consumer
will experience a marketing interaction.

Proposition 1. Let R∗ be the equilibrium proportion of non-searchers who are active in the
market, and let p∗ be the average price in the market. The following comparative statics hold:

∂M∗

∂λ
,
∂M∗

∂α
,
∂R∗

∂λ
,
∂p∗

∂λ
,
∂p∗

∂α
< 0

Proof. See Appendix A.3.

It is intuitive that marketing level decreases with marketing costs and the percentage of
consumers in society who are searchers (i.e., α). The marketing price first-order condition
shows that the optimal marketing price is independent of marketing costs and α. The online
offer price is also independent of marketing costs and search frictions. The average price in the
market, however, decreases with marketing costs and increases with search frictions. Since
consumers with search frictions pay higher prices than consumers without search frictions,
an increase in the ratio of non-search friction to search friction consumers in the market will
increase average price. Marketing costs impact average price by changing the composition
of consumers who are active in the market. More marketing causes more non-searchers to
enter the market, causing the composition of the market to change in the direction of more
non-searchers.

Additional Dynamic Results

Appendix A.2 shows how Proposition 1 also holds under the simple dynamic model of
partial inattention outlined above.

In the dynamic model, we also obtain a few additional intuitive results about inattention-
driven inertia. First, we find that renewal prices are higher than sign-up prices for each
consumer type, i.e., p∗r1 > p∗o and p∗r2 > p∗m. Second, with an additional assumption on the
reservation price density and an upper bound on marketing levels, suppliers will never be
incentivized to purposefully produce a bill shock. In this case, we also have the intuitive result
that renewal prices increase with inattention, i.e.,

p∗r1
p̄
,
p∗r2
p̄
> 0. Since suppliers know how

their customers sign up, they perfectly observe their customers’ types and can theoretically
charge different renewal prices by type. However, with this simple attention model, they
charge both consumer types the highest price they can without causing an attention shock.

In the dynamic case, we can also show that the probability of switching decreases
with marketing costs, λ. This result comes from a combination of two effects. First, the
logic of participation in the single-period model applies to participation in this dynamic
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model. Higher marketing costs reduce marketing, which reduces market participation of
non-searchers (∂R

∗

∂λ
< 0). Second, marketing creates attention shocks. A reduction in mar-

keting reduces the frequency at which consumers pay attention and switch (∂prob(switch)
∂λ

< 0).
See Appendix A.2 for formal propositions and Appendix A.3 for proofs of these results.

Discussion

Combining these theoretical results with evidence about differences across low- and high-
income areas can explain the stylized facts in Section 1.4. Recall that we observe a relatively
higher door-to-door marketing presence, higher average sign-up prices, higher average re-
newal prices, higher market participation, and more frequent switching in low-income areas
than in high-income areas. In the model, this would be true if low-income areas exhibited
lower marketing costs and low-income households had especially high search costs and higher
inattention. Within the urban and suburban markets I analyze, low-income households tend
to live in particularly densely populated areas. Door-to-door marketing is likely cheaper in
densely populated areas since traveling from one door to the next takes less time. In addition,
the poverty literature suggests that financially-constrained households have particularly high
search frictions and tunneled focus on urgent tasks (e.g., Shafir and Mullainathan, 2013).
The model also explains why renewal prices are generally higher than sign-up prices in the
presence of inattention.

In a more general attention model, it is possible to attain all of these results with only
a difference in marketing costs across low- and high-income areas. In particular, if door-to-
door marketing costs are lower in low-income areas than high-income areas and consumers
are otherwise identical, the comparative static results predict more door-to-door marketing
(∂M
∂λ

< 0), higher retail choice participation (∂R
∗

∂λ
< 0), more switching (∂prob(switch)

∂λ
< 0),

and higher average sign-up prices (∂p
∗

∂λ
< 0) in low-income areas. While the simple attention

model presented in this section requires demand-side differences to explain a difference in
renewal prices, consider a case of the more general model with a non-degenerate distribution
of attention thresholds. Recall that firms can observe the aggregate attention threshold
distribution but cannot observe the attention thresholds of individual customers. In this
case, an increase in marketing costs has two primary opposing impacts on renewal prices.
On the one hand, it increases the one-period benefit of a price increase due to the higher
expected customer retention rate. On the other hand, it also increases the attention-related
cost of increasing price due to the increase in expected future profit from retaining a customer.
With a sufficiently high discount factor and attention derivative at the optimal price, the
net effect will be to decrease renewal prices. Hence, marketing costs alone could explain
why renewal prices are higher in low-income areas, conditional on renewal number. This
explanation is consistent with the survey results on attention and search costs net of beliefs
about the benefits of searching.

The extreme consumer search types modeled are useful for fixing ideas. However, in
reality, some consumers may have moderate search frictions that result in partial search.
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As long as marketers have some market power over some consumers and not others, these
results should translate to this less extreme case.

For simplification, this section assumed away some demand drivers present in the general
model that could also contribute to the income-price gap: choice error, taste for marketing,
and other factors influencing the propensity to be persuaded by a marketer. These factors
all impact the probability that a consumer will sign up with a marketer at a given price
and, thereby, the marketing price and marketing level. As a result, a difference in any of
these factors across low- and high-income households could cause price differences by income
group.

Suppliers can sustain markups in this model despite free entry. Suppliers charge markups
on renewal prices and possibly also on marketing offer prices. Suppliers compete away
ex-ante expected profits from searchers by reducing prices in the competitive marketplace
to levels below marginal costs. While similar price competition occurs for non-searchers,
marketing-related price competition is less fierce. Suppliers compete away the remaining
ex-ante expected profits from non-searchers through spending more on marketing.

1.8 Structural Model

By adding more structure to the model in Section 1.6, I decompose the income-price gap
into six potential determinants and find that the largest driver is differences in marketing
costs across geographic areas. I use the model to explore the impacts of additional con-
sumer protection policies that eliminate direct marketing. Without marketing, welfare and
consumer surplus increases, but some consumers pay higher market prices.

Additional Model Assumptions

I now assume functional forms for the general model presented in Section 1.6 and modify
consumer choice set assumptions to better reflect survey evidence.

Marketing costs are given by:

C(mjzt) = (C1 + C2/(PopDensity)z)mjzt + C3m
2
jzt

where mjz denotes the marketing level for supplier j in zip code z at time t and
(PopDensity)z is the average 2019 population density in the zip code. The squared term
allows marketing costs to be convex in marketing level. Since population density varies
within a zip code, marketers may initially prioritize marketing in the zip code’s most densely-
populated areas. At higher marketing levels, they may expand to less dense areas. Since the
distance between door-to-door marketing interactions decreases with population density, the
marginal marketing interaction will be more costly. As a result, marketing costs are convex
conditional on average population density.

Consumers who do not receive a marketing offer pay attention to prices if their price is
sufficiently high, their bill increases sufficiently, or they receive a random attention shock. I
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allow the impact of a bill change to be asymmetric around zero. Thus, latent attention takes
the form:

Aijt = β1pi,j,t−1 + β2 log(Billi,j,t−1 −Billi,j,t−2)1{Billi,j,t−1 −Billi,j,t−2 > 0}
+ β3 log(Billi,j,t−2 −Billi,j,t−1)1{Billi,j,t−1 −Billi,j,t−2 < 0}+ β4(Tenure)ijt + νijt

where pijt denotes renewal price for consumer i with supplier j in period t, qijt is the con-
sumer’s electricity usage in period t, Billijt = pijtqijt, (Tenure)ijt is the number of consec-
utive months the consumer has been with supplier j, and νijt ∼ Fν = N (µν , 1). I assume
consumers do not know their bill and price the month that they switch. The price term
reflects the price on the last bill they received. The bill terms are the positive and nega-
tive components of the difference between that bill’s total electricity supply charges and the
previous bill’s supply charges. We can think of the error term, νijt, as capturing random vari-
ation in attention needed for competing priorities. The duration term aims to capture any
serial correlation in the error term. Recall that, absent a marketing interaction, consumer i
pays attention if and only if Aijt is positive.

I assume the error terms in consumer i’s latent utility from plan j in time t are i.i.d.
Extreme Value 1. Recall that latent utility from the outside option is rit = pDt + εiDt where
pDt is the price of the default regulated plan (i.e., the outside option).

Among retail choice participants, I assume that only non-searchers consider the outside
option and only when they receive a price- or bill-related attention shock. This assumption
reflects survey evidence that only 10% of respondents reported considering both their current
price and the outside option before accepting a marketing offer. For searchers, revealed
preference of being in the market suggests that they can find a market offer that they prefer
to the outside option.

Following Berry and Pakes (2000) and Hansen and Singleton (1982), I assume suppliers
have rational expectations about future profits from acquiring or retaining a customer:

Vjzt + ϵjzt = Ei

[
T∑

τ=t

δtπijzτ

]
with E[ϵjzt] = 0. Here, Vjzt + ϵjzt is firm j’s expectation of the value of having a customer
in zip code z at time t, δ is a common discount factor, and T is February 2025. For months
through February 2022, πijzt is the observed period profit for consumer i and supplier j in
period t. For subsequent months, πijzt is the estimated period profit. See Appendix A.5
for post-February 2022 profit estimation detail. I continue to treat suppliers as identical up
to this random prediction error about the impact of keeping or maintaining a customer on
future profit.

Estimation

The demand primitives of the model are θ = {γg, σ1g, σ2g, β1g, β2g, β3g, β4g, µν}. These
capture the direct impact of a marketing interaction on choice probabilities, decision error in
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plan selection for each consumer type, and all attention parameters. The subscript g denotes
the income group. I estimate the demand parameters separately for consumers in zip codes
with a median household annual income below $60,000 and above $80,000. I exclude areas
between these two income thresholds.

I impose a few parameter values from outside the model estimation. The discount factor,
δ, is 0.96. I impose the survey estimates of α, ϕ, and the percent of households in low-income
areas which receive a marketing interaction in a month. I estimate the average percentage of
households in high-income areas interacting with a marketer by multiplying the low-income
estimate by the ratio of the median number of suppliers marketing in low- versus high-income
zip codes in the MD PSC data.32 Since renewal prices tend to be substantially higher than
initial offers, I further assume that consumers always switch following a price or bill attention
shock. This assumption may also capture behavioral choice considerations, such as a bill
shock reducing a consumer’s taste for their current supplier.

Estimation begins with two pre-processing steps to estimate partially-unobservable out-
comes. Next, I estimate the demand primitives and use these results to estimate the mar-
keting cost primitives. Estimation proceeds as follows:

1. Assign consumer types: Categorize each consumer as a searcher or non-searcher
based on sign-up prices

2. Estimate truncated continuation profit: Non-parametrically estimate continua-
tion renewal profit after the analysis period ends to avoid selection bias due to trun-
cation

3. Estimate demand primitives: Find the primitives that maximize the probability
of observed switching decisions

4. Estimate marketing costs primitives: Find the primitives that best match sup-
pliers’ observed marketing levels given demand primitives and rational expectations

The remainder of this subsection discusses each step in detail.
Step 1 leverages the bimodal nature of sign-up prices and follows the procedure discussed

in Section 1.4 and described in detail in Appendix A.5 to identify consumer types. After
obtaining an initial estimate of search-related and marketing-related price distributions each
month, I estimate the probabilities that a searcher and non-searcher would each sign up at
their observed sign-up prices. I then assign the consumer to the higher probability type.
For consumers who had the same supplier throughout the entire analysis period, I use a
matching method to estimate types. See Appendix A.5 for more detail.

Step 2 aims to correct selection bias due to truncation at the end of the analysis period.
I estimate net present value continuation profit for an additional three years after the end
of the analysis timeframe. I use a non-parametric function of marginal costs and observable

32Survey estimates of this marketing percentage in high-income areas would likely be biased due to a
disproportionate selection of low-income households into the survey. The wealthiest households may be
especially unlikely to install an application to take surveys for compensation of only a few dollars each.
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consumer characteristics, including type, location, total bill, and duration with the supplier.
See Appendix A.5 for more detail.

Step 3 estimates demand primitives via maximum likelihood. Bringing together the
attention and choice frameworks, I parametrically estimate the probability of switching con-
ditional on a price change and the probability of signing up with a marketer. Estimated
switching renewal probabilities vary by period, consumer type, zip code, customer tenure
with the supplier, and the consumer’s recent prices and electricity usage:

prob(ni,j,t+1 = 0|nijt = 1, pijt, qijt, pi,jt−1, qi,j,t−1, Durationijt, θ) =

1− (1− A(pijt|θ, qijt, pi,j,t−1, qi,j,t−1, Durationijt))(1− (Mzt/Nzt)ϕπst(pt))

where nijt equals one if consumer i is a customer of supplier j in period t and zero otherwise,
Mzt/Nztϕ is the probability of a marketing interaction in zip code z at time t,33 and πst(pijt)
is the probability of switching conditional on receiving a marketing interaction by consumer
type s. Choice sets and latent utilities imply the following switching probabilities conditional
on a marketing interaction and a current price pt:

π1 = 1−
∫ ∞

0

exp(−pt/σ1)
exp(−pt/σ1) + exp(−y/σ1) +

∑
j∈J

exp(−pj/σ1)
gpm(y)dy

π2(pt) =

∫ ∞

0

exp((γ − y)/σ2)

exp(−pt/σ2) + exp((γ1 − y)/σ2)
gpm(y)dy

where s = 1 for searchers and s = 2 for non-searchers, gpm(·) is the distribution of equilibrium
marketing offers, J indexes the set of potential offers in the competitive marketplace, and
consumer and supplier subscripts have been left out for simplicity. I estimate {pj}j∈J by
sampling 94 prices from each monthly search distribution estimated in Step 1.34

Marketing sign-up decisions vary by zip code and whether the consumer switches from
another supplier or from the default option.35 The unconditional probability of switching
when engaging with a marketer given a marketing offer pt is

D(pt) = (1− α)

(
d

exp((γ − pt)/σ2)

exp(γ − pt/σ2) + exp(−pDt/σ2)

+ (1− d)

∫ ∞

0

exp((γ − pt)/σ2)

exp(γ − pt/σ2) + exp(−x/σ2)
hpb(x)dx

)

where d is the percent of non-searchers on the outside option, and hpb(·) represents the
distribution of all non-searchers’ prices in the retail choice market. Recall that marketers

33I impose Mzt/Nzt = 0 during April and May 2020. I exclude March, June, July, and August 2020 from
the analysis.

34This number reflects the median number of plans listed on MDElectricChoice.gov from February through
July 2022.

35I assume all consumers not participating in the retail choice market receive the default price.



CHAPTER 1. COMPETING FOR (IN)ATTENTION 36

never offer a price that would attract a searcher. The two terms in parentheses are a weighted
average of the probability that a consumer prefers the marketing offer to the default option
and the probability that a consumer prefers the offer to the price offered by their current
supplier, integrated over the density of all market prices.

After estimating the demand parameters, I also estimate the three marketing cost pa-
rameters. I follow Berry and Pakes (2000) and Hansen and Singleton (1982) and combine
suppliers’ marketing level first-order conditions and rational expectations to find:

0 = E[(πjzt +
T∑

τ=t

δtπjzτ )ϕD(pjzt)− C ′(mjzt)]

= E[(πjzt +
T∑

τ=t

δtπjzτ )ϕD(pjzt)− C1 − C2/(PopDensity)z − C3mjzt]

where the expectation is taken across firms’ valuation errors. With estimates of demand
parameters and truncation values, this becomes a linear function of the cost parameters.
I estimate marketing coefficients using two-stage least squares. I use the mean electricity
usage of market participants by zip code and the month of year to instrument for expected
profit from a marketing interaction.

Broadly, identification of γ and σ2 comes from variation in sign-up probability with mar-
keting offer prices, variation in the billed price distribution and the default price over time,
and the mean marketing interaction probability. Identification of the attention primitives,
β1, β2, and β3, come from variation in non-searcher switching probabilities conditional on a
price change with renewal price, bill increase, and bill decrease, respectively. The β4 term
captures a linear trend in this probability over customer tenure, and µν captures the hypo-
thetical intercept conditional on no price or bill change. Identification of the decision error
variance for searchers, σ1, comes from variation in switching with renewal price conditional
on a marketing attention shock.

Results

Tables 1.2 and 1.3 show the resulting primitive estimates. The choice parameters suggest
a distaste for marketing that is especially large in high-income areas. Choice variance is also
larger for marketing interactions than non-marketing interactions.

To further facilitate choice probability comparisons across income groups, Figure 1.11
shows probabilities that non-searchers in low- and high-income zip codes would sign up
with a marketer in September 2019 by marketing offer price and last-period retail choice
participation. The assumed aggregate distributions of billed prices do not vary across income
groups, so all differences in the choice probabilities are driven exclusively by differences in
choice parameters. Among households on the default outside option, low-income households
are more likely than high-income households to sign up with a marketer when offered a
relatively low marketing price. However, the relation reverses at high marketing prices.
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Table 1.2: Demand Primitive Estimates

Demand Primitives Low income High Income

Choice

γ (taste for marketing) -0.018 -0.042
(0.00005) (0.00102)

σϵ2 (choice standard deviation, non-searchers) 0.026 0.041
(0.00008) (0.00070)

σϵ1 (choice standard deviation, searchers) 0.0006 0.0030
(0.0014) (0.0026)

Attention

β1 (price on last bill) 1.23 -1

(0.10)
β2 (bill increase from prior bill) 0.019 0.004

(0.004) (0.004)
β3 (bill decrease from prior bill) -0.0092 -0.0090

(0.0036) (0.0037)
β4 (customer tenure, months) -0.058 -0.038

(0.0002) (0.0003)
µν (attention constant) -1.29 -1.51

(0.013) (0.011)
1β1 = 0 for high-income due to negative sign and statistical insignificance.

Standard errors in parentheses.

Table 1.3: Cost Primitive Estimates

Marketing Cost Parameter Low and High Income
C1 (constant) 2.53

(0.139)
C2 (inverse population density) 314

(9.52)
C3 (squared marketing level) 0.011

(0.0004)
Parametrically bootstrapped standard errors in parentheses.

Among retail choice market participants, low-income households are more likely to sign up
with a marketer at all except for the highest observed marketing offers.

Attention parameters suggest that bill increases have an especially large impact on at-
tention. Figure 1.12 shows the probability of paying attention by bill change and price for
low-income households who have been with their supplier for one year. The probability of
attention is close to zero at all prices if the price change does not result in a bill change. The
probability of attention increases rapidly with bill increase for larger bill changes. Relative
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to the impact of bill changes, the impact of moving from a low to a high price on attention
probability is small.

Marginal marketing costs are convex in marketing level and decreasing in population
density. Figure 1.13 shows marginal marketing cost by population density for a marketing
level of 100 marketing interactions. For comparison, the chart also includes the population
density distributions for low- and high-income zip codes. Marginal marketing costs are
especially high in the least dense Baltimore zip codes, which tend to be richer areas.

Estimated average marketing acquisition costs are a little under $300 per customer. This
value is roughly in line with suppliers’ informal estimates.

Figure 1.11: Estimated Non-searcher Marketing Sign-up Probability: April 2019

Width of curves reflect 95% confidence intervals estimated via parametric bootstrap. Top charts

show estimated probabilities that a non-searcher will sign up with a marker by marketing offer

price and whether the consumer is on the outside option (left) or active in the market (right).

Bottom charts are identical and show the probability density of marketing offer prices.

Counterfactual Analysis

The analytical model demonstrated the importance of interaction effects between price
discrimination through marketing and price discrimination on inattention-driven inertia.
This subsection explores these effects empirically by analyzing the impacts of eliminating
marketing. Consider the partial equilibrium where the distributions of search-related sign-
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Figure 1.12: Attention Probability by Bill Change and Price: Low-Income

Top chart shows the estimated probability that a consumer in a low-income zip code who has been

with their supplier for one year will pay attention to their electricity plan options given renewal

price and bill change. Bottom chart shows the probability density of observed bill changes given a

renewal price update in low-income zip codes.

up and renewal prices remain unchanged conditional on income group, bill change, and a
consumer’s tenure with a supplier. I remove marketing shocks from the model and explore
the evolution of prices paid. I fix the state at September 2019 levels and assume all contracts
last one month.

What happens when marketing ends? Market prices increase, market participation de-
creases, and switching decreases. Low-income households would still pay a premium in the
absence of marketing due to attention differences. As Figure 1.14 shows, the income-price
gap disappears initially and then gradually increases over time. This result is due to two
opposing effects. The sign-up income-price gap is immediately eliminated, aside from differ-
ences in preferences for premium attributes, since only searchers sign up with new suppliers.
However, low-income households are also especially inattentive to prices and bills. Mean
market prices increase across low- and high-income communities since eliminating marketing
also reduces the frequency of attention shocks. The price impact of inattention differences
increases with time as the impact of previous marketing on customers’ tenures diminishes.
Despite these higher prices, aggregate consumer surplus increases in all periods relative to
the counterfactual with marketing due to the lower prices of consumers who choose the
regulated rate. Supplier profits decrease because they have fewer customers.

We can also consider the hypothetical counterfactual scenario without marketing where
no non-searchers ever entered the market. Relative to the marketing status quo, market
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Figure 1.13: Marginal Marketing Costs by Population Density

Top chart shows estimated marginal marketing cost for the one hundredth marketing attempt by

average 2019 American Community Survey zip code tabulation area (ZCTA) population density.

Bottom chart shows probability densities of population density by ZCTA median annual household

income.

participation is lower in this equilibrium, with the largest participation reductions occurring
in low-income areas. Estimated participation rates are 13.1% in high-income areas and 9.7%
in low-income areas. Low-income households that stay in the market would still pay higher
prices than high-income households, on average, due to larger inattention to prices and bills.
Estimated equilibrium market prices are 18% higher than current prices in low-income areas
and 23% higher in high-income areas.36 I estimate the income-price gap in this equilibrium
to be about $0.004/kWh, which is less than half of the status quo income-price gap.

In sum, eliminating marketing reduces the income-price gap and increases aggregate
consumer surplus, but it also increases prices for the remaining market participants.

Price Decompositions

Using this model and the counterfactual results, I can decompose the price gap into
six components: active search, marketing costs, marketing efficacy, preferences for premium

36These estimates may be high relative to the general equilibrium where suppliers can adjust their price-
setting methods in response to the absence of marketing shocks.
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Figure 1.14: Simulated Mean Prices and Market Participation by Income Group: No Mar-
keting

Mean electricity supply prices (left) and retail choice market participation (right) in the simulated

counterfactual scenario where all direct marketing ceased at month one. Income definitions reflect

2019 American Community Survey zip code tabulation area median household income.

attributes, inattention-driven inertia in the absence of marketing, and interaction effects of
marketing and inattention-driven inertia. Active search captures differences across low- and
high-income zip codes in the proportion of the population who actively search (i.e., ratio
of searchers to non-searchers). Marketing costs capture supply-side differences across low-
and high-income zip codes in the cost of marketing due to population density. Marketing
efficacy captures differences in tastes for marketing and choice error in marketing interactions.
Premium attributes captures differences in willingness to pay for plan attributes. Finally, I
separately estimate the impact of inattention-driven inertia in the absence of marketing and
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interaction effects when marketing and inattention-driven inertia simultaneously exist.
Table 1.4 summarizes the decomposition results and describes how I identify each effect

from model parameters and observed prices. These results show that marketing costs (i.e.,
population density) is the largest driver of the income-price gap with cheaper marketing in
low-income areas. Marketing efficacy (i.e., choice error and taste for marketing) is also a large
driver. As shown in Figure 1.11, low-income non-searchers are more likely than high-income
non-searchers to sign up with a marketer given identical choice sets. While low-income
households are also less likely to search per capita, this difference has a relatively small
impact on the income-price gap. Differences in preferences for premium attributes across
income groups reduce the income-price gap. Without marketing, differences in inattention-
driven inertia across income groups would lead to an income-price gap equal to roughly
32% of the status quo income-price gap. However, this effect is more than offset by the
interaction effect between marketing and inertia. The net effect of price discrimination on
inattention-driven inertia in the presence of marketing is a 6% reduction in the income-price
gap.

Table 1.4: Income-price Gap Decomposition

Underlying Difference Price Gap Contribution Description
(Cents/kWh) (%)

Active Search 0.05 5% Effect of switching from αH to αL on mean sign-up
price

Marketing Costs 0.84 85% Effect of switching from the high-income to low-income
population density distribution on mean sign-up price

Marketing Efficacy 0.30 30% Effect of switching from γH and σϵ2,H to γL and σϵ2,L
on mean sign-up price

Attribute Preferences -0.14 -14% Difference in mean search-related sign-up price
across groups

Inattention-driven Inertia 0.32 32% Difference in billed price premiums over sign-up prices
across groups under counterfactual without marketing

Marketing/Inertia Interaction -0.37 -38% Difference in billed price premiums over sign-up prices
across groups plus effect of switching from VH to VL
on mean sign-up price less isolated inattention-driven
inertia effect

Welfare Losses from Unproductive Marketing

Marketing costs represent a welfare loss relative to a scenario without price discrimination
through marketing. While a marketing interaction may benefit both the supplier and con-
sumer involved in the marketing interaction, this comes at the expense of other suppliers and
consumers since electricity demand is ubiquitous and inelastic. Eliminating price discrimi-
nation through marketing would not change consumption, and price differences would only
result in monetary transfers between parties. The primary change would be the elimination
of marketing costs.
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The model results imply a combined annual welfare loss due to unproductive marketing
of $1.5 million across low- and high-income Baltimore zip codes.37 This value is 14% of total
variable industry costs. These variable costs reflect all electricity-related costs suppliers pay
on behalf of their customers.

This result relies on the assumption that marketing only provides information about
prices. It does not capture any welfare increase from providing information about avail-
able non-financial attributes, such as renewable energy certificates,38 or any direct welfare
reduction from engaging in a marketing interaction.39

1.9 Information Interventions

The model and results presented in this paper indicate that the root of the market ineffi-
ciencies and adverse distributional outcomes is lack of information. However, survey results
suggest that information interventions may be insufficient to eliminate these undesirable
outcomes. In a randomized information intervention, I provided select survey respondents
with information about their local plan comparison website and other respondents with in-
formation about the true price distribution in the market. Respondents who received these
information interventions showed no significant difference in reported switching decisions
from the control group in the month following the survey. If anything, point estimates show
a reduction in switching with additional information. Point estimates suggest that these
interventions may be partially effective at increasing attention to prices and encouraging
negotiation, but substantial inattention remains.40 See Appendices A.8 and A.9 for details.

1.10 Conclusion

This paper explored determinants of pricing heterogeneity in the restructured Baltimore
residential electricity market. It uncovered evidence that suppliers price discriminate on
consumer inattention and search barriers. Suppliers achieve price discrimination through
two channels: 1) marketing and 2) price updating after the initial contract. The first channel
of price discrimination causes households to pay higher average prices in low-income areas
than in high-income areas. This income-price gap can be primarily attributed to supply-
side differences in marketing costs, although demand-side differences in choice behavior also
play a large role. This marketing channel also reduces economic efficiency. I estimate this

37This estimate excludes zip codes with a median annual household income of $60,000-80,000.
38Among survey respondents who signed up with a marketer, 25% said a plan characteristic contributed

to their decision. This result suggests that 75% of marketing is fully unproductive.
39Model parameter estimates in Table 1.2 suggest a large distaste for marketing. Survey evidence cor-

roborates this result. Among respondents who signed up with a marketer, 14% said they signed up because
they wanted the marketer to leave, and 15% said they misunderstood the price or terms of the plan from
the marketing interaction.

40These results are not statistically significant at conventional levels with multiple hypothesis correction.
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welfare loss to be 14% of total industry variable costs. While these results indicate that the
root of the market inefficiencies and adverse distributional outcomes is lack of information,
survey results suggest that information interventions may be insufficient to eliminate these
undesirable outcomes.

The model results also highlight the importance of interaction effects between the two
price discrimination channels. Counterfactual analysis suggests that policies that restrict
direct marketing may increase consumer surplus and reduce the income-price gap. How-
ever, they may also increase market prices if they fail to address price discrimination on
inattention-driven inertia.

In some U.S. states, concerns about high prices in retail electricity markets have already
led to policy reforms or proposed legislation. At an extreme, Massachusetts legislators have
proposed ending retail electricity markets entirely.41 Regulators in New York used price caps
as a policy instrument.42

Many of these consumer-protection policies present a trade-off between protecting con-
sumers from high prices and encouraging innovation. This paper found positive willingness
to pay for premium product attributes, many of which may not exist without retail choice.
Ending competition or capping prices may reduce similar future innovation. With a changing
electricity grid and aggressive greenhouse gas goals, future market-driven innovation could
provide more value going forward.

As legislators and regulators deliberate market reform and the value of retail electricity
restructuring, it is important to keep in mind that these markets share similarities with mar-
kets for many other goods. It may be valuable to weigh the relative merits and drawbacks of
competition and government interventions in other markets where consumers are inattentive
and face high barriers to search, such as loan, insurance, and telephone service markets.

41e.g., see Massachusetts Senate Bill No. 2150.
42See State of New York Public Service Commission CASE 15-M-0127.
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Chapter 2

Government vs. Competition:
Residential Electricity Pricing and
Pass Through

2.1 Introduction

Conventional economic theory suggests that consumer welfare should be higher under
competition than under government provision of a private good. While consumer welfare
would be identical in a first-best setting with a welfare-maximizing government, competitive
suppliers have a greater incentive than government employees to reduce costs in practice. In
the presence of market distortions, however, this relationship may be reversed.

The retail electricity sector provides a new, unique setting to analyze this classic debate
about governments versus markets. Electricity is a homogeneous, ubiquitous good that is
supplied pseudo-randomly by governments in some locations and competitive suppliers in
others. Moreover, administrative data provide researchers with granular location- and time-
varying information about marginal costs across both of these supplier types.

Consider two first-order determinants of consumer welfare: retail price level and retail
price uncertainty. Two distortions obscure the theoretical comparison of retail price levels
in an otherwise efficient setting:

1. Misalignment of government employee and consumer objectives

2. Consumer inertia and decision error in electricity provider selection (Wilson and Price,
2010; Hortaçsu et al., 2017; Giulietti et al., 2014, 2005; Flores and Price, 2013; Davis,
2021)

On one hand, if government employee incentives do not perfectly align with consumer incen-
tives, government suppliers may have inefficiently high input costs relative to private firms.
On the other hand, customer inertia may enable private firms in retail markets to charge
prices substantially above their marginal costs.
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Retail price uncertainty may have a first-order effect on consumer welfare in the presence
of imperfect information or liquidity constraints. The general consensus in the literature is
that risk averse consumers are unable to effectively understand and insure against electric
price uncertainty (Beecher and Kihm, 2016). In this sector, the primary driver of uncertainty
in retail prices comes from pass through of highly volatile and uncertain wholesale costs as
the primary metric for price uncertainty. If public firms are more likely than private firms to
hedge and pass hedging benefits on to consumers, as the theory section argues, risk averse
consumers may be better off under government provision even if they face the same expected
retail price levels in the two regimes. The actual effect of hedging on retail price levels is
ambiguous, but likely positive in expectation.

Table 2.1 summarizes the hypothesized effects of each of these distortions on prices rela-
tive to the first-best setting.

