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Radiation from an accelerating charge is a basic process that can serve as an intersection between 
classical and quantum physics. We present two exactly soluble electron trajectories that permit analysis 
of the radiation emitted, exploring its time evolution and spectrum by analogy with the moving mirror 
model of the dynamic Casimir effect. These classical solutions are finite energy, rectilinear (nonperiodic), 
asymptotically zero velocity worldlines with corresponding quantum analog beta Bogolyubov coefficients. 
One of them has an interesting connection to uniform acceleration and Leonardo da Vinci’s water pitcher 
experiment.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

The mechanism of particle creation proposed by Hawking [1], 
whereby the gravitational field of a collapsing star in curved space-
time amplifies vacuum fluctuations into particle emission, bears 
striking resemblance to the radiation of particles from a perfect 
mirror in flat spacetime accelerated through the vacuum [2–4]. 
Particles of a massless quantum scalar field in 1 + 1 dimensions 
[5,6] are created due to the acceleration of the mirror, which is an 
ideal point and boundary condition on the field [7–13], essentially 
a dynamical Casimir effect [14]. In this study, we demonstrate a 
functional duality and analog to an accelerated point charge in 
ordinary 3+1 space-time and its non-thermal radiation spectrum, 
revealing the particle creation correspondence.

Accelerating point charge radiation has been a subject of in-
terest in physics for over a century [15], and it is of particular 
interest as a simple example of nonthermal radiation. Nonthermal 
radiation is ubiquitous in astrophysical phenomena, for example, 
and the particle number and angular spectral distribution may not 
be apparent. Furthermore, even evaporating black holes might emit 
non-thermal radiation, e.g. the recent [16]. Therefore a concrete re-

* Corresponding author.
E-mail addresses: michael.good@nu.edu.kz (M.R.R. Good), evlinder@lbl.gov

(E.V. Linder).
https://doi.org/10.1016/j.physletb.2023.138124
0370-2693/© 2023 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
lation between accelerated particle nonthermal radiation and the 
moving mirror “slicing” of the vacuum [17–20], especially in light 
of the well-established correspondence between moving mirrors 
and black hole horizons, is of interest.

The discovery of a clear association (generalized to non-thermal 
emissions) between the radiation from an electron and from a 
moving mirror became apparent via radiation reaction derived by 
Ford and Vilenkin in 1982 [8]. In 1995, Nikishov and Ritus [21]
established a formal link through particle count, which further 
strengthened this connection. Ritus [22–25] later provided addi-
tional development on the Bogolyubov-current association. The re-
lationship was next confirmed via Larmor power in Zhakenuly et 
al. [26]. One of the present authors has exploited the electron-
mirror connection using explicit solutions; for instance, the con-
nection between radiation power loss and kinetic power loss for 
an electron approaching the speed of light was demonstrated in 
[27], and in [28] an electron was treated as a mirror for a trajec-
tory that asymptotically approaches a constant velocity. This article 
focuses on the interesting results for the electron-mirror relation 
for trajectories that come to a complete stop, giving finite energy, 
finite particle creation, and unitary evolution.

In Sec. 2, we review some elements of acceleration radiation for 
relativistic moving point charges, including Larmor power, Feyn-
man power, and their connection to total energy emitted. We 
present the spectra for two different motions of point charges and 
the quantum analogs that have desirable properties and analytic 
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 
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Bogolyubov coefficients in Sec. 3 and Sec. 4. In Sec. 5 we show 
the general correspondence between the classical bremsstrahlung 
and dynamical Casimir effect in energy, particle count, and spec-
tral distribution. We summarize and discuss further areas for study 
in Sec. 6.

2. Acceleration radiation elements

In this section, we set up the various elements needed to 
compute the radiated power, energy, and spectral distribution of 
both an accelerating charge and from a moving mirror dynamical 
Casimir effect. We employ e and h̄ for their classical and quan-
tum contexts, respectively. We use units, c = μ0 = ε0 = 1, thus 
e2 = 4παfsh̄ where αfs is the fine structure constant.

