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We describe algorithms for discovering immunophenotypes from large collections of 
flow cytometry samples and using them to organize the samples into a hierarchy based 
on phenotypic similarity. The hierarchical organization is helpful for effective and robust 
cytometry data mining, including the creation of collections of cell populations’ charac-
teristic of different classes of samples, robust classification, and anomaly detection. We 
summarize a set of samples belonging to a biological class or category with a statistically 
derived template for the class. Whereas individual samples are represented in terms of 
their cell populations (clusters), a template consists of generic meta-populations (a group 
of homogeneous cell populations obtained from the samples in a class) that describe 
key phenotypes shared among all those samples. We organize an FC data collection in a 
hierarchical data structure that supports the identification of immunophenotypes relevant 
to clinical diagnosis. A robust template-based classification scheme is also developed, 
but our primary focus is in the discovery of phenotypic signatures and inter-sample 
relationships in an FC data collection. This collective analysis approach is more efficient 
and robust since templates describe phenotypic signatures common to cell populations 
in several samples while ignoring noise and small sample-specific variations. We have 
applied the template-based scheme to analyze several datasets, including one repre-
senting a healthy immune system and one of acute myeloid leukemia (AML) samples. 
The last task is challenging due to the phenotypic heterogeneity of the several subtypes 
of AML. However, we identified thirteen immunophenotypes corresponding to subtypes 
of AML and were able to distinguish acute promyelocytic leukemia (APL) samples with 
the markers provided. Clinically, this is helpful since APL has a different treatment regi-
men from other subtypes of AML. Core algorithms used in our data analysis are available 
in the flowMatch package at www.bioconductor.org. It has been downloaded nearly 
6,000 times since 2014.
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1. inTrODUcTiOn

Feature selection is the problem of identifying a representative 
set of features from a large dataset to construct a classification 
model. In this paper, we address a feature selection problem 
in flow cytometry (FC) data, with a view toward identifying 
features that would be used by clinicians in characterizing the 
presence of a disease or response to a drug or vaccine or some 
other stimulus. In FC data, such features correspond to cell 
populations in the immune system that express certain subsets 
of proteins while not expressing others. Hence, we propose a 
method to identify these immunophenotypes in FC data and to 
use them for organizing a collection of samples into a hierarchy 
for classification purposes.

Flow cytometry (FC) is a mature technology for measuring 
the morphology (from scattering) and the expression of multiple 
biomarkers (from fluorescence) at the single-cell level (1). Each 
FC sample consists of hundreds of thousands or more of such 
single-cell measurements, and a study could consist of hundreds 
of samples from different individuals at different time points 
under different experimental conditions (2). Analyzing large, 
high-dimensional, noisy, and heterogeneous data collections 
generated by modern flow cytometers has become a challenge for 
human operators. Researchers have responded to this challenge 
by developing a number of automated tools that have become 
popular to analyze FC data (2–5).

Unlike most prior work that analyzes one sample at a time, here 
we process heterogeneous FC samples collectively by summariz-
ing a group of similar samples with representative templates. We 
organize an FC data collection in a hierarchical data structure 
that supports the identification of immunophenotypes relevant to 
clinical diagnosis. A robust template-based classification scheme 
is also developed, but the primary focus of the paper lies in the 
discovery of phenotypic signatures and inter-sample relation-
ships in FC data collection.

Like other branches of biotechnology, FC has experienced 
an unprecedented expansion in the last decade. Current 
fluorescence-based technology supports the measurements of 
up to twenty proteins simultaneously in each cell (6), whereas 
atomic mass cytometry systems such as CyTOF (7) can measure 
more than forty markers per cell. When thousands of such 
high-dimensional samples are produced in an experiment, 
researchers have no other alternative but to automate the 
data analysis. Considering the complexity of FC data and the 
diversity of experiments, the analysis process is often divided 
into smaller steps for convenience in solving subproblems 
independently. Even though there is no consensus among 
scientists on a standard set of analysis steps, existing literature 
repeatedly used the following steps: (1) spectral unmixing or 
compensation to correct the effect of overlapping fluorescence 
channels and autofluorescence (8–10), (2) data transformation 
and normalization (11–16), (3) gating or clustering to identify 
cell populations (2, 3, 17, 18), (4) registering cell clusters across 
samples to establish correspondence (3, 15, 19), and (5) catego-
rizing samples into distinct classes and identifying phenotypes 
(2, 3, 20). A number of open-source R packages have been 
developed to solve different steps, such as flowCore, flowViz, 

flowClust, flowTrans, flowStats, and flowType packages 
in Bioconductor (21). Several other web-based platforms are also 
available for automated FC data analysis, such as ImmPort (22), 
GenePattern (4), and Cytobank (5).

The aforementioned analysis steps and their correspond-
ing tools are often designed to process one sample at a time. 
This approach is adequate when the number of samples in an 
experiment is small or when samples are too heterogeneous to 
be analyzed collectively. By contrast, when a large number of 
samples belong to a few representative classes, another level 
of abstraction – in terms of meta-populations and templates – 
may simplify the analysis. Classifying samples based on a few 
representative templates has several advantages over techniques 
that directly compare pairs of samples, such as nearest-neighbor 
classifiers. It is more efficient since one compares a sample with 
a few templates only, rather than with all other samples; it is 
more robust since a template describes the features common 
to cell populations in several samples, while ignoring noise and 
small sample-specific variations. Previous work (3, 15, 19, 23) 
acknowledged the advantage of this collective approach and 
developed software to automate this process. In recent work, 
Lee et al. (23) proposed a joint clustering and matching (JCM) 
algorithm for simultaneous segmentation and alignment of cell 
populations across multiple samples. By modeling the inter-
sample variation within a class with random-effects terms, they 
construct a parametric template for each class of samples. These 
templates are used to classify new samples with high accuracy 
(23), demonstrating the effectiveness of template-based classi-
fiers in flow cytometry.

In this paper, we extend our prior work (24, 25) and that 
of other researchers by clearly defining steps in template-based 
data analysis and developing a generic framework for robust 
classification and immunophenotyping. After some initial 
preprocessing, we summarize a set of samples belonging to a 
biological class or category with a statistically derived template 
for the class. Whereas individual samples are represented in 
terms of their cell populations (clusters), a template consists of 
generic meta-populations (groups of homogeneous cell popula-
tions obtained from the samples in a class) that describe key 
phenotypes shared among all those samples. We differ from 
prior work by organizing the samples into a template tree 
that facilitates fast classification, creating templates at multiple 
levels in the hierarchy and updating templates dynamically. We 
provide efficient algorithms for data transformation and cluster 
validation, which precede the template-based analysis. Major 
components of the discussed tools are publicly available in two 
Bioconductor packages flowMatch and flowVS.

We demonstrate the utility of the template-based approach 
with two datasets: (1) a seven-dimensional healthy dataset 
consisting of 65 samples from five healthy individuals and (2) 
an acute myeloid leukemia (AML) dataset consisting 2,872 
samples from 43 AML-positive patients and 316 healthy donors. 
In the first analysis, we show that hierarchical organization of 
samples efficiently captures different sources of within- and 
between-subject variations present in healthy immune systems. 
The second analysis employs templates and meta-clusters to 
discover immunophenotypes of AML and design a highly 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


FigUre 1 | in our view, six major steps are involved in the Fc data analysis. An FC sample is represented by an n × p matrix, where n is the number of 
cells and p is the number of features measured in each cell. (1) The overlap of two spectra (green and yellow) emitted by two fluorochromes, which must be 
unmixed to correctly reconstruct the signals. (2) The density plots of a marker from several samples of a dataset after transforming data to stabilize the variance. 
(3) Four cell populations (marked with different colors) identified by a clustering algorithm. (4) Matching population to register corresponding cell clusters across a 
pair of samples. (5) The hierarchical construction of a template from six samples belonging to the same class. (6) Classifying a sample based on its similarity with 
two templates.
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accurate classification scheme for AML. For this purpose, we 
have developed a scoring function that accounts for the diver-
sity of the myeloid cell populations in the various subtypes of 
AML. In our analysis, we identified thirteen immunophenotypes 
corresponding to subtypes of AML and separated acute promye-
locytic leukemia (APL) samples (APL has a different treatment 
regimen from other subtypes of AML). Earlier work on the same 
AML dataset has classified AML samples using methods such 
as nearest-neighbor classification, logistic regression, matrix 
relevance learning vector quantization, etc., but they have not 
identified these immunophenotypes; e.g., Ref. (26, 27).

We organize the rest of the paper as follows. Section 2 
describes steps and the associated algorithms in the analysis of 
FC datasets. The analyses of healthy and AML datasets are pre-
sented in Sections 3 and 4, respectively. We conclude the paper 
in Section 4.

2. sTePs in analYZing Fc DaTa

Aside from some experiment-specific preprocessing, we logi-
cally divide FC data analysis into six distinct steps as shown in 
Figure 1. This division and ordering of work in FC data analysis 
is simply our view to tackle subproblems independently and 
develop algorithms to automated data analysis. Other research-
ers have divided these steps into smaller substeps (28), merged 
multiples steps into one (23), or ordered these steps differently 
based on the need of a particular experiment. In the rest of this 
section, we briefly discuss these steps.