Table 2.1: Key Distortions Differentially Affecting Consumer Welfare Under Government
Electricity Provision and Retail Electricity Markets Relative to First-best Setting

Distortion Hypothesized Equilibrium Hypothesized
Retail Price Effect Consumer

Private Public Welfare Effect
Imperfectly aligned government
and consumer incentives

N/A
Increase

Average Price
Decrease for
Public Firms

Consumer inertia in electricity
supplier selection

Increase
Average Price

N/A
Decrease for
Private Firms

Consumer liquidity constraints or
imperfect price uncertainty infor-
mation

N/A1

Reduce Price
Uncertainty2,
Ambiguous
Level Effect

Ambiguous

1In practice, many private firms offer consumers fixed rate contracts, which provide consumers with price
certainty. Firms tend to price these contracts considerably higher than other contracts. This may suggest
that firms effectively act as insurers for some consumers, raising the average price and reducing price
volatility. While the empirical analyses in this paper capture the effects of these behaviors, the theory
section abstracts from the ability to offer fixed-rate contracts.
2Due to effect of the distortion on public firm hedging.

This paper investigates the question: Are residential consumers financially better off
being supplied electricity by their local government or by a private electricity supplier subject
to competitive forces? I focus on the effect of ownership on retail prices and answer the more
pointed question: How do retail price levels and pass through of uncertain marginal costs
differ across local government electricity suppliers and private electricity suppliers subject to
competitive forces? Since public electricity suppliers were established decades earlier, with
private firms only allowed to enter other markets, the geographic placement of provider type
can be considered predetermined. I, therefore, compare pricing of local government providers
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and retail power marketers within the same state, using observed local wholesale electricity
spot prices and electricity usage patterns to estimate local marginal costs. I show that the
customers served by these two types of firms seem to consume similar amounts of electricity,
which provides some evidence that the two consumer groups are similar in terms of the
key unobservables. Specifically, it suggests that they experience similar weather, use the
same heating fuel type, and have similar income levels. I estimate that government-owned
suppliers have significantly lower retail prices and lower pass through of marginal costs. Tests
of first-order stochastic dominance provide further evidence that consumer welfare is higher
under government electricity provision.

This paper contributes to the literature contrasting private and government supply of
private goods. Prior research on this topic has been largely theoretical (Besley and Coate,
1991; Epple and Romano, 1996). The residential electricity sector provides a unique setting
that enables empirical comparison. This is also the first paper, to my knowledge, to con-
sider the roles of consumer inertia and retail price uncertainty in the government-market
comparison.

In addition, this paper extends a classic literature on electricity sector restructuring.
Past empirical work has predominantly focused on wholesale market restructuring (e.g.,
Borenstein et al., 2000; Wolfram, 1999; Bushnell et al., 2008; Cicala, 2015). There has been
much less ex-post empirical research on the retail sector. Most of the existing research
compares prices under restructured markets and traditionally-regulated utilities, with mixed
results (Hartley et al., 2019; Ros, 2017; Su, 2015; Joskow, 2006; Taber et al., 2006; Borenstein
and Bushnell, 2015). While the regulated utility counterfactual may be difficult to identify
causally due to selection of states into retail restructuring, the analysis of retail restructuring
relative to municipal ownership does not suffer from this same bias. Another body of research
on electricity restructuring has uncovered consumer inertia, and consumer decision error in
plan selection (e.g., Wilson and Price, 2010; Giulietti et al., 2014; Hortaçsu et al., 2017;
Gugler et al., 2018).

This paper proceeds as follows: Section 2 provides some background on retail provision of
electricity in the U.S. and key related literature. Section 3 uses theory to better understand
mechanisms that lead to consumer welfare differences. Section 4 discusses data used in the
empirical analysis and marginal cost calculation. Section 5 discusses the paper’s identifica-
tion method. Section 6 presents results of a balance analysis. Section 6 presents empirical
results. Section 7 discusses planned follow-on work and concludes.

2.2 Background

The U.S. residential electricity sector is experiencing a resurgence of retail electricity re-
structuring. The wave of retail restructuring around the turn of the 21st century focused on
opening retail electricity markets to competitive suppliers. In contrast, the current transfor-
mation focuses on creating local government-owned electricity suppliers. In California alone,
the electric utility regulator projects that up to 85% of consumers will leave their conven-
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tional regulated monopoly provider (e.g., PG&E) for a local government-owned provider by
the mid 2020s (CPUC 2017).

Local government suppliers and firms in retail electricity markets impact the well-being
of millions of consumers. Firms competing in retail electricity markets served over 15 mil-
lion U.S. households in 2017 as well as customers in Canada, Australia, and throughout
Europe. Government-owned electricity suppliers serve about 14 million U.S. households in
2017, and they are projected to serve about 21 million households by 2025 (EIA 2018; CPUC
2017). With unexpectedly low natural gas prices and concerns about inefficiency of regu-
lated monopoly suppliers and regulatory capture, other areas are considering adopting one
of these two regimes.1.

Advocates for local government electricity supplier regimes and competitive retail market
regimes both cite low prices as a primary motivation for restructuring (Littlechild, 2002, Cal-
CCA 2017). However, these two types of firms have very different incentives. Private firms
aim to maximize profits subject to competition from other firms, while economists often
assume government-owned entities make decisions based on the well-being of the commu-
nities they serve and government employee benefits (Aidt, 1998; Oates and Portney, 2003).
The relative merits of these two supplier regimes are not well understood. To the extent
that policymakers may choose between these two regimes going forward, it is important to
rigorously analyze the relative impacts of the regimes on consumers.

The residential electricity sector may be particularly ill-suited for competition relative to
other industries. The residential electricity sector can be characterized by inelastic short-term
demand (Reiss and White, 2005; Espey and Espey, 2004), limited opportunity for product
differentiation Defeuilley (2009), large uncertainty in common marginal input costs (Beecher
and Kihm, 2016), and barriers to competition due to inertia and decision error in consumer
supplier selection (Wilson and Price, 2010; Salies and Price, 2004; Hortaçsu et al., 2017).
Jointly, these characteristics suggest that 1) the non-financial innovation-related benefits of
residential retail markets may be small, and 2) the potential for suppliers to mark up prices
and have consumers bear the burden of high costs may be high. Common marginal input
costs may also mitigate the potential for government providers to have inefficiently high
input costs.

For causal identification, the empirical analysis includes the 13 U.S. states that have
areas with local government electricity suppliers and areas with competitive retail markets.
There are currently two different identifiable types of local government-owned retail electric
suppliers in the U.S.: 1) vertically-integrated government-owned utilities (”Municipal electric
utilities”) that procure, transport, and sell electricity to consumers (e.g. Austin Energy);
and 2) California community choice aggregators (CCAs) that only procure and sell electricity
(e.g. East Bay Community Choice). While the latter type is growing, California does not
have a large competitive residential electricity market, so I exclude CCAs from the empirical
analysis. As long as the responsibility of transporting electricity does not affect electricity
purchases and generation, the results here should extend to California CCAs.

1For example, see Arizona Corporation Commission Docket E-01345A-19-0236
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Relatedly, several states have CCAs or municipal aggregation to assist communities with
selecting competitive retail electricity suppliers, which is distinct from CCAs that procure
and provide electricity directly to consumers. I incorporate these CCA customers and indi-
vidual retail choice customers into the empirical analysis.

In the remainder of this paper, I refer to government electricity suppliers as ‘public’ firms
and private electricity suppliers in deregulated retail markets as ‘private’ firms.

2.3 Theory

Introduction

The following simple model illustrates key mechanisms by which ownership may affect
expected retail price, retail price variance, and, thereby, consumer welfare. The model
answers the question: How may the relative expected prices, price variance, and consumer
welfare under public and private electricity provision vary with the relative magnitudes of
the key market distortions outlined in Section 2.1? To explore these outcomes, the model
incorporates the three key mechanisms discussed above: inertia in supplier choice, public
firm inefficiency, and cost hedging under average cost pricing and risk averse consumers.

While public firms may have numerous objectives, I focus here on the dual objectives
of maximizing consumer welfare and minimizing effort to reduce administrative and billing
costs. The model also allows for the possibility that the inframarginal wholesale price of elec-
tricity is higher for public firms than for private firms, which would be consistent with public
firms signing ex-ante suboptimal contracts or owning inefficient generators. For simplicity,
I assume these inframarginal wholesale prices are fixed. The model does not explicitly cap-
ture corruption, stakeholder capture, intergovernmental transfers, or inefficiencies in costs
of marginal electricity procurement. To the extent that corruption and stakeholder capture
can be measured as lump sum transfers to or from residential consumers, changing the in-
terpretation of effort and administrative and billing costs could enable the model below to
encompass these transfers. Sometimes municipalities use electricity rates to collect revenue
for non-electricity expenses. This analysis ignores these intergovernmental transfers, implic-
itly assuming that each consumer would pay the same amount of money through taxes if
the municipality switched to private electricity provision. Since public and private firms can
purchase electricity from wholesale electricity spot markets, firms in the same geographic
location should receive the same marginal electricity cost.

In terms of cost structure, this model assumes that electricity suppliers bear two types
of costs: 1) per-unit (e.g. $/kilowatt-hour) costs, and 2) per-customer administrative and
billing costs. None of the modeled public or private firms pay for electricity transportation.
The model set up also obviates consideration of private firm customer acquisition and mar-
keting costs. Adapting the model to incorporate these costs should not change the main
conclusions about the potential relative signs of average retail price, retail price volatility,
and consumer welfare.
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Model Set Up

For each unit of electricity, suppliers can either 1) purchase electricity from the wholesale
spot market at marginal cost c ∼ f(c) where f(c) is continuous and differentiable, E[c] = µ,
and V ar[c] = σ2, or 2) hedge and buy electricity at a constant, known marginal cost c̄.
Because public and private firms may exert different, yet fixed effort levels to find low-price
contracts, let there be two hedged prices, c̄pu and c̄pr, for the public and private firms,
respectively.

This are two periods. In period one, an electricity supplier chooses a hedging level
s ∈ [0, 1] where s = 1 denotes that all electricity supplied is hedged. In period two, suppliers
purchase any remaining electricity at the realized wholesale price c.

Suppliers also choose an effort level e ∈ [0,∞) and incur administrative and billing cost
a(e) with a(e) > 0, a′(e) < 0, a′′(e) > 0. Private firms incur costs of effort k(e) k(e) > 0,
k′(e) < 0, and k′′(e) > 0 ∀e > 0. We denote the competitive equilibrium level of effort
for private firms ē and normalize the cost of exerting this effort level (k(ē))to zero. The
employees of the public firm are lazier than employees of the private firm and incur effort
costs γk(e) such that γ > 1.

There is one risk averse representative consumer with perfectly inelastic electricity de-
mand q and constant switching cost ω. The consumer is unable to effectively insure herself
against retail electricity prices. Let X be a numeraire good with price normalized to 1. Since
demand for electricity is perfectly inelastic, the representative consumer always consumes
X = I−pq where I is endowed wealth. With loss of generality, let q = 1. Hence, ignoring the
fixed utility from electricity consumption, we can represent the consumer’s utility function
as U(I − p) such that U ′(I − p) > 0 and U ′′(I − p) < 0.

Private Firm

First, consider the behavior of a representative private firm with risk-neutral preferences
that competes with other firms in a market with free entry and customer switching cost ω.
The firm has three decision variables: 1) average retail price to charge customers, denoted
p1 ∈ R; and 2) the share of input costs to hedge s ∈ [0, 1]; and 3) the level of effort e ≥ 0 to
exert to reduce administrative and billing costs. There are still two periods. Play proceeds
as follows: In the first period, the existing firm chooses s. Then, c is realized. In the second
period, the existing firm decides whether to stay in the market or to declare bankruptcy
and default on all existing contracts. If the firm stays in the market, it sets e and p1, a
potential entrant can then enter and charge p2, the customer then decides whether to switch
to receiving service from the entrant, and then the existing firm’s profit is realized.

We first notice that the objective function of the private firm is additively separable in s
and e conditional on staying in business and retaining the customer:

π|operating = (p2 − c)qr(p2)− a(e)− k(e)
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This implies that, conditional on staying in business, the firm will choose e such that a′(e) =
k′(e). We denote this effort level ē. Recall that k(ē) = 0.

To analyze optimal pricing, we first consider the consumer’s problem:

min
p∈(p1,p2)

p+ ω ∗ I{p = p2}

We observe that the customer will switch to the entrant if and only if p1 > p2 + ω.
Next, we consider the problem of the potential new entrant, which faces residual demand

qr =

{
1 if p2 < p1 − ω

0 if p2 ≥ p1 − ω

The potential entrant faces the following problem:

max
p2

π = max
p2

[(p2 − c)qr(p2)− a(ē)]I{(p2 − c)qr(p2)− a(ē) > 0}I{p2 < p1 − ω}

So the potential entrant will enter the market and the consumer will switch to the entrant
if and only if

p1 > ω + c+ a(ē)

Hence, in period two, the existing private firm faces the following problem:

max
p1

π = max
p1

(p1 − (sc̄pr − (1− s)c)− a(ē))× I{p1 > ω + c+ a(ē)}

I{p1 − sc̄pr − (1− s)c− a(ē) > 0}
= max

p1
(p1 − sc̄pr − (1− s)c− a(ē)) I{p1 ≤ ω + c+ a(ē)}×

I{p1 − sc̄pr − (1− s)c− a(ē) > 0}

The objective function is strictly increasing in p1 ∀p1 ≤ ω + c + a(ē). The objective
function evaluates to zero for p1 > c + a(ē) + ω. The minimum possible profit is zero,
as the firm can always default on its hedging contract and exit the market. This implies
p1 = c + a(ē) + ω is always an optimal solution to the firm’s profit. It is also the unique
solution since s = 0 implies ω + c + a(ē) > sc̄pr + (1 − s)c + a(ē), meaning the firm will
not go bankrupt if it chooses not to hedge. The associated retail price variance is σ2. Note
that these results hold with more general demand functions unless c + a(ē) + ω is greater
than the monopoly profit-maximizing price, in which case the private firm would charge the
monopoly price.

Public Firm

Now, consider the problem of a public firm that chooses hedging level and effort costs
to maximize expected consumer utility less effort costs. In period two, it charges average
realized cost, p = sc̄pu + (1− s)c+ a(e). The public firm’s problem is:

max
s,e

g(E[U(I − p)], k(e)) = max
s,e

g (E [U (I − sc̄pu − (1− s)c− a(e))] , γk(e))
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Clearly, the utility will choose s = 1 and hedge fully if there is no price premium on
hedging, i.e. µ ≥ c̄pu, as long as ∂g()

∂U
> 0.

To explore administrative inefficiency and hedging for the case where µ < c̄pu, I impose
functional forms on g(), U(), and the distribution of c. These assumptions are admittedly
strong, but they create a tractable problem that is useful in demonstrating how public firm
administrative inefficiency, uncertainty, and consumer risk aversion could affect price and
consumer welfare. Suppose c ∼ N(µ, σ2), g(U, k) = − log(−U) − k, and U = −e−λ(I−p)

where λ is the Arrow-Pratt Index of absolute risk aversion. Since I − p ∼ N(I − sc̄pu − (1−
s)µ− a(e∗), (1− s)2σ2), we get the well known mean-variance utility result:

E[U(I − p)] = −e−λ(I−sc̄pu−(1−s)µ−a(e∗)−λ(1−s)2σ2

2
)

Hence, we can solve for s∗ and e∗ using the following monotonic transformation of the firm’s
objective function:

max
s,e

I − sc̄pu − (1− s)µ− a(e)− λ(1− s)2σ2

2
− γk(e)

λ

This objective function is additively separable in e and s, so we can consider the two
problems separately. The FOC with respect to e produces

−a′(e∗) = γ

λ
k′(e∗)

Since h(e) = a(e) − γ
λ
k(e) is strictly decreasing, this implies 0 < e∗ < ē as long as γ > λ.

Hence, we have constructed a situation in which the public firm is less efficient than the
private firm.

The FOC with respect to s is:

−c̄pu + µ+ λ(1− s∗)σ2 = 0

or, equivalently,

s∗ =
µ− c̄pu
λσ2

+ 1

Thus, if (µ− c̄pu) ∈ (−λσ2, 0), an internal equilibrium exists. Note that s = 1 gives the

(transformed) objective value I − c̄pu − a(e)− k(e)
λ
. If µ ≥ c̄pu, then s = 0 gives the objective

value I −µ− λσ2

2
− a(e)− k(e)

λ
, which is strictly less than I − c̄pu− a(e)− k(e)

λ
, and the public

firm will hedge completely. In contrast, if c̄pu − µ > λσ2, there will be no hedging.
Hence, the public firm may hedge fully, hedge partially, or not hedge at all depending

on the relative values of c̄pu and µ. The resulting expected retail prices are p = c̄pu + a(e∗),
p = s∗c̄pu − (1 − s∗)c + a(e∗), and p = c + a(e∗), respectively. The associated retail price
variances are 0, (1− s∗)2σ2, and σ2, respectively. In this example, we also observe that the
optimal level of hedging weakly increases with the index of absolute risk aversion λ and the
variance of the wholesale electricity spot price. Hence, these parameters affect the price and
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variance associated with partial hedging and may also affect retail price levels and variance
through their effect on the applicable hedging regime (i.e. full, partial, or none).

While the public firm chooses the level of hedging that maximizes consumer welfare, two
potential inefficiencies may make consumer welfare suboptimal: 1) effort to reduce adminis-
trative costs may be lower than the consumer’s preferred level, which increases retail price;
and 2) the hedging cost may not equal the lowest attainable hedging cost, which raises retail
price in the presence of hedging and reduces the level of hedging, thereby increasing retail
price volatility.

Comparisons

This section compares expected price, price variance, and consumer welfare under the
assumptions made in Sections 2.3 and 2.3.

Theorem 1. If the public firms is perfectly efficient, consumers have no switching costs, and
consumers can properly insure themselves against retail electricity price risk, then the public
and private firm prices are identical.

Proof. Consider the first-best case where the public firms is perfectly efficient (i.e. e∗ =
ē), consumers have no switching costs (i.e. ω = 0), and consumers can properly insure
themselves against retail electricity price risk, which we can represent as γ = U ′′(I − p) = 0.
Then the public firm’s problem reduces to minimizing expected price. Assuming c̄pu ≥ c, the
public firm charges average price p = c+ a(ē), which matches the private firm price without
switching costs.

Comparing the results of the previous two subsections under ω > 0, U ′′(I − p) < 0, and
public firm inefficiency, it is evident that retail price variance must be weakly higher in the
private electricity provision case, as formalized in the following theorem.

Theorem 2. Retail price variance is weakly higher under the private firm than under the
public firm.

Proof. Since Var(p1) = Var(c+ a(ē) + ω) = Var(c) = σ2, retail price variance under private
provision always equals σ2. Retail price variance under public provision equals σ2 if the firm
chooses not to hedge and equals (1− s∗)2σ2 < σ2 if the firm hedges since s∗ ∈ (0, 1].

Theorem 3. A sufficient condition for the private firm’s expected price to exceed the public

firm’s expected price is ω > c̄pu − µ− (c̄pu−µ)2

λσ2 + a(e∗)− a(ē)

Proof. With partial hedging, the expected retail price under the public firm is:

E[p∗] = s∗c̄pu + (1− s∗)µ+ a(e∗) =

(
µ− c̄pu
λσ2

+ 1

)
c̄pu +

µ− c̄pu
λσ2

µ+ a(e∗)
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This will be less than the private firm’s expected retail price E[p∗1] = E[ω + c + a(ē)] =
ω + µ+ a(ē) if and only if

ω > c̄pu − µ− (c̄pu − µ)2

λσ2
+ a(e∗)− a(ē)

Hence, the relative expected retail prices depend on the switching cost ω, the level of
consumer risk aversion, the wholesale spot market price variance σ2, the public firm’s inef-
ficiency a(e∗) − a(ē), and the public firm’s hedging premium c̄pu − µ.2 Assuming that the
risk premium is weakly positive, which would hold if generators are risk neutral, a sufficient
condition for a private firm charging prices higher than a public firm is that switching costs
are greater than the risk premium plus the difference in charges to cover administrative costs,
i.e. ω > (c̄pu − µ) + a(e∗)− a(ē).

Corollary 1. Consumer welfare could be higher under public or private electricity provision.

Proof. Consider the case where the public firm is perfectly efficient and chooses e∗ = ē.
Then consumer welfare is relatively higher under the public firm. In this case, the public
firm chooses hedging level to maximizes expected consumer welfare and E[U(I − p)] ≥
E[U(I − c− a(ē))] > E[U(I − ω − c− a(ē))].

Now, consider the case where the public firm is very inefficient, switching costs are small,
and consumers are not very risk averse such that a(e) − a(ē) > ω and c̄pu − µ > λσ2, then
consumer welfare is higher under the private firm.

Discussion

These theoretical results suggest that, depending on the relative levels of customer inertia,
public firm inefficiency, and consumer risk aversion, consumer welfare could be higher under
public or private electricity provision.

While this model used switching costs to explore firms’ ability to charge prices above
marginal costs, other conditions may lead to similar conclusions. The model assumes no
fixed costs, or costs that do not vary if the firm serves a marginal customer. If we relax the
assumption of one representative consumer and allow for fixed marketing and administrative
costs, then the private firms have decreasing marginal costs and a perfectly competitive
equilibrium cannot be sustained. Even in the absence of inertia, oligopoly power would
enable firms to charge prices above marginal costs. Anecdotally, private firm marketing
costs and fixed administrative costs are large relative to the non-fuel costs of serving a
marginal customer. If this is true, this would imply that the perfectly competitive price
should be close to marginal costs, yet perfect competition may not be attainable in practice.

2If we allowed q to deviate from one, it would also depend on the usage per customer q in terms of the
average administrative costs per kWh.
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One key finding of the theory is that government suppliers may have prices above or
below marginal costs, depending on realizations of electricity spot prices, while private firms
should always have prices above marginal costs in equilibrium. This paper now turns to
an empirical analysis of retail prices and an important determinant of retail price variance:
pass through of highly uncertain marginal costs. It is important to keep in mind that, with
hydraulic fracturing (‘fracking’) and large declines in solar photovoltaic prices, it is likely
that the realizations of spot market electricity prices covered in the analysis timeframe were
generally lower than anticipated. As a result, theory suggests that the empirical analyses of
retail prices in the coming sections are particularly favorable to competitive markets.

2.4 Data

Residential Retail Electricity Sales, Customer Accounts, and
Average Prices

Annual residential electricity sales in Megawatt-hours (MWh), revenues in thousands
of U.S. dollars, and number of residential customers, come from The Energy Information
Administration (EIA) Form EIA-861 survey. I calculate average residential retail electricity
prices in U.S. dollars per kilowatt-hour (kWh) by dividing residential retail electricity revenue
by residential retail electricity sales for each entity.

I restrict this analysis to companies that provide energy or bundled service in states
that had at least one municipal utility and at least three private firms serving residential
customers in 2016. Thirteen states fit this description.

In 2012, the EIA altered their reporting system for small utilities. As a result, Form EIA-
861 only provides post-2011 data on total sales, revenue, and number of customers across all
customer types (e.g. residential, commercial) for many of the municipal utilities. I impute
residential-specific data based on the 2011 ratios of residential to total sales. To test this
method, I apply the same imputation method to data with known 2017 residential data.
The imputations perform well on average. Paired two-sided t-tests do not reject the null hy-
potheses that the average revenues sales, and number of customers are significantly different
at any conventional significance level (t = 0.05, 0.02, and 0.11, respectively). Nonethe-
less, I perform sensitivity analyses excluding these imputed data to address any remaining
measurement error concerns.

I convert all financial data to real 2017 U.S. dollars using the GDP deflator from the US
Bureau of Economic Analysis (2019).

See Appendix B.1 for more details on data cleaning.
Table 2.2 displays summary statistics for residential electricity sales in Gigawatt-hours

(GWh) and annual number of residential customers for municipal and competitive suppliers
in the states covered in this analysis.
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Table 2.2: Data Summary Statistics

Ownership Statistic Retail Marginal Wholesale Residential Residential
Price Cost Natural Gas Customers Usage

($/kWh) ($/kWh) Price ($/MCF) (Thousands) (GWh)
Public Mean 0.11 0.05 6.49 6.96 78.06

SD 0.03 0.02 2.13 32.99 422.75
Min 0.03 0.02 2.08 0.08 0.62
Max 0.26 0.12 14.89 725.46 9573.05
N 4084 4084 4084 4084 4084

Competitive Mean 0.10 0.04 5.70 143.01 1444.69
SD 0.02 0.02 1.76 260.61 2707.42
Min 0.04 0.02 2.08 0.00 0.01
Max 0.24 0.10 14.89 2642.55 23949.64
N 3401 3401 3401 3401 3401

Marginal Per-kWh Costs

The marginal cost of an additional kWh to an electricity supplier is the spot market price
of electricity, which varies by location.3

I calculate annual wholesale electricity costs for each supplier by aggregating publicly-
available hourly spot market electricity prices weighted by electricity usage at the closest (in
Euclidean distance) geographic location (node) with available hourly electricity usage data.
I obtained these spot prices and usage data from SNL Financial, which provides a centralized
database of the relative region-specific administrative databases. Since I do not have data on
the precise distribution of private providers’ customers within a state, I calculate marginal
costs for private providers in a given state as the average hourly locational marginal price
weighted by hourly electricity usage in the closest area (load zone). See Appendix B.1 for
a more detailed description of the annual marginal cost calculation and planned sensitivity
analysis.

Measurement error is introduced in these calculations both due to the aggregation from
hourly marginal costs to annual totals and because the relevant spot price for each firm is
only estimated as the closest one. As a result, I use a variety of methods to account for this
measurement error.

Wholesale Natural Gas Prices

I obtain monthly wholesale citygate natural gas prices by state in dollars per thousand
cubic feet (MCF) from EIA. I aggregate these monthly data to the the annual level using

3Section 2.3 illustrates that any cost associated with long-term contracts for electricity or hedging-related
derivatives are inframarginal.
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a simple average. Future work may incorporate seasonal variation in use of natural gas for
electricity generation.

T&D Costs and Government Transfers

I obtained municipal electric utility financial data from state public utility commissions
and the municipalities themselves through a combination of public record requests and scrap-
ing data available online. In total, I collected data for 66% of the municipal utilities used in
this analysis, although the coverage and granularity of data vary by municipality. Table 2.3
shows the number and percentage of municipal electric utilities by state.

Table 2.3: Municipal Electric Utility Data Collection Summary

State Number in Analysis Number Received % Received
CT 7 7 100 %
DE 9 6 67 %
IL 41 19 46 %
MA 40 40 100 %
MD 5 0 0 %
ME 5 4 80 %
NH 5 0 0 %
NJ 9 4 44 %
NY 47 38 81 %
OH 84 84 100 %
PA 34 9 26 %
RI 1 1 100 %
TX 59 16 27 %
Total 346 229 66 %

While the empirical analysis primarily employs conservative estimates of T& D costs
from Form EIA-861, I verify the results using a subset of these municipal electric utility
financial data sets. The remainder of these data can be digitized and used in future work to
improve the empirical estimates.

2.5 Methods and Identification

To empirically identify the causal effect of ownership on price levels and volatility of
marginal costs to residential consumers, the geographic location of public versus private
providers cannot be endogenous to the pricing decision. The municipal electric utilities
are government-owned vertically integrated electricity suppliers, and the vast majority of
them were established well before retail electricity markets opened to competitive firms.
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The number of municipal electric utilities peaked in 1923 and has decreased by about a
third since then Vince and Fogel (1995). No municipal utilities in the states covered in this
analysis entered or exited during the analysis timeframe of 2005-2017 based Form EIA-861
data. When U.S. retail markets opened to competition between 1996 and 2002, states did
not allow them to enter areas served by existing municipal electric utility service territories.4

Since all data come from time periods at least three years after the opening of competitive
retail markets, the analysis excludes the years that are most affected by transitional policies.5

Since consumers respond to average prices Ito (2014), not marginal prices, and electricity
is a homogeneous good, average price — or, equivalently, average bill — is the appropriate
metric for assessing the effect of pricing decisions on consumer welfare.

To analyze retail bill volatility, I focus on pass through of volatile and uncertain marginal
costs: wholesale electricity spot prices. Drawing on theory, showing that pass through is
larger under private electricity provision than public provision is sufficient to show that the
underlying variance in retail prices must also be larger under private provision. Theoretically,
the only source of retail price uncertainty under public firm average-cost pricing is uncertainty
about future marginal costs. Under competition, there may be additional uncertainty in
prices due to private firm profit-maximizing pricing strategies. To the extent that this
pricing is correlated with marginal costs, it will be embedded in the pass-through results. If
pricing behavior is orthogonal to marginal costs, it could only increase the variance of retail
prices under competition.

Derivation of Estimating Equations

Industry knowledge and public firm financial documents provide insight into the data
generating process. Public firms generally set average retail prices P using the following
basic formula:

P =(operating costs+ depreciation of capital assets+ interest on capital

+ intergovernmental transfers)/(projected demand)

=(transfers in lieu of taxes)(fuel-related costs incl. losses+ billing and admin costs

+ T&D O&M costs+ depreciation of T&D assets+ interest on T&D assets

+ other transfers)/(projected demand)

=γ1(marginal fuel cost) + γ3(hedged fuel cost premium)+

[γ4(non-T&D billing and admin costs) + γ5(T&D-related depreciation and interest)

+ γ6(T&D O&M and admin) + γ7(other transfers)]/(projected demand)

A key difference between municipal utilities and private suppliers is that municipal util-
ities own and operate distribution and, in some cases, transmission facilities. In addition,

4This was typically because regulators had little to no jurisdiction over the municipalities in most states
(Ando and Palmer, 1998).

5I do identify three municipalities that municipalized in the ’90s, possibly in anticipation of the intro-
duction of retail competition and exclude them from the analysis (Doane and Spulber, 1997).



CHAPTER 2. GOVERNMENT VS. COMPETITION 59

many municipalities collect revenue through electricity bills to cover non-electric municipality
expenses, such as fire department expenses.

Another important consideration is the timing of retail price setting. Municipal utilities
likely have some fixed bureaucratic lag in adjusting retail prices to reflect unexpected cost
changes. Pearson correlation coefficients of relationships between changes in marginal cost
and changes in retail price suggest that municipal utilities revise retail prices annually to
reflect costs from the prior year. To be cautious, I include a contemporaneous effect of
marginal costs to capture any within-year updating.

For tractability, I make four assumptions: 1) the hedged fuel cost premium is constant,
on average, across time and public firms; 2) non-T&D administrative and billing costs scale
linearly with sales, are the same across all public firms in the same state, on average, and
only exhibit year-to-year changes that are consistent across all firms; 3) there is no cross-
subsidization across customer classes; and 4) aggregate error in estimation of these cost
components, denoted ϵi,t, is normally distributed and independent across suppliers.

This suggests the following data generating process:

Pi,t =γ0 + γ1(marginal fuel cost)i,t−1 + γ2(marginal fuel cost)i,t−1+

[γ5(scheduled T&D costs)i,t−1 + γ6(other T&D costs)i,t

+ γ7(non-tax transfers)i, t− 1]/(electricity sales)i,t−1 + ϕs + ψt + ϵi,t

where Pi,t denotes supplier i’s average retail price at time t, (marginal fuel costs)i,t−1 in-
dicates the consumption-weighted average wholesale electricity spot price for supplier i at
time t, and ϕs and ψt are state and time fixed effects, respectively.