2.1. Power and force

In classical electrodynamics [29], the power radiated and the 
radiation reaction force,

P = e2α2

6π
, F = e2α′(τ )

6π
, (1)

are given by the relativistically covariant Larmor formula and the 
(magnitude of the) Lorentz-Abraham-Dirac (LAD) force. Here α is 
the proper acceleration, and the prime is a derivative with respect 
to the argument, in this case proper time τ .

2.2. Energy integrals

When the charged particle accelerates, energy is radiated, with 
the total energy found by integrating over coordinate time. That is, 
for particle velocity v(t) the integrals

E =
∞∫

−∞
P dt = −

∞∫
−∞

F · v dt, (2)

demonstrate that the Larmor power, P = e2α2/6π , and what we 
call the ‘Feynman power’ [30], F · v , associated with the self-force 
(radiation reaction force), directly tell an observer the total energy 
emitted by a point charge along its time-like worldline. The total 
energy is finite as long as the proper acceleration is asymptotically 
zero; that is, the worldline must possess asymptotic inertia. We 
restrict ourselves to this case.

The negative sign demonstrates that the total work against the 
LAD force represents the total energy loss. That is, the total energy 
loss from radiation resistance due to Feynman power must equal 
the total energy radiated by Larmor power. We will demonstrate 
that the Larmor and Feynman powers themselves – the integrands 
– are not the same. Separately, it is a subtle matter that these 
powers are not applicable for asymptotically non-inertial rectilinear 
trajectories (which we do not consider here); see e.g. [27,31].

A third expression for the total energy can be employed to 
establish a link to quantum physics and verify consistency. This 
spectral consistency integrates over spectral modes,

E =
∞∫

0

∞∫
0

h̄p |βpq|2 dp dq , (3)

using the quantum analog moving mirror model, generalized to 
3+1 dimensions using both sides of the 1+1 dimensional moving 
mirror, see e.g. [21,26].

The quantity βpq is the beta Bogolyubov coefficient related to 
the creation/annihilation operators and p and q are the out-going 
and in-going frequencies, respectively, that describe the modes 
used to expand the field subject to the accelerating boundary.
2

2.3. Spectral distribution

The spectral distribution [32] of the total radiation energy E
with respect to frequency ω and solid angle � is

dI(ω)

d�
:= d2 E

dω d�
, (4)

see also [29]. For the radiation of a moving point charge (in our 
natural units – see e.g. Eq. 23.89 on page 911 of Zangwill [33] in 
SI units or Eq. 14.67 on page 701 of Jackson [29] in Gaussian units) 
this is given by the motion as

dI(ω)

d�
= e2ω2

16π3

∣∣∣∣∣∣ n̂ ×
∞∫

−∞
dt ṙ(t)eiφ

∣∣∣∣∣∣
2

. (5)

Here ω is the frequency, k = ωn̂ the wave vector, d� the solid 
angle, r the charge trajectory with velocity vector ṙ, and φ = ωt −
k · r(t). Defining n̂ · r̂ = cos θ and assuming straight line motion, we 
have

dI(ω)

d�
= e2ω2

16π3
sin2 θ

∣∣∣∣∣∣
∞∫

−∞
dt ṙ(t)eiφ

∣∣∣∣∣∣
2

. (6)

Integrating this over solid angle d� = sin θdθdϕ and frequency ω
will yield the total energy emitted.

We can also interpret the trajectory as not that of a point 
charge but an accelerating mirror (boundary) and compare the 
horizon radiation from this dynamical Casimir effect. Thus we can 
test that the classical energy emitted agrees with the quantum 
result from the Bogolyubov creation/annihilation coefficients, and 
also, contrast the Larmor and Feynman powers. This further pro-
vides a way to derive the spectrum angular distribution for particle 
production from a moving mirror trajectory.

2.4. Asymptotic rest

To pursue an understanding of the spectrum angular depen-
dence for the quantum analog, we consider moving mirror trajec-
tories that deliver finite total energy and particle count (ensuring 
all integrals are convergent). Asymptotically inertial mirrors have 
finite total energy, while mirrors that also are asymptotically static 
(eventually coming to rest with zero velocity) have finite parti-
cle count, entropy, and have unitary evolution (seen geometrically 
since all light rays reflect off the mirror and none are lost). There-
fore we consider only cases with asymptotic rest.