2.1. removing Unintended cells
In the preprocessing phase, various unintended events such as 
doublets, dead cells, debris, etc. are removed from the FC data. 
A “doublet” is a pair of attached cells, which has a larger area but 
smaller height in the forward scatter (FS) channel relative to a sin-
gle intact cell. Cell viability dyes, e.g., the amine reactive viability 
dyes ViViD and Aqua Blue, are often used to separate dead cells 
from live cells (29). Figure  2 shows several preprocessing and 
quality control steps used in a typical FC data analysis. Several 
other preprocessing steps are occasionally employed as part of 
quality control; for example, see the discussion in Ref. (30).

2.2. spectral Unmixing (compensation)
Flow cytometry measures the abundance of protein markers in a 
cell with the fluorescence intensities of fluorophore-conjugated 
antibodies bound to the target proteins. Because of the overlap of 
fluorescence spectra emitted by different fluorophores, a detector 
intended for a particular marker also captures partial emissions 
from other fluorophores. The correct signal at each detector is 
therefore recovered by a process called spectral unmixing or com-
pensation (8, 9). Consider an FC system measuring the emission 
of p fluorophores with p detectors. Let s be a vector of the original 
signal emitted from the p fluorochromes and o be a vector of the 
observed signals at p detectors. Also, let e be a vector of length 
p measuring the amount of noise. We can construct a p  ×  p 
spillover matrix M whose off-diagonal element M[i, j] denotes the 
fractional contribution of the j-th fluorochrome to the detector 
of the i-th fluorochrome. The diagonal elements of M represent 
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FigUre 2 | removing unintended events from an Fc sample. (a) Single intact cells (inside the red polygon gate) are separated from the doublets (outside of 
the red polygon gate). (B) A viability marker (ViViD) is used to remove dead cells (outside of the red polygon gate). (c) Cells emitting very low or very high 
fluorescence signals (outside of the red vertical lines) are removed as potential outlying events.

4

Azad et al. Immunophenotype Discovery

Frontiers in Oncology | www.frontiersin.org August 2016 | Volume 6 | Article 188

the fraction of signals found in their designated channels. Each 
column of the spillover matrix adds to one. Then, the general 
form of the compensation system is given by o = Ms + e. The 
goal of spectral unmixing is to calculate the actual signal vector s.  
The simplest and widely used algorithm performing compensa-
tion solves the system of linear equations involving the spillover 
matrix M and reconstructs s (9, 10). However, the accuracy of the 
reconstructed signal depends on the nature of errors generated 
by the fluorescence emission process and photo-electric circuitry 
of the flow cytometer. The error model can be approximated by 
a mixture of Poisson and Gaussian noise, and a more accurate 
compensation scheme is discussed in Ref. (10, 31).

2.3. Data Transformation and 
Variance stabilization
After initial preprocessing and compensation, FC data are often 
transformed with non-linear functions [e.g., logarithm, hyperlog, 
biexponential, inverse hyperbolic sine (asinh), etc.] to project cell 
populations with normally distributed clusters – a choice that 
usually simplifies subsequent visual analysis (11–14). Recently, 
Finak et al. (15) used the maximum likelihood approach to nor-
malize the cell populations, and Ray and Pyne (16) transformed 
each channel with the asinh function whose parameters were 
selected by the Jarque–Bera test of normality (a goodness-of-
fit test of whether sample data have the skewness and kurtosis 
matching a normal distribution). While these approaches allow 
visual identification of cell populations within each sample, they 
are often inadequate when comparing cell populations across 
samples. This inadequacy arises from inhomogeneous variances 
in cell populations, a problem caused by the dependence of 
fluorescence variance on the mean fluorescence intensity. Due to 
such signal-variance dependence, a cell population with higher 
level of marker expressions (i.e., higher fluorescence emission) 
has higher variance than another population with relatively low 
level of marker expressions (i.e., low fluorescence emission). This 
inhomogeneity of within-population variance creates problems 
in extracting features uniformly and comparing cell popula-
tions with different levels of marker expressions. To address this 

problem, we select the parameters of traditional non-linear 
functions so that within-population variance is approximately 
stabilized, a process known as variance stabilization (VS) (32, 33).

We address the need for explicit VS in FC with a maximum 
likelihood (ML)-based method, called flowVS, which is built 
on top of a commonly used inverse hyperbolic since (asinh) 
transformation. The choice of asinh function is motivated by its 
success as a variance stabilizer for microarray data (33). flowVS 
stabilizes the within-population variances separately for each 
fluorescence channel z across a collection of N samples. After 
transforming z by asinh(z/c), where c is a normalization cofactor, 
flowVS identifies one-dimensional clusters (density peaks) in the 
transformed channel. Assume that a total of m 1-D clusters are 
identified from N samples with the i-th cluster having variance 
σi

2 . Then, the asinh(z/c) transformation works as a variance 
stabilizer if the variances of the 1-D clusters are approximately 
equal, i.e., σ σ σ1

2
2
2 2...   m . To evaluate the homogeneity of 

variance (also known as homoscedasticity), we use Bartlett’s 
likelihood-ratio test (34). From a wide range of cofactors, our 
algorithm selects one that minimizes Bartlett’s test statistics, 
resulting in a transformation with the best possible VS. In con-
trast to other transformation approaches, our algorithm applies 
the same transformation to corresponding channels in every 
sample. flowVS is therefore an explicit VS method that stabilizes 
within-population variances in each channel by evaluating the 
homoscedasticity of clusters with a likelihood-ratio test. flowVS 
is available as a free package in Bioconductor and is discussed in 
detail in a separate publication (35).

2.4. cell Population identification
A cell population or cell cluster is a homogeneous subset of cells 
in a sample with similar physical and fluorescence characteristics 
and thus biologically similar to other cells within the subset but 
distinct from those outside the subset. Traditionally, cell popula-
tions are identified by a manual process known as “gating,” where 
cell clusters are recognized in a collection of two-dimensional 
scatter plots (see Figure 7B for an example). However, with the 
ability to monitor a large number of protein markers simultane-
ously and to process a large number of samples with a robotic 
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FigUre 3 | selecting the optimum number of cell populations in a sample from the hD dataset by the flowMeans package (18). The maximum number 
of clusters is set to: (a) 5 clusters (automatically selected by algorithm), (B) 10 clusters, and (c) 20 clusters. The optimum number of clusters is selected by 
detecting change point in the segmented regression lines and is shown with a red filled circle in each subfigure.
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arm, manual gating is not feasible for high-dimensional or high-
throughput FC data. To address the gating problem, researchers 
have proposed several automated clustering algorithms, such as 
FLAME (3), FLOCK (36), flowClust (17), flowMeans (18), 
SamSPECTRAL (37), SWIFT (38), etc. Aghaeepour et  al. (2) 
provides a state-of-the-art summary of the field.

Different algorithms perform better for different FC datasets 
as was observed in a set of challenges organized by the FlowCAP 
consortium1 (2). Given the large number of algorithmic options, 
it is often difficult to select the best algorithm for a particular 
dataset. Even selecting the number of clusters for an algorithm 
is a non-trivial problem. For example, the flowMeans algorithm 
(18) starts with a relatively large number of clusters (Max k) and 
merges two closest clusters in each iteration. The algorithm then 
plots the distances between the merged clusters at each iteration 
and selects the optimum number of clusters where a sharp change 
in the segmented regression lines is observed. Figure 3 shows that 
the optimal number of clusters obtained by flowMeans depends 
heavily on the initial number of clusters. Therefore, we evaluate 
the quality of a clustering solution with several cluster validation 
methods (39, 40) and select the consensus number of clusters 
obtained from the validation criteria.

The cluster validation methods evaluate how well a given 
partition captures the natural structure of the data based on 
information intrinsic to the data alone. They can be used in 
selecting the optimum parameters for a clustering algorithm 
(e.g., the optimum number of clusters), as well as choosing the 
best algorithm for a dataset. To this end, we select an algorithm 
and the number of clusters k to be used with the algorithm by 
simultaneously optimizing five cluster validation methods: (1) 
average silhouette width, (2) Calinski–Harabasz (41), (3) Dunn’s 
index, (4) S_Dbw (42), and (5) Davies–Bouldin. The first three 
indices are maximized, and the last two indices are minimized 
(43). If different cluster validation methods disagree on the best 
clustering algorithm, we can use a consensus of several cluster-
ing solutions using an algorithm discussed in Section 2.6. We 
employ the selected algorithm (or the consensus of a collection 

1 http://flowcap.flowsite.org/

of algorithms) with the chosen parameters to identify cell popula-
tions in an FC sample.

2.5. registering cell Populations 
across samples
Population registration is a process of mapping phenotypically 
or functionally similar cell clusters across FC samples. When 
performed manually, cell populations are registered by visually 
mapping 2-D projections of clusters. However, manual registra-
tion is challenged by high dimensionality of FC data and large 
number of samples in a cohort because the number of manual 
comparisons grows quadratically with the number of clusters 
and samples. To expedite the registration process and to increase 
its accuracy, automated algorithms have been proposed recently 
(3, 15, 44). These algorithms can be categorized into two broad 
classes. In the first approach, the centers of different clusters are 
“meta-clustered” (cluster of clusters), and the clusters whose cent-
ers fall into the same meta-cluster are marked with the same label 
(15). The second approach computes a biologically meaningful 
distance or dissimilarity between each pair of clusters across sam-
ples, making use of the means and covariances of the clusters, and 
then matches similar clusters by using a combinatorial matching 
algorithm (3, 44). Here, we discuss an algorithm of the second 
type, called the mixed edge cover (MEC) algorithm (19, 44). 
The MEC algorithm uses a robust graph-theoretic framework to 
match a cluster from a sample to zero, one, or more clusters in 
another sample and thus solves the problem of missing or split-
ting clusters as well.