While the data generating process for private firms is not publicly available, the com-
ponents of these firms’ costs are generally known. For tractability, I assume that the firms
charge a strategic pricing premium that is time-invariant in expectation and that all mar-
keting and administrative costs scale roughly linearly with the firm’s electricity sales. The
strategic pricing premium may arise, for example, from consumers incurring supplier switch-
ing costs. Using a linear conditional expectation function, I assume the data generating
process for private firm i takes the form:

Pi,t = α0 + α1(marginal fuel costs)i,t−1 + α2(marginal fuel costs)i,t + ϕs + ψt + ϵit

where α0 captures administrative, billing, and marketing costs as well as a strategic pricing
premium. The normally distributed error term captures firm- and time-specific deviations
from the state average strategic pricing premium and from mean billing, administrative, and
marketing costs. Recall that private firms do not own or pay for electricity delivery and,
therefore, do not incur any T&D costs.

This price setting process includes contemporaneous marginal fuel costs and the previous
year’s marginal fuel costs. I hypothesize that competitive firms would adjust prices for some
customers within the year. Since many of these firms offer customers fixed price contracts
that can last one year or longer, it is plausible that some portion of these costs would be
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collected in the years following the cost change. Pearson correlation coefficients suggest that
competitive firms’ retail prices are most highly correlated with contemporaneous marginal
costs, although costs from the prior year may affect pricing decisions. Correlations of retail
price and two-year lagged marginal costs suggest that limiting the analysis to one lag captures
the vast majority of effects of marginal cost on price.

Combining the above public and private firm data generating processes produces:

Pi,t = (α0 − γ0)(private)i + γ1(marginal fuel costs)i,t−1 + γ2(marginal fuel costs)i,t

+(α1−γ1)(marginalfuelcosts)i,t×(private)i+(α2−γ2)(marginalfuelcosts)i,t×(private)i

+ [γ4(scheduled T&D costs)i,t−1 + γ5(other T&D costs)i,t

+ γ6(non-tax transfers)i, t− 1]/(electricity sales)i,t−1 + ϕs + ψt + ϵi,t (2.1)

where (private)i is a binary variable equal to one if supplier i is a retail power marketer.
This derivation shows that it is appropriate to interpret the coefficient on (private)i as

the average effect on retail prices of private firm marketing, billing, and administrative costs
plus the average premium from private firm strategic pricing less the average retail price
effect of public firm non-T&D billing and administrative costs and hedging cost premiums.
The interpretation of the sum of the coefficients on (marginal fuel costs)i,t−1 × (private)i
and (marginal fuel costs)i,t × (private)i is the average difference in the pass through of
marginal costs to consumers between private and public firms.

The state and year fixed effects also capture any remaining time-invariant heterogeneity
in price drivers across states or any time-varying factors that influence prices nationwide.

To isolate systematic differences in price level across public and private firms, I first
estimate the coefficient on (private)i Equation in 2.1 restricting all firms to have the same
marginal cost pass through, on average (i.e. α1 = γ1 and α2 = γ2). To isolate systematic
differences in pass through across public and private firms, I estimate Equation 2.1 in first
differences. While I assume the error term is independent across firms, it may follow a
random walk. The estimate of interest is α1 − γ1 + α2 − γ2.

Addressing Threats to Identification

This section discusses three common potential threats to identification: measurement
error, simultaneity, and selection.

Measurement Error and Reverse Causation

I estimate variants of Equation 2.1 using two-stage least squares (2SLS). Classical mea-
surement error in estimated marginal costs could cause attenuation bias. In addition, al-
though electricity demand is inelastic (Reiss and White, 2005; Espey and Espey, 2004), there
is some concern about simultaneity with retail price affecting demand, which affects marginal
costs. I instrument for marginal costs using state-specific citygate natural gas prices, which
can be thought of as a cost shifter. The marginal electric generator uses natural gas in many
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hours of the year in all of the wholesale electricity spot markets included in this study. The
instrument should also be uncorrelated with measurement error in estimated marginal costs.

The 2SLS estimates would be biased downwards if the exclusion restriction is violated
due to reverse causation. This could happen if changes in average retail price cause short-
run changes in electricity demand, which cause changes in natural gas usage of power plants,
which cause changes in state citygate natugal gas prices. Since the share of residential
electricity demand to total state demand is less than 5% for all firms in the analysis, short-
run own-price electricity demand is inelastic, electric generation comprises only 12-50% of
statewide natural gas demand, and the instrument is strong, this potential bias is likely to
be small. Using an assumed average price elasticity of -0.35 (Espey and Espey, 2004) and
conservative estimates for all other relevant factors, I calculate a bound for the potential
bias of about -0.0001 (see Appendix B.2 for assumptions and calculation). As short-run
cross-price elasticities for natural gas and electricity are small (Lav́ın et al., 2011), any bias
from cross price effects should be smaller in magnitude and the opposite sign, which further
limits the potential bias from violation of the exclusion restriction.

Endogenous Location

If the geographic areas where the public and private firms located within a state are
different across unobservables related to retail price, then this analysis may be picking up
these unobserved differences and not reflect differences in price-setting choices of public and
private firms. This section addresses balance of observables related to electricity demand
and supply unobservables.

Key factors that affect households’ electricity demand include climate, income, heating
fuel type, conditioned square footage, and household size. All of these factors are correlated
with total per-household electricity consumption. Table 2.4 shows that a two-sample un-
paired t-test cannot reject the null that, in aggregate, the municipal and competitive firms
in this analysis have equal 2017 mean usage per household (t=0.410). There is some indica-
tion that mean usage of competitive providers is greater than that of municipal utilities in
Pennsylvania and that the opposite relationship holds in Illinois, although these results do
not survive Bonferroni multiply hypothesis correction. To be cautious, I perform a sensitiv-
ity analysis excluding these two states. This balance analysis provides some evidence that
these household are balanced in terms of climate, income, heating fuel type, conditioned
square footage, and household size. It is possible that usage per customer could be the same
across these two populations despite systematic differences in electricity usage patterns if,
for instance, areas served by public firms tend to have higher income and less conditioned
square footage than households served by private firms such that the effect of these two dif-
ferences on total annual usage perfectly cancel each other out. To help address any remaining
concerns, I weight observations based on propensity scores from a logistic regression of firm
ownership on mean electricity usage per household (Larivi{\‘e}re and Lafrance, 1999). I also
truncate the data based on usage per customer to ensure overlap of this key observable.
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Table 2.4: Usage per Customer Balance Analysis

State Mean 2017 Usage per Household t-statistic
Competitive Public

CT 9.5 8.1 0.5
DE 10.6 9.9 0.4
IL 8.0 9.3 -2.3
MA 8.4 8.5 -0.1
MD 11.2 12.0 -0.3
ME 8.4 6.3 1.2
NH 6.3 7.1 -0.7
NJ 9.9 7.5 0.8
NY 12.6 12.9 -0.1
OH 9.4 9.9 -1.1
PA 11.0 8.0 2.4
RI 6.1 7.7 -0.7
TX 14.9 13.0 1.4
Total 10.4 10.2 0.4

On the supply side, estimated marginal costs and year fixed effects should capture most
of the within-state geographic cost variation. There could be some remaining geographic
variation in factors that affect billing and administrative costs, marketing costs, or hedging
cost premiums. The main potential factor that stands out is population density. Population
density is correlated with usage per customer (Larivi{\‘e}re and Lafrance, 1999), which
appear to be similar across public and private firms. Moreover, Census data on 2010 county-
level housing unit density by square mile suggests that public firms operate in counties that
are more densely populated than other areas with the same state, on average. Hortaçsu and
Madanizadeh, Seyed Ali (2012) and Giulietti et al. (2005) provide evidence that customers
of private suppliers are also more likely to reside in more urban and densely-populated
areas. While this is far from airtight evidence that public and private firms are balanced on
population density, the common directional relationship is encouraging.

While there may be some differences in hedged fuel costs, these appear limited. All grid-
connected households in a state should technically be able to sign a power urchase agreement
with any generator within the state.6 There could be cost differences if public firms signed
long-term contracts prior to retail restructuring. To the extent that public firms signed long-
term natural gas or solar contracts prior to restructuring that were still in effect during the

6FERC Order 888 requires transmission owners to offer nondiscriminatory transmission service to all
others. There may be systematic geographic differences in the cost of transporting electricity due to trans-
mission losses and congestion, but these are likely to be small given that public firms locate throughout the
states (see Appendix B.4) and there is some evidence that population densities are similar across public and
private firms.
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analysis timeframe, this would most likely bias hedging costs in the direction of higher costs
for public firms. However, any pre-existing access to hydropower could give public firms a
cost advantage relative to private firms.7 As shown in the EIA map in Appendix B.4, this
is most likely to be a concern in New York, which has substantial hydroelectric generating
capacity. For this reason, I perform sensitivity analysis excluding New York.

In addition, if the linear model is incorrect, it would be important to have overlap in
marginal costs across public and private firms. The distributions of marginal costs appear to
be similar across private and public firms. To eliminate concerns about overlap in estimated
marginal costs, I perform a sensitivity analysis that excludes all observations with marginal
costs that fall above or below the private firms’ observed marginal cost range.

2.6 Results

Retail Price Levels

Column 1 of Table 2.5 shows estimates of the coefficients in Equation 2.1. To relax
assumptions about how costs vary differentially across states over time, Columns 2 presents
a variant of Equation 2.1 using OLS to control for state-by-year fixed effects, and Column
3 controls for state trend fixed effects. The last five columns show robustness tests without
propensity score weighting and excluding various groups of observations.

Before adjusting for T&D costs or transfers, public firms are estimated to charge residen-
tial consumers $0.019-0.023/kWh, more than private firms. Due to accounting in the EIA
database, the unadjusted prices reflect the total price that residential consumers supplied
by public firms or Texan private firms pay for electricity, while the price excludes charges
for transporting electricity for all other private firms. The average transportation-only (’de-
livery’) costs reported in the EIA for all states included in this analysis is $0.0745/kWh,
and the minimum state average is $0.0476/kWh. Applying this conservative estimate of
$0.0476/kWh to all public firms and Texan firms suggests that private firms charge resi-
dential consumers at least $0.013-0.015/kWh, or roughly 13%, more than public firms, on
average. Applying state-specific average T&D costs produces estimates of private firm price
premiums above public firms equal to $0.037-0.040/kWh, or roughly 37%.

Excluding New York increases the unadjusted price level difference to $-0.031/kWh, the
conservative adjusted difference to $0.002, and the estimated differential to $0.026. While
this difference may be primarily driven by public providers in this area having historic rights
to hydroelectric power, it may also be driven by particularly relaxed market regulations and
private firms in New York charging particularly high rates. In fact, concerns about customer
abuses and overcharging caused the New York regulator to conclude in December 2016 that

7Note that, although Franklin D. Roosevelt gave public firms preferential purchasing power of low-cost
federally developed or licensed hydroelectric power (Vince and Fogel, 1995), there is very little federally-
owned hydroelectric power in the states covered in this analysis (See Appendix B.4).
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the retail competition initiative had failed (NYSDPS CASES 15-M-0127, 12-M-0476, and
98-M-1343).
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Figures 2.1-2.5 present the distributions of average residential retail prices of munici-
pal and competitive firms. Figures 2.1 and 2.2 use 2SLS to normalize prices for predicted
marginal costs, predicted lag marginal costs, and state and year fixed effects. Figures 2.4 and
2.5 use OLS to normalize prices for state by year fixed effects and potentially endogenous
marginal costs and lagged marginal costs.

I present three sets of results for price distribution comparisons: 1) unadjusted prices; 2)
prices excluding embedded T&D costs, estimated by state as the average delivery costs of
delivery-only within-state electricity suppliers; 3) prices excluding a conservative estimate of
T&D costs of $0.0476/kWh.8

The unadjusted price distributions for municipal utilities and competitive suppliers are
similar despite the fact that the government-owned suppliers’ prices include T&D costs and
most of the competitive suppliers’ prices do not. After adjusting for even conservative T&D
costs, the estimated cumulative distribution of prices is higher for competitive suppliers than
that of public suppliers under the conservative T&D costs at any price level. A Kolmogorov-
Smirnov test fails to reject the null of first-order stochastic dominance of the competitive
supplier price CDF over the public supplier price CDF in either the 2SLS or OLS specifi-
cation (p-values > 0.9999). Another Kolmogorov-Smirnov test rejects the null of first-order
stochastic dominance of the public supplier price CDF over the competitive supplier price
CDF at the α = .0001 significance level under the 2SLS and OLS specifications.

8Form EIA-861 does not report any delivery-only service in Texas. The second results include imputed
Texas delivery charges equal to $0.074/kWh, i.e. the average delivery charge in the other 12 states.
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To explore estimated private firm markups relative to price levels, I create a modified
Lerner Index. This metric equals (P-MC)/P where P denotes average bill and MC captures
costs associated with serving a marginal customer with fixed electricity usage equal to the
firm’s mean usage per customer. Since consumers respond to average costs (Ito, 2014), it
is appropriate to analyze average price per customer as opposed to marginal price. The
commensurate cost is the marginal cost of serving a marginal customer. This includes the
cost associated with supplying a marginal kWh of electricity to an existing customer as well
as any additional customer service and other administrative costs associated with serving a
marginal customer.

I estimate the marginal cost of serving an additional customer using Massachusetts public
firm financial data. Since public firms may be less efficient than private firms, this may serve
as a conservative estimate of marginal administrative costs. I regress administrative costs on
number of residential and non-residential customers using various fixed effect specifications.
I test an analysis of levels as well as first-differences. While no specification rejects the
null of zero marginal costs, the largest estimate is $170/customer. Using this conservative
estimate and a uniform 15% transmission and distribution loss factor, I estimate modified
Lerner Indexes. I exclude Texas from these calculations because their retail prices embed an
unknown level of T&D costs.

Figure 2.7 displays the distribution of estimated modified Lerner Indexes. The mass near
zero is suggestive that the error in the cost estimates is small. There appears to be substantial
market power in the retail electricity markets. Estimates suggest bills exceed marginal costs
by about 50% for the median firm-year, with 16% of firm-years having estimated markups
over 100%.

Price Volatility and Marginal Cost Pass Through

Column 2 of Table 2.7 presents 2SLS estimates of a first differences version of Equation
2.1. An increase in marginal costs of $0.01/kWh is associated with a $0.00264/kWh greater
same-year increase in residential retail prices for competitive firms relative to public firms.
This implies that a $0.05/kWh marginal cost increase would increase the annual electricity
bill for a typical household that uses 10,000 kWh per year by $132 more under a competitive
supplier than under a public supplier. The estimates do not show a significant difference in
the effect of electricity supplier ownership on retail prices the following year. These results
suggests that, as argued in Section 2.3, retail price variance is higher under competition than
government provision.

As shown in Table 2.7, the result that private firm electricity bills are relatively more
sensitive to marginal wholesale costs is robust to a number of specifications and to exclud-
ing observations for which one may be particularly concerned about measurement error or
endogenous location.

The OLS (Column 1) point estimate on the interaction term between ownership and
contemporaneous marginal cost change is significantly lower than the 2SLS estimate. This
may suggest attenuation or reverse causation bias in the OLS estimate. This result could
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Figure 2.1: 2SLS Normalized Price
Distributions

Figure 2.2: 2SLS Estimated Normalized
Price Distributions

Figure 2.3: 2SLS Price Distributions under
Conservative T&D Costs

Notes: Figures of average residential retail price normalized by marginal costs, lag marginal costs,

and state and year fixed effects using a 2SLS regression. The top right figure is adjusted for state

average delivery charges from Form EIA-861 and the bottom figure is adjusted for T&D costs equal

to the lowest state average delivery charge from Form EIA-861 in the 13 analyzed states.
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Figure 2.4: OLS Normalized Price
Distributions

Figure 2.5: OLS Estimated Normalized
Price Distributions

Figure 2.6: OLS Normalized Price Distribu-
tions

Notes: Figures of average residential retail price normalized by marginal costs, lag marginal costs,

and state by year fixed effects using an OLS regression. The top right figure is adjusted for state

average delivery charges from Form EIA-861 and the bottom figure is adjusted for T&D costs equal

to the lowest state average delivery charge from Form EIA-861 in the 13 analyzed states.
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Figure 2.7: Modified Per-customer Lerner Index Distribution for Private Supplier Firm-
Years, Full Distribution (left) and Truncated Distribution (right)

also be explained, however, by a larger local average treatment effect (LATE) than average
treatment effect. The LATE captures the difference in pass through only when natural gas
is the marginal fuel for electricity generation, which tends to occur in hours of moderate to
high demand. This explanation is consistent with the fact that many municipal financial
reports indicate ownership of generators for arbitraging electricity spot prices during peak
demand hours.
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Table 2.6 presents the first stage results for the main 2SLS specification. The instruments
are jointly significant for all endogenous variables. Note that the estimated marginal cost
pass through for competitive firms is 16%, which provides further evidence that the private
markets are not perfectly competitive.

Discussion

These results suggest substantial market power exists in retail electricity markets. There
is some reason to believe that market power will be even higher going forward because
these estimates include some years with price regulations. Moreover, the difference between
public and competitive firms may also become larger going forward because marginal costs
were likely lower than anticipated during this period, causing many past hedging decisions
by public firms to increase costs above marginal costs. While it is possible that fear of
future regulation could put downward pressure on retail prices, there may be a need for
additional regulation and information diffusion in competitive retail markets to improve
consumer welfare. Following the theoretical work by Epple and Romano (1996), enabling
public and private provision in the same markets may also further increase consumer welfare.

However, market power does not necessarily imply that private firms are earning exorbi-
tant profits. A large markup above costs may be necessary for a functioning retail electricity
market to cover fixed marketing and customer acquisition costs, which seem to be large
(Joskow, 2008). In addition, to the extent that the municipal utility cost advantage comes
from getting resource rents from pre-existing rights to a scarce resource, hydropower, external
validity may be limited.

I end this discussion with two important caveats about the welfare analysis. One caveat
is that this paper only analyzed consumer welfare as it relates to pricing. A full consumer
welfare analysis would consider any differences in quality of service. Another caveat is
that this analysis only analyzes consumer welfare, as a key motivation of both public and
competitive provision of residential electricity is consumer well-being. However, consumer
welfare may not be well aligned with total social welfare. The efficiency implications of
the empirical results depend largely on whether prices lie above or below marginal costs
(Borenstein and Bushnell, 2022a).

2.7 Conclusion and Next Steps

This paper finds evidence that consumer welfare was higher under government electricity
provision than competitive retail provision in thirteen states in the U.S. over the period 2005-
2017. Under conservative assumptions about uncertain costs, I show that retail electricity
prices are higher under competition than government provision under any rational consumer
preferences. Relaxing these assumptions, I find that the variance of retail prices are larger
under competition.
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The difference in price levels appears to be driven by market power in the retail markets.
Using a modified Lerner Index analysis, I demonstrate substantial market power in the U.S.
competitive retail markets.

The retail price variance analysis focuses on pass through of volatile marginal costs. While
pass through may have efficiency gains and increase overall welfare, it decreases consumer
welfare under the assumption of risk averse consumers.

These results highlight the need for future research in this area. Incorporating finan-
cial data on T&D costs from government-owned electricity suppliers would reduce bias and
measurement error and, thereby, improve the key empirical estimates in this paper. Further
exploring mechanisms could also further our understanding of the external validity of these
results. It may be particularly fruitful to analyze how private firms exert market power
and the role played by hydroelectric power generation rights in the retail prices offered by
municipal utilities.
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Chapter 3

Does Timing Matter? Impact of
Time-based Rates on Energy
Efficiency, Rooftop Solar, and
Building Electrification

Note: Andrew Satchwell and Chandler Miller are coauthors on this chapter.

3.1 Introduction

Energy efficiency (EE), solar PV (PV), and building electrification are critical to meeting
U.S. decarbonization goals (Williams et al., 2012, Nadel and Ungar, 2019, Langevin et al.,
2022, US OSTP et al. 2023). Under current electricity rate designs and declining capital cost
trends, the country has seen substantial and growing adoption of EE and PV (Consortium
for Energy Efficiency, 2021; Barbose et al., 2022; Davis, 2022) and growing policy interest
in electrification (e.g., Inflation Reduction Act 2022). At the same time, there is increasing
regulatory support for time-varying electricity rate designs to better reflect system costs and
encourage more economically efficient consumption (Satchwell et al., 2019). Under time-
based rates, consumers pay different prices depending on the day or time-of-day. Since the
social cost of providing electricity varies considerably across the hours of a year, time-varying
rates can provide consumers with more efficient short-run price signals than conventional
time-unvarying rates.

However, time-varying rates do not necessarily provide more economically efficient long-
run price signals for consumers choosing whether to invest in EE upgrades, install PV, or
switch from fossil fuel-based heating to electric heating. The transition to time-based rates
has the potential to incidentally reduce bill savings from these investments, which could
impact consumer incentives to adopt these critical GHG-reducing technologies and reduce
social welfare. Policymakers may need to adjust non-rate incentives for these investments or
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risk undermining climate goals.
To exacerbate the potential issue, prospective adopters of these GHG-reducing technolo-

gies may also be limited in their ability to increase their bill savings by shifting the timing of
their energy savings. The energy savings from many of these investments are highly price in-
elastic once installed. For example, consumers cannot shift the timing of their PV generation
across days or hours of the day, and they have little to no incentive to curtail this genera-
tion.1 Even for investments that facilitate price-responsive behavior, such as programmable
thermostats, the majority of consumers either do not use the programming feature or keep
the thermostats in manual mode (Pritoni et al., 2015).

This paper asks three questions about rate design and GHG-reducing technologies. First,
how does electrification impact consumers’ total energy bills? Second, how do consumers’
incentives to invest in energy efficiency, rooftop solar, and electrification change as electricity
rates become more time-varying? Third, does moving from flat rates to time-based rates
result in more economically efficient investment decisions? Put differently, we first analyze
a baseline of bill savings under current, non-time-varying rate designs. While EE and PV
should consistently lead to bill savings, electrification could increase or decrease bills. We
then compare these results to bill savings under time-based rates. An increase in bill sav-
ings could lead to more customer technology adoption, and a decrease in bill savings could
reduce adoption. Next, by comparing bill savings to societal benefits, we assess whether
customer technologies are over- or under-incentivized. Across all three questions, we explore
heterogeneity across rate design characteristics, geographies, and investment types.

To answer these questions, we calculate residential bill savings and long-run social
marginal costs from six different types of inelastic, GHG-reducing investments under 14
actual utility price schedules in four utility service areas. We use the National Renewable
Energy Lab’s ResStock simulations to capture the heterogeneity in these results across house-
holds due to differences in age, size, construction practices, installed equipment, appliances,
climate, and resident behavior. In particular, we consider six different GHG-reducing Res-
Stock investment packages: electrification, building envelope upgrades, lighting efficiency
upgrades, general equipment efficiency upgrades, and PV. To capture a variety of climates
and power system conditions, we analyze these upgrades in four utility service areas: Ameren
in Illinois, Arizona Public Service (APS) in Arizona, Green Mountain Power (GMP) in Ver-
mont, and Oklahoma Gas and Electric (OG&E) in Oklahoma.

We analyze a range of residential rate designs offered by these four utilities. They can
be loosely classified into five categories: 1) “flat” rates that are time-invariant or vary only
by season, 2) time-of-use (TOU) $/kilowatt-hour (kWh) rates that vary systematically by
season, hour of day, and whether the day is a non-holiday weekday, 3) rates with coincident
$/kilowatt (kW) demand charges where consumers pay each month based on their maximum
kW demand during certain hours of the day, 4) event-based rates that have higher prices
during a small number of hours of the year when there is especially high system demand,
and 5) real-time prices that change dynamically based on day-ahead market conditions.

1Consumers can use storage to shift the timing of their electricity exports to the grid.
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We estimate the societal benefits of each investment. These include all utility system
costs avoided due to reductions in the quantity of electricity generated and delivered, the
generating capacity reserved for grid balancing, the renewable generation procured to meet
policy standards, and investments in new generation, transmission, or distribution capacity.
We also include reductions in the external costs associated with carbon emissions and criteria
pollutants from electricity generation. These avoided cost calculations closely follow Boren-
stein and Bushnell (2022a) for short-run marginal cost components and the 2019 Energy and
Environmental Economics, Inc. (E3) 2019 Avoided Cost Calculator (ACC)2 for additional
long-run marginal cost components.

We find that electrification reduces many customer bills, and electrification paired with
energy efficiency reduces average customer bills across all rate designs. Although electricity
rates are high relative to natural gas and fuel oil, reductions in the energy consumed due to
improved energy efficiency outweigh the cost increase from higher prices. This result suggests
that there may be opportunities for programs to electrify households without burdening these
households with higher bills.

We estimate that the impact of time-based rates on bill savings is typically small, but
we also uncover large heterogeneity. The change in bill savings from moving from a flat
rate to a time-based rate is less than 10% for most people and investments. Average bill
savings decrease in about half of the cases we modeled and increase in the other half. We
find particularly large percentage increases in bill savings with time-varying rates for building
envelope upgrades in hot areas. Looking across rates, we find the largest percentage reduction
in bill savings from the two demand charge rates we modeled.

Regardless of the direction of the change in private investment incentives, we find that
implementing time-varying rate designs has the potential to improve or worsen the economic
efficiency of investment decisions. There are two primary determinants of whether these
rate designs improve economic efficiency: how average rate levels compare to average social
marginal costs and the timing of the energy savings from the investment relative to the
time-varying price schedule. We show that average rate levels and their relationship to
social marginal costs have a larger impact on whether incentives are too high or too low
than the rate design itself.

Our findings may help policymakers and utilities avoid unintended consequences of retail
rate reforms on EE, PV, and building electrification adoption, potentially by adjusting other
incentives for these investments accordingly. It is important to note that this analysis does
not consider other market inefficiencies in EE or PV markets, such as the potential for
under-adoption of EE and PV investments that are privately profitable (Gillingham and
Palmer, 2014; De Groote and Verboven, 2019; Allcott and Greenstone, 2012). To the extent
that policymakers have been relying on effective subsidies from older electricity rate designs
to counteract these and other distortions in energy efficiency and solar panel markets, this
research can be used in conjunction with other research on adoption behavior to determine
appropriate incentive levels.

2Available at: https://www.ethree.com/public proceedings/energy-efficiency-calculator/
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This paper arguably provides the most comprehensive analysis to date of the impact
of time-based rate designs on households’ incentives to adopt GHG-reducing technologies.
There is a small existing body of literature in this area. However, most of the case studies
are restricted to one location and technology and analyze only one or two time-varying rates.
Liang et al. (2021) compare bill savings from air conditioning in Arizona under a TOU rate
and an increasing block rate. Borenstein (2007) similarly compares bill savings from PV
under a TOU rate and an increasing block rate. Sergici et al. (2023) consider two types of
TOU rates and analyze bill savings from heat pumps for 80 customers in an unnamed utility
service territory. In contrast, we consider 12 different energy efficiency technologies, six
building envelope efficiency upgrades, three PV orientations, four electrification measures,
and 14 different rate designs for 39,526 households in four different geographies. The richness
of these data allows us to uncover patterns and important drivers of heterogeneity.3

In addition, we employ cutting-edge social marginal cost estimation methods to explore
implications for economic efficiency. Of the aforementioned rate design studies, only Liang
et al. (2021) compare bill savings to marginal social avoided costs. We improve on these
estimates in a few ways. We leverage Borenstein and Bushnell (2022a) to calculate marginal
external damage estimates that better reflect the type of generation displaced in each hour
and location. We also use marginal estimates of distribution losses and deferred distribution
capacity costs as opposed to average estimates, and we use long-run estimates for deferred
generation capacity costs as opposed to short-run estimates. We also consider state renewable
energy policies in the avoided cost calculations. With these changes, our estimates better
reflect the variation in social marginal costs over hours of the year, with relatively higher
costs during periods of high demand.

This paper also advances the literature on the impacts of electrification on household
bills by analyzing the role of energy efficiency improvements. Our findings depart from
existing research, which estimates that average bills will increase from electrification (e.g.,
Davis, 2022). A key distinction is that Davis (2022) focuses on the electrification of new
buildings and assumes electric and natural gas heating efficiencies both match efficiencies
of the current housing stock. In contrast, this paper analyzes retrofits and considers energy
efficiency differences between retired and new appliances.

This paper proceeds as follows. Section 2 outlines our analytical approach. Section 3
presents the results of our analyses. Section 4 discusses policy implications and concludes.

3Other studies have looked at the impact of non-time-varying rate design components, such as fixed
charges and inclining block rates (Novan and Smith, 2018; Darghouth et al., 2016). There are also related
literatures on the social marginal costs of energy efficiency investments (Boomhower and Davis, 2020) and on
the correlations between time-of-use rates, event-based rates, and real-time-prices (Hogan, 2014; Schittekatte
et al., 2022; Sallee et al., 2023).



CHAPTER 3. DOES TIMING MATTER? 79

3.2 Analytical Approach

Determining energy saving from EE, PV, and electrification

We use NREL’s September 2022 release of the ResStock database to estimate hourly
baseline electricity usage under the current housing and appliance stock as well as hourly
savings from energy efficiency and electrification. These hourly usage and saving shapes
come from physics-based simulation models. NREL created the ResStock data set with
funding from the U.S. Department of Energy (DOE) to estimate the energy use and energy-
saving potential of the national U.S. residential building stock and the building stock of each
U.S. locality. The NREL researchers aimed to create a representative sample of buildings
with a realistic diversity of building types, vintages, sizes, construction practices, installed
equipment, appliances, occupant behavior, and climate zones. The researchers calibrated
and validated the model results using empirical data on actual energy use in buildings,
including metered utility data from more than 2.3 million customers throughout the country
and circuit-level sub-metered data (Pigman et al., 2022; Wilson et al., 2022).

NREL researchers combine the ResStock information about the existing appliances and
building characteristics with known energy efficient and electric alternatives to model feasible
energy efficiency upgrade packages. We select four of these packages for our analysis:

• Electrification: The electrification package replaces non-electric space and water heat-
ing with electric alternatives, including heat pump water heaters and air-source or
multi-source heat pumps for space heating. The package also includes improved ducting
and energy efficiency upgrades of electric or non-electric appliances, including clothes
dryers and cooking ranges.

• Equipment: The equipment package replaces existing electric air conditioning, space
heating, water heating, refrigerators, clothes washers and dryers, and cooking ranges
with more efficient alternatives.

• Envelope: The envelope package improves attic and exterior wall insulation and adds
exterior storm windows.

• Lighting: The lighting package replaces all existing light bulbs with light-emitting
diodes (LEDs).

See Appendix C.3 for detailed information on the specific upgrades embedded in each of
these upgrade packages.

Using engineering-based estimates of energy efficiency savings has its limitations. Re-
searchers have shown that realized energy efficiency savings are sometimes much lower than
predicted savings from engineering estimates (Davis et al., 2014; Levinson, 2016; Allcott and
Greenstone, 2017; Fowlie et al., 2018; Christensen et al., 2021). However, our key results fo-
cus on the shape of energy efficiency savings as opposed to the absolute level of savings. Our
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results will still be accurate if prediction error in savings is proportional to actual realized
savings.

For PV generation shapes, we use residential rooftop generation data from NREL’s
System Advisor Model (SAM). We consider three potential PV orientations: south-facing,
southwest-facing, and west-facing. Regardless of orientation, we assume all households size
their PV systems to offset their annual electricity usage, so the implied system capacity
varies with orientation. We select one PV generation shape for each utility service area and
PV system orientation.

All energy usage and generation shapes reflect 2019 weather patterns.