The following list summarizes the only known trajectories pos-
sessing asymptotic rest with solved Bogolyubov coefficients.

• Walker-Davies [34]: but noninvertible t(x).
• Arctx [35]: but nonfunctional particle count.
• Self-Dual [36]: time symmetric.
• betaK [37]: time antisymmetric.
• Schwarzschild-Planck [38,39] (also see [40]): fully evaporating 

black hole with unitarity.

None of these have previously had published solutions for the 
beta Bogolyubov coefficients using both mirror sides to obtain the 
3+1 D analog (and hence classical particle motion). In the next two 
sections we present solutions for the two boldface trajectories – in 
particular as examples of time-symmetric vs antisymmetric mo-
tion, and the associated spectral distributions.



M.R.R. Good and E.V. Linder Physics Letters B 845 (2023) 138124
Fig. 1. The Larmor and Feynman powers for the self-dual trajectory (mirrors with 
h̄ = 1 or electrons with e = 1) are plotted vs time, with v = 0.9. A higher maximum 
velocity squeezes and heightens the peaks for both powers. The Feynman power 
plotted is P F = −F · v so that the total area under the curve is positive, E = ∫

P F dt , 
see Eq. (2). Note the integrals under the curves are equal, giving the total energy 
radiated, Eq. (9).

3. Self-dual trajectory

The self-dual mirror trajectory [36]

x(t) = −v

κ
ln(κ2t2 + 1) , (7)

is even in time, and the self-dual nature means that the particle 
emission spectrum is equal on both sides of the mirror. The quan-
tity v is the maximum speed of the mirror, occurring at κt = 1. 
The quantity κ sets the scale of the acceleration (and the surface 
gravity of the black hole analog in the accelerating boundary cor-
respondence).

The analog quantum Larmor power radiated is

P L = 2h̄κ2 v2
(
κ4t4 − 1

)2

3π
[(

κ2t2 + 1
)2 − 4κ2t2 v2

]3
. (8)

As expected, no power is radiated by a stationary mirror, v = 0, 
and none at the moment of maximum velocity when the acceler-
ation is zero (i.e. when κt = 1, as well as at asymptotically early 
and late times).

The Feynman force can be similarly calculated analytically but 
the expression is long. Fig. 1 plots the Larmor and Feynman pow-
ers vs time. The Larmor power is of course always positive, while 
the Feynman power from the radiation reaction force can be both 
positive and negative. The Feynman power crosses zero at maxima 
of the Larmor power. Both types of power asymptotically vanish 
rapidly.

Integrating over all time, Eq. (2), the total energy emitted is

E = h̄κ

24
γ v2

(
γ 2 + 3

)
, (9)

where γ = (1 − v2)−1/2 is the Lorentz factor. Fig. 2 plots the to-
tal energy as a function of the maximum velocity. As the velocity 
approaches the speed of light, the Lorentz factor greatly increases 
the energy emitted.

For the Bogolyubov spectrum as found from the double-sided 
moving mirror, the result (see e.g. [35] for the details of the steps) 
is

|βpq|2 = 16vpq

π2κ2σω
sinh

(π vσ

κ

) ∣∣∣Kiv σ
κ + 1

2

(ω

κ

)∣∣∣2
, (10)

where σ = p − q and ω = p + q. The particle spectrum Np =∫
dq |βpq|2 is non-thermal, and has finite particle production, as 

seen in Fig. 3.
3

Fig. 2. The total energy scaling as a function of maximum velocity parameter is plot-
ted for the self-dual trajectory (Eq. 9) and the betaK trajectory (Eq. 21) as mirrors 
with h̄ = 1.

Fig. 3. A plot of particle spectrum N(p) from the mirrors. This is the particle count 
as a function of the outgoing mirror mode frequency, p. Here the maximum velocity 
of each mirror is v = v0 = 0.9.

For the spectral (angular) distribution, we use the self dual tra-
jectory in Eq. (6), giving

dI

d�
= e2 vω2

κ2π3

1 − T 2

2T
sinh

(
π vTω

κ

)∣∣∣K 1
2 + ivTω

κ

(ω

κ

)∣∣∣2
, (11)

where T ≡ cos θ . Some details of the derivation are given in Ap-
pendix A. Note the similarity to the form of the beta Bogolyubov 
coefficients, but with added angular dependence (see the next sub-
section for further discussion).