The MEC algorithm matches clusters with high similarity 
(low dissimilarity) while optimizing a global objective function. 
For this purpose, we calculate the dissimilarity between a pair 
of cell populations by the Mahalanobis distance between their 
distributions. Let c1(μ1, Σ1) and c2(μ2, Σ2) be two normally dis-
tributed clusters consisting of n1 and n2 cells, respectively. The 
Mahalanobis distance d(c1, c2) between the clusters is computed 
as follows:

 
d c c

n n
p

p

( , ) = ( ) ( ),
= (( 1) ( 1) )
1 2

1
2

1

1 1 2 2

µ µ µ µ1 2 1 2− −

− + −

−Σ

Σ Σ Σ

where
// ( 2).1 2n n+ −

 (1)
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TaBle 1 | summary of terminology used in this paper.

Terms Meaning

Cell population 
(cluster)

A group of cells expressing similar features, e.g., T cells, 
B cells

Sample A single biological sample characterized as a collection of 
cell populations

Meta-cluster A set of biologically similar cell clusters from different 
samples

Template A collection of meta-clusters from samples of the same 
class
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Other dissimilarity measures such as Kullback-Leibler (KL) 
divergence (45, 46), earth mover’s distance (EMD) (47, 48), chi-
squared statistics, and Kolmogorov-Smirnov (KS) statistic can 
also be used instead of Mahalanobis distance.

2.5.1. Overview of the Mixed Edge Cover Algorithm
Consider two FC samples A and B consisting of ka and kb cell pop-
ulations such that A a a aka

= { , ,..., }1 2 , and B b b bkb
= { , ,..., }1 2 , where 

ai is the i-th cluster from sample A, and bj is the j-th cluster from 
B. The mixed edge cover computes a mapping mec, of clusters 
across A and B such that mec(ai) ∈ P(B) and mec(bj) ∈ P(A), 
where P(A) (P(B)) is the power set of A(B). When a cluster ai 
(or bj) remains unmatched under mec, i.e., mec(ai)  =  ∅, we 
set d(ai, –) = λ, where the fixed cost λ is a penalty for leaving a 
vertex unmatched. We set λ to p  so that a pair of clusters gets 
matched only if the average squared deviation across all dimen-
sions is less than one. The cost of a mixed edge cover mec is the 
sum of the dissimilarities of all pairs of matched clusters and the 
penalties due to the unmatched clusters. A minimum cost mixed 
edge cover is a mixed edge cover with the minimum cost. We use 
this minimum cost as the dissimilarity D(A, B) between a pair of 
samples A and B:

 mixed edge
covers, 1

( )
1

( ( , )
mec mec

min
≤ ≤
∈

≤ ≤
∈

∑ +
i ka

bj ai

i j
i kb

aj

d a b
mmec( )

( , )),
bi

i jd b a∑  (2)

where d(ai, bj) is computed from equation (1). A minimum cost 
mixed edge cover can be computed by a modified minimum 
weight perfect matching algorithm in O(k3 logk) time, where k is 
the maximum number of clusters in a sample (44). The number 
of cell clusters k is typically small (less than 50 in typical experi-
ments), and populations from a pair of samples can be registered 
in less than a second on a desktop computer. An implementa-
tion of the MEC algorithm is available in flowMatch package in 
Bioconductor.

The optimum cost of the MEC solution can be used as the 
dissimilarity measure between a pair of samples. This is similar 
in spirit with the R-metric, transfer distance or partition distance 
that computes the minimum number of augmentations and 
removals of cells needed to transform one partition into another 
(49). However, the partition distance can compare only two parti-
tions (clusterings) of the same sample whereas our measure can 
work with partitions from the same sample, or from two different 
samples. In contrast to the partition distance metric that matches 
a cluster to at most one cluster, MEC is able to match a cluster to 
zero, one, or more clusters. Therefore, the MEC-based dissimilar-
ity measure is more robust when the number of cell populations 
changes due to different conditions.

2.6. creating Templates from a collection 
of samples
When a collection of samples belongs to few representative 
classes and studying the overall features of these classes is the 
primary objective, we can summarize each class of samples 
with a statistically derived template (3, 15, 19). Here, differ-
ent classes could represent multiple experimental conditions, 

disease status, time points, etc. Whereas individual samples 
are represented in terms of their cell populations (clusters), 
a template consists of generic meta-populations (group of 
homogeneous cell populations obtained from the samples in 
a class) that describe key phenotypes shared among all those 
samples. We summarize these concepts in Table  1 and also 
in Figure  4A.

Here, we describe an algorithm, called the hierarchical 
matching-and-merging (HM&M) algorithm, which organ-
izes samples in a hierarchy and builds templates at the roots of 
trees representing the hierarchical organization of samples. The 
HM&M algorithm arranges a set of similar samples into a binary 
template tree data structure. A node in the tree represents either 
a sample (leaf node) or a template (internal node). In both cases, 
a node is characterized by a finite mixture of multivariate normal 
distributions each component of which is a cluster or meta-cluster. 
Figure 4 shows an example of a template tree created from four 
hypothetical samples, S1, S2, S3, and S4. The algorithm repeatedly 
merges the least dissimilar (most similar) pair of samples not 
already included in a template. The dissimilarity between a pair of 
samples is computed by the cost of an optimal mixed edge cover 
solution discussed earlier.

2.6.1. Overview of the Template Construction 
Algorithm
Let a node vi (representing either a sample or a template) in the 
template tree consist of ki clusters or meta-clusters c c ci i

ki

i
1 2, , , . 

A node vi is called an “orphan” if it does not have a parent in the 
template tree. Consider N flow cytometry samples S1, S2, …, SN 
belonging to a class. Then, the HM&M algorithm for creating a 
template tree from these samples can be described by the follow-
ing three steps.

 1. Initialization: create a node vi for each of the N samples Si. 
Initialize all these nodes to the set of orphan nodes. Repeat 
the matching and merging steps until a single orphan node 
remains.

 2. Matching: compute the dissimilarity D(vi, vj) between every 
pair of nodes vi and vj in the current orphan set with the mixed 
edge cover algorithm.

 3. Merging: find a pair of orphan nodes (vi, vj) with minimum 
dissimilarity D(vi, vj) and merge them to create a new node vi. 
Let mec be a function denoting the mapping of clusters from vi 
to vj. That is, if c vx

i
i∈  is matched to c vy

j
j∈ , then c cy

j
x
i∈mec( ),  

where 1 ≤ x ≤ ki and 1 ≤ y ≤ kj. Create a new meta-cluster cz
l  
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FigUre 4 | (a) Some of the terminologies used in this paper. A cell cluster or cell population is a group of cells expressing similar features, and an FC sample is a 
collection of cell clusters. A meta-cluster is a set of similar cell clusters from different samples, and a template is a collection of meta-clusters. Cells are denoted by 
dots, clusters by solid ellipses, and meta-clusters by dashed ellipses. (B) An example of a hierarchical template tree created from four hypothetical samples S1, S2, 
S3, and S4. A leaf node of the template tree represents a sample and an internal (non-leaf) node represents a template created from its children in the tree. The 
children could be templates if they are interior nodes or samples if they are leaves. (c) One step of the HM&M algorithm creating a template T(S3, S4) from a pair of 
samples. The algorithm first matches clusters (or meta-clusters) across samples (or templates) by the MEC algorithm and then merges the matched clusters to 
construct new meta-clusters.
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from each set of matched clusters, c c cz
l

x
i

x
i= { ( )}∪mec . Let kl 

be the number of the new meta-clusters created above. Then, 
the new node vl is created as a collection of these newly created 
meta-clusters, i.e., v c c cl

l l
kl

l= { , ,..., }1 2 . The distribution parame-
ters, ( , )µz

l
z
lΣ , of each of the newly formed meta-clusters cz

l  are 
computed from the distributions of the clusters participating 
in the meta-cluster. The height of vl is set to D(vi, vj). The node 
vl becomes the parent of vi and vj, and the set of orphan nodes 
is updated by including vl and deleting vi and vj from it. If there 
are orphan nodes remaining, we return to the matching step, 
and otherwise, we terminate.

When the class labels of samples are not known a  priori, 
the roots of well-separated branches of tree give different class 
templates. However, if samples belong to the same class – as 
is the case for the AML dataset studied in this paper, the root 
of the template tree gives the class template. The HM&M 
algorithm requires O(N2) dissimilarity computations and O(N) 
merge operations for creating a template from a collection 
of N samples. Let k be the maximum number of clusters or 
meta-clusters in any of the nodes of the template tree. Then a 
dissimilarity computation takes O(k3 log k) time whereas the 
merge operation takes O(k) time when distribution parameters 
of the meta-clusters are computed by maximum likelihood 
estimation. Hence, the time complexity of the algorithm is 
O(N2k3 log k), which is O(N2) for bounded k. The complexity 
of the algorithm can be reduced to O(N  log N) by avoiding the 
computation of all pairwise dissimilarities between the samples, 
for larger numbers of samples N, but we did not need to do 
this here.