Calculating Social Marginal Avoided Costs

This section summarizes how we calculate the long-run social marginal costs of a change
in residential electricity usage due to energy efficiency or behind-the-meter solar PV. These
social marginal cost calculations closely follow Borenstein and Bushnell (2022a) for short-run
marginal cost components and the Energy and Environmental Economics, Inc. (E3) 2019
Avoided Cost Calculator (ACC) for additional long-run marginal cost components. Short-
run marginal cost components capture incremental costs of a residential customer using one
additional kilowatt-hour (kWh) of electricity, assuming that the level and composition of
generation, transmission line, and distribution line capacity are fixed. We estimate long-
run marginal costs, which reflect the incremental costs of one additional kWh of residential
electricity usage when we allow for generator entry, exit, and distribution capacity expansion.

We estimate the marginal costs to society, which include all private costs and external
costs that are not transfer payments between people. Importantly, these marginal costs are
independent of rate level or rate design since electricity bills are transfer payments from
consumers to the utility. Private marginal costs are monetary costs included in a utility’s
revenue requirement and ultimately borne by electricity consumers, i.e., ratepayers. External
costs capture all other indirect costs borne by people globally, including costs related to
health, agricultural output, materials, recreation, and climate change.

Specifically, we model eight private marginal cost components: energy, transmission con-
gestion, transmission losses, distribution losses, ancillary services, Renewable Portfolio Stan-
dard (RPS) policy compliance, and distribution system and generation capacity expansion.
Generation capacity costs encompass both thermal generation capacity expansion in the
absence of a RPS and incremental generating capacity costs due to RPS compliance. In
addition to these private costs, we estimate the external costs associated with carbon diox-
ide (CO2), sulfur dioxide (SO2), nitrous oxides (NOX, PM2.5), and fine particulate matter
(PM2.5) emissions from electric generation.

There is some debate about what cost components vary with a 1 kWh change in electricity
usage and should, therefore, be included in social marginal costs. In addition, there are
vastly different perspectives on the most appropriate magnitudes of some cost component
inputs, such as the social cost of carbon (Rennert et al., 2021). Our approach in this paper
is to include these cost components and present results broken down by social marginal
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cost category so that readers can understand the impact of excluding or modifying specific
marginal cost components on the results.

We consider an annual snapshot of social marginal costs in 2019. This snapshot approach
does not take into account any future changes to the generation resource mix or any antic-
ipated changes in the marginal value of energy efficiency and distributed PV with larger
penetrations of energy efficiency and distributed generation. This approach is appropriate
for comparing social marginal costs and 2019 retail rates.

Table 3.1 summarizes the cost components we include in the analysis and the data sources
we use to estimate each component. See Appendix C.2 for a more detailed discussion of social
marginal cost calculations, the rationales behind the chosen methods, and a summary of the
resulting estimates.

Selecting Time-based Rate Designs

We focus the analysis on a diverse set of existing and historical utility rate schedules to
capture variation in outcomes under realistic implementations of time-based rates. Although
the shift to time-based rates primarily aims to make rates better reflect temporal variation
in costs, designing any utility rates involves balancing many competing objectives and con-
sidering the perspectives of many different stakeholders. As a result, time-based rates may
differ substantially from social marginal costs in practice and may vary considerably across
utilities.

Our ten selected time-based rates come from four utility service areas and include a
variety of rate components. This variety enables us to capture heterogeneity in time-based
rate impacts due to real-world differences in rate design perspectives and climates. From
Ameren, we consider a real-time-price (RTP) rate, known as “Power Smart Pricing”, that
dynamically updates each day based on forecasted hourly costs. From Arizona Public Service
(APS), we select three time-based rates. The first is a time-of-use (TOU) rate with a higher
$/kWh rate in the late afternoon and early evening “on-peak” period than the rest of the
day and an especially low $/kWh rate midday in the winter. The other two APS rates have
$/kWh TOU components and coincident $/kW demand charges. Each month, households
pay a demand charge based on their highest kW usage during the on-peak period. The
two demand charge rates differ in the magnitude of the demand charge. We model four
time-based rates for Green Mountain Power (GMP). A TOU rate has relatively high prices
in the afternoon and evening. An Event rate has a very high price for up to ten days a
year during the afternoon and evening. GMP also has a TOU+Event rate with both TOU
and event pricing components. The fourth rate is a seasonal TOU rate with a relatively
high price in the afternoon and evening during the summer and in both the morning and
evening during the winter. Finally, we model a TOU and an Event rate for Oklahoma Gas
and Electric (OG&E). The TOU rate has a relatively high price on Summer afternoons and
early evenings. The event rate uses the same on-peak period, but OG&E sets the on-peak
price dynamically to equal the average day-ahead predicted wholesale electricity price during
those hours. In the winter, the OG&E TOU and event rate have declining-block schedules
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Table 3.1: Marginal Avoided Cost Component Data Sources

Cost component Description Data sources

Energy (including
transmission
congestion &
losses)

The location-specific cost of generating a
marginal kWh of electricity and transporting
it to a given location in the transmission
network

FERC Form 714, SNL
Financial, Ventyx,
ISONE, MISO, SPP,
Borenstein and
Bushnell (2022a)

Ancillary services The incremental cost of balancing electricity
demand and supply

2019 E3 Avoided Cost
Calculator

Distribution
losses

The additional cost of electricity that enters
the distribution network but is not delivered
to consumers

Borenstein and
Bushnell (2022a),
FERC Form 714,
Ventyx

Generation
capacity

For markets in need of new capacity, the
marginal cost of attracting a new combustion
turbine (or the benefits of deferring an
investment). For markets with excess
electricity supply, the capacity payment
needed for the marginal generator to commit
to being available during high-demand hours

2019 E3 Avoided Cost
Calculator, ISONE,
EIA, Borenstein and
Bushnell (2022a),
NOAA

Distribution
capacity

The cost of adding additional capacity on
distribution wires (or the benefits of deferring
such an upgrade)

The Mendota Group
LLC (2014), ResStock

RPS compliance The net incremental cost of providing
renewable generation to comply with a
Renewable Portfolio Standard

2016 E3 Avoided Cost
Calculator, Luckow
et al. (2015), NREL,
DSIRE, Gorman et al.
(2019)

Carbon The social cost of CO2 emitted due to the
incremental output of the marginal generator

Borenstein and
Bushnell (2022a)

Other
environmental
damages

The costs of SO2, NOX, and PM2.5 emitted
due to the incremental output of the
marginal generator

Borenstein and
Bushnell (2022a)
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where the marginal price decreases after a customer uses 600 kWh in a month. Figure 3.1
plots the hourly summer and winter rates for the six price schedules with TOU components
and no event-based components, and Figure 3.2 shows average prices under each event and
dynamic rate by hour of day for four sample months.

Figure 3.1: Time-of-Use Rates

For comparison, we also use the default rate schedules for each utility. All of these default
rates are two-part tariffs with fixed monthly charges and variable $/kWh charges. In APS
and GMP, the default rate schedule has one $/kWh price that is constant throughout the
year. In Ameren, there are two distinct $/kWh prices: one for the summer months (June-
September) and another for the other (i.e., “winter”) months. In OG&E, the default rate
schedule has a declining block design in the winter and an inclining block design in the
summer. In the summer, a customer’s marginal price increases after they use 1,400 kWh in
a month. For simplicity, we refer to all of these rates as “flat” since they do not vary by
time of day.4

Table 3.2 presents summary statistics of all the rate schedules used in the analysis. The
right column presents the correlation between the hourly $/kWh rates and estimated hourly
social marginal costs described in Section 3.2. Notably, the correlation between the RTP rate
and social marginal costs is only 0.23 due to rate design despite using the same wholesale
electricity prices to calculate prices and social marginal costs.

4All together, we use the 2019 versions of the following residential rate schedules: Ameren Basic Gener-
ation Service, Ameren Power Smart Pricing, APS TOU-E, APS R-1, APS R-2, APS R-3, GMP R-1, GMP
R-9, GMP R-11, GMP R-24, GMP R-22, OG&E R-1, OG&E R-TOU, and OG&E R-VPP. To learn more
about these rate schedules, visit the Ameren, APS, GMP, and OG&E websites.
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Figure 3.2: Average Prices by Hour and Month for Event and Dynamic Rates

Table 3.2: Rate Summary Statistics

Utility Rate Name Fixed Charge Demand Charge Variable Price ($/kWh)
($/mo) Max $/kW Min Med 75th 95th Max SD r

Ameren Flat 13.98 0.00 0.18 0.18 0.21 0.21 0.21 0.01 0.08
RTP 16.23 0.15 0.14 0.17 0.18 0.20 0.29 0.01 0.23

APS Flat 17.56 0.00 0.13 0.13 0.13 0.13 0.13 0.00 0.00
TOU 15.55 0.00 0.04 0.12 0.12 0.25 0.25 0.05 0.13
TOU+Demand 15.55 8.40 0.09 0.09 0.09 0.14 0.14 0.02 0.16
TOU+Demand (large) 15.55 17.44 0.06 0.06 0.06 0.09 0.09 0.01 0.18

GMP Flat 15.26 0.00 0.19 0.19 0.19 0.19 0.19 0.00 0.00
Event 15.26 0.00 0.18 0.18 0.18 0.18 0.73 0.05 0.11
TOU 20.34 0.00 0.13 0.13 0.13 0.29 0.29 0.07 0.14
TOU+Event 20.34 0.00 0.13 0.13 0.13 0.28 0.73 0.09 0.16
TOU (seasonal) 20.34 0.00 0.13 0.13 0.13 0.29 0.29 0.07 0.16

OGE Flat 13.00 0.00 0.05 0.08 0.09 0.09 0.09 0.02 0.06
TOU 13.00 0.00 0.05 0.05 0.09 0.09 0.22 0.04 0.27
Event 13.00 0.00 0.05 0.05 0.09 0.15 0.28 0.05 0.31

Note: Summary statistics of the rates used in the analysis. The fixed charge is in $ per month. In order, the

subheadings under variable price stand for minimum, median, 75th percentile, 95th percentile, maximum,

standard deviation, and the Pearson correlation coefficient of correlation between the hourly $/kWh rates

and estimated hourly social marginal costs.
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Economic Efficiency

Is it beneficial to society to increase or decrease the bill savings from investing in EE
or PV? We compare investment incentives to their economically efficient levels to answer
this question. Quantifying welfare changes with rate design changes would require strong
assumptions about consumer behavior. Instead, we primarily focus on a key component of
economic efficiency: the deviation of bill savings from avoided societal costs, or the size of
the investment externality per kWh. Our primary metric for charts is the ratio of annual
bill savings from an investment to the annual avoided social costs from the investment. We
refer to this ratio as the incentive ratio. With rational consumers and perfect information,
an incentive ratio above one indicates over-investment, while an incentive ratio below one
indicates under-investment. The further the incentive ratio is from one in either direction,
the larger the deadweight loss is due to inefficient investments.

Many rate components change across tariffs, including the size of a fixed $/month charge.
Since energy efficiency and PV cannot avoid fixed charges, larger fixed charges will mechan-
ically lead to lower bill savings. To focus on the impact of the time-varying component of
rates, we normalize utility rates to their fixed charge under the basic rate. The thought
exercise is to estimate the incentive ratio if the only changes to the rate were changes in the
timing of $/kWh and $/kW charges. We achieve this by shifting all $/kWh hourly rates by
the weighted average basic rate less the weighted average $/kWh rate and average demand
charges per kWh, as shown in the following equation:

($/kWh Rate Normalized)h = (1)

($/kWh Rate)h +

∑
h(Basic $/kWh Rate)h(×Class kWh Usage)h∑

h(Class kWh Usage)h

−
∑

h($/kWh Rate)h × (Class kWh Usage)h∑
h(Class kWh Usage)h

− Class Demand Charges ($)∑
h(Class kWh Usage)h

We report mean usage-weighted incentive ratios and 95% confidence intervals. We boot-
strap standard errors to calculate these confidence intervals. Specifically, we take 1,000
different customer samples and calculate the mean usage-weighted incentive ratios for each
sample. We do not bootstrap standard errors for PV since we use the same PV generation
shape for all households in a utility service area. Bootstrapping incentive ratios using these
data would suggest false precision.

We also analyze the relative welfare impacts of rate design and average variable rate level.
Average variable electricity rates frequently differ from average social marginal costs, which
can contribute to over- or under-investment of GHG-reducing technologies (Borenstein and
Bushnell, 2022b; Novan and Smith, 2018). We estimate these deviations of average variable
basic rates from social marginal costs. We also consider four aspects of a rate design: the
variance in price over hours of the year, the correlation between hourly $/kWh price and
social marginal costs, the correlation between $/kWh price and energy savings from each
investment, and the $/kW demand charge. Specifically, we compare the importance of
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rate design relative to variable rate levels for economic efficiency under time-based rates by
estimating the following models:

(Overinvest)ijur =β1(Avg F lat Rate)u + β2(Fixed Charge)ur (2)

+ β3($/kWh variance)ur + β4cor(pur, (kWh)ijur)

+ β5cor(pur, (AC)iju) + β6(Max $/kW Charge)ur + εijur

and

|(Savings)ijur − ACiju| =β1|(Avg F lat Rate)u − ACiju|+ β2(Fixed Charge)ur (3)

+ β3($/kWh variance)ur + β4cor(pur, (kWh savings)ijur)

+ β5cor(pur, (AC)iju) + β6(Max $/kW Charge)ur + ϵijur

where (Savings)ijur is the per-kWh bill savings for consumer i in utility u from making
investment type j under time-based rate schedule r, ACiju is the associated per-kWh soci-
etal avoided costs, (Overinvest)ijur equals one if (Savings)ijur > ACiju and zero otherwise,
(Fixed Charge)ur is the annual fixed charge under the rate schedule, ($/kWh variance)ur
is the variance in $/kWh price over the hours of the year, cor(pur, (kWh)ijur) is the Pear-
son correlation coefficient of this hourly price and the consumer’s hourly energy usage,
(Max $/kW Charge)ur is the maximum monthly $/kW demand charge under the rate sched-
ule, and εijur and ϵijur are normally-distributed error terms. We cluster standard errors at
the investment-utility-rate level. For the PV analysis, we drop the consumer subscripts to
more accurately reflect the variation in our energy savings data. To reduce the influence of
outlier households in the EE analysis, we exclude observations with values of bill savings less
avoided costs above the 99th percentile and below the 1st percentile.

We estimate each of these two models in three ways: without constraints, fixing β1 =
β2 = 0, and fixing β3 = β4 = β5 = β6 = 0. We compare the adjusted R2 across specifica-
tions to determine which of average variable rate levels and time-based components of rate
design have larger explanatory power on whether there is over- or under-investment and the
deviation between bill savings and avoided costs.

We use this analysis, theory, and mean incentive ratios by rate, investment, and utility
to draw additional conclusions. We discuss the key drivers of variation in incentive ratios
across investments and geographies. We also explore the impact of time-based rates on the
variance of deadweight loss from investment decisions.

3.3 Results

Bill Savings

Energy Efficiency

Energy and bill savings are highly correlated under basic rates, and time-based rates only
slightly reduce this correlation. For APS and GMP, energy and bill savings are perfectly
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correlated under the basic rate. Even with the seasonality of Ameren and OG&E’s basic rates
and OG&E’s declining block rate structure, the Pearson correlation coefficients of energy and
bill savings under these basic rates are over 0.99. With time-based rates, these correlations
decrease slightly across all utilities and rate schedules. As a result, time-based rates increase
the variance of bill savings from energy efficiency investments. However, customer bill savings
are still largely driven by energy savings. Within-utility Pearson correlation coefficients
between total energy and total bill savings are over 0.96. We, therefore, focus the rest of our
discussion using two metrics: 1) bill savings per kWh of energy savings and 2) percentage
change in bill savings from an investment relative to a utility’s basic rate.

Figure 3.3 shows mean percentage changes in bill savings from moving from a flat to a
time-based rate (i.e., a TOU, event, or RTP rate) by rate schedule and energy efficiency
upgrade type. The average impact on bill savings is less than 10% in most cases. For about
40% of investments and rates, the mean percentage bill savings change is less than 5%. We
can attribute some of these bill impact to differences in fixed charges. If fixed charges stayed
constant across rate designs, we estimate that the mean change in bill savings would be less
than 5% for the majority of investments and rates, as shown in Figure 3.4.

Figure 3.3: Change in Bill Savings: Energy Efficiency

However, there is large heterogeneity in the impact of time-varying rate designs on bill
savings across energy efficiency upgrades, rates, and geographies. We observe particularly
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Figure 3.4: Normalized Change in Bill Savings: Energy Efficiency

large percentage increases in bill savings with OG&E’s variable peak pricing plan for building
envelope upgrades, likely because envelope upgrades save more energy during periods of high
system cooling demand when wholesale electricity prices are especially high. At the other
extreme, the rates with demand charges lead to the largest average percentage reductions
in bill savings from lighting and envelope upgrades. Under these rates, a large percentage
of a customer’s bill comes from usage in one hour of the month, so energy savings have to
be very large during this one hour to offset the lower price in all other hours. These savings
may also need to be sustained for multiple hours to reduce demand charges substantially. In
addition, the peak period in the APS demand charge rates includes many daylight hours in
the summer, when lighting demand is low.

These findings illustrate some patterns that may be more generalizable. For example,
time-based rates seem to reduce bill savings from efficient lighting in areas with peak demand
in the summer and increase these savings in winter-peaking areas, although this result is not
significant with utility by rate by investment clusters since we only have four utilities. The
pattern may be due to differences in the coincidence of lighting demand with heating and
cooling demand. Households use lighting most at night and in the winter, when heating
demand may be high and cooling demand may be low.

We also find substantial heterogeneity in the bill-saving impacts of time-based rates across
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households. Overall, the standard deviation in the percentage change in bill savings is 28
percentage points, with the 90% confidence interval ranging from a bill savings reduction of
25% to a bill savings increase of 34%. We observe especially large variations in savings under
the APS demand charge rates, the OG&E variable peak pricing rates, and the APS TOU
rate. This result may be driven be the especially short peak periods in these rate schedules.

Fuel Switching

While bill savings for energy efficiency and PV upgrades are only impacted by changes
in the level and shape of electricity consumption, bill savings for fuel switching depend on
the change in electricity consumption, the change in consumption of other fuels, and the
differences in the volumetric energy costs for non-electric fuels and electricity. Non-electric
fuels in the baseline building stock include natural gas, propane, and fuel oil. All utilities
have households that use natural gas for heating, and all utilities except for APS have homes
that use propane. Some households in GMP also use fuel oil.

Figure 3.5 shows the shares of non-electric fuels in the baseline building stock for fuel
switching. Table 3.3 shows average fuel costs for each fuel converted to cents/kWh based
on heat content. The volumetric rates of non-electric fuels are lower than electricity rates in
nearly all cases.

Figure 3.5: Source of Energy in Baseline Building Stock

While the current general perception is that fuel switching always leads to energy bill
increases because of this differential in electricity rates (e.g., Davis, 2022), we find many
instances of energy bill reductions. We compare the total energy costs from water and space
heating for households that electrified these end uses under the basic rates. On average,
consumers in APS and OG&E save money, while consumers in Ameren and GMP spend
more. Recall that APS and OG&E have lower average electricity rates than Ameren and
GMP.
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Table 3.3: Average Fuel Prices in cents/kWh

Ameren APS GMP OG&E
Electricity (basic rate) 19.1 13.2 18.8 8.5
Natural Gas 2.3 5.4 4.7 1.5
Propane 11.3 7.0 11.3 11.3
Fuel Oil - - 6.3 -

When we bundle electrification with additional energy efficiency investments, we find a
much higher prevalence of bill savings and ubiquitous reductions in total energy consumption.
Ninety percent of households experience at least a 20% decrease in energy consumption when
they receive the ResStock electrification and energy efficiency bundles. For some households,
the lower consumption outweighs the higher energy rate and leads to net reductions in energy
bills. In fact, for APS and OG&E, all households experience net bill reductions under the
basic rate with average bill savings greater than 25%. For GMP and Ameren, average bill
savings under the basic rate are approximately centered around zero. These differences across
utilities are partially due to price differences and partially due to the lower heating load in
the APS and OG&E areas.

We also find considerable heterogeneity in bill savings from the electrification and energy
efficiency bundle across households within a utility service area. For example, in Ameren’s
service territory, ten percent of households experience bill savings of more than 25% under the
basic rate, while another ten percent of households experience bill increases of at least 40%.
Figure 3.6 shows the bill savings distribution for each utility. The variance in electrification-
induced bill impacts is larger than the variance in energy efficiency bill impacts. Across
all households, rates, utilities, and technologies, the standard deviation in percentage bill
savings is 16 percentage points for electrification compared to 10 percentage points for energy
efficiency.

Moving from basic to time-based rates generally increases incentives to invest in electri-
fication and energy efficiency bundles. Similar to the results for energy efficiency alone in
Section 3.3, the change in bill savings tends to be small. Figure 3.6 shows each rate sched-
ule’s mean, 10th percentile, and 90th percentile bill savings. Within a utility, most rates
shift the distribution of savings right. All but one of the time-based rates increase average
bill savings.

Solar PV

The impacts of time-based rates on bill savings from PV can be larger than those of
EE, and these impacts vary considerably across utilities, rates, and PV orientations. Unlike
EE, PV generation is limited to daytime hours, which may make savings more sensitive
to temporal price variation. Figure 3.7 shows the percent change in bill savings per kWh
generated relative to the basic rate by PV orientation and rate. Figure 3.8 presents the same
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Figure 3.6: Bill Savings from Fuel Switching by Rate

results after normalizing the fixed charges to equal the fixed charge in the relevant utility’s
basic rate. Recall that this isolates the effect of the time-varying component of rates.

Time-varying rates consistently increase bill savings more — or decrease savings less —
for west-facing systems than south-facing systems. Under flat rates, bill savings per kWh
do not depend on PV orientation. As shown in Figure 3.7, west-facing systems receive the
largest savings per kWh, and south-facing systems receive the smallest savings per kWh for
every time-varying rate modeled.

The impact of time-based rates on bill savings from PV varies substantially across the
utilities and rates studied. In APS, time-based rates reduce bill savings across all rates
and orientations, with one rate cutting savings by about half. In OG&E, time-based rates
increase bill savings in most cases, with saving increases up to 27%. The APS demand
charges largely drive these bill savings differences, although small differences in the on-peak
hours and the APS TOU rate’s winter midday super off-peak period also contribute. In this
small sample of rate designs, households that install PV receive relatively high bill savings
under event rates and relatively low savings under rates with demand charges. To avoid
demand charges, the PV system must generate during households’ peak monthly demand,
which is frequently around 6 PM in APS.

Comparing Figures 3.7 and 3.8 shows the importance of fixed charges for bill savings.
For example, households see bill reductions around 7% under Ameren’s RTP rate, but the
increase in the fixed charge entirely drives this result. Isolating the change in variable
rates, we observe bill savings increases of less than 0.3% from the RTP rate. Similarly,
many GMP rates that reduce PV bill savings relative to the basic rate would lead to higher
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Figure 3.7: Change in Bill Savings: Solar PV

savings without the fixed charge changes. In the opposite direction, we observe that APS
bill reductions would be even larger if not for the fixed charge reductions.

Economic Efficiency

Moving from flat to time-based rates also impacts the economic efficiency of investment
decisions by changing the alignment of the adopter’s bill savings with the investment’s so-
cietal benefits. Figures 3.9 and 3.10 present mean incentive ratios by retail rate for each
energy efficiency technology and PV orientation. Figures 3.11 and 3.12 show the estimated
incentive ratios if all rate designs had the fixed charge in the basic rate. The rates are
ordered from left to right by a measure of how much the rates vary with time: the sum of
the variance of $/kWh charges over hours of the year and the variance of $/kW coincident
demand charges over hours of the year. Recall that any deviation from an incentive ratio
of one suggests that some economic inefficiency exists, with overinvestment for ratios above
one and underinvestment for ratios below one. As the time variation of rates increases, some
incentive ratios move closer to one, and others move farther away. This section analyzes the
key drivers of heterogeneity in these changes.

Figures 3.9 through 3.12 suggest that average rate level has a larger impact on whether
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Figure 3.8: Normalized Change in Bill Savings: Solar PV

EE and PV incentives are too high or too low than rate design. Figure 3.13 displays average
price less social marginal under the basic rate and total estimated residential usage for each
utility. For the two utilities with the highest flat rates, Ameren and GMP, we estimate over-
investment across all rate designs, technologies, and orientations. For the utility with the
lowest flat rate, OG&E, we estimate under-investment across all rate designs, technologies,
and orientations. Only the utility with average rates close to marginal cost, APS, displays
an impact of rate design on whether investment incentives are too high or too low.

Estimating the model outlined in Equation 2 confirms this result. Column 1 in Table
A1 displays estimates of the linear probability model of whether there is over-investment,
and Columns 2 and 3 display estimates from the same model, restricting the coefficient
on price to zero and restricting the coefficients on all four rate design variables to zero,
respectively. Comparing the adjusted R2 values from these models confirms that average
$/kWh price under the basic rate is a stronger predictor of over-investment than all four rate
design variables combined. Average price can explain about 29% of the variation in whether
an individual household over-invests in energy efficiency, while the rate design components
together can only explain 2% of this variation. Utility-level estimates for PV, shown in
Columns 4-6, suggest that these results translate to PV.

Average rate level also has a larger impact than rate design on a key component of
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Figure 3.9: Mean Incentive Ratios: Energy Efficiency

economic inefficiency: deviation of bill savings from avoided costs (“incentive deviation”).
Column 1 in Table A2 displays estimates of the model outlined in Equation 3. Columns 1-3
show that the distance between the average rate and avoided costs is a stronger predictor of
investment economic inefficiency than all four of the rate design variables combined. Columns
4-6 suggest this result translates to PV too.

This result suggests that we can make decent predictions about whether economic effi-
ciency will increase or decrease from only knowing average rates and whether energy savings
are more correlated with the time-based rate than the baseline residential usage shape used to
set the rates. Since the change in bill savings due to time-based rates will not change whether
there is over- or under-investment in most cases, the economic efficiency of investment de-
cisions will likely improve with a rate design change if average rates are lower than social
marginal costs and the correlation is especially good. In contrast, if average rates are higher
than social marginal costs, time-based rates will generally improve the economic efficiency of
investment decisions for technologies with poor correlations and increase deadweight loss for
technologies with good correlations. This suggests that the bill savings heterogeneity anal-
ysis has clear interpretations for economic efficiency. For example, if a rate design increases
bill savings for a given investment in a given geography (e.g., lighting in a winter-peaking



CHAPTER 3. DOES TIMING MATTER? 95

Figure 3.10: Mean Incentive Ratios: Solar PV

area), this will increase economic inefficiencies if average rates are well above social marginal
costs (e.g., in GMP) and improve economic efficiency if average rates are relatively low.

Figure 3.11 also highlights the role of avoided costs in determining the impact of time-
based rates on economic efficiency. Investments with savings that are coincident with high
system costs will have relatively low incentive ratios under basic rates. For example, Figure
3.11 shows that incentive ratios are significantly lower for envelope upgrades than for all
other modeled investments. This result is due to avoided costs of envelope upgrades be-
ing particularly large per kWh avoided. Envelope upgrades save energy when system-wide
demand for electricity (e.g., for heating or cooling) is high.

Regression results suggest that we can also make decent predictions about the magni-
tude of the externality, i.e., per-kWh bill savings less avoided costs, and the change in this
externality with time-based rates with only a small amount of information. This exercise
may be useful for designing non-rate investment incentives. As shown in Column 1 of Table
A3, knowing only average variable rates and utility system average social marginal costs can
explain 60% of the household-level variation in bill savings less avoided costs. If the practi-
tioner also has a good guess about how well savings are correlated with the time-based rate,
Column 2 of Table A3 shows that this variable alone can explain over half of the variation
in the change in the externality relative to a flat rate.
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Figure 3.11: Normalized Mean Incentive Ratios: Energy Efficiency

States and utilities are particularly grappling with the impact of time-based rates on PV
adoption since the bill savings impacts can be large. The competing objectives of advancing
climate change mitigation and advancing equity in who pays for climate change mitigation
makes these rate design trade-offs especially sensitive. Motivated by this debate, we illustrate
the potential impact of these time-based rate designs on PV adoption and welfare. As
customer PV adoption is its own area of intense debate and consideration, we intend for this
exercise to be only illustrative, not exhaustive.

Specifically, we estimate changes in south-facing PV adoption and welfare under simple
assumptions about capital costs, discount rates, and consumer behavior. In contrast to the
rest of the estimates of economic efficiency and incentive ratios in this paper, we base our
estimates on realized historical adoption patterns and allow for a gap between rational con-
sumers’ adoption decisions and observed adoption. Specifically, we use state-level estimates
of installed PV costs from LBNL’s Tracking the Sun 2022 public data (Barbose et al., 2022),5

capacity factors from NREL’s Annual Technology Baseline, and PV adoption probabilities
as a function of the payback period from Dong and Sigrin (2019). To determine optimal
adoption, we assume a real discount rate of 2% and a PV system lifetime of 25 years. For

5The report does not include cost estimates for every state. We use Wisconsin values for Illinois, Texas
values for Oklahoma, and New Hampshire values for Vermont.



CHAPTER 3. DOES TIMING MATTER? 97

Figure 3.12: Normalized Mean Incentive Ratios: Solar PV

Figure 3.13: Average Price Less Social Marginal Cost
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simplicity, we assume that the 2019 social marginal costs persist in real terms throughout
the lifetime of the PV system. When estimating realized adoption, we similarly assume that
consumers expect 2019 bill savings to continue throughout the lifetime of the PV system.

Our simplified approximation suggests that these rate design changes can have meaningful
impacts on PV adoption. Focusing on south-facing systems, we estimate a ten percentage
point reduction in PV adoption under the APS large demand charge rate. Despite the large
$/kWh bill saving increases under the OG&E event rate, we estimate that PV adoption in
OG&E increases by only a fifth of a percentage point since bill savings are still small relative
to capital costs. Adoption changes in GMP and Ameren range from 1.0 to 4.6 percentage
points, depending on the rate.

We estimate that, on average, the time-varying rates increase the economic efficiency
of south-facing PV investment decisions, primarily by reducing over-investment. Looking
across rates, the median welfare effect of switching all customers to a time-based rate is an
increase in welfare of $435 per capita. Rate-specific estimates range from a welfare reduction
of $222 per capita under GMP’s event rate to an increase of $1,676 per capita under the
APS large demand charge rate.

3.4 Discussion and Conclusion

While time-based rates can improve the economic efficiency of short-run consumption
decisions, they can also have unintended consequences on consumers’ incentives to make
long-run investments in GHG-reducing technologies. This paper quantified the impacts
of time-based rates on EE, PV, and electrification investment incentives for a diverse set
of investments and households. We also assessed the implications of these compensation
changes for economic efficiency.

Our analysis broadly shows that the average rate level matters more for bill savings and
economically efficient investment signals than the rate design. The impacts of time-based
rates on bill savings from EE and PV investments are small relative to existing variation in
average rate levels, and average variable electricity rates are far from social marginal costs
in three out of the four analyzed utility service areas. For electrification, bill savings also de-
pend heavily on the natural gas and heating fuel prices. While we did not explore the welfare
impacts of time-based rate on electrification in detail, a translation of our EE and PV results
suggests that getting natural gas and fuel heating prices close to their social marginal costs
may also have a first-order impact on the efficiency of electrification investment signals. The
implication is that regulators and policymakers can improve short-term economic efficien-
cies through time-based rates without harming long-term efficiency or climate goals by also
focusing on the alignment of average variable rates and societal costs. Strategies to achieve
more efficient variable rate levels may include adding lump-sum bill refunds or modifying
fixed charges, potentially in a way that limits the costs borne by low-income households
(Borenstein et al., 2021).
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We also find that time-based rates have highly heterogeneous effects on bill savings. Not
all energy efficiency and electrification measures will fare better or worse under a particu-
lar rate design, and the impact may differ across geographic areas. In general, bill savings
will increase if energy savings coincide with high-rate periods. We also document increased
heterogeneity of bill impacts from the same investment across households, which may compli-
cate consumers’ investment decisions. Rates with demand charges and a high price variance
lead to especially heterogeneous bill impacts. Policymakers and utilities that want to limit
consumers’ uncertainty may prefer simpler time-based rates.