Figs. 4 and 5 plot the spectral distribution in a 3D view. Notice 
there is no radiation in the forward or backward T → ±1 (θ →
[0, π ]) directions. This is expected of straight-line bremsstrahlung 
[41]. The spectral distribution in the T → 0 (θ → π/2) limit is:

lim
T →0

dI

d�
= e2 v2ω2

4πκ2
e−2ω/κ , (12)

which demonstrates a radiation allotment in directions perpen-
dicular to the motion that is exponentially suppressed at high 
frequencies. The spectrum, I(ω), can be numerically found by in-
tegrating the spectral distribution, Eq. (11), over solid angle. See 
Fig. 6 for an illustration.

The spectral distribution can be directly integrated over solid 
angle and frequency to obtain the total energy

E =
∞∫

0

dω

1∫
−1

dT

2π∫
0

dϕ
dI

d�
(13)

= e2κ
γ v2

(
γ 2 + 3

)
. (14)
24
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Fig. 4. 3D view of the radiated spectrum angular distribution dI/ d� from electron 
motion corresponding to the self dual trajectory. Here we use unit charge, natural 
units, and ω = κ = 1. The maximum speed of the charge is v = 0.95. Note the 
expected property of zero radiation directly in the forward direction.

Fig. 5. As Fig. 4 but for ω = 4, κ = 1, showing the high-frequency exponential sup-
pression.

Fig. 6. For the electrons, a plot of energy spectrum I(ω), which numerically inte-
grates the spectral distributions for the self-dual, Eq. (11), and betaK, Eq. (22), cases 
over solid angle � with e = 1. The vertical axis has been multiplied by 103 for 
readability. Here the maximum velocity of each case is v = v0 = 0.9.

This agrees with Eq. (9) up to 4παfs, as expected.

4. betaK trajectory

The betaK trajectory [37]

x(t) = −v0 sinh−1 κt , (15)

κ

4

Fig. 7. The Larmor and Feynman powers for the betaK electron trajectory are plot-
ted vs time, with v0 = 0.9. Like the self-dual trajectory, a higher v0 narrows and 
heightens the peaks for both powers. For illustration, the Feynman power plotted is 
P F = −F · v so the total area under the curve is positive; e = 1. The areas under the 
curves are equal, giving the total energy radiated, Eq. (19).

by contrast is odd in time, and gives more tractable solutions than 
the Walker-Davies or Arctx models. Furthermore it has an inter-
esting relation to uniform acceleration in 3+1 D (though not in the 
1+1 D mirror case).1 Its name arises because this trajectory has 
exactly solvable beta Bogolyubov coefficients involving a modified 
Bessel function K in the moving mirror model, giving finite energy 
and finite particle production.

This trajectory equation arises as well for a particle shot hori-
zontally from the origin with an initial velocity v0 (which is also 
the maximum velocity) encountering a constant vertical accelera-
tion. Indeed, this is similar to the recently rediscovered “Leonardo 
da Vinci’s water pitcher” that moves horizontally at constant speed 
v spilling water in a uniform gravitational field [42] – but here we 
consider relativistic speeds. The derivation appears in Appendix B.

Note that in the relativistic case, despite no horizontal force the 
particles (water drops) do not have constant horizontal velocity: 
due to the coupling of horizontal and vertical motions through the 
Lorentz factor a horizontal acceleration is induced as made clear in 
Appendix B.

The Larmor power radiated by a charge with the betaK trajec-
tory is

P L = e2α2

6π
= e2κ2

6π
γ 6

(
v2

0 − V 2
) V 4

v4
0

, (16)

where the velocity is

V (t) ≡ ẋ(t) = −v0√
κ2t2 + 1

. (17)

The speed |V | ≤ |v0| so the power always remains nonnegative. 
For this time antisymmetric trajectory, the power has only one 
maximum on each side of t = 0 and no zeros for finite t 	= 0. The 
Feynman power is

P F = e2α2

6π

[
2 − V 2(1 − v2

0)

v2
0 − V 2

]
. (18)

The total energy, using Eq. (2), is

E = e2κ

48
γ 3

0 v2
0 . (19)

See Fig. 2 for the energy and Fig. 7 for the Larmor and Feynman 
powers.