2.6.2. Comparisons among Different Algorithms for 
Creating Templates
Several other meta-clustering algorithms have also been dis-
cussed in the FC literature (3, 4, 15). FLAME (3) pools cluster 
centers (mean or medoid) from all samples of a class and clusters 
these centers to construct global meta-clusters. flowTrans (15) 
starts with seed meta-clusters and assigns each cluster to its near-
est meta-cluster. Our algorithm is significantly different from 
both FLAME and flowTrans in several ways. First, FLAME and 
flowTrans both build a single template from samples of the same 
class. Therefore, they need to know the class labels of each sample, 
which is often not known in practice. In contrast, the HM&M 
algorithm identifies templates as the roots of the well-separated 
branches of the template tree in an unsupervised manner. Our 
approach also allows multiple templates to represent substantially 
different sub-classes within a single class, and therefore it is more 
flexible in covering sample diversity. Second, instead of clustering 
population centers, we optimally match populations across sam-
ples and then merge the matched clusters into meta-clusters (see 
Figure 4C for an example). Like FLAME, but unlike flowTrans, 
our approach allows a cluster to form a self-contained meta-
cluster when it is significantly different from all other clusters. 
And finally, the hierarchical organization of samples (Figure 4B) 
provides additional flexibility in creating multi-layer templates, 
classifying samples, and updating templates dynamically.

2.7. sample classification Based on 
Templates
Given the inter-sample variations due to innate biological vari-
ability among individuals or Poisson and Gaussian noise from the 
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FC measurements, a few templates can concisely represent a large 
cohort of samples by emphasizing their major characteristics 
while hiding statistical noise and unnecessary details. Thereby, 
overall changes across multiple conditions can be determined 
rigorously by comparing the cleaner and fewer class templates 
rather than the large number of noisy samples themselves (3, 19). 
We also show that the use of templates leads to efficient classifica-
tion algorithms.

When the dataset consists of samples belonging to m classes, 
we build m templates, T1, T2, …, Tm, where the i-th template Ti 
represents samples of the i-th class. When we obtain a new sample 
S, we compute the dissimilarity D(S, Ti) between S and every 
template Ti. The new sample is predicted to belong to the class 
whose template it is most similar (least dissimilar) to. If a sample’s 
dissimilarity with the closest template is above a threshold, then 
it is not similar to any of the class templates, and we need to cre-
ate a new class for this sample. The hierarchical organization of 
samples becomes handy in this situation when all samples are 
not available in the beginning. Then, samples are inserted in the 
already existing hierarchical data structure and update templates 
dynamically when new samples are classified (20). This approach 
is likely to improve the accuracy of future classification due to 
additional information gained from newly classified samples. 
The template-based classification is very fast because we need to 
compare a new sample only with m templates instead of all other 
samples and therefore requires O(m) dissimilarity computations 
instead of the O(N) dissimilarities that nearest-neighbor clas-
sification requires.

2.8. classification score of a sample  
in the aMl Dataset
Acute myeloid leukemia is a heterogeneous disease as it perturbs 
different cell populations differently depending on the subtype 
of AML; the progression of the disease and the immune profile 
of the affected individual also affect the cell populations. Hence, 
we develop a sophisticated scoring function to classify AML 
and other similar disease in order to improve the classification 
accuracy. The primary reason for the special scoring function 
is that an AML sample contains both normal (AML-unrelated) 
and AML-specific cell populations. The number of AML-specific 
cells can be smaller than the number of normal cells. Hence, 
AML-specific cell clusters are given higher weights than AML-
unrelated cells. The scoring scheme developed for AML can 
also be applied to other datasets where the disease affects only 
a subset of cells.

Consider a sample X consisting of k cell populations S = {c1, 
c2, …, ck}, with the i-th cluster ci containing |ci| cells. Let T− and 
T+ be the templates created from AML-negative (healthy) and 
AML-positive training samples, respectively. We now describe 
how to compute a score f(X) in order to classify the sample X to 
either the healthy class or the AML class.

The intuition behind the score is as follows. An AML sample 
contains two kinds of cell populations: (1) AML-specific myelo-
blasts and myeloid cells, and (2) AML-unrelated cell populations, 
such as lymphocytes. The former cell populations correspond to 
the immunophenotypes of AML-specific meta-clusters in the 

AML template, and hence, when we compute a mixed edge cover 
between the AML template and an AML sample, these clusters 
get matched to each other. (Such clusters in the sample do not 
match to any meta-cluster in the healthy template.) Hence we 
assign a positive score to a cluster in sample when it satisfies this 
condition, signifying that it is indicative of AML. AML-unrelated 
cell populations in a sample could match to meta-clusters in the 
healthy template, and also to AML-unrelated meta-clusters in 
the AML template. When either of these conditions is satisfied, 
a cluster gets a negative score, signifying that it is not indicative 
of AML. Since AML affects only the myeloid cell line and its 
progenitors, it affects only a small number of AML-specific cell 
populations in an AML sample. Furthermore, different subtypes 
of AML affect different cell types in the myeloid cell line. Hence, 
there are many more clusters common to healthy samples than 
there are AML-specific clusters common to AML samples. (This 
is illustrated later in Figures 12C,D.) Thus, we make the range 
of positive scores relatively higher than the range of negative 
scores. This scoring system is designed to reduce the possibility 
of a false negative (an undetected AML-positive patient), since 
this is more serious in the diagnosis of AML. Additional data 
such as chromosomal translocations and images of bone marrow 
from microscopy could confirm an initial diagnosis of AML 
from flow cytometry.

In the light of the discussion above, we need to identify AML-
specific meta-clusters initially. Given the templates T+ and T−, 
we create a complete bipartite graph with the meta-clusters in 
each template as vertices, and with each edge weighted by the 
Mahalanobis distance between its endpoints. When we compute 
a minimum cost mixed edge cover in this graph, we will match 
meta-clusters common to both templates, and such meta-clusters 
represent non-myeloid cell populations that are not AML-
specific. On the other hand, meta-clusters in the AML template 
T+ that are not matched to a meta-cluster in the healthy template 
T− correspond to AML-specific meta-clusters. We denote such 
meta-clusters in the AML template T+ by the set M+.

Now, we can proceed to compare a sample against the template 
for healthy samples and the template for AML. We compute a 
minimum cost mixed edge cover between a sample X and the 
healthy template T−, and let mec−(ci) denote the set of meta-
clusters in T− mapped to a cluster ci in the sample X. Similarly, 
compute a minimum cost mixed edge cover between X and the 
AML template T+, and let mec+(ci) denote the set of meta-clusters 
in T+ mapped to a cluster ci. These sets could be empty if ci is 
unmatched in the mixed edge cover. We compute the average 
Mahalanobis distance between ci and the meta-clusters matched 
to it in the template T−, and define this as the dissimilarity d(ci, 
mec−(ci)). From the formulation of the mixed edge cover in (44), 
we have d(ci, mec−(ci))  ≤  2λ. Hence, we define the similarity 
between ci and mec−(ci) as s(ci, mec−(ci)) = 2λ − d(ci, mec−(ci)). 
By analogous reasoning, the similarity between ci and mec+(ci) is 
defined as s(ci, mec+(ci)) = 2λ − d(ci, mec+(ci)).

The score of a sample is the sum of the scores of its clusters. We 
define the score of a cluster ci, f(ci), as the sum of two functions 
f+(ci) and f−(ci) multiplied with suitable weights. A positive score 
indicates that the sample belongs to AML, and a negative score 
indicates that it is healthy.
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The function f+(ci) contributes a positive score to the sum if 
ci is matched to an AML-specific meta-cluster in the mixed edge 
cover between the sample X and the AML template T+, and a 
non-positive score otherwise. For the latter case, there are two 
subcases: If ci is unmatched in the mixed edge cover, it corre-
sponds to none of the meta-clusters in the template T+, and we 
assign it a zero score. If ci is matched only to non-AML-specific 
meta-clusters in the AML template T+, then we assign it a small 
negative score to indicate that it likely belongs to the healthy class 
(recall that k is the number of clusters in sample X). Hence,
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The function f−(ci) contributes a negative score to a cluster ci 
in the sample X if it is matched with some meta-cluster in the 
healthy template T−, indicating that it likely belongs to the healthy 
class. If it is not matched to any meta-cluster in T−, then we assign 
it a positive score λ. This latter subcase accounts for AML-specific 
clusters in the sample, or a cluster that is in neither template. In 
this last case, we acknowledge the diversity of cell populations in 
AML samples. Hence, we have
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Here, |X| is the number of cells in the sample X. The score of 
a cluster ci is weighted by the fractional abundance of cells in it.