If it is not feasible to set average variable rates to social marginal costs or if non-rate
adoption barriers exist, additional targeted incentives could improve welfare. In areas where
prices are well above social marginal costs, additional incentives for electrification may be
needed. In contrast, additional incentives for energy efficiency may increase welfare in areas
where prices are below social marginal costs. Even with prices at social marginal costs,
additional incentives may be beneficial. To the extent that non-rate market distortions re-
duce the adoption of energy efficiency, PV, and electrification, there may not be an average
electricity rate level that can provide efficient investment signals for all of these investment
types. Prices below social marginal costs may be second-best optimal for energy efficiency,
while prices above social marginal costs may be second-best optimal for electrification. Price
reform and targeted incentives together could achieve the efficient solution. We hope policy-
makers and utility regulators can use these results and the patterns we uncovered to inform
coupled changes in rate design and other EE, PV, and electrification policies.
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A.1 Additional Tables and Charts

Figure A1: Screenshot from MDElectricChoice.gov

Accessed October 2022.
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Figure A2: Scatterplots of Price and Key Zip Code Demographics: September 2019

Generation supply prices for residential retail choice customers in Baltimore Gas and Electric

Company service area in September 2019. Zip code tabulation area (ZCTA) demographics from

the 2019 American Community Survey. A dot represents one ZCTA. Best linear fit line and 95%

confidence intervals in red.

Figure A3: Comparison Website Click vs. New Contract vs. Renewal Contract Prices

Estimates from a regression of electricity supply price on time fixed effects, number of unique prices

a consumer has faced since last switching suppliers, and income group. Excludes standard offer

service prices. Only includes linear tariffs that are not time-differentiated. Sizes reflect the share of

the income group on that renewal number. Income definitions reflect 2019 American Community

Survey zip code tabulation area median household income.
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Figure A4: Comparison Website Click vs. New Contract vs. Renewal Contract Prices

In green, probability density of prices associated with plan-specific clicks on the MDElectric-

Choice.gov website in February 2022 in the Baltimore Gas and Electric Company (BGE) service

area. Excludes standard offer service prices. In yellow, probability density of sign-up prices for

all consumers who switched electricity suppliers in February 2022 in the BGE service area. In

blue, probability density of prices for all consumers who did not switch suppliers in February 2022

and experienced a price change between January and February 2022. Only includes prices for

consumers on linear tariffs that are not time-differentiated.

Figure A5: Sign-up Price Map of Baltimore City: September 2019

Mean sign-up prices billed to consumers who switched electricity suppliers in September 2019 by

Baltimore City zip code.
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Table A1: Difference in Differences Results

Switch

(1) (2)

Marketing x Shelter −0.027∗∗∗ −0.026∗∗∗

(0.0004) (0.0005)
Marketing 0.011∗∗∗ 0.035∗∗∗

(0.0002) (0.0001)
Shelter −0.006∗∗∗ −0.008∗∗∗

(0.0002) (0.0003)

Supplier Fixed Effects x

Observations 8,977,071 8,977,071
Adjusted R2 0.047 0.009

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors
clustered by consumer.

Table A2: Regression Discontinuity of Lifting Restrictions on Non-essential Businesses

Dependent variable:

Switch

(Search) (Marketing)

After Event (x100) 0.02 0.54∗∗∗

(0.1) (0.1)
Days Since Event (x100) −0.01∗∗∗ −0.05∗∗∗

(0.002) (0.003)
After Event x Days Since Event (x100) 0.02∗∗∗ 0.09∗∗∗

(0.003) (0.004)

Observations 349,307 226,524
Adjusted R2 0.085 0.074
Supplier Fixed Effects x x

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors clustered by consumer.
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Table A3: Results from Regressions of Marketing Presence on Income Metrics

Number of Suppliers Door-to-door Marketing

(1) (2) (3) (4) (5) (6) (7) (8)

Median Income ($1000s) −0.094∗∗∗ −0.027∗∗∗

(0.012) (0.008)
Median Income >$60k −8.702∗∗∗ −1.368

(1.365) (0.934)
Median Income >$80k −7.617∗∗∗ −2.425∗∗∗

(0.935) (0.632)
Poverty (%) 42.856∗∗∗ 11.426∗∗∗

(5.787) (4.281)
Total Population 0.0002∗∗∗ 0.0002∗∗∗ 0.0002∗∗∗ 0.0002∗∗∗

(0.00002) (0.00002) (0.00002) (0.00002)
Population Density 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)

Constant x x x x x x x x

Observations 151 150 151 150 151 150 154 152
Adjusted R2 0.304 0.774 0.209 0.759 0.304 0.778 0.260 0.770

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. OLS standard errors in parentheses.

A.2 Theory: Dynamic Model

Now, consider the representative firm’s dynamic problem if consumers are inertial. A
firms’ customers only differ by search type. Let pr1 be the firm’s renewal price for searchers,
and let pr2 be the renewal price for non-searchers. We will still use po and pm to denote
the perfectly competitive online offer price and the marketing offer price. It is also use-
ful to define the respective probabilities that a searcher and non-searcher switches given
a price- or marketing-driven attention shock, and a choice set X as prob1(switch|X) and
prob2(switch|X).

The firm’s value function of having a searcher is:

V1 =max
pr1

(pr1 − c+ βV1)(1− ζ)((1− πMprob1(switch|pr1, po, pm))1{pr1 ≤ p̄}

+ (1− prob1(switch|pr1, po))1{pr1 > p̄})

where β is the firm’s discount factor. The firm’s value function of having a non-searcher
is:

V2 = max
pr2

(pr2 − c+ βV2)(1− ζ)((1− πMprob2(switch|pr2, po, pm))1{pr2 ≤ p̄}

+ (1− prob2(switch|pr2, po))1{pr2 > p̄})

In this dynamic model, the previously perfectly competitive marketplace is no longer
perfectly competitive. The equilibrium price is no longer po = c because this would imply
positive profit from new entry as long as βV1 > 0. The free entry and exit conditions
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require the equilibrium price to satisfy po = c−βV1. The firm’s marketing problem similarly
incorporates this continuation value.

Under these assumptions, we can show that renewal prices are greater than initial offer
prices for both consumer types.

Proposition 2. p∗r1 > po and p∗r2 > pm.

Proof. See Appendix A.3.

The final proposition requires an additional assumption on the relationship between p̄,
πm, and the shape of the reservation price distribution.
Assumption 1: πM < F (p̄) and f(pr2)/(1− F (pr2)) > 1/(p− c+ βV ) ∀p > p̄.

We can think of this condition as putting a lower bound on p̄. The inattention threshold
must be sufficiently high relative to the distribution of reservation prices so that the firm is
not incentivized to provide an attention shock. The first condition also requires that there
is an increase in switching probability when price crosses the p̄ threshold. At this threshold,
the probability of an attention shock jumps from πM to one. This assumption is sufficient,
but not necessary, for the remaining propositions to hold.

Under Assumption 1, we can show p∗r2 = p̄. It follows that renewal prices are increasing
in this inattention threshold. The optimal renewal price also allows us to prove that the
probability of switching is decreasing in marketing costs since a reduction in marketing also
reduces the frequency of attention shocks. Proposition 3 formalizes these results and states
that all of the single-period results also translate to the dynamic case under Assumption 1.
Here, we interpret the single-period equilibrium value average price p as the average sign-up
price.

Proposition 3. Under Assumption 1, ∂pr1
∂p̄
, ∂pr2

∂p̄
> 0, the probability of switching decreases

with λ, and Proposition 1 holds under the dynamic model assumptions.

Proof. See Appendix A.3.

Note that the average sign-up price comparative static result is not necessarily robust
to relaxing Assumption 1 and introducing heterogeneous inertia. The key condition for
this assumption to hold is that p∗m > po or, equivalently, pm − c − β(V2 − V1) > 0. In
the structural model, we will also allow for persuasive marketing, modeled as decision error
with a non-zero mean, which makes this condition more likely to hold. The other two key
drivers embedded in this expression are inattention thresholds, p̄1 and p̄2, and switching
probabilities. The expression is decreasing in p̄2 − p̄1. Search frictions and inattention being
positively correlated would tend to decrease the probability that the inequality holds. The
probability of switching given an attention shock may also vary across consumer types, but
these probabilities are both likely to be very close to one given p̄ >> c and modest preferences
and decision error. If we take a step back from the assumption of a single market, we notice
there may be a fourth consideration. Proposition 1 tells us that marketing level decreases
with α, and the proof of Proposition 3 shows that switching increases with the level of
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marketing. If α varies across markets, we would expect switching to decrease with α. Hence,
the effect of a higher α in one market than another on mean sign-up prices is ambiguous.
If inattention levels are similar across the two markets, we would still expect lower sign-up
prices in the market with a higher portion of searchers.

By similar logic, the signs of the effects of λ and α on overall billed prices are ambiguous.
More marketing increases average sign-up prices, but it also increases switching and, thereby,
reduces the probability that a consumer will pay the renewal premium in any given period.
The overall impact on average billed prices depends on the relative strengths of these two
opposing effects. This suggests that if search frictions or marketing level and inattention are
higher in one area than another, the difference in the average prices in these two areas will
be smaller than that of sign-up prices and renewal prices.

A.3 Proofs

Proposition 1. Let R∗ be the equilibrium proportion of non-searchers who are active in the
market, and let p∗ be the average price in the market. The following comparative statics hold:
∂M∗

∂λ
, ∂M

∗

∂α
, ∂R

∗

∂λ
, ∂p

∗

∂λ
, ∂p

∗

∂α
< 0.

Proof. We begin with the marketing level comparative statics. Differentiating the marketing
level first-order condition with respect to λ produces:

0 = C ′(M∗(λ)) + λC ′′(M∗(λ))
∂M∗(λ)

∂λ

Rearrange and simplify this expression to get:

∂M∗
i

∂λ
= − C ′(Mi)

λC ′′(Mi)
< 0

by convexity of the marketing costs and the second order condition of the marketing level
problem.

Now, differentiate the marketing level first order condition with respect to α:

−(p∗m − c)D(p∗m) = λC ′′(M∗(α))
∂M∗(α)

∂α

which we an rearrange to find:

∂M∗

∂α
=

(p∗m − c)D(p∗m)

λC ′′(M∗)
< 0

since p∗m > c and D(pm) > 0 ∀pm.
Next, we turn to market participation. First, observe that the number of searchers in

the market does not change with λ. The percent of non-searchers consumers who switch to
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the outside option is ζ. The percent of non-searchers on the outside option who enter the
market is D(pm)πM . In equilibrium, the probability that a non-searcher is in the market is,

therefore, R∗ = D(pm)πM

ζ+D(pm)πM
. Differentiating with respect to λ produces:

R∗

∂λ
=
D(pm)

∂πM

∂λ
(ζ +D(pm)πM)−D(pm)

∂πM

∂λ
D(pm)πM

(ζ +D(pm)πM)2
=

D(pm)ζ
∂πM

∂λ

(ζ +D(pm)πM)2
< 0

since ∂M
∂λ

< 0 implies ∂πM

∂λ
< 0. Because the number of non-searchers is decreasing in λ

and the number of searchers is constant in λ, the ratio of non-searchers to searchers and,
therefore, the percent of all consumers in the market who are non-searchers, is decreasing in
λ.

Turning to α, the ratio of non-searchers to searchers in the market is:

(1− α) D(pm)πM

ζ+D(pm)πM

α(1− F (c))

We differentiate this expression with respect to α:

∂
(1−α)

D(pm)πM
ζ+D(pm)πM

α(1−F (c))

∂α
=

D(pm)πM

ζ+D(pm)πM
(1− F (c))

(α(1− F (c)))2
< 0

Finally, we turn to average price in the market, which we can write as

p = c+ (p∗m − c)
(1− α) D(pm)πM

ζ+D(pm)πM

(1− α) D(pm)πM

ζ+D(pm)πM
+ α(1− F (c))

Let t2 = D(pm)πM

ζ+D(pm)πM
and u = − D(pm)πM

ζ+D(pm)πM
+ (1− α) D(pm)ζ

(ζ+D(pm)πM )2
∂πM

∂α
. Then

∂p

∂α
= (p∗m − c)

u× ((1− α)t2 + α(1− F (c)))− (u+ (1− F (c)))((1− α)t2)

((1− α)t2 + α(1− F (c)))2

= (p∗m − c)
uα(1− F (c))− (1− F (c))(1− α)t2

((1− α)t2 + α(1− F (c)))2
< 0

To see the last inequality, notice that the denominator is positive and the numerator is
negative since ∂M

∂α
< 0 implies ∂πM

∂α
< 0 and, therefore, ∂u

∂α
< 0.

Similarly, let v = (1− α) D(pm)ζ
(ζ+D(pm)πM )2

∂πM

∂λ
. Then

∂p

∂λ
= (p∗m − c)

v × ((1− α)t2 + α(1− F (c)))− v((1− α)t2)

((1− α)t2 + α(1− F (c)))2

= (p∗m − c)
vα(1− F (c))

((1− α)D(pm)πM + α(1− F (c)))2
< 0

since ∂M
∂λ

< 0 implies ∂πM

∂λ
< 0.
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Proposition 2. p∗r1 > p and p∗r2 > pm.

Proof. Note that searchers must prefer p to the outside option by revealed preference. Sup-
pose p∗r1 ≤ po. Then p∗r1 ≤ c. To see this, p∗r1 > c would imply V1 > 0, which would imply
po < c, which is a contradiction to p∗r1 ≤ po. Free exit excludes the case where p∗r1 < c, since
this would cause the firm to have a negative renewal value. This implies p∗r1 = p = c and
V1 = 0. In this case, the partial derivative of the firm’s renewal problem with respect to p∗r1
is

(1− ζ)(1− πMprob1(switch|pr1, c))− (c− c)(1− ζ)πM
∂prob1(switch|pr1, c)

∂pr1
= (1− ζ)(1− πMprob1(switch|pr1, c)) > 0

since πM ≤ 1 and the probability of switching is less than one if the consumer is indifferent
between the two plans. This is a contradiction to p∗r1 = c being the optimal renewal price.
Thus, p∗r1 > p.

For non-searchers, if p∗r2 ≥ p̄, then the claim holds trivially. If p∗r2 < p̄, then p∗r2 must
satisfy the first order condition:

(1− πMprob2(switch|p∗r2, pm, po))− (p∗r2 − c+ βV2)πM
∂prob2(switch|p∗r2, pm, po)

∂pr2
= 0

Dividing by πM and rearranging produces:

prob2(switch|p∗r2, pm, po)) + (p∗r2 − c+ βV2)
∂prob2(switch|p∗r2, pm, , po)

∂p∗r2
= 1/πM

We can write the marketing price first order condition in a similar format:

π′
M(p∗m) = prob2(switch|pr2, p∗m, po)) + (p∗m − c+ βV2)

∂prob2(switch|pr2, p∗m, po)
∂p∗m, po

= 0

Together, these two equations imply π′
M(p∗r2) < 0. By concavity of the profit function, this

implies p∗r2 > p∗m.

Proposition 3. Under Assumption 1, ∂pr1
∂p̄
, ∂pr2

∂p̄
> 0, the probability of switching decreases

with λ, and Proposition 1 holds under the dynamic model assumptions.

Proof. Given Proposition 2, the probability that a searcher switches given any attention
shock is one. The firm’s renewal pricing problem for non-searchers is, therefore,

max
pr1

(pr1 − c+ βV1)(1− ζ)(1− πM)1{pr1 ≤ p̄}

This expression is increasing in pr1 through p̄. At p̄, net present value profit is positive since
pr1 > c−βV1 by Proposition 2 and πM < 1 by Assumption 1. For pr1 ≥ p̄, net present value
profit is zero. Thus, p∗r1 = p̄.
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Similarly, Proposition 2 implies that the probability that a non-searcher switches given
a marketing attention is one, so the firm’s renewal pricing problem for non-searchers is

max
pr2

(pr2 − c+ βV2)(1− ζ)((1− πM)1{pr2 ≤ p̄}+ (1− prob2(switch|pr2))1{pr2 > p̄})

For pr2 ≤ p̄, this expression is increasing in pr2. By Assumption 1, the net present value
profit for pr2 > p̄ is less than for the case where pr2 = p̄. Thus, p∗r2 = p̄.

It follows that ∂pr1
∂p̄
, ∂pr2

∂p̄
> 0.

Given this result, the equilibrium weighted average probability across types of a consumer
switching in a given period is

1− ((1− πMprob1(switch|p∗r1, po, pm))α + (1− ζ)(1− πMprob2(switch|p∗r1, pm))(1− α))

The partial derivative with respect to λ is

(prob1(switch|p∗r1, p)α + (1− ζ)prob2(switch|p∗r1, p)(1− α))
∂πM
λ

< 0

since ∂πM

λ
must have the same sign as ∂M

λ
. Hence, switching probability decreases with λ.

Turning to the comparative statics in Proposition 1, the proofs of
∂M∗

i

∂λ
< 0 and ∂M∗

∂α
< 0

are analogous to the proofs in Proposition 1 and skipped here.
The expression for the equilibrium ratio of non-searchers to searchers in the market and

the resulting proof remains unchanged. By revealed preference, searchers and non-searchers
in the market have reservation values below po and p∗m, respectively. Hence, the probability
of switching to the outside option conditional on being in the market is still ζ, and the
probability of switching to the market conditional on being on the outside option is zero for
a searcher and D(pm)πM for a non-searcher.

To prove ∂p
∂α
, ∂p
∂λ
< 0, first notice that Proposition 2 and p∗r1 = p∗r2 = p̄ imply V1 = V2 ≡ V .

We have already shown that po = c−βV . Free disposal requires p∗m > c−βV since otherwise
marketing would reduce net present value profit. Thus, we still have p∗m > po in this dynamic
setting. Combining this fact with the fact that the market consumer type weights have not
changed, the single-period proof can be easily altered to include a continuation value without
changing the comparative static results.

Thus, Proposition 1 translates to the dynamic case.

A.4 Alternative Theories

Underpayment Risk

Low-income consumers may be particularly likely to underpay their bills. In many in-
dustries, firms may need to charge these high-risk consumers higher prices than low-risk
consumers to get the same level of expected profit or risk-adjusted utility. In the Maryland
retail electricity choice markets, however, suppliers do not directly bear the risk of their
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consumers’ underpayment. Through a program known as “Purchase of Receivables” (POR),
the PSC requires Baltimore Gas and Electric Company to purchase suppliers’ receivables at
a regulated industry-wide percentage discount. This discount was zero during the analysis
timeframe. Whether or not a consumer paid, BGE paid their supplier exactly the amount
the supplier charged.

The PSC updates the POR discount periodically. Between updates, a supplier’s own
consumers’ underpayment will not affect its revenues at all. In the long run, some or all
of the historical underpayment may get collected from all suppliers in the form of a higher
POR discount. Since the PSC sets one discount for all suppliers in the BGE territory, a
supplier that is small relative to the market bears a negligible reduction in profits due to its
own consumers’ underpayment.

Quantity- and Time-differentiated Rate Designs

Some suppliers charge consumers quantity-differentiated rates, such as two-part tariffs or
rates that differ by time of day or day of week. If differences in electricity usage cause low-
income consumers to benefit relatively less from these types of rate designs, they may face
relatively high bills despite having identical prices. However, in the BGE service area, very
few consumers are on quantity- or time-differentiated rates.1 During the analysis timeframe,
an average of 95% of consumers faced linear per-kWh rates, 5.0% had plans with fixed
charges, and 0.006% were on time-differentiated rates.2

I restrict the analysis to consumer-months where consumers faced a flat per-kWh rate. I
also drop about 3.9% of consumer-months who are on budget billing since their BGE bills
may differ from the amount they owe.3 This applies to all results presented in other sections
of this paper, so quantity- and time-differentiated rates cannot explain the income-price gap
pr other price heterogeneity demonstrated in Section 1.4.

Cost to Serve

Geographic-driven Variation in Cost to Serve

A hypothesized explanation for the income-price gap in other markets is that the price gap
reflects real differences in marginal costs across geographic areas as opposed to differences in
markups. However, per-kWh marginal electricity costs do not differ much across geographic
locations within the BGE service area. The entire BGE service area is located within the

1The low incidence of quantity- or time-differentiated rates may be partly due to the billing arrangement
between the suppliers and BGE. These type of rate designs appear more common in the Texas retail electricity
market.

2Estimates based on a subset of 94.4% of consumer-months for which I observe the full rate structure.
3Budget billing is an attempt to reduce the month-to-month variability in bill amounts by smoothing

an expected annual bill over months of the year. While budget billing for transmission and distribution
service is mandatory for BGE customers receiving low-income subsidies, there is not a similar mandate for
electricity supply.
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same transmission zone and locational deliverability area within the PJM market, so there
is no variation in capacity costs and limited variation in transmission-related costs within
the BGE service area.

Geographic variation in marginal costs primarily comes from transmission constraints,
congestion, and losses, but this variation is small. To explore geographic variation in
transmission-related costs, I analyzed locational marginal prices (LMPs). These are market-
clearing prices that reflect the cost of energy, transmission losses, and transmission conges-
tion. I used SNL Financial to identify locations and prices of nodes. There were 278 nodes
available on SNL Financial in July 2022 with hourly data for the full analysis timeframe that
appeared to lie within the BGE service area. Of these nodes, the mean locational marginal
price had a standard deviation of $0.001/kWh and a range of $0.007/kWh. Excluding points
near the border of the BGE service area, this range reduces to $0.003/kWh. Within the Bal-
timore Metropolitan region, this range is only $0.001/kWh. Thus, marginal cost variation
is very small and not sufficient for explaining price differences.

The electricity tax in Baltimore City also causes differences in post-tax marginal costs
within and outside of Baltimore City. The income-price gap persists within Baltimore City
itself.

Consumption-driven Variation in Cost to Serve

Per-kWh marginal costs do not vary with a consumer’s consumption level in a given
time period, but they may vary with the timing of a consumer’s electricity consumption.
A supplier’s marginal costs differ by time of a day and day of year. Consumers with usage
that is relatively more coincident with the aggregate system electricity usage should be
relatively more costly to serve. I do not have data on consumers’ sub-monthly electricity
usage. Literature and external data sources suggest that, if anything, low-income consumers
use relatively less of their electricity during high-cost hours.

The highest cost hours in the PJM wholesale electricity market typically occur on hot
summer days with especially high levels of air conditioning. We may, therefore, expect con-
sumers who use a lot of electricity for air conditioning relative to other uses to be particularly
costly to serve. According to data from the U.S. Energy Information Administration’s 2015
Residential Energy Consumption Survey, air conditioning usage comprised 8.0% and 9.5% of
household annual electricity, on average, for households with median household income be-
low and above $60,000, respectively. In the South region, these shares are 15.4% and 16.6%,
respectively. More generally, Zethmayr and Makhija (2019) study differences in electricity
usage patterns across income groups in Illinois. They find that low-income consumers in ur-
ban areas have particularly flat electricity usage patterns that are particularly non-coincident
with aggregate system electricity usage and costs.

Although marginal costs do not vary with a consumer’s consumption level in a given
time period, it is possible that average costs of serving a customer do. Suppliers may face
ongoing fixed costs after a customer signs up, such as administrative and customer service
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costs. If suppliers recover some or all of these fixed costs in a variable price,4 they would need
to charger relatively higher prices to lower-usage customers to recover the same fixed costs.
Specifically, we would expect the average incremental cost to serve a marginal customer to
be the sum of the supplier’s marginal cost and average fixed costs. Average price may be
higher than this average incremental per-customer cost due to marketing costs and other
fixed costs that do not vary with number of customers. This suggests that we can recover
an estimate of the fixed cost to serve a customer from the following two-stage least squares
model:

Pijt = β0 + β1MCt + β2(1/(Ûsage)ijt)

where Pijt is the average price in $/kWh for consumer i with supplier j in time period t,
MCt is estimated marginal cost in period t (see Section 1.3 and Appendix A.7 for estimation

details), β0 is a constant that aims to capture all other fixed costs per kWh, and (Ûsage)ijt
is predicted electricity usage in kWh. Our coefficient of interest is β2. I estimate the model
using one-year lagged electricity usage as an instrument for current usage to address potential
simultaneity that would otherwise if consumers are not perfectly price inelastic. I also
estimate a version of this model controlling for supplier fixed effects.

Using this model and the BGE billing data, I estimate incremental fixed costs per cus-
tomer to be $0.16 per customer-month. To put the number in the context of the price gap,
if there were no relevant differences across households in low- and high-income areas except
for electricity usage level, we would expect to see a price gap of less than one hundredth of a
cent per kWh. Fixed costs per customer may be especially small in this industry since BGE
handles billing. Survey results also suggest that many consumers do not know the name of
their supplier (see Appendix A.9), which may reduce customer service costs.

I find additional evidence that fixed costs are not driving the income-price gap. First,
the correlation between residualized prices and customer-specific usage after controlling for
time fixed effects is small (r =-0.089). Second, the variable price income gap persists in the
restricted subset of consumers on two-part tariffs. Third, the average cost explanation is
inconsistent with the finding of more direct marketing in low-income areas since suppliers
should find these consumers relatively less profitable.

Preferences for Premium Attributes

Electricity is often considered a homogeneous good. However, retail electricity suppliers
can differentiate their products by the way they charge consumers for this electricity or by
bundling the electricity with other goods and services. Most commonly, suppliers bundle
electricity with renewable energy certificates or financial products.

One possible explanation for the price gap is that low-income households have a higher
willingness to pay (WTP) for certain bundled products than high-income households. To
explore this theory, I analyze clicks on the MDElectricChoice comparison website. Analysis

4The term “variable price” in this context refers to the charges that vary with a consumer’s electricity
usage. The term does not take the industry meaning of a price that may change each month.
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results will translate to the more general retail choice market if the preferences of consumers
who use the comparison website are representative of other consumers who live in similar
areas and are active in the retail choice market. Overall, households in low-income areas
click on lower -priced plans, on average, than do consumers in high- and moderate-income
areas (t = 2.2). The mean price difference is $0.0038/kWh.

To further explore differences in WTP for bundled products, I perform a conditional
logit analysis separately for consumers with IP addresses that map to zip codes with annual
median household income below and above $60,000. For this exercise, I consider the market
to only include people who clicked on a plan on the website during the six-month period I
analyze. I estimate the models with and without supplier fixed effects. Specifically, I assume
the following latent utility model:

uijt = αgpjt + βgXjt + δj + ϵijt

where uijt is consumer i’s latent utility for plan j in time t, g denotes income group, pjt is plan
price, Xjt is a matrix of plan characteristics, δj are supplier fixed effects (when included),
and ϵijt are independent and identically distributed Extreme Value 1.

I do not instrument for price. The identifying assumption with supplier fixed effects is
that unobservable quality only varies across suppliers, not across plans offered by the same
supplier. Without supplier fixed effects, the identifying assumption is that consumers who
use the website do not consider any supplier-specific attributes or any plan-related attributes
that are not listed.

Whether the preferred specification includes supplier fixed effects or not may vary by
attribute. In general, supplier fixed effects control for any systematic differences in quality,
such as customer service quality, across suppliers. However, firms also specialize in some
attributes, such as being a “green” or “renewable” company. The majority of suppliers
offer only non-renewable products or only 100% renewable products. Similarly, only three
suppliers offer a plan with and a plan without a financial incentive, so it is difficult to identify
WTP for these incentives in a model with supplier fixed effects.

Table A4 displays the implied willingness to pay estimates. Estimates are in cents per
kWh. The stars reflect significance levels of the logit coefficients. None of the differences
between income groups in WTP for attributes are statistically significant at the 5% level.
With Bonferroni multiple hypothesis correction, none of the differences are significant at any
conventional level. Point estimates suggest that, if anything, high-income households have
larger WTP for almost all attributes. For example, I estimate that high-income households
are willing to pay $0.003-0.007/kWh (44-62%) more than low-income households to get an
100% renewable plan instead of a hypothetical 0% renewable plan.

There is one attribute for which I estimate a higher WTP in low-income areas than in
high-income areas. Excluding supplier fixed effects, low-income consumers seem to have a
stronger preference for avoiding fixed charges. This is consistent with low-income house-
holds using less electricity, on average, than high-income households. The coefficients imply
that a low-income household would be indifferent between a marginal increase in their fixed
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Table A4: Estimated Willingness To Pay For Product Attributes by Income Group

Attribute WTP by Median Household Income (cents/kWh)
<$60k >$60k p-value <$60k >$60k p-value

Contract Term (months) 0.050 0.148∗∗∗ 0.08 -0.002 0.017∗∗ 0.17
(0.050) (0.027) (0.012) (0.006)

Renewable (%) 0.012 0.019∗∗∗ 0.55 0.007∗∗∗ 0.010∗∗∗ 0.17
(0.011) (0.005) (0.002) (0.001)

Cancellation Fee {0,1} -0.820 -0.053 0.53 0.218 0.293∗∗ 0.75
(1.097) (0.541) (0.213) (0.110)

Introductory Offer (bool) -0.587 -1.150∗ 0.63 -1.006∗∗∗ -1.326∗∗∗ 0.28
(1.046) (0.501) (0.255) (0.147)

Financial Incentive (bool) -33.2 -31.8 1.00 0.446 0.778∗∗∗ 0.34
(19646) (4850) (0.303) (0.172)

Monthly Fee ($/month) -0.066 0.160∗∗ 0.07 -0.125∗∗∗ -0.080∗∗∗ 0.17
(0.106) (0.063) (0.029) (0.015)

Supplier Fixed Effects Yes Yes No No
Estimates of βg/αg from the specified conditional logit model. Standard errors in parentheses were

calculated using the Delta method. “bool” indicates that all observations take on values of zero or one.

P-values come from a test of equality of willingness to pay values across income groups. Stars reflect

significance of the βg parameters with significance levels ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

and variable charges at a usage of 800 kWh per month. For a moderate- or high-income
household, this estimate is 1,247 kWh per month. These estimates are greater than the
mean electricity usage for each of these two groups, which suggests that a marginal reduc-
tion in fixed charges and a commensurate increase in variable rates should lower expected
bills. Hence, aversion to fixed charges should be even larger under rational and risk-neutral
preferences.

All together, I do not find much evidence that preferences can explain the income-price
gap we observe. If anything, ignoring differences in preferences seems most likely to lead
to an underestimate of the consumer welfare gap between low- and high-income households
since low-income households appear to be relatively more focused on price than premium
attributes. The one potential exception is fixed charges, and I limit the empirical analyses
in this paper to plans without fixed charges.

Subsidies

The government offers some low-income consumers electricity bill subsidies. If these
subsidies change low-income consumers’ price responsiveness and suppliers have some ability
to discriminate on this price responsiveness, then subsidies may be able to explain an income-
price gap.