1 We thank Ahmad Shariati for pointing this out.



M.R.R. Good and E.V. Linder Physics Letters B 845 (2023) 138124

 

Fig. 8. 3D view of the radiated spectrum angular distribution dI/ d� from the elec-
tron motion corresponding to the betaK trajectory. Here we use unit charge, natural 
units, and ω = κ = 1. The maximum speed of the charge is v0 = 0.95.

The Bogolyubov spectrum as found from the double-sided mov-
ing mirror is

|βpq|2 = 8v2
0 pq

π2κ2ω2
cosh

(
π v0

σ

κ

) ∣∣∣Kiv0
σ
κ

(ω

κ

)∣∣∣2
, (20)

where σ = p −q and ω = p +q. This spectrum is not thermal. Note 
the similarities, but also subtle differences with the self-dual case, 
Eq. (10). The energy is confirmed by associating a quantum h̄p
(where p is the outgoing frequency mode) and integrating using 
Eq. (3), which yields the analog of Eq. (19),

E = h̄κ

48
γ 3

0 v2
0. (21)

The particle spectrum Np = ∫
dq |βpq|2 is shown in Fig. 3.

Using the betaK trajectory within classical electrodynamics [29], 
we find the spectral distribution,

dI

d�
= e2 v2

0ω
2

4κ2π3
(1 − T 2) cosh

(
π v0T

ω

κ

) ∣∣∣Kiv0 T ω
κ

(ω

κ

)∣∣∣2
, (22)

where T = cos θ . Again a relation between the classical spectral 
distribution and quantum beta Bogolyubov coefficient is apparent; 
we address this in Section 5.

The energy spectrum I(ω) is shown in Fig. 6. Integration of 
Eq. (22) over dω d� agrees with the total energy of Eq. (19). Like 
the self-dual case, as expected, there is no radiation in the forward 
or backward T → ±1 (θ → [0, π ]) directions. See Fig. 8 for a 3D 
view of the spectral distribution. The spectral distribution in the 
T → 0 (θ → π/2) limit is:

lim
T →0

dI

d�
= e2 v2

0ω
2

4π3κ2

[
K0

(ω

κ

)]2
(23)

≈ e2 v2
0ω

8π2κ
e− 2ω

κ , (24)

again showing the high-frequency exponential suppression, wherein
the second line we have expanded around large ω/κ .

The betaK trajectory is well-motivated, physically intuitive, and 
potentially realizable in the laboratory as it is straightforwardly the 
horizontal component of an electron’s motion subject to an ini-
tial horizontal velocity and constant vertical force. In the following 
section, we use betaK’s analytic tractability to help confirm the du-
ality between the classical point charge and the quantum moving 
mirror.

5. Classical-quantum correspondence

We have seen that at the level of total energy, there is an agree-
ment (up to the pre-factor 4παfs) between the charge radiation 
approach and the moving mirror Bogolyubov coefficient approach,
5

Fig. 9. A plot of total finite particle count of the radiation particles created by the 
two mirrors, using Eq. (26), for maximum velocity ranging from 0.05 to 0.99.

E =
∞∫

0

dω

1∫
−1

dT

2π∫
0

dϕ
dI

d�
⇔

∞∫
0

∞∫
0

h̄p |βpq|2 dp dq . (25)

We can further see that the agreement extends to the particle 
count,

N =
∫

1

h̄ω

dI

d�
d�dω ⇔ 1

2

∫ ∫
|βpq|2 dp dq . (26)

The factor 1/ω converts particle energy to particle number, and 
the factor 1/2 arises because while both sides of the mirror are 
employed in the correspondence, an observer could only see one 
side. See Fig. 9 for an illustration of particle count.