3. PrOFiling healThY iMMUne 
sYsTeMs OF FiVe inDiViDUals

3.1. The healthy Dataset
In our first application, we analyze a healthy donor (HD) dataset 
measuring partial immune profiles of several healthy individuals 
in the presence of different sources of variations. In this experi-
ment, peripheral blood mononuclear cells (PBMCs) were col-
lected from five healthy individuals (denoted by “A,” “B,” “C,” “D,” 
and “E”) on up to four different days. Each sample was divided 
into five parts and analyzed through a flow cytometer at Purdue’s 
Bindley Bioscience Center. Thus, we have five technical replicates 
for each sample from a subject, totaling 65 FC samples. Each 
sample was stained using labeled antibodies against CD45, CD3, 
CD4, CD8, and CD19 protein markers. A selected 20 samples 
of this dataset is publicly available in healthyFlowData 
package in Bioconductor. The HD dataset includes three sources 
of variations: (1) technical or instrumental variation among 

replicates of the same sample, (2) within-subject temporal (day-
to-day) variation, and (3) between-subject natural or biological 
variation. Multiple sources of variations make the HD dataset an 
ideal use case to demonstrate the effectiveness of automated tools 
and software discussed earlier.

3.2. Preprocessing and spectral Unmixing
We restrict our analysis to only lymphocyte cells that can be 
identified with a dense and normally distributed region within 
a predefined rectangular gate on the lower left corner of the 
forward scatter (FS) vs. side scatter (SS) scatter plot as shown 
in Figures  5A,B. To locate the normally distributed region 
within the rectangular gate, we used the norm2filter function 
from the flowCore package in R (50). From the lymphocyte 
population, we remove cells that are either too dim or too bright 
in terms of the total fluorescence emission. The former cells 
are potential debris since they do not express any marker and 
the latter cells are possibly doublets or noise from the flow 
cytometer. In Figure  5C, we eliminate the boundary events 
that fall outside of a pair of predefined thresholds shown with 
the red vertical lines. These thresholds are empirically selected 
from one sample and then applied to every other sample in 
the HD dataset.

Next, we compensate for the spectral overlap among fluores-
cence channels. Figure 5D shows the correlated expressions of 
CD4 and CD8 proteins in raw flow cytometry measurements. 
This correlation arises due to the overlap between the spectra of 
PE and ECD fluorochromes used to measure the expressions of 
CD4 and CD8 proteins, respectively. After unmixing the signals, 
the correlation is removed as can be seen in Figure 5E. Notice that 
different cell populations, e.g., CD4+ and CD8+ cells, are clearly 
identifiable after compensation.

3.3. Variance stabilization
We stabilize the within-population variances in the HD dataset 
with the flowVS algorithm described in Section 2.3. For this 
purpose, we identify density peaks (also called 1-D clusters) in 
CD3, CD4, CD8, and CD19 markers/channels. For a particular 
channel, density peaks from all samples are pooled together, 
and variance of the corresponding 1-D clusters is stabilized 
by minimizing Bartlett’s statistics. Figure  6 plots the mean–
variance relationship for every density peak before and after 
variance stabilization. In these subfigures, we show clusters 
from a channel with the same symbol and color. In Figure 6A, 
we observe a non-linear correlation between the variances and 
means of the clusters before variance stabilization. For example, 
CD3+ clusters (T lymphocytes) have much higher variance than 
CD3− clusters (shown with green triangles in Figure 6A). After 
variance stabilization, the variances of the 1-D clusters become 
relatively stable as can be observed in Figure 6B. We plot the 
density of the variance-stabilized channels in Figure 6C, where 
different colors are used to denote samples from five different 
subjects. After variance stabilization, clusters with high and low 
marker expressions spread approximately equally in all samples, 
confirming the homogeneity of variances in one-dimensional 
clusters. For this dataset, the density curves from the same 
subjects are tightly grouped together, as expected. However, 
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FigUre 5 | (a) A predefined rectangular gate (red rectangle on the lower left corner) denotes an approximate boundary for the lymphocytes. (B) Inside the 
rectangular gate, lymphocytes are identified as a dense and normally distributed region (red ellipse). (c) Outlying cells fall outside of a pair of predefined thresholds 
shown with the red vertical lines and are removed. (D) Correlated CD4 and CD8 expressions due to the spectral overlap between PE and ECD fluorochromes. (e) 
CD8 vs. CD4 expressions after spectral unmixing. The inverse hyperbolic sine (asinh) transformation is used in (D,e) for visualization.
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FigUre 6 | stabilizing the within-cluster variance for each channel of the hD dataset. (a) Variances of the clusters increase monotonously with their means 
before the variances are stabilized. Clusters in each marker are shown with the same symbol and color. (B) Variances are approximately stabilized for each marker/
channel after the data are transformed by the asinh function with the optimum cofactor. (c) Density of the variance-stabilized fluorescence channels are plotted 
where different subjects are denoted with different colors.
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FigUre 7 | (a) Simultaneous optimization of five cluster validation criteria suggests that four cell populations are present in this sample. Here, three of the indices 
are maximized and two are minimized. (B) Bivariate projections of cell populations display four subsets of lymphocytes: red (natural killer cells), blue (B cells), black 
(helper T cells), and green (cytotoxic T cells). Each cell cluster is CD45+ since we pre-selected lymphocytes on the forward and side scatter channels.
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clusters from different subjects may not be well aligned due to 
the between-subject variations.

3.4. cell Population identification
We apply the k-means clustering algorithm to identify cell 
populations in each sample of the HD dataset. We have tested 
several other clustering algorithms, but k-means outperforms 
others according to several cluster validation methods. The 
optimum number of clusters is identified by the five cluster 
validation methods discussed in Section 2.4. In Figure  7A, 
we plot the values of the cluster validation indices (scaled to 
[0,1]) for a representative sample from the HD dataset. Three 
of the indices (Avg. Silhouette Width (ASW), Calinski-Harabasz 
(C-H), and Dunn) are maximized, and the rest (S_Dbw and 
Davies-Bouldin) are minimized. All validation methods unani-
mously indicate k =  4 as the optimum number of clusters for 
this sample. Therefore, we set the number of clusters k to four 
and assign cells to different clusters by applying the k-means 
algorithm.

The four clusters chosen by the k-means algorithm represent 
four subtypes of lymphocyte cells. These subtypes of cells are 
identified in the five-dimensional marker space. For visualiza-
tion purposes, we show the cell populations by a collection of 
2-D scatter plots in Figure 7B, where cell populations are shown 
in four different colors denoting (a) red: natural killer cells 
(CD45+CD3−CD19−), (b) blue: B cells (CD45+CD3−CD19+), (c) 
black: helper T cells (CD45+CD3+CD4+), and (d) green: cytotoxic 
T cells (CD45+CD3+CD8+). Here, every cluster is CD45+ because 
CD45 is a common leukocyte marker, and we pre-selected 

lymphocytes (a subtype of leukocytes) on the forward and side 
scatter channels.

3.5. Building class Templates
To build templates, we organize the samples in a “template tree” 
shown in Figure 8A, where the leaf nodes denote samples from 
different healthy individuals. An internal node of the tree repre-
sents a template consisting of a homogeneous collection of meta-
clusters. The height of an internal node measures the dissimilarity 
(the optimum cost of the mixed edge cover) between its left and 
right children. In Figure 8A, we draw branches joining samples 
from different subjects in five distinct colors. These branches 
create five disjoint subtrees whose roots represent templates of 
different healthy subjects (e.g., TA represents a template created 
from 15 samples from subject A). Here, the variations within a 
subject-specific template come from the effect of environment on 
individual immune systems on different days and technical varia-
tion in flow cytometry sample preparation and measurement. In 
contrast, the between-subject variations come from the natural 
biological variations in the healthy subjects. In this dataset, we 
observe more natural between-subject variations than the tem-
poral and instrumental variations. Hence, samples from the five 
subjects create concise and well-separated templates representing 
immune profiles of different healthy individuals.

The hierarchical organization of samples has the ability of 
creating multi-layer templates. For the HD dataset, we observe 
three levels in the sample hierarchy in Figure 8A. In the lower 
level, a day-specific template is constructed from five replicates 
of a sample collected on a particular day from a subject. In the 
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FigUre 8 | (a) The template tree created by HM&M algorithm from all samples of the HD dataset. Leaves of the dendrogram denote samples from five healthy 
individuals. An internal node represents a template, and the height of an internal node measures the dissimilarity between its left and right children. The sample-
specific subtrees are drawn in different colors. (B) Bivariate projections of the combined template [the root of the tree in (a)] are drawn in terms of its meta-clusters. 
Here, each meta-cluster is represented by a homogeneous collection of cell clusters that are drawn with the 95th quantile contour lines. Clusters participating in a 
meta-cluster are drawn in same color.

12

Azad et al. Immunophenotype Discovery

Frontiers in Oncology | www.frontiersin.org August 2016 | Volume 6 | Article 188

middle level, samples from a subject collected on different days 
create a subject-specific template denoted by the roots of colored 
subtrees in Figure 8A. Finally, in the top level, the root of the 
whole tree represents a combined template representing a healthy 
immune profile of these five subjects.

The combined template created at the root of the template tree 
in Figure 8A represents a healthy immune profile by preserving the 
common features of healthy individuals while removing subject-
specific variations. This template consists of four meta-clusters 
denoting four sub-types of lymphocytes. Each meta-cluster is 
a homogeneous collection of cell populations from different 
samples. Figure 8B shows 2-D projections of these meta-clusters 
in terms of their participating clusters. The 95th quantiles of the 
clusters within a meta-cluster are shown in same color: (1) green –  
CD8+ T cells (CD45+CD3+CD8+), (2) black – CD4+ T  cells 
(CD45+CD3+CD4+), (3) blue – B cells (CD45+CD3−CD19+), 
and (4) red – natural killer cells (CD45+CD3−CD19−). Figure 8B 
reveals that the distributions of clusters within a meta-cluster are 
relatively homogeneous. This healthy template can then be com-
pared against disease templates for assessing the general effect of 
a disease on different cell types, which can lead to a robust and 
efficient disease diagnosis system.