However, the electricity bill assistance subsidies in Baltimore are generally lump-sum
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transfers that do not vary with electricity price.5 The possible exception is the Arrearage
Retirement Assistance Program, which provides subsidies that vary with households’ out-
standing arrearage, or underpaid amount. Arrearage amount could conceivably vary with
price, but grants through this program are capped at $2,000 over seven years, which is less
than the vast majority of households’ total electricity bills. Above this limit, a higher price
will not translate into a larger subsidy.

The income-price gap persists when I exclude subsidy recipients. Not all eligible house-
holds receive the electric subsidies since households have to apply to the programs. In the
Baltimore area, I observe whether a household applied for a low-income subsidy program.
Excluding these applicants, I estimate a mean income-price gap of $0.0090/kWh, which is
only slightly smaller than the overall $0.0094/kWh income-price gap.

I find that low-income program applicants who live in low-income areas have significantly
lower prices than non-applicants in those areas, while low-income program applicants who
live in higher-income areas have significantly higher prices than non-applicants. If I look only
at areas with median household income above $120,000, where few suppliers market in any
zip code, the mean price of low-income subsidy applicants and non-applicants do not differ
significantly. The point estimate of the difference is less than $0.0001/kWh. These results
are consistent with a story of low-income subsidy applicants being a selected group that is
particularly attentive to electricity price or has particularly low search frictions (e.g., a larger
α) while also being more likely to live in areas within zip codes that receive a relatively large
amount of marketing conditional on income bin. A shown in Figure 1.10, the variance in
marketing presence is much greater in the $80-100k median household income bin than in
the under $60k or over $120k bins.

These results suggest that low-income subsidies are not a key driver of the income-price
gap. This is consistent with the results of Byrne et al. (2022) who find no evidence that
suppliers price discriminate based on low-income subsidy recipient status in Australia.

Negotiation

Consumers can negotiate their price with suppliers. If low-income households are less
willing to negotiate or have less negotiating power than high-income households, this could
explain the income-price gap. I do not find any evidence for this theory. Among survey
respondents, there is not a statistically significant difference across low- and high-income
households in the probability of having ever negotiated price (χ2 = 0.3; see Table A14).
Recall that negotiation is not very common in the market, with 66% of surveyed retail
choice participants reporting that they had never negotiated their electricity price.

5Subsidy amounts vary with household income, type of fuel used for heating, and electricity usage.
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A.5 Structural Model Pre-processing Steps

This section describes the pre-processing steps outlined in Section 1.8. It covers classifi-
cation of consumer types and marketing- versus search-related sign ups, estimation of mean
willingness to pay for premium product attributes, and estimation of suppliers’ net present
value profit from each remaining customer at the end of the analysis period.

Marketing Sign Ups, Search Sign Ups, and Consumer Types

In the first pre-processing step, I approximate the distributions of marketing- and search-
related sign-up prices and use these to identify the most likely consumer type for each
consumer. The key assumptions underlying this approach are that consumer types are fixed
and that each of the underlying price distributions are roughly symmetric around their
respective modes.

For each month, I first identify the two modes of the sign-up price distribution. For
an initial estimate of the marketing and search distributions, I assume all overlap of these
distributions occurs between the two modes. In addition, rational expectations implies that
each underlying distribution should be symmetric around the mode. I, therefore, assume the
distribution of search-related sign ups with prices above the search-related modal price is a
reflection of the distribution below the modal price. I similarly assume the distribution of
marketing-related sign ups below the marketing model price is a reflection of the distribution
above this modal price. I smooth the resulting distributions using a kernel density estimator
with a triangular kernel and a bandwidth equal to the maximum Silverman benchmark
bandwidth across time periods. I normalize each of these distributions to integrate to one.

For each consumer who signed up with a supplier at least once during the analysis time-
frame, I calculate the probability of observing the realized sign-up prices if the consumer were
each a searcher and a non-searcher using these assumed probability distributions. Specifi-
cally, I estimate:

prob(searcher) = Πtfst(pt)
Nst

Nst +Nmt

and

prob(non− searcher) = Πtfmt(pt)
Nmt

Nst +Nmt

where Nst and Nmt are the total estimated number of search-related and marketing-related
sign ups at time t, respectively, and fst and fmt are the respective probability distributions
of search-related and marketing-related sign-up prices. These are posterior distributions
conditional on sign up method. I assign each consumer to the type (i.e. searcher or non-
searcher) with the higher probability.

For consumers who did not sign up with a new supplier during the analysis timeframe,
I perform a matching algorithm to estimate consumer type. I match each consumer in this
category to a consumer with an assigned type by matching on the observables of price,
supplier in the first period of the analysis timeframe. For consumers with one or more
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exact matches on these two observables, I select the modal type of consumer matches. For
consumers without an exact match, I perform nearest-neighbor matching and select the type
of the consumer that had the same supplier and closest price in the first period. The implicit
assumption is that these consumers initially signed up in a similar setting and timeframe
and that any future switching decision differences come from discrepancies in realizations of
random marketing or attention shocks. The overlap assumption here is that the probability
that a consumer will switch suppliers in the subsequent three years is strictly between zero
and one for all consumers in the market at the beginning of the analysis period.

After assigning a Type to each consumer, I revise my estimates of search- and marketing-
related sign-up price distributions. For a given month, the final search-related sign-up price
distribution is the distribution of sign ups from all searchers in that month. Similarly, the
final marketing-related sign-up price distribution in each month is the distribution of sign
ups from all non-searchers. These distributions enter into the likelihood function used to
estimate the demand primitives in Section 1.8.6

Truncated Profit

As a potential solution to selection bias due to truncation at the end of the analysis
period, Berry and Pakes (2000) suggest creating a non-parametric estimate of net present
continuation value based on the state. I follow this approach and estimate net present value
continuation profit for each consumer active on choice in February 2022. To get this estimate,
I combine a cross-sectional non-parametric model of continuation profit for consumers active
in February 2019 and a time-series non-parametric model of how next-period profit varies
with expected marginal costs.

The cross-sectional model estimates the net present value profit of consumers on retail
choice in February 2019 over the subsequent three-year period. I aim to estimate this net
present value as some function of the consumer observables total February 2019 bill, months
since signing up with the supplier, consumer type, and geography. Using zip code for the
geography variable would raise concerns about overfitting for zip codes with few consumers
on choice in February 2019. At the other extreme, using income group as the geography
may aggregate over important heterogeneity within an income group. As an intermediate
solution, I use k-means clustering to cluster zip codes into six clusters based on zip code
population density, household income, poverty rate, citizenship rate, high school completion
rate, centroid latitude and longitude, percent of households who rent their homes, percent of
the population who identify as Black, and percent of the population who identify as Latino
and Hispanic.

I use Least Absolute Shrinkage and Selection Operator (LASSO) regression to deter-
mine the model specification for predicting February 2019 continuation value. I allow for

6These are also the distributions used in the regression discontinuity and differences-in-differences analy-
ses in Section 1.4. The results are robust to identifying the saddle point between the two modes and assigning
all prices below this price cutoff to search-related sign ups and all prices above this price to marketing-related
sign ups.
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third-order polynomials and first-order interaction terms. Table A5 presents the final model
specification and results. Ninety eight percent of consumers in the excluded cluster live in zip
codes with median annual household income below $60,000. Cluster 6 has 14% of consumers
in this category, and the other clusters have none. Results suggest that continuation profit
is greater for consumers who start with higher bills and live in more privileged areas. The
geographic result may be due to a combination of marketing activity and electricity usage
differences.

Let V be the discounted net present value of expected profit for three years after the
end of the analysis timeframe (T ), and let X = {Bill, Type, Cluster,Duration}. The model
presented in Table A5 provides estimates of E[V |X, c2] where c2 is the vector of all expected
future marginal costs as of February 2019. We are looking for E[V |X, cT ]. I use the following
approximation:

E[V |X, cT ] ≈ E[V |X, c2] + E[V |cT ]− E[V |c2]

This is a decent approximation if the impacts of consumer attributes X and expected
marginal costs on net present value profit are predominantly orthogonal.

To estimate E[V |cT ] and E[V |c2], I estimate the relationships between marginal costs
and each of period profits and switching probability using temporal marginal cost variation
across the full analysis period. I again use LASSO to determine the functional forms of
these relationships, allowing for up to a fifth-order polynomial approximation. I settle on a
cubic specification for switching probability and a fourth-order polynomial for period profit.
In a longer time series, it may be prudent to also control for month of year fixed effects. I
do not add this control given the small sample size of each individual month, but the two
relevant periods, 2 and T , fall on the same month of year. I use one-month ahead expected
marginal costs to estimate the model and then calculate predicted period profit and switching
probabilities for each consumer using expected future marginal costs as of February 2019 and
February 2022. I use these predicted values to estimate net present value profit as

E[V |ct] =
t+36∑
s=t+1

δs(Predicted Profit)s(
s∑

τ=t

(1− (Switch Predict)τ )
s−1)

where δ is the firm’s discount factor, (Predicted Profit)s denotes predicted period profit
in time s, and (Switch Predict)τ is predicted switching probability in time τ . Using this
method, I estimate that the predicted continuation value of having a consumer in February
2022 was $183 less than the predicted continuation value of having a consumer in February
2019.

A.6 Results from Other States

This section presents descriptive evidence that some key stylized facts presented in Sec-
tion 1.4 also hold in several other Northeast U.S. residential electricity markets. Pricing data
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Table A5: Prediction Model for 3-year Continuation Profit Post February 2019

Net Present Value 3-year Continuation Profit

Duration (months) 0.408∗∗

(0.165)
Supply Bill ($) 1.233∗∗∗

(0.059)
Non-searcher −47.770∗∗∗

(6.139)
Cluster 2 35.500∗∗

(13.870)
Cluster 3 −13.156

(16.449)
Cluster 4 33.500∗∗

(13.238)
Cluster 5 45.448∗∗∗

(13.962)
Cluster 6 21.040∗∗

(8.226)
(Supply Bill)x(Cluster 2) 0.719∗∗∗

(0.080)
(Supply Bill)x(Cluster 3) 0.577∗∗∗

(0.089)
(Supply Bill)x(Cluster 4) 0.272∗∗∗

(0.083)
(Supply Bill)x(Cluster 5) 0.019

(0.096)
(Supply Bill)x(Cluster 6) 0.445∗∗∗

(0.065)
Constant 121∗∗∗

(9.92)

Observations 46,488
Adjusted R2 0.222

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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for these analyses come from Central Maine Power and from public Eversource data in Con-
necticut Public Utilities Regulatory Authority dockets 18-06-02, 06-10-22, and 21-11-01, New
York Public Service Commission Case 15-M-0127, Rhode Island Public Utilities Commission
Docket 5073, the Office of the Attorney General of the Commonwealth of Massachusetts
(MA AGO 2018), and the Office of Illinois Attorney General (Satter, 2020).

Data richness vary by location. I have household-level panel billing data for Central
Maine Power in Maine from November 2018 through October 2021.7 Eversource Connecticut
data are repeated monthly cross-sections of electricity supply prices that suppliers billed to
consumers on retail choice. For many months between October 2018 and March 2019, these
data are broken down by whether the consumer signed up with a new supplier that month and
whether the consumer is on a low-income program that protects them from power shutoffs
(“hardship status”). For two months each year between 2011 and 2018, the pricing data
are broken down by zip code. In all other states, I have summary statistics of mean price
or retail choice participation rates for various subsets of the population. In New York and
Chicago, I have zip code-level statistics. In Massachusetts and Rhode Island, statistics vary
by low-income subsidy status.

Large price heterogeneity, with relatively high prices in
low-income and other marginalized communities

I find evidence that large price heterogeneity exists in Connecticut and Maine. Looking
across all months, the standard deviations in residualized prices after controlling for time
fixed effects are $0.027/kWh in Connecticut and $0.028/kWh in Maine. In Connecticut,
a quarter of consumers have prices at least 23% higher than the median price, and 5% of
consumers have prices 58% higher than the median price.8 These percentage price differences
are 9% and 38%, respectively, in Maine. Figures A6 and A7 show cross-sections of these
price distributions.

7Data came in three separate annual panels.
8These values reflect the mean and median percentage price differences across months of the analysis

timeframe.
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Figure A6: Prices by Zip Code Median Household Income (June & Sep 2018): Connecticut

Probability density of generation supply prices for residential retail choice customers in Eversource

service territory in Connecticut by 2019 American Community Survey zip code tabulation area

median annual household income.
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Figure A7: Prices by Zip Code Median Household Income (Sep 2019): Maine

Probability density of generation supply prices for residential retail choice customers in Central

Maine Power service territory by 2019 American Community Survey zip code tabulation area

median annual household income.

In Connecticut, households with low-income protections, households in low-income areas,
and households in other types of marginalized communities pay especially high prices. The
average price paid by hardship customers in the retail choice market was consistently higher
than that of non-hardship customers, as shown in Figure A8.9 Looking across zip codes,
prices in zip codes with median annual household income below $60,000 were $0.005/kWh
higher, on average, than prices in zip codes with median annual household income above
$80,000. As shown in Figure A9, this income-price gap is even larger on sign up. The
mean sign-up price difference across low- and high-income zip codes is $0.017/kWh. Look-
ing across marginalized communities more broadly, Figure A10 shows coefficients and 95%
confidence intervals from regressions of price on median household income bin and other
zip code demographics, controlling for time fixed effects and clustering standard errors by
supplier. Households pay especially high prices in areas with median zip code household
income below $10,000 as well as areas with a large share of non-citizens, residents without
high school diplomas, and Black, mixed race, and Latino and Hispanic residents.

9Shortly after this period, hardship customers were banned from the Connecticut retail choice market.
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Figure A8: Mean Retail Price by Hardship Status: Connecticut

Mean electricity supply prices billed in Eversource’s Connecticut service area by month and whether

the consumer was awarded hardship status. Income definitions reflect 2019 American Community

Survey zip code tabulation area median household income.
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Figure A9: Sign-up Prices by Zip Code Median Household Income (June & Sep 2018):
Connecticut

Note: Probability density of generation supply sign-up prices for residential retail choice customers

in Eversource’s Connecticut service territory for consumers who switched retail suppliers. Distri-

butions by 2019 American Community Survey zip code tabulation area median annual household

income.
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Figure A10: Coefficient Estimates from Regressions of Price on Key Zip Code Demographics

Coefficients and 95% confidence intervals from regressions of electricity supply price on time fixed

effects and zip code tabulation area (ZCTA) demographics from the 2019 American Community

Survey. Residential customer accounts on retail choice in Eversource’s Connecticut service territory

only.

In Maine, average prices are higher in low-income areas than high-income areas condi-
tional on contract number (see Figure A11), but not overall. As shown in Section 1.7, this
can be rationalized by the model presented in this paper. Marketing puts downward pressure
on average prices by causing more frequent switching in low-income areas.

Summary statistics from Massachusetts, Rhode Island, and New York suggest that low-
income households face higher prices, on average, than high-income households in these retail
choice markets. In Massachusetts in 2020, low-income subsidy recipients on individual plans
with electricity suppliers were billed $0.0044/kWh more, on average, than consumers who did
not receive these subsidies. In Rhode Island, the mean price of households active in the retail
choice market was especially high for low-income households, defined as residential accounts
in the A-60 rate class, in all months of 2019 and 2020.10. In New York in 2016, mean prices
of retail choice participants in zip codes with median annual household income less than

10The income-price gap did not exist in many months of 2017 and 2018.
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$60,000 were greater than those with median annual household income greater than $80,000
in five out of six of the utility service territories. Premiums ranged from $0.001-0.024/kWh.

Greater retail choice participation and more frequent switching in
low-income areas

There is evidence that retail choice participation rates are higher in low-income commu-
nities than in high-income communities in at least four states. The Office of the Attorney
General of the Commonwealth of Massachusetts show that participation rates among low-
income subsidy recipients are about double the rate of households who do not receive these
subsidies (MA AGO 2018). The Office of Illinois Attorney General finds that retail choice
participation rates are highest in low-income zip codes and lowest in high-income zip codes
of Chicago (Satter, 2020). I find the same result in Connecticut (χ2 = 1506) and Maine
(χ2 = 75) comparing participation rates in zip codes with median annual household income
below $60,000 and above $80,000.

I also observe more frequent switching in low-income communities than high-income
communities in Maine (t = 13). These estimates come from a regression of whether each
consumer signed up with a supplier on income group, controlling for time fixed effects. I
restrict the sample to consumers who were active in the retail choice market in each analysis
month.11 In Connecticut, low-income households with hardship status switch with a higher
probability in a given month than other retail choice participants (χ2 = 106).

Prices increase with contract renewals

Panel data in Maine and repeated cross-sectional data in Connecticut provide evidence
that prices also increase with contract renewals in these two states. For Connecticut, I
restrict the sample to prices that I can identify as sign-up or renewal prices in a given
month. I identify renewal prices as non-sign-up prices billed by a supplier in a given month
if that price-supplier combination did not exist in the data set in the previous month.

11This result is robust to a probit specification.
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Figure A11: Residualized Price by Number of Contracts with Supplier: Maine

Estimates from a regression of electricity supply price on time fixed effects, number of unique prices

a consumer has faced since last switching suppliers, and income group. Excludes standard offer

service prices. Income definitions reflect 2019 American Community Survey zip code tabulation

area median household income.
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Figure A12: New and Renewal Price Distributions (March 2019): Connecticut

Note: Probability density of generation supply sign-up prices (purple) and renewal prices (green)

for residential retail choice customers in Eversource’s Connecticut service territory. Sign-up prices

reflect prices of consumers who switched retail suppliers in March 2019. Renewal prices reflect

prices for the subset of observable consumers who did not switch suppliers in March 2019 and

experienced a price change between February and March 2019.

Households in low-income areas are less likely to sign up through
the government comparison website

In addition to regulatory pricing data on first-month sign-up prices in Connecticut, I also
have data on aggregate clicks on plans on the plan comparison website run by the Connecticut
Public Utilities Regulatory Authority. Comparing these two data sets, 43% of all sign ups are
from cities with median income less than $60,000, but only 12% of EnergizeCT comparison
website clicks are from those same cities (χ2 = 6357).

A.7 Marginal Cost Calculation

Table A6 summarizes the data sources by cost component. To estimate suppliers’ ex-
pected cost of procuring wholesale electricity, I use Platts historical on-peak and off-peak
power futures prices, which I access through SNL Financial. I use weighted average prices
to calculate expected cost for a given contract length in each starting month. I weight prices
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by mean per-customer electricity usage12 in a given month from the BGE billing data and
the percentage of usage that occurs in on-peak hours. To estimate this on-peak percentage,
I use the North American Electric Reliability Corp definition of on-peak hours in the East-
ern Interconnect and public hourly BGE load profiles for residential customers who do not
have electric heating and are not on the BGE time-of-use rate. I scale these costs up for
transmission and distribution losses using BGE’s calculated secondary voltage loss factor of
6.665%.

Table A6: Marginal Cost Data Sources

Cost Component Data Source
Electricity Futures SNL Financial On-Peak and Off-Peak BGE Forward Power Indexes,

BGE monthly billing data, BGE Hourly Load Profiles Segment R1

Distribution Losses BGE2

Capacity Costs PJM3, BGE4, EIA-861

Ancillary Services Monitoring Analytics (2022)5

Renewable Portfolio Standard SNL Energy Renewable MD Tier I, Tier 2, and Solar REC Indexes,
Maryland Code, Public Utilities § 7-703

1Available at: https://supplier.bge.com/electric/load/profiles.asp
2Available at: https://supplier.bge.com/electric/load/loss-factors.asp
3Available at: https://pjm.com/markets-and-operations/rpm.aspx
4Available at: https://supplier.bge.com/electric/load/plc-peak-hours.asp
5“PJM State of the Market” report. Available at:
https://www.monitoringanalytics.com/reports/PJM State of the Market/2021/2021q1-som-pjm-sec10.pdf

Once a year, BGE updates a supplier’s capacity-related cost of serving a marginal cus-
tomer based on the customer’s electricity usage during specific hours of the previous year (i.e.
the customer’s “Peak Load Contribution”) and the results of the Pennsylvania-New Jersey-
Maryland (PJM) capacity auction. BGE calculates the cost responsibility for each customer
as their Peak Load Contribution multiplied by 365 days in a year and the PJM Final Zonal
Net Load Price ($/kW-day) for the BGE deliverability area. BGE charges suppliers for the
cost responsibilities of their customers. This cost is constant for each year starting in June.
Some customers do not have electricity meters that are able to calculate their Peak Load
Contribution. For these customers, BGE assigns a default Peak Load Contribution value. I
estimate each supplier’s capacity cost responsibility in $/kW-day by mimicking BGE’s cal-
culation and using the default Peak Load Contribution value for BGE residential customers
without electric heating. I approximate this cost in $/kWh by dividing the annual required
payment by the mean annual usage of BGE residential customers, which I calculate from
Energy Information Administration Form EIA-861.

12Estimates using coefficients from regressions of usage on month of year, consumer fixed effects, and
either a time trend or time fixed effects produce very similar weights (r > 0.999).
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Maryland has a Renewable Portfolio Standard (RPS) that requires all suppliers to meet
50% of their electricity sales from renewable resources by 2030. The law also specifies a path
to meet the 2030 standard with less stringent interim standards. For example, in 2019, the
total standard was 23.2% of retail sales. To meet this standard, suppliers had to obtain
enough RECs to cover 23.2% of their retail sales, where one REC counts as 1,000 kWh of
electricity. The law also includes constraints on the portion of the overall standard that
can or must be met with certain types of renewable resources. There are separate markets
for RECs representing each relevant renewable resource category. To calculate a supplier’s
marginal RPS cost, I assume suppliers choose the cheapest REC bundle that will meet the
requirement.

I also include annual estimates of PJM ancillary service costs per kWh of aggregate
electricity usage. These estimates come from quarterly Monitoring Analytics reports on the
state of the PJM market.

I assume firms determine prices one month in advance with perfect knowledge of capacity
costs and imperfect knowledge of energy and REC prices. For example, the marginal cost
used for March 2020 analyses for a one-month contract reflects mean energy and REC future
prices for delivery month March 2020 in February 2020 and the March 2020 capacity price.

For convenience, I exclude state and local taxes from the analysis. In BGE, the purchase
of receivables discount was zero throughout the analysis timeframe. I also use data from the
U.S. Energy Information Administration (EIA) for some small analytical tasks.
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A.8 Survey Instruments

Retail Choice Consumer Survey Questions 

Section 1: Eligibility 

1. What is your 5-digit zip code or postal code? 

2. Are you over the age of 18? [Note: information collected automatically for the main survey] 

a. Yes/No 

3. Do you pay or make decisions about your [utility] electricity bill? 

a. Yes 

b. No 

c. I make decisions about my monthly electricity bill, but [utility] is not my electric utility 

4. [If 4 = c] Please select your electric utility. 

a. Baltimore Gas and Electric (BGE) 

b. Delmarva Power 

c. Eversource / Connecticut Light & Power 

d. Potomac Edison / FirstEnergy / Allegheny Power 

e. Potomac Electric Power Company (Pepco) 

f. Southern Maryland Electric Cooperative (SMECO) 

g. United Illuminating (UI) 

h. Other 

Section 2: Self-reported Price, Bill, and Supplier 

5. An “electricity supplier” purchases electricity for you and chooses what you pay for this 

electricity. Your electricity supplier is the company named on the "Supply" or “Generation” 

portion of your [utility] electricity bill. Have you ever chosen an electricity supplier other than 

[utility] while living in your current home? 

a. Yes/No/Unsure 

6. Please write the name of your current electricity supplier. If you are unsure, please state so. 

7. Roughly how much do you pay for electricity per month? Please write your answer in US dollars. 

If you are unsure, please provide your best guess. 

8. Roughly how much do you pay for electricity per kilowatt-hour (kWh)? Please write your answer 

in US dollars per kWh ($/kWh). If you are unsure, please provide your best guess. 

Section 3: Reasons for Sign Up 

9. [If 5 = Yes] You said that you have signed up with a supplier other than [Utility]. Why did you 

choose to do that? Please describe the most influential factors in your decision. 

10. [If 5 = Yes] How did you find the non-[utility] electricity plan(s)? [Answers shown in random 

order] 

a. A salesperson/representative came to my door, approached me on the street, or 

stopped me at a store and told me about it 

b. A salesperson/representative called me on the phone and told me about it 

c. A friend or relative recommended it 

d. I received the offer in the mail 

e. I called the electricity supplier to ask about their available plans 

f. I looked at the electricity supplier’s website for available plans 
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g. I looked at an online electricity plan comparison website 

h. I looked at the [website name] website run by [Commission] 

i. I saw an advertisement for the offer on TV, radio, an online ad, or a billboard 

j. Other (please write) 

11. [If 5 = No, Unsure] What made you choose to sign up for your current electricity plan? Please 

describe the most influential factors. 

12. In the past 5 years, have you paid extra money for any of the following plan characteristics? 

Please check all that apply. [Answers shown in random order] 

a. Renewable energy / green energy / solar energy / wind energy / renewable energy 

credits 

b. Gift card 

c. Short contract term 

d. Long contract term 

e. Fixed price 

f. Incentive or rewards program 

g. Low or no cancellation fee 

h. Low or no enrollment fee 

i. Good customer service 

j. Useful website, dashboard, app, newsletter, or personalized reports and suggestions 

k. Trustworthy supplier 

l. Supplier was my local utility 

m. Supplier was not my local electric utility 

n. Other (please write) 

13. Have you ever had somebody come to your door, approach you on the street, or talk to you in a 

store for any of the following reasons? 

a. To help save you money on your [utility] bill 

b. To check if there was an issue on your [utility] bill 

c. To encourage and help you switch to a different electricity supplier 

d. To switch you to a high renewable or green electricity plan 

e. To change your electricity plan in some other way 

f. None of the above 

14. This survey will refer to any person described in the previous question as an “electricity 

marketer”. The goal of an electricity marketer is to switch your electricity supplier. In the past 

two years, approximately how many times has an electricity marketer reached out to you in 

person? They may have knocked on your door, approached you on the street, or talked to you in 

a store. 

a. 1-2 times 

b. 3-5 times 

c. 6-10 times 

d. >10 times 

e. Never 

15. Electricity marketers may also call on the phone. In the past two years, approximately how many 

times has an electricity marketer called you on the phone to switch you to a different electricity 

plan? 



APPENDIX A. COMPETING FOR (IN)ATTENTION 145

a. 1-2 times 

b. 3-5 times 

c. 6-10 times 

d. >10 times 

e. Never 

16. [If 14 != “Never”] In the past ten years, approximately how many times have you signed up for 

an electricity plan with an electricity marketer you talked with in person? 

a. Once 

b. Twice 

c. 3-5 times 

d. 6-10 times 

e. >10 times 

f. Never 

17. [If 15 != “Never”] In the past ten years, approximately how many times have you signed up for 

an electricity plan with an electricity marketer who called you on the phone? 

a. Once 

b. Twice 

c. 3-5 times 

d. 6-10 times 

e. >10 times 

f. Never 

18. In the past ten years, approximately how many times have you signed up for a non-[utility] 

electricity plan based on a mail, e-mail, radio, TV, billboard, or internet advertisement? This 

does not include offers or promotions you looked for online. 

a. Once 

b. Twice 

c. 3-5 times 

d. 6-10 times 

e. >10 times 

f. Never 

19. In the past ten years, approximately how many times have you signed up for an electricity plan 

by calling an electricity supplier or searching online? 

a. Once 

b. Twice 

c. 3-5 times 

d. 6-10 times 

e. >10 times 

f. Never 

20. [If 16 != “Never” or 17 != “Never”] Which of the following influenced your decision to sign up for 

electricity plan(s) through an electricity marketer? Please check all that apply. [Answers shown 

in random order] 

a. The marketer recommended the plan 

b. The marketer seemed to be well informed 
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c. I was worried about what the marketer would think about me if I did not follow their 

suggestion 

d. I was worried about what the marketer would do if I did not follow their suggestion 

e. I wanted to help the person selling the plan 

f. I wanted the marketer to leave 

g. I misunderstood the price or terms of the plan 

h. I liked the plan's price or believed I would save money 

i. I liked the plan's characteristics 

j. Other (please write) 

Section 4: Search Behavior and Methods 

21. [If 16 != “Never” or 17 != “Never”] Last time you signed up for an electricity plan through an 

electricity marketer, did you first compare the plan to any of the following plans? Please check 

all that apply. 

a. My current plan at the time 

b. The default [utility] plan, the standard offer service plan, or the price to compare  

c. Plans offered by other electric suppliers 

d. None of the above 

22. [If 21 = c] Last time you signed up for an electricity plan through an electricity marketer, roughly 

how many other electricity suppliers did you consider before choosing a plan? 

a. None 

b. 1 

c. 2-3 

d. 4-6 

e. 7-15 

f. >15 

23. [If 21 = c and 5 = no?] How did you find information on the plans offered by other electricity 

suppliers? 

a. Called electricity suppliers 

b. Looked at electricity supplier websites 

c. Visited an online plan comparison website 

d. Visited the [website name] website run by [Commission] 

e. Asked a friend or family member what they paid for electricity  

f. Other (please write) 

24. If an electricity marketer showed up at your door tomorrow saying they could save you money 

on your [utility] bill, would you sign up? 

a. Yes/No/Unsure 

25. If an electricity marketer showed up at your door tomorrow saying they could save you money 

on your [utility] bill and hand you a $50 gift card to a store of your choice, would you sign up? 

a. Yes/No/Unsure 

26. [If 24 = “Unsure” or 25 = “Unsure”] You said you were unsure if you would sign up with an 

electricity marketer in one of the previous questions. What would your answer depend on or 

what additional information would you need to make a decision? Please check all that apply: 

a. It would depend on the price the electricity marketer offered 
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b. It would depend on what the marketer said or did or who they were 

c. I would review the price of my current plan first 

d. I would review the price of the standard offer service, price to compare, or [utility] plan 

first 

e. I would review plans offered by other electricity suppliers first 

f. I would look for more information about the electricity supplier first 

g. Other (please write) 

27. [If 24 = “No” and 25 = “No”] You said that you would not sign up with an electricity marketer 

who said they could save you money and give you a $50 gift card. Why wouldn’t you be 

interested in this offer? 

28. [If 27 = e and 21 != c] You indicated that you would review plans offered by other electricity 

suppliers. Roughly how many electricity suppliers would you consider before making a decision? 

a. 1 

b. 2-3 

c. 4-6 

d. 7-15 

e. >15 

29. [If 27 = e and 21 != c] How would you find information on the plans offered by other electricity 

suppliers? 

a. Call specific electricity suppliers 

b. Look at specific electricity supplier websites 

c. Visit an online plan comparison website 

d. Visit the [website name] website run by [Commission] 

e. Ask a friend or family member what they were paying 

f. Other (please write) 

30. Have you ever switched electricity suppliers because you noticed a change in your price or bill? 

a. Yes/No 

31. If so, which electricity plans did you consider after seeing the price or bill change? 

a. The default [utility] plan, the standard offer service plan, and/or the price to compare 

b. Plans offered by other electric suppliers 

c. None of the above 

d. N/A 

Section 5: Search Costs 

32. What is the minimum amount you would have to save off your next monthly [utility] bill to 

spend an hour comparing electricity offers? Assume the savings last only one month. Please 

write the savings in US dollars ($). 

33. What is the minimum amount you would have to save off EACH of your next 12 monthly bills to 

spend an hour comparing electricity offers? Assume the savings last only one year. Please write 

the savings in US dollars per month ($/month). 