As mentioned in Section 3 and Section 4 the connection per-
sists at the level directly between the spectral distribution and 
the beta Bogolyubov coefficient, i.e. the integrands. The steps to 
obtain the exact relation are as follows. First, the Jacobian going 
from {p, q} coordinates to {ω, T } coordinates is ω/2. Recall that 
d� = sin θ dθ dϕ and that dT ≡ d(cos θ) = sin θ dθ and the dϕ

integral simply contributes 2π . Finally, the parity is reversed on 
opposite sides of the mirror so that one side is related to the other 
by T ↔ −T , so we write

+1∫
−1

dT
dI

d�
= 1

2

⎡
⎣ +1∫
−1

dT
dI(T )

d�
+

+1∫
−1

dT
dI(−T )

d�

⎤
⎦ . (27)

Putting all the elements together delivers the correspondence

|βpq|2 ← 4π

e2ω2

[
dI

d�
(ω, cos θ) + dI

d�
(ω,− cos θ)

]
. (28)

This can be verified directly for the solutions given for the two 
trajectories. Note that the correspondence formally goes in only 
one direction, from charge radiation to moving mirror, as the beta 
Bogolyubov coefficient has no angular information on the in-going 
and out-going modes. Only once we introduce an angle θ such that 
p = ω(1 + cos θ)/2 and q = ω(1 − cos θ)/2, hence p + q = ω and 
σ ≡ p − q = ω cos θ , can we go the other way.

Such a classical-quantum correspondence is very useful, but 
we emphasize that it does not capture all quantum effects. While 
the particle production can be computed classically, this neglects 
quantum effects when the radiation (photon) energy becomes 
comparable to the particle (electron) energy, e.g. the radiation 
wavelength is smaller than the charge de Broglie wavelength.

6. Conclusions

We have solved for the accelerating point charge radiation – its 
energy, particle count, and spectral angular distribution – of two 
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trajectories that asymptotically come to complete stop, compatible 
with finite total particle emission. As Feynman [30] has empha-
sized,

Larmor’s power is only valid for cyclic motions, or at least motions which 
do not grow forever in time.

The betaK and Self-Dual trajectories fulfill that condition, and these 
two solutions inspired by the accelerating boundary (moving mir-
ror) analog are the only known rectilinear solutions with exactly 
soluble spectra, finite energy, and finite particle count. This allows 
comparison of classical and quantum systems directly.

The main results presented include:

• We have found the time dependence of radiative solutions. 
One utility of an exact solution for moving point charge radi-
ation is that in QED, time-dependent computations are notori-
ously difficult. Here the dynamics are explicit in the applicable 
Larmor and Feynman powers.

• We have demonstrated consistency between the total energy 
derived in terms of the Larmor power, the Feynman power, 
and the quantum Bogolyubov coefficients.

• We have derived the spectral distributions of these two ac-
celerating, but asymptotically static, motions analytically, and 
further shown consistency with the total energy emission and 
total particle count. In addition to 3D plots of the radiation 
angular distribution we discussed the angular limits (e.g. the 
forward and transverse emission) and high frequency limits.

• We have laid out explicitly a quantum-classical correspon-
dence to the moving mirror model, mapping between the 
classical spectral distribution and the quantum Bogolyubov co-
efficients.

The demonstrated consistency and explicit correspondence en-
hances the utility of the moving mirror model by showing its role 
as a point charge analog. Thus the accelerated boundary correspon-
dence of the moving mirror to black hole radiation may poten-
tially point to a connection to accelerating charge radiation via a 
Hawking-Feynman-Larmor correspondence.

This is an exciting prospect for future directions. It may be 
tractable to link directly these electron trajectories to curved 
spacetime counterparts, revealing spacetime metrics that radiate 
with similar nonthermal spectra (or reveal charge motions that 
could show a period of thermal emission). Further, given that a 
connection for beta decay to a moving mirror analog has been 
made [43–45], other well-known QED scattering processes might 
correspond at lowest order to one of the solutions given. Asymp-
totic rest, with its finite particles and unitarity, could be a powerful 
tool, and it would be interesting to develop further solutions, such 
as the Schwarzschild-Planck radiation [38–40] to compare acceler-
ating electron and black hole radiation in the thermal limit.
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Appendix A. Spectral distribution calculation

To show how one can go from the formula for the spectral 
distribution, Eq. (6), to the modified Bessel function result we il-
lustrate the steps for the self dual case. The integral has the form

A ≡
+∞∫

−∞
dt ẋ eiω(t−x cos θ) . (A.1)