3.6. comparison with alternative 
approaches
When constructing a hierarchical organization of samples, we have 
many choices to make at different stages of the algorithm. For exam-
ple, we can choose other dissimilarity measures between clusters 
than the Mahalanobis distance when we compute the mixed edge 
cover, and we can use another hierarchical clustering algorithm 

instead of the HM&M algorithm to organize samples. Here, we 
discuss how the other approaches perform on the HD dataset.

Beside the Mahalanobis distance, we have tested the 
Kullback–Leibler divergence and the Euclidean distance between 
cluster/meta-cluster centers as the dissimilarity between a pair 
of clusters or meta-clusters (these three options are available in 
the flowMatch package). We observe that the Kullback–Leibler 
divergence and Mahalanobis distance perform similarly for the 
HD dataset. However, when we use the Euclidean distance in 
the mixed edge cover computation, the template construction 
algorithm could not group samples from the same subjects, as 
shown in Figure 9. Euclidean distance does a reasonable job in 
grouping technical replicates (with two mistakes in subjects A 
and E). However, it fails to group samples collected on different 
days from the same subject because Euclidean distance does not 
consider the distribution of cells in a cluster or meta-cluster.

Next, we use the unweighted pair group method with arithme-
tic mean (UPGMA) hierarchical clustering algorithm to organize 
the samples in a hierarchy as shown in Figure 10. In Figure 10A, 
the dissimilarity between samples is computed by the mixed edge 
cover with Mahalanobis distance as the distance between clusters; 
and in Figure 10B, the dissimilarity between samples is computed 
by the earth mover’s distance (EMD) (47). To compute EMD, we 
used the flowFP package in Bioconductor to generate fingerprints 
of flow cytometry data, and then computed EMD by solving the 
minimum sum assignment problem using the clue package. 
UPGMA does a reasonable job in grouping samples from the 
same subject, albeit with few misplacements. For example, in 
Figure 10A, samples from subject A are split into two branches 
and in Figure 10B, samples from subject C and D are split into 
two branches. Therefore, the hierarchical matching and merging 
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FigUre 9 | hierarchical organization of hD samples using the hM&M 
algorithm. The Euclidean distance between cluster/meta-cluster centers is 
used when computing the mixed edge cover.
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UPGMA with the earth mover’s distance

FigUre 10 | hierarchical organization of hD samples using the UPgMa algorithm using (a) the mixed edge cover (with Mahalanobis distance as the 
distance between clusters) and (B) the earth mover’s distance as the dissimilarity between every pair of samples.
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algorithm performs better than the UPGMA algorithm when dis-
covering the relationship among FC samples. However, UPGMA 
or any other traditional hierarchical clustering algorithm cannot 
identify phenotypes shared among samples in different branches 
of the hierarchy because these algorithms only consider a dis-
similarity measure between every pair of samples. By contrast, 
our template construction algorithm identifies phenotypes asso-
ciated with meta-clusters and templates created from different 
classes of samples. These phenotypes provide key insight on the 
overall properties of the samples and supply valuable information 
for biological validation of the classification algorithms. In the 
next section, we discuss how this ability can be used to discover 
immunophenotypes of complex diseases such as AML.

4. DiscOVering iMMUnOPhenOTYPes 
OF acUTe MYelOiD leUKeMia

4.1. Background on aMl
Acute myeloid leukemia is a disease of myeloid stem cells that 
differentiate to form several types of cells in the blood and mar-
row. It is characterized by the profusion of immature myeloid 

cells, which are usually prevented from maturing due to the 
disease. The myeloid stem cell differentiates in several steps to 
form myeloblasts and other cell types in a hierarchical process. 
This hierarchical differentiation process could be blocked at dif-
ferent cell types, leading to the multiple subtypes of AML. Eight 
different subtypes of AML based on cell lineage are included in 
the French–American–British Cooperative Group (FAB) clas-
sification scheme (51). [A different World Health Organization 
(WHO) classification scheme has also been published].

4.2. The aMl Dataset
We use an AML dataset from the DREAM6/FlowCAP2 challenge 
of 2011 (publicly available at http://flowrepository.org/). The 
dataset consists of FC measurements of peripheral blood or bone 
marrow aspirate collected from 43 AML-positive patients and 
316 healthy donors over a 1-year period. Each patient sample was 
subdivided into eight aliquots (“tubes”) and analyzed with differ-
ent biomarker combinations, five markers per tube (most mark-
ers are proteins). In addition to the markers, the forward scatter 
(FS) and side scatter (SS) of each sample were also measured in 
each tube. Hence, we have 359 ×  8 =  2,872 samples, and each 
sample is seven-dimensional (five markers and the two scatters). 
The disease status (AML/healthy) of 23 AML patients and 156 
healthy donors are provided as training set, and the challenge is 
to determine the disease status of the rest of the samples, 20 AML 
and 157 healthy, based only on the information in the training 
set. Since samples are already compensated and logarithmically 
transformed, we omit these steps in our analysis. We also omit 
Tubes 1 and 8 because they are isotype and unstained controls, 
respectively.

4.3. cell Populations in healthy and aMl 
samples
In each tube, we identify cell populations in the samples using the 
k-means clustering algorithm. As in the analysis of the HD dataset, 
the number of clusters is selected by simultaneous optimization 
of five cluster validation methods discussed in Section 2.4. Each 
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FigUre 11 | cell types identified on the side scatter (ss) and cD45 channels for a healthy and an aMl-positive sample. Cell populations are discovered 
in the seven-dimensional samples with the clustering algorithm and then projected on these channels for visualization. A pair of clusters denoting the same cell type 
is marked with the same color. The proportion of myeloid blast cells (shown in red) increases significantly in the AML sample.
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sample contains five major cell types that can be seen when cell 
clusters are projected on the side scatter (SS) and CD45 channels, 
as depicted in Figure 11. (Blast cells are immature progenitors 
of myeloid cells or lymphocytes.) The side scatter measures the 
granularity of cells, whereas CD45 is variably expressed by differ-
ent white blood cells (leukocytes). AML is initially diagnosed by 
rapid growth of immature myeloid blast cells with medium SS and 
CD45 expressions (52) marked in red in Figure 11. According to 
the WHO guidelines, AML is initially confirmed when the sample 
contains more than 20% blasts. This is the case for all, except one 
of the AML samples in the DREAM6/FlowCAP2 training set, and 
the exception will be discussed later.

4.4. healthy and aMl Templates
From each tube of the AML dataset, using the training samples, 
we build two templates: one for healthy samples and one for AML. 
As described in Section 2.6, the HM&M algorithm organizes 
samples of the same class into a binary template tree whose root 
represents the class template. The template trees created from 
the healthy and AML training samples in Tube 6 are shown in 
Figures  12A,B, respectively. The height of an internal node in 
the template tree measures the dissimilarity between its left and 
right children, whereas the horizontal placement of a sample is 
arbitrary. In these trees, we observe twice as much heterogene-
ity in the AML samples than among the healthy samples (in the 
dissimilarity measure), despite the number of healthy samples 
being five times the number of the AML samples. The larger 
heterogeneity among AML samples is observed in other tubes 
as well. The template tree for AML partitions these samples 
into different subtrees that possibly denote different subtypes 
of AML. For example, the subtree in Figure 12B that is colored 
red includes samples (with subject ids 37, 58, 67, 89, and 117) 
with immunophenotypes of acute promyelocytic leukemia (APL) 
(discussed later in this section).

Together, the meta-clusters in a healthy template represent 
a healthy immune profile in the feature space of a tube from 
which the template is created. We obtained 22 meta-clusters 
in the healthy template created from Tube 6. The percentage 
of samples from the training set participating in each of these 
meta-clusters is shown in Figure 12C. Observe that 6% or more 

of the healthy samples participate in the nine most common 
meta-clusters (these constitute the core of the healthy template). 
The remaining thirteen meta-clusters include populations from 
a small fraction of samples. These populations could correspond 
to biological variability in the healthy samples, variations in the 
FC experimental protocols, and possibly also from the split-
ting of populations that could be an artifact of the clustering 
algorithm.