34. How much money do you think you could save off of your next monthly [Utility] bill if you spent 

an hour looking for a cheaper plan that is otherwise similar to your current plan? Please write 

your answer in US dollars ($/month). 
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35. [If 34 > 32] You indicated that you expect to be able to save enough money if you searched for 

other electricity plans to make it worth your time. Why have you not searched for other plans?  

Section 6: Availability and Propensity to Engage in Direct Marketing 

36. If 10 strangers knocked on your door this year between the hours of 9am and 7pm, 

approximately how many of them do you think you would talk with? 

37. If 10 strangers knocked on your door in 2019 between the hours of 9am and 7pm, 

approximately how many of them do you think you would talk with? 

38. If 10 strangers called you on the phone this year between the hours of 9am and 7pm, 

approximately how many of them do you think you would talk with? 

39. If 10 strangers called you on the phone in 2019 between the hours of 9am and 7pm, 

approximately how many of them do you think you would talk with? 

Section 7: Beliefs about Price Heterogeneity 

40. You said you pay about $[X.XXX]kWh for electricity. What do you think is the highest price a 

household in your town or city is charged for electricity? Please write your answer in US $/kWh. 

41. You said you pay about $[X.XXX]kWh for electricity. What do you think is the lowest price a 

household in your town or city is charged for electricity? Please write your answer in US $/kWh. 

Section 8: Miscellaneous Attention/Behavior: 

42. Have you ever negotiated your price with an electricity supplier? Please check all that apply. 

a. Yes, when signing up with a new supplier 

b. Yes, for a renewal price with an existing supplier 

c. No, I never considered it 

d. No, I do not feel comfortable negotiating with my supplier 

43. Approximately how frequently do you look at your electricity bill? 
e. Once a month 
f. Once every 2-3 months 
g. Once every 4-11 months 
h. Once a year 
i. Less than once a year 
j. Never 

44. Approximately how frequently do you look at your electricity price or rate? 
k. Once a month 
l. Once every 2-3 months 
m. Once every 4-11 months 
n. Once a year 
o. Less than once a year 
p. Never 

 
Information Interventions 

• Treatment Arm 1 (search costs): 

o Are you aware that there is a free government-run website where you can compare 

electric plans offered by different suppliers?  
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▪ Yes/No 

o The [Commission] is a government agency that hosts a free website, [Website], where 

you can view and compare electricity plans offered by different suppliers. For example, 

here are some offers listed on the website as of [Date]: 

1Select Plans on Offer Comparison Website 

Description 
Price 
($/kWh) 

Typical 
Total Bill 
($/Month) 

Price Fixed 
For: 

Electric 
Supplier 

Phone 
Number 

Website Link 

Government-
regulated 
plan 

[Data] [Data] 

1 month, 
followed by 
regulated 
changes 

[Data] [Data] [Data] 

Cheapest 
plan 

[Data] [Data] [Data] [Data] [Data] [Data] 

Cheapest 
plan with a 
fixed price 
for at least 1 
year  

[Data] [Data] [Data] [Data] [Data] [Data] 

Cheapest 
plan with 
100% 
renewable 
energy 
credits 

[Data] [Data] [Data] [Data] [Data] [Data] 

 

You can view other offers at [Website URL]. 

o Which of the available plans would you prefer? Please write the phone number of the 

selected plan below. You may choose one of the plans listed above or another offer on 

the website. 

• Intervention 2 (beliefs about the benefits of searching – all prices): 

o Did you know that the government does not put any limits on the prices retail suppliers 

can charge and allows electric suppliers to charge customers different prices for the 

same product? 

▪ Yes/No 

o You guessed that households' electricity prices in your town or city range from [Q41 

Answer] to [Q40 Answer]. In [Month/Year] prices charged by electric suppliers in [Utility 

or Nearby Utility] territory ranged from a minimum of $[Min Price]/kWh to a maximum 

of $[Max Price]/kWh kWh. At a typical household monthly electricity usage of [Usage] 

kWh, this translates to a bill difference of about $[Bill Difference] per month. The 

average price was $[Mean Price] or about $[Bill at mean price and usage]/month 

o Given this information, how much money do you think you could save off your next 

monthly [Utility] bill if you spent an hour comparing offers? Assume the plan has the 
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same characteristics as your current plan. Please write your answer in US dollars 

($/month). 

Bill Intervention 
1. This is the last question on the main survey. For another $4, would you be willing to get a recent 

[utility] bill and answer 3-4 questions about what is on it to verify some information you 

entered? 

a. Yes, and I am ready to do that right now 

b. Yes, but I would prefer to do that at another time or day 

c. No 

d. Other (please write)                          

2. [If 1 = Yes and Utility = Eversource] Please find a recent Eversource electricity bill. On Page 2 
towards the bottom right of the page, you should see a box that looks like the following: 

 
Please note that some of the values on your own bill may differ from the values in the 
picture. The following questions ask about prices and supplier information printed on 
your own residential electricity bill. The red circles and ?'s in the picture above show 
where the requested values should be on your bill. 

3. [If 1 = Yes and Utility = Eversource] Were you able to find the referenced box on your own 

residential electricity bill? 

a. Yes 

b. No 

c. Unsure 

4. [If 1 = Yes and Utility = Eversource] Q1: What is written on your bill directly under "Supplier" (in 

circle Q1)?  

5. [If 1 = Yes and Utility = Eversource] Q2: What price is written on your bill to the right of 

"Generation Service Chrg" (circle Q2)? Please include all values to the right of the first dollar 

sign. For example, if the line reads "Generation Service Chrg**  700 kWh X $0.12345", please 

enter "0.12345" 

6. [If 1 = Yes and Utility = Eversource] Q3: What price is written on your bill to the right of "Comb 

Public Service Chrg" (circle Q3)? Please include all values to the right of the first dollar sign. For 
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example, if the line reads "Comb Public Service Chrg*  700 kWh X $0.12345", please enter 

"0.12345" 

7. [If 1 = Yes and Utility = United Illuminating] Please find a recent United Illuminating electricity 

bill. On Page 1 towards the bottom right of the page, you should see a box that looks like the 

following: 

 
Please note that some of the values on your own bill may differ from the values in the picture. 

  

The next three questions ask about prices and supplier information printed on your own 

residential electricity bill. The red circles and X's in the picture above show where the requested 

values should be on your bill. 

8. [If 1 = Yes and Utility = United Illuminating] Were you able to find the referenced box on your 

own residential electricity bill? 

a. Yes/No/Unsure 

9. [If 1 = Yes and Utility = United Illuminating] Q1) What is written on your bill directly under "Your 

electricity supplier is:" (in circle Q1)? 

10. [If 1 = Yes and Utility = United Illuminating] Q2) What numbers are written on your bill to the 

right of "Your supplier rate" (in circle Q2)? 

11. [If 1 = Yes and Utility = United Illuminating] Q3) What numbers are written on your bill to the 

right of "UI Standard Srvc Gen:" (in circle Q3)? 

12. [If 1 = Yes and Utility = BGE] Please find a recent electricity bill. On Page 2 on the left of the 

page, you should see a box that looks like the following: 
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Please note that some of the values on your own bill may differ from the values in the picture. 

  

The following questions ask about prices and supplier information printed on your own 

residential electricity bill. The red circles and ?'s in the picture above show where the requested 

values should be on your bill. 

13. [If 1 = Yes and Utility = BGE] Were you able to find the referenced box on your own residential 

electricity bill? 

a. Yes/No/Unsure 

14. [If 1 = Yes and Utility = BGE] Q1) What is written on your bill directly under "ELECTRIC SUPPLY" 

(in circle Q1)? 

15. [If 1 = Yes and Utility = BGE] Q2) On the same line as the value you just entered, what is written 

on your bill to the right of the x? Please include all digits in the number to the right of the x. For 

example, if the line reads "PEACH  900 kWh x $.12345   55.43", please enter ".12345" 

16. [If 1 = Yes and Utility = BGE] Q3) What is written on your bill to the right of "Customer Charge" 

(circle Q3)? Please include all numbers (e.g. "1.23"). 

 

Additional Questions in the Follow-up Survey (note: repeats Baseline Survey questions  #7, 8, and 34): 

• Have you changed electricity suppliers in the past months? 

• In the past month, have you negotiated your price with an electricity supplier? Please check all 

that apply. 

o Yes, when signing up with a new supplier 

o Yes, for a renewal price with an existing supplier 

o No 

• How did the previous survey on electricity suppliers and marketers change your behavior, if at 

all? 

• How did the previous survey on electricity suppliers and marketers change your understanding 

of the electricity market, if at all? 
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A.9 Consumer Survey

Design

I conducted a baseline and follow-up consumer survey of 905 consumers in August and
September 2022 to gain additional information about consumer behavior, beliefs, and experi-
ences with searching and signing up with electricity suppliers. I partnered with MFour, who
administered the survey using their mobile application, and designed the survey in Qualtrics
Eligible participants lived in an area of Connecticut, Maryland, or the District of Columbia
that is open to retail choice, were over 18 years old, and made decisions about their elec-
tricity bill. To facilitate comparison across groups, I undersampled zip codes with median
household income between $60,000 and $80,000.

The baseline survey has eight parts excluding verifying eligibility. The first part asks
for basic geographic information and verifies the participant’s electric utility. The second
part asks for self-reported information on electricity supplier, typical monthly bill, and re-
tail price. The third part assesses reasons for sign up, including the number of past sign
ups by method, frequency of interactions with electricity marketers, and willingness to pay
more money for various supplier and plan attributes. The fourth part asks about historical
and hypothetical search behavior and search methods when engaged in a direct marketing
interaction and historical search behavior after noticing a price or bill change. The fifth,
sixth, and seventh parts assess search costs, propensity to engage in a door-to-door or phone
marketing interaction in 2019 and 2021, and beliefs about price heterogeneity in the market,
respectively. The final part asks about behavior after initial sign up to better understand
attention to bill and price and price negotiation behavior.

Immediately after the baseline survey, treated participants receive a randomized infor-
mation intervention. I randomly assigned participants to treatment arm one, treatment arm
two, or the control group. Treatment arm one aims to reduce search costs by providing
information about the participant’s electric utility regulator-run offer comparison website
and highlighting the lowest-priced plans on the website in a few attribute-based categories.
Treatment arm two aims to reduce biases in beliefs about the price heterogeneity in the
market and government price protections. The treatment informs participants that, unless
they choose the default plan offered by their local utility, the government does not put any
limits on the prices electric suppliers can charge and allows electric suppliers to charge cus-
tomers different prices for the same product. The treatment also provides information about
the range of prices in the participant’s local market and the approximate associated bill
difference. It is important to note that all households in the study receive an information
intervention. Even participants in the control groups may receive information about the
retail choice market and an attention shock from the baseline survey itself.

I offered consumers who took the survey through August 23 to verify price and supplier
information on a recent electricity bill for an additional incentive. This exercise primarily
provides more accurate information for research.

The endline survey took place one month after the baseline survey and included 471 of
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the initial participants.13 The follow-up survey repeats select questions from the baseline
survey. This aims to pick up any changes in self-reported supplier, bill, and price as well
as beliefs about the market and propensity to negotiate. The endline survey also asks an
open-ended question about any other ways the baseline survey and interventions affected the
participants’ behavior or beliefs. Appendix A.8 contains copies of all survey instruments.

To inform the survey, I also conducted a one-hour focus group in Baltimore in April 2022.
All 15 participants frequented a Baltimore food pantry, GEDCO CARES. The GEDCO
CARES program director recruited 12 participants, a GEDCO CARES volunteer recruited
two more, and one recruited participant brought a family member.

Results

Summary

The consumer survey supports some key aspects of the theory described in section 1.7.
In-person marketing is the most common reported method of sign up. Responses suggest that
consumers face large and heterogeneous barriers to search, particularly when engaged with
an in-person marketer. I also find evidence of persuasive marketing. While some consumers
do value supplier customer service quality and electricity plan attributes, the majority report
price or a marketing interaction as the key driver of their sign up decisions. Responses also
provide some evidence of inattention to prices, bills, supplier, and market structure.

Comparing responses of consumers in zip codes with median annual household income
below $60,000 and above $80,000, the key differences fall into three categories: sign up
method, search method, and beliefs about the potential savings available. Respondents in
low-income areas report both being approached by in-person marketers and telemarketers
more frequently and signing up through direct marketers more frequently. While a roughly
proportionate number of consumers actively search across low- and high-income areas, this
represents a lower percentage of the consumers active in the choice market in low-income
areas. When active search occurs, low-income consumers are relatively less likely to search
online and more likely to conduct a phone search in which they call individual suppliers
and ask about available plans. I also find a significant difference in beliefs about potential
savings, with consumers in low-income areas reporting larger expected savings. I do not find
significant differences in preferences for plan attributes or patience across income groups. I
also find weak evidence that consumers in low-income areas are especially attentive to prices.

Despite the finding by Byrne et al. (2022) that negotiation can lead to large savings, I
find that negotiation is not very common. Byrne et al. (2022) suggest that differences in
information going into negotiation may explain the income-price gap, but I find similar and
not statistically different negotiation rates across low- and high-income areas.

13The survey ended at 471 participants due to budget constraints.
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Direct Marketing Prevalence

The most commonly reported method of signing up with an electricity supplier is through
an in-person marketing interaction. A significantly larger share of respondents report signing
up through an in-person marketer than from actively searching (χ2 = 8). In total, 43%
percent of respondents reported having signed up with an in-person marketer, 27% reported
signing up through a telemarketer, 29% reported signing up through other types of marketing,
such as mail or online marketing, and 36% reported actively searching for a plan within the
past ten years.

The survey confirms that there is more direct marketing in low-income areas. About
77% of respondents in low-income areas reported being approached by an in-person marketer
within the past two years. Marketing is significantly lower in high-income areas, where only
57% met an in-person marketer (χ2 = 33). Low-income households are also more likely to be
approached by a telemarketer (χ2 = 18). This difference in marketing probability translates
to more marketing-related sign ups in low-income areas. Fifty seven percent of respondents
in low-income areas report signing up through an in-person marketer in the past ten years,
compared to 35% in high-income areas (χ2 = 22). Telemarketing led to 35% and 28%
consumers signing up in low- and high-income areas, respectively (χ2 = 2.9). Respondents
in low- and high-income zip codes were roughly equally likely to have signed up through
active search. This is evidence in favor of the composition effect discussed in Section 1.7.

Why do consumers sign up with marketers? I find evidence of persuasive marketing.
Among consumers who reported signing up through direct marketing, 59% said they signed
up to save money, 24.5% selected plan attributes, and 54-61% cited an aspect of the market-
ing interaction itself. The most commonly cited aspect of the marketing interaction was that
the marketer recommended the plan or the marketer seemed well informed (35%). Other
reasons were interpersonal, such as fear of what the marketer would think or do otherwise
(15%), wanting the marketer to leave (14%), or wanting to help the person selling the plan
(10%). The marketing interaction range reflects inclusion or exclusion of misunderstanding
the price or terms of the plan, which was selected by 15% of consumers. Some misunder-
standings may reflect misleading marketing. Twenty three percent of respondents who had
engaged in direct marketing reported that at least one marketer had approached them to
check if there was an issue on their bill.

I do not find strong evidence that low-income households are especially easily persuaded
by marketing, particularly likely to be marketed higher-priced premium products, or espe-
cially likely to engage if a marketer approaches them. Conditional on signing up with a
marketer, respondents in low- and high-income areas were roughly equally likely to cite at
least one aspect of the marketing interaction as a reason for sign up, but respondents in
high-income areas tended to select a greater number of aspects of the marketing interaction
(χ2 = 10). The nature of marketing also differs significantly across geographic areas. Mar-
keters are more likely to pitch saving money (χ2 = 14) and less likely to pitch high renewable
or “green” energy plans (χ2 = 4) in low-income areas than other areas. I do not find a sta-
tistically significant difference across geographic areas in the probability of answering the
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door if a stranger knocks on it. Point estimates suggest that high-income households may be
slightly more likely to answer their doors, while low-income households may be slightly more
likely to answer their phones. The difference in 2021 probabilities of answering phones is
borderline statistically significant, but this does not survive multiple hypothesis correction.

Search Frictions

Responses suggest that consumers face high search costs. To assess search costs, I asked
consumers the minimum amount they would have to save off of their next monthly bill
to spend an hour comparing electricity offers, assuming the savings last only one month.
Responses were right-skewed with a median of $50 and a mean of $190 with outliers or $107
excluding outliers. If anything, households in low-income areas report requiring a bigger
expected reduction in their bill to justify searching, although the difference falls short of
significance at conventional levels (t = 1.4).

While consumers may be able to do a near-complete search in less than an hour by using
a comparison website, many consumers do not know about this option. Only 22% of re-
spondents in high-income areas and 16% of respondents in low-income areas were aware that
there was a free government-run website where they could view and compare electric plans
offered by different suppliers. The sample size for this question was small (291 participants),
so I cannot reject that awareness does not vary across geographic areas. I do find statisti-
cally significant evidence of differences in search methods across geographic areas, with more
Internet search in high-income areas (χ2 = 5.1) and more phone search in low-income areas
(χ2 = 6.5).

Respondents also report incomplete search, which could be rational or irrational behavior.
Search appears especially limited when signing up through an electricity marketer. Before
signing up with an electricity marketer, 48% of respondents compared the offer to their
current plan, 39% compared the price to the outside option plan, 13% considered plans from
other suppliers, and 19% did not do any comparisons. Note that the outside option may
have been the same as the current plan for many consumers. Only 10% of respondents
selected both their current plan and the outside option, suggesting that the majority of
consumers had only the marketing offer and one other plan in their choice set. Of consumers
who did consider plans from other suppliers, 81% considered three or fewer other suppliers.
Reported choice sets tended to be larger when consumers searched in response to a price
or bill change. When this occurred, 50% of respondents considered the outside option plan,
and 63% considered plans offered by other suppliers. I do not find a significant difference in
choice sets across income groups in either case.

Attention and Beliefs

Consumers appear somewhat inattentive to their electricity price and bill. About 77%
and 51% of respondents reported looking at their bill and price, respectively, every month.
Around 6% and 19% of respondents respectively said they looked at their price and bill less
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than once a year. In addition, 29% reported switching suppliers due to a change in their price
or bill. However, when asked for a rough estimate of the electricity price they pay in $/kWh,
82% of respondents provided answers above the highest price charged in Eversource or United
Illuminating territories in the month before the survey was conducted, and 21% provided
answers over 100 times that value. Bill estimates generally seemed reasonable. Respondents
in low-income areas reported looking at price significantly more frequently than consumers
in high-income areas (t = 2), but this did not translate into more reasonable estimates of
own price or more frequent price- or bill-related switching.

Many consumers are also inattentive to their supplier and to market structure. When
asked for the name of their current electricity supplier, 31% reported that they were unsure.
In addition, only 27% reported ever having a supplier besides their utility at the beginning
of the survey. After defining an electricity marketer by their behavior, this number increased
to 58%. A small sample of 75 consumers also reported information from a recent electricity
bill for additional compensation. Of this selected group, the vast majority were not active in
the choice market. Of the eight who were, four had correctly reporter their supplier, two had
reported that they were unsure of their supplier, and two had reported their utility as their
supplier. In addition, when asked in an open-ended question why they chose their electricity
supplier, 33% of respondents either said they did not have a choice (26%) or otherwise
indicated they held this belief (e.g., “I needed electricity”). In a smaller sample, only 29%
of respondents reported that they knew that the prices non-utility suppliers charged were
unregulated and that suppliers could charge customers different prices. Respondents in low-
income areas were especially likely to report that they were unsure if they had ever had a
non-utility supplier (t >= 4.3). I do not find a significant difference across income groups in
knowledge of market structure.

Beliefs about the benefits of searching were also right skewed, with respondents in low-
income areas reporting higher expected savings. On average, consumers believe they can
save $50 off their next monthly bill if they spent an hour looking for a cheaper plan that
is otherwise similar to their current plan. The median estimate was $30. I find a large
difference across geographic areas. Respondents projected savings of $70 in low-income
areas and $40 in high-income areas, on average (t = 2.5). The median estimates were $40
and $20, respectively.

Preferences for Non-price Attributes

While respondents did express preferences for plan attributes, price seems to typically
be the primary motivator for entering the market. Respondents who self-reported signing
up with a supplier also reported why they signed up in an open-response question. Of
this group, 62% essentially said to save money, 5% said a renewable energy or a sign up
gift (e.g., gift card), 2-3% mentioned a fixed price, low fees, or flat rate design, and 7-
9% mentioned liking the supplier or a characteristic of the supplier (e.g., “better service”,
“reliable”, “convenient”).
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However, consumers do have some willingness to pay for plan attributes. Of respondents
who were ever active in the choice market, 64% reported paying extra money for one or
more plan or supplier attribute. In terms of plan attributes, 14% reported paying more for
renewable or “green” energy, 22% reported paying more to avoid fees, and 42% reported
paying more for another financial attribute such as contract length, a price that remains
fixed for the entire contract length, or a financial incentive. As for supplier attributes, 20%
reported paying more because they like or dislike their utility, and 33% reported paying more
for a trustworthy supplier, good customer service, or good information provision. I do not
find a significant difference in the proportion of consumers willing to pay a premium for any
of these attributes across low- and high-income areas. Comparing respondents in low-income
areas to respondents in medium- and high-income areas suggests that these consumers may
differ in their dislike of fees (t = 4.3) and opinions of their utility (t = 3.5).

Respondents tend to heavily discount savings after one month. To assess time preferences,
I compare the reported monthly savings required to justify an hour of searching if the savings
only last one month and if the savings last one year. The median ratio was 0.83. In the
absence of present bias, this implies a discount factor of 0.17. Mean reported ratios did not
differ significantly across low- and high-income areas.

Negotiation

Suppliers can further elicit differences in attention and search costs across consumers by
negotiating. Byrne et al. (2022) document that consumers can obtain sign-up prices below
posted offers by calling and negotiating with suppliers. Suppliers can also price discriminate
on inertia by offering consumers a default renewal price and allowing attentive consumers to
renegotiate for a lower price.

Of respondents who were ever active in the retail choice market, only 33% reported ever
negotiating with a supplier. About 20% reported negotiating on sign up, and 18% reported
negotiating on renewal. I do not find a statistically significant difference in negotiation
behavior across low- and high-income areas, with 34% and 36% of low-income and high-
income households, respectively, reporting having negotiated. Negotiation appears to be
positively correlated with attention. Of people who reported signing up with an electricity
supplier without any additional prompts, 43% had negotiated on either sign up or renewal.

Response Tables

This section provides survey response summary statistics. All stars reflect statistical
significance without corrections for multiple hypothesis testing. The appropriate hypothesis
set may vary across purposes.
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Table A7: Search Costs (1-month Savings Required to Justify an Hour of Search)

Statistic <$60k >$80k Total t-statistic
Median Search Cost $75 $50 $50 -
Mean Search Cost $114 $94 $107 1.2

Expected 1-month Savings from Search $39 $70 $50 2.5**
Net Cost of Search $54 $55 $59 0.05

Aware of the MDElectricChoice Website 16% 22% 19% 0.5
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A8: Attention to Price and Bill

Plan Type % of Respondents χ2

<$60k >$80k Total LI vs. HI
Has switched suppliers due to a change in price or bill 56% 52% 51% 0.1

Looks at bill every month 79% 76% 77% 0.3
Looks at price every month 61% 53% 53% 1.4

Own price estimate above maximum charged (CT) 83% 85% 84% 0.1

Table A9: Respondents Approached by a Marketer in the Prior Two Years

Marketer Type % of Respondents χ2

LI HI Total LI vs. HI
In-person Marketer 77% 52% 62% 32.4***

Telemarketer 63% 44% 48% 17.5***
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A10: Respondents Who Signed Up For Choice in the Prior Ten Years by Method

Sign-up Method % of Respondents χ2

LI HI Total LI vs. HI
In-person Marketer 57% 35% 43% 22.3***

Telemarketer 35% 28% 27% 2.9*
Other Advertising 34% 28% 29% 1.2

Independent Search 39% 41% 36% 0.2
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A11: Reasons for Signing Up with a Marketer

Sign Up Reasons % of Respondents χ2

HI LI Total HI vs. LI
Marketer recommended the plan / seemed well informed 36% 36% 35% 0

Misunderstood the price or terms of the plan 15% 13% 15% 0.1
Wanted the marketer to leave 19% 13% 14% 1.6

Interpersonal concerns 13% 9% 10% 0.7
Any of the above 60% 64% 61% 0.3

Any excluding misunderstandings 55% 57% 54% 0.1
Average number of marketing-related selections 0.86 0.68 0.74 9.9***

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A12: Open-response Reasons for Retail Choice Participation

% of Respondents χ2

HI LI Total HI vs. LI
Cost 63% 64% 62% <.001

Renewable energy or sign-up gift 5% 5% 5% <.001
Financial attribute 3% 5% 3% <.001

Supplier quality 15% 5-6% 7-9% 1.6-2.6

Table A13: Have you paid more for any of the following?

Attribute % of Respondents t
HI LI Total HI vs. LI

High renewable or green product 8% 11% 9% 1
Long contract 7% 7% 6% 0
Short contract 4% 2% 3% 1.6

Fixed price 18% 17% 15% 0.1
No or low fees 14% 20% 15% 2.6

Financial incentive 14% 15% 13% 0
Like utility 15% 20% 16% 2.2

Dislike utility 4% 3% 3% 0.8
Supplier quality (e.g., customer service) 24% 24% 24% 0

Other 2% 0% 1% 1.1
None 51% 46% 50% 1.3
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Table A14: Have You Ever Negotiated with a Supplier?

Response % of Respondents χ2

HI LI Total HI vs. LI
No, never considered it 51% 51% 55% 0

No, not comfortable 12% 18% 14% 1
Yes, on sign up 22% 24% 21% 0.1
Yes, on renewal 19% 19% 18% 0

No (Total) 61% 65% 66% 0.3
Yes (Total) 39% 35% 34% 0.3

Table A15: Plans in Reported Choice Sets Prior to Switch

Switch Type Plan Type % of Respondents χ2

HI LI Total HI vs. LI
Marketing Current Plan 46% 46% 48% <0.01

Regulated Option 37% 41% 40% 0.4
Other Suppliers 14% 14% 13% <0.01

None 21% 20% 20% <0.01
Active Search SOS 50% 48% 50% <0.01

Other Suppliers 64% 59% 62% 0.1
None 3% 6% 4% 0.3

Table A16: Follow-up Survey Outcomes by Treatment Group

Outcome % of Respondents χ2

Control Treatment Group 1 Treatment Group 2 Treatment vs. Control
Switched Suppliers 3.2% 2.3% 2.2% 0.1

Negotiated 5.1% 8.3% 11.0% 2.5
Own price estimate >$0.378261 77% 69% 68% 3.2*
1Maximum all-in price charged in Connecticut during baseline survey.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix B

Appendix for Government vs.
Competition: Residential Electricity
Pricing and Pass Through

B.1 Data Appendix

Residential Retail Electricity Revenue, Usage, and Customer
Accounts

Annual residential electricity sales in Megawatt-hours (MWh), revenues in thousands
of U.S. dollars, and number of residential customers, come from The Energy Information
Administration (EIA) Form EIA-861 survey. Form EIA-861 reports sales by utility, state,
balancing authority, and delivery type (e.g. bundled, delivery, energy). For delivery-only
customers, sales reflect total end-user consumption. Form EIA-861 also reports ownership
type, including ‘municipal’ and ‘retail power marketer’. Entities that fall under the for-
mer category are government-owned, while the latter category denotes private, competitive
entities.

I restrict this analysis to electric load-serving entities (LSEs) that provide energy or
bundled service in states that had at least one municipal utility and at least three competitive
firms serving residential customers in 2016. Thirteen states fit this description. I further
limit the analysis to exclude municipal utilities in Texas that are outside of the Electric
Reliability Council of Texas (ERCOT), as those areas are not open to retail competition. I
also exclude one municipal utility that switched from delivery only service to bundled service
during the analysis timeframe to avoid possible simultaneity or omitted variable bias that
could result from including this utility in the analysis. When estimating Equation 2.1, I also
truncate the sample to exclude year-competitive firm data with usage per customer greater
than that of any of the year-municipal utility data in the sample. I also exclude one outlier
competitive firm with an unrealistically low reported number of residential customers which
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appears to be driven by rounding on Form EIA-861.
In 2012, the EIA altered their reporting system for small utilities. As a result, Form

EIA-861 only provides post-2011 data on total sales, revenue, and number of customers
across all customer types (e.g. residential, commercial) for many of the municipal utilities.
I impute residential-specific data based on the 2011 ratios of residential to total sales. I
drop one utility with missing 2011 data. To test this method, I apply the same imputation
method to data with known 2017 residential data. The imputations perform well on average.
Paired two-sided t-tests do not reject the null hypotheses that the average revenues sales,
and number of customers are significantly different at any conventional significance level (t
= 0.05, 0.02, and 0.11, respectively). Nonetheless, I perform sensitivity analyses excluding
these imputed data to address any remaining measurement error concerns.

I convert all financial data to real 2017 U.S. dollars using the GDP deflator from the US
Bureau of Economic Analysis (2019).

Average Residential Retail Electricity Prices

I calculate average residential retail electricity prices in 2017 U.S. dollars per kilowatt-
hour (kWh) by dividing residential retail electricity revenue by residential retail electricity
sales for each entity. I drop observations with average residential prices greater than five
standard deviations above the mean or greater than two standard deviations below the
mean. This results in exclusion of three observations that appear to be incorrectly reported.
It also drops all observations for one island municipal utility that does not participate in
the electricity spot market. Competitive suppliers in Texas and municipal utilities report
bundled energy supply and delivery electricity revenues in Form EIA-861.

Table 2.2 displays summary statistics for annual residential retail prices by supplier own-
ership type.

Marginal Costs

I create annual wholesale electricity prices for each LSE by aggregating publicly-available
hourly spot market electricity prices weighted by representative residential load shapes. The
five US Independent System Operators (ISOs) and Regional Transmission Organizations
(RTOs) used in this analysis, the Electric Reliability Corporation Texas (ERCOT), the New
England ISO (ISO-NE), the New York ISO (NYISO), the Midcontinent ISO (MISO), and the
PJM Interconnection (PJM), provide data on hourly real-time electricity locational marginal
prices (LMPs) at tens of thousands of locations in their covered transmission networks.
These LMPs incorporate wholesale generation and transmission to the purchase location.
For convenience, I downloaded these data from SNL Financial, which provides a centralized
database of LMP data ISOs and RTOs.

For tractability, I select 54 LMPs in the thirteen states with near complete data from 2005
though 2017. Whenever possible, I chose aggregated “zonal” LMPs that represent averages
of numerous individual nodal prices. In a few instances where substantial data during the
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analysis timeframe are missing for a key zonal LMP, I selected the closest node with the
full time series of data, as measured using Euclidean distance. The load node classification
is most appropriate because I use these wholesale costs as measures of LSE input costs.
Because LMPs are highly spatially correlated, the selected LMPs should generally reflect
the true prices faced by LSEs.

I convert hourly LMP prices to annual values for each node by weighting prices across
hours using normalized electricity usage at the same node or at the closest node with available
electricity usage data. A drawback of using zonal usage data as a proxy for LSE-specific
residential hourly usage data is that this usage embeds electricity usage from non-residential
consumers and from some customers served by other suppliers. An alternative approach
would be to use simulated residential electricity usage data. I choose zonal usage data as
my preferred specification because it reflects actual weather variation, which is a key driver
of variation in usage. It also captures heterogeneity in timing of usage across residential
consumers, avoiding the issue of unrealistically ‘peaky’ data (i.e. maximum demand that is
unrealistically larger than the average demand across hours) that is common in simulated
data.