Substituting in the self dual expressions for x(t) from Eq. (7), and 
ẋ, and writing T ≡ cos θ we have

A =
+∞∫

−∞
dt

−2vκt

κ2t2 + 1
eiω[t+(vT /κ) ln(κ2t2+1)] (A.2)

= −2v

κ

+∞∫
−∞

ds s(s2 + 1)−1+iωvT /κ eiωt (A.3)

= −4iv

κ

∞∫
0

ds s(s2 + 1)−1+iωvT /κ sin
ωs

κ
. (A.4)

In the second line we have taken the exponential of the log term, 
and defined s = κt , while in the third line we have used that we 
must take the odd part of the remaining exponential to give an 
even integrand over the symmetric range of integration.

This integral can be evaluated through Gradshteyn & Ryzhik 
3.771.5 [46], resulting in

A = 4v

κ
√

π

( ω

2κ

)1/2−iωvT /κ
sinh(πωvT /κ)�

(
iωvT

κ

)

×K1/2+iωvT /κ

(ω

κ

)
. (A.5)

The modulus squared, using that |�(ix)|2 = π/(x sinh x), is

|A|2 = 8v

κ2T
sinh(πωvT /κ)

∣∣∣K1/2+iωvT /κ

(ω

κ

)∣∣∣2
. (A.6)

For the betaK case we proceed similarly, noting that since ẋ
is even in time in that case we must take the even part of the 
exponential (i.e. cosine).

Appendix B. Leonardo’s pitcher: from electron to betaK

The motion of a relativistic particle with unit mass subject to 
an external force comes from the action2

S = −
∫

dt
(√

1 − v2 + F x
)

. (B.1)

For a force dependent only on position the equations of motion are 
simply

α = d

dt

v√
1 − v2

≡ d(γ v)

dt
(B.2)

= (0,αy,0) , (B.3)

2 This is a first prototypical system of a relativistic Lagrangian (see e.g. page 323 
of [47]).
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where the last line holds for purely vertical force, and we will take 
αy = const (e.g. gravity in Leonardo’s water pitcher experiment). 
Finally, we take the initial velocity to be purely horizontal, v =
(v0, 0, 0).

The results are simple – nonuniform motion in the horizon-
tal direction due to the relativistic boost factor γ , and hyperbolic 
motion under constant acceleration in the vertical direction – but 
worth quickly going through to reveal the form of nonuniformity.

The z direction is trivial: as there is no initial velocity, nor sub-
sequent acceleration, in this direction then Eq. (B.2) guarantees 
that z(t) = z(0) and we can ignore this dimension. In the x (hori-
zontal) direction, Eq. (B.2) gives

γ (t)vx(t) = γ0 v0 , (B.4)

and the key point is that while nonrelativistically one would sim-
ply have vx(t) = v0, i.e. uniform motion, the Lorentz factor γ

couples in the y motion (recall γ = 1/

√
1 − v2

x − v2
y), which is ac-

celerated. This results in nonuniform motion horizontally.
We can relate vx and v y , and solve for both motions by squar-

ing Eq. (B.4) to get

v2
x = (1 − v2

y)v2
0 . (B.5)

This immediately tells us that vx has its maximum value at the 
initial time, so v y(t) < v0 = v y(0). That is, the vertical acceleration 
effectively causes a horizontal deceleration!

In the y (vertical) direction, the equation of motion gives 
γ v y = αyt so

v y = κt√
1 + (κt)2

. (B.6)

At late times this approaches the speed of light. To presage the 
betaK mirror analogy we have written κ ≡ αy/γ0. Finally, with 
Eq. (B.5) we obtain the horizontal velocity

vx = v0√
1 + (κt)2

, (B.7)

which indeed decelerates from its initial value to zero. Again pre-
saging the mirror analog, we will end up with an asymptotically 
static mirror defined by the 1D horizontal motion.

Integrating the velocities gives the trajectories, with

y(t) = κ−1
√

1 + κ2t2 − κ−1 , (B.8)

revealing hyperbolic motion in the vertical direction. In the hori-
zontal direction,

x(t) = v0

κ
sinh−1 κt , (B.9)

exactly (after a trivial sign flip on initial velocity) the betaK trajec-
tory, Eq. (15).
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