The AML template created from Tube 6 consists of forty 
meta-clusters (almost twice the number in the more numerous 
healthy samples). Figure  12D shows that, unlike the healthy 
samples, the AML samples are heterogeneous with respect to 
the meta-clusters they participate in: There are 21 meta-clusters 
that include cell populations from at least 20% of the AML 
samples. Some of the meta-clusters common to a large number 
of AML samples represent non-AML-specific cell populations. 
For example, Figure 12E shows the average marker expressions 
of the meta-cluster shown in the blue bar in Figure 12D. This 
meta-cluster has low to medium side scatter and high CD45 
expression and therefore represents lymphocytes (Figure 11). 
Since lymphocytes are not affected by AML, this meta-cluster 
does not express any AML-related markers, and hence can 
be described as HLA-DR−CD117−CD34−CD38−, as expected. 
Figure  12F shows the expression profile of another meta-
cluster shown in the red bar in Figure 12D. This meta-cluster 
consists of five cell populations from five AML samples (with 
subject ids 37, 58, 67, 89, and 117) and exhibits medium side 
scatter and CD45 expression and therefore, represents myeloid 
blast cells. Furthermore, this meta-cluster is HLA-DR−CD117+ 

CD34−CD38+, and represents a profile known to be that of 
APL (53). APL is subtype M3 in the FAB classification of AML 
(51) and is characterized by chromosomal translocation of 
retinoic acid receptor-alpha (RARα) gene on chromosome 17 
with the promyelocytic leukemia gene (PML) on chromosome 
15, a translocation denoted as t(15;17). In the feature space 
of Tube 6, these APL samples are similar to each other while 
significantly different from the other AML samples. Our 
template-based classification algorithm groups these samples 
together in the subtree colored red in the AML template tree 
shown in Figure 12B.
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FigUre 12 | The healthy and aMl templates created from Tube 6. (a) The template tree created from 156 healthy samples in the training set. (B) The 
template tree created from 23 AML samples in the training set. Samples in the red subtree exhibit the characteristics of acute promyelocytic leukemia (APL) as 
shown in (F). (c) Fraction of 156 healthy samples present in each of the 22 meta-clusters in the healthy template. Nine meta-clusters, each of them shared by at 
least 60% of the healthy samples, form the core of the healthy template. (D) Fraction of 23 AML samples present in each of the 40 meta-clusters in the AML 
template. The AML samples, unlike the healthy ones, are heterogeneously distributed over the meta-clusters. (e) The expression levels of markers in the 
meta-cluster shown with blue bar in (D). [Each horizontal bar in (e,F) represents the average expression of a marker and the error bar shows its SD]. This 
meta-cluster represents lymphocytes denoted by medium SS and high CD45 expression and therefore does not express the AML-related markers measured in 
Tube 6. (F) Expression of markers in a meta-cluster shown with red bar in (D). This meta-cluster denotes myeloblast cells as defined by the SS and CD45 levels. 
This meta-cluster expresses HLA-DR−CD117+CD34−CD38+, a characteristic immunophenotype of APL. Five AML samples sharing this meta-cluster are similar to 
each other as shown in the red subtree in (B).
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4.5. identifying Meta-clusters 
symptomatic of aMl
In each tube, we register meta-clusters across the AML and 
healthy templates using the mixed edge cover (MEC) algorithm. 
Meta-clusters in the AML template that are not matched to any 
meta-clusters in the healthy template represent the abnormal, 
AML-specific immunophenotypes while the matched meta-
clusters represent healthy or non-AML-relevant cell popula-
tions. Table 2 lists several unmatched meta-clusters indicative 
of AML from different tubes. As expected, every unmatched 
meta-cluster displays medium side scatter and CD45 expres-
sion characteristic of myeloid blast cells, and therefore, we 
omit FS, SS, and CD45 values in Table  2. We briefly discuss 
the immunophenotypes represented by each AML-specific 

meta-cluster in each tube, omitting the isotype control Tube 1 
and unstained Tube 8.

Tube 6 is the most important panel for diagnosing AML since 
it includes several markers expressed by AML blasts. HLA-DR is 
an MHC class II cell surface receptor complex that is expressed 
on antigen-presenting cells, e.g., B cells, dendritic cells, mac-
rophages, and activated T cells. It is expressed by myeloblasts 
in most subtypes of AML except M3 and M7 (54). CD117 is 
a tyrosine kinase receptor (c-KIT) expressed in blasts of some 
cases (30–100%) of AML (54). CD34 is a cell adhesion molecule 
expressed on different stem cells and on the blast cells of many 
cases of AML (40%) (53). CD38 is a glycoprotein found on the 
surface of blasts of several subtypes of AML but usually not 
expressed in the M3 subtypes of AML (55). In Tube 6, we have 
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TaBle 2 | some of the meta-clusters characteristic of aMl for the 23 
aMl samples in the training set.

Tube Marker expression #samples Fraction of cells

2 KappalowLambdalowCD19+CD20− 5 63% (±6.8)
3 CD7+CD4−CD8−CD2− 4 18.0% (±4.8)
4 CD15−CD13+CD16−CD56− 17 16.6% (±6.9)
4 CD15−CD13+CD16−CD56+ 8 11.1% (±5.7)
5 CD14−CD11c−CD64−CD33+ 10 13.5% (±5.2)
5 CD14−CD11c+CD64−CD33+ 18 10.8% (±3.8)
5 CD14lowCD11c+CD64lowCD33+ 6 13.8% (±4.3)
6 HLA-DR+CD117+CD34+CD38+ 11 13.3% (±2.6)
6 HLA-DR+CD117±CD34+CD38+ 13 17.3% (±6.6)
6 HLA-DR−CD117±CD34−CD38+ 5 12.9% (±4.7)
7 CD5−CD19+CD3−CD10− 3 12.3% (±2.4)
7 CD5+CD19−CD3−CD10− 3 10.0% (±8.5)
7 CD5−CD19−CD3−CD10+ 1 9.9%

In the second column, “−,” “low,” and “+” denote very low, low, and high, abundance 
of a marker, respectively, and ± denotes a marker that is positively expressed by some 
samples and negatively expressed by others. The number of samples participating in 
a meta-cluster is shown in the third column. The average fraction of cells in a sample 
participating in a meta-cluster and the SD are shown in the fourth column.
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identified two meta-clusters with high expressions of HLA-DR 
and CD34. One of them also expresses CD117 and CD34, and 
Figure 13C shows the bivariate contour plots of the cell popula-
tions contained in this meta-cluster. The second meta-cluster 
expresses positive but low levels of CD117 and CD34. These two 
HLA-DR+CD34+ meta-clusters together are present in 18 out of 
the 23 training AML samples. The remaining five samples (sub-
ject id: 5, 7, 103, 165, and 174) express HLA-DR−CD117±CD34− 
CD38+ myeloblasts, which is an immunophenotype of APL (53) 
as was discussed earlier. Figure 13D shows the bivariate contour 
plots of this APL-specific meta-cluster.

Tube 5 contains several antigens typically expressed by AML 
blasts, of which CD33 is the most important. CD33 is a transmem-
brane receptor protein usually expressed on immature myeloid 
cells of the majority of cases of AML [91% reported in Ref. (56)]. 
The AML-specific meta-clusters identified from markers in Tube 
5 (see Table 2) include CD33+ myeloblasts from every sample in 
the training set. Several of the CD33+ populations also express 
CD11c, a type I transmembrane protein found on monocytes, 
macrophages, and neutrophils. CD11c is usually expressed by 
blast cells in acute myelomonocytic leukemia (M4 subclass of 
AML) and acute monocytic leukemia (M5 subclass of AML) (54). 
Therefore, the CD14−CD11c+CD64−CD33+ meta-cluster could 
represent patients with M4 and M5 subclasses of AML. We show 
the bivariate contour plots of this meta-cluster in Figure 13B.

Tube 4 includes several markers usually expressed by AML 
blasts, of which CD13 is the most important. CD13 is a zinc-
metalloproteinase enzyme that binds to the cell membrane and 
degrades regulatory peptides (57). CD13 is expressed on the blast 
cells of the majority of cases of AML [95% as reported in Ref. 
(56)]. Table  2 shows two AML-specific meta-clusters detected 
from the blast cells in Tube 4. In addition to CD13, eight AML 
samples express CD56 glycoprotein that is naturally expressed on 
NK cells, a subset of CD4+ T cells and a subset of CD8+ T cells. 
Raspadori et al. (58) reported that CD56 was more often expressed 
by myeloblasts in FAB subclasses M2 and M5, which covers about 

42% of AML cases in a study by Legrand et al. (56). In this dataset, 
we observe more AML samples expressing CD13+CD56− blasts 
than expressing CD13+CD56+ blasts, which conforms to the 
findings of Raspadori et al. (58). Figure 13A shows the bivariate 
contour plots of the CD13+CD56− meta-cluster.

Tube 2 is a B cell panel measuring B cell markers CD19 and 
CD20, and Kappa (κ) and Lambda (λ), immunoglobulin light 
chains present on the surface of antibodies produced by B lym-
phocytes. B cell-specific markers are occasionally co-expressed 
with myeloid antigens, especially in the FAB M2 subtype of AML 
[with chromosomal translocation t(8;21)] (54, 59). In Tube 2, we 
have identified a meta-cluster in the myeloblasts that expresses 
high levels of CD19 and low levels of Kappa and Lambda. The five 
samples with subject ids 5, 7, 103, 165, and 174 participating in 
this meta-cluster possibly belong to the FAB-M2 subtype of AML. 
Tube 3 is a T cell panel measuring the T cell-specific markers CD4, 
CD8, CD2, and CD7. Tube 7 is a lymphocyte panel with several 
markers expressed on T and B lymphocytes and is less important 
in detecting AML since they are infrequently expressed by AML 
blasts.

4.6. impact of each Tube in the 
classification
As discussed in the methods section, we build six independent 
classifiers based on the healthy and AML templates created from 
Tubes 2–7 of the AML dataset. A sample is classified as an AML 
sample if the classification score is positive, and as a healthy 
sample otherwise. Let true positives (TP) be the number of AML 
samples correctly classified, true negatives (TN) be the number 
of healthy samples correctly classified, false positives (FP) be the 
number of healthy samples incorrectly classified as AML, and 
false negatives (FN) be the number of AML samples incorrectly 
classified as healthy. Then, we evaluate the performance of each 
template-based classifier with the well-known four statistical 
measures: Precision, Recall (Sensitivity), Specificity, and F-value, 

defined as Precision TP
TP FP

=
+

, Recall (Sensitivity) TP
TP FN

=
+

,  

Specificity TN
FP TN

=
+

, and F value Precision Recall
Precision Recall

−
×
+

= 2( )
.  