There are some periods of missing observations in both the LMP and zonal usage data. I
impute missing data using data for the closest LMP or usage node, as measured by Euclidean
distance. For usage data, I scale the usage data prior to normalization by the ratio of annual
usage at the actual node to that of the proxy node to account for average differences in
demand in the two locations.

For a sensitivity analysis, I also plan to convert hourly LMP prices to annual values
by weighting prices across hours using normalized residential load shapes. The National
Renewable Laboratory (NREL) used an engineering model to estimate hourly residential load
for a typical household in a typical meteorological year (TMY) for over 900 locations in the
U.S. NREL classified each part of the US into five climate categories (e.g. Very Cold/Cold,
Hot/Humid) and developed representative housing characteristics, including heating type,
foundation, and outside wall construction material, for each climate. The engineering model
uses these representative houses and typical weather data by location to estimate electricity
usage. I transform each of the NREL TMY3 Building America B10 Benchmark hourly loads
to match actual weather years. For each hour and location, I select the hour of TMY load
with wet bulb temperature that has the smallest Euclidean distance to actual historical wet
bulb temperature. I then normalize load in each location to sum to one. NREL publishes
latitude and longitude data for each site. I use these data to map LMP locations to load
shapes by identifying the least-cost path based on the Dijkstra (1959) algorithm. This process
results in annual LMP prices that reflect the expected cost of providing one additional kWh
of load to a residential customer.1

I assign an LMP to each municipal utility based on closest Euclidean distance. To do
this, I use the Google Geocoding API to extract centroid geographic coordinates for each

1Note that this approach implicitly assumes that distribution losses are constant throughout the year.
While this is a strong assumption, the impact is likely small.
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municipality. Since I do not have data on the precise distribution of competitive providers’
customers within a state, I calculate marginal costs for competitive providers in a given state
as the average annual LMPs weighted by annual zonal usage associated with each node in
the state.

Table 2.2 provides summary statistics on annual wholesale electricity spot prices for the
utilities in Figure 1. I convert all spot market prices to $/kWh to facilitate comparison with
retail prices.

B.2 Estimating Reverse Causation Bias in the 2SLS

Estimates

The estimate of the potential bias from reverse causation in the 2SLS estimates use the
following assumptions:

• Short-run own-price elasticity of residential electricity demand: -0.35 (Espey and Es-
pey, 2004, mean)

• Conservative estimate of an individual company’s residential customer demand as a
percentage of total state consumption: 5.08%

• Conservative estimate of the percentage of gas demand from electricity generation:
50%

• Average natural gas price: $6/MCF

I combine these assumptions with the empirical estimates. The sum of the relevant second
stage coefficients is 0.3, and the first-stage coefficient is 0.005. This implies that a $1/kWh
increase in predicted marginal costs leads to a 30% increase in average retail price, which in
turn leads to a 0.27% decrease in natural gas demand. Conservatively assuming that natural
gas prices also decrease by 0.27%, this implies a $0.0001/kWh change in predicted marginal
costs due to violation of the exclusion restriction.
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B.3 Location of Municipal Electric Utilities

Figure A1: Location of Municipal Electric Utilities included in Analysis

This figure displays the locations of municipal electric utilities included in the analysis. County-level

population comes from the U.S. Census Bureau.
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B.4 Location, Ownership, and Capacity of

Hydroelectric Power Plants

Figure A2: Location and Capacity of Hydroelectric Power Plants

Source: Energy Information Administration (Accessed April 2019)
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Figure A3: Ownership of Hydroelectric Power Plants

Source: Oak Ridge National Laboratory
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Appendix C

Appendix for Does Timing Matter?
Impact of Time-based Rates on
Energy Efficiency, Rooftop Solar,
and Building Electrification

C.1 Tables
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Table A1: Over-investment Regression Results

Dependent variable: Over-investment

EE PV

(1) (2) (3) (4) (5) (6)

Fixed Charge ($/year) 0.001 0.003∗∗ 0.004∗∗ 0.002
(0.002) (0.001) (0.002) (0.002)

Flat Price ($/kWh) 6.288∗∗∗ 6.376∗∗∗ 7.390∗∗∗ 7.718∗∗∗

(1.065) (1.025) (0.829) (1.192)

$/kWh Price Variance 28.270 98.260∗∗∗ −55.968∗∗ 75.069∗∗

(31.675) (25.630) (22.497) (30.507)

cor(Price, kWh) −0.265∗ −0.151 −1.522∗∗∗ 0.033
(0.138) (0.155) (0.363) (0.746)

cor(Price, Avoided Costs) −0.585 −2.363∗∗∗ 0.903 −2.803∗∗∗

(0.454) (0.715) (0.543) (0.970)

Max $/kW Charge 0.010 0.017 −0.047∗∗∗ −0.025∗

(0.012) (0.013) (0.007) (0.014)

Constant x x x x x x

Observations 241,168 241,168 241,168 42 42 42
Adjusted R2 0.540 0.247 0.517 0.876 0.400 0.673

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors clustered by utility, rate, and energy efficiency invest-

ment package for columns 1-3.
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Table A2: Incentive Deviation Regression Results

Dependent variable: | Bill Savings - Avoided Costs |

EE PV

(1) (2) (3) (4) (5) (6)

Fixed Charge ($/year) −0.0003∗ −0.0001 −0.0003∗∗∗ 0.0001
(0.0002) (0.0002) (0.0001) (0.0001)

| Flat Price - Avoided Costs | 0.423∗∗∗ 0.442∗∗∗ 0.987∗∗∗ 0.892∗∗∗

(0.096) (0.115) (0.074) (0.073)

$/kWh Price Variance 3.331 4.490∗∗ 5.108∗∗∗ 11.732∗∗∗

(2.353) (1.950) (1.421) (2.391)

cor(Price, kWh) 0.018 0.002 0.041∗ 0.180∗∗∗

(0.013) (0.013) (0.022) (0.048)

cor(Price, Avoided Costs) −0.081 0.024 −0.194∗∗∗ −0.242∗∗

(0.062) (0.099) (0.040) (0.093)

Max $/kW Charge 0.0001 −0.001 0.002∗∗∗ −0.0002
(0.001) (0.001) (0.0004) (0.001)

Constant x x x x x x

Observations 171,450 171,450 171,450 30 30 30
Adjusted R2 0.217 0.143 0.192 0.960 0.658 0.879

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors clustered by utility, rate, and energy efficiency invest-

ment package for columns 1-3.
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Table A3: Targeting Regression Results

Dependent variable:

Savings − Avoided Costs ∆(Savings − Avoided Costs)

(1) (2)

Flat Price ($/kWh) 0.834∗∗∗

(0.215)

System Mean Social Marginal Costs ($/kWh) −1.093∗∗∗

(0.415)

Savings per kWh Increase (bool) 0.031∗∗∗

(0.004)

Constant x x

Observations 171,450 171,450
Adjusted R2 0.597 0.520
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Table A4: LMPs and System Lambda Value Summary Statistics ($/MWh)

Percentile Ameren APS GMP OG&E
5th 15.4 8.8 13 -2.2
25th 20.2 15.1 18.7 14.1
50th 22.6 19 24.1 18.6
75th 25.8 21.7 35.3 23.4
95th 39.3 31.4 66.9 52.7

C.2 Social Marginal Avoided Costs

Calculation of Marginal Cost Components

The following subsections describe the marginal avoided cost estimation in detail. Each
subsection covers one of the cost components outlined in Table 3.1.

Energy, Transmission Losses, and Transmission Congestion

Three of the utilities in our analysis participate in wholesale electricity markets run by a
Regional Transmission Operator (RTO) or an Independent System Operator (ISO). We use
2019 hourly real-time locational marginal prices (LMPs) from SNL Financial as an estimate
of the combined marginal costs of electricity generation, scaled up for transmission losses,
and congestion on the transmission lines. We choose the ISO New England aggregated
node.Z.VERMONT for GMP, the Midcontinent ISO node AMIL.ACL9 for Ameren, and
the Southwest Power Pool aggregated node OKGE OKGE for OGE. Assuming there is no
market power or other market distortions and the total amount of generating capacity in
the system is fixed, these LMPs should reflect the combined marginal costs of electricity
generation, transmission losses, and transmission congestion.

For APS, we use Federal Energy Regulatory Commission (FERC) Form-714 hourly sys-
tem lambda values, which we accessed through Ventyx.1 These are APS estimates of the
private cost of increasing electricity production by one MWh in a given hour. In other words,
these are the APS estimates of energy marginal costs. Following Borenstein and Bushnell
(2022a), we scale the lambda values up by 2% for transmission losses. We do not estimate
APS congestion costs.

Table A4 displays summary statistics of these LMPs and system lambda values, and
Figure A1 displays averages by season and hour of day. The prices in GMP tend to be
highest in the winter and in the early evening. Ameren and OGE prices tend to be highest
in the summer late afternoons. The APS system lambda values vary less seasonally and
across hours of the day than the LMPs in the other three locations.

1We impute one missing system lambda value by linearly interpolating the adjacent values.
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Figure A1: Mean LMP and System Lambda Values by Utility, Season, and Hour of Day

Ancillary Services

Ancillary services are non-energy services typically provided by generators to improve
grid reliability. Most ancillary services help ensure that generation sufficiently matches real-
time electricity usage at all times. Marginal ancillary service costs reflect the impact of
1 additional kWh of electricity usage on the costs of providing ancillary services. We use
the E3 2019 ACC assumption that marginal ancillary service costs are 0.9% of marginal
energy costs. This value comes from a historical comparison of energy and ancillary service
costs in the California ISO market. This approach implicitly assumes that ancillary service
requirements are linear in system-wide electricity usage, at least near typical electricity usage
levels.

Distribution Losses

In addition to transmission system electrical losses, there are also distribution system
electrical losses and theft within the distribution system. Borenstein and Bushnell estimate
hourly marginal distribution losses for each U.S. investor-owned utility for the years 2014
through 2016. We use their estimates of average annual losses for the four utilities in our
analysis to compute 2019 values. We follow their assumption that 25% of losses are fixed
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Table A5: Mean Marginal and Average Losses by Utility

Ameren APS GMP OG&E
Mean Marginal Losses 9.95% 9.42% 9.38% 9.04%
Average Losses 6.83% 6.85% 6.47% 6.28%

and do not vary with electricity usage. The remaining 75% of these losses vary with the
square of electricity usage. As shown in Equations 5 and 6 of the Borenstein and Bushnell
Appendix, this assumption allows us to estimate marginal hourly distribution losses as

Marginal Losses = 2× .75(Average Annual Losses)i

∑8760
t=1 Qit∑8760
t=1 Q

2
it

Qit

where Qit denotes total electricity usage for utility i in hour t. The summations sum
over all hours of the 2019 year, which we index from 1 to 8760. For hourly electricity usage
estimates, we use 2019 FERC 714 Planning Area Load filings.

Table A5 shows the resulting mean marginal loss estimates by utility. Table A5 also in-
cludes the average annual losses for comparison. To translate loss factors to $/kWh marginal
costs, we multiply marginal losses by the sum of energy and external marginal costs in each
hour.

Generation Capacity

Generation capacity marginal costs reflect the net incremental cost of building a new
generator due to an increase in electricity demand during peak system hours. Generation
capacity is innately a lumpy investment. Under most circumstances, meeting a small increase
in peak load will not require building any new generation. Occasionally, a small increase in
peak load will lead to investment in a large new generator with capacity orders of magnitude
greater than the increase in load. We smooth out this investment decision and treat gen-
eration capacity decisions as continuous, allowing arbitrarily small increases in generation
capacity to meet small increases in peak load. We also assume that systemwide electricity
generation is increasing over time, so a marginal reduction in electricity usage can delay an
investment in new generation capacity.

The Independent System Operator of New England (ISONE) runs a market for generation
capacity. For Green Mountain Power, we estimate the annual marginal generation capacity
cost as the annual $/kW ISONE forward capacity auction price. This is the price per kW paid
to generators for being available to generate during peak hours. ISONE conducts capacity
auctions three years ahead of the commitment period. They determine future capacity need
based on historical electricity demand. Since we are considering the impact of an unexpected
marginal change in 2019 electricity usage, we use the auction-clearing price from the annual
Forward Capacity Auction #13, which was conducted in 2019 for capacity commitment
period 2022/2023.
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The other three utilities do not participate in capacity markets. For these utilities, we
follow the E3 2019 Avoided Cost Calculator approach and calculate net capacity cost as gross
costs less the profit that a new single-cycle combustion turbine generator could make in the
wholesale energy and ancillary services markets.2 The intuition for this approach comes
from the fact that the past costs of building existing generators are sunk. When the new
generator enters the wholesale energy and ancillary services markets, it earns profit whenever
its costs are below market-clearing prices. This displaces profit that other generators would
have otherwise earned in the market. In aggregate, these profit changes offset each other and
do not produce any net societal costs. However, the fact that the new generator anticipates
earning revenue in the wholesale markets enables ratepayers and utility shareholders to pay
less than the full gross costs of building the generator. Our calculation of marginal cost aims
to estimate these required payments.

We assume that the change in generation capacity is small enough to not change wholesale
market prices. To the extent that the generator’s entry would cause a reduction in wholesale
electricity prices, this benefit would be offset by a commensurate decrease in the generator’s
profit, which would reduce the net cost of new capacity. On net, we assume the impact of
any market price suppression on societal costs would be negligible.

We use the E3 2019 ACC estimate of the gross annualized fixed cost of building a new sim-
ple cycle combustion turbine, $163.92/kW-yr. To calculate generator revenue in non-capacity
markets, we first calculate whether the generator would operate in each hour, ignoring any
dynamic considerations, such as start up costs. We assume the generator will operate in a
given hour if the wholesale energy price is above the variable operating costs, i.e.,

(Natural Gas Fuel Costs)h + (V ariable O&M Costs) <
LMPh

1 + Transmission Loss Cost

where the righthand side of the inequality reflects our estimate of energy prices.3 We use
the E3 2019 ACC variable operation and maintenance (O&M) estimate, which is $5.52/MWh
in 2019 dollars and the Borenstein and Bushnell transmission loss factor of 2%. We estimate
hourly natural gas costs using monthly state citygate natural gas prices from the U.S. Energy
Information Administration (EIA) and E3 2019 ACC assumptions about the assumed heat
rate of the marginal generator. We allow the generator’s heat rate to vary with hourly tem-
perature. To estimate this relationship, we use the E3 2019 ACC temperature derate curves
and actual 2019 temperature from the U.S. National Oceanic and Atmospheric Administra-

2An alternative approach would be to assume the marginal resource is a renewable generator. In fact,
later updates of the E3 Avoided Cost Calculator make this assumption for California. We estimate that
renewables have a lower required cost of entry in some of the geographic areas analyzed. However, we chose
the CT assumption because APS, OG&E, and a developer in Illinois proposed new CTs in 2019.

3We abstract from the fact that locational marginal prices may also include transmission congestion
costs, which do not accrue to the generator.
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tion (NOAA) Integrated Surface Database.4 We estimate average daytime temperature by
month for each utility using the E3 2019 ACC definition of daytime hours. We extend the
E3 2019 ACC temperature derate curves linearly a few extra degrees to capture particularly
high temperatures in the APS service area.

After determining whether the marginal generator would operate in each hour, we cal-
culate the profit the generator would earn in the wholesale energy market in each hour by
using the same variable operating costs and estimated energy prices used to determine the
operation decision. We use the E3 2019 ACC assumption that ancillary service revenues are
2.7% of the generator’s wholesale energy revenues. We subtract the variable costs from the
combined revenues, adjusting for the impact of temperature on the generator’s output. We
use the E3 2019 ACC outage factor of 7.3% to derate this profit value for generator outages.
This leads to the following profit equation:

Profit =

[ ∑
h∈(Operating Hours)

(
1.027

( LMP

1− (Transmission Loss Factor)

)

− (Operating Costs)h

)
(TemperatureOutputDerate)h

]
× (1−Outage Factor)

To calculate annual generation capacity costs, we subtract this profit value from the
annualized fixed capital costs. We scale this net value up for losses during the peak system
hour. This provides the cost if the generator operated at its nameplate capacity during the
peak hour. We also make a temperature derate adjustment to convert this value to cost per
delivered peak capacity. This produces the following formula:

Marginal Generation Capacity Cost =

(Annualized F ixed Cost− Profit)

(
Peak Loss Factor

Average Output Derate

)
Conceptually, we should only apply this marginal capacity cost in the peak demand

hour. In practice, the precise hour of the year in which peak demand occurs differs year-to-
year depending on weather among other factors. To avoid overfitting our estimates to the
2019 calendar year, we spread out the capacity cost over 40 hours of the year. We allocate
costs equally to the 40 hours of the year with the highest aggregate electricity usage. More
sophisticated methods exist to estimate the probability that peak demand will occur in any
given hour. This simple method of allocating costs across the top hours is appropriate in our
setting because we apply these marginal costs to simulated energy usage based on a typical
meteorological weather year.

4We use temperature at the Phoenix Airport, Springfield Abraham Lincoln Capital Airport, Oklahoma
City Will Rogers World Airport, and Burlington International Airport weather stations for APS, Ameren,
OGE, and GMP, respectively.
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Distribution Capacity

Distribution capacity costs capture the expected costs of a distribution system upgrade
to accommodate higher electricity consumption levels. Since distribution capacity expansion
is lumpy, the true marginal impact of a 1 kWh load increase is likely to be very large in a
few hours and locations and zero otherwise. We do not attempt to estimate this geographic
heterogeneity in distribution capacity marginal costs. Instead, we aim to estimate an average
marginal cost value across all residential customers in each hour. To achieve this, we use
the average avoided distribution cost of $48.37/kW-yr from the Mendota Group LLC (2014)
literature review of 35 utility estimates. We allocate this value to the 200 hours of the
year with the highest estimated load on residential feeders.5 We use aggregate ResStock
electricity usage for each utility to determine these 200 hours.

There are a few assumptions worth highlighting. First, our analysis applies marginal
costs to reductions in load. In doing so, we implicitly assume a symmetry in all marginal
cost components that makes increases and reductions in electricity usage have equal and
opposite effects on societal costs. This is a reasonable assumption if other electricity usage
on the relevant feeders is increasing over time, which is stronger than the generation capacity
assumption that systemwide electricity usage increases over time. Under this assumption, the
load reductions we analyze are effectively slowing down this aggregate increase in electricity
usage and, thereby, delaying a distribution upgrade for some marginal amount of time.
Second, distributed PV may also conceivably cause distribution upgrades at large enough
penetrations. We assume these costs are zero and apply the same marginal distribution
capacity costs to distributed PV and energy efficiency.

Renewable Portfolio Standard Compliance

Three of the utilities in the analysis have to meet a minimum percentage of their retail
sales with renewable generation due to a state Renewable Portfolio Standard (RPS) or Re-
newable Energy Standard. Since these two types of standards have the same structure, we
will refer to both of them by the acronym RPS. If it costs more to generate electricity with
renewable resources that comply with an RPS standard than to generate the same amount
of electricity with the least-cost portfolio of resources, then an additional kWh of electricity
usage increases the cost of complying with the RPS. The RPS marginal cost captures this
incremental private cost. We assume that the RPS is binding, and meeting the incremental
RPS obligation requires building new renewable generating capacity.

5For precedence, see San Diego Gas and Electric’s rate scheduel VGI. Available at: https://www.sdge.
com/sites/default/files/elec_elec-scheds_vgi.pdf. Accessed May 2023.

https://www.sdge.com/sites/default/files/elec_elec-scheds_vgi.pdf
https://www.sdge.com/sites/default/files/elec_elec-scheds_vgi.pdf
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Table A6: Renewable Portfolio Standard Compliance Obligations

Ameren APS GMP OG&E
Total Obligation (% of Retail Sales) 14.5% 9.0% 57.67% N/A
Wind Carve Out (% of Retail Sales) 10.875% N/A N/A N/A
Solar Carve Out (% of Retail Sales) 0.87% N/A N/A N/A

We calculate RPS costs using the following formula:

RPS Cost =

(
PPA Price+ Integration Cost+ Transmission Cost

− Energy Market Revenue− Capacity Revenue

)
× (RPS Compliance Obligation)

where PPA price is the price of a utility power purchase agreement (PPA) for renewable
generation, integration cost captures the cost of additional reserves needed to meet grid
reliability goals due to the intermittency of renewable generation, and transmission cost is
the cost of building new transmission to connect the renewable generators to the rest of
the grid as well as any other transmission upgrades needed to deliver the electricity to end
users. We subtract out revenues that the RPS generator could make in wholesale energy
and capacity markets and from payments for providing resource adequacy in areas without
capacity markets. We multiply the net costs by the compliance obligation specified in the
state RPS. For example, the Arizona RPS required APS to meet 9% of its retail sales with
renewable generation, so the RPS compliance obligation is 9%. This calculation follows pre-
2019 versions of the E3 ACC approach closely.6 The one departure is that we do not deduct
an emissions value from the PPA price. We separately capture carbon and local air pollution
benefits from an RPS in our estimates of marginal carbon and environmental damages.

Table A6 displays the 2019 RPS compliance obligations for the four utilities in our analy-
sis. RPS-qualifying resources differ somewhat by state, but we assume the marginal resource
is either wind or solar for all utilities. One state, Illinois, has different minimum percentages
(“carve outs’) for each of wind and solar. Some states also have distributed generation carve
outs. We neither increase compliance costs for any distributed generation carve outs nor
allow distributed PV in our analysis to receive credit for their contribution to the RPS.7

We assume the cost of RPS grid integration is $5/MWh in 2014 dollars based on a
literature review by Luckow et al. (2015). We use a levelized transmission cost of $5/MWh
in 2018 dollars, which is the mean and median of the estimates from Gorman et al. (2019).
For PPA prices, we use the cheaper of the solar and wind PPA price estimates from Wiser

6The E3 2019 ACC assumes the RPS value is zero in 2019, which is consistent with our APS and Ameren
estimates.

7We estimate an avoided RPS cost of zero for all utilities with carve outs.
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Table A7: Power Purchase Agreement Resource and Price Assumptions

Ameren APS GMP OG&E
PPA Resource Wind Solar Wind Wind
PPA Price ($/MWh) 27.6 23.5 42.6 14.7

et al. (2022) and Bolinger et al. (2022) in each region. For Ameren, we assume the wind
and solar carve outs are met and select the cheaper resource for the remaining compliance
obligation. Table A7 shows the cheaper marginal resource and the resulting PPA price by
utility, converted to 2019 dollars. These values come from executed PPAs and embed tax
incentives, including the Investment Tax Credit and the Production Tax Credit.

We estimate energy and capacity revenues by multiplying our hourly energy and capacity
marginal costs by estimated hourly renewable generation, which we normalize to generate
1 kWh over the entire year. We use Lawrence Berkeley National Laboratory’s Renewables
and Wholesale Electricity Prices (ReWEP) Tool for wind generation profiles. For solar PV
generation profiles, we use NREL’s Solar Power Data for Integration Studies. We selected
the utility scale PV profiles located closest to Springfield IL, Phoenix AZ, Burlington VT,
and Oklahoma City OK for Ameren, APS, GMP, and OGE, respectively. The database does
not include any utility scale PV shapes in Vermont, so we use a distributed PV shape, which
is assumed to be a fixed tilt system instead of having single axis tracking. For simplicity, we
assume the amount of renewable generation is known with certainty. In practice, a renewable
generator’s contribution to capacity is highly uncertain and capacity payments may reflect
this uncertainty.

Carbon and Local Air Pollution

Electric generation also emits pollutants that may cause humans harm through climate-
and health-related impacts, among other factors. We consider the marginal effect of electric
generation on external damages caused by carbon dioxide (CO2), sulphur dioxide (SO2),
nitrogen oxides (NOX), and particulate matter smaller than 2.5 micrometers. Our approach
does not capture the impact of electricity usage on emissions from any source except electric
generator smokestacks. We use estimates of the impact of a 1 kWh kWh increase in electricity
usage on carbon- and criteria pollutant-related damages by region and load tercile from
Borenstein and Bushnell. Borenstein and Bushnell segment the U.S. into nine regions they
call North American Electric Reliability Corporation (NERC) subregions.8 These regions
are similar to NERC electric reliability organization regions. The Borenstein and Bushnell
estimates are the product of two values: the effect of an increase in electricity usage on
pollutant emissions and estimated damages per ton of pollutant emitted. Borenstein and
Bushnell estimate the impact of an increase in electricity usage in one region on electricity
generator smokestack emissions in that and other regions empirically using historical NERC

8See Figure A2 in Borenstein and Bushnell (2021) for a diagram of these regions.
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subregion electricity usage and power plant emissions data. The damages per ton underlying
the Borenstein and Bushnell estimates come from the AP3 integrated assessment air pollution
model (Clay et al., 2019; Holland et al., 2016). These damage estimates aim to capture
the effect of emissions on ambient pollutant concentrations and the monetary impact of
ambient air pollution on human well-being measured by human health, crop and timber
yields, degradation of buildings and material, visibility, and recreation.

To calculate 2019 hourly external costs, we first calculate NERC subregion load in each
hour of 2019 by adding FERC Form 714 electricity usage for all planning regions in the
NERC subregion. For cases where a planning region crosses NERC subregion borders, we
allocate the entire planning region load to the NERC subregion that contains the majority
of the planning region. We also split MISO electricity usage equally between the SPP,
SERC, and MRO subregions. For each subregion and hour of year, we then identify whether
electricity usage was in the bottom, middle, or top tercile of the distribution of 2019 hourly
electricity usage. Combining this information with the Borenstein and Bushnell estimates,
adjusted for inflation, gives us hourly external CO2 and criteria pollutant marginal costs for
each utility. We adjust the GMP CO2 damage estimates since the private energy marginal
cost estimates include the cost of compliance with the Regional Greenhouse Gas Initiative
(RGGI). To avoid double counting, we subtract the average 2019 RGGI permit price from
the GMP carbon damage estimates.

Results

Figure A2 displays the resulting mean annual social marginal costs by cost component
and utility. The largest private marginal cost components are energy and generation ca-
pacity costs. These costs are negatively correlated since higher energy prices reduce the
capacity payments needed to incentivize construction of a generator or retirement of an
existing generator. Capacity payments also tend to be higher in hotter areas since the tem-
peratures reduce generator efficiency. We estimate that external marginal costs range from
58% to 118% of private marginal costs across the four locations. The variation in CO2

costs across utilities reflects differences in which resources tend to have the marginal bid in
wholesale electricity markets and differences in thermal generator heat rates across utilities.
The air quality marginal costs largely depend on these factors and population density near
the pollution-emitting generators. This explains why utilities in areas with relatively low
population density, such as APS, may have relatively high CO2 marginal costs and relatively
low air quality-related marginal costs. GMP is the only utility with positive RPS marginal
costs. We estimate that renewable resources have reached parity with thermal resources in
APS and Ameren service areas. This may change with the removal of tax credits and higher
RPS obligations in these areas.

Figures A3-A6 break these annual estimates down temporally for each utility. The fig-
ures show average social marginal costs by season and hour of day. Generation capacity is
especially seasonal with values concentrated in summer and winter months for GMP and
in the summer and early fall months for the other three utilities. RPS costs are constant
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Figure A2: Average Annual Social Marginal Costs by Utility and Cost Component

throughout the year. External marginal costs tend to be largest during high load hours for
GMP and Ameren and during low load hours for APS and OGE. The other marginal cost
components tend to move with electricity usage. Costs tend to be highest in the morning
and evening in winter months and in the late afternoon in summer months. This is not the
case for APS, which may be due to data quality issues in the APS system lambda estimates.



APPENDIX C. DOES TIMING MATTER? 183

Figure A3: Social Marginal Costs by Season, Hour of Day, and Component: APS

Figure A4: Social Marginal Costs by Season, Hour of Day, and Component: Ameren
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Figure A5: Social Marginal Costs by Season, Hour of Day, and Component: GMP

Figure A6: Social Marginal Costs by Season, Hour of Day, and Component: OG&E
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C.3 Energy Efficiency Upgrade Package Details
Package with fuel switching 

Components: 

• ASHP  

o SEER 22, 10 HSPF 

o Applied to all homes with ducts 

• MSHP  

o SEER 25, 12.7 HSPF 

o Applied to all homes without ducts 

• Ducts improved to 10% Leakage, R-8 

o Applied to all leakier and/or less insulated ducts 

• Heat pump water heaters 

o 50 gal, 3.45 UEF for 1-3 bedroom homes 

o 66 gal, 3.35 UEF for 4 bedroom homes 

o 80 gal, 3.45 UEF for 5+ bedroom homes 

• Clothes washer efficiency 

o Rated at 123 annual kWh 

o Applied to all homes with less efficient clothes washers 

• Dishwasher efficiency 

o 199 rated kWh dishwasher 

o Applied to all homes with less efficient dishwashers 

• Refrigerator efficiency 

o EF 21.9 

o Applied to all homes with less efficient refrigerators 

• Clothes dryer efficiency 

o Electric premium, efficiency = 3.42 

o Applied to all homes with a less-efficient electric clothes dryer, or a non-electric clothes 

dryer 

• Cooking range efficiency 

o Induction range 

o Applied to all homes with a less-efficient electric range, or a non-electric range 

Equipment package (no fuel switching) 

• AC efficiency 

o AC, SEER 18 

o Applied to homes with non-electric heat and a lower-efficiency AC 

• Window AC efficiency 

o Room AC, EER 12.0 

o Applied to homes with non-electric heat and a lower-efficiency room AC 

• ASHP 

o SEER 22, 10 HSPF 

o Applied to homes with electric heating and ducts 

• MSHP 

o SEER 25, 12.7 HSPF 
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o Applied to homes with electric heating and no ducts 

• Heat pump water heaters 

o 50 gal, 3.45 UEF for homes with 1-3 bedrooms and electric water heating 

o 66 gal, 3.35 UEF for homes with 4 bedrooms and electric water heating 

o 80 gal, 3.45 UEF for homes with 5+ bedrooms and electric water heating 

• Refrigerator: same as package 1 

• Clothes washer: same as package 1 

• Clothes dryer 

o Electric premium, efficiency = 3.42 

o Applied to all homes with less efficient electric clothes dryers 

• Cooking range 

o Induction range 

o Applied to all homes with a less efficient electric range 

Envelope package 

• Attic insulation  

o Note: Overriding logic is to give less well insulated homes with vented attics R-values 

from 2021 IECC 

o R-30 ceiling insulation for homes with vented attics and insulation ≤ R-19 in IECC 1A 

o R-49 ceiling insulation for homes with vented attics and insulation ≤ R-38 in IECC 2A, 2B, 

3A, 3B, or 3C 

o R-60 ceiling insulation for homes with vented attics and insulation ≤ R-38 in IECC 4A, 4B, 

4C, 5A, 5B, 6A, 6B, 7A, 7B 

o This also came with a 13% whole-home infiltration reduction 

• Exterior wall insulation 

o R-6 (1” polyiso) exterior insulation added 

o Applied to homes older than 1990 with <R-19 nominal wall insulation 

o This also comes with a 19% whole-home infiltration reduction 

• Exterior storm windows 

o Exterior low-E storm windows added 

o Applied to homes with double pane metal framed windows or single pane windows 

o This also comes with a 30% whole-home infiltration reduction for single-pane windowed 

homes and 10% for homes starting with double pane or single pane with clear storm 

Lighting package 

• 100% LED lighting for all homes 
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