These four measures take values in the interval [0,1], and the 
higher the values, the better the classifier.

First, we evaluate the impact of each tube in the classification 
of the training samples. For a training sample X, the classifica-
tion score is computed by comparing it with the healthy and 
AML templates created from the training set after removing X. 
The predicted status of X is then compared against true status 
to evaluate the classification accuracy. Table 3 (left panel) shows 
various statistical measures for the classifiers defined in Tubes 
2–7 of the training set. The classifiers based on Tubes 4–6 have the 
highest sensitivity because these tubes include several markers 
relevant to AML diagnosis (53, 54). The number of true negatives 
TN is high in every tube since the identification of healthy sam-
ples does not depend on the detection of AML-specific markers. 
Hence, specificity is close to one for all tubes. Analogously, FP 
is low for most tubes, and we observe high precision for most 
tubes. The F-value is a harmonic mean of precision and recall and 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


FigUre 13 | Bivariate contour plots (side scatter vs. individual marker) for two meta-clusters (one in each row) indicative of aMl. The ellipses in  
a subplot denote the 95th quantile contour lines of cell populations included in the corresponding meta-cluster. Myeloblast cells have medium side scatter (SS) 
and CD45 expressions. The red lines indicate approximate myeloblast boundaries (located on the left-most subfigures in each row and extended horizontally to 
the subfigures on the right) and confirm that these meta-clusters represent immunophenotypes of myeloblast cells. Blue vertical lines denote the ± boundaries 
of a marker. Gray subplots show contour plots of dominant markers defining the meta-cluster in a row. (a) CD13+CD56– meta-cluster shared by 17 AML samples  
in Tube 4. (B) CD4–CD11c+CD64–CD33+ meta-cluster shared by 18 AML samples in Tube 5. (c) HLA-DR+CD117+CD34+CD38+ meta-cluster shared by 11 AML 
samples in Tube 6. (D) HLA-DR–CD117±CD34–CD38+ meta-cluster shared by 5 AML samples in Tube 6. The last meta-cluster is indicative of acute promyelocytic  
leukemia (APL).

TaBle 3 | Four statistical measures evaluating the performance of the template-based classification in the training set and test set of the aMl data.

Tubes Training set Test set

Precision recall specificity F-value Precision recall specificity F-value

4 0.94 0.74 0.99 0.83 1.00 0.75 1.00 0.86
5 0.75 0.91 0.96 0.82 0.65 0.85 0.94 0.74
6 1.00 0.70 1.00 0.82 1.00 0.80 1.00 0.89
All (2–7) 1.00 0.74 1.00 0.85 1.00 0.85 1.00 0.92
4–6 1.00 0.96 1.00 0.98 1.00 1.00 1.00 1.00

The statistical measures are computed for each tube separately and two combinations of tubes.
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FigUre 15 | cell populations in a samples from subject 116. This 
sample contains only 4.4% myeloid blast cells (shown in red).

A B

FigUre 14 | average classification score from Tubes 4 to 6 for each sample in the (a) training set and (B) test set. Samples with scores above the 
horizontal line are classified as AML and as healthy otherwise. The actual class of each sample is also shown. An AML sample (subject id 116) is always 
misclassified in the training set, and this is discussed in the text.
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denotes the superior classification ability of markers in Tubes 4–6. 
Averaging scores from all tubes does not improve the sensitivity 
and F-value dramatically. However, combining Tubes 4–6 gives 
almost perfect classification with one misclassification for the 
training set. We plot the average classification scores from Tubes 
4 to 6 for the training samples in Figure 14A. The class labels of 
samples are also shown (blue circles for healthy and red triangles 
for AML samples).

In Figure 14A, we observe an AML sample (subject id 116) 
with score below the classification boundary. Figure  15 shows 
that this sample has only 4.4% myeloid blast cells, which is lower 
than the minimum 20% AML blasts necessary to recognize a 
patient to be AML-positive according to the WHO guidelines 
(60) (the FAB threshold is even higher, at 30%). Hence, this is 
either a rare case of AML, or one with minimal residual disease 
after therapy, or perhaps it was incorrectly labeled as AML in the 
training set. Subject 116 was classified with the healthy samples 
by methods in other published work (26).

4.7. classifying Test samples
Now we turn to the test samples. For each tube, we compute the 
classification score for each sample in the test set using templates 
created from the training set and applying equation (3). Since the 

average classification score from Tubes 4 to 6 performs best for the 
training set, we use it as a classifier for the test set as well. Since the 
status of test samples was released after the DREAM6/FlowCAP2 
challenge, we can determine the classification accuracy of the test 
samples. Figure  14B shows the classification scores of the test 
samples, where samples are placed in ascending order of clas-
sification scores. In Figure 14B, we observe perfect classification 
in the test set. Similar to the training set, we tabulate statistical 
measures for the classifiers in Table 3.

When classifying a sample X, we assume the null hypothesis: X 
is healthy (non-leukemic). The sample X receives a positive score 
if it contains AML-specific immunophenotypes, and the higher 
the score, the stronger the evidence against the null hypothesis. 
Since Tube 1 (isotype control) does not include any AML-specific 
markers, it can provide a background distribution for the clas-
sification scores. In Tube 1, 174 out of 179 training samples have 
negative classification scores, but five samples have positive 
scores, with values less than 0.2. In the best classifier designed 
from Tubes 4 to 6, we observe that two AML-positive samples 
in the training set and three AML-positive samples in the test 
set have scores between 0 and 0.2. The classifier is relatively less 
confident about these samples; nevertheless, the p-values of these 
five samples (computed from the distribution in Tube 1) are still 
small (<0.05), so that they can be classified as AML-positive. The 
rest of the AML samples in the training and test sets have scores 
greater than 0.2, and the classifier is quite confident about their 
status (p-value zero).

Four AML samples in the test set (ids 239, 262, 285, and 326) 
were subclassified as APL by comparing against distinct template 
trees for APL and the other AML samples in the training set (cf. 
Figure 12B).

Finally, we state the computational times required on an iMac 
with four 2.7-GHz cores and 8-GB memory. Our code is in R. 
Consider a single tube with 359 samples in it. The k-means clus-
tering of all samples took 1 h, primarily because we need to run 
the algorithm multiple times (about ten on the average) to find 
the optimal value of the number of clusters. Creating the healthy 
template from 156 samples in the training set required 10 s on 
one core, and the AML template for 23 AML samples took 0.5 s 
on one core. Cross validation (leave one out) of the training set 
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took 30 min, and computing the classification score for the 180 
test samples took 15 s, both on four cores. We could have reduced 
the running time by executing the code in parallel on more cores. 
We have made the dominant step, the k-means clustering of all 
the samples with an optimal number of clusters, faster using a 
GPU, reducing the total time to a few minutes.

5. cOnclUsiOn

We have described a set of algorithms for feature selection in 
a collection of flow cytometry samples by identifying immu-
nophenotypes (cell populations characterizing subsets of the 
samples that express certain markers and not others). The 
immunophenotypes are obtained from statistical summaries of 
similar cell populations in all of the samples. We have used these 
immunophenotypes to hierarchically organize the samples via 
a template tree, to identify variations in the samples at multiple 
levels, and to use them for robust and efficient classification.

We report results from two sets of FC data. We show that a 
collection of healthy samples from different individuals over a 
number of days are classified by our approach to identify techni-
cal replicates, temporal replicates, and individual replicates. We 
also show that this identification is not obtained using a different 
method that uses the earth mover’s distance and UPGMA for 
constructing a template tree. The second set of data represents 
phenotypically heterogeneous subtypes of AML samples, where 
we identified thirteen phenotypes corresponding to the differ-
ent subtypes. Here we were able to distinguish the APL subtype 
from other AML subtypes, but other markers not included in the 
study would be necessary to distinguish other subtypes of AML.

We have assembled our algorithms for the several steps of 
FC data analysis into a package called flowMatch and made 
it available as an open-source R package in Bioconductor.2 The 

2 http://www.bioconductor.org/

flowMatch package has been downloaded more than 2,000 
times since February 2015. We have also employed various 
components of this package to analyze other FC datasets 
and have published the results in peer-reviewed journals and 
 conferences (19, 20, 44).

Stabilizing variance, clustering, matching clusters, and creating 
templates are general concepts with applications to other areas of 
biotechnology. Therefore, the algorithms in the flowMatch pack-
age can be applied – with simple modifications – to problems 
outside of flow cytometry. We have already applied the variance 
stabilization framework to microarray data and compared the 
results with a state-of-the-art software developed for microarrays 
(24). Likewise, other algorithms have applications to problems 
from microarrays, ChIp-Seq, etc. In particular, FC data projected 
on a lower dimension have considerable similarities with images 
from traditional photography and bio-imaging technologies such 
as imaging cytometry, magnetic resonance imaging (MRI), etc., 
and hence, algorithms in flowMatch could be used to analyze 
images from these applications.